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Abstract

Does inverse scaling only occur as a function of
model size, or can it also occur over the course
of training? We carry out an exploratory study
investigating whether the performance of lan-
guage models on specific tasks can decrease
(while general performance remains high) dur-
ing training on the language modeling task.
We find 8 tasks on which Pythia 12B (Bi-
derman et al., 2023) shows decreased perfor-
mance over the course of training. Five of these
tasks (TRUTHFULQA-MC1, TRUTHFULQA-
MC2, HINDSIGHT NEGLECT, MEMO TRAP,
and PATTERN MATCH SUPPRESSION) addi-
tionally show a consistent relationship whereby
larger language models show a greater decrease
in performance the more they are trained, de-
spite showing standard (positive) scaling over-
all. This highlights the importance of testing
performance at all relevant benchmarks any
time models are trained on additional data, even
if their overall performance improves.

1 Introduction

For language models, bigger is usually better. Re-
cent research has found that both increased number
of model parameters and increased size of the train-
ing dataset positively influence model performance
(Brown et al., 2020; Kaplan et al., 2020; Chowdh-
ery et al., 2022; Clark et al., 2022; Du et al., 2022;
Rae et al., 2022; Hoffmann et al., 2022; Thoppilan
et al., 2022; Wei et al., 2022; Taylor et al., 2022;
Srivastava et al., 2022; Touvron et al., 2023a). One
particularly striking pattern that has been reported
is emergence, a nonlinearity in these relationships,
where at a particular scale, language models im-
prove rapidly at a given task (Wei et al., 2022).

However, while increased scale usually leads to
improved performance, on certain tasks it corre-
lates with decreased performance. This is known
as inverse scaling (Lin et al., 2022). An exam-
ple of a task on which inverse scaling is observed

is the TruthfulQA benchmark, where larger lan-
guage models are more likely to predict popular
misconceptions over statements of fact (Lin et al.,
2022). More recently, additional tasks that report-
edly show such an effect have been identified as
part of the Inverse Scaling Prize (McKenzie et al.,
2023b), as well as by other researchers (Jang et al.,
2023; Michaelov and Bergen, 2023).

Inverse scaling is a serious concern for several
reasons. At a high level, inverse scaling may in-
dicate ‘outer misalignment’ (Perez et al., 2022)
between the model training approach and the pur-
poses to which they are applied. The lack of robust-
ness observed in inverse scaling phenomena may
thus indicate that the apparent successes of specific
language models at a wide range of benchmarks
(e.g., Hendrycks et al., 2021; Srivastava et al., 2022)
do not necessarily entail that they have the capa-
bility ostensibly being tested (Bowman and Dahl,
2021; Raji et al., 2021).

The existence of inverse scaling is also concern-
ing because of the possibility of other as yet uniden-
tified tasks where performance similarly scales
inversely with model size. Models that perform
well on a variety of tasks may well present dete-
riorating performance in unseen tasks with scale,
even as performance at established benchmarks
increases. This is of particular concern if better
performance at established benchmarks and more
natural-seeming output leads users to place more
trust in such models as general-purpose natural
language understanding systems (see, e.g., Bender
et al., 2021, for general discussion of such risks).

Finally, inverse scaling is also of concern be-
cause it is often unpredictable. In the same way
that certain capabilities appear to emerge at scale
(Wei et al., 2022), inverse scaling also appears
or accelerates at given scales. For example, as
McKenzie et al. (2022b) show, the performance of
Gopher (Rae et al., 2022) and Plain LM (Ganguli
et al., 2022) at the Inverse Scaling Prize’s negated
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question-answering task (NEQA) appears to be
stable or even increasing as model size increases,
only dropping as model size increases to around
7 billion parameters and beyond (McKenzie et al.,
2022b). Thus, inverse scaling may occur not just
for unidentified tasks, but also for well-established
tasks: a model architecture that performs well at
a benchmark at a small scale may suddenly per-
form surprisingly worse as scale increases–it is not
safe to assume that performance will continue to
improve or even remain stable.

While previous work has focused on inverse scal-
ing based on the number of model parameters (Lin
et al., 2022; McKenzie et al., 2022a,b, 2023a; Jang
et al., 2023; Michaelov and Bergen, 2023); as dis-
cussed, scaling effects more generally occur not
just in relation to model size but also as a function
of training data quantity. Recent work has shown
that this latter effect has been substantially under-
estimated (Hoffmann et al., 2022; Touvron et al.,
2023a). Thus, in the present study, we consider
the possibility of inverse scaling over the course
of pretraining; that is, the hypothesized situation
where performance on some tasks decreases as the
total quantity of training data increases. If inverse
scaling of this type exists, it may be more prob-
lematic than inverse scaling as a function of model
size, because if performance at a given task can
degrade over the course of pretraining even as the
performance at the majority of tasks improves, a
specific model that has previously performed well
at a given task may unexpectedly show decreased
performance later in training.

We test how well the 8 models of the Pythia
(Biderman et al., 2023) suite perform at 12 tasks
over the course of training. These tasks are the 10
multiple-choice tasks that won the Inverse Scaling
Challenge (McKenzie et al., 2022b), plus the two
multiple-choice versions of the TruthfulQA bench-
mark, on which language models have also been
found to show inverse scaling (Lin et al., 2022).
The aim of this study is therefore an exploratory
analysis to see whether tasks that show inverse scal-
ing as model parameter size increases also show
inverse scaling over the course of training.

2 Method

2.1 Tasks
TRUTHFULQA-MC1 is the first multiple-choice
variant of TRUTHFULQA (Lin et al., 2022), which
tests whether language models find common mis-

conceptions or statements of fact more predictable
in a given context. In this version, there is one true
option and the remainder are false. For example,
for the prompt what should you take for a viral
infection?, the true answer is you should take a
rest and drink fluids, and other answers include
you should take a full course of antibiotics. The
language model is considered to respond correctly
if the probability of the correct answer is higher
than any other.

TRUTHFULQA-MC2 is an alternative multiple-
choice variant of TRUTHFULQA in which there are
often multiple correct answers. Here, the model is
considered to respond correctly if the total prob-
ability of correct responses is greater than that of
incorrect responses.

SIG FIGS, like all the Inverse Scaling Prize
tasks, is a multiple-choice task with one correct
answer. It also has two incorrect answers, and the
model is considered to respond correctly if the cor-
rect answer has the highest probability. The task
itself tests whether, when prompted to round a num-
ber to a number of significant figures, the language
model finds the number rounded correctly to be
more probable or the number rounded to the same
number of decimal places.

NEQA is a zero-shot task with negated ques-
tions such as As the barometer reading goes lower
there is not a greater chance of A. sunshine B. get-
ting wet.

REDEFINE is a zero-shot task where expressions
are redefined in a range of ways, and then ques-
tions are asked are asked about these redefined
expressions—e.g., a prompt may ask for the first
digit of 5 + 15, where 5 + 15 is first redefined as a
text string rather than an equation. The task tests
whether the language model does indeed treat the
expression in the redefined way rather than its usual
interpretation.

MEMO TRAP is a task where a language model
is instructed to write a famous quote with a specific
last word, e.g., write a quote that ends in the word

“heavy”: Absence makes the heart grow. In this
case, the correct answer would be heavy and not
the expected fonder.

HINDSIGHT NEGLECT is a few-shot multiple-
choice task where the input contains information
about a bet and its outcome and the task is to cor-
rectly determine whether or not the bet should have
been taken. In the task, a number of examples are
provided where the expected value aligns with the
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result (if the task has a positive expected value, the
individual taking the bet wins, and if it has a neg-
ative one, the individual taking the bet loses). For
the final question (the one that is answered for the
task), the value won or lost does not align (the in-
dividual either wins a bet with a negative expected
value or loses one with a positive expected value).

INTO THE UNKNOWN is a task that involves
a description of a setting and a question, with the
twist that the task is to identify which of two pieces
of information would help to answer the question.
One option (the correct answer) contains new in-
formation and the other repeats information from
the original description.

MODUS TOLLENS tests whether language mod-
els can make predictions in line with the modus tol-
lens form of deductive inference, i.e., ‘[i]f p, then
q; not q; therefore, not p’ (McKenzie et al., 2023b).
The task involves an example of such an inference,
and then a question of whether the conclusion is
valid or not.

PATTERN MATCH SUPPRESSION tests
whether language models can violate a repeated
pattern. For example, one prompt is to generate
a sequence of 6 symbols alternating between two
symbols (A B) but ending unexpectedly. A, B, A, B,
A, with possible answers A or B.

RESISITING CORRECTION is a few-shot task,
with the instruction to repeat a text without chang-
ing it and two examples. In the final example, the
sentence to be repeated includes an atypicality, e.g.,
spelling mistake or a switched word of a famous
quote. The task tests whether the model follows the
instruction and replicates the atypical, or whether
it ‘corrects’ it.

REPETITIVE ALGEBRA is a few-shot task
based on simple algebra questions. Until the penul-
timate question, all questions have the same answer
(provided in the prompt), and the penultimate ques-
tion has an answer that differs (also provided in
the prompt). For the final question that needs to
be answered, the answer is the same as the initial
answers. The task tests which of the two answers
(initial or penulatimate) the model predicts to be
more likely.

2.2 Models
We use the 70 million parameter (70M), 160M,
410M, 1B, 1.4B, 2.8B, 6.9B, and 12B Pythia mod-
els (Biderman et al., 2023). The models were
trained on the autoregressive language modeling

task on The Pile (Gao et al., 2020), an 800GB text
dataset comprising 300 billion tokens. All models
were trained on this dataset, with checkpoints re-
leased at every 2 billion tokens of training. Given
that scaling is often considered on a logarithmic
scale, we tested each model’s performance at 8
checkpoints based on powers of 2: checkpoint 2 (4
billion tokens), checkpoint 4 (8B tokens), check-
point 8 (16B), checkpoint 16 (32B), checkpoint
32 (64B), checkpoint 64 (128B), checkpoint 128
(256B), and checkpoint 143 (300B tokens, i.e.,
fully trained).

We run our analyses of model performance
using the Language Model Evaluation Harness
(Gao et al., 2021). All code, data, and statistical
analyses are provided at https://github.com/
jmichaelov/emergent-inabilities.

3 Results

Model performance at each task is shown in Fig-
ure 1. In order to quantify the patterns observed,
we also fit a least-squares linear regression for each
dataset, with the logarithm (base 10) of model pa-
rameters, the logarithm (base 10) of training tokens,
and the interaction between them as predictors of
task accuracy. All variables were z-scored. The
results of these tests are shown in Table 1.

The clearest inverse scaling effects can be seen
with TRUTHFULQA-MC2—larger models per-
form worse, performance overall decreases with
number of training tokens, and the rate at which
performance deteriorates with training tokens in-
creases with model size. Inferential statistics show
a negative effect of number of parameters, num-
ber of training tokens, and their interaction. In
other words, the regression predicts that model
performance decreases with number of parame-
ters and training tokens; and in addition, that the
larger a model is, the more there is a decrease
in performance as the model continues to train.
Whether this pattern of statistical results is spe-
cific to the tasks used in the present work or to
all tasks that show inverse scaling is a question
for future work. However, it does also appear
to be present for most of the other tasks clearly
displaying inverse scaling, namely, HINDSIGHT

NEGLECT, MEMO TRAP, PATTERN MATCH SUP-
PRESSION, and TRUTHFULQA-MC1.

Some of the remaining tasks, namely INTO THE

UNKNOWN, MODUS TOLLENS, NEQA, and SIG

FIGS display no clear pattern across models. But
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Figure 1: Performance of the 8 Pythia (Biderman et al., 2023) models at 8 stages over the course of training at the
two multiple-choice variants of TRUTHFULQA (Lin et al., 2022) and the 10 multiple-choice winners of the Inverse
Scaling Prize (McKenzie et al., 2023b).

Task Parameters Tokens Interaction
Hindsight Neglect t(60)=-4.22, p<0.001 t(60)=-4.69, p<0.001 t(60)=-2.88, p=0.012
Into the Unknown t(60)=-0.31, p=0.824 t(60)=2.04, p=0.079 t(60)=0.02, p=0.986
Memo Trap t(60)=-10.05, p<0.001 t(60)=-11.34, p<0.001 t(60)=-9.71, p<0.001
Modus Tollens t(60)=-0.16, p=0.927 t(60)=-2.13, p=0.071 t(60)=-1.50, p=0.208
NeQA t(60)=0.79, p=0.559 t(60)=-0.08, p=0.963 t(60)=2.45, p=0.034
Pattern Match Supp. t(60)=-3.20, p=0.005 t(60)=-9.58, p<0.001 t(60)=-6.37, p<0.001
Redefine t(60)=0.60, p=0.645 t(60)=-0.79, p=0.559 t(60)=-1.53, p=0.205
Repetitive Algebra t(60)=-0.49, p=0.706 t(60)=-2.11, p=0.071 t(60)=-1.00, p=0.443
Resisting Correction t(60)=5.13, p<0.001 t(60)=5.63, p<0.001 t(60)=-1.89, p=0.104
Sig Figs t(60)=-0.59, p=0.645 t(60)=-0.74, p=0.574 t(60)=-1.46, p=0.215
TruthfulQA-MC1 t(60)=-10.90, p<0.001 t(60)=-11.45, p<0.001 t(60)=-2.97, p=0.010
TruthfulQA-MC2 t(60)=-24.72, p<0.001 t(60)=-23.89, p<0.001 t(60)=-12.02, p<0.001

Table 1: Statistical tests carried out on the performance of the Pythia models, testing the effect of (log-transformed)
number of parameters, (log-transformed) number of training tokens, and their interaction. A positive t-value
indicates that the variable is significantly correlated with a higher accuracy. All p-values are corrected for multiple
comparisons based on false discovery rate (Benjamini and Hochberg, 1995).

when focusing on just the two largest models, RE-
DEFINE appears to show inverse scaling over the
course of training, and the largest (12 billion pa-
rameter) model shows inverse scaling during train-
ing on REPETITIVE ALGEBRA and RESISTING

CORRECTION. These may be a case of emergent
inverse scaling (i.e., nonlinearities that cannot be
accounted for using linear statistical models), espe-

cially in the case of RESISTING CORRECTION, but
models with a larger number of parameters would
be needed to verify this.

4 Discussion

We find clear evidence of inverse scaling over
the course of training on TRUTHFULQA-MC1,
TRUTHFULQA-MC2, HINDSIGHT NEGLECT,
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MEMO TRAP, and PATTERN MATCH SUPPRES-
SION, as well as possible evidence of the same phe-
nomenon on REDEFINE, REPETITIVE ALGEBRA,
RESISTING CORRECTION for the largest model or
models. In addition, RESISTING CORRECTION ap-
pears to present an example of emergence in inverse
scaling over the course of training—performance
only decreases with training on the largest model.

At the time of initial writing, this study was the
first to have identified an example of inverse scal-
ing over the course of pretraining. Since then, an
official Inverse Scaling Prize paper has been re-
leased (McKenzie et al., 2023b). In addition to
exploring scaling in terms of the number of float-
ing point operations (FLOPs) needed to train each
model, McKenzie et al. (2023b) also analyze the
performance of different sizes of the Anthropic LM
model (2M, 13M, 42M, 197M, 805M, 3B, 13B,
52B) over the course of training on 400B tokens,
providing a valuable point of comparison. On the
whole, their results are similar to ours over the
same scales. At the larger scale, they find that the
13B and 52B models begin to show inverse scaling
on NEQA, SIG FIGS, and INTO THE UNKNOWN.
Conversely, only the 52B model begins to show
inverse scaling on RESISTING CORRELATION.

McKenzie et al. (2023b) also classify the tasks
into different types.1 These classes do not clearly
delineate between ones that show inverse scaling
and ones that do not based on either our analy-
ses or their analyses. Nonetheless, they provide a
valuable starting point for considering the kinds of
features of tasks that may lead to different scaling
patterns.

Indeed, the question of whether there are con-
sistent scaling patterns based on task features re-
mains an open one. We find several clear cases of
inverse scaling that share the pattern of model per-
formance decreasing more rapidly over the course
of training as the number of model parameters in-
creases. In several cases there is only a decrease
in performance in the largest models. These are
not necessarily different phenomena; it may be
that the threshold of number of parameters and to-
kens for tasks like TRUTHFULQA-MC2 is simply
lower than for tasks like RESISTING CORRECTION.
Additionally, it is not clear whether the main pat-

1Strong Prior (RESISTING CORRECTION, MEMO TRAP,
REDEFINE), Unwanted Imitation (MODUS TOLLENS, TRUTH-
FULQA), Distractor Task (PATTERN MATCH SUPPRESSION,
NEQA, SIG FIGS, INTO THE UNKNOWN), and Spurious Few-
Shot (HINDSIGHT NEGLECT, REPETITIVE ALGEBRA).

tern of inverse scaling that we identify—namely,
a greater decrease in performance during training
in the largest models—is a general feature of in-
verse scaling, or only due to the fact that we use
tasks already known to show inverse scaling as
models increase in number of parameters. Future
work should establish what kinds of relationships
(if any) hold between inverse scaling as a func-
tion of model parameters and inverse scaling as a
function of training data.

Perhaps the main takeaway of the present study
is that of instability in model performance. As we
see with Pythia 12B on the RESISTING CORREC-
TION task, a model that was previously among the
best at a given task can relatively suddenly experi-
ence decreased performance as it continues to train.
Good performance on a task at one stage doesn’t
guarantee continued good performance, even in
cases where the model only continues to be trained
on text data. This highlights the importance of reg-
ular and rigorous evaluation. For this reason, users
of models subject to updates would be well advised
to verify continuing performance regularly, and it
is incumbent on parties who provide such models
for use in applications to notify users of updates.

5 Conclusions

In this study, we set out to investigate whether
inverse scaling can occur not only as a function
of number of model parameters, but also number
of training tokens. We find clear evidence that it
does occur with the Pythia (Biderman et al., 2023)
suite of models on five of the twelve tasks analyzed,
and additional evidence that it may occur on up to
eight.

Limitations

The main limitations of this study relate to the mod-
els used and tasks evaluated. With respect to the
former, our analysis is limited to 8 models at vari-
ous stages in their training. While this means that
we can make the inference that the performance
of a specific model can deteriorate over the course
of training, it also means that it is possible that
some of the models have idiosyncratic features that
would not generalize to other models of the same
size or with the same amount of training data. Ad-
ditionally, these models cover only part of the pos-
sible range of scales for language models—there
are contemporary models with many more parame-
ters (e.g., 540 billion parameters in the case of the
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largest PaLM; Chowdhery et al., 2022) and trained
on more data (e.g., 2 trillion tokens in the case of
LLaMA 2; Touvron et al., 2023b).

Similarly, our analysis is limited to the two
multiple-choice versions of TRUTHFULQA and
the ten multiple-choice Inverse Scaling Prize tasks.
As noted in Section 4, these are all tasks that have
been found to exhibit inverse scaling as number
of parameters increases. A question for future re-
search is whether the patterns of inverse scaling
that we find in the present study occur in all cases
of inverse scaling, or whether it is possible to have
inverse scaling over the course of training that is
not impacted by the number of model parameters.

Ethics Statement

Our work complies with the ACL Ethics Policy.
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an NVIDIA RTX A6000 GPU, taking just under
42 hours.

Acknowledgements

We would like to thank EleutherAI for making the
Pythia suite of language models and the Language
Model Evaluation Harness available, as well as
all those involved with the Inverse Scaling Prize
for creating and releasing the tasks. Models were
evaluated using hardware provided by the NVIDIA
Corporation as part of an NVIDIA Academic Hard-
ware Grant.

References
Emily M. Bender, Timnit Gebru, Angelina McMillan-

Major, and Shmargaret Shmitchell. 2021. On the
Dangers of Stochastic Parrots: Can Language Mod-
els Be Too Big? . In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, pages 610–623, New York, NY,
USA. Association for Computing Machinery.

Yoav Benjamini and Yosef Hochberg. 1995. Control-
ling the False Discovery Rate: A Practical and Pow-
erful Approach to Multiple Testing. Journal of the
Royal Statistical Society. Series B (Methodological),
57(1):289–300.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,

Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A Suite for Analyzing Large Language Mod-
els Across Training and Scaling. In Proceedings of
the 40th International Conference on Machine Learn-
ing, pages 2397–2430. PMLR.

Samuel R. Bowman and George Dahl. 2021. What Will
it Take to Fix Benchmarking in Natural Language Un-
derstanding? In Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4843–4855, Online. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language Models are Few-Shot Learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PaLM: Scaling Language
Modeling with Pathways.

Aidan Clark, Diego De Las Casas, Aurelia Guy, Arthur
Mensch, Michela Paganini, Jordan Hoffmann, Bog-
dan Damoc, Blake Hechtman, Trevor Cai, Sebastian
Borgeaud, George Bm Van Den Driessche, Eliza
Rutherford, Tom Hennigan, Matthew J. Johnson,
Albin Cassirer, Chris Jones, Elena Buchatskaya,
David Budden, Laurent Sifre, Simon Osindero, Oriol
Vinyals, Marc’Aurelio Ranzato, Jack Rae, Erich
Elsen, Koray Kavukcuoglu, and Karen Simonyan.
2022. Unified Scaling Laws for Routed Language

14612

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
http://arxiv.org/abs/2346101
http://arxiv.org/abs/2346101
http://arxiv.org/abs/2346101
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://doi.org/10.18653/v1/2021.naacl-main.385
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://proceedings.mlr.press/v162/clark22a.html


Models. In Proceedings of the 39th International
Conference on Machine Learning, pages 4057–4086.
PMLR.

Nan Du, Yanping Huang, Andrew M. Dai, Simon Tong,
Dmitry Lepikhin, Yuanzhong Xu, Maxim Krikun,
Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret
Zoph, Liam Fedus, Maarten P. Bosma, Zongwei
Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie
Pellat, Kevin Robinson, Kathleen Meier-Hellstern,
Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le,
Yonghui Wu, Zhifeng Chen, and Claire Cui. 2022.
GLaM: Efficient Scaling of Language Models with
Mixture-of-Experts. In Proceedings of the 39th In-
ternational Conference on Machine Learning, pages
5547–5569. PMLR.

Deep Ganguli, Liane Lovitt, Jackson Kernion, Amanda
Askell, Yuntao Bai, Saurav Kadavath, Ben Mann,
Ethan Perez, Nicholas Schiefer, Kamal Ndousse,
Andy Jones, Sam Bowman, Anna Chen, Tom Con-
erly, Nova DasSarma, Dawn Drain, Nelson Elhage,
Sheer El-Showk, Stanislav Fort, Zac Hatfield-Dodds,
Tom Henighan, Danny Hernandez, Tristan Hume,
Josh Jacobson, Scott Johnston, Shauna Kravec,
Catherine Olsson, Sam Ringer, Eli Tran-Johnson,
Dario Amodei, Tom Brown, Nicholas Joseph, Sam
McCandlish, Chris Olah, Jared Kaplan, and Jack
Clark. 2022. Red Teaming Language Models to
Reduce Harms: Methods, Scaling Behaviors, and
Lessons Learned.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The Pile: An
800GB Dataset of Diverse Text for Language Model-
ing.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.
Zenodo.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring Massive Multitask Language Un-
derstanding. In International Conference on Learn-
ing Representations.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katherine Millican, George van den Driessche, Bog-
dan Damoc, Aurelia Guy, Simon Osindero, Karen
Simonyan, Erich Elsen, Oriol Vinyals, Jack William
Rae, and Laurent Sifre. 2022. An empirical analysis
of compute-optimal large language model training.
In Advances in Neural Information Processing Sys-
tems.

Joel Jang, Seonghyeon Ye, and Minjoon Seo. 2023. Can
Large Language Models Truly Understand Prompts?
A Case Study with Negated Prompts. In Proceedings
of The 1st Transfer Learning for Natural Language
Processing Workshop, pages 52–62. PMLR.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling Laws for Neural Language Models.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring How Models Mimic Human
Falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Ian McKenzie, Alexander Lyzhov, Alicia Parrish,
Ameya Prabhu, Aaron Mueller, Najoung Kim, Sam
Bowman, and Ethan Perez. 2022a. The inverse scal-
ing prize.

Ian McKenzie, Alexander Lyzhov, Alicia Parrish,
Ameya Prabhu, Aaron Mueller, Najoung Kim, Sam
Bowman, and Ethan Perez. 2022b. Inverse scaling
prize: First round winners.

Ian McKenzie, Alexander Lyzhov, Alicia Parrish,
Ameya Prabhu, Aaron Mueller, Najoung Kim, Sam
Bowman, and Ethan Perez. 2023a. Inverse scaling
prize: Second round winners.

Ian R. McKenzie, Alexander Lyzhov, Michael Pieler,
Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu,
Andrew Gritsevskiy, Daniel Wurgaft, Derik Kauff-
man, Gabriel Recchia, Jiacheng Liu, Joe Cavanagh,
Max Weiss, Sicong Huang, The Floating Droid, Tom
Tseng, Tomasz Korbak, Xudong Shen, Yuhui Zhang,
Zhengping Zhou, Najoung Kim, Samuel R. Bowman,
and Ethan Perez. 2023b. Inverse Scaling: When
Bigger Isn’t Better.

James Michaelov and Benjamin Bergen. 2023. Rarely a
problem? Language models exhibit inverse scaling
in their predictions following few-type quantifiers.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 14162–14174, Toronto,
Canada. Association for Computational Linguistics.

Ethan Perez, Ian McKenzie, and Sam Bowman. 2022.
Announcing the Inverse Scaling Prize ($250k Prize
Pool).

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, Eliza Rutherford, Tom Hennigan, Ja-
cob Menick, Albin Cassirer, Richard Powell, George
van den Driessche, Lisa Anne Hendricks, Mari-
beth Rauh, Po-Sen Huang, Amelia Glaese, Jo-
hannes Welbl, Sumanth Dathathri, Saffron Huang,
Jonathan Uesato, John Mellor, Irina Higgins, Anto-
nia Creswell, Nat McAleese, Amy Wu, Erich Elsen,

14613

https://proceedings.mlr.press/v162/clark22a.html
https://proceedings.mlr.press/v162/du22c.html
https://proceedings.mlr.press/v162/du22c.html
https://doi.org/10.48550/arXiv.2209.07858
https://doi.org/10.48550/arXiv.2209.07858
https://doi.org/10.48550/arXiv.2209.07858
https://arxiv.org/abs/2101.00027v1
https://arxiv.org/abs/2101.00027v1
https://arxiv.org/abs/2101.00027v1
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=iBBcRUlOAPR
https://openreview.net/forum?id=iBBcRUlOAPR
https://proceedings.mlr.press/v203/jang23a.html
https://proceedings.mlr.press/v203/jang23a.html
https://proceedings.mlr.press/v203/jang23a.html
https://doi.org/10.48550/arXiv.2001.08361
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://github.com/inverse-scaling/prize
https://github.com/inverse-scaling/prize
https://irmckenzie.co.uk/round1
https://irmckenzie.co.uk/round1
https://irmckenzie.co.uk/round2
https://irmckenzie.co.uk/round2
https://doi.org/10.48550/arXiv.2306.09479
https://doi.org/10.48550/arXiv.2306.09479
https://doi.org/10.18653/v1/2023.findings-acl.891
https://doi.org/10.18653/v1/2023.findings-acl.891
https://doi.org/10.18653/v1/2023.findings-acl.891
https://www.lesswrong.com/posts/eqxqgFxymP8hXDTt5/announcing-the-inverse-scaling-prize-usd250k-prize-pool
https://www.lesswrong.com/posts/eqxqgFxymP8hXDTt5/announcing-the-inverse-scaling-prize-usd250k-prize-pool


Siddhant Jayakumar, Elena Buchatskaya, David Bud-
den, Esme Sutherland, Karen Simonyan, Michela Pa-
ganini, Laurent Sifre, Lena Martens, Xiang Lorraine
Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena
Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsim-
poukelli, Nikolai Grigorev, Doug Fritz, Thibault Sot-
tiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin,
Aidan Clark, Diego de Las Casas, Aurelia Guy,
Chris Jones, James Bradbury, Matthew Johnson,
Blake Hechtman, Laura Weidinger, Iason Gabriel,
William Isaac, Ed Lockhart, Simon Osindero, Laura
Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub,
Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Ko-
ray Kavukcuoglu, and Geoffrey Irving. 2022. Scal-
ing Language Models: Methods, Analysis & Insights
from Training Gopher.

Deborah Raji, Emily Denton, Emily M. Bender, Alex
Hanna, and Amandalynne Paullada. 2021. AI and
the Everything in the Whole Wide World Benchmark.
Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks, 1.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ambrose Slone, Ameet Rahane,
Anantharaman S. Iyer, Anders Andreassen, Andrea
Madotto, Andrea Santilli, Andreas Stuhlmüller, An-
drew Dai, Andrew La, Andrew Lampinen, Andy
Zou, Angela Jiang, Angelica Chen, Anh Vuong,
Animesh Gupta, Anna Gottardi, Antonio Norelli,
Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-
sum, Arul Menezes, Arun Kirubarajan, Asher Mul-
lokandov, Ashish Sabharwal, Austin Herrick, Avia
Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts,
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