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Abstract

Large language models (LLM’s) have been
widely used for several applications such as
question answering, text classification and clus-
tering. While the preliminary results across
the aforementioned tasks looks promising, re-
cent work (Qin et al., 2023; Wang et al., 2023a)
has dived deep into LLM’s performing poorly
for complex Named Entity Recognition (NER)
tasks in comparison to fine-tuned pre-trained
language models (PLM’s). To enhance wider
adoption of LLM’s, our paper investigates the
robustness of such LLM NER models and its
instruction fine-tuned variants to adversarial
attacks. In particular, we propose a novel at-
tack which relies on disentanglement and word
attribution techniques where the former aids
in learning an embedding capturing both en-
tity and non-entity influences separately, and
the latter aids in identifying important words
across both components. This is in stark con-
trast to most techniques which primarily lever-
age non-entity words for perturbations limiting
the space being explored to synthesize effec-
tive adversarial examples. Adversarial training
results based on our method improves the F1
score over original LLM NER model by 8%
and 18% on CoNLL-2003 and Ontonotes 5.0
datasets respectively.

1 Introduction

Named Entity Recognition (NER) aims to iden-
tify and categorize named entities mentioned in
unstructured text into pre-defined categories such
as Person, Location, or Organization. In recent
years, NER tasks (Malmasi et al., 2022) have be-
come more challenging due to the introduction of
complex tagsets, which often leads to the failure
of existing NER systems in accurately recognizing
these entities. To address this, Large Language
Models (LLMs) have emerged as powerful tools,
delivering significant performance improvements
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on NER tasks. However, these models tend to
hallucinate with even minor modifications in the in-
put (Wang et al., 2023b). Recently, there has been
a growing interest in developing adversarial attack-
based techniques for NER models (Simoncini and
Spanakis, 2021; Lin et al., 2021) to enhance NER
models using word-level attacks. This is even more
relevant in the context of LLM’s, as a very recent
study (Zhu et al., 2023) demonstrated the lack of ro-
bustness in current LLM’s with word-level attacks
resulting in a significant performance drop of 33%.
However, despite resulting in a successful attack,
many of the perturbed word-level attack candidates
fail to qualify as adversarial examples, i.e., they
are not semantically similar to original sentences
as depicted in Figure 1.

In addition, in resource constrained settings, it
isn’t frugal to explore the entire space of feasible
word-level perturbations to devise good adversar-
ial examples. This justifies the necessity of attack
techniques which can explore the diverse space ef-
ficiently. In our paper, this is mainly accomplished
using two key levers, namely, disentanglement and
word attribution techniques, respectively. Disen-
tanglement (Higgins et al., 2017) is a technique
which helps in separating the latent entity and con-
text components of an embedding space (Figure
2), making it more congenial for a word attribution
function like Integrated Gradients (IG) (Sundarara-
jan et al., 2017) to identify diverse, yet important
words. The other subsequent steps include substi-
tution of the selected words with entity and context
substitution workflows (Figure 4), and selection
of candidate adversarial examples based on their
semantic similarity scores to the original text.

Experimental results indicate that to create a
successful attack, on average, our method re-
quires 69% (details presented in Appendix A.1)
lesser candidate adversarial sample generation
than a state-of-the-art technique like CLARE (Li
et al., 2021) when evaluated on three popular
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datasets (CoNLL-2003 (Sang and De Meulder,
2003), Ontonotes 5.0 (Weischedel et al., 2013),
and MultiCoNER (Malmasi et al., 2022)). The re-
sults also demonstrate that our method improves
the F1 score over original BERT NER model by
8% and 18% on CoNLL-2003 and Ontonotes 5.0 re-
spectively. Furthermore, in an intrinsic evaluation
of our adversarial examples generation approach
on CoNLL-2003, we achieve a 10% higher attack
success rate (percentage of generated adversarial
examples causing label flip) at a comparable modi-
fication rate. In addition, our method successfully
attacks theinstruction fine-tuned T5 NER model
(Wang et al., 2022) on the MultiCoNER dataset.,
resulting in a 10% drop in the F1 score after the
attack.

The main contributions in this paper are,
• We present a first of a kind architecture for

synthesizing adversarial examples using a
novel disentanglement technique and several
components such as word attribution, word
substitution and semantic similarity.

• Our novel disentanglement technique aids
in generating a representation which signif-
icantly enhances the effectiveness of our at-
tacks as outlined in our ablation studies.

• We present end-to-end results of improve-
ments obtained through adversarial training
on BERT, T5-based and LLAMA2 models us-
ing the examples generated from our approach
on multiple datasets.

The rest of the paper is structured as follows.
Section 2 provides an overview of related work in
this field, highlighting the unique aspects of our
contribution. In Section 3, we introduce our ap-
proach and discuss the individual technical compo-
nents involved, including disentanglement, word
attributions and semantic similarity. In Section 4,
we present attack and adversarial training results on
three benchmark datasets followed by conclusions.

2 Related Work

The existing adversarial attack methods on NER
tasks can be classified into three categories:
Character-level Attack, Word-level Attack, and
Sentence-level Attack. The Character-level attacks
generate adversarial examples by adding, deleting,
or replacing a character in a word in the natural
language texts. HotFlip (Ebrahimi et al., 2018)
performs a character-level attack by swapping char-
acters based on their gradient with respect to a

One of the two honorable psychologists in the studio is Shi Zhou Hanhua ......

...... Professor A.A. Chapin from the Institute of Law of VASKhNIL.

One of the two honorable chairs in the association is
Professor A.A. Chapin from the Institute of Law of VASKhNIL.

One of the two honorable guests in the school is ......

...... from the Institute of history of ......

...... from the Institute of astronomy of ......

adv_example_fig_2.drawio https://drawio.corp.amazon.com/

1 of 1 6/21/23, 3:56 PM

Figure 1: A PCA plot of an original sentence and the
generated adversarial examples using different attack
methods. The original sentence is One of the two honor-
able guests in the studio is Professor Zhou Hanhua from
the Institute of Law of the Chinese Academy of Social
Sciences., represented with•, the ⋆ are the adversarial
examples from our method, and the$ markers repre-
sent the adversarial examples from RockNER. Across
sentences we only retained modified spans and exclude
identical content as compared to the original sentence.

one-hot input representation. However, these at-
tacks have the problem that the character swapping
generates spelling typos and the sentences are not
semantically meaningful. Sentence-level attacks
perform the operations by altering the input texts on
the whole sentence. SCPN (Iyyer et al., 2018) in-
cludes a paraphrase generation under the guidance
of a trained parser to label syntactic transformation.

Word-level attacks are more popular and effec-
tive methods than the above-mentioned two meth-
ods. There are also many effective word-level at-
tacks on text classification tasks (Ribeiro et al.,
2020; Das and Paik, 2022). (Liu et al., 2021) pro-
poses an efficient local search algorithm to deter-
mine the possible word substitutions. However,
the adversarial attacks on sequence-to-sequence
models are not much explored. (Simoncini and
Spanakis, 2021) extends TextAttack (Morris et al.,
2020) framework that consists of multiple attack
strategies via reformulating the goal functions to
support NER tasks. RockNER (Lin et al., 2021) is
a simple NER adversarial attack by perturbing both
named entities and contexts in the original texts.
However, the generated adversarial examples all
have the issue of poor semantic equivalence to the
original input sentences because of the high modi-
fication rate. In contrast, we propose a word-level
adversarial attack on NER models that effectively
identifies important words via word attributions and
generates the adversarial examples with a lower
modification rate.

Recently, large language models (LLM’s)
(Brown et al., 2020; Wang and Komatsuzaki, 2021;
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Figure 2: The architecture of our method as depicted here proceeds as follows. Given an input text, we first obtain
word embeddings from language models that the NER model uses, then learn a disentangled representation for entity
and context representations (context, entity in the UMAP embedding scatter plots). The disentangled representations
are then used to compute scores via the IG word attribution function. The most important words are replaced with
new words following word substitution workflows. After generating new sentences, we rank the sentence similarity
scores and output the most similar sentences as adversarial examples.

Touvron et al., 2023), have brought attention that
they outperform many NLP tasks and have been
widely used for applications (Sallam, 2023). Nori
et al. (2023) explore potential use of LLMs in med-
ical education, assessment, and clinical practice.
However, LLMs still underperform in some NLP
tasks. (Wang et al., 2023a) study the robustness of
in-context learning and propose an ICL attack on
large language models by manipulating the demon-
strations. In this paper, we focus on instruction
fine-tuned language model on NER tasks and ex-
amine its robustness under our proposed adversarial
attack method.

Disentanglement (Higgins et al., 2017) has been
primarily used in the space of auto-encoders for
learning latent factors which are mutually orthog-
onal (diverse) w.r.t one another to aid with in-
terpretability primarily for image-based applica-
tions. They have also been extended for text-based
tasks (Zou et al., 2022) to leverage the latent com-
ponents to learn more desired downstream repre-
sentations. In this paper, we use disentanglement to
segregate the entity and non-entity representations
in the feature space.

3 Our Method

In this section, we describe the threat model and the
key technical components of our proposed adver-
sarial NER framework. For the sake of brevity, we
refer to non-entity as context and LLM NER as NER
throughout the rest of this paper. The approach con-
sists of the following steps, (1) Disentanglement

of word representations, (2) Selection of impor-
tant words using word attributions, (3) Substitution
of the selected words with candidate alternatives,
(4) Ranking and selection of candidate adversarial
examples

3.1 Threat Model

The threat model is composed of two key compo-
nents the adversary and the defender

3.1.1 Goals of the adversary
The adversary’s primary goal is to manipulate the
NER model’s predictions by introducing subtle
changes to the input text that cause the model to
misclassify named entities.

3.1.2 Capabilities of the adversary
The adversary has a deep understanding of the NER
model’s architecture and training data. The adver-
sary has access to the disentanglement and word
attribution modules to sample entity and or non-
entity component words. In addition, the adversary
has access to two different word substitution work-
flows for entities and context, respectively. Descrip-
tion of these modules are provided in the following
subsections within this section.

3.1.3 Knowledge of the adversary
The adversary has knowledge of the NER model’s
training data and can use this knowledge to craft
adversarial examples that are specifically designed
to cause mis-classifications through LLM halluci-
nation and/or any other mechanisms.
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3.1.4 Goals of the defender
The defender’s primary goal is to protect the NER
model from adversarial attacks and ensure that it
continues to make accurate predictions.

3.1.5 Capabilities of the defender
The defender has access to techniques for adversar-
ial training, which can help to increase the NER
model’s robustness to attacks.

3.1.6 Knowledge of the defender
The defender has knowledge of the NER model’s
architecture and training data, as well as any po-
tential vulnerabilities that may be exploited by the
adversary. The defender may also have knowledge
of common adversarial attack strategies such as
Bert-Attack (Li et al., 2020), DeepWordBug (Gao
et al., 2018), etc.

3.2 Disentanglement of Word Representations

The primary objective of disentanglement is to mit-
igate bias (between entity and non-entity words) in
word selection for perturbation, thereby increasing
the diversity of the generated adversarial examples.
In Table 1, we provide supporting evidence that in-
dicates that NER models are highly biased towards
context words during prediction. The word attri-
bution function like IG picks 98.9% of non-entity
words from the CoNLL dataset for generating po-
tential adversarial examples if disentanglement is
not applied. This adversely affects the overall diver-
sity of the generated adversarial examples thereby
preventing exploration of potential vulnerabilities
of the NER model to entity specific perturbations.
Our approach of disentanglement mitigates this
problem through generating adversarial examples
by exploring the entire perturbation space across
important entity and non-entity words in an effi-
cient manner.

Given the original features of an input sentence,
we first split word features into two sets: E for fea-
tures of entity words and C for features of context
words. Our goal is to learn a new representation
Ê for entity words, so that the features of entity
words are independent of context words. The re-
sulting representation (Ê, C) will be utilized for
calculating word attribution scores in the next step.

Following (Marx et al., 2019), we learn the dis-
entangled representations by using an auto-encoder.
The architecture of the auto-encoder is illustrated in
Figure 3, which consists of three neural networks:
the encoder, the decoder, and the discriminator:

E

C 

Encoder 
Enc

E'

C

Decoder 
Dec

Word
Embeddings

Latent
Embeddings

Disentangled
Representations 

DisE'

Discriminator 

C 

Figure 3: The architecture of disentangled representa-
tion learning framework which takes initial word feature
embeddings as inputs, and use an auto-encoder to learn
a latent representation E’ for entity words. A discrimi-
nator Dis is used to recover context embeddings C from
entity embeddings E’

.

Encoder. The encoder Enc takes entity word
embeddings E as input, then learn a disentangled
representation E′ in the latent space. Note that the
encoder is also aware of context word embeddings
C when encoding E:

Enc(E;C) = E′. (1)

Decoder. The decoder Dec takes E′ as input
and output Ê, which is a new (disentangled) repre-
sentation for E:

Dec(E′;C) = Ê. (2)

Discriminator. The discriminator Dis tries to
predict (recover) the context embeddings C using
the hidden representation of entity words E′:

Dis(E′) = Ĉ, (3)

where Ĉ is the predicted result for C. However,
since we expect E′ and C to be independent, the
recovery error between Ĉ and C should be max-
imized. In other words, the discriminator cannot
recover any information of C using E′, which indi-
cates that there is no correlation between C and E′

(as well as Ê).
Training objective. Our training process aims

to minimize the reconstruction mean squared error
(MSE) between E and Ê, as well as maximizing
the recovery error between C and Ĉ:

L = MSE(E, Ê)− β ·MSE(C, Ĉ), (4)
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Dataset CoNLL2003 OntoNotes
Original Distribution

of Context 83.2% 91.1%

Distribution of Context
as most important words
before disentanglement

98.9% 96.1%

Distribution of Context
as most important words

after disentanglement
81.3% 91.4%

Table 1: Word type distribution of two datasets. The
first row represents the original distribution of with the
NER label O (context words) among all word labels in
the two datasets followed by two rows representing the
distribution of important context words identified by the
IG word attribution function in two different settings. It
is clear that in comparison to before disentanglement
(the second row), the representation learned using our
balancing disentanglement technique (in third row) ob-
tains a distribution that aligns more closely with the
original dataset distribution (first row).

where β is a balancing hyper-parameter. Ê and C
are taken as the disentangled representations for
entity and context words.

3.3 Selection of Important Words

To evaluate the impact of each word’s feature on the
NER model’s output, we propose to compute the
word attribution scores (a.k.a feature importances
or saliency scores) using Integrated Gradients (IG)
(Sundararajan et al., 2017). IG calculates the gra-
dient of the model’s prediction output with respect
to its input features and returns the attributions of
output labels with respect to the input features. The
assigned value on each input feature is the impor-
tance score to model outputs. The mathematical
formulation for IG is as follows

Suppose we have a black-box machine learning
model f , an input x ∈ Rn, and a baseline input
x′ ∈ Rn (for text models it could be a zero embed-
ding vector). The Integrated Gradient (IG) along
the ith dimension for the input x and x′ is defined
as:

IGi(x) ::= (xi−x′i)×
∫ 1

α=0

∂F (x′ + α(x− x′))
∂xi

dα.

(5)
We obtain a ranked list of words in the sentence

by sorting them based on their word attribution
scores. The top-K among them are then selected
for perturbations. The use of disentangled word
representations (as described in the earlier section)
enables a more balanced selection.
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Figure 4: Entity and Context Word Substitution Work-
flows

3.4 Word Substitution of Selected Words

After identifying the most important words in a
sentence, the next step is to determine potential
substitutions for these words. We outline both re-
placement workflows in Figure 4 and briefly de-
scribe them below.
Named Entity Substitution To keep the entity la-
bels unchanged, the replacement word for a named
entity word should belong to the same entity type as
the original entity word. Since Wikidata contains
abundant structured knowledge and most of the en-
tities have corresponding entries in it, we utilize it
as as an external knowledge base for word replace-
ment. Specifically, similar to (Lin et al., 2021),
to determine the substitution for a given named
entity, we first use entity linking tools (Honnibal
et al., 2020) to link the named entity to an entry
in Wikidata. If a matching entry is found in Wiki-
data, we collect the entries that have a belonged to
relation with this entry and take them as the upper
categories of the target named entity. We randomly
sample at most 10 of the entries under the same
upper categories as possible word substitutions.

As an example illustrated in Figure 4, the label
of the target word Manchester United is an orga-
nization. After linking this entity to the correspond-
ing entry Manchester United FC in the Wikidata
knowledge base, we find that Manchester United
FC belongs to the category of Association Football
Club. Within the same category, we find other en-
tries such as FC Barcelona, Real Madrid CF, and
Arsenal FC. These entities are possible substitu-
tions to replace the original entity word Manch-
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ester United.

Context Word Substitution We leverage an in-
filling language modeling framework (ILM) (Don-
ahue et al., 2020) that allows language models fill
in the blanks given masked texts. We use a large
language model (LLM) GPT-J (Wang and Komat-
suzaki, 2021) to generate texts. Specifically, we
mask the context word that needs to be replaced
with [BLANK]. Then, we take the masked sentence
as input to the LLM with a prompt that asks the
model to generate 5 possible candidate words to
substitute the [BLANK] word. Finally, we collect
the output words as substitutions for the context
word, as illustrated in Figure 4.

3.5 Sentence Ranking

For an input sentence, we identify target words to
be substituted and replace them with new words,
which gives us a set of new sentences. To decide
which sentences should be output as the final adver-
sarial samples, we compute the similarity between
each new sentence and the original one using Uni-
versal Sentence Encoder (USE) (Cer et al., 2018).
It encodes natural language texts into high dimen-
sional vectors as text embedding. After encoding
each pair of original and generated sentences, we
compute their cosine similarity as their similarity
score. Basically, given the original and new sen-
tences S1 and S2, the similarity score is computed
by:

Sim(S1, S2) =
USE(S1) · USE(S2)

∥USE(S1)∥ ∥USE(S2)∥
(6)

4 Experiments

4.1 Datasets

We conduct our experiments on three datasets,
CoNLL-2003 (Sang and De Meulder, 2003),
Ontonotes 5.0 (Weischedel et al., 2013), and Mul-
tiCoNER (Malmasi et al., 2022). CoNLL-2003 is
a NER dataset that consists of named entities clas-
sified into four types: persons, locations, organiza-
tions, and names of miscellaneous entities that do
not belong to the previous three groups. Ontonotes
5.0 is a large corpus of news articles in three lan-
guages, annotated with 18 types of named entities.
MultiCoNER is a complex NER dataset that covers
11 languages and has a fine-grained tagset with 36
entity types. In our experiments, we focus on the
English track of these datasets.

Dataset CoNLL OntoNotes MultiCoNER
Train 14, 987 59, 924 16778
Val 3, 466 8, 528 871
Test 3, 684 8, 262 871

Table 2: Train, Validation and Test Splits.

4.2 Baseline Methods

We compare our proposed method with the follow-
ing NER adversarial attack baseline methods:

• RockNER (Lin et al., 2021) creates adversar-
ial examples by operating at the entity level
and replacing all target entities with other en-
tities of the same semantic class in Wikidata.
At the context level, it randomly masks up to
3 context words and uses pre-trained language
models (PLM) to generate word substitutions.

• SeqAttack (Simoncini and Spanakis, 2021) is
an attack framework against token classifica-
tion models. The framework extends TextAt-
tack (Morris et al., 2020) and contains mul-
tiple adversarial attack strategies. We com-
pare our attack method with 3 attacks in the
framework, including Bert-Attack, CLARE,
and DeepWordBug.

4.3 Experimental Setup

For the choice of the NER model, we follow the
same settings as the baseline methods for fair com-
parison. We utilize three different models for
our experiments: a BERT base model cased (Laf-
ferty et al., 2001; Devlin et al., 2019), a T5 lan-
guage model (Raffel et al., 2020) (T5-LARGE 770
M parameter model) and LLAMA 2-7B-CHAT

model (Touvron et al., 2023). Architectures for
BERT and T5 NER models are provided in the
Appendix in Figure 7 and Figure 8, respectively.

For the BERT NER model, we perform fine-
tuning on both the CoNLL-2003 and OntoNotes
datasets. Regarding the T5 model, we transform
the NER task into an instruction fine-tuned model
(T5 Instruction NER(Wang et al., 2022)) as out-
lined in the Appendix in A.3. This is facilitated by
converting the MultiCoNER dataset, into sentence-
instruction pairs, we follow a similar approach to
the sentences illustrated in Figure 6 in the Ap-
pendix.

To compute the word attributions, we freeze the
parameters of encoder of the T5 model after fine-
tuning, and add an additional classification layer
after it, to create a new sequence labeling model.
This T5 encoder only model is trained with a CRF
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loss, and we obtain word attributions and gener-
ate adversarial examples by directly utilizing the
predictions of this model. We evaluate the effec-
tiveness of our attack methods based on multiple
evaluation metrics as outlined below:

4.3.1 Evaluation Metrics
• Attack Rate. This metric measures the suc-

cess of an attack on a sentence. An attack is
successful on a sentence if the NER model
misclassifies at least one named entity in the
sentence after the attack. We calculate the rate
of successful attacks among all attacks.

• Modification Rate. The modification rate
evaluates the changes made to the original
sentence during the attack. It is calculated as
the percentage of different tokens between the
original sentence and the modified sentence.

• Textual Similarity. Textual similarity is com-
puted between the original sentence and the
generated sentence. We use Universal Sen-
tence Encoder (USE) to encode each sentence
and compute cosine similarity between the
two vectors.

4.3.2 Attack and Hyper-parameter Settings
As shown in Table 3, to test the attack performance
of our method, we report results at different levels
of modification rate (maximum 1 word or 3 words).
All displayed results are averaged across 3 random
runs.

For the BERT NER model, we perform fine-
tuning on a pre-trained bert-base-cased model with
CRF. The training process utilizes a batch size of
32 and a learning rate of 1e-5. We conduct train-
ing for a total of 20 epochs on both the CoNLL-
2003 and OntoNotes datasets. In the case of the
T5 model, we conduct a fine-tuning on the Multi-
CoNER dataset. The training process has a batch
size of 16 and a learning rate of 3e-4. The total
training epoch is set to 10.

The encoder, decoder and discriminator for com-
puting the disentangled representations consist
of two hidden layers with size = [64, 10] and
β is set to 0.5. For IG word importance com-
putation, we leverage the Captum library from
Meta (Kokhlikyan et al., 2020). The learning rate
is 1e-3, and the number of epochs is 25. We use
Stochastic Gradient Descent optimizer with weight
decay 1e-5.

After computing the word importance, we take
the top K = 1, 3 important words to replace. Then,

we replace the most important words as in Section
3.4 to output adversarial examples.

4.4 Benchmarking Results

In this section, we primarily benchmark the BERT
NER, T5 Instruction NER and LLAMA 2 models
across different attack strategies.

4.4.1 Comparison against baselines
In Table 3, for the CoNLL-2003 dataset, we present
a comparison of the performance of our method
against the five adversarial attack strategies within
the SeqAttack framework. To ensure a fair compar-
ison, we fine-tune our model to achieve the same
F1 score as the original SeqAttack results (98%)
before conducting the attack.

From the results in Table 3, we observe that our
method shows a comparable level of token modifi-
cation rate (at around 22%) to both Bert-Attack and
DeepWordBug-II30. However, our method outper-
forms Bert-Attack by achieving approximately 10%
higher attack success rate. Furthermore, when com-
pared to DeepWordBug-II30, our method achieves
a lower F1 score by 8% and a higher attack success
rate by 24%. These results show the effectiveness
of our method in achieving successful attacks with
a lower level of modification rate.

These significant improvements in F1 score and
attack rate while having similar modification rates
are attributed to the following reasons, a) our
unique approach of combining effective disentan-
gled representation learning with IG-based targeted
word attributions, and b) using semantic similar-
ity based guardrails while generating adversarial
examples.

In Table 3, for the OntoNotes dataset, we com-
pare the performance of RockNER and our method.
For both RockNER and our method, successful
attacks would result in lowering the F1 score com-
pared to the baseline F1 score.

Note that RockNER chooses semantic-rich
words and randomly masks tokens (3 max) in
context-only attack, and replaces all named entities
in entity-only attack. Different from RockNER, we
compute disentangled representations and replace
the most important 1 or 3 words in the sentences.

Comparing the F1 scores under attack, our
method is much more effective than the baseline
method on all three types of attacks. More impor-
tantly, we observe that the F1 score for our method
is 4% lower than the RockNER. This demonstrates
that our method is better at selecting and replac-
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Dataset Attack Name F1 Score↓ Attack Rate↑ Mod Rate↓ Text Sim↑

CoNLL

Bert-Attack 79% 44% 22% 84%
CLARE 79% 37% 70% 86%

DeepWordBug-II30 87% 30% 21% 83%
RockNER 80% 54% 35% 64%

Our Method
82% 36% 11% (max 1 word) 91%
79% 54% 22% (max 3 words) 84%

Original 98% - - -

OntoNotes

RockNER 55% 37% 26% 66%

Our Method 65% 33% 6% (max 1 word) 86%
51% 42% 12% (max 3 words) 79%

Original 90.3% - - -

Table 3: Results using different attack strategies on BERT NER model for CoNLL-2003 and OntoNotes datasets.
The first 3 attack methods are derived from SeqAttack. Numbers in the 4th and the 8th rows are derived using
RockNER baseline. We generate adversarial examples allowing for a maximum of 1 or 3 word replacements. Lower
F1 score and modification rate along with higher attack rate and textual similarity indicate a more superior attack
strategy as demonstrated by our method.

Method Attack Rate↑ Mod Rate↓
RockNER 26.7% 40.2%
Random 18.2% 19.7%

Our Method 25.6% 19.7%

Table 4: Attack Rate and Modification Rate for
LLAMA2-7B-CHAT model on the CoNLL-2003
dataset.

ing the most important words which enables it to
generate more effective adversarial examples.

4.4.2 Attack Results with LLAMA 2 model
To examine the effectiveness of our attack method,
we conduct experiments using LLAMA2-7B-
CHAT model (Touvron et al., 2023) on the CoNLL-
2003 dataset. For this experiment, we allow a max-
imum of 1 word perturbation following our pro-
posed framework. We compare our results with two
baseline methods, RockNER and Random replace-
ment of a single word. Comparing the results in
Table 4, we observe that both our proposed method
and RockNER achieve a higher attack success rate
than random replacement. In addition, our method
has a much lower modification rate compared to
RockNER. After adversarial training, we observe
that the robustness improves and F1 under attack
increases by 3.1%.

4.4.3 Attack Results with T5 Instruction NER
model

For the MultiCoNER dataset, the clean F1 score on
the test set is 47.23% with the T5 Instruction NER
model. We follow the same attack framework as

Figure 5: F1 score↑ results on three datasets. Blue
columns and orange columns show the F1 score under
attack before and after adversarial training, respectively.

described above and allow max 1 word perturba-
tion, and generate adversarial examples from the
original test set. On the new adversarial test set,
the F1 score under attack drops to 37.96% with T5
instruction NER model. To better demonstrate the
effectiveness of our method, we also use the base-
line method RockNER to generate the adversarial
test set, which replaces all named entities and al-
lows max 3 word context words perturbation. The
F1 score under attack of T5 instruction NER model
is 36.87% for RockNER. Our method reaches a
comparable attack performance, whereas our mod-
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Disentanglement F1 Score↓ Attack Rate↑

CoNLL
Original 98% -
without 86% 25%

with 82% 36%

OntoNotes
Original 98% -
without 69% 28%

with 51% 42%

Table 5: Attack Results for BERT NER model with and
without disentanglement steps.

Word Selection CoNLL OntoNotes
Original 98% 90%
Random 87% 61%
TF-IDF 90% 58%

Kernel-SHAP 86% 61%
Integrated Gradients (IG) 82% 51%

Table 6: F1 scores for BERT NER model under attack
using different strategies. (lower is better)

ification rate is only 46% of the modification rate
from RockNER. Further details on the setup here
are provided in the Appendix in Section A.3.

4.4.4 Ablation Studies
Without disentanglement To assess the effective-
ness of our disentanglement technique, we compare
the attack performance on the BERT NER model
with and without disentanglement steps. The re-
sults, as illustrated in Table 5, demonstrate the im-
pact of disentanglement on the attack success rate.
With the disentanglement step, we observe a reduc-
tion in bias in word selection (Refer Table 1) im-
proving diversity of adversarial samples generated
and a significant attack performance improvement.
Other word selection methods To examine the
effectiveness of IG, we also tested other word se-
lection strategies. (1) Randomly select words for
substitution. (2) Select words using TF-IDF val-
ues as word importance. (3) Select words using
KernelSHAP (Lundberg and Lee, 2017) that uses
a special weighted linear regression to compute
feature importance. Compared with F1 scores in
Table 6, IG outperforms all other three word se-
lection methods, which proves the effectiveness
of using IG. The results that IG outperforms other
three methods in non-linear models are also consis-
tent with insights here (Modarres et al., 2018).

4.4.5 Adversarial Training
After generating adversarial examples from the
training set using the workflow depicted in Figure 2,
we conduct adversarial training on the trained NER
models on the three datasets. As illustrated in Fig-

ure 5, we observe that adversarial training enhances
model robustness across all datasets. Specifically,
for adversarial examples that allow maximum 3
word replacement on CoNLL-2003 dataset, the F1
score under attack improves by approximately 8%
after adversarial training. Similarly, the F1 score
under attack on the OntoNotes dataset demonstrates
an improvement of about 18% after adversarial
training. In the case of the MultiCoNER dataset,
we observe a 4% improvement in the F1 score un-
der attack after adversarial training.

5 Conclusions

LLM’s for complex NER problems have been gain-
ing a lot of traction recently, and in this work, we
propose an adversarial attack based framework to
make these NER models more robust to widen their
adoption even further. Our end-to-end approach
combines a novel disentanglement technique with
word attributions, substitution and semantic simi-
larity to generate adversarial examples. Our disen-
tanglement method builds upon the idea of trying
to learn an embedding by disentangling entity and
non-entity latent representations

Applying disentanglement before computing IG
word attributions aids in ensuring that we are able
to synthesize a diverse set of adversarial exam-
ples in an extremely efficient manner as demon-
strated through lower candidate sample generation
and modification rates. Experimental results across
BERT, T5-based and LLAMA 2 NER models on
three benchmark datasets demonstrates that our
method significantly outperforms competing base-
line methods. Ablation studies highlight the im-
portance of disentanglement and word attribution
techniques.

6 Limitations

One of the key limitations of our work is that we
have not explored the entire LLM landscape and
would be keen to explore the decoder only models.
Being able to evaluate our work across decoder
only models strengthens some of the key claims
made in this paper. In particular, we would like
to investigate robustness of models with growing
size.

Future avenues to investigate for us mainly in-
clude building an end-to-end framework to synthe-
size attacks for LLM NER models where the word
attributions and semantic similarity scoring are pur-
sued as potential paths within a pipeline to identify
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the optimal attack. This will help in reducing the
dependence on specific choices significantly.
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A Appendix

A.1 Model Queries Comparison
We compare our attack performance with CLARE
under SeqAttack framework. CLARE is a word-
level attack technique which generates highest-
scoring candidate sentences from replacing, insert-
ing, and merging new words into the original sen-
tences. According to their experimental results in
the paper, it reaches F1 score 79% and attack suc-
cess rate 37% whereas our attack method gets F1
score 79% and attack success rate 54%. CLARE
attack allows at most 512 model queries. It gener-
ates all possible new sentences (usually 1000+) and
checks if each new sentence attacks the NER model
successfully. The attack success rate is very low.
Among the successful attack sentences, it takes on
average about 33 model queries (33 new sentences)
to reach a successful attack. Compared with our
method, we only allow at most 10 candidate sen-
tences generated from each original sentence. Then
we check if any sentence is a successful adversar-
ial example which is much less than the baseline
method.

Some example output from CLARE:
Attacking sample: Japan began the defence
of their Asian Cup title with a lucky 2-1 win
against Syria in a Group C championship match on
Friday .

AttackedText: "Japan ’s began the defence of
their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
."

AttackedText: "Japan </s> began the defence
of their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
."

AttackedText "Japan A began the defence of
their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
."

AttackedText: "Japan a began the defence of
their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
."

AttackedText: "Japan ai began the defence of
their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
."

AttackedText: "Japan ain began the defence of
their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday

."
AttackedText "Japan ama began the defence of

their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
."

AttackedText "Japan an began the defence of
their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
."

AttackedText "Japan and began the defence of
their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
."

AttackedText "Japan ans began the defence of
their Asian Cup title with a lucky 2-1 win against
Syria in a Group C championship match on Friday
." (All generated examples failed to attack)

From the outputs using CLARE, we can see that
their attack strategy is to select multiple indices
in the sentence for word-level operations. In the
attacking sample, the attack method iteratively in-
serting random words between Japan and began.
These random insertion incurs syntax errors in the
generated sentences. Comparing with this base-
line, our method utilizes word attribution to find
the most important word in the sentence more ef-
ficiently. In addition, with the help of PLMs and
knowledge bases, we are able to replace with more
reasonable words.

A.2 F1 score under attack results on
OntoNotes dataset

In Table 8, for the OntoNotes dataset, we com-
pare the performance of RockNER and our method
under three different attack settings, namely, a)
context-only attacks, b) entity-only attacks and c)
context + entity attacks. The second column in this
table represents the baseline F1 scores on the orig-
inal test set before the attack was conducted. For
both RockNER and our method, successful attacks
would result in lowering the F1 score compared to
the baseline F1 score.

Note that RockNER chooses semantic-rich
words and randomly masks tokens (3 max) in
context-only attack, and replaces all named entities
in entity-only attack. Different from RockNER,
we compute disentangled representations and re-
place the most important context words (3 max) for
context-only attack and the most important entity
words (3 max) for entity-only attack.

Comparing the F1 scores under attack, our
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Original Test Sentence Adv Example (RockNER) Adv Example (Our Method)
Sentence: Dear viewers, the Sentence: Dear viewers, the Sentence: Dear viewers, my
China News Hiwwe wie Driwwe China News
program will end here. people will lose here. program will end here.
Output: China News is Output: Hiwwe wie Driwwe is Output: China News is
an organization. not an entity. a work-of-art.
Sentence: Relevant departments Sentence: Related departments Sentence: Relevant departments
from Beijing Municipality from Markham from Berlin Municipality
promptly activated promptly activated promptly activated
emergency contingency plans. emergency contingency members. emergency contingency plans.
Output: Beijing Municipality Output: Markham Output: Berlin Municipality
is a geopolitical entity. is not an entity. is an organization.

Table 7: A case study on generated adversarial examples by our method. The sentences on the left are original test
sentences from OntoNotes dataset with correctly predicted named entities (blue colored words). The sentences in
the middle and on the right are generated adversarial examples using RockNER baseline and our method that cause
the NER model make wrong predictions. All input sentences also come with the instruction Please extract entities
and their types from the input sentence. The italic words are the candidate words got selected and replaced. The red
labels are incorrect predictions after the adversarial attacks).

T5
Instruction

NER
Adversarial
Attack

Output: John Sterling is a
Person. New York Yankees

is a Sports Group.
Sentence: John Sterling (born 1948)

sportscaster for the New York Yankees.
Instruction: Please extract entities and

their types from the input sentence.

Sentence: George Sterling (born 1948)
sportscaster for the New York Yankees.
Instruction: Please extract entities and

their types from the input sentence.

Output: George Sterling is a
Person. New York Yankees

is a Location.

adv_example_into.drawio https://drawio.corp.amazon.com/

1 of 1 6/21/23, 10:23 AM

Figure 6: Input sentence from MultiCoNER dataset
and the adversarial example generated using our attack
method, wherein we attack a instruction fine-tuned T5
NER model here. Following our attack, the NER model
incorrectly classifies New York Yankees as a Location.

method is much more effective than the baseline
method on all three types of attacks. More impor-
tantly, we observe that the F1 score for our method
is 6% ∼ 8% lower than the RockNER. This demon-
strates that our method is better at selecting and
replacing the most important words which enables
it to generate more effective adversarial examples.

A.3 Adversarial Examples for Instruction
Fine-tuned Model

We fine-tune a T5 language model for named en-
tity recognition task on MultiCoNER dataset. As
shown in Figure 8 on the left, T5 is an encoder-
decoder model and we convert the NER dataset
into a text-to-text format. To compute the influence
score, after fine-tuning the T5 model, as shown
in Figure 8 on the right, we take its encoder only,
freeze the parameters, and add one more linear
layer after it to form a new sequence labeling model.
Then, we train the last linear layer with CRF loss.

FC
CRF Loss

BERT
Encoder

O O O O O O O O O O O B-ARTIST I-ARTIST O O O

Sentence: He was the fifth actor to reprise
the role followed by Ben Hardy in 2013.

Figure 7: The architecture of the BERT-CRF NER
model.

In this way, we can directly take the output logits
of this T5-encoder only model for word attribution
computation.

Figure 6 presents an example sentence gener-
ated through an adversarial attack that successfully
perturbs the NER model. The sentence on the
top comes from the original training set. Along
with the instruction Please extract entities and their
types from the input sentence, the T5 Instruction
NER model correctly predicts the NER labels in
natural language texts format.

We propose an approach for word-level adver-
sarial attacks that generates adversarial examples
in a principle manner. In the example presented
in Figure 6, the word ‘John Sterling’ is an entity
word that influences the NER predictions. Then,
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Model Name F1 Score F1 Score
Original test Context-only ↓ Entity-only ↓ Context + Entity ↓

BERT-CRF (RockNER) 90.6% 85.8% 59.2% 54.6%

BERT-CRF (Ours) 90.3% 79.6% 51.1% 47.5%

Table 8: F1 score under attack results on OntoNotes dataset. Both RockNER and our method are evaluated under
context-only attack, entity only attack, and context+entity attack settings. Comparing numbers row-wise against
RockNER (first row) reveals that our method (second row) obtains lower F1 score compared to F1 score on original
test set under all three attack settings.

T5
Decoder

T5
Encoder

Output: Ben Hardy
is an artist.

Sentence: He was the fifth actor to reprise
the role followed by Ben Hardy in 2013.
Instruction: Please extract entities and

their types from the input sentence.

FC
CRF Loss

T5
Encoder

O O O O O O O O O O O B-ARTIST I-ARTIST O O O

Sentence: He was the fifth actor to reprise
the role followed by Ben Hardy in 2013.

Figure 8: The architecture of two T5 models. On the
left is the T5 Instruction NER Model and on the right is
the T5 Vanilla NER Model.

we replace it with relevant substitutes to generate
the adversarial examples. The disentanglement of
the latent representations of entity or non-entity
word types prevents bias towards perturbations of
a particular word type.

A.4 Case Studies

We show the generated examples from OntoNotes
dataset using the RockNER baseline method and
our method in Table 7. The sentences on the left
are from the original test set and the blue texts
are correctly predicted named entities by the NER
model. The sentences in the middle are the gen-
erated adversarial examples using the RockNER
baseline method. The sentences on the right are
the generated adversarial examples following the
workflow in Figure 2. The italic words are selected
to be replaced from the original sentences. The red
labels are wrong predictions by the NER model
after the adversarial attacks.

In this experiment, we allow at most one word
replacement and it could either be context or a
named entity word. From the output we can see
that, using our method, the replacement of one
word effectively causes the NER model to make
wrong prediction.

From Table 7, we observe that in comparison
to RockNER, the adversarial examples from our

method are more semantically similar to the orig-
inal test sentence. This can be attributed to the
fact that our method synthesizes diverse and effec-
tive adversarial examples while preserving textual
similarity. (keeping the modification rate low).
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