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Abstract

This paper describes our work on the
IWSLT2023 Speech-to-Speech task. Our pro-
posed cascaded system consists of an ensemble
of Conformer and S2T-Transformer-based ASR
models, a Transformer-based MT model, and
a Diffusion-based TTS model. Our primary
focus in this competition was to investigate
the modeling ability of the Diffusion model
for TTS tasks in high-resource scenarios and
the role of TTS in the overall S2S task. To this
end, we proposed DTS, an end-to-end diffusion-
based TTS model that takes raw text as input
and generates waveform by iteratively denois-
ing on pure Gaussian noise. Compared to previ-
ous TTS models, the speech generated by DTS
is more natural and performs better in code-
switching scenarios. As the training process is
end-to-end, it is relatively straightforward. Our
experiments demonstrate that DTS outperforms
other TTS models on the GigaS2S benchmark,
and also brings positive gain for the entire S2S
system.

1 Introduction

Compared to previous iterations of the IWSLT-S2S
task (Anastasopoulos et al., 2022; Guo et al., 2022),
this year’s task (Agarwal et al., 2023) is distinct,
particularly in terms of data. The official training
dataset provided is GigaS2S (Chen et al., 2021;
Ye et al., 2022), which is substantially larger than
previous S2S datasets, with a data size of 10,000
hours. Although the target text and speech are
generated by MT and TTS systems, their quality is
relatively high, making them suitable for initiating
research on end-to-end S2S or TTS models in high-
resource scenarios.

Our strategy is similar to that of last year (Guo
et al., 2022), where we used a cascaded S2S system,
but our research focus has shifted. In last year’s
work, we primarily studied the role of ASR and MT
in the S2S system and attempted to optimize the
context consistency of translation results. In this

year’s competition, we shifted our research focus
to the TTS component. Therefore, we directly used
the ASR and MT systems in our offline ST track
(Wang et al., 2022a,b). Additionally, we no longer
considered the issue of context consistency during
inference.

Given the unprecedented success of the Diffu-
sion Model (Ho et al., 2020; Rombach et al., 2022)
in image generation over the past few years, we
sought to explore its potential in speech synthe-
sis. Thus, we proposed an end-to-end Diffusion
TTS (DTS) model. Unlike previous TTS mod-
els, such as FastSpeech2 (Ren et al., 2021), which
use phonemes as input and use a duration predic-
tor to determine the duration and generate mel-
spectrograms, DTS uses raw text as input, predicts
the total audio length, and generates the waveform
by iteratively denoising the output.

The structure of this paper is as follows: We first
introduce the dataset used in this task, followed by
a brief introduction to the ASR and MT models
used. Then, we provide a detailed description of
our proposed DTS model. Finally, we showcase
the performance of each model on the GigaS2S
dataset.

2 Method

2.1 Dataset
To train the ASR model, we combined five datasets
and added corresponding domain tags to enable the
model to generate speech in the desired style (Wang
et al., 2022b). For the MT model, we aggregated all
available en-de, en-zh, and en-ja translation data
allowed for constrained offline tasks and added
language tags to train a multilingual model. Finally,
for the TTS model, we utilized the Chinese text and
speech pairs from GigaS2S (Ye et al., 2022).

2.2 ASR
We trained our ASR models using a combination
of five datasets: MuST-C V2, LibriSpeech, TED-
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Dataset Number of Utterance Duration(hrs)

LibriSpeech 281,241 960.85
MuST-C 340,421 590.67
IWSLT 170,229 254.41
CoVoST 1362,422 1802.52
TEDLIUM3 268,214 453.42

Table 1: Data statistics of our ASR corpora

LIUM 3, CoVoST, and IWSLT. Table 1 provides
statistics for these datasets. Our model uses an
80-dimensional filterbank feature, with input sam-
ples restricted to a frame size between 50 to 3000
and a token limit of 150 to ensure that the Trans-
former model’s encoder and decoder can process
sequences of limited size.

To identify outliers, we calculated the speech
speed of each sample based on the transcript length
and frame size. We excluded samples with speeds
outside the range of µ(τ)± 4× σ(τ), where τ =
# frames
# tokens .

We utilized an ensemble of two models to
improve ASR performance: Conformer (Gulati
et al., 2020) and S2TTransformer (Synnaeve et al.,
2019). The encoder of Conformer incorporates
a macaron structure at each layer based on the
S2TTransformer’s encoder to enhance speech en-
coding capability. Our ensemble method involves
averaging the probabilities output by both decoders
at each decoding step during beam-search. To con-
trol the model’s generation style, we added prefix
tags corresponding to the COVOST dataset for in-
ference, making the model’s inference style closer
to GigaS2S transcripts.

2.3 MT

For MT, we utilized the multilingual Transformer
model that we developed for the offline track, train-
ing it on en-zh, en-de, and en-ja datasets. To ensure
high-quality pairs, we first cleaned and removed du-
plicates from the data, then filtered it using LaBSE
(Feng et al., 2022) to select domain-specific data.
During training, we employed R-Drop (Liang et al.,
2021) for additional regularization. Our Trans-
former (Vaswani et al., 2017) model consisted of
a 25-layer encoder and a 6-layer decoder with a
dimension of 1024 and an FFN dimension of 4096.

2.4 TTS
2.4.1 Modeling
The Denoising Diffusion Model (DDM) (Ho et al.,
2020) models a continuous process of iteratively
denoising Gaussian noise to restore the original
sample. The model consists of two processes: the
forward process of adding noise and the reverse
process of denoising. These continuous processes
are assumed to have Markovian properties and can
be decomposed into T conditional distributions
through a Markov chain, with x0 representing the
original data (raw waveform in the TTS task) and
xT representing pure noise.

In the forward process of DDM, q(x1:T |x0, c) is
decomposed into a Markov process of T steps and
conditioned on the input text c:

q(x1:T |x0, c) =
T∏

t=1

q(xt|xt−1) (1)

q(xt|xt−1, c) = N (xt;
√
1− βtxt−1, βtI). (2)

The sampling of xt given xt−1 can be expressed
as:

xt =
√
1− βtxt−1 +

√
βtϵ, (3)

where ϵ ∈ N (0, I), and βt ∈ [0, 1] is a noise
scheduler related to t. Therefore, each step of
the forward process is adding a certain amount of
Gaussian noise to the previously corrupted speech
xt−1. Finally, x0 ultimately evolves into white
noise that follows a Gaussian distribution. An im-
portant characteristic of the forward process is that
xt ∼ q(xt|x0, c) for any t has a closed form:

q(xt|x0, c) = N (xt;
√
ᾱtx0, (1− ᾱt)I} (4)

αt = 1 − βt, and ᾱt =
∏t

s=1 αs, so we can effi-
ciently obtain xt for any t from x0 during training.

In the reverse process, the denoising process is
similar to the forward process, and is also described
as a T -step Markov process:

pθ(x0:T , c) = p(xT )
T∏

t=1

pθ(xt−1|xt) (5)

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c), σ
2
t I), (6)

where the µθ can be learned by neural networks
and σ2

t = 1− αt.
The training objective of the Diffusion Model is

to maximize the log-likelihood of p(x0|c), which
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is intractable, so optimization on the variational
bound is used instead. (Ho et al., 2020) further sim-
plify it to an unweighted version of L2 regression
loss with respect to ϵ̂ and added noise ϵ. In our
work, we predict the x0 with the model instead of
the noise:

L(θ) = Et,x0,ϵ

[
||x̂θ(xt, t, c)− x0||

]
(7)

Here, t is uniformly sampled from the interval
[0, T ].

During inference, the model iteratively samples
xt−1 from xt:

xt−1 =
1√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t, c) + σtz
)

(8)

ϵθ =
1√

1− ᾱt

(
xt −

√
ᾱtx̂θ(xt, t, c)

)
(9)

where σt =
√
1− αt and z ∼ N (0, I). In our ex-

periments, to allow for flexible determination of
the maximum step T , we choose to use a contin-
uous t ranging from 0 to 1. During training, t is
uniformly sampled, and we use the cosine noise
scheduler (Nichol and Dhariwal, 2021).

In addition to modeling the denoising process,
DTS also needs to predict the length of the tar-
get audio in advance, as DTS is essentially a non-
autoregressive (NAR) model. However, unlike pre-
vious TTS models that predict the duration of each
phoneme, we directly model the total number of
frames in the target audio, which is more conve-
nient. Specifically, we use the text representation
after average pooling, denoted as hc, as the input
to the classifier ϕ to predict the length distribution.
Then, we calculate the cross-entropy loss with the
frame number Nx0 of x0.

Llength = CE(ϕ(hc; θ), Nx0) (10)

2.4.2 Model Architecture
The DTS model is essentially a parameterized de-
noising function x̂(xt, t, c) which takes xt, t as in-
put, conditions on c, and predicts the x0 for the
sampling of xt−1. The model makes some modifi-
cations on top of the Transformer model to make
it more suitable for speech synthesis. As shown in
Figure 1, the main modifications are as follows:

• On top of the Encoder, we add a two-layer
FFN network to predict the length of the target
audio.

Transformer
Encoder

Length Predictor

2 x 1DConvolution

2 x 1DConvTranspose

k x TransformerDecoderLayer

Positional Embedding

Timestep-Embedding

LayerwiseTimeEncoding

Figure 1: The architecture of DTS model, which takes
C = [c1, ..., cM ] as the encoder input to predict the
frame length N . For the decoder, it takes xt and t as
input, conditions on C to predict x0 for the sampling of
xt−1 according to Eq 8 and 9.

• In the input part of the Decoder, we use two
1D convolutions with a proper setting of ker-
nel size, stride, and padding, so the sequence
length before and after convolution remains
unchanged.

• As the Diffusion model depends on the time
step t, we additionally introduce a Timestep
Embedding, and use the same implementation
as (Ho et al., 2020).

• To make the time step encoding more compre-
hensive, we add Layerwise time encoding at
each layer and added to the encoded hidden
states from the last layer.

• In the output part of the decoder, we add 2
1D deconvolutions to restore the hidden state
back to the waveform. We use deconvolu-
tion because we found that using only linear
projection leads to a lack of dependency be-
tween the generated waveform and the pre-
vious waveform, resulting in noticeable jitter,
which can be significantly eliminated by using
deconvolution.
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Model WER-all-punct WER-all WER-code-switch WER-zh

FastSpeech 2 13.18 10.75 15.70 8.37
DTS-Mel 13.32 10.28 15.66 7.69
DTS-Wave 12.68 9.82 15.33 7.17

Table 2: This table shows the performance of our TTS models on the GigaS2S dev set, using ground truth transcripts
as input. We compare our models against FastSpeech 2 (Ren et al., 2021), which serves as the baseline. Additionally,
we present a DTS model trained to predict mel-spectrograms (DTS-Mel) for comparison with DTS for waveform
(DTS-Wave). The table reports the word error rate (WER) for the entire set with punctuation (WER-all-punct), WER
for all samples without punctuation (WER-all), WER for code-switch samples without punctuation (WER-code-
switch), and WER for Chinese-only samples without punctuation (WER-zh). The results indicate that DTS-Wave
outperforms the other models, achieving the lowest WER values in all categories.

Model WER WER-no-punct
S2TTransformer 22.67 18.15
Conformer 22.42 17.80
Ensemble 21.57 16.92

Table 3: The performance of our two independent ASR
models and the ensemble of them with or without punc-
tuation.

Model Input BLEU ChrF

ASR output 29.0 25.4
Ground Truth 30.7 27.3

Table 4: The performance of our MT models with
ground truth input and asr outputs as the input.

3 Experiment

3.1 Experimental Setup

For the ASR and MT parts of our S2S system, we
directly used the same setting as in the Offline track.
For the TTS part, we trained the model on the Gi-
gaS2S dataset for 360k steps, with a maximum
learning rate of 1e-4, warmup of 20000 steps, and
a batch size of 32 samples per GPU. The maximum
and minimum audio lengths were restricted to 25
seconds and 0.5 seconds, respectively. The model
has 12 layers in the encoder and 16 layers in the
decoder, with a hidden dimension of 512 and an
FFN dimension of 2048. DTS can directly generate
waveforms, but since audio waveforms are usually
long, we pre-segment them into equally sized non-
overlapping frames. In this way, the model learns
to generate the waveform frame by frame, and we
only need to flatten these frames to get the final
output. In our experiments, we used a frame length
of 1200 and a sampling rate of 24000. When infer-
ence, we set the sampling step to 100. In addition to

Model BLEU ChrF

FastSpeech2 21.8 22.7
DTS-Mel 22.3 23.1
DTS-Wave 22.7 23.4

Table 5: The overall cascade performance evaluated by
BLEU and ChrF.

the raw waveform, DTS can also learn to generate
mel-spectrogram, simply by changing wave frames
to spectrogram frames. This is also evaluated in
our experiment.

3.2 Experimental Results

In the experiments, we tested the performance of
each module in our S2S system separately. In addi-
tion to testing with the cascaded results as input, we
also conducted independent tests with ground truth
input. For the three modules, we mainly used the
dev set of GigaS2S for evaluation. In terms of eval-
uation metrics, for ASR and MT, we used WER,
BLEU and ChrF, respectively. For TTS, we used a
Whisper-medium (Radford et al., 2022) model to
transcribe the TTS-generated audio back into the
text for automatic evaluation and calculated WER.

ASR Results We evaluated the results of two
ASR models trained on the same corpus separately,
as well as the ensemble version. As shown in Table
3, the ensemble results were slightly better.

MT Results In the evaluation of MT, we consid-
ered two scenarios: using ground truth transcripts
as input and using the output of the previous ASR
module as input. The experimental results showed
that the robustness of MT was relatively good, even
if there were errors in the ASR output, the differ-
ence in BLEU score was not significant as shown
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in Table 4.

TTS Results In the TTS experiments, because
the development set of GigaS2S contains code-
switching samples, we evaluated not only the
WER of the entire set but also separately evalu-
ated the cases without the code-switching. As for
the models, we chose FastSpeech 2 as the base-
line. In addition, we trained an additional DTS
based on mel-spectrogram for comparison with
the waveform-based DTS. Both FS2 and DTS-mel
used the Griffin-lim vocoder. As shown in Table
2, DTS-Wave outperformed the other two models,
especially on Chinese monolingual data.

Full Pipeline Results In addition to testing each
module separately, we also tested the final metrics
of the entire pipeline. We compared the difference
between the speech generated by the three TTS
models with the MT results as input by computing
the BLEU and ChrF with the ground truth transla-
tion. Table 5 shows that there is a difference that
existed, but it is not significant. Therefore, we can
conclude that the quality of the speech generated
by TTS does affect the final performance of S2S
system in terms of automatic evaluation, but the
impact is still limited.

4 Conclusion

In this paper, we present the system we developed
for the IWSLT2023 speech-to-speech competition.
The system includes relatively simple and effective
ASR and MT modules, as well as a TTS module
proposed by us based on the Diffusion Model. In
the experiments, we demonstrate that the denoising
diffusion process can effectively learn end-to-end
TTS task, simplifying both training and inference.
However, its generation speed is relatively slow.
In our future work, we will continue to optimize
its quality and generation efficiency, and further
explore the application of diffusion in end-to-end
S2S tasks.

References
Milind Agarwal, Sweta Agrawal, Antonios Anasta-

sopoulos, Claudia Borg, Marine Carpuat, Roldano
Cattoni, Mauro Cettolo, William Chen, Khalid
Choukri, Alexandra Chronopoulou, Thierry Declerck,
Qianqian Dong, Yannick Estève, Kevin Duh, Mar-
cello Federico, Souhir Gahbiche, Benjamin Hsu,
John Judge, Tom Ko, Rishu Kumar, Xutail Ma,
Prashant Mathur, Evgeny Matusov, Paul McNamee,
John P. McCrae, Kenton Murray, Matteo Negri, Jan

Niehues, Xing Niu, Atul Ojha Kr., John E. Ortega,
Proyag Pal, Juan Pino, Lonneke van der Plas, Elijah
Rippeth, Elizabeth Salesky, Matthias Sperber, Se-
bastian Stüker, Katsuhito Sudoh, Brian Thompson,
Marco Turchi, Alex Waibel, Mingxuan Wang, and
Rodolfo Zevallos. 2023. Findings of the IWSLT 2023
Evaluation Campaign. In Proceedings of the 20th
International Conference on Spoken Language Trans-
lation (IWSLT 2023). Association for Computational
Linguistics.

Antonios Anastasopoulos, Loïc Barrault, Luisa Ben-
tivogli, Marcely Zanon Boito, Ondrej Bojar, Roldano
Cattoni, Anna Currey, Georgiana Dinu, Kevin Duh,
Maha Elbayad, Clara Emmanuel, Yannick Estève,
Marcello Federico, Christian Federmann, Souhir
Gahbiche, Hongyu Gong, Roman Grundkiewicz,
Barry Haddow, Benjamin Hsu, Dávid Javorský,
Vera Kloudová, Surafel Melaku Lakew, Xutai Ma,
Prashant Mathur, Paul McNamee, Kenton Murray,
Maria Nadejde, Satoshi Nakamura, Matteo Negri, Jan
Niehues, Xing Niu, John Ortega, Juan Miguel Pino,
Elizabeth Salesky, Jiatong Shi, Matthias Sperber, Se-
bastian Stüker, Katsuhito Sudoh, Marco Turchi, Yo-
gesh Virkar, Alexander Waibel, Changhan Wang, and
Shinji Watanabe. 2022. Findings of the IWSLT 2022
evaluation campaign. In Proceedings of the 19th In-
ternational Conference on Spoken Language Transla-
tion, IWSLT@ACL 2022, Dublin, Ireland (in-person
and online), May 26-27, 2022, pages 98–157. Asso-
ciation for Computational Linguistics.

Guoguo Chen, Shuzhou Chai, Guan-Bo Wang, Jiayu
Du, Wei-Qiang Zhang, Chao Weng, Dan Su, Daniel
Povey, Jan Trmal, Junbo Zhang, Mingjie Jin, San-
jeev Khudanpur, Shinji Watanabe, Shuaijiang Zhao,
Wei Zou, Xiangang Li, Xuchen Yao, Yongqing Wang,
Zhao You, and Zhiyong Yan. 2021. Gigaspeech: An
evolving, multi-domain ASR corpus with 10, 000
hours of transcribed audio. In Interspeech 2021,
22nd Annual Conference of the International Speech
Communication Association, Brno, Czechia, 30 Au-
gust - 3 September 2021, pages 3670–3674. ISCA.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 878–
891. Association for Computational Linguistics.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang,
Zhengdong Zhang, Yonghui Wu, and Ruoming Pang.
2020. Conformer: Convolution-augmented trans-
former for speech recognition. In Interspeech 2020,
21st Annual Conference of the International Speech
Communication Association, Virtual Event, Shang-
hai, China, 25-29 October 2020, pages 5036–5040.
ISCA.

Jiaxin Guo, Yinglu Li, Minghan Wang, Xiaosong Qiao,
Yuxia Wang, Hengchao Shang, Chang Su, Yimeng
Chen, Min Zhang, Shimin Tao, Hao Yang, and Ying

281

https://doi.org/10.18653/v1/2022.iwslt-1.10
https://doi.org/10.18653/v1/2022.iwslt-1.10
https://doi.org/10.21437/Interspeech.2021-1965
https://doi.org/10.21437/Interspeech.2021-1965
https://doi.org/10.21437/Interspeech.2021-1965
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.21437/Interspeech.2020-3015
https://doi.org/10.21437/Interspeech.2020-3015


Qin. 2022. The hw-tsc’s speech to speech translation
system for IWSLT 2022 evaluation. In Proceedings
of the 19th International Conference on Spoken Lan-
guage Translation, IWSLT@ACL 2022, Dublin, Ire-
land (in-person and online), May 26-27, 2022, pages
293–297. Association for Computational Linguistics.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. In Advances
in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang,
Qi Meng, Tao Qin, Wei Chen, Min Zhang, and Tie-
Yan Liu. 2021. R-drop: Regularized dropout for
neural networks. In Advances in Neural Information
Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 10890–
10905.

Alexander Quinn Nichol and Prafulla Dhariwal. 2021.
Improved denoising diffusion probabilistic models.
In Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021,
Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 8162–8171. PMLR.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision. CoRR, abs/2212.04356.

Yi Ren, Chenxu Hu, Xu Tan, Tao Qin, Sheng Zhao,
Zhou Zhao, and Tie-Yan Liu. 2021. Fastspeech 2:
Fast and high-quality end-to-end text to speech. In
9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022, pages 10674–10685.
IEEE.

Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Edouard
Grave, Tatiana Likhomanenko, Vineel Pratap,
Anuroop Sriram, Vitaliy Liptchinsky, and Ronan Col-
lobert. 2019. End-to-end ASR: from supervised to
semi-supervised learning with modern architectures.
CoRR, abs/1911.08460.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Minghan Wang, Jiaxin Guo, Yinglu Li, Xiaosong Qiao,
Yuxia Wang, Zongyao Li, Chang Su, Yimeng Chen,
Min Zhang, Shimin Tao, Hao Yang, and Ying Qin.
2022a. The hw-tsc’s simultaneous speech translation
system for IWSLT 2022 evaluation. In Proceedings
of the 19th International Conference on Spoken Lan-
guage Translation, IWSLT@ACL 2022, Dublin, Ire-
land (in-person and online), May 26-27, 2022, pages
247–254. Association for Computational Linguistics.

Minghan Wang, Jiaxin Guo, Xiaosong Qiao, Yuxia
Wang, Daimeng Wei, Chang Su, Yimeng Chen, Min
Zhang, Shimin Tao, Hao Yang, and Ying Qin. 2022b.
The hw-tsc’s offline speech translation system for
IWSLT 2022 evaluation. In Proceedings of the
19th International Conference on Spoken Language
Translation, IWSLT@ACL 2022, Dublin, Ireland (in-
person and online), May 26-27, 2022, pages 239–246.
Association for Computational Linguistics.

Rong Ye, Chengqi Zhao, Tom Ko, Chutong Meng, Tao
Wang, Mingxuan Wang, and Jun Cao. 2022. Gigast:
A 10, 000-hour pseudo speech translation corpus.
CoRR, abs/2204.03939.

282

https://doi.org/10.18653/v1/2022.iwslt-1.26
https://doi.org/10.18653/v1/2022.iwslt-1.26
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5a66b9200f29ac3fa0ae244cc2a51b39-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5a66b9200f29ac3fa0ae244cc2a51b39-Abstract.html
http://proceedings.mlr.press/v139/nichol21a.html
https://doi.org/10.48550/arXiv.2212.04356
https://doi.org/10.48550/arXiv.2212.04356
https://openreview.net/forum?id=piLPYqxtWuA
https://openreview.net/forum?id=piLPYqxtWuA
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1109/CVPR52688.2022.01042
http://arxiv.org/abs/1911.08460
http://arxiv.org/abs/1911.08460
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/2022.iwslt-1.21
https://doi.org/10.18653/v1/2022.iwslt-1.21
https://doi.org/10.18653/v1/2022.iwslt-1.20
https://doi.org/10.18653/v1/2022.iwslt-1.20
https://doi.org/10.48550/arXiv.2204.03939
https://doi.org/10.48550/arXiv.2204.03939

