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Abstract

The remarkable advancements in large lan-
guage models (LLMs) have significantly en-
hanced predictive performance in few-shot
learning settings. By using only a small number
of labeled examples, referred to as demonstra-
tions, LLMs can effectively perform the task at
hand through in-context learning. However, the
process of selecting demonstrations for maxi-
mizing performance has received limited atten-
tion in prior work. This paper addresses the is-
sue of identifying the most informative demon-
strations for few-shot learning by approaching
it as a pool-based Active Learning (AL) prob-
lem over a single iteration. We compare stan-
dard AL algorithms based on uncertainty, di-
versity, and similarity, and consistently observe
that the latter outperforms all other methods,
including random sampling. Our extensive ex-
perimentation involving a diverse range of GPT
and OPT models across 24 classification and
multi-choice tasks, coupled with thorough anal-
ysis, unambiguously demonstrates the impor-
tance of using demonstrations that are semanti-
cally similar to the domain of the test examples.
In fact, we show higher average classification
performance using “similar” demonstrations
with GPT-2 (124M) than random demonstra-
tions with GPT-Neox (20B). Notably, while
diversity sampling shows promise, uncertainty
sampling, despite its success in conventional
supervised learning AL scenarios, performs
poorly in in-context learning.

1 Introduction

The field of Natural Language Processing (NLP)
has recently witnessed a remarkable paradigm shift
with the emergence of in-context learning with
large language models (LLMs), also referred to
as few-shot learning (Brown et al., 2020). Tradi-
tionally, NLP systems heavily relied on supervised
learning approaches, where large amounts of la-
beled training data were necessary to achieve high

* Work done during an internship at FAIR, Meta.
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Figure 1: Performance of different in-context selection
algorithms in classification and multi-choice tasks.

predictive performance. However, in-context learn-
ing has changed this status-quo by enabling LLMs
to learn from limited, context-specific examples
and adapt to new tasks and domains with remark-
able proficiency (Zhao et al., 2021; Chowdhery
et al., 2022; Garcia et al., 2023; Wei et al., 2023b;
Touvron et al., 2023; Bubeck et al., 2023). Unlike
more traditional approaches, which require exten-
sive retraining or fine-tuning for every new task,
in-context learning empowers LLMs to general-
ize from a few examples that are fed to the model
through prompting to learn a new task at hand,
without any weight updates.

The data efficiency of few-shot in-context learn-
ing of LLMs is indeed remarkable with only a small
number of demonstrations.! Still, such demonstra-
tions constitute labeled data examples, raising two
key questions: (1) When faced with tasks where
there is only unlabeled data available, how can we
select the most appropriate samples to label and
then use as in-context demonstrations? (2) When
we have labeled data for a given task, how can

'We use the terms in-context examples, few-shot examples,
demonstrations, descriptors and exemplars interchangeably
throughout the paper.
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we efficiently identify the most informative combi-
nation of demonstrations for in-context learning?
Answering these questions is essential to ensure ef-
fective and efficient few-shot learning using LLMs.

A growing line of work has investigated how in-
context learning works (Reynolds and McDonell,
2021; Razeghi et al., 2022; Xie et al., 2022; Ye
et al., 2023b), which demonstrations to use (Liu
et al., 2022; Zhang et al., 2022b; Wu et al., 2022;
Kim et al., 2022), how to form the prompt (Zhao
etal., 2021; Lu et al., 2022; Yang et al., 2023) and
whether ground truth labels matter (Webson and
Pavlick, 2022; Min et al., 2022; Yoo et al., 2022;
Wang et al., 2022; Wei et al., 2023b). Still, to the
best of our knowledge, no prior work has explored
the problem of in-context demonstration selection
explicitly through the lens of active learning (AL).

Based on the core principle that not all data
points are equally useful, AL (Cohn et al., 1996;
Settles, 2009) aims to identify the most informa-
tive instances from a pool of unlabeled data for
annotation. Iterating through model training, data
acquisition and human annotation, the goal is to
achieve data efficiency. A data-efficient AL al-
gorithm ensures that a model achieves satisfactory
performance on a withheld test set by selecting only
a small fraction of the unlabeled data for annotation
that typically is better than randomly selecting and
annotating data of equal size.

In this paper, our main aim is to redefine the
concept of data efficiency within the framework of
in-context learning inspired by conventional active
learning settings. For this purpose, we assume
that given a pool of labeled or unlabeled data, the
objective is to identify a set of k examples that will
serve as demonstrations to an LLM, resulting in
optimal performance on a held-out test set. Given
this formulation of data efficiency, we explore the
effectiveness of the most prevalent AL approaches
based on uncertainty (Lewis and Gale, 1994; Cohn
et al., 1996; Gal et al., 2017), diversity (Brinker,
2003; Bod¢ et al., 2011; Sener and Savarese, 2018)
and similarity (Margatina et al., 2021; Kirsch et al.,
2021; Liu et al., 2022), as demonstration selection
methods for in-context learning (Figure 1).

Our key contributions are as follows:

* We formulate the selection of in-context ex-
amples as a single iteration AL problem and
explore the effectiveness of four standard ap-
proaches: uncertainty, diversity, similarity
and random sampling.

e We evaluate 15 models, between 125M and
30B parameters, from the GPT (Radford et al.,
2019; Brown et al., 2020; Black et al., 2022)
and OPT (Zhang et al., 2022a) families in 15
classification and 9 multi-choice tasks, using
different AL sampling techniques to select
demonstrations for few-shot learning.

* We demonstrate that while diversity and uncer-
tainty sampling perform slightly better than
random sampling, choosing in-context exam-
ples that are semantically similar to the in-
put test examples outperforms consistently all
other methods by a large margin across model
families and sizes in all tasks.

* We show that while uncertainty sampling is
one of the strongest AL approaches in super-
vised learning, this does not generalize to in-
context learning, where interestingly it under-
performs. Our analysis, however, shows that
larger models might perform better with uncer-
tain demonstrations, hinting that uncertainty
might be an emerging LLM ability.

2 Active In-context Learning

2.1 Problem Formulation

To build our in-context learning framework with
actively acquired demonstrations, depicted in Fig-
ure 2, we borrow the formulation from the standard
pool-based active learning paradigm. We consider
an AL setting where we have a large pool of unla-
beled data from which we want to sample a batch
of k data points using a data acquisition algorithm.
We assume that these k are subsequently labeled
by humans (Figure 2, top). Instead of following the
standard approach that involves multiple iterations
of data selection and model training, we only per-
form a single iteration (Longpre et al., 2022), since
we do not train or perform any model-in-the-loop
updates. We use the acquired set of k£ examples
as demonstrations for in-context learning with an
LLM (.e., as part of the prompt). We assume the
existing datasets as the pool from which to select
these k£ examples. The goal is to find the most
informative examples from the pool, which are ex-
pected to yield improved performance on the test
set when employed as a few-shot prompt, com-
pared to demonstrations randomly sampled from
the same pool. The resulting prompt consists of
the concatenation of the k acquired examples (text
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Figure 2: Top: Active data collection (single iteration). Bottom: Prompt construction and model inference.

inputs and labels with standard verbalizers), along-
side the test example, repeated for all data instances
in the test set (Figure 2, bottom).

2.2 Few-shot Data Acquisition Algorithms

We build few-shot data acquisition algorithms in-
spired by the most prevalent AL algorithmic fami-
lies that are uncertainty sampling, diversity
sampling and similarity (also known as test-
aware sampling) (Zhang et al., 2022c). We ac-
knowledge that there are more elaborate demon-
stration selection methods for in-context learning
that are not considered in our experiments, such
as Q-learning (Zhang et al., 2022b), Self Adaptive
(Wu et al., 2022), SG-ICL (Kim et al., 2022), MI
(Sorensen et al., 2022), inter alia. These methods
fall beyond the scope of our analysis, as our ob-
jective is to gain insights into AL principles for
in-context learning, rather than benchmarking all
available demonstration sampling algorithms. Ad-
ditionally, there are techniques, complementary to
the aforementioned few-shot data selection meth-
ods, such as calibration (Zhao et al., 2021) and
prompt re-ordering (Lu et al., 2022), which can fur-
ther enhance few-shot learning performance, while
also being out of the scope of our work.

Random The overarching objective of any data se-
lection method, like AL algorithms, is to identify
data points that, however used, yield superior mod-
els compared to randomly sampled data from the
same pool which we consider as a baseline method.

Diversity The first data selection method that
we use as a representative for the diversity family
of methods is a simple clustering technique, similar

to Yu et al. (2022). Specifically, we first encode
all data points in the pool of unlabeled data with
Sentence-BERT (Reimers and Gurevych, 2019)
embeddings and then we perform k-means cluster-
ing.> We choose the number of clusters to be & and
select one data point from each cluster. The under-
lying principle of this approach is that leveraging a
diverse set of in-context examples can offer greater
advantages compared to random sampling. This
selection strategy ensures that the chosen demon-
strations are likely to encompass a broad range of
information, enhancing the overall effectiveness of
the learning process.

Uncertainty The second approach is an
uncertainty-based sampling algorithm that is based
on SPELL, proposed by Gonen et al. (2022). Since
we use an off-the-shelf LL.M that does not have a
fine-tuned classification layer, we cannot compute
the model probabilities associated with each class
(for a classification or multi-choice task). This
essentially means that we cannot use standard AL
uncertainty baselines such as maximum entropy
or least confidence. Instead, we can use the
loss, i.e., perplexity, of the LLM to score each
candidate example from the pool. Gonen et al.
(2022) define perplexity of the prompt as the
perplexity of the full prompt sequence, including
the input itself, and without the label, averaged
over 1,000 examples. Our approach is different
since we want to evaluate the perplexity of each
in-context example individually. We also do not
do the averaging over a thousand examples as we
wanted to make the method more general, without

*We use the implementation from https://www.sbert.
net/examples/applications/clustering/.
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the need to assume access to that many examples.
The underlying principle guiding this approach is
the belief that a high perplexity set of in-context
examples can yield greater advantages compared
to randomly sampling from the dataset (or at least
for data efficiency in a supervised learning setting
this is proven to enhance the learning process).

Similarity Finally, the third AL algorithm we
consider is based on KATE a kNN-augmented in-
context example selection method proposed by Liu
et al. (2022). This method retrieves examples from
the pool that are semantically-similar to a test query
sample. We use Sentence-BERT (Reimers and
Gurevych, 2019) representations of both the pool
and the test set to find the k-nearest neighbours.
The rationale behind this approach is that the most
similar demonstrations to the test example will best
help the model answer the query. We have to high-
light, however, that by definition each test example
will have a different prompt, as the k£ most similar
demonstrations will be different. This is a crucial
limitation of this approach compared to the others,
as it assumes that we are able to acquire labels for
any in-context example selected from the pool.

3 Experimental Setup

Models We evaluate 15 LLMs in total, 8 mod-
els from the GPT (Radford et al., 2019; Brown
et al., 2020; Black et al., 2022) and 7 from the
OPT (Zhang et al., 2022a) family. We choose our
models to span from a few million to tens of billions
parameters, as we want to study how the model size
affects the effectiveness of in-context example se-
lection methods. All models considered in this
work are publicly available.

Tasks & Datasets Following Min et al. (2022),
we evaluate all LLMs in 15 classification and 9
multi-choice tasks taken from the Crossfit (Ye
et al., 2021) benchmark. We provide details for all
tasks and datasets considered in the Appendix A.1.

In-context Learning Prompting Unless speci-
fied otherwise, we sample k=16 demonstrations,
i.e., labeled data, from the pool with each AL
method. After collecting the k input-label pairs,
we concatenate them all together with the test ex-
ample that we want to make a prediction for to form
the LLM prompt (Figure 2). Our implementation,
including prompt verbalizers, is based on those by
Min et al. (2022) and Yoo et al. (2022).

4 Results

Figure 3 shows the results on few-shot in-
context learning across all data acquisition meth-
ods (random, diversity, uncertainty and
similarity), model families (GPT and OPT) and
tasks (classification and multi-choice question an-
swering).> Overall, we observe the anticipated
trend of performance enhancement with increas-
ing scale, particularly notable in the multi-choice
tasks for both OPT and GPT models.

Still, the most remarkable finding is the sub-
stantial performance improvement achieved by se-
lecting similar in-context examples for few-shot
learning, particularly in classification tasks. This
observation aligns with the findings reported by Liu
et al. (2022), who demonstrated similar patterns in
sentiment analysis tasks with GPT-3. Our results
indicate that the selection of appropriate demonstra-
tions can hold greater significance than the number
of model parameters, at least within the scope of
the models evaluated in this study. In multi-choice
tasks, similarity is also the top-performing ac-
quisition method, while the other three approaches
exhibit closely competitive performance.

The data selection method based on diversity
is consistently the second best approach after
similarity (with very few exceptions in the multi-
choice tasks for OPT models). Even though it is
not the top performing method, we can consider
that consistently outperforming random sampling
is a strong signal that diversity in the demonstra-
tions is a characteristic of effective demonstrations.
Levy et al. (2022) explore the setting of composi-
tional generalization, where models are tested on
outputs with structures that are absent from the
training set and thus selecting similar demonstra-
tions is insufficient. They show that combining
diverse demonstrations with in-context learning
substantially improves performance for the task of
compositional generalization semantic parsing.

Remarkably, uncertainty sampling, typically
regarded as one of the best approaches for tradi-
tional supervised AL (Shen et al., 2017; Margatina
et al., 2022; Schroder et al., 2023), exhibits the
lowest performance. This finding contradicts the
conventional AL principles that suggest selecting
a few highly uncertain labeled data points for data
efficiency. Similar to our findings, Gonen et al.
(2022) explore the performance variabilty of dif-

3We provide the results per dataset and model in the Ap-
pendix A.2, including the majority vote baseline.
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Figure 3: Results for various GPT (top) and OPT (bottom) models and AL methods averaged over 15 classification
and 9 multi-choice tasks. Similarity is consistently the best performing approach overall, followed by diversity and
random. Interestingly, we observe that uncertainty sampling underperforms in this setting of in-context learning.

ferent prompts (consisting of randomly sampled
demonstrations) for in-context learning using un-
certainty, and find that the lower the perplexity of
the prompt is, the better the prompt is able to per-
form the task. Still, in a later analysis we show that
larger models might be able to handle high uncer-
tain prompts better than the smaller ones (§5.4).

5 Analysis
5.1 Effect of Model Size

In order to gain some intuition on the effect of
scale, we group together GPT and OPT models
with similar number of parameters. We provide
the results in Figure 4. Even after aggregating the
results from both model families, we do not see any
specific pattern as the model parameters increase.
We wanted to explore whether the largest models of
our collection would behave differently under the
varying in-context learning settings, thus perhaps
attributing such a behaviour to potential emergent
abilities of the bigger LLMs, but we observe the
same patterns (in terms of ranking between the
considered data selection methods). We believe
that this is an interesting avenue of future research,

especially as models grow and, most likely, will
continue to grow exponentially in terms of model
parameters. Our findings show that the in-context
learning ability of models from a few millions to a
few billions of parameters follows similar patterns.
However, this might not be the case when studying
even larger models, as primary results hint (Rae
et al., 2022; Wei et al., 2023b; Chowdhery et al.,
2022; Touvron et al., 2023).

5.2 Ground Truth Demonstrations

We next delve into the debate of whether ground
truth demonstrations, i.e., providing the correct la-
bel to the in-context examples, is crucial for high
performing in-context learning. Various findings
have shown mixed results for randomly sampled
data, which essentially means that the benefit of
ground truth labels depends on the label space or
the distribution of inputs specified by the demon-
strations (Min et al., 2022; Yoo et al., 2022). In
our analysis, we differentiate from prior work by
exploring the importance of ground truth demon-
strations in the case of leveraging similar in-context
examples (§2.2). The rationale is that if the find-
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Figure 5: Effect of ground truth labels on in-context
learning with with the similarity AL selection method.

ings of Min et al. (2022) ubiquitously hold, then
the performance should only marginally drop if we
replace ground truth labels with random ones. If
the high performance of the similarity acquisi-
tion method can be retained, we would be able to
construct an efficient and effective in-context se-
lection algorithm that would be agnostic to correct
labels. However, we find that this is not the case.
We show in Figure 5 that for almost all datasets
considered in this part of analysis, the performance
with random labels drops significantly as expected.
There are cases where replacing the original labels
with random ones as in Min et al. (2022) retains the
same performance (e.g., in the glue-rte dataset),
but this is certainly a finding that does not general-
ize overall. In summary, we find that ground truth
demonstrations are crucial for high performing, ro-
bust in-context learning (Yoo et al., 2022).

5.3

To investigate the striking effectiveness of the sim-
ilarity-based acquisition strategy, we conduct ad-
ditional experiments where we invert the approach

Most vs. Least Similar Demonstrations

and choose the least similar examples from the
pool to form the prompt. This investigation aims
to ascertain whether the remarkable performance
gains can be attributed solely to the semantic simi-
larity between the demonstrations and the test input.
The results depicted in Figure 6 substantiate our hy-
pothesis, demonstrating a significant performance
drop when employing opposite examples from the
pool as in-context exemplars. While this pattern is
particularly pronounced in the classification tasks,
it consistently emerges across different model sizes
and task types. Hence, we can assert that maximiz-
ing semantic similarity between the demonstations
and the input test sample is an unequivocally vital
attribute for achieving successful in-context learn-
ing outcomes with LLMs. Future endeavors in the
field of building effective in-context learning frame-
works should incorporate this principle to enable
data-efficient algorithms that can fully harness the
potential of LLMs.

5.4 Most vs. Least Uncertain Demonstrations

Along these lines, we also opt to examine the dual-
ity between selecting the most or the least uncertain
in-context examples from the pool. We show the
results of these experiments for the GPT models
in Figure 7. Interestingly, we observe that while
the smaller language models (gpt2, gpt2-medium,
gpt-large) perform better with the least uncertain
prompts, the larger models seem to start benefit-
ing from the demonstrations with high uncertainty.
This is particularly clear in the largest model of our
collection, GPT-Neox (20B parameters). This inter-
esting finding shows that even larger models will
most likely perform better with high entropy in-
context examples, similar to their supervised learn-
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Figure 7: Most vs. least uncertain in-context examples.

ing counterparts. Such findings open a plethora of
research questions regarding understanding how in-
context learning works (Reynolds and McDonell,
2021; Razeghi et al., 2022; Xie et al., 2022; Min
et al., 2022), how AL and data acquisition methods
reshape with larger language models or whether we
can properly investigate potential emergent abili-
ties of LLMs acquired by model scaling (Wei et al.,
2022; Schaeffer et al., 2023).

5.5 Evaluation with Different Metrics

Finally, we want to provide a clear overview of our
experiments and summary of our findings, while
making some clarifications regarding how we evalu-
ate and compare different approaches to in-context
learning. Figure 8 shows the results for in-context
learning with random sampling, three data selec-
tion techniques inspired by AL (§2.2), namely
diversity, uncertainty and similarity, and
a zero-shot baseline where no labeled examples are
included in the prompt (no_demo). We show that in-
context learning with k=16 demonstrations consis-
tently outperform zero-shot learning for an average
of 15 classification tasks for gpt2-large, gpt-j
and gpt-neox. Next, we observe that the best
performing in-context example selection method
is by a clear margin similarity, followed by
diversity. This finding corroborates the origi-
nal hypothesis of AL that, indeed, not all data is
equal and there exist more informative data subsets

in the pool that can be used as in-context exemplars.
We can see that the uncertainty baseline, which
is usually top performing in supervised AL, gen-
erally underperforms in the few-shot setting. Still,
there is some evidence that this could change with
even larger and better models (§5.4). Finally, delv-
ing into the debate on whether ground truth labels
matter or not (Min et al., 2022; Yoo et al., 2022),
we show that replacing original with random in-
context labels hurt significantly the performance of
similarity, the best data selection method (§5.2).

We further emphasize the significance of em-
ploying a meticulous evaluation framework, partic-
ularly in the selection of appropriate metrics. In
Figure 8, we illustrate the same classification ex-
periments, but with the Fj score plotted on the
left and accuracy on the right. The use of F1,
the conventional metric for classification tasks,
reveals a distinct ranking among the various AL
methods, with similarity exhibiting the best per-
formance, followed by diversity. Conversely,
when employing accuracy to compare the methods,
diversity emerges as the top approach, followed
by similarity and random selection. This dispar-
ity highlights the potential for misconceptions or
obscured findings, underscoring the need for cau-
tion when evaluating and comparing different meth-
ods across various models within the in-context
learning framework (Dehghani et al., 2021; Min
et al., 2022; Yoo et al., 2022; Tedeschi et al., 2023).

6 Related Work

6.1 Understanding In-Context Learning

Few-shot in-context learning with LLMs has gar-
nered significant attention in recent NLP research.
Simply concatenating a few labeled examples to
form the prompt for the LLM results in high perfor-
mance gains, even outperforming fine-tuned mod-
els (Brown et al., 2020; Chung et al., 2022; Ouyang
et al., 2022; Dong et al., 2022). This has naturally
lead to study its effectiveness with multiple few-
shot learning benchmarks such as Crossfit (Ye
et al., 2021) and BigBench (Srivastava et al., 2022).

Another active area of research is on understand-
ing how in-context learning works (Xie et al., 2022;
Garg et al., 2022; Akyiirek et al., 2022; Xie et al.,
2022; Pan et al., 2023), and what are its strengths
and limitations (Webson and Pavlick, 2022; Jang
et al., 2022; Levy et al., 2022; Shi et al., 2022;
Agrawal et al., 2022; Wei et al., 2023b; Ye et al.,
2023b). Previous work has explored the effec-
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Figure 8: The ranking of data selection methods is different depending on the metric used.

tiveness of the chain-of-thought prompting tech-
nique (Wei et al., 2023a; Wang et al., 2022; Madaan
and Yazdanbakhsh, 2022), while other studies try
to determine the importance of in-context ground
truth labels, with Min et al. (2022) showing that
random labels do not hurt performance consider-
ably and Yoo et al. (2022) providing a rebuttal. Wei
et al. (2023b) explain that model size plays an role
in the effect of ground truth labels, showing that
small LMs ignore flipped labels, while LLMs can
override semantic priors learned during pretraining.
Interestingly, Razeghi et al. (2022) demonstrates
that in-context learning performance is highly cor-
related with the prevalence of each instance in the
pretraining corpus, showing that models are more
accurate on few-shot numerical reasoning on in-
stances whose terms are more frequent.

6.2 Selecting Informative Demonstrations

Typically, work on evaluating LL.Ms in few-shot
settings commonly uses randomly sampled exam-
ples to compose the in-context prompt (Brown
et al., 2020; Zhang et al., 2022a; Chowdhery
et al., 2022; Chung et al., 2022; Touvron et al.,
2023). Nonetheless, it has been demonstrated that
the effectiveness of few-shot performance signif-
icantly depends on the selection of in-context ex-
amples (Kocielnik et al., 2022; Ye et al., 2023a;
Diao et al., 2023; Xu et al., 2023). Consequently,
there is ongoing research on generating or select-
ing the most informative demonstrations, aiming to
maximize the downstream few-shot performance.
Some approaches are based on a retrieval compo-
nent that sources the most relevant examples from
a pool. The prompt retriever can be trainable (Ru-
bin et al., 2022) or based on pretrained embed-
dings (Liu et al., 2022; Agrawal et al., 2022). Go-
nen et al. (2022) use uncertainty to evaluate the use-

fulness of in-context examples and find that the best
performing prompts have low perplexity. Zhang
et al. (2022b) formulate example selection for in-
context learning as a sequential decision problem
and show modest performance improvements by
acquiring data with their proposed method based
on reinforcement learning. Other previous work,
instead of focusing on the part of acquiring data for
in-context learning, show that demonstration order-
ing (Lu et al., 2022) and model calibration (Zhao
et al., 2021) are additional properties that influence
the few-shot learning performance.

6.3 Active Learning for NLP

AL has been extensively studied in various NLP
tasks, including machine translation (Miura et al.,
2016; Zhao et al., 2020), natural language infer-
ence (Snijders et al., 2023), named entity recog-
nition (Shen et al., 2017; Wei et al., 2019), and
text classification (Ein-Dor et al., 2020; Margatina
et al., 2022; Schroder et al., 2023), among others.

Still, its importance and potential value is on the
rise (Zhang et al., 2022¢; Rauch et al., 2023), as the
current language model pretraining paradigm con-
tinues to advance the state-of-the-art (Tamkin et al.,
2022). Given the fundamental premise that“not all
data is equal” it is reasonable to expect researchers
to actively seek the “most informative” data for
pretraining or adapting their large language models
(LLMs), as well as identifying the most valuable
in-context examples for few-shot learning scenar-
ios. Previous work has explored AL for prompt-
based finetuning (Kd&ksal et al., 2022), proposing
a method based in inter-prompt uncertainty sam-
pling with diversity coupled with the PET archi-
tecture (Schick and Schiitze, 2021a,b) that outper-
forms all AL baselines.
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7 Conclusion

In this study, we have examined the selection of
demonstrations, i.e., labeled data that provide ex-
amples of solving a task, for in-context learning
with LLMs. We formulated the selection process
as a single iteration active learning problem and
evaluated four standard approaches: uncertainty,
diversity, similarity, and random sampling.
Our evaluation involved 15 models of varying
size from the GPT and OPT families, encom-
passing 15 classification tasks and 9 multi-choice
tasks. Through extensive experimentation, we have
demonstrated that selecting demonstrations that are
semantically similar to the test input examples con-
sistently outperforms all other methods by a signif-
icant margin across all model families, sizes, and
tasks. This corroborates findings of several previ-
ous and concurrent studies that explore the proper-
ties of “good” in-context examples (Liu et al., 2022;
Shi et al., 2022). Interestingly, our findings reveal
that uncertainty sampling, although effective in su-
pervised learning, underperforms in the in-context
learning paradigm. This highlights the importance
of our work in exploring the principles of active
learning in the context of few-shot learning.
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Limitations

Tasks & Datasets We acknowledge that even
though we experimented with a well established
benchmark, the Crossfit (Ye et al.,, 2021)
benchmark consisting of 15 classification and
9 multi-choice question answering datasets (Ap-
pendix A.1), it might still not be sufficient to ensure
that our findings will generalize to any NLP clas-
sification or multi-choice application of in-context
learning.

Language We also acknowledge that all the
datasets and models considered in this work are
based on the English language alone. This limits
generalizability of our findings to other languages.

Model scale We investigated in-context learning
with actively acquired demonstrations with 15 GPT

and OPT models that span 125M to 30B param-
eters. Even though our experimentation is thor-
ough, our findings might not generalize to larger
or smaller transformer-based models, or models
based in a different architecture.

Active learning considerations We explicitly
note in the paper that we do a single active learning
iteration, which is different than the common AL
loop that consists of multiple iterations. As we ex-
plained, because the model-in-the-loop (the LLM)
is not updated (no fine-tuning) with new data, per-
forming multiple iterations does not make sense
in this context (Figure 2). Still, it would be inter-
esting for future work to explore how we can per-
form multiple AL iterations while constructing the
prompt (i.e., acquiring the demonstrations). The
upper bound would be to try all the combinations
of a set of labeled data and find the best performing
prompt. However, doing this with unlabeled data,
in an efficient way, is far from trivial. We refer to
Zhang et al. (2022c); Treviso et al. (2023); Mar-
gatina and Aletras (2023) for in-depth suggestions
for future work in this area.
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Figure 9: Results per model family.

A Experimental Details

A.1 Tasks & Datasets

Following Min et al. (2022), we evaluate our
models in 15 classification and 9 multi-choice
tasks taken from the Crossfit (Ye et al., 2021)
benchmark. Specifically the tasks we evaluate are
poem_sentiment (Sheng and Uthus, 2020), glue-
wnli (Wang et al., 2019; Levesque et al., 2012),
climate_fever (Diggelmann et al., 2020), glue-
rte (Wang et al., 2019), superglue-cb (de Marn-
effe et al., 2019), sick (Minaee et al., 2021), medi-
cal_questions_pairs (McCreery et al., 2020), glue-
mrpc (Wang et al., 2019; Dolan and Brockett,
2005), hate_speechl8 (de Gibert et al., 2018),
ethos-national_origin (Mollas et al., 2022), ethos-
race (Mollas et al., 2022), ethos-religion (Mollas
et al., 2022), tweet_eval-stance_atheism (Barbieri
et al., 2020), tweet_eval-stance_feminist (Barbi-
eri et al., 2020) and quarel (Tafjord et al., 2019a),
openbookga,qasc (Khot et al., 2020), common-
sense_qa, ai2_arc (Clark et al., 2018), codah (Chen
et al., 2019), superglue-copa (Gordon et al., 2012),
quartz-with_knowledge (Tafjord et al., 2019b),
quartz-no_knowledge (Tafjord et al., 2019b), for
classification and multi-choice respectively.

A.2 Full results

We provide below the full set of results, for each
dataset, model and active learning acquisition strat-
egy considered. The dashed line depicts the major-
ity vote baseline.

A.3 Model Family

We provide the results on few-shot learning with
k=16 demonstrations per prompt per model family
and task type in Figure 9. We observe the same
patterns for both GPT and OPT models.
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