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Abstract
Since the popularization of BiLSTMs and
Transformer-based bidirectional encoders,
state-of-the-art syntactic parsers have lacked
incrementality, requiring access to the whole
sentence and deviating from human language
processing. This paper explores whether fully
incremental dependency parsing with modern
architectures can be competitive. We build
parsers combining strictly left-to-right neural
encoders with fully incremental sequence-
labeling and transition-based decoders. The
results show that fully incremental parsing with
modern architectures considerably lags behind
bidirectional parsing, noting the challenges of
psycholinguistically plausible parsing.

1 Introduction

Human understanding of natural language is widely
agreed to be incremental: humans do not need to
read a complete sentence to start understanding
it. Instead, we update partial interpretations as we
receive more input (Marslen-Wilson, 1985).

While the exact way in which this incremental-
ity works is still unclear (Kitaev et al., 2022), its
presence implies that some form of incrementality
is an obvious necessary condition for a parser to
be psycholinguistically plausible as a model of hu-
man processing (Miller and Schuler, 2010). Since
human processing is the gold standard for auto-
matic parsing, we know that it should be possible
to achieve accurate parsing with incremental sys-
tems. Yet, in recent years, none of the competitive
syntactic parsers that have been proposed for ei-
ther of the main syntactic formalisms can be said
to be incremental, even under the loosest possible
definitions of the term. This poses challenges in
the intersection between syntax and computational
psycholinguistics, e.g., use cases both for model-
ing of human parsing and for real-time settings
where one wants partial results before waiting for
a sentence to end. Currently, most parsers use bidi-
rectional encoders, such as BiLSTMs (Kiperwasser

and Goldberg, 2016; Dozat and Manning, 2017) or
Transformers (Zhou and Zhao, 2019; Mrini et al.,
2020; Yang and Deng, 2020), so the whole sentence
is being used before even processing the first word.
An exception is the constituent parser by Kitaev
et al. (2022), who use a fully incremental encoder,
but the rest of the model is bidirectional, as it uses
Transformer layers and a CYK-like, non-left-to-
right span-based decoder (Stern et al., 2017).

This paper explores the viability of fully incre-
mental dependency parsing, i.e., parsers where all
the components (from the encoder to the decoder)
work strictly from left to right. To our knowledge,
this is the first attempt to build fully incremental
dependency parsers with modern deep learning ar-
chitectures.

2 Incrementality in Parsing

In transition-based parsing Transition-based
parsing has traditionally been linked to incremen-
tality (Nivre, 2008), as it works from left to right
and builds partial outputs. Some authors consider
that transition-based parsers as a whole are incre-
mental, as they have internal states with partial out-
puts (Eisape et al., 2022). We will call this criterion
weak incrementality. Others exclude algorithms
like the arc-standard dependency parser, where de-
pendencies are not built in left-to-right order and
input arbitrarily far in the future might be needed to
build right-branching dependencies (Christiansen
and Chater, 2016). We will call this stricter view
strong incrementality, and formalize it as follows:
given a monotonic parser (i.e., one where each par-
tial parse is a superset of the previous), we say that
it is strongly incremental with delay k if every pos-
sible partial parse for a prefix w1 . . . wi−k can be
built upon reading the prefix w1 . . . wi, without the
parser having accessed the rest of the input.1 Analo-

1The definition of a partial parse for the prefix w1 . . . wi−k

depends on the grammatical formalism. For dependency pars-
ing, we mean the subgraph of a full parse induced by the nodes
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gous considerations about the limitations with right-
branching in weak incrementality, and parsers that
try to avoid it to various extents, have been studied
in the CCG literature (Ambati et al., 2015; Stano-
jević and Steedman, 2019, 2020; Stanojević et al.,
2021). Contrary to arc-standard, other transition-
based dependency parsers are strongly incremental:
the arc-eager (Nivre, 2003), Covington (Covington,
2001) or multiplanar (Gómez-Rodríguez and Nivre,
2013) parsers all fit our definition above.

Classic implementations of strongly incremental
parsers typically have positive delay (Beuck et al.,
2011) between input and output due to lookahead.
Some approaches have considered zero delay, al-
beit with weaker performance (Köhn and Menzel,
2013). Solutions are also available for specula-
tivity in incremental parsing (Kitaev et al., 2022),
by introducing non-monotonicity (Honnibal et al.,
2013; Fernández-González and Gómez-Rodríguez,
2017).

Thus, the paradigm supports incrementality and
many implementations of these parsers from the
pre-deep-learning era, which did not use contextu-
alized encoders, were strongly incremental, lead-
ing to the observation by Gómez-Rodríguez (2016)
that at that point, some state-of-the-art parsing mod-
els were converging with psycholiguistically plau-
sible models. However, in recent years bidirec-
tional encoders have become ubiquitous, ruling
out even weak incrementality from recent imple-
mentations of transition-based parsers, be them
for dependency or other grammatical formalisms
(Kiperwasser and Goldberg, 2016; Stanojević and
Steedman, 2019; Fernandez Astudillo et al., 2020;
Fernández-González and Gómez-Rodríguez, 2023).
In this respect, it is worth mentioning that the ap-
proach by Yang and Deng (2020) is described as
“strongly incremental constituency parsing” but this
refers to the decoder, as they use a bidirectional
encoder. The only recent proposal we are aware
of that aims for incrementality in the whole sys-
tem is the CCG parser by Stanojević and Steedman
(2020), also a constituency parser, but its labelled F-
score is over 7 points lower than a non-incremental
baseline in an English-only evaluation.

In label-based parsing Other parsing paradigms
that yield themselves to incrementality, as they

in w1 . . . wi−k. Some authors require connectedness (Beuck
et al., 2011). However, since the path between two words in
w1 . . . wi−k in the final parse may involve words outside the
prefix, we do not believe this requirement is necessary.

could work from left to right, are seq2seq pars-
ing (Vinyals et al., 2015) and sequence-labeling
parsing (Gómez-Rodríguez and Vilares, 2018;
Strzyz et al., 2019). However, for the former, we
are not aware of any implementation without bidi-
rectional encoders. For the latter, while there are
strongly incremental sequence-labeling decoders
for both constituency (Gómez-Rodríguez and Vi-
lares, 2018) and dependency (Strzyz et al., 2020),
most implementations use bidirectional encoders
as well. The exception are some experiments with
feed-forward encoders in Gómez-Rodríguez and
Vilares (2018), using a sliding window to model
near future context (and thus, with delay). Yet, their
F-score is 14 points below their non-incremental
counterparts in the same paper, and almost 20 be-
low the overall state of the art.

3 Incremental models

The research question arises whether it is possi-
ble to have competitive incremental dependency
parsers in the neural era. We take the first step
and test how mainstream approaches would work
in a setting of strong incrementality. In our work,
we will focus on models with strictly zero delay,
but we also evaluate less strict setups, in particular
with delays 1 and 2. To do so, we will rely on mod-
ern encoder-decoder models. All source code is
available on GitHub (https://github.com/
anaezquerro/incpar).

3.1 Incremental encoders

Let w = [w1, w2, ...w|w|] (with wi ∈ V) be an
input sentence. An encoder can be seen as a param-
eterized function Ωθ,|w| :V |w| → H|w|, where V is
the input vocabulary space, and H ∈ RN is the hid-
den representational space in where each wi is pro-
jected. In this work we are particularly interested
in incremental encoders, i.e., those where given
a token wi, the computation of its projected rep-
resentation hi only needs the sub-sequence w[1:i].
We consider different encoders for this purpose: (i)
4 stacked left-to-right LSTMs (Hochreiter and
Schmidhuber, 1997), where input is a concatena-
tion of a word and PoS tag vector (random init) and
a char-level unidirectional LSTM; (ii) BLOOM
(Scao et al., 2022) (due to resource constraints, we
run the smallest version with 560M parameters);
and (iii) mGPT (Shliazhko et al., 2022).
As control encoders (upper bound baselines), we
use non-incremental encoders: (i) bidirectional

https://github.com/anaezquerro/incpar
https://github.com/anaezquerro/incpar


54

LSTMs (same setup as for left-to-right LSTMs),
and (ii) XLM-RoBERTa (Conneau et al., 2020).

3.2 Incremental decoders
We consider incremental (i) sequence labeling pars-
ing, and (ii) transition-based parsing decoders.

3.2.1 Sequence labeling decoders
A sequence labeling decoder is a parametrized func-
tion Φθ,|w|: H|w| → L|w|, which maps each hidden
vector (hi ∈ H) outputted by a generic encoder
into an output label li ∈ L that represents a part
of the output parse. As the decoder, we use a 1-
layered feed-forward network and a softmax. As
for label encodings, we select representatives from
two encoding families (Strzyz et al., 2019, 2020):

Head-based We study three variants, all of them
supporting non-projective trees. First, the absolute-
indexing encoding (abs-idx), where the token labels
are the index of their head. Second, the relative-
indexing encoding (rel-idx), where the label is
the difference between the head and dependent in-
dexes. Third, the PoS-tag-based encoding (PoS-
idx), where each label is encoded as an offset that
indicates that the nth word to its left/right with a
given PoS tag is the head.2

Strings of brackets First, we consider the 1-planar
bracketing encoding (1p), where the label for each
token is represented using a string of brackets, with
each arc represented by a bracket pair. This en-
coding can only model crossing arcs in opposite
directions. To tackle this, there is a 2-planar vari-
ant (2p), analogous, but defining a second plane of
brackets.

In the context of full incrementality, we will say
that an encoding is forward-looking if a label for
a token wi can refer to some token to the right of
wi. The abs-idx, rel-idx and PoS-idx encodings are
forward-looking (e.g., with abs-idx, the word w2

could have 4 as its label, meaning that its head is
w4, which has not been read yet); while the brack-
eting encodings are not forward-looking. Forward-
lookingness does not break incrementality: all the
considered encodings are still strongly incremental
with delay 0 (all dependencies involving w1 . . . wi

can be retrieved from the labels l1 . . . li). However,
2The PoS-tag based encoding needs PoS tags for decoding

the sequence of labels to a tree. Instead of introducing PoS-
tag information in those models, our PoS-tag-based decoders
predict in multitask learning both the syntactic label and PoS
tag associated to each word, in order to remove bias with
respect to other encodings.

one could expect forward-looking encodings to suf-
fer more from using incremental encoders, due to
needing to make decisions involving future words
that the system cannot yet access.

In our implementation, for models with delay
zero, the ith label is predicted directly from hi. For
models with delay k > 0, labels are predicted from
a concatenated representation hi · ... ·hi+k−1 ·hi+k.

It is also worth noting that the obtention of the
tree encoded by a sequence labeling encoding can
require simple postprocessing heuristics (e.g. to
remove cycles in head-selection encodings). This
does not break incrementality, as these heuristics
are applicable to partial outputs as well.

3.2.2 Transition-based decoders
A transition-based decoder is defined as a tuple (C,
T , cs, Ct), where C is a set of configurations (or
parsing states) with associated partial parses, T a
set of transitions between states, and cs and Ct are
the initial state and set of valid final states, respec-
tively. In the case of the arc-eager parser (Nivre,
2008), states are triplets of the form (σ,β,A) where
σ is a stack of partially processed words, β a buffer
of remaining words3 which always takes the form
βi = wi . . . w|w| for some i, and A is the partial
parse at that state. This parser is strongly incremen-
tal, as the way in which the algorithm constructs
dependencies (in a strictly left-to-right manner)
means that a configuration with buffer βi can hold
every possible partial parse for the prefix w1 . . . wi.
The parser’s delay depends on the number of buffer
words used as lookahead features in the implemen-
tation. In our case, this is only one (we only use the
first stack word and the first buffer word) so we can
obtain partial parses for w1 . . . wi accessing only
w1 . . . wi, hence the delay is 0. Equivalently to
sequence-labeling decoders, for models with delay
k > 0, we access a concatenated vector of the form
wi · ... ·wi+k−1 ·wi+k. For prediction of transitions,
we again use a 1-layered feed-forward network.

4 Experiments

We choose 12 diverse treebanks from UD 2.11
(Nivre et al., 2020), supported by the tested LLMs.
We test all possible combinations of encoders and
decoders. As a well-known baseline, we use the
biaffine (DM; Dozat and Manning, 2017) parser

3Buffer words are often described as “unread” words when
describing the algorithm, but for incrementality purposes we
need to count them as “accessed” if they are used as features,
as the parser implementation is using them for prediction.
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in supar. We use unlabelled attachment score
(UAS) for evaluation. Labelled (LAS) results and
individual treebank results are in Appendix A.

Table 1 shows an aggregated summary of the
results with strict delay zero. It shows that fully
incremental models considerably lag behind their
counterparts with bidirectional (control) encoders:
the best fully incremental model for each language
is 11.2 UAS points behind on average (sd: 5.0) with
respect to the corresponding best control model.
There is large inter-linguistic variability, Telugu
(teMTG) being especially amenable to incremental
processing, 5.3 UAS points behind, and the oppo-
site for Chinese (zhGSD), 23.1 points behind. Our
incremental-decoder-only models with LLMs as en-
coders are competitive against the BiLSTM-based
version of the baseline (BiLSTM encoder, biaffine
decoder), surpassing it on 7 out of 12 languages.
However, they are a few points behind with respect
to a version of the biaffine parser using RoBERTa
encodings (which can be taken as a state-of-the-art
system), consistent with existing comparisons of
sequence-labeling parsers and biaffine parsers (An-
derson and Gómez-Rodríguez, 2021). Put together,
this seems to suggest that the challenge of incre-
mentality falls mostly on the encoding side. If
we focus on comparing different strongly incre-
mental models we see that, as expected, forward-
looking encodings suffer greatly from incremental
encoders.

Table 2 compares the results from Table 1 against
the corresponding models using delays 1 and 2. Im-
provements are consistent across the board. Inter-
estingly, moving from delay 0 to 1 already shows
a clear and large increase in robustness, especially
for forward-looking encodings: the average gap
between these and non-forward-looking encodings
goes from over 10 points with delay 0 to nonex-
istent with delay 1, although considerable gaps
remain in some languages like Chinese (zhGSD) or
English (enEWT).

Finally, Figure 1 complements Table 2 with an
analysis of the F-score with respect to dependency
displacement (signed distance) for English and Chi-
nese, chosen because they yielded the largest im-
provements when using positive delay. In partic-
ular, the figure shows that the lower performance
of delay zero models is mainly due to poor perfor-
mance of forward-looking encodings on leftward
dependencies (right half of figure), and that a small
positive delay already translates into clear improve-

Fully incremental Incremental decoder DM
fl non-fl tb fl non-fl tb ↔

arPADT 75.7→R 76.8c1P 79.6 84.6R 88.02P 86.9 86.9 91.0
euBDT 62.0cP 73.0c1P 71.0c 87.0↔R 87.62P 86.6 88.2 88.6
zhGSD 51.1→R 64.42P 64.1c 83.4R 87.51P 85.3 86.7 90.7
enEWT 61.5→P 74.7c2P 72.9c 90.1R 91.61P 89.5 90.2 92.7
frGSD 70.9→R 84.4c1P 84.7→ 92.3A 94.72P 91.6 93.5 95.0
hiHDTB 67.1→P 83.5c1P 83.2→ 94.3A 95.32P 93.8 95.5 95.7
idGSD 73.0→R 77.9→1P 78.6→ 84.5↔R 86.32P 85.1 88.5 89.6
mrUFAL 64.1→P 69.7→2P 65.8→ 75.7↔R 75.2↔1P 76.0↔ 79.2 81.7
esANC 67.9→R 83.2c2P 82.9c 92.0A 93.41P 91.2 93.1 94.3
taTTB 59.1→P 67.3→1P 69.7→ 71.4↔R 75.81P 78.6 77.2 80.0
teMTG 73.8→P 85.0→2P 80.4→ 89.9↔R 90.3↔2P 89.0↔ 89.2 94.5
viVTB 57.3→R 64.5→2P 64.5→ 72.7↔R 74.11P 76.0 77.0 80.2

µ 65.3 75.4 74.8 84.8 84.6 85.8 87.1 89.5

Table 1: UAS scores paired with best forward looking
(fl) and non-forward looking (non-fl) encodings, and
transition-based (tb) decoder. Superscripts denote the
encoder-decoder pair: LSTM (→), BLOOM-560m (),
mGPT (c), BiLSTM (↔), XLM-RoBERTa (). Sub-
scripts denote the best performing encoding: absolute
(A), relative (R), PoS-tag-based (P), 1-planar (1P) and
2-planar (2P). Macro-average (µ) and baseline perfor-
mance (DM, for Dozat and Manning) with different
encoders (↔, ) are included. Language abbreviations
come from ISO 639-1 (Table 19 in the Appendix).

Fully incremental delay 1 Fully incremental delay 2
fl non-fl tb fl non-fl tb

arPADT 84.2cP
+8.5 80.2c2P

+3.4 79.9c+0.3 83.9P
+8.2 82.9c1P

+6.1 80.0c+0.4

euBDT 78.4cP
+16.4 76.9c1P

+3.9 75.7c+4.7 80.0cP
+18.0 80.1c1P

+7.1 76.9c+5.9

zhGSD 64.3cP
+13.2 73.5c2P

+9.1 72.8c+8.7 68.4P
+17.3 74.8c2P

+10.4 75.6c+11.5

enEWT 81.9cP
+20.4 88.1c1P

+13.4 83.3c+10.4 85.6cP
+24.1 88.7c1P

+14.0 85.2c+12.3

frGSD 84.4cP
+13.5 86.2c2P

+1.8 87.5c+2.8 87.6cP
+16.7 89.2c1P

+4.8 86.7+2.0

hiHDTB 82.5cP
+15.4 86.2c1P

+2.7 88.7c+5.5 85.8cP
+18.7 90.1c1P

+6.6 88.9→+5.7

idGSD 80.8cP
+7.8 80.4c1P

+2.5 79.2→+0.6 81.9cP
+8.9 82.1c2P

+4.2 79.6c+1.0

mrUFAL 73.5P
+9.4 65.8c1P

-3.9 72.7c+6.9 72.3P
+8.2 64.92P

-4.8 71.1→+5.3

esANC 84.9cP
+17.0 85.4c1P

+2.2 85.2c+2.3 88.4cP
+20.5 87.6c1P

+4.4 85.6c+2.7

taTTB 68.5P
+9.4 62.41P

-4.9 67.0c-2.7 69.9cP
+10.8 64.91P

-2.4 71.9+2.2

teMTG 85.0cP
+11.2 85.0c2P

0.0 87.4c+7.0 86.7cP
+12.9 89.6c1P

+4.6 90.0→+9.6

viVTB 66.6cP
+9.3 63.8c2P

-0.7 64.0-0.5 68.3cP
+11.0 65.1c2P

+0.6 65.2c+0.7

µ 77.9+12.6 77.8+2.4 78.6+3.8 79.9+14.6 80.0+4.6 79.7+4.9

Table 2: UAS scores with delay 1 and 2. Notation as
in Table 1. Subscripts denote performance boost over
zero-delay fully incremental results from Table 1.

ments, even for long-distance dependencies.

5 Conclusion

We evaluated modern neural NLP architectures for
incremental dependency parsing across multiple
languages, using various encoders and decoders.
We have found that said architectures are not ad-
equate to model incrementality, at least in the ab-
sence of specific adaptations. Strongly incremental
models with no delay yield accuracies about 10
points below competitive non-incremental base-
lines. While this gap narrows when adding a 2-
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Figure 1: Displacement performance (English above,
Chinese below) for the (fully incremental) models spec-
ified in Table 1 with delay zero (solid lines) and two
(dashed lines). Different symbols and colors denote
forward-looking (␣), non-forward looking (○␣) and
transition-based (⋆) decoders. DM performance is
included with gray dotted lines.

word lookahead, it is still about 5 points, contrast-
ing with the situation in pre-deep-learning times,
when incremental parsers were competitive (cf.
(Zhang and Nivre, 2011)). The results suggest
that much of the accuracy improvements in parsing
obtained in recent years hinge on bidirectionality,
deviating from human processing.

Accurate incremental parsing should in theory
be possible (as the human example shows). In-
cremental processing is useful both for practical
applications (Köhn, 2019), specially those involv-
ing real-time speech (Coman et al., 2019; Ekstedt
and Skantze, 2021); as well as for cognitive model-
ing (Demberg and Keller, 2019; Stanojević et al.,
2021). Thus, we believe that designing architec-
tures that work well in a strongly incremental set-
ting is an important open challenge in NLP. In this
respect, techniques like using tentative predictions
of future words made by autoregressive language
models as a substitute for delay (Madureira and
Schlangen, 2020) might be helpful. It is also con-
ceivable that accuracy losses might not be solvable
by better unidirectional scoring systems, and thus
alternatives such as better search or methods that
revise earlier decisions are also worth exploring.

Limitations

Limited physical resources We have no access
to large computing infrastructures or a budget to
scale services in the cloud. We had access to a few
internal servers, for a total of 6 NVIDIA GeForce
RTX 3090 (24GB each), and temporally we also
obtained access to a NVIDIA A100 GPU (80GB),
as well as a workstation for quick debugging. This
restricts the number and size of models that we
can try. In particular, we could train in reasonable
amounts of time the smallest BLOOM language
model (560M parameters). It was possible for us
to fit up to the 3B version on the A100 GPU with
a minimal batch size, but the amount of time that
it took to train a model made it unfeasible to carry
out a multilingual study like the one proposed in
this work. Still, preliminary results showed that
these larger BLOOM models were not contribut-
ing to significantly improve the performance. In
this respect, we know that scaling a lot can play
an important role, and that the standard BLOOM
model is the 176B version. However, a model of
that size is completely out of our economic and
computing resources. Yet, we feel our study with
smaller models is equally, or even more relevant,
since it represents effectively the resources at hand
for most companies and academic institutions.

Delay parameter Incremental parsers have a de-
lay parameter that models how far beyond word i
the parser can access to generate a partial parse for
w1 . . . wi. For our main experiment we set the de-
lay to 0, although we also provide results with delay
1 and 2. If we aim for psycholinguistic plausibility,
there cannot be a single one-size-fits-all value for
the delay, as the time taken by humans to parse
linguistic input can be influenced by various fac-
tors like language, word length, reading/speaking
speed, language proficiency, etc.; so any choice of
delay is necessarily a simplification. However, evi-
dence seems to point to human parsing generally
being very fast, with latencies in the range of 100-
250 ms (see for example Pulvermüller et al. (2009);
Bemis and Pylkkänen (2011)). Hence our choice
of delay 0 as the safest option, and we also present
experiments with 1 and 2 to show what happens
when a small lag between the input and the parse
is accounted for.

Scope of definition Our definition of strong in-
crementality only applies to monotonic parsers.
This is a deliberate choice: if we allowed non-
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monotonicity (i.e., removing or modifying depen-
dencies from previous partial parses), then the defi-
nition would allow for a hypothetical parser that re-
moves all partial output upon reading the last word
and replaces it with a brand new parse generated
with access to the whole sentence, which would
be incremental in name only and render any com-
parison between incremental and non-incremental
parsers moot.

While there might be alternative ways to restrict
the definition to avoid this problem (e.g. restrict
each step to be O(1)), these would come with their
own limitations (e.g., excluding neural architec-
tures where obtaining each word’s vector repre-
sentation is O(n), or transition-based parsers with
quadratic complexities). Thus, we believe that our
definition is a good compromise for our purposes,
as it is simple, unambiguous and implementation-
independent within the realm of monotonic parsing.

Comparing non-monotonic parsers is a different
undertaking as it not only would require a differ-
ent definition of incrementality, but also evaluation
metrics focused on partial parse accuracy rather
than final LAS/UAS. But that is orthogonal to com-
paring incremental to non-incremental parsers (as
partial parse accuracy is not even well-defined for
some non-incremental parsers that do not have in-
termediate states) and lies outside the scope of this
paper.

Differences in incremental processing between
humans and machines Currently, despite re-
search efforts, a comprehensive understanding of
why humans excel at incremental processing com-
pared to machines remains elusive. This issue
also constrains our options for analysis. In this
regard, the proficiency of humans at incremental
language processing likely stems from adaptation
in the context of cognitive constraints, having to un-
derstand real-time input with limited working mem-
ory which forces eager processing (see e.g. Chris-
tiansen and Chater 2016). From a different perspec-
tive, Wilcox et al. (2021) showed that both humans
and models exhibit increased processing difficulty
in ungrammatical sentences. However, language
models consistently underestimate the magnitude
of this difficulty compared to humans, particularly
in predicting longer reaction times for syntactic
violations.
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ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4034–4043, Marseille,
France. European Language Resources Association.

Friedemann Pulvermüller, Yury Shtyrov, and Olaf Hauk.
2009. Understanding in an instant: Neurophysiologi-
cal evidence for mechanistic language circuits in the
brain. Brain and Language, 110(2):81–94.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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A Appendix

A.1 Additional results

Tables 3 and 4 show the aggregate results according
to LAS. Tables 5 to 16 illustrate the performance
of every individual encoder-decoder pair in each
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Fully incremental Incremental decoder DM
fl non-fl tb fl non-fl tb ↔

arPADT 70.1→R 70.5c1P 69.5c 79.0R 82.32P 78.9 81.4 85.9
euBDT 56.4cP 63.0c1P 60.4c 82.1↔R 84.42P 76.0 82.4 85.0
zhGSD 43.9→R 51.4c2P 54.6c 80.5R 84.11P 77.5 83.9 87.6
enEWT 59.0→P 67.5→1P 65.4c 87.9R 89.11P 84.5 88.0 90.1
frGSD 67.1→R 78.2c2P 78.1c 90.0A 92.42P 87.0 90.0 92.1
hiHDTB 60.7→P 69.6c2P 73.1c 91.3A 92.32P 86.0 92.6 92.4
idGSD 68.2→R 72.1→1P 67.7→ 79.5↔R 79.22P 73.5↔ 83.2 82.5
mrUFAL 48.3P 45.9c1P 36.4c 64.6P 62.61P 61.6 59.6 72.8
esANC 63.8→R 78.9c2P 76.3c 90.0A 91.62P 85.5 89.6 92.3
taTTB 50.6→P 52.6→1P 42.7c 62.3↔R 66.3↔2P 64.8 66.2 68.9
teMTG 65.6cP 67.3c1P 53.5→ 79.8R 81.71P 64.6↔ 69.4 87.5
viVTB 45.5→R 50.8→2P 43.8→ 60.3↔R 61.52P 56.8 62.9 67.3

µ 58.3 64.0 60.1 78.9 80.6 74.7 79.1 83.7

Table 3: LAS scores. Notation comes from Table 1.

Fully incremental delay 1 Fully incremental delay 2
fl non-fl tb fl non-fl tb

arPADT 78.8cP
+8.7 74.6c2P

+4.1 68.1c-1.4 78.3cP
+8.2 77.1c1P

+6.6 68.7c-0.8

euBDT 73.5cP
+17.1 71.2c1P

+8.2 59.4c-1.0 75.2cP
+18.8 75.2c1P

+12.2 63.6c+3.2

zhGSD 60.4P
+16.5 68.3c2P

+16.9 61.3+6.7 64.6P
+20.7 69.7c2P

+18.3 75.6c+21.0

enEWT 79.1cP
+20.1 84.2c1P

+16.7 83.3c+17.9 83.0cP
+24.0 85.0c1P

+17.5 85.2c+19.8

frGSD 80.9cP
+13.8 81.9c2P

+3.7 76.0c-2.1 84.2cP
+17.1 85.4c1P

+7.2 75.9c-2.2

hiHDTB 78.1cP
+17.4 79.6c1P

+10.0 77.4c+4.3 82.0cP
+21.3 84.9c1P

+15.3 77.4c+4.3

idGSD 73.6cP
+5.4 72.3c1P

+0.2 66.9c-0.8 75.2cP
+7.0 74.6c2P

+2.5 68.3c+0.6

mrUFAL 58.2P
+9.9 54.42P

+8.5 72.7c+36.3 57.4P
+9.1 51.2c2P

+5.3 66.8c+30.4

esANC 82.4cP
+18.6 82.7c1P

+3.8 85.2c+8.9 86.2cP
+22.4 85.0c1P

+6.1 85.6c+9.3

taTTB 56.4cP
+5.8 50.3c1P

-2.3 67.0c+24.3 58.2cP
+7.6 53.81P

+1.2 51.8+9.1

teMTG 76.5cP
+10.9 74.1c1P

+6.8 87.4c+33.9 76.8cP
+11.2 79.4c1P

+12.1 48.0→-5.5

viVTB 53.6cP
+8.1 50.2c2P

-0.6 63.2c+19.4 54.4cP
+8.9 51.2c2P

+0.4 45.9c+2.1

µ 71.0+12.7 70.3+6.3 72.3+12.2 73.0+14.7 72.7+8.7 67.7+7.6

Table 4: LAS scores with delay one and two. Notation
comes from Table 2.

A.2 Training hyperparameters and model
configuration

Table 17 shows the hyperparameters selected in
the training process of each encoder. For LSTMs
and BiLSTMs, words and PoS tags were mapped
to a 300-dimensional and 100-dimensional vector
representation, respectively. Word information at
the character level was represented with the last
hidden state of dimension 100 from a charLSTM.
These three representations were concatenated and
projected to the encoder hidden size. For pretrained
encoders (BLOOM, mGPT and XLM-RoBERTa),
we get their last layer representations. Then, they
are linearly projected to a smaller dimensionality
of size 100.

Table 18 shows the training configuration per
architecture: LSTM and BiLSTM weights were
fitted with Adam optimizer (β0 = 0.9, β1 = 0.9,
ε = 1e−12) and pretrained encoders with AdamW
(β0 = 0.9, β1 = 0.9, ε = 1e − 12). Batch size
was adapted by the number of parameters of the
encoders and the size of the treebank: in small en-

Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 71.7 75.7 59.9 74.1 73.0 78.2
74.8 80.2 81.3 76.9 76.2 76.9
72.6 81.4 81.6 79.2 78.5 77.3

mGPT 52.6 74.7 59.5 76.8 76.4 78.4
65.5 81.7 84.2 80.0 80.2 79.9
63.8 82.3 83.6 82.9 82.4 80.0

BLOOM 43.0 74.4 58.6 75.6 75.6 79.6
56.5 81.1 82.8 79.7 79.3 79.1
55.4 81.5 83.9 81.9 82.0 79.9

BiLSTM 71.0 83.2 65.9 81.3 80.4 82.0
75.2 83.3 83.0 82.1 81.0 78.7
73.0 83.4 82.9 82.3 81.1 78.3

XLM 77.2 84.6 66.1 87.2 88.0 86.9
86.1 87.9 86.0 89.6 88.8 83.1
84.4 87.1 88.8 89.2 89.2 83.8

DM 87.3

LAS

LSTM 67.1 70.1 55.9 68.8 67.8 66.3
68.6 73.5 74.9 71.0 69.6 59.6
66.4 74.7 75.1 73.0 72.0 60.7

mGPT 48.9 68.8 55.3 70.5 70.4 69.5
61.2 76.0 78.8 74.1 74.6 68.1
59.6 76.8 78.3 77.1 77.0 68.7

BLOOM 39.6 67.6 54.4 68.9 68.8 67.6
52.4 75.2 77.3 73.6 73.4 67.2
51.3 75.7 78.0 76.0 75.9 67.8

BiLSTM 66.8 77.6 61.9 76.1 75.2 73.4
69.6 76.6 76.4 75.8 74.7 62.8
67.6 76.6 76.3 76.0 74.6 61.9

XLM 72.5 79.0 62.7 81.6 82.3 78.9
80.9 82.3 81.0 84.5 83.7 68.6
79.6 82.0 83.9 84.1 83.8 71.8

DM 81.8

Table 5: UAS and LAS for the Arabic PADT treebank.
Last index level corresponds to delay results. First,
second and third subrow show the scores obtained with
0, 1 and 2-delay, respectively.

coders (LSTMs and BiLSTMs) data was distributed
in batches of size 600, while pretrained encoders
were trained with batches of size 2000.

A.3 Other statistics about the treebanks
Table 19 shows treebank language abbreviations
and the percentage of arcs that point to the left and
to the right in each treebank.
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Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 59.4 61.7 61.9 72.0 71.7 69.7
69.0 70.8 74.0 70.8 0.0 73.6
68.5 73.9 75.7 72.9 74.1 75.5

mGPT 42.0 55.0 62.0 73.0 72.9 71.0
58.5 67.7 78.4 76.9 76.0 75.7
59.6 72.3 80.0 80.1 79.5 76.9

BLOOM 34.6 50.7 58.1 64.3 65.2 63.4
48.9 60.8 73.8 68.8 68.2 72.1
52.6 67.8 75.9 74.7 72.2 74.6

BiLSTM 81.5 87.0 73.3 83.6 83.7 83.3
72.6 78.5 78.0 71.3 71.0 77.5
70.7 79.6 77.3 71.8 70.6 76.7

XLM 80.9 83.6 73.7 87.6 87.6 86.6
84.8 86.4 86.2 86.4 85.8 84.4
84.9 85.5 85.2 86.0 85.6 85.4

DM 84.8

LAS

LSTM 53.5 55.7 55.3 60.7 60.1 52.0
61.6 63.7 67.3 63.5 0.0 52.8
61.6 66.7 69.3 66.0 67.3 55.2

mGPT 38.4 49.6 56.4 63.0 62.7 60.4
54.4 63.2 73.5 71.2 70.4 59.4
55.5 67.8 75.2 75.2 74.4 63.6

BLOOM 30.8 44.2 51.4 53.3 54.2 50.1
43.8 54.8 66.9 61.9 60.9 55.5
47.5 62.2 69.7 68.6 65.8 58.7

BiLSTM 76.5 82.1 69.6 78.4 78.6 67.8
65.1 70.0 70.5 63.8 63.9 54.6
62.8 71.8 69.6 64.8 63.0 53.7

XLM 78.2 80.4 71.3 84.3 84.4 76.0
81.2 82.7 82.6 82.4 81.8 77.0
81.1 81.6 81.5 82.3 81.5 77.7

DM 77.3

Table 6: UAS and LAS for the Basque BDT treebank.
Notation comes from Table 5.

Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 43.7 51.1 45.0 62.9 61.9 60.1
51.7 59.8 61.3 62.0 60.7 69.6
54.6 64.3 64.0 65.3 64.6 70.9

mGPT 33.8 47.6 44.7 63.4 63.6 64.1
43.3 57.4 64.3 72.6 73.5 72.8
40.5 63.0 67.4 73.6 74.8 75.6

BLOOM 23.7 45.0 44.4 63.8 64.4 60.4
32.5 57.3 64.2 71.5 71.9 71.4
37.9 62.8 68.4 72.9 71.7 73.2

BiLSTM 69.1 81.6 63.9 79.8 79.8 77.7
62.5 72.8 71.7 69.1 67.9 72.5
59.8 73.1 72.5 68.9 67.8 71.0

XLM 81.6 83.4 65.3 87.5 87.3 85.3
85.2 83.6 85.5 86.7 87.1 83.5
85.3 85.4 83.4 86.6 85.8 81.8

DM 85.3

LAS

LSTM 37.5 43.9 42.0 50.5 49.4 50.2
46.7 54.0 56.0 56.5 54.7 49.8
49.5 58.3 58.6 59.3 58.5 52.9

mGPT 29.7 40.6 41.5 51.1 51.4 54.6
40.2 53.5 60.0 67.5 68.3 61.0
37.8 59.3 63.6 68.9 69.7 75.6

BLOOM 19.7 37.2 40.5 50.6 51.3 47.9
29.9 53.5 60.4 66.0 66.4 61.3
35.0 58.7 64.6 68.0 66.3 63.9

BiLSTM 66.3 78.5 61.8 76.7 76.6 71.4
56.4 66.2 66.4 64.1 61.9 55.1
54.1 66.6 67.1 63.4 62.0 55.4

XLM 78.8 80.5 63.6 84.1 84.1 77.5
82.3 80.6 82.8 83.7 84.3 74.2
82.2 82.2 81.0 83.3 82.2 72.4

DM 82.4

Table 7: UAS and LAS for the Chinese GSD treebank.
Notation comes from Table 5.
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Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 58.8 60.5 61.5 74.4 73.3 70.4
75.5 78.3 77.4 82.5 81.7 79.0
80.1 82.6 80.3 83.9 82.6 78.6

mGPT 49.5 56.4 59.0 74.0 74.7 72.9
73.9 78.2 81.9 88.1 87.4 83.3
78.6 83.4 85.6 88.7 88.6 85.2

BLOOM 44.4 54.8 59.0 73.2 72.8 69.0
68.7 76.3 80.4 85.3 84.6 81.7
74.0 80.8 82.2 85.7 86.4 81.3

BiLSTM 82.4 88.9 77.4 87.1 86.0 83.5
84.6 87.3 84.8 84.6 83.7 80.5
84.7 86.8 85.1 84.7 84.0 79.1

XLM 88.6 90.1 78.3 91.6 91.0 89.5
89.9 92.9 90.7 92.6 91.2 89.4
92.2 92.5 92.6 93.1 92.8 86.4

DM 90.6

LAS

LSTM 55.0 56.8 59.0 67.5 66.3 60.5
71.3 73.8 73.9 77.7 77.1 62.9
76.0 78.5 76.6 79.4 78.6 64.6

mGPT 46.0 52.3 55.7 65.7 66.2 65.4
70.9 74.9 79.1 84.2 83.5 83.3
75.4 80.2 83.0 85.0 84.8 85.2

BLOOM 41.0 50.2 55.1 64.0 63.9 58.3
64.1 72.4 76.2 80.7 79.4 68.4
70.4 76.3 78.6 81.4 81.9 70.6

BiLSTM 80.1 86.6 75.7 84.9 83.6 76.2
80.7 83.6 81.3 80.5 79.7 66.8
80.7 82.9 81.7 81.0 80.1 65.4

XLM 86.5 87.9 76.4 89.1 88.5 84.5
86.8 90.5 88.7 90.2 88.6 74.4
89.9 90.1 90.4 90.9 90.5 74.2

DM 88.5

Table 8: UAS and LAS for the English EWT treebank.
Notation comes from Table 5.

Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 69.2 70.9 67.0 82.2 81.6 84.7
77.5 79.4 80.3 80.9 81.6 84.4
81.0 83.3 83.1 84.5 84.5 84.3

mGPT 57.9 68.3 67.4 84.4 84.2 84.1
73.8 79.8 84.4 85.8 86.2 87.5
78.0 83.6 87.6 89.2 88.8 86.3

BLOOM 54.1 68.0 66.1 82.8 82.2 83.8
69.2 78.5 82.3 85.0 84.7 85.8
72.0 82.8 86.7 87.0 86.8 86.7

BiLSTM 85.3 91.4 80.1 89.8 89.0 88.8
84.7 88.4 87.6 87.6 86.7 84.6
85.0 87.8 87.6 87.2 86.8 85.5

XLM 92.3 92.2 80.7 94.5 94.7 91.6
93.0 93.4 93.5 93.8 94.4 90.2
94.4 93.8 92.4 93.5 93.9 89.7

DM 93.3

LAS

LSTM 65.4 67.1 63.4 75.8 75.3 76.0
72.1 74.3 75.1 75.1 75.5 66.6
75.5 78.2 78.3 79.0 79.0 68.6

mGPT 54.9 64.7 63.8 78.2 78.2 78.1
70.6 76.4 80.9 81.4 81.9 76.0
74.9 80.6 84.2 85.4 85.3 75.9

BLOOM 50.6 63.9 62.5 76.4 75.6 73.6
65.7 74.4 78.7 79.8 79.7 73.3
68.5 78.8 83.2 82.0 82.0 74.4

BiLSTM 82.0 87.7 77.2 86.2 85.5 82.0
79.4 83.2 82.5 82.4 81.6 71.1
79.7 82.2 82.5 82.1 81.5 71.9

XLM 90.0 89.9 79.1 92.0 92.4 87.0
90.2 90.7 90.7 91.1 91.7 79.8
91.6 91.0 89.8 90.9 90.9 78.4

DM 89.6

Table 9: UAS and LAS for the French GSD treebank.
Notation comes from Table 5.
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Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 66.0 66.1 67.1 82.8 82.7 83.2
73.0 74.5 81.4 81.1 80.8 87.6
76.8 78.7 84.1 86.0 86.1 88.9

mGPT 46.2 62.4 66.1 83.5 83.4 82.3
67.7 72.4 82.5 86.2 85.8 88.7
73.0 77.6 85.8 90.1 89.6 88.1

BLOOM 48.0 61.6 64.9 80.8 81.2 81.7
61.9 70.3 81.9 84.2 83.9 88.3
64.7 75.1 85.1 88.2 88.0 88.8

BiLSTM 91.5 94.2 78.2 93.3 93.3 92.8
87.8 91.2 90.4 88.2 87.8 90.7
88.1 91.4 91.1 87.5 87.0 89.6

XLM 94.3 93.5 78.0 94.7 95.3 93.8
94.6 94.1 92.7 93.7 94.2 94.1
95.0 94.2 92.6 94.0 94.2 93.8

DM 95.5

LAS

LSTM 60.0 60.4 60.7 67.8 67.8 71.3
67.8 69.4 76.3 74.1 73.8 72.0
72.4 74.2 79.4 80.3 80.4 74.4

mGPT 41.5 57.0 60.5 69.2 69.6 73.1
64.0 68.5 78.1 79.6 79.1 77.4
69.2 73.8 82.0 84.9 84.1 77.4

BLOOM 43.4 55.0 57.5 65.4 66.0 69.2
57.6 66.1 77.6 77.1 77.1 74.5
61.0 71.0 80.7 82.7 82.2 74.1

BiLSTM 88.5 91.2 75.6 90.4 90.3 83.8
83.0 86.4 85.9 83.7 83.2 75.5
83.4 86.6 86.7 82.8 82.2 75.2

XLM 91.3 90.5 75.7 91.8 92.3 86.0
91.3 90.9 89.8 90.3 90.8 85.8
91.8 90.8 89.7 90.5 90.8 88.2

DM 92.7

Table 10: UAS and LAS for the Hindi HDTB treebank.
Notation comes from Table 5.

Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 70.4 73.0 57.5 77.9 77.3 78.6
78.3 79.2 80.6 77.6 76.4 79.2
75.9 80.2 81.4 79.7 80.0 79.5

mGPT 46.0 67.5 56.0 77.2 77.0 76.0
60.6 75.5 80.8 80.4 80.2 78.8
62.0 77.7 81.9 82.0 82.1 79.6

BLOOM 40.4 66.2 55.9 75.9 75.9 78.4
55.8 73.6 80.6 78.0 77.6 77.2
56.0 76.2 80.5 80.1 80.4 77.9

BiLSTM 73.9 84.5 67.6 81.5 83.8 84.7
79.0 83.6 82.4 82.2 79.9 78.3
76.5 82.5 82.7 80.9 80.8 80.1

XLM 75.5 82.9 65.4 86.2 86.3 85.1
83.7 86.0 87.2 87.5 87.1 83.0
83.4 85.6 84.6 87.6 87.2 83.2

DM 88.6

LAS

LSTM 65.7 68.2 53.8 72.1 71.6 67.7
69.9 70.8 72.3 69.2 68.8 59.4
68.6 72.4 73.4 72.0 71.9 59.7

mGPT 40.9 60.1 50.6 67.3 67.6 64.9
54.8 68.5 73.6 72.3 71.8 66.9
56.5 70.7 75.2 74.2 74.6 68.3

BLOOM 35.8 58.6 49.7 66.2 66.1 63.3
50.0 66.1 73.2 69.3 68.9 64.3
50.4 68.5 73.4 72.0 71.8 65.8

BiLSTM 69.7 79.5 64.8 73.4 78.8 73.5
71.0 75.3 74.1 73.3 71.7 61.9
68.7 74.1 75.0 72.4 72.6 62.4

XLM 69.5 76.1 61.5 78.8 79.2 71.7
77.3 78.8 80.6 80.3 79.7 71.1
76.9 78.8 79.0 80.8 80.3 70.7

DM 83.6

Table 11: UAS and LAS for the Indonesian GSD tree-
bank. Notation comes from Table 5.
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Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 42.7 55.3 64.1 65.0 69.7 65.8
54.7 63.0 65.2 58.4 62.8 69.9
60.8 64.2 60.6 63.1 60.1 71.1

mGPT 27.2 45.2 59.2 63.1 61.2 60.7
39.2 58.2 66.8 65.8 61.5 72.7
37.4 58.1 68.9 63.1 64.4 66.8

BLOOM 28.9 45.6 59.0 59.7 58.2 60.0
46.7 55.1 73.5 62.3 64.9 69.2
43.3 58.7 72.3 61.0 64.9 69.0

BiLSTM 60.4 75.7 69.7 75.2 73.8 76.0
60.2 69.3 67.8 63.9 61.6 66.6
58.8 66.3 65.8 55.5 65.1 67.4

XLM 33.7 63.4 70.4 71.4 71.8 73.5
54.5 69.7 78.6 72.1 73.6 79.7
52.8 74.7 79.4 80.0 68.0 80.2

DM 82.4

LAS

LSTM 34.0 43.9 47.8 44.2 45.9 29.8
39.8 48.8 50.2 44.0 48.4 38.3
43.9 50.3 46.6 43.8 44.7 40.2

mGPT 21.8 34.2 48.3 45.9 45.6 36.4
31.5 45.3 50.9 53.0 48.0 72.7
27.4 45.5 55.4 49.9 51.2 66.8

BLOOM 23.8 34.5 48.3 44.4 41.5 28.2
36.8 44.7 58.2 49.8 54.4 42.4
33.7 46.6 57.4 49.9 49.2 42.8

BiLSTM 47.6 60.0 57.3 59.0 59.2 49.3
44.0 51.8 44.8 44.9 44.3 42.6
42.4 49.8 47.3 42.4 45.3 30.8

XLM 30.6 55.3 64.6 62.6 62.4 61.6
49.1 58.0 66.5 61.2 60.8 64.4
45.9 64.2 65.4 69.8 55.2 55.6

DM 62.5

Table 12: UAS and LAS for the Marathi UFAL treebank.
Notation comes from Table 5.

Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 67.4 67.9 64.7 80.4 79.9 82.3
75.9 78.6 80.6 79.2 78.3 82.8
77.7 82.0 84.0 82.1 82.0 83.5

mGPT 62.0 66.4 65.4 82.4 83.2 82.9
73.0 79.8 84.9 85.4 84.8 85.2
76.2 83.5 88.4 87.6 87.2 85.6

BLOOM 53.1 66.7 65.1 81.0 81.4 81.7
67.7 78.4 83.9 83.7 83.6 84.2
70.3 82.3 87.1 85.7 85.8 85.2

BiLSTM 88.4 89.6 79.1 88.5 87.4 88.0
84.8 87.4 88.2 86.3 85.9 84.5
87.8 87.1 87.6 85.8 85.8 83.8

XLM 92.0 91.5 80.5 93.4 93.4 91.2
93.8 93.0 94.2 93.6 93.4 88.7
93.9 93.0 92.7 93.6 93.6 88.6

DM 93.1

LAS

LSTM 63.7 63.8 61.6 75.3 74.6 73.5
71.2 74.0 76.1 74.4 73.8 67.0
73.1 77.3 79.8 77.8 77.6 68.5

mGPT 59.3 63.1 62.9 78.0 78.9 76.3
70.5 77.2 82.4 82.7 82.0 85.2
73.6 80.9 86.2 85.0 84.5 85.6

BLOOM 50.3 63.2 62.2 76.0 76.2 74.5
65.1 75.3 81.0 80.4 80.3 72.3
67.5 79.2 84.6 82.5 82.2 74.2

BiLSTM 84.9 86.2 76.3 85.3 84.0 80.9
80.4 83.1 84.1 82.1 81.7 71.3
82.9 82.7 83.4 81.7 81.5 71.2

XLM 90.0 89.7 79.2 91.4 91.6 85.5
91.6 91.0 92.3 91.6 91.4 78.2
91.7 90.8 90.9 91.6 91.5 76.4

DM 82.4

Table 13: UAS and LAS for the Spanish ANCORA
treebank. Notation comes from Table 5.
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Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 39.4 55.7 59.1 67.3 66.0 69.7
42.5 50.7 54.3 54.4 43.5 61.7
46.5 57.1 56.0 53.7 50.8 61.2

mGPT 20.3 48.7 55.8 64.1 62.8 65.2
32.1 57.7 68.3 62.0 60.3 67.0
28.7 60.9 69.9 54.1 55.1 66.9

BLOOM 19.4 49.4 54.0 55.8 63.1 65.7
28.6 56.0 68.5 62.4 58.8 66.7
31.6 60.0 64.9 64.9 63.6 71.9

BiLSTM 51.2 71.4 61.7 74.3 74.7 73.7
51.8 57.0 63.3 57.6 57.8 64.0
45.1 57.3 64.2 58.2 56.4 65.6

XLM 28.9 65.9 62.4 75.8 74.6 78.6
41.0 69.6 72.2 71.8 72.4 74.4
39.7 68.3 75.5 74.3 71.2 75.6

DM 75.8

LAS

LSTM 33.2 44.8 50.6 52.6 51.3 41.0
28.3 35.6 40.3 38.6 22.5 32.4
30.7 40.1 42.4 38.3 36.7 29.6

mGPT 15.7 37.6 44.6 47.5 46.5 42.7
25.8 47.4 56.4 50.3 48.4 67.0
22.8 49.5 58.2 41.6 43.1 44.7

BLOOM 15.4 37.2 42.9 38.6 46.8 40.3
22.7 45.0 56.2 50.1 47.2 45.2
25.9 48.5 52.1 53.8 50.3 51.8

BiLSTM 44.9 62.3 47.0 65.7 66.3 57.5
38.0 40.9 45.6 41.1 42.9 32.5
31.5 39.5 47.8 41.1 41.4 35.4

XLM 24.9 56.8 55.0 65.6 64.7 64.8
34.7 59.4 61.7 60.8 61.7 53.2
33.2 58.0 65.2 63.7 61.2 55.7

DM 65.5

Table 14: UAS and LAS for the Tamil TTB treebank.
Notation comes from Table 5.

Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 64.6 67.6 73.8 84.7 85.0 80.4
78.6 78.3 78.4 82.2 83.5 87.3
78.3 83.1 82.5 83.9 85.0 90.0

mGPT 55.5 59.1 71.8 82.0 81.6 75.6
73.7 75.0 85.0 84.5 85.0 87.4
80.2 82.7 86.7 89.6 84.2 80.8

BLOOM 51.7 54.8 70.0 79.1 79.2 74.1
72.4 73.6 84.3 84.5 82.9 87.2
78.7 78.2 85.7 84.0 84.0 87.8

BiLSTM 86.3 89.9 85.3 90.2 90.3 89.0
71.8 88.1 86.7 80.0 84.5 81.0
71.3 88.1 85.0 83.2 76.2 82.4

XLM 77.8 87.4 84.9 89.6 89.2 88.9
83.6 88.2 89.9 86.7 87.0 84.2
68.6 90.7 91.5 89.0 88.3 91.7

DM 89.7

LAS

LSTM 57.8 59.9 64.8 66.6 67.0 53.5
68.6 67.0 67.0 62.9 63.2 52.3
47.7 70.6 69.7 60.8 67.6 48.0

mGPT 49.4 51.6 65.6 67.3 67.1 50.5
65.6 67.1 76.5 74.1 71.3 87.4
71.7 74.1 76.8 79.4 74.8 25.4

BLOOM 46.5 45.4 62.1 63.8 63.4 43.4
66.0 64.8 74.2 72.2 71.7 54.3
71.8 68.7 74.3 74.2 67.4 47.9

BiLSTM 74.9 77.7 76.7 79.6 79.6 64.6
52.2 70.4 70.5 60.2 64.9 47.1
52.5 73.9 64.9 60.8 55.0 56.5

XLM 72.3 79.8 79.5 81.7 81.1 61.3
75.5 79.2 80.4 71.2 67.5 35.7
51.9 82.2 83.6 77.2 78.9 55.9

DM 61.8

Table 15: UAS and LAS for the Telugu MTG treebank.
Notation comes from Table 5.
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Metric Encoder
fl non-fl

TB
abs-idx rel-idx PoS-idx 1p 2p

UAS

LSTM 52.8 57.3 53.9 63.2 64.5 64.5
49.2 57.8 58.2 57.2 56.7 60.9
50.2 59.8 60.0 59.6 57.4 61.9

mGPT 29.3 49.6 51.6 61.8 61.3 59.7
34.8 56.9 66.6 62.9 63.8 63.2
34.3 60.1 68.3 63.7 65.1 65.2

BLOOM 31.7 51.0 51.1 62.1 60.7 61.0
38.5 57.3 63.4 60.5 60.9 64.0
38.8 61.6 64.6 59.4 62.0 60.0

BiLSTM 66.8 72.7 64.0 70.1 70.5 71.0
57.5 64.6 62.9 60.0 61.1 61.8
56.2 64.3 62.5 60.2 60.0 60.9

XLM 48.1 68.8 64.4 74.1 73.8 76.0
58.1 68.6 73.2 73.4 71.4 75.3
58.2 68.1 72.6 70.8 69.8 75.0

DM 76.6

LAS

LSTM 41.6 45.5 44.5 49.8 50.8 43.8
36.8 42.5 43.2 42.2 42.1 36.3
37.5 44.0 44.8 44.4 41.8 35.6

mGPT 23.3 36.7 41.2 47.4 46.7 39.8
28.1 44.3 53.6 49.4 50.2 63.2
26.8 47.0 54.4 49.9 51.2 45.9

BLOOM 24.9 38.2 40.5 46.7 45.9 39.8
30.2 44.3 50.6 46.4 47.5 44.3
30.7 48.1 51.0 45.8 48.6 37.4

BiLSTM 55.4 60.3 54.6 58.2 58.3 51.2
44.2 49.3 48.6 45.4 45.8 38.6
42.4 48.6 47.5 45.0 45.3 38.1

XLM 40.4 56.8 54.8 61.4 61.5 56.8
48.8 56.6 60.6 60.6 58.1 58.7
48.8 55.8 60.0 57.1 56.6 57.8

DM 61.9

Table 16: UAS and LAS for the Vietnamese MTG tree-
bank. Notation comes from Table 5.

Hyperparameter
Fully incremental Non incremental

LSTM BLOOM mGPT BiLSTM XLM

Word emb size 300 1 1 300 1

PoS-feats emb size 100 x x 100 x

Character emb size 50 x x 50 x

CharLSTM hidden 100 x x 100 x

Num. layers 4 1 1 4 1

Encoder hidden 400 100 100 400 100

Table 17: Architecture design choices for different en-
coders

Hyperparameter
Fully incremental Non incremental

LSTM BLOOM mGPT BiLSTM XLM

lr 1e-3 5e-5 5e-5 1e-3 5e-5

optimizer Adam AdamW AdamW Adam AdamW

decay type Exponential Linear Linear Exponential Linear

decay value 0.1 0.5 0.1 0.1 0.5

epochs 200 30 30 200 30

batch size ~6000 ~2000 ~500 ~6000 ~2000

Table 18: Training hyper-parameters for different en-
coders

ISO code Language % left-arcs % right-arcs

arPADT Arabic 30.46% 69.54%

euBDT Basque 49.22% 50.78%

zhGSD Chinese 63.67% 36.33%

enEWT English 57.18% 42.82%

frGSD French 54.72% 45.28%

hiHDTB Hindi 55.6% 44.4%

inGSD Indonesian 37.75% 62.25%

mrUFAL Marathi 51.34% 48.66%

esANC Spanish 54.43% 45.57%

taTTB Tamil 68.56% 31.44%

teMTG Telugu 54.28% 45.72%

viVTB Vietnamese 40.99% 59.01%

Table 19: Statistics of treebanks retrieved in our multi-
lingual benchmark.


