Reasoning Makes Good Annotators : An Automatic Task-specific Rules Distilling Framework for Low-resource Relation Extraction

Yilin Lu, Juncheng Li, Xiaoqiang Wang, Haochen Shi, Tao Chen, Siliang Tang


Abstract
Relation extraction is often challenged by insufficient labeled data. Previous methods exploit knowledge from unlabeled data by generating pseudo labels in a self-training pipeline, which suffers a gradual drift problem. Logic rules, a transferable and explainable form of expert knowledge, have achieved promising success by improving the model with weak labels. But manually writing comprehensive rules set is challenging and tedious. To alleviate the human labor of writing high-quality rules, in this work, we propose ARIA, an Automatic task-specific Rules distilling framework. Specifically, we guide the pre-trained language model to reason rules as experts and compose them into robust compound rules for data labeling. Besides, ARIA could continuously enrich the rules set to power the labeling ability by discovering reliable model-labeled data for distinguishable rules generation. Experiments on two public datasets demonstrate the effectiveness of ARIA in a low-resource scenario.
Anthology ID:
2023.findings-emnlp.499
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2023
Month:
December
Year:
2023
Address:
Singapore
Editors:
Houda Bouamor, Juan Pino, Kalika Bali
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
7447–7457
Language:
URL:
https://aclanthology.org/2023.findings-emnlp.499
DOI:
10.18653/v1/2023.findings-emnlp.499
Bibkey:
Cite (ACL):
Yilin Lu, Juncheng Li, Xiaoqiang Wang, Haochen Shi, Tao Chen, and Siliang Tang. 2023. Reasoning Makes Good Annotators : An Automatic Task-specific Rules Distilling Framework for Low-resource Relation Extraction. In Findings of the Association for Computational Linguistics: EMNLP 2023, pages 7447–7457, Singapore. Association for Computational Linguistics.
Cite (Informal):
Reasoning Makes Good Annotators : An Automatic Task-specific Rules Distilling Framework for Low-resource Relation Extraction (Lu et al., Findings 2023)
Copy Citation:
PDF:
https://preview.aclanthology.org/landing_page/2023.findings-emnlp.499.pdf