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Abstract

The evaluation of abstractive summarization
models typically uses test data that is identi-
cally distributed as training data. In real-world
practice, documents to be summarized may
contain input noise caused by text extraction
artifacts or data pipeline bugs. The robust-
ness of model performance under distribution
shift caused by such noise is relatively under-
studied. We present a large empirical study
quantifying the sometimes severe loss in per-
formance – up to 12 ROUGE-1 points – from
different types of input noise for a range of
datasets and model sizes. We then propose a
light-weight method for detecting and remov-
ing such noise in the input during model infer-
ence without requiring any extra training, aux-
iliary models, or even prior knowledge of the
type of noise. Our proposed approach effec-
tively mitigates the loss in performance, recov-
ering a large fraction of the performance drop,
sometimes as large as 11 ROUGE-1 points.

1 Introduction

Despite rapid progress in abstractive summariza-
tion in recent years (Lewis et al., 2020; Raffel et al.,
2020b; Zhang et al., 2020), virtually all works have
tested models using test data which is identically
distributed as the training data, and little attention
has gone into studying their robustness to input
distribution shift caused by input noise. Data from
different domains which have been addressed in
summarization research, may contain noise of dif-
ferent types. For example, when summarizing a
news article on a web page, there can be embedded
elements such as ads or tweets which may be in-
cluded as part of the article due to erroneous text
extraction. A system summarizing chatroom con-
versations might encounter artifacts such as URLs,
or sometimes even code shared between partici-
pants. If the text to be summarized is acquired by
scanning a document, noise can be introduced in

the form of OCR errors (Jing et al., 2003). How-
ever, the impact of different kinds of noise on mod-
ern abstractive summarization systems, and ways
to accurately detect and remove that noise, remain
largely unknown.

In this work, we study how noise in the input af-
fects the output generated by summarization mod-
els, and propose a method to detect and remove
it. We synthetically inject 4 types of noise to 4 ab-
stractive summarization datasets with diverse styles
(Narayan et al., 2018; Kim et al., 2019; Gliwa et al.,
2019; See et al., 2017), and quantify the drop in
aggregate metrics for the output summaries (Sec-
tion 3). We also study how the quality of generated
summaries varies with factors such as the amount
of noise and size of the models. For our exper-
iments, we use PEGASUS (Zhang et al., 2020)
models — transformer-based pre-trained models
which deliver competitive performance across ab-
stractive summarization benchmarks.

We present a method to detect and remove noisy
spans in the input, which works without prior
knowledge of the noise type or access to its sam-
ples, yet can recover a large fraction of the drop in
output quality resulting from noise addition (Sec-
tion 4). Our approach for detecting noisy spans is
based on variations of the Relative Mahalanobis
Distance OOD Score proposed by Ren et al. (2023),
which uses the embeddings computed by the sum-
marization model’s encoder. Our approach does
not require any additional training or use of exter-
nal models, hence it is relatively efficient. Figure 1
shows our method’s impact on a sample noisy doc-
ument.

Finally, we investigate how different parts of the
model architecture cause the drop in output quality
upon adding noise to the input (Section 5). We
attribute the performance drop to two phenomena:
(i) corruption of the representations of non-noisy
input tokens computed by the encoder due to con-
textualization with neighboring noise; and (ii) dis-
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Figure 1: Effect of noise addition and filtering on the model generated summary for a sample document. Random
URLs are injected to the original document as noise. The color indicates the value of our proposed OOD score
for a text span — red represents positive and blue represents negative OOD scores, with saturation proportional
to the magnitude. Removing the detected noisy parts from input and feeding to summarization model results in a
summary closer to the ground truth.

traction of the decoder such that it assigns non-zero
attention to the representations of noisy input to-
kens. We perform an ablation where we remove
the encoder embeddings of the noisy tokens before
running the decoder, hence eliminating the effect
of decoder distraction. We find that in a majority of
cases this leads to partial recovery in output quality
suggesting that generally both factors are responsi-
ble to some extent for the poor output summaries.

We make the following contributions:

• We quantify the impact of various kinds of
noise on pretrained Transformer-based summa-
rization models, demonstrating drops in output
quality up to 12 ROUGE-1 points.

• We show that this noise can be detected using
adaptations of an out-of-distribution detection
technique, without ever being exposed to it in
advance. Our approach can recover much of
the performance drop (sometimes as large as
11 ROUGE-1 points), improving robustness
and safety for real-world model deployment.

• We examine how different parts of the model’s
computation are affected by the introduction
of input noise, leading to generation of inferior
summaries.

2 Related Work

Research on the behavior of summarization models
on noisy inputs is quite sparse. Jing et al. (2003)
investigated how extractive summarization models
are impacted by OCR errors in scanned documents.
More recently, Meechan-Maddon (2019) studied

the effect of noise from ASR errors on CNN based
summarization models. In contrast, we experiment
with pre-trained Transformer models which are
now preferred in popular use due to their superior
performance (Lewis et al., 2020; Zhang et al., 2020;
Raffel et al., 2020b), and address a wide variety of
noise types and summarization datasets. Contem-
porary to our work, Chen et al. (2023) have studied
the impact of misspellings in input to summariza-
tion models, whereas our work instead focuses on
additive input noise and its explicit removal.

The effect of noisy inputs has also been studied
for NLP tasks other than summarization, such as
machine translation (Niu et al., 2020) and question
answering (Peskov et al., 2019). Multiple works
across machine translation (Karpukhin et al., 2019;
Vaibhav et al., 2019), question answering (Peskov
et al., 2019) and summarization (Jing et al., 2003)
have used synthetic noise to create noisy inputs.
Similar to these works, we also create synthetic
noisy inputs due to lack of a dataset with naturally
occurring labeled noise. One distinguishing aspect
of our work is that our noise detection/removal
method works without exposing the model to the
noise during training, which is closer to practical
scenarios where unknown types of noise can be
encountered after a model is deployed.

3 Impact of noise addition

We inject noisy text spans in between sentences of
the clean articles. The insert position of each noisy
text span is sampled independently and uniformly
at random (see Figure 7 in Appendix for an exam-
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ple). Overall, we consider the following choices of
a noisy text span:

• Code - a random line of code from a corpus of
Python programs (Husain et al., 2019). Code
may be shared in professional chatrooms.

• Emoji - randomly sampled emojis taken from
the version 15 release on unicode.org. Emo-
jis can be found in conversations and social
media posts.

• URL - a random URL from the first 1% of val-
idation set of the the Colossal Common Crawl
Corpus(C4) (Raffel et al., 2020b). URLs can
be referenced in news articles or mentioned in
chatrooms.

• Randomsent - a random sentence from the
first 1% of validation set of the C4 corpus.

We experiment with different amounts of noise
added to the input which is treated as a hyper-
parameter. We measure the amount of noise in
terms of the number of noisy tokens added to
the input divided by the total number of tokens
in the input after noise addition. We experi-
ment with 4 different datasets — XSUM (Narayan
et al., 2018), CNN/DailyMail (See et al., 2017),
SAMSum (Gliwa et al., 2019) and RedditTIFU-
long (Kim et al., 2018). Our datasets span a vari-
ety of domains, where the first two datasets deal
with summarizing news articles, and the remaining
two consider summarizing conversations and so-
cial media posts respectively. For all experiments
with each summarization dataset, we use PEGA-
SUS models (Zhang et al., 2020) finetuned on that
dataset. We evaluate the performance of models
using ROUGE scores (Lin, 2004) of the correspond-
ing summaries generated by the them.
Effect of noise amount: We compare four differ-
ent levels of noise, 5%, 10%, 25%, and 50% (50%
means the amount of noise tokens is equal to the
amount of the clean tokens.). As shown in Fig-
ure 2, we see a near monotonic decrease in output
quality as more noise is added to the data. In Fig-
ure 2a, we group it by datasets while averaging
across model sizes and noise types. This reveals
that some datasets are more robust to noise than oth-
ers (e.g. CNN/DailyMail is most robust), and the
relative trends in performance drops remain similar
across different noise amounts. In Figure 2b, we
group the performance drops by noise types while
averaging across datasets and model sizes. We see

a clear gap between the drops for Code and Ran-
domsent vs Emoji and URL, with the gap widening
as the noise amount is increased.

Effect of noise type: In general, we see the mod-
els are more robust to URLs and emojis, and
less robust to Randomsent and Code noise types
as demonstrated by performance drops (averaged
across model sizes) shown in Figure 2c. We suspect
that some of the this could be due to the presence of
URLs and emojis in the training dataset itself, due
to which the model may have learned to be robust
to those noise types. In addition, from Figure 2c we
see that models trained on different datasets have
varying sensitivity to different kinds of noises. For
example, SAMSum is notoriously susceptible to
Randomsent noise, leading to a drop of about 10
Rouge-1 points averaged across model sizes (Ta-
ble 6 in Appendix), whereas for CNN/DailyMail
Code is the most harmful type of noise.

Effect of model size: We compare PEGASUS
models of 3 different sizes (number of parameters)
— Small (50M), Base (200M), and Large (500M).
As shown by performance drops (averaged over
noise types) in Figure 2d, one might expect larger
models to be less susceptible to noise, but it does
not seem to be the case in general and simply scal-
ing up models may not solve robustness. In some
cases, large models can still suffer loss of over 10
ROUGE-1 points with addition of noise (see Ta-
ble 6 in Appendix).

A qualitative analysis of the summaries gener-
ated for noisy inputs revealed that there exist some
frequent bad summaries which are generated by
the models for many noisy inputs. This is observed
for models fine-tuned on XSUM and RedditTIFU-
long datasets, while for the other two datasets we
did not observe such a pattern. We show five
of the most frequently generated summaries for
XSUM and RedditTIFU-long in Table 1. We see
that the generated summary (for noisy inputs) is
often just punctuation marks such as a period or a
semicolon. Notably, for XSUM dataset, some of
the frequently generated bad summaries were also
present as ground truth summaries in the train set.
For example, “All images are copyrighted.” was
the ground truth summary for 39 articles in the
train set. This suggests that upon encountering in-
put noise, the model can fall back to behaving like
an unconditioned language model and generating
high frequency sequences from the train set.
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(a) Effect of noise amount by dataset (b) Effect of noise amount by noise type

(c) Effect of noise type by dataset (d) Effect of model size by dataset

Figure 2: Change in output quality upon addition of noise to inputs, while varying different factors — noise amount
in (a) and (b), noise type in (c), and model size in (d). In (c) and (d) we also show the quality after noise removal
(the shaded area). Quality is measured as the geometric mean of ROUGE-1/2/L scores and averaged over the
non-varying factors. We set noise amount to 0.5 in (c) and (d).

4 Noise detection and quality recovery

4.1 Noise detection
Ren et al. (2023) studied various methods for de-
tecting OOD inputs for conditional language gen-
eration tasks. They showed that the proposed
embedding-based OOD detection method Relative
Mahalanobis distance (RMD) worked well. Specif-
ically, given an input sequence x = x1 . . . xt, the
method obtains the input embedding z = 1

t Σihi

by averaging the encoder’s final-layer hidden state
vectors hi corresponding to the input sequence to-
ken xi. The OOD score is defined as the difference
between two Mahalanobis distances (MD),

S(x) := RMD(z) := MDin(z)−MD0(z), (1)

where MDin(z) = (z − µ)TΣ−1(z − µ) mea-
sures the distance from z to the fitted in-domain
Gaussian distribution N (µ,Σ), and MD0(z) =
(z − µ0)

TΣ−1
0 (z − µ0) measures the distance to

the fitted background Gaussian N (µ0,Σ0). The
in-domain Gaussian distribution is fitted using the
in-domain training data, and the background distri-
bution is fitted using the same number of examples

from C4 (Raffel et al., 2020a) which represents a
broad set of domains. In our experiments we use
10, 000 examples to fit each distribution. The RMD
score is regarded as a background contrastive score
that indicates how close the input sequence is to the
in-domain compared to the background domains. A
negative score suggests relatively in-domain, while
a positive score suggests OOD.

Instead of computing a single OOD score for the
entire input document sequence as in (Ren et al.,
2023), in this work, we focus on detecting smaller
sub-parts of OOD noise within the input document
sequence. We propose three variants:
Leaveout-Sentence (LO-Sent) In this case, we
compute the OOD scores of the input with and
without a sentence in it. The negative of the change
in the OOD score after removing the sentence de-
notes the OOD score of that sentence. Intuitively, if
removing the sentence decreases the overall OOD
score, that sentence is assigned a positive OOD
score and vice-versa.

SLO-Sent(xi:j) = S(x1:t)− S(x1:(i−1);(j+1):t)

(2)
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XSUM RedditTIFU-long

Summary Noisy Clean Summary Noisy Clean

. (period) 145 1 : (colon) 230 0
A chronology of key events: 108 0 ** 68 2
All images are copyrighted. 62 7 i’m a f**king idiot. 16 3
All pictures are copyrighted. 9 4 i’m an idiot. 15 22
The following is a summary of key events: 5 0 ] 13 0

Table 1: The frequencies of most commonly generated summaries on noisy versions of XSUM and RedditTIFU-
long validation sets (Noisy) and their frequencies before adding noise (Clean) (using the base model size and Code
noise type with noise amount set to 0.5)

Leaveout-Token (LO-Tok) This is very similar to
the previous method LO-Sent except that instead
of removing a sentence, we remove a token at a
time and hence get OOD scores for each token,

SLO-Tok(xi) = S(x1:t)− S(x1:(i−1);(i+1):t). (3)

Sentencewise (Sent) Instead of computing the
score based on embeddings averaged over the
tokens in the whole input document sequence
(consisting of multiple sentences), we fit Gaus-
sian distributions at the sentence level by averag-
ing the token embeddings in a sentence zi:j =

1
j−i+1

∑j
k=i hk. We use the sentence embed-

dings from in-domain data and C4 data to fit the
two Gaussian distributions, N (µsent,Σsent) and
N (µsent

0 ,Σsent
0 ).

Ssent(xi:j) = MDsent
in (zi:j)−MDsent

0 (zi:j) (4)

where MDsent
in and MDsent

0 are MDs to
N (µsent,Σsent) and N (µsent

0 ,Σsent
0 ) respectively.

GPT-2 likelihood We also experiment with a
simple language model baseline to generate the
noisiness scores based on average negative log-
likelihood (NLL) of tokens in a sentence, as given
by the pretrained GPT-2 model. Intuitively, a
higher value of NLL signifies that a token is un-
likely to occur given the past context, which should
hold true in case of noisy tokens with clean past
context.

SGPT2(xi:j) = − 1

j − i + 1

j∑

k=i

log pG(xk|x<k)

(5)

where pG(xk|x<k) is the probability assigned by
the GPT-2 model to token xk given previous tokens.

To calculate performance of models at noise de-
tection, we compare the assigned OOD score for

each token with its ground truth label and we com-
pute the ROC AUC scores for comparison. For
the two sentence level scores, SLO-Sent(xi:j) and
Ssent(xi:j), we assign each token’s OOD score to
be the sentence level OOD score for the sentence
which contains that token. We compute evaluation
metrics in two ways: (i) per-example basis where
the AUC score is computed for each example and
then they are all averaged across the dataset. (ii)
overall basis where all the predictions across the
entire dataset are pooled together before computing
a single AUC score. We show the scores averaged
across the 4 datasets in (Table 2). In general, the
LO-Tok method performs the worst of the three
OOD-based methods, while Sent and LO-Sent per-
form comparably. Comparing the GPT-2 baseline
with LO-Tok, GPT-2 performs clearly better for
Randomsent, comparably for Code, and clearly
worse for Emoji and URL noise types. However,
GPT-2 lags behind LO-Sent and Sent for all noise
types. Between Sent and LO-Sent, Sent performs
better for Code and Randomsent and LO-Sent per-
forms better for Emoji and URL noise types. For
its simplicity, we use the Sent method for OOD
detection in rest of the paper.

4.2 Quality recovery after noise filtering

To remove noise from the input, we simply remove
all sentences that have an OOD score greater than a
threshold, and then evaluate how much output qual-
ity gets recovered after this. We set the threshold
of OOD score for filtering to be the 99 percentile
value of the OOD scores computed for sentences
in the clean version of the dataset (without any
noise). The chosen percentile is set to be this high
to minimize false positives which can lead to re-
moval of useful non-noisy information from the
input. Since the threshold is computed using only
the clean dataset and the model trained on that, we
do not need any prior information about the noise
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Method Overall AUC Per-example AUC
Code Emoji Randomsent URL Code Emoji Randomsent URL

LO-Tok 77.10 84.25 73.63 85.41 78.52 84.17 74.74 86.83
LO-Sent 88.04 88.83 85.43 95.66 89.46 87.94 87.00 96.08
Sent 89.37 82.73 90.65 90.64 91.70 82.80 93.83 93.64
GPT-2 78.20 55.29 81.19 62.44 77.90 54.96 80.00 60.71

Table 2: Performance of different methods for noise detection aggregated across datasets (using the base model
size and 0.5 noise amount )

(similar to OOD score computation).

We show the performance of noise filtering for
different noise types, model sizes and datasets in
Table 3. For succinctness, we show the geomet-
ric mean of the ROUGE-1,2 and L variants, and
point the reader to the Appendix (Table 6) for de-
tailed results with individual variants of ROUGE.
After noise filtering, we can recover a large part
of the drop in ROUGE scores that occurred due
to the added noise. In cases of large drop such as
the Randomsent noise type with XSUM and SAM-
Sum datasets, we can recover 4-6 and 6-7 points
respectively depending on the model size (Table 3).

We also present aggregate trends of recovery
of output quality using our filtering approach in
Figure 2c and 2d. We can see that we recover
over half of the drop in the performance on 9 out
of 16 combinations of datasets and noise types
(Figure 2c), with the best performance observed
on XSUM and SAMSum datasets and the worst
on CNN/DailyMail. The method also succeeds in
recovering performance across all 3 model sizes
(Figure 2d).

We experimented with various thresholding
strategies such as setting thresholds to be constant
irrespective of the dataset or model (e.g. 0), or to
be equal to a different percentile value (other than
99%) of the OOD scores produced by the model
used on clean data. We also tried choosing the
optimal threshold based on F1-score of noise de-
tection on a hold-out validation set (assuming a
scenario where we have access to labeled noisy
samples). We tried 6 thresholding techniques in
total, compared in Figure 3a. Setting a constant
threshold of 0 provides gains in some cases but in
other cases makes the model outputs worse, due to
filtering out useful non-noisy content. To prevent
this, one can use a very high threshold such a 500
which practically eliminates cases of further drop
in performance (Figure 3a), but the performance
gains produced in that case are small because less

noise is filtered. The best approach turns out to
be setting it be the 99 percentile of the clean data
OOD scores, which produces different thresholds
for different models, and leads to the highest av-
erage gain in output quality among the strategies
tried, with minimal cases of further degradation.
Surprisingly, optimizing the threshold based on F1-
score of noise detection on a validation set also
reduces the output quality in many cases, suggest-
ing that F1-score may not be the best predictor for
the quality of summary produced after filtering.

We conduct noise filtering for each of our ex-
perimental setups (all datasets, noise types and
amounts, model sizes) with three thresholds — 0,
200 and 500 and compare the resulting change in
summary quality with the precision and recall of
the noise detection in Figure 3b. We find that a
precision lower than around 0.7 usually leads to a
drop in summary quality, even if the recall is nearly
perfect suggesting that almost all noise has been
removed. This suggests that precision is more im-
portant than recall for improving summary quality.

5 Investigating causes of loss in
performance

There are two distinct mechanisms which can lead
to worsening of generated summaries upon addi-
tion of input noise. The first is the corruption of
the encoder’s representation of useful clean tokens.
The encoder transformer uses self-attention over
input tokens to generate their contextualized repre-
sentations. In cases where noise is present in the
input, self-attention can distort the encoder repre-
sentations of clean tokens. The second mechanism
is the distraction of the decoder such that it assigns
non-zero attention to the noisy tokens’ embeddings
and this impairs its computation. Even if there is no
corruption in the embeddings of clean tokens, the
embeddings of noisy tokens can receive non-zero
cross-attention from the decoder and influence its
generation. If neither of these two phenomenon oc-
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Model size Clean Code Emoji Randomsent URL

Add Filter Add Filter Add Filter Add Filter

XSum

Small 31.66 21.43 27.50 23.28 31.33 22.28 28.44 25.50 30.30
Base 35.18 27.64 32.01 30.03 34.49 26.28 32.32 26.87 33.97
Large 37.18 35.86 36.89 36.36 36.83 31.68 35.09 35.81 36.77

CNN-Dailymail

Small 31.96 25.27 23.37 31.24 31.46 30.01 30.38 29.69 30.39
Base 33.09 26.27 25.39 32.53 32.70 31.31 31.53 30.74 31.25
Large 33.44 29.60 30.99 33.11 33.02 31.97 32.36 32.03 32.67

Samsum

Small 37.96 33.00 36.80 36.83 36.73 28.11 35.18 34.17 37.31
Base 39.74 36.95 38.89 39.18 38.97 31.96 37.51 36.89 39.47
Large 41.63 38.80 40.91 41.46 41.42 31.85 38.58 39.19 40.81

Reddit-TIFU

Small 15.51 11.53 13.55 12.97 15.21 13.40 14.70 13.41 14.09
Base 17.54 12.16 14.55 13.33 14.42 14.18 16.62 15.71 16.23
Large 18.15 13.33 16.06 14.89 15.76 13.92 17.32 15.96 16.88

Table 3: ROUGE scores (geometric mean of 1/2/L) on clean input and changes when adding different kinds of
noise, and after the noise is filtered out using Sent method (Noise amount: 0.5)

(a) Increase in summary quality after filtering with different thresholding approaches,
for different datasets and noise types.

(b) Precision and recall for noise de-
tection across different filtering ex-
periments with varying thresholds,
with the resulting change in output
quality

Figure 3: Change in output quality for different thresholding techniques (a) and its correlation with the precision
and recall of noise detection (b). The changes in summary quality are illustrated by color (blue shows increase and
red shows decrease, saturation denotes magnitude clipped to range [0,5])

cur, the generated summary on the noisy and clean
variants of any input would be the same. In this

section we investigate the contribution of these two
factors in the degradation of output quality.
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5.1 Are the clean token embeddings
corrupted by the presence of noise?

We observe that the OOD scores of the clean tokens
increase after addition of noise. In Figure 4, we
shown an example of this for the XSUM dataset
after adding Code noise, where the OOD scores
are computed using the Sent method. This sug-
gests that the distribution of clean tokens’ embed-
dings moves farther from the in-domain distribu-
tion (learnt from clean in-domain data) relative to
the background distribution (learnt from C4 cor-
pus), after adding noise. We observed this for dif-
ferent datasets and noise types, although the extent
of the increase in OOD scores varies across them.

Figure 4: Distribution of OOD scores of (i) clean to-
kens before adding noise (ii) clean tokens after adding
noise and (iii) noisy tokens after adding them (using
base model size and 0.5 noise amount)

5.2 How much performance can be recovered
by preventing distraction of the decoder?

We design an ablation experiment to measure how
the performance drop would change if there is no
distraction of the decoder by embeddings of noisy
tokens. Any drop in output quality in such as setup
is attributable only to the corruption of the clean
tokens’ encoder representations. We remove the
embeddings of the (ground truth) noisy tokens af-
ter passing the noisy input through the encoder of
the PEGASUS model, and then use the decoder
to generate the summary using only the remaining
embeddings (see Figure 6 in Appendix for detailed
workflow). Since the removal is done after passing
the whole input through the self-attention layers of
the encoder, the clean tokens’ embeddings are al-
ready distorted, and the decoder has to generate the
summary using these distorted embeddings. The
only difference from the usual scenario is that the
decoder does not have to include the noisy tokens’
embeddings in the computation. We find that this

mostly leads to an increase in output quality com-
pared to when the noisy token embeddings are not
removed (Figure 5). The biggest improvements
come for XSUM and SAMSum datasets, whereas
for CNN/DailyMail dataset no improvement is seen
for any of the 4 noise types. Surprisingly, for the
RedditTIFU-long dataset with the URL and Ran-
domsent noise types, removing the noisy tokens’
embeddings decreases the ROUGE scores further,
suggesting that retaining those embeddings is use-
ful for the decoder.

The above ablation study highlights the necessity
of running the encoder twice — once for comput-
ing OOD scores to detect noise, and then again to
compute the encoder representations of the input
after removing noisy tokens. While one can save
computation time by reusing the encoder embed-
dings of the clean tokens computed during OOD
scoring to feed them to the decoder for generation,
results from the ablation suggest that this would
give sub-optimal performance recovery (Figure 5).

Figure 5: Performance drops for different datasets and
noise types, with the shaded area showing drops when
the noisy tokens’ encoder embeddings are removed be-
fore running the decoder (using the base model size and
0.5 noise amount)

6 Conclusion and Future Work

In this work, we quantified the impact that noisy
inputs can have on the output quality of summa-
rization models, for a variety of datasets and noise
types. We then proposed a method to detect and
remove noise from the input without using any
extra models, training, or prior information about
noise types, and demostrated its efficacy. One di-
rection for future work is to investigate what makes
certain models more susceptible to specific noise
types. Another interesting direction would be to
carry out experiments for noise filtering with real-
world noisy data rather than using synthetically
generated noisy examples.
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7 Limitations

While we have used 4 different types of noise in
our experiments, there can be more types of noise
that can be encountered in real world. While a
positive aspect of our noise filtering approach is
that it can be applied for any unforeseen type of
noise, evaluating its performance against all types
of noise is infeasible. Due to the heavy compute
requirements, we experimented with only one type
of pretrained summarization model (PEGASUS),
and it is yet to be seen how the results generalize
with other models such as T5 (Raffel et al., 2020b)
and BART (Lewis et al., 2020). Since our noise
detection approach is not perfect, it carries the risk
of removing useful information instead of noise.
However, our experiments show that while false
positives occur, the filtering almost always does
more good than harm when applied on noisy doc-
uments (Figure 2c). Additionally, the user has an
option to minimize the risk of false positives by
increasing the threshold of OOD score used for
filtering.
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A Appendix

A.1 Selection of shorter inputs to avoid
truncation

In our experiments, we exclude those datapoints
from the datasets which are longer than a certain
threshold. This is done to avoid any truncation of
the input (including inputs with added noise) when
feeding them into the model. Since adding noise
to the input increases its length, it may happen that
some clean tokens might be pushed beyond the
maximum allowed input length and hence removed
when the input is truncated. In such a scenario,
removing noisy tokens before feeding the sequence
into the model would also cause such clean tokens
to be fed into the model again because they can
now be accommodated within the input length limit.
When measuring the benefit of noise filtering, the
benefit from removal of noisy tokens would then be
confounded with the benefit from such “resurrec-
tion” of clean tokens. To avoid this we only retain
those inputs in our datasets where the input length
would be within limit even after addition of noise.
Since the maximum noise amount we use in our
experiments is 0.5, we only retain datapoints which
have no more than half of the maximum allowed
tokens to input into the model. (Table 4).

Dataset Count Maxlen Retention

XSUM 7516 512 66.5%
CNN/DailyMail 2948 512 25.6%
RedditTIFU-long 2790 512 66.2%

SAMSum 686 256 83.8%

Table 4: Number of datapoints retained in the test set
of datasets after removing inputs longer than maximum
length (Maxlen)

A.2 Compliance with licenses
Among the artifacts used in this work, the PEGA-
SUS model and the CNN/DailyMail dataset are
distributed under Apache License 2.0, the XSUM
and RedditTIFU-long datasets are distributed un-
der the MIT License, and the SAMSum dataset is
distributed under CC BY-NC-ND 4.0 License. We
use these resources for non-commercial research
purposes with proper attribution, which is allowed
by all the above licenses.

A.3 Implementation details
We used PEGASUS models (Zhang et al., 2020)
of three different sizes — small, base and large,

Figure 6: Workflow for the ablation experiment where
the decoder does not have to process the noisy tokens’
embeddings.

consisting of 50M, 200M and 500M parameters
respectively. The experiments. We used TPUs for
our experiments. The bulk of the compute expen-
diture was spent on running inference on differ-
ent models for generating summaries on various
noisy and noise-filtered variants of the datasets.
The runtime of each experiment varies with differ-
ent factors such as model size and dataset size, with
the overall estimate for the total compute used at
about 700 TPU hours. For model training and sum-
mary generation on the XSUM, CNN/DailyMail
and RedditTIFU-long datasets, we used the same
hyperparameters as used in the original PEGASUS
paper (Zhang et al., 2020) and for SAMSum dataset
we use the hyperparameters given in Khalman et al.
(2021). We used bytefallback during tokenization
to enable proper representation of all unicode char-
acters, instead of using UNK tokens. We experi-
mented with a variety of hyperparmeters pertaining
to noise addition and filtering, summarized in Ta-
ble 5. Due to the heavy compute requirements, all
our experiments are single run and we did not try
multiple seeds for the random noise addition. We
used the NLTK1 library for sentence tokenization
and used the rouge_score2 package from Google
Research to compute the ROUGE scores of sum-
maries. The default hyperparameters were used in
the ROUGE calculation.

1https://www.nltk.org/
2https://github.com/google-research/

google-research/tree/master/rouge
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Hyperparameter Values

Noise type {Code, Emoji, URL, Randomsent}
Noise amount {0.00, 0.05, 0.10, 0.25, 0.50}

Model size {Small(50M), Base(100M), Large(500M)}
Fixed noise filtering threshold 0, 200, 500

Adaptive noise filtering threshold 95percentile, 99percentile, optimal-F1(on validation set)

Table 5: Different hyperparmeters used for noise addition and noise filtering

Figure 7: Sample excerpt from an article from XSum dataset corrupted with code noise.
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Variant Noise type ROUGE-1 / 2 / L
XSum

Small Base Large

Clean - 43.35 / 20.49 / 35.73 47.03 / 23.72 / 39.05 48.92 / 25.65 / 40.95

Noisy

Code 31.54 / 12.44 / 25.07 38.74 / 17.34 / 31.43 47.53 / 24.48 / 39.63
Emoji 31.79 / 15.10 / 26.29 40.08 / 20.32 / 33.24 47.86 / 25.02 / 40.16
Randomsent 32.38 / 13.10 / 26.09 36.54 / 16.63 / 29.87 42.67 / 21.06 / 35.38
URL 36.47 / 15.45 / 29.42 37.56 / 16.91 / 30.55 47.37 / 24.45 / 39.64

Filtered

Code 38.72 / 17.00 / 31.61 43.50 / 20.98 / 35.94 48.55 / 25.45 / 40.64
Emoji 42.94 / 20.24 / 35.38 46.04 / 23.29 / 38.27 48.41 / 25.41 / 40.61
Randomsent 39.84 / 17.81 / 32.42 43.88 / 21.30 / 36.11 46.65 / 23.84 / 38.85
URL 41.86 / 19.30 / 34.43 45.69 / 22.69 / 37.80 48.41 / 25.34 / 40.54

CNN-Dailymail

Small Base Large

Clean - 44.50 / 22.74 / 32.27 45.70 / 23.72 / 33.43 46.20 / 24.08 / 33.61

Noisy

Code 36.74 / 16.58 / 26.50 38.54 / 17.22 / 27.32 42.23 / 20.32 / 30.23
Emoji 43.97 / 22.11 / 31.35 45.25 / 23.21 / 32.77 45.95 / 23.74 / 33.27
Randomsent 42.63 / 21.02 / 30.16 44.09 / 22.17 / 31.40 44.81 / 22.75 / 32.07
URL 42.19 / 20.57 / 30.17 43.60 / 21.45 / 31.05 44.89 / 22.69 / 32.27

Filtered

Code 33.64 / 15.60 / 24.33 36.66 / 16.97 / 26.31 43.45 / 21.78 / 31.46
Emoji 44.14 / 22.27 / 31.68 45.30 / 23.40 / 33.00 45.84 / 23.68 / 33.17
Randomsent 42.99 / 21.34 / 30.58 44.26 / 22.35 / 31.70 45.16 / 23.08 / 32.51
URL 42.77 / 21.27 / 30.87 43.89 / 21.97 / 31.65 45.34 / 23.43 / 32.83

Samsum

Small Base Large

Clean - 50.56 / 25.66 / 42.16 51.73 / 27.80 / 43.64 53.50 / 29.53 / 45.68

Noisy

Code 44.81 / 21.32 / 37.62 48.32 / 25.29 / 41.30 50.24 / 26.85 / 43.29
Emoji 49.27 / 24.41 / 41.54 50.75 / 27.37 / 43.30 53.31 / 29.25 / 45.70
Randomsent 39.81 / 17.27 / 32.31 42.79 / 21.30 / 35.83 42.22 / 21.35 / 35.85
URL 46.46 / 22.25 / 38.60 48.31 / 25.22 / 41.21 50.51 / 27.57 / 43.24

Filtered

Code 49.22 / 24.56 / 41.24 50.70 / 26.94 / 43.07 52.43 / 28.87 / 45.23
Emoji 49.00 / 24.41 / 41.42 50.49 / 27.25 / 43.03 53.32 / 29.21 / 45.64
Randomsent 47.36 / 23.31 / 39.43 49.47 / 25.64 / 41.60 50.40 / 26.56 / 42.89
URL 49.65 / 25.16 / 41.58 51.29 / 27.63 / 43.39 52.56 / 28.70 / 45.07

Reddit-TIFU

Small Base Large

Clean - 24.06 / 7.81 / 19.86 26.74 / 9.20 / 21.95 27.45 / 9.65 / 22.56

Noisy

Code 17.95 / 5.74 / 14.87 18.72 / 6.21 / 15.46 20.35 / 6.91 / 16.85
Emoji 20.25 / 6.47 / 16.65 20.09 / 7.14 / 16.51 22.51 / 7.90 / 18.55
Randomsent 21.15 / 6.62 / 17.18 22.09 / 7.14 / 18.08 21.47 / 7.09 / 17.73
URL 21.02 / 6.66 / 17.23 24.25 / 8.09 / 19.76 24.55 / 8.17 / 20.26

Filtered

Code 20.98 / 6.83 / 17.37 22.24 / 7.58 / 18.27 24.31 / 8.46 / 20.15
Emoji 23.49 / 7.71 / 19.42 21.95 / 7.59 / 17.99 23.79 / 8.40 / 19.59
Randomsent 23.05 / 7.32 / 18.81 25.57 / 8.64 / 20.78 26.37 / 9.12 / 21.59
URL 21.96 / 7.10 / 17.94 24.88 / 8.44 / 20.37 25.74 / 8.84 / 21.14

Table 6: ROUGE scores on clean input and changes when adding different kinds of noise, and after the noise is
filtered out using the Sent method based OOD scores (Noise amount: 0.5)
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