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Abstract

Handwritten text recognition (HTR) yields tex-
tual output that comprises errors, which are
considerably more compared to that of recog-
nised printed (OCRed) text. Post-correcting
methods can eliminate such errors but may also
introduce errors. In this study, we investigate
the issues arising from this reality in Byzan-
tine Greek. We investigate the properties of
the texts that lead post-correction systems to
this adversarial behaviour and we experiment
with text classification systems that learn to
detect incorrect recognition output. A large
masked language model, pre-trained in modern
and fine-tuned in Byzantine Greek, achieves an
Average Precision score of 95%. The score im-
proves to 97% when using a model that is pre-
trained in modern and then in ancient Greek,
the two language forms Byzantine Greek com-
bines elements from. A century-based analy-
sis shows that the advantage of the classifier
that is further-pre-trained in ancient Greek con-
cerns texts of older centuries. The application
of this classifier before a neural post-corrector
on HTRed text reduced significantly the post-
correction mistakes.

1 Introduction

Handwritten Text Recognition (HTR) concerns the
automated transcription of a handwritten text, ex-
tracting its computerised form from an image. Ap-
plying HTR on an old manuscript can lead to a high
character error rate (CER), often due to the lack of
training data (Pavlopoulos et al., 2023). In the real
world, this erroneous HTR output is post-corrected
by experts, who get involved, typically, in a tedious
and time-consuming task. Delaying the delivery of
manually curated data, hinders both: the preserva-
tion of digitised manuscripts that have not yet been
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Figure 1: Number of HTRed-lines according to their
CER as presented by Pavlopoulos et al. (2023)

transcribed; and the progress of HTR for historical
manuscripts, which struggles with low resources.
This is why researchers from Digital Humanities
have started encouraging the development of Nat-
ural Language Processing (NLP) solutions, in an
attempt to assist the experts toward this goal, since
improving the accuracy of recognition will be excit-
ing for the disciplines struggling with vast corpora
and little man power (McGillivray et al., 2020).

1.1 Background

Although detecting erroneous recognised output
is not a novel task (Chiron et al., 2017; Amrhein
and Clematide, 2018; Rigaud et al., 2019; Jatowt
et al., 2019; Nguyen et al., 2020; Schaefer and
Neudecker, 2020), existing published studies fo-
cus on printed material (i.e., OCRed). Handwritten
text, on the other hand, increases the challenge
in recognition compared to printed material and
hence, leads to more errors. The different hands,
the greater time period, morphology and spelling
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Transcription Recognition

TOVY TOOWY TWY) TOOWV

TOV TOOWY AXOUGOOED
eyywopévo  mddn  Eyyivoueva i
un ofevvive un ofevvivte
eyywopéva  mdin  EYyLVopEvomdi

un ofevvive

uoe ofavnooTe

TeC gumupiCouat
TOV QuUREAG VA GANS
ol O OLdL TEC
TEC eunupilovot
TOV QUTEAGVAL GAAAL
ol O Ol TEC

TEC gumupiCouat
TOV GUTEAOVOL GAAY
ol O OLoL TEC
Teotunupicofol
XO0L QUTEAOL XA
WHAHOL O OLOTEC

Table 1: Synthetic transcription (human-generated) and
recognition (system-generated) output with few (a) and
many (b) errors. Finding the differences between the
transcription and the recognition is easier for the three
examples shown in red (b).

Tw T Do

Figure 2: Image of the handwritten text ‘“t&v ntodwv’ -
in the recognised text, the third character was misspelled,
written as eta (‘n’) instead of ‘v’ (Table 1, 1st row)

(see Section 3), can explain the greater diversity of
error rates (Fig. 1). The recognition quality, how-
ever, is related to the detection quality of erroneous
output. To give an example, the detection of an er-
roneous recognition is easier when the recognition
output is scrambled compared with a single incor-
rect character. This is shown in Table 1, where
classifying recognised text (as erroneous/not) is
easier for the human eye in (b) compared to that of
(a). We hypothesise that this applies also to models.

We argue that detecting erroneously recognised
text can improve automatic error correction. Cur-
rent approaches to post-correcting the often flawed
recognised text, disregard the likelihood of a flaw-
less recognition, assuming that the correct text can
be simply copied (e.g., with an encoder-decoder-
based correction). Consequently, they are faced
with the possibility of introducing, instead of
mitigating, errors that would be absent if post-
correction hadn’t been applied. Taking the case
of a misspelled article (e.g., see Fig. 2), for in-
stance, there is a variety of letters to choose from,
for replacement, always accordingly to the declen-
sion and the case of the noun. Even if grammati-
cal rules are set (e.g., in a rule-based system), an

HTR system working at the character level is likely
examining morphological aspects and often dis-
regards semantic and pragmatic levels. A vowel
replacement function addressing the morphological
level, however, may omit important semantic as-
pects and relationships between sentence elements
at the syntactic level and thus, misinterpret the case.
For example, the line “Aevtiov dielwoey gautdy”
was HTRed as “Aevtiov diclwoesveautév”. A neu-
ral corrector, then, which received as input the
HTRed output, yielded “hevtiov dielwoey cautov”
(Pavlopoulos et al., 2023), correctly separating the
two last words but incorrectly removing the accent.
In this way and in this instance, post-correcting
involves the risk of introducing errors by trans-
forming probably correct output cases.

1.2 The focus of the study

This study quantifies the hazards of the above-
mentioned adversarial post-correction, by focus-
ing on the Byzantine Greek language. The devel-
opment of this language entails a comprehensive
examination of written language throughout the
centuries under study. In essence, Byzantine Greek
emerged as an academic style known as Atticised
Greek, incorporating religious topics. As time pro-
gressed, elements of contemporary spoken Greek
gradually became integrated into the language (Hor-
rocks, 2014). As the results of our study also show,
the combination of pre-trained data on Modern
Greek, resembling what was considered as spoken
language back then, and Ancient Greek, including
the above-mentioned Atticised Greek, is beneficial
for text classifiers detecting incorrect recognition
output. Furthermore, by covering a period of more
than seven centuries, the already challenging nature
of recognition (Platanou et al., 2022) is increased,
hence allowing a more diverse material for our
investigation on post-correction. Errors in hand-
written text recognition are often due to different
hands (scribes) and scripts that evolved for many
centuries. Printed text, on the other hand, exists
for a much narrower period, there are no hands to
cause similar errors,! and no clitics. As we show
in this work, lower recognition error rate means
more difficult classification of erroneous lines. By
contrast, recognised handwritten text is often hard
to parse even for humans, which makes an easier
classification challenge and a much more difficult

"Fonts pose a similar problem, yet less challenging when
compared to hands, due to their non-standardised form and
high variation.
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error-correction task, as shown in Table 1.

1.3 The contributions

We explore the extent to which classification
to flawless/flawed texts can improve the post-
correction of recognised output, by avoiding adver-
sarial errors introduced when applied to flawless
texts. We benchmark machine- and deep-learning-
based text classifiers, showing that a Transformer
that is pre-trained in modern Greek and then fine-
tuned to detect erroneously recognised Byzantine
Greek (10th-16th CE) text achieves an Average
Precision of 95%. When the same Transformer
is further pre-trained in ancient Greek prior to
fine-tuning, the score increases to 97%. We quan-
tify the benefits of employing our text classifier
in the real world, by training an MT5 (Xue et al.,
2021) encoder-decoder error-corrector, which al-
tered 80% of the flawless texts. If our best-
performing classifier had been applied prior to cor-
rection, the percentage would have been decreased
to 2% with a trade-off of 2% texts being incorrectly
classified as flawless.

The better performance of a Transformer that
is not pre-trained only in modern Greek can be
explained by the fact that Byzantine Greek com-
bines language elements from both, ancient and
modern Greek. Since our study covers a broad his-
torical period, we separated the evaluation dataset
based on the century in order to investigate this
hypothesis. Our results show that the detection of
erroneous recognition depends on the chronology
of the manuscript and that further pre-training in
ancient Greek benefits the classification of lines
from manuscripts in the following three centuries:
10thCE, 11thCE, and 13thCE. By following a simi-
lar segmentation-based evaluation method for the
error rate level, instead of the century, we show that
higher error rates make an easier classification goal.
By contrast, the problem is harder for low error
rates, when flawed and flawless texts look alike.

2 Related work

Our work focuses on the text classification of recog-
nised handwritten text. In the absence of published
studies for handwritten text, however, we sum-
marise work focused on the recognition of printed
text. Printed and handwritten materials differ, be-
cause the latter often yields scrambled recognition
output (Table 1). This is probably what motivated
Strobel et al. (2022) in using the perplexity of lan-

guage models to detect the erroneous output in an
unsupervised manner. On the other hand, although
we consider that recognition errors are overall more
for handwritten text compared to printed material,
the quality of recognition can vary significantly for
the former (Hodel et al., 2021), as is also shown
in Fig. 1, and does not always come with a high
error rate. Therefore, the detection of erroneously
recognised handwritten text is also related to that
for printed text, regarding their low error output.

Erroneous recognised printed text detection

Initial work using rule-based approaches could not
address all errors, and was followed by machine
and deep learning approaches (Lyu et al., 2021).
Standard approaches include support vector ma-
chines on top of n-gram-based features (Dannélls
and Virk, 2021; Virk et al., 2021). Jatowt et al.
(2019) used a gradient tree boosting binary classi-
fier on top of various features, including character
and word n-grams, part-of-speech, token frequency
based on automatically created resources.
Amrhein and Clematide (2018) performed de-
tailed analyses and experiments of error detection
and post-correction with various statistical and neu-
ral machine-translation methods. In general, they
found that the former perform better in error correc-
tion, while the latter models are better in error de-
tection. However, they concluded that there is not a
single method that works best on all datasets while
the results are highly affected by the data a model
is trained on. Furthermore, they suggested that
post-correction of recognised printed text should
focus more on the improvement of error detection.
Nguyen et al. (2020) used BERT pre-trained on
named-entity recognition for token classification
in order to perform error detection. After subtoken
tokenization they obtain Glove or Fasttext word
embeddings, which are combined with segment
and positional embeddings and given as input to
BERT (Devlin et al., 2018). The hidden states are
fed to a dense layer on top that classifies each token
as erroneous or not. Although interesting, token-
level detection is not suited for high-error settings.

The ICDAR challenge

ICDAR organised a competition focused on post-
correcting text recognised from newspapers, shop-
ping receipts, and other printed sources, including
two subtasks: error detection, i.e., to detect the
position and the length of the errors, and error cor-
rection (Chiron et al., 2017; Rigaud et al., 2019).
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In 2017, the best-performing method for the error
detection subtask employed probabilistic character
error models and weighted finite-state transducers
while in 2019, the best was a pre-trained multilin-
gual BERT with convolutional and fully-connected
layers on top that classified each sub-token as er-
roneous or not. Schaefer and Neudecker (2020)
followed a similar classification scheme, but fo-
cused on characters and not sub-tokens. Then, by
excluding lines with at least one classified character
from post-correction, they showed that false alter-
ation (i.e., of correctly OCRed lines) by an encoder-
decoder model could be avoided. Our work shows
that casting this problem as a text classification task
can lead to high accuracy for handwritten text, al-
though similar benefits may apply to printed text.”

3 Data

The written language of the manuscripts and pa-
pyri used in this study is Byzantine Greek.® Within
these texts, morphological categories such as the
optative, the pluperfect, and the perfect have disap-
peared, while others such as the dative case have
gradually decreased. Infinitives and participles are
still there in the texts, as reminiscents of the classi-
cal tradition, encouraging one to treat the language
as a unique variant, different from modern Greek.
There are several spelling conventions that deviate
from the older orthographic rules while the ancient
punctuation signs are still in use, albeit not always
with the same function. Therefore, following Clas-
sical and preceding Modern Greek, this language
can be considered a combination of the two.

The transcriptions and the HTR output were
provided by the organisers of the recent HTREC
challenge,* which regarded the automated correc-
tion of HTR errors in Byzantine Greek (Pavlopou-
los et al., 2023). Selected images of handwritten
text in respective manuscripts (10th to 16th CE)
were transcribed by a human expert. The train-
ing dataset of the challenge consists of 1,875 lines
of transcribed text by a human expert and by an
HTR model (examples shown in Table 2). Tran-
skribus (Kahle et al., 2017) was used by the organ-
isers to produce the system transcriptions, trained
on seven images one per century. Our investiga-
tion of the CER of the opted HTR model reveals

2The difference lies in using a sigmoid function (or so) on
top of the text representation, instead of one per character.

3 Also known as Medieval Greek or simply Byzantine.

*https://www.aicrowd.com/challenges/
htrec-2022
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Figure 3: Violinplot of CER per century

that a diversity of errors is produced, from very
few to many per line (Fig. 1). This fact makes this
dataset optimal for our training purposes, because
we need a diversity of errors to train our classi-
fiers.> Furthermore, the errors are not uniformly
distributed across centuries (Fig. 3), motivating a
time/CER-based segmentation for evaluation pur-
poses (discussed in Section 4.2).

Our classification dataset consists of the 1,875
human-transcribed texts (lines), treated as the flaw-
less negative (0) class, and the respective system-
transcribed texts, treated as the flawed, positive (1)
class.® This resulted in total to an almost perfectly
balanced dataset of 3,744 text lines, which we split
to train, development and test subsets by using a
80/10/10 ratio. The average length of the transcrip-
tion is 40.10 characters (6.83 words), and that of
the HTR output is 37.09 characters (5.89 words).

4 [Experimental analysis

We opted for machine and deep learning bench-
marks, with different transfer learning settings.’

Machine learning benchmarks

Machine learning methods include a variant of
Naive Bayes and Support Vector Machines (NB-
SVM), which is often used as a baseline for text
classification (Wang and Manning, 2012).% Also,
we experimented with a Random Forest and a multi-
layer perceptron (MLP) using character n-grams

SFewer errors will harm class balance while similar errors
will harm generalisation of the classifiers.

8Six lines were excluded from the positive class, because
a perfect transcription was achieved.

7 All experiments were performed using Google’s Colabo-
ratory, using a Tesla T4 GPU card. Our large language models
comprise 113 million parameters.

$We used the implementation of KTRAIN with default pa-
rameters (Maiya, 2020).
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Transcription by expert

HTR output

eyytvouévo mdin un ofevvivteg GAAa th exhloel
(the born-in passions not extinguishing but
the release)

EYYEVOUEVATAONUNOUEVVWTES SAAATHiE XANOEL

w0 Blov Tobh xad ~ eavtole moOMAA  yiveoUou
ouvyyweolv (of the life of themselves many
happening forgive)

TOU 3 0U TOU XAUAEAUTOVC TOANAYLVECDAU CUYYWE
.
ov

te¢ EUmUPICoUoL TOV GUTEAG VO GAAGL Xol O OLoL TEG
(- set on fire the vineyard but and the due
to the)

eumupllou CUIOUTENGS VAL ANl OOEA

Table 2: Human (on the left) and HTR-based (on the right) transcription (lines) from the ‘Commentary on Isaiah’ by
Basil the Great (fol. 75r, Oxford, Bodleian Library MS. Barocci 102)

(n € 1,5), term-frequency inverse document fre-
quency, and default parameters otherwise.”

Deep learning benchmarks

Deep learning methods comprise a recurrent neu-
ral network using Gated Recurrent Units (GRU)
and trainable word embeddings of 300 dimen-
sions, originally pre-trained on (modern) Greek
(Joulin et al., 2017).19 Also, we experimented with
the state-of-the-art in text classification, which is
BERT (Devlin et al., 2018) and its variants (Li
et al., 2022; Minaee et al., 2021). In specific, we
also fine-tuned two BERT models pre-trained in
Greek. The first (GreekBERT) is pre-trained in
modern Greek (Koutsikakis et al., 2020) while the
second extends the first by being further pre-trained
in ancient Greek (Singh et al., 2021).11

Evaluation measures

We opted for the F'1 score per class, the Area un-
der the Receiver Operating Characteristic Curve
(AUC), and Average Precision (AP) that is pre-
ferred in class-imbalanced settings. All evaluation
measures were implemented in SCIKIT-LEARN.!?

4.1 Text classification benchmark

Table 3 shows the results of all our text classifi-
cation benchmarks, including a random baseline
(responding uniformly) that draws the lower perfor-
mance limit. NBSVM is the worst machine learn-
ing model, followed by Forest and MLP. The latter
achieves promising results, close to GRU (better in
AP and F'17). GRU, on the other hand, is clearly

9https ://scikit-learn.org/stable/modules/
generated/sklearn.neural_network

]Ohttps ://fasttext.cc/docs/en/crawl-vectors.
html

" Ancient Greek texts, which can be used for pre-training,
are much fewer in number compared to publicly available
modern Greek data. Hence, the option of pre-training directly
in ancient Greek was not considered viable.

12https ://scikit-learn.org/stable/

AP | AUC | F1t | F1~
Random 0.52 | 050 | 0.49 | 047
NBSVM 0.66 | 0.65 | 0.60 | 0.51
Forest 0.64 | 0.65 | 0.64 | 0.50
MLP 079 | 079 | 0.73 | 0.69
GRU 0.79 | 0.79 | 0.68 | 0.71
GreekBERT:M 0.95 ] 094 | 0.88 | 0.88
GreekBERT:-M+A | 0.97 | 0.97 | 0.90 | 0.91

Table 3: Evaluation with Average Precision (AP), AUC,
F1 for the classification of HTRed texts to flawed (+) or
flawless (-) transcription. Random (uniform) classifica-
tion was used as a baseline. GreekBERT was pre-trained
in modern (:M) or in modern and ancient Greek (:A).

outperformed in all metrics by GreekBERT. Two
GreekBERT models were used, one pre-trained in
modern Greek (:M) and one in modern and then in
ancient Greek (:M+A). Byzantine Greek, as already
discussed (Section 3), combines language elements
found in both ancient and modern Greek. This is
probably why GreekBERT:M+A, which was pre-
trained in modern and then in ancient Greek, was
better compared to GreekBERT:M, which was pre-
trained only in modern Greek.'?

4.2 Evaluation per century

We separated the lines of the test data based on the
century of the manuscript that they came from. For
each century, then, we evaluated the two Transform-
ers, GreekBERT:M and GreekBERT:M+A. As can
be seen in Fig. 4,'* GreekBERT:M+A is better on
the 10th (five percent units) and 11th century CE,
with models performing similarly on the 12th and
after the 13th century, when both models achieve a

We verified the consistency of this finding by repeating
the experiments three times, reporting an average AUC of 0.97
over 0.94 (st.d. lower than 0.05).

“For statistical significance, we sampled twenty lines per
century, repeating the sampling process ten times. We focus
on Average Precision, but similar findings were observed with
the other metrics.
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Figure 4: Average Precision per c¢. CE of GreekBERT:M, pretrained on modern Greek (solid), and GreekBERT:M+A,
further pre-trained on ancient Greek (dashed) - error bands show the 95% bootstrap confidence intervals

higher score. On the 13th century, the performance
of both models drops, but considerably more for
GreekBERT:M. The 14th, 15th and 16th century
were more challenging in HTR (Platanou et al.,
2022), which could explain the better performance
of the classifiers. That is, more errors in the recog-
nised output could potentially help the classifier
distinguish between the two classes (correct/not). "
Based on the previous observations, we report three
findings:

F1. The classification performance depends on
the chronology of the manuscript.

F2. Older manuscripts are better handled by fur-

ther pre-training on ancient Greek.

F3. Lines from recent manuscripts pose an easier
classification challenge to both GreekBERT
models.

4.3 Evaluation per error zone

Our dataset is balanced regarding whether the
recognition output is erroneous (positive class) or
not, yet it remains imbalanced regarding the CER
level (see Fig. 1). In order to assess the two Trans-
formers across different input types, we rolled a
window of ten units, from low to high CER values,
and we assessed the models per window (Fig. 5).'6
High-CER lines (i.e., lines with CER of thirty or
more) appear to set an easy classification task to
both models. Performance increases as the CER
increases. This is reasonable considering that lines
with a high CER comprise many errors and are

151t remains unclear to the authors whether more hands were
present during these centuries, explaining the performance of
the HTR and the classification models, or if this was due to
another reason; e.g., writing became more cursive over time.

1We sampled thirty lines, repeating sampling ten times.

hard to parse even by humans. This characteristic,
however, makes them easier to distinguish from
flawless lines, which comprise no errors from the
recognition.

Low-CER lines (i.e., lines with CER of zero to
twenty) lead to a different picture, since Greek-
BERT:M+A is consistently better, overall, than
GreekBERT:M. Low CER means small differences
between the two texts (flawless-flawed), which
makes the classification task more difficult. In this
zone, further pre-training on ancient Greek had a
bigger impact, compared to zones with a higher
error rate.

5 Discussion

In this section, first, we assess the possibly adver-
sarial nature of post-correction. Then, we describe
a synthetic error detection application, followed by
a century-based error analysis we performed.

5.1 Substantiality assessment

Error-correction systems may introduce errors,
even when applied to flawless HTRed texts. To
assess the substantiality of this claim, we ex-
perimented with a neural encoder-decoder post-
corrector. In specific, we employed a multilingual
variant of the T5 Text-to-Text Transfer Transformer
(Raffel et al., 2019), called MT5 (Xue et al., 2020),
which was pre-trained on a dataset covering 101
languages.!” MTS5 has been used for Grammat-
ical Error Correction in modern Greek and sets
a strong baseline for HTR Error Correction (Ko-
rre and Pavlopoulos, 2022). We fine-tuned this
model on the 1,875 training instances of the HTREC

"The Greek language was on the 20th position with 43
billion tokens extracted from 42 million pages
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Figure 5: Average Precision of GreekBERT:M, pretrained on modern Greek (blue, solid), and GreekBERT:M+A,
further pre-trained on ancient Greek (orange, dashed), using a rolling window over CER (left edge shown horizon-
tally) - error bands depict 95% bootstrap confidence intervals

challenge, by encoding the system- and decod-
ing the human-transcriptions.'® This model is a
neural error correction baseline that reduced the
CER in 19 out of the 180 HTRed texts in the offi-
cial HTREC2022 evaluation set. We applied this
corrector on the respective 180 transcriptions of
these data (the ground truth evaluation instances in
HTREC2022) and found that 144 (80%) were mis-
takenly altered by our MT5 corrector. For example,
the line ‘ouv TOUC UNBOUC OLTLVEC OUTE CEYUPTW
mopo” was altered to ‘ouv Toug UNBOUC OL TLVEG
oute apyuptw mapa’ (word division, 4th word).
Similarly, ‘yevong un @ovevong un xhe’ was
altered to “YAEUCEWC U1 POVEUCEWS WU XAETT .
Most of these adversarial mistakes (all but the top
three of Table 4) would have been avoided if our
GreekBERT:M+A classifier had been applied prior
to the application of this neural corrector. Con-
versely, only four (i.e., the rest in Table 4) would
have been mistakenly found as correct from the
system-transcribed instances.

5.2 A synthetic application of error detection

We experimented with the HTREC2022 evaluation
dataset, which was used to assess the participating
systems. This dataset comprises 180 lines that were
transcribed from nine images. Out of these lines,
one had zero CER achieved by the HTR model
(perfect transcription), which was correctly classi-
fied by our GreekBERT:M+A model. We then per-
formed two analyses, first by applying our model
on the flawless human transcriptions (as if a tran-
scription was the HTR output) and then by applying

We used the SimpleT5 implementation (https://
github.com/Shivanandroy/simpleT5) with 100 epochs,
early stopping (patience of 2 epochs), 15 tokens max. length,
batch size of 4, and best loss found at the 12th epoch (2.64).

it on the flawed system recognitions (the same lines
were used). The human transcriptions were cor-
rectly classified as flawless, all except three (1.7%
error rate), which are shown in the top three rows
of Table 4. The system recognitions were also cor-
rectly classified as flawed, all except four (2.3%
error rate), shown in the last four rows of Table 4.

5.3 Error analysis

An error detection by experts in Table 4,' showed
that no clue (indicating an error) was found for
the first line (except from the rare ‘@uhaxdrovdoc’
with double accent). As is shown in Figure 6 (a),
which depicts the attention on the subwords of this
line, this was indeed the network’s focus.

On the second line, word ‘loyanAfty’ was con-
sidered as the outcome of misspelling of the word
‘lopoaniity’, matching the algorithm’s decision. In
this case, it was the ending of the word that at-
tracted attention (Fig. 6), but the network focused
more on the article ‘twv’ preceding the word rather
than on the word itself. The article is in plural form,
not matching a word in singular. Apparently, ‘t.o-
pomA¥iTy” is not a misspelling, but part of the word
‘lopamAtixwy’ that was corrupted.

In the last four lines, that were classified as cor-
rect, several flaws were raised, indicating a failure
of the algorithm. For example, word divisions,
such as in the case of ‘woxon’ instead of ‘w¢ xou’;
added characters, such as in the case of ‘csbuync’
instead of ‘c0ync’; character replacements, such as
in the case of ‘Uxeteiay’ instead of ‘ixeteiay’.

“No access was given to the manuscript or the human tran-
scription, for fair comparison with the setting of the algorithm.
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TRANSCRIPTIONS AND HTR OUTPUT GREEKBERT:M+A GT
€Yo 0 ael mwg @rhaxohoudog el

(I am always readily following) F N
Aot X0 YEOEWY €X TWV OXUAWY TWV LOUONANTL

(- and Gedeon from the dogs the -) F N
OPUUMY ELC XOL YOVUTETT|

(having run to and falling on the knee) F N
TWEC TOC YELPOC ETAUTO

(having put the hands on them) F N
Oxeteloy BEomOTA, Xol EUUEVEC dxoucov TEY Tiic TMpog ebuyNg

(- - - and favourably listen to the of the prayer) N F
eyevouny ic. apary thcoe ped Tieyelning Elyelepontiyplog

(became - - - - - - ) N F
WOXOL NG CUVEYOLS BLdaoxaAag Toug Pa

(- of the continuous instruction the -) N F

Table 4: HTRed lines and transcriptions that GreekBERT:M+A mistakenly predicted as flawed (F) or not (N) - the
ground truth (GT) on the right shows whether there was an error or not

Error patterns

Next, we proceed with an analysis of the recogni-
tion errors, using data from three centuries. We opt
for 16th CE, the century on which both our models
perform considerably well (Fig. 4). Next, we fo-
cus on the 14th CE, going back two centuries, but
still observing good performance by both models.
Last is shown the 13th CE, where GreekBERT:M
performs much worse than GreekBERT:M+A.

16th CE This is the data group with the high-
est average CER (see Figure 3). What seems to
be challenging in this data group is the fact that
there is a variety of punctuation marks which are
sometimes read by the model as letters because of
their shape. An illustrative example of this case
is the word ‘mhob¢’ which is read by the model
as ‘mhovoo’. This is due to a comma following
the word ‘mAol¢’, which is very similar to the last
letter of the word (¢). There are also many cases of
ligatures in which the model fails to recognise both
letters, especially the one written on the top of the
ligature, such as the letter ‘T’ in the combination
‘Tp’ as one can see in the following instance; ‘G
matelc’ read as ‘wg Gnaple’.

14th CE The data from the 14th century show
the second highest CER on average (see Figure 3).
This is partly because of a great number of ligatures
appearing in this data group. A common ligature
among this group is the one which represents the
group of the letters ‘e’ and ‘@’. In this ligature it
happens that the letter ‘c’ is written above the letter

‘e’. The way the model interprets this structure
can be seen in the following case; ‘@pép” €n” abTnV
{w’, where ‘@ép’ consists of one letter (¢) and one
ligature (cp) is read by the model as ‘¢ppenou tnv
icw’. The model fails reading correctly the letter
combination and returns only the letter ‘¢’ and one
of the two letters involved in the ‘cp’ combination
(p), which is actually the one written in the posi-
tion next to the letter ‘¢p’. The same instance shows
clearly that there is a tendency towards adding char-
acters because of different drawing representations
of characters found in this data group. The letter
o can be considered such a case. In the previous
example, we can see that the word ‘e’ is read by
the model as ‘icey’. This is because, in this instance,
the letter ‘w’ has the shape of a laid eight. The same
letter has the usual shape in other cases in the text
of this century, which was quite confusing for the
model and led the model to decide that it should be
a combination of both ‘c’ and ‘w’, since the former
is quite close to the half laid-eight shape.

13th CE The data group that is easiest to read
for the model seems to be the 13th century one. In
this group, errors appear mainly because of special
letter shapes and abbreviations. Such a letter shape
is that of the letter ‘c” which is written as the letter
‘0’ with an added line pointing upwards. A char-
acteristic example of the failure of the recognition
task is this one; ‘€w¢’ is read as ‘Owc’. Here the
model has clearly classified the ‘€” as a ‘6’. Re-
garding the abbreviations representing character
groups, one can find among others the following
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EYW QL (]

QLA

() vy d del mwe prioxdhoudoc el

e

e

##KoAov ##00¢ #HHMUL
o ##pa ##nh ##n ##TL

(b) Aot xou YEBEWY EX TWV GXLAWY TWV LOUAMATTL

opa #H#Pwv Kot

Y ##0v

(c) Spapwy €L1C XOL YOVUTIETY)

Figure 6: The attention of GreekBERT:M+A (darker is more) for the three top (missclassified) lines of Table 4 - the
symbol ## is used to concatenate a subword with the preceding one during tokenisation (Spopv is dpo ##uwv)

one; ‘ov’. In the case of ‘oUx {oyvoav’, where the
last two letters are represented by the abbreviation,
the model reads ‘oUxioyw’, where ‘w’ has replaced
the abbreviation because of similarity in shape.

5.4 Language and script generalisation

Our work can potentially inspire analogous pre-
training in other languages with a long documented
history. To provide an example: Old, Middle, and
Modern English and Japanese (Lyovin, 1997, pp.
2) can qualify for pre-training on both Old and
Modern data, as in the Greek language in our case.
The scripts our results are based on, however, are
very common both in Greek and Latin manuscripts
while common handwritten character shapes, e.g.,
epsilon (E) (Chambers and Chambers, 1891, pp.
703), may illuminate error patterns in Latin scripts.

6 Conclusion

This work showed that detecting erroneous recog-
nised lines improves the accuracy of handwritten
Byzantine text recognition, aiming to assist the dis-
ciplines struggling with vast corpora and little man
power. By contrast to printed text, errors in hand-
written text vary greatly, some of which are eas-
ier and others difficult to catch. Our experiments
showed that two BERT models, one pre-trained
in modern and the other pre-trained in modern
then in ancient Greek perform well for the task
of erroneous handwritten recognised text classifi-
cation. The latter performs better, especially for
manuscripts from older centuries and for lines with
higher recognition error rate. By using a neural text-
to-text Transformer for error correction along with
our best performing classifier, we found that ad-
versarial behaviour is not uncommon in the neural
corrector’s output which could have been signifi-
cantly limited if a BERT classifier, pre-trained and

fine-tuned, had classified the input first.
Directions of future work comprise the develop-
ment of a larger dataset, which, although not easily
developed in our domain of focus, it could poten-
tially allow us to draw more conclusions and lead
to further findings. Furthermore, we plan to extend
our dataset with calibrated evaluation subsets, in or-
der to gain more perspective on the performance of
systems for specific error types, including ones that
occur naturally and are not meant to be corrected.

Limitations

* Our study is focused on Byzantine Greek,
from the 10th to the 16th century. Our hy-
pothesis, that text classification could assist
the post correction of HTRed output, should
be studied for more languages and covering a
longer period to draw general conclusions.

* By contrast to OCR, where low CER values
are reported, HTRed output can significantly
differ from the human transcription. For ex-
ample, correct text may be misplaced (e.g.,
due to mistaken word division) or by the in-
troduction of an extra character (e.g., the last
word of the fifth line in Table 4). Hence, the
creation of ground truth at the character level
is very challenging in this context, hindering
experimentation at the token or the charac-
ter level, as in OCR (Schulz and Kuhn, 2017;
Schaefer and Neudecker, 2020).

* Sensitivity analysis has not been performed.
Although we repeated our experiments to
verify the validity of our findings regarding
GreekBERT, we have not experimented with
cross validation over the centuries, as in (Pla-
tanou et al., 2022). Training, however, an algo-
rithm on texts from specific centuries, then as-
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sessing on ones from previous or future ones,
could potentially reveal interesting patterns.

* Diplomatic transcriptions may lead to
naturally-occurring errors (i.e., ones the
editors would want to keep, to stay as
close to the original as possible), which
our proposed classifiers could and probably
would classify as incorrect recognition output.
This limitation could be bypassed if the
proposed systems are used complementary
with an expert, not trying to substitute one.
For example, the expert could view only lines
the classifier labelled as incorrect, bypassing
or acknowledging errors which were meant to
be there.

References

Chantal Amrhein and Simon Clematide. 2018. Super-
vised ocr error detection and correction using statisti-
cal and neural machine translation methods. Journal
for Language Technology and Computational Lin-
guistics (JLCL), 33(1):49-76.

William Chambers and Robert Chambers. 1891. Cham-
bers’ Encyclopedia: A Dictionary of Universal
Knowledge, volume 8. W. & R. Chambers.

Guillaume Chiron, Antoine Doucet, Mickaél Coustaty,
and Jean-Philippe Moreux. 2017. Icdar2017 compe-
tition on post-ocr text correction. In 2017 14th IAPR
International Conference on Document Analysis and
Recognition (ICDAR), volume 1, pages 14231428,
Kyoto, Japan.

Dana Dannélls and Shafqat Virk. 2021. A supervised
machine learning approach for post-ocr error detec-
tion for historical text. In Swedish Language Tech-
nology Conference and NLP4CALL, pages 13-20.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Tobias Mathias Hodel, David Selim Schoch, Christa
Schneider, and Jake Purcell. 2021. General models
for handwritten text recognition: feasibility and state-
of-the art. german kurrent as an example. Journal of
open humanities data, 7(13):1-10.

Geoffrey Horrocks. 2014. Greek: A History of the
Language and its Speakers. John Wiley & Sons.

Adam Jatowt, Mickaél Coustaty, Nhu-Van Nguyen, An-
toine Doucet, et al. 2019. Post-ocr error detection
by generating plausible candidates. In 2019 Interna-
tional Conference on Document Analysis and Recog-
nition (ICDAR), pages 876-881, Sydney, Australia.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427-431. Association for Computational
Linguistics.

Philip Kahle, Sebastian Colutto, Giinter Hackl, and Giin-
ter Miihlberger. 2017. Transkribus - a service plat-
form for transcription, recognition and retrieval of
historical documents. In 2017 14th IAPR Interna-
tional Conference on Document Analysis and Recog-
nition (ICDAR), volume 04, pages 19-24.

Katerina Korre and John Pavlopoulos. 2022. Enrich-
ing grammatical error correction resources for Mod-
ern Greek. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
4984-4991, Marseille, France. European Language
Resources Association.

John Koutsikakis, Ilias Chalkidis, Prodromos Malaka-
siotis, and Ion Androutsopoulos. 2020. Greek-bert:
The greeks visiting sesame street. In /1th Hellenic
Conference on Artificial Intelligence, pages 110-117.

Qian Li, Hao Peng, Jianxin Li, Congying Xia, Renyu
Yang, Lichao Sun, Philip S Yu, and Lifang He. 2022.
A survey on text classification: From traditional to
deep learning. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 13(2):1-41.

Anatole Lyovin. 1997. An Introduction to the Lan-
guages of the World. Oxford University Press, USA.

Lijun Lyu, Maria Koutraki, Martin Krickl, and Besnik
Fetahu. 2021. Neural ocr post-hoc correction of his-
torical corpora. Transactions of the Association for
Computational Linguistics, pages 479—493.

Arun S. Maiya. 2020. ktrain: A low-code library
for augmented machine learning. arXiv preprint
arXiv:2004.10703.

Barbara McGillivray, Thierry Poibeau, and Pablo
Ruiz Fabo. 2020. Digital humanities and natural
language processing:“je t’aime... moi non plus”.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria, Nar-
jes Nikzad, Meysam Chenaghlu, and Jianfeng Gao.
2021. Deep learning—based text classification: a com-
prehensive review. ACM Computing Surveys (CSUR),
54(3):1-40.

Thi Tuyet Hai Nguyen, Adam Jatowt, Nhu-Van Nguyen,
Mickael Coustaty, and Antoine Doucet. 2020. Neural
machine translation with bert for post-ocr error detec-
tion and correction. In Proceedings of the ACM/IEEE
Jjoint conference on digital libraries in 2020, pages

333-336.

John Pavlopoulos, Vasiliki Kougia, Paraskevi Platanou,
Stepan Shabalin, Konstantina Liagkou, Emmanouil
Papadatos, Holger Essler, Jean-Baptiste Camps, and
Franz Fischer. 2023. Error correcting htr’ed byzan-
tine text.

7827


https://doi.org/10.1109/ICDAR.2017.307
https://doi.org/10.1109/ICDAR.2017.307
https://doi.org/10.1109/ICDAR.2017.307
https://aclanthology.org/2022.lrec-1.532
https://aclanthology.org/2022.lrec-1.532
https://aclanthology.org/2022.lrec-1.532
http://arxiv.org/abs/2004.10703
http://arxiv.org/abs/2004.10703

Paraskevi Platanou, John Pavlopoulos, and Georgios
Papaioannou. 2022. Handwritten paleographic greek
text recognition: A century-based approach. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 6585—-6589.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Christophe Rigaud, Antoine Doucet, Mickaél Coustaty,
and Jean-Philippe Moreux. 2019. Icdar 2019 com-
petition on post-ocr text correction. In 2019 interna-
tional conference on document analysis and recogni-
tion (ICDAR), pages 1588—-1593, Sydney, Australia.

Robin Schaefer and Clemens Neudecker. 2020. A two-
step approach for automatic ocr post-correction. In
Proceedings of the The 4th Joint SIGHUM Workshop
on Computational Linguistics for Cultural Heritage,
Social Sciences, Humanities and Literature, pages
52-57, held online.

Sarah Schulz and Jonas Kuhn. 2017. Multi-modular
domain-tailored ocr post-correction. In Proceedings
of the 2017 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2716-2726, Copen-
hagen, Denmark.

Pranaydeep Singh, Gorik Rutten, and Els Lefever. 2021.
A pilot study for bert language modelling and mor-
phological analysis for ancient and medieval greek.
In The 5th Joint SIGHUM Workshop on Computa-
tional Linguistics for Cultural Heritage, Social Sci-
ences, Humanities and Literature (LaTeCH-CLfL
2021).

Phillip Benjamin Strébel, Simon Clematide, Mar-
tin Volk, Raphael Schwitter, Tobias Hodel, and
David Schoch. 2022. Evaluation of htr models
without ground truth material. arXiv preprint
arXiv:2201.06170.

Shafqat Mumtaz Virk, Dana Dannélls, and Azam Sheikh
Muhammad. 2021. A novel machine learning based
approach for post-ocr error detection. In Proceed-
ings of the International Conference on Recent Ad-
vances in Natural Language Processing (RANLP
2021), pages 1463-1470, Varna, Bulgaria.

Sida Wang and Christopher Manning. 2012. Baselines
and bigrams: Simple, good sentiment and topic clas-
sification. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 90-94, Jeju Island,
Korea. Association for Computational Linguistics.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2020. mt5: A massively multilingual
pre-trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483—498, On-
line. Association for Computational Linguistics.

7828


https://aclanthology.org/P12-2018
https://aclanthology.org/P12-2018
https://aclanthology.org/P12-2018
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41

