
Findings of the Association for Computational Linguistics: EMNLP 2023, pages 3355–3367
December 6-10, 2023 ©2023 Association for Computational Linguistics

SWEET: Weakly Supervised Person Name Extraction for Fighting Human
Trafficking

Javin Liu∗

University of Southern California
Mila – Quebec AI Institute

Hao Yu∗

Vidya Sujaya∗

Pratheeksha Nair
Kellin Pelrine

Reihaneh Rabbany
McGill University

Mila – Quebec AI Institute

Abstract
In this work, we propose a weak supervision
pipeline SWEET: Supervise Weakly for Entity
Extraction to fight Trafficking for extracting
person names from noisy escort advertisements.
Our method combines the simplicity of rule-
matching (through antirules, i.e., negated rules)
and the generalizability of large language mod-
els fine-tuned on benchmark, domain-specific
and synthetic datasets, treating them as weak
labels. One of the major challenges in this do-
main is limited labeled data. SWEET addresses
this by obtaining multiple weak labels through
labeling functions and effectively aggregating
them. SWEET outperforms the previous su-
pervised SOTA method for this task by 9% F1
score on domain data and better generalizes to
common benchmark datasets. Furthermore, we
also release HTGEN, a synthetically generated
dataset of escort advertisements (built using
ChatGPT) to facilitate further research within
the community.

1 Introduction

Over 6.3 million people worldwide are victims
of forced sexual exploitation or human trafficking
(HT) on any given day (International Labour Orga-
nization), and the majority of the victims have been
advertised online (Polaris, 2021; MINOR, 2015)
through escort websites (Rhodes, 2016). HT is an
organized crime and traffickers tend to advertise
multiple victims simultaneously. Hence, finding
connections between online escort advertisements
hints towards them being posted by the same indi-
vidual and strongly indicates organized activity.

Several methods have previously taken the ap-
proach of uncovering connections between ads by
looking for repeated phrases, phone numbers, lo-
cations, prices, service types, etc., in the text (Lee
et al., 2021; Tong et al., 2021; Rabbany et al., 2018).
Hence, efficient entity extractors must extract accu-
rate and relevant information from ad text (Nagpal
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et al., 2017; Li et al., 2022; Kejriwal et al., 2018;
Kejriwal and Kapoor, 2019). However, this is very
challenging because the text is often noisy, ungram-
matical, and obscured. Information related to the
names of individuals, services, locations, etc, often
have letters replaced by symbols or emojis. The
writing style constantly evolves and is made ad-
versarial to avoid detection by online filters and
moderators.

Based on discussions with domain experts, in-
cluding criminologists, law enforcement, and other
groups fighting trafficking, it was determined that
extracting advertised names from the ads is partic-
ularly important. Traffickers tend to control, on
average, four to six victims and often post adver-
tisements on their behalf (Thorn, 2015). Hence,
multiple people being advertised in the same or
similar ads is a strong indicator of trafficking (Lee
et al., 2021). Other entities such as locations, phone
numbers and email addresses could also be informa-
tive. However, most websites have explicit fields
for these entities which makes them more straight-
forward to extract. The same is not true for person
names which are usually embedded inside the text
of the ads and are much more complex to extract.

Traditional extraction methods, such as the
embedding-based Flair (Akbik et al., 2018a) and
Spacy NLP models, do not do well on this type of
data because they are sensitive to noise and tend to
decrease in performance as more noise is injected
into the data (Li et al., 2022). NEAT (Li et al., 2022)
stands as the current SOTA name extractor in this
domain and uses an ad-hoc combination of a name
dictionary, a rule dictionary, and a BERT-based dis-
ambiguation layer. Moreover, NEAT relies on a
sample of manually labeled data to provide optimal
results. This is a challenge because the relevant
datasets for this task are typically curated in-house
and not shared publicly due to their sensitive nature.
Similar constraints also apply to methods such as
crowd-sourcing.
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To address these challenges, we propose a
weakly supervised method SWEET (Supervise
Weakly for Entity Extraction to fight Trafficking)1,
that efficiently extracts person names from escort
ads and is independent of training labels. We define
label-independence in the scope of our work as not
requiring domain or task-specific labels. SWEET
uses a novel combination of fine-tuned language
models (elucidated in Section 3), antirules, and
an HMM-based method of aggregating them. Our
contributions are:

• Novel: We study the problem of name extraction
from noisy text through the novel lens of weak
supervision and propose a new method.

• Effective: The proposed method SWEET is very
effective and outperforms the previous SOTA in
person name extraction on domain data by 9%
F1 score.

• Label-efficient: SWEET leverages weak labels
that are easy and cheap to obtain. This is very
useful in several real-world applications, particu-
larly in the HT domain, where obtaining labels
is expensive and challenging due to the sensitive
nature of the data.

• Improving reproducibility: We also introduce
HTGEN, a synthetically generated dataset of es-
cort ads which, unlike the real-world datasets
used in papers in this domain, can be published
for further research and helps with reproducibil-
ity.

2 Background

In this section, we cover the background informa-
tion and related works necessary to understand this
paper’s context better.

Named Entity Recognition Named Entity
Recognition (NER) is the task of identifying el-
ements in the text that correspond to high-level
categories like PERSON, ORGANIZATION, LO-
CATION, DATES, and other concrete concepts that
can be explicitly named. The NER task aims to ex-
tract all occurrences of such entities. In this paper,
the focus is on human names because they are most
associated with an HT victim and names are the
most common entity type to appear in escort ads.

1Our code is available at https://github.com/ComplexData-
MILA/HT-NER

Entity extraction from escort ads This is an
important task that involves identifying and extract-
ing named entities from a given ad. Rule-based
models typically rely on regular expressions, hand-
crafted rules, and gazetteer-based approaches. For
person names, NEAT (Li et al., 2022) is the SOTA
method that combines a gazetteer (person name dic-
tionary) with a regular expression extractor (rule
dictionary) and a RoBERTa (Liu et al., 2019) based
disambiguation layer called HT-bert. Such rule-
based systems were shown(Li et al., 2022) to have
a better performance over statistical models (De-
vlin et al., 2018; Peters et al., 2018; Liu et al.,
2019) on the noisy escort ads dataset. However, on
benchmark NER datasets, NEAT performs much
worse. This is a likely result of its rule-based com-
ponents designed to capture patterns in escort ads.
Rule-based approaches can also be complemen-
tary to statistical-based approaches. In other do-
mains, (Ratinov and Roth, 2009) argued that the
NER task relies highly on external knowledge and
shows that a statistical model combined with a rule-
based gazetteer match makes a better-performing
hybrid model.

Weak supervision Since we consider multiple
sources of weak labels for our task, we rely on
a popular weak-supervision framework, Skweak,
for label aggregation and learning. Skweak (Li-
son et al., 2021) is a Python-based weak supervi-
sion framework made specifically for NER tasks.
It works together with the Spacy library (Honni-
bal et al., 2020), allowing users to create labeling
functions (LFs) that label an input text token as a
type of entity and facilitates downstream process-
ing. Skweak provides a variety of different LF
types: heuristics, gazetteers and document-level
functions allowing us to easily combine weak sig-
nals from our proposed combination of rule based
systems and LLMs. These make Skweak a better
choice compared to other weak label aggregators
such as Snorkel (Ratner et al., 2016). The labels
obtained from these LFs are later aggregated using
a Hidden Markov Model (HMM).

The HMM’s states and observations correspond
to the true labels and LF outputs respectively.
Skweak relies on a majority vote strategy (where
each LF is a voter) to get a predicted label. This
is then used to calculate the HMM’s initial tran-
sition and emission probabilities, which are then
updated until convergence using the Baum-Welch
algorithm. To account for possible dependencies
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between LFs, Skweak tempers the probability den-
sity (weight) of an LF depending on its redundancy.
It decreases the weight of an LF that produces a
label of type ‘PERSON’, for example, if it shows
high recall with other LFs that also produce ‘PER-
SON’ labels (high overlap in predictions). Post ag-
gregation, a separate classifier model can be trained
on the HMM’s aggregated results and used directly
on other datasets without requiring the LFs or the
HMM.

Large Language Models Recent works (Gilardi
et al., 2023; Huang et al., 2023a) have shown that
ChatGPT can be used as a data annotator and ad-
dresses ethical concerns regarding using human
labelers on datasets that contain sensitive informa-
tion. We experimented with using ChatGPT to
extract person names from ads and used this la-
beled set to fine-tune BERT-based models as LFs
in our framework.

We also experimented with using ChatGPT for
generating escort ads to create an additional do-
main dataset. It has been shown that LLMs like
ChatGPT exhibit stochastic behaviours (Bender
et al., 2021) and are susceptible to biases from the
real world internet data it was trained on. Recently,
several works (Li et al., 2023) (Liu et al., 2023)
have demonstrated effective jailbreak techniques
that bypass the content filters that are imposed on
ChatGPT to limit the level of bias and toxic lan-
guage output by ChatGPT. (Carlini et al., 2021)
could also extract training data directly from GPT
LLMs.

3 Methodology

In this paper, we introduce a hybrid weakly su-
pervised Skweak-based model that uses both rule-
based approaches (such as "antirules" detailed be-
low) and statistical-based approaches (such as De-
BERTa and RoBERTa models trained on different
NER datasets) as labeling functions and combine
them into a single, more effective predictor. Our
methodology pipeline is in Figure 1.

The proposed weak supervision pipeline in
SWEET consists of 2 main types of LFs:

1. Antirules: Rules that determine entities as not
person-names. The top X% most frequent words
of the dataset (X ∈ {10, 20, 30, 40, 50}) are an-
notated as “NOT_NAME”, resulting in 5 antir-
ule LFs in total. The antirules help counteract
possible noise.

2. Fine-tuned Models: We fine-tune base versions
of RoBERTa (Liu et al., 2019) and DeBER-
Tav3 (He et al., 2021) for the task of Named
Entity Recognition on six different datasets,
namely: the train splits of CoNLL2003 (Tjong
Kim Sang and De Meulder, 2003), WNUT2017
(Derczynski et al., 2017), Few-NERD (Ding
et al., 2021) (Only Level 1), WikiNER (English)
(Nothman et al., 2012), a domain dataset la-
belled by ChatGPT called HTUNSUP, and a
domain dataset generated and labeled by Chat-
GPT called HTGEN. The details and labeling
method of HTUNSUP are provided in Section
4.6 and Appendix A, respectively. In total, 12
fine-tuned models (one per dataset and model
type) act as LFs in SWEET. Any word pre-
dicted by a fine-tuned model, that matches a
white-space-separated word in the ad text, gets
annotated as a “PERSON_NAME” according to
that LF.

Using the Skweak framework, we fit an HMM
on the annotated train set and apply the fitted model
on the annotations to obtain a final set of aggregated
labels. The HMM’s initial parameters are obtained
using a majority voter that treats each LF as a voter
of equal weight to get a predicted label.

We also experimented with using the three com-
ponents of previous SOTA NEAT (Li et al., 2022)
as LFs but ultimately found it did not boost perfor-
mance (see NEAT (Weakly Supervised) in Table
3). Specifically, we considered:

1. Context Rules: extract person names based on
part-of-speech (POS) tags and common phrases
that include names. The rules consist of regular
expressions that work to capture the most com-
mon contexts where names are seen. (eg. I’m
NNP, My name is NNP, You can call me NNP).

2. Name Dictionary: common names with con-
fidence scores tuned based on frequency in in-
domain data. These names are used in gazetteer
matching, where the names are used as the
gazetteer and the pipeline, given a word in a
sentence, will check if it is a word in this dictio-
nary/gazetteer.

3. Word Disambiguation: filters results of the
weighted output of rule and dictionary extrac-
tor with the help of a DeBERTaV3 model that
was fine-tuned for the task of masked language
modeling on a domain dataset (Li et al., 2022).
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Figure 1: SWEET Architecture

During the training of the DeBERTaV3 model,
individual words are masked and the task for
the model is to predict these masked words. A
word’s context is passed to the fill mask, and the
number of correct predictions (the number of
predictions by the fill mask that is in the name
dictionary) is divided by the total number of
predictions by the fill mask to get a confidence
score for the disambiguation.

4 Datasets

To fine-tune SWEET LFs, we used 4 open-source
datasets, namely the training sets of CoNLL2003,
WNUT2017, FewNERD-L1, and WikiNER-en,
and 2 escort ad datasets, namely HTUNSUP and
HTGEN. To evaluate SWEET, we used the test
sets of CoNLL2003, WNUT2017, BTC, Tweebank
and an escort ad dataset called HTNAME. We also
generated a domain dataset HTGEN whose train
set was used for fine-tuning LFs and test set was
used for evaluating SWEET. We provide the dataset
statistics in Table 1, and the descriptions below.

4.1 CoNLL2003

CoNLL2003(Tjong Kim Sang and De Meulder,
2003) is a very popular baseline for evaluating the
performance of different NLP systems and algo-
rithms. Our experiments use CoNLL2003 data
from the HuggingFace which is in English. For
evaluation, we only consider the name annotations
(i.e, B-PER and I-PER) and ignore other entity
classes.

4.2 WNUT2017

WNUT2017(Derczynski et al., 2017) consists of
user-generated text and contains many examples
of informal language, abbreviations, misspellings,
and other noisy characteristics. Due to this, models
tend to have lower recall values on WNUT2017.

Similar to CoNLL2003, we use only the B-PER
and I-PER classes for evaluation.

4.3 Broad Twitter Corpus (BTC)

The Broad Twitter Corpus (BTC) (Derczynski et al.,
2016) dataset is a large, diverse, and high-quality
annotated corpus, created for the development and
evaluation of NER in social media. BTC includes
tweets from different regions, time periods, and
types of Twitter users. It was annotated by a combi-
nation of NLP experts and crowd workers, ensuring
both high quality and crowd recall.

4.4 Tweebank

Tweebank(Jiang et al., 2022) was developed to ad-
dress the challenges of analyzing social media data,
specifically Twitter messages through NER and
syntactic parsing. The researchers created a new
English NER corpus called Tweebank-NER based
on Tweebank and annotated it using Amazon Me-
chanical Turk.

4.5 HTNAME

This is a modified version of the HT1k dataset
from (Li et al., 2022) consisting of 995 escort
advertisements in English and French, where we
rectified three main types of labeling errors.
1. Parsing issues - in cases where the first name

and last name were joined as a single string
(FirstNameLastName) were not correctly anno-
tated as “FirstName, LastName”.

2. Apostrophe issue - cases where an extra s is
added to the name. Examples like ‘Mizz Mer-
cede’s parlour’ was wrongly annotated as ‘Mer-
cedes’ (the s should not be included as the
name).

3. Blank labels - a significant number of examples
were missing true labels. We manually added
the missing labels and reintroduce this dataset
as HTNAME.
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Dataset Train Size Test Size Total Size Batch Size
CoNLL2003 14041 3453 17494 128
WNUT2017 3394 1287 4681 128
FewNERD-L1 131767 18824 150591 32
WikiNER-en 129907 14435 144342 128
BTC - 2002 - -
Tweebank - 1201 - -
HTNAME - 995 995 -
HTUNSUP 6160 - 6160 32
HTGEN 9424 818 10242 32

Table 1: Statistics of the datasets used. The grayed-out
numbers indicate that the test sets are not used in our
experiments.

4.6 HTUNSUP

HTUNSUP was gathered by us from private es-
cort websites and has around 6000 ads. Multiple
recent works have shown that ChatGPT’s strong
performance on text related tasks makes it a strong
candidate for automatic labeling of certain types
of data (Huang et al., 2023b; Mei et al., 2023; Zhu
et al., 2023). Additionally, due to its outstanding
performance on HTNAME (Table 2), we use it to
generate pseudo labels for HTUNSUP, which we
treat as ground-truth.

Weak Labeling of HTUNSUP We used the Chat-
GPT API (gpt-3.5-turbo) to extract person-name
entities from ads. The average token count includ-
ing the prompt, ad and response was 263. Due
to content moderation and dialogue optimization,
on encountering improper or explicit text (as in the
case of escort ads), ChatGPT responds incoherently
and for such cases, we return “no entity detected”.

The prompt used was: "I want you to act as a
natural and no-bias labeler, extract human names
and location or address and social media link or
tag in the format ‘Names: \nLocations: \nSocial:

’. If multiple entities exist, separate them by |. If no
entity exists, say N. Your words should extract from
the given text, can’t add/modify any other words,
should be as short as possible, remember don’t
include the phone number. For one name, it should
be less than 3 words."

After post-processing and removing certain rare,
high-frequency wrong predictions manually, we
obtain HTUNSUP with high-quality pseudo labels
and use it for fine-tuning BERT models.

F1 Precision Recall
0.90 0.89 0.91

Table 2: Performance of ChatGPT for name extraction
on HTNAME

4.7 HTGEN: Generated escort ads dataset

We explore ChatGPT’s ability to generate escort
ads with the motivation of developing a shareable
domain specific dataset for furthering research in
this field2.

We used role playing to convince ChatGPT (API
with GPT-3.5-turbo-0301) that it is a researcher
studying patterns in escort ads. This bypasses the
filters meant to reduce inappropriate outputs, mis-
use, and generation of text found in such ads. We
followed up with a description of the entities in
the ads and some of the patterns unique to the HT
domain. (Bonifacio, 2023) had shown that provid-
ing the context before every question often helped
improve the output quality. We also provided a sam-
ple conversation between a user (who provides the
prompt) and ChatGPT (providing the required gen-
erated response) from three examples taken from
our private HTNAME dataset. We scrambled phone
numbers and other sensitive data for privacy rea-
sons. In this manner, we generated 10,000 syn-
thetic escort ads called HTGEN and used them to
fine-tune a BERT model. At the time of writing, it
costs $0.002 per 1000 tokens, and for 10,000 ads,
it costs approximately $4.40 USD. This is signifi-
cantly cheaper than hiring manual labelers.

We provide examples of ads from HTNAME

and HTGEN in appendix D but note that some
contain explicit language. The ads generated by
ChatGPT are pretty similar to those in HTNAME,
and ChatGPT was successfully able to replicate the
patterns and noise of the HT domain.

5 Experimental Setup

5.1 Baselines

We compare SWEET with eight baselines, includ-
ing off-the-shelf libraries, BERT-based models,
domain-specific NER methods and a simple major-
ity vote for aggregating weak labels as opposed to
Skweak, ordered by their appearance in our result
tables.

• Spacy3 – A popular open-source Python li-
brary for natural language processing tasks.
The Spacy NER package uses statistical mod-
els, neural network architectures and deep
learning techniques trained on large amounts
of data.

2The exact prompts used and the code for the dataset gen-
eration can be provided upon request.

3https://spacy.io/usage/linguistic-features#
named-entities
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• TwitterNER (Mishra and Diesner, 2016) –
semi-supervised approach that combines text
cluster information and word embeddings and
uses a CRF for NER

• LUKE (Yamada et al., 2020) – transformer
based model that learns contextualized embed-
dings, fine-tuned on TACRED dataset (Zhang
et al., 2017)

• ELMo (Peters et al., 2018) – model that learns
contextualized word representations, tuned for
NER

• Flair (Akbik et al., 2018b) – trained charac-
ter language model that learns contextualized
string embeddings, tuned for NER

• NEAT (Li et al., 2022) – previous SOTA for
person name extraction from escort ads

• NEAT (Weakly Supervised) – a variation
of NEAT where each individual component
is treated as an LF in our weak supervision
pipeline

• Majority Vote – a simple strategy of choosing
the label based on consensus of majority of
the weak labels, competitor to Skweak.

5.2 Evaluation Settings
We compare the performance of SWEET with its
variants and the baselines using the average F1 clas-
sification score on 5-folds of the test set. For each
run, 1 fold acted as the test set while the remaining
were used to fit the HMM. Since we only consider
the ‘PERSON’ class, we adopt the following evalu-
ation metrics to better fit our use case.

• Word-level matching: both ground truth and pre-
diction are split into words (separated by a space)
and each word is treated as a separate entity.

• Lowercase: both the ground truth and predictions
are converted to lowercase.

• Exact Match: since the entity matching is on the
word level, we consider strict match as a True
Positive sample.

5.3 Results
Tables 3 and 4 summarize the results of our ex-
periments for the general and HT domain datasets
respectively.

Overall performance of SWEET: SWEET ob-
tains the highest F1 score and recall on 4 out of 6
datasets, and beats NEAT on all datasets. On the
HT datasets, SWEET performs the best. On general
noisy datasets, WNUT2017 and BTC, SWEET sim-
ilarly performs the best. On CoNLL2003, Flair

and ELMo achieve higher scores than SWEET,
but SWEET is the next best performing model.
On Tweebank, TwitterNER, designed specifically
for tweets, is the best performing method. Please
note that on re-evaluating NEAT on HTNAME, we
found an increase in the strict F1 score from the pre-
vious results (0.76 from Table 2 in Li et al. (2022)
becomes 0.78), and use this stronger performance
as the baseline, as reported in Table 4.

Comparison of SWEET with NEAT: When com-
pared with NEAT on the domain datasets, SWEET
increases F1 score and recall by 9% and 18% re-
spectively whilst maintaining precision. Further-
more, SWEET significantly surpasses NEAT on
CoNLL2003, WNUT2017, BTC and Tweebank.
This may be attributed to signals from the fine-
tuned DeBERTa and RoBERTa LFs as well as false
positive reduction due to the antirules.

Performance of SWEET v.s. individual LFs: In
Table 5, we report the performance of individual
labeling functions. When compared to the per-
formance of SWEET in Table 4, we can see that
SWEET successfully combines different fine-tuned
models resulting in an aggregated model that out-
performs these individual models, even those fine-
tuned on domain data (HTUNSUP and HTGEN).
SWEET’s recall and precision scores being higher
than all individual fine-tuned LFs (except for pre-
cision on HTNAME which is on-par with HTUN-
SUP), shows the success of weak supervision in
using weaker sources (LFs) to produce a stronger
final model. The weak supervision methodology
however can impact the performance significantly
as we can see in Table 3 and Table 4, when compar-
ing a simple majority vote performance with the
proposed SWEET. The majority vote baseline still
performs relatively well, and shows strong recall,
however, SWEET performs significantly better in 5
out of 6 datasets.

Ablation Study Table 6 shows the results of ab-
lation experiments of SWEET, focused on the HT
datasets. Firstly, removing antirules decrease preci-
sion, showing that they are helpful in informing the
model on what is not a name. Meanwhile, we see a
mixed effect of domain LFs in the model. In row
3, we observe the highest precision and F1 scores
on HTName with the removal of in-domain LFs.
On HTGen, we instead see a significant decrease,
but note that it is still higher than other baselines in
Table 4. In the last rows, we observe that using only
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Method CoNLL2003 WNUT2017 BTC Tweebank
F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec

spaCy (Honnibal et al., 2020) .64 ± .04 .66 ± .04 .55 ± .04 .21 ± .07 .14 ± .06 .44 ± .06 .15 ± .01 .44 ± .01 .09 ± .01 .19 ± .04 .24 ± .05 .18 ± .05
TwitterNER (Mishra and Diesner, 2016) .68 ± .05 .91 ± .05 .55 ± .05 .61 ± .09 .84 ± .10 .57 ± .10 .32 ± .05 .86 ± .04 .26 ± .04 .67± .04 .87± .05 .57± .05
LUKE (Yamada et al., 2020) .31 ± .11 .89 ± .09 .19 ± .09 .55 ± .07 .67 ± .05 .44 ± .05 .47 ± .01 .92 ± .01 .31 ± .01 .37 ± .07 .76 ± .06 .33 ± .06
ELMo (Peters et al., 2018) .96 ± .02 .95 ± .02 .99 ± .02 .59 ± .15 .72 ± .18 .37 ± .18 .41 ± .06 .83 ± .04 .35 ± .18 .71± .01 .74± .01 .68 ± .01
Flair (Akbik et al., 2019) .98 ± .02 .97 ± .02 1.0 ± .02 .60 ± .15 .79 ± .18 .34 ± .18 .35 ± .06 .86 ± .05 .31 ± .05 .63± .07 .76± .09 .62 ± .09
NEAT (Original) (Li et al., 2022) .17 ± .07 .43 ± .05 .07 ± .05 .22 ± .06 .47 ± .04 .16 ± .04 .11± .02 .46± .01 .07 ± .01 .24 ± .05 .42 ± .04 .17 ± .04
NEAT (Weakly Supervised) .16 ± .07 .42 ± .05 .07 ± .05 .22 ± .06 .47 ± .04 .16 ± .04 .11 ± .02 .46 ± .01 .07 ± .01 .24 ± .05 .42 ± .04 .17 ± .04
Majority vote .83 ± .06 .74 ± .02 .98 ± .02 .65 ± .04 .53 ± .06 .90 ± .06 .64 ± .03 .76 ± .03 .60 ± .03 .53 ± .06 .37 ± .04 .88 ± .04
SWEET −Domain Data .86 ± .05 .79 ± .02 .97 ± .02 .69 ± .06 .61 ± .06 .82 ± .06 .63 ± .03 .86 ± .04 .56 ± .04 .58 ± .06 .43 ± .04 .85 ± .04
SWEET .86 ± .05 .79 ± .03 .98 ± .03 .68 ± .04 .58 ± .07 .83 ± .07 .64 ± .03 .84 ± .04 .57 ± .04 .58 ± .06 .43 ± .04 .86 ± .04

Table 3: Word-level strict match results on 5-fold open source test sets: F1 score, Precision, Recall of SWEET and
baselines. NEAT (Weakly Supervised) refers to the use of NEAT (Li et al., 2022) components as labeling functions
in skweak.

Method HTNAME HTGEN
F1 Prec Rec F1 Prec Rec

spaCy (Honnibal et al., 2020) .27 ± .03 .18 ± .02 .51± .02 .47 ± .04 .50 ± .03 .43 ± .03
TwitterNER (Mishra and Diesner, 2016) .56 ± .04 75. ± .04 52.± .04 .70 ± .02 .70 ± .03 .67 ± .03
LUKE (Yamada et al., 2020) .63 ± .03 .85 ± .04 .51± .04 .68 ± .03 .84 ± .02 .56 ± .02
ELMo (Peters et al., 2018) .51 ± .02 .56 ± .02 .46± .02 .69 ± .05 .61 ± .06 .74 ± .06
Flair (Akbik et al., 2019) .45 ± .02 .73 ± .02 .32± .02 .63 ± .04 .83 ± .04 .49 ± .04
NEAT (Original) (Li et al., 2022) .78 ± .04 .83 ± .05 .74± .03 .71 ± .01 .63 ± .02 .79 ± .03
NEAT (Weakly Supervised) .79 ± .02 .80 ± .02 .77± .02 .71 ± .01 .64 ± .02 .78 ± .02
Majority vote .73 ± .02 .59 ± .01 .95 ± .01 .74 ± .02 .65 ± .03 .85 ± .03
SWEET −Domain Data .88 ± .01 .85 ± .01 .92 ± .01 .75 ± .02 .71 ± .03 .78 ± .03
SWEET .87 ± .01 .83 ± .01 .92 ± .01 .81 ± .02 .76 ± .03 .84 ± .03

Table 4: Word-level strict match results on 5-fold HT test sets: F1 score, Precision, Recall of SWEET and baselines.
NEAT (Weakly Supervised) refers to the use of NEAT (Li et al., 2022) components as labeling functions in skweak.

Model Fine-tuning Dataset F1 Precision Recall

DeBERTa-v3-base

HTUNSUP .67 ± .03 .71 ± .02 .62 ± .02
HTGEN .68 ± .01 .71 ± .02 .67 ± .02
CoNLL2003 .67 ± .02 .67 ± .03 .69 ± .03
Few-NERD-L1 .57 ± .03 .80 ± .03 .43 ± .03
WikiNER-en .52 ± .01 .48 ± .02 .54 ± .02
WNUT2017 .70 ± .02 .71 ± .02 .72 ± .02

RoBERTa-base

HTUNSUP .82 ± .02 .84 ± .03 .83 ± .03
HTGEN .72 ± .02 .81 ± .02 .66 ± .02
CoNLL2003 .72 ± .02 .68 ± .03 .77 ± .03
Few-NERD-L1 .68 ± .02 .81 ± .02 .59 ± .02
WikiNER-en .49 ± .03 .43 ± .03 .56 ± .03
WNUT2017 .68 ± .02 .73 ± .03 .66 ± .03

Table 5: Fine-tuned model LFs on HTNAME evaluated
on 5-fold test sets. All these LFs have a lower per-
formance compared to the aggregated model SWEET,
reported in Table 4.

domain LFs yields similar F1 scores with SWEET,
but compromises recall for precision. We note that
without using any domain data (second to last row
of Table 4), SWEET is able to achieve the same F1
score as a setup that uses only domain data.

We also observe that removing HTUNSUP LFs
results in an F1 score decrease only on HTNAME.
Moreover, these LFs do as well on their own (last
four rows in Table 6), although they are still lower
than SWEET on HTNAME, showing that the ag-
gregation of LFs fine-tuned on diverse datasets is a
key component of SWEET.

6 Discussion

6.1 Effect of using ChatGPT

Although ChatGPT is the best performing model
on HTNAME (Table 2), there are concerns regard-
ing its use on escort ads. First, there is some fi-
nancial cost associated with employing ChatGPT
on large datasets of escort ads which limits its ac-
cessibility whereas our method is open-source and
completely free to use. Second, the stability of the
OpenAI API output is a concern as discussed in
(Chen et al., 2023). While this does not hurt our
method much where one only needs to get good
performance a single time (to provide weak labels
on a fixed dataset), and one could consider even the
more powerful GPT-4, it means it would be unreli-
able to build a system for real-world applications
based on ChatGPT alone. Finally, depending on
the method used to access ChatGPT, there can be
privacy concerns with this sensitive data. The in-
tended use of our method is on large scale real-time
ads with sensitive information, and using ChatGPT,
is not feasible due to cost, stability and privacy
issues mentioned above.

Moreover, although ChatGPT is a valuable in-
gredient in SWEET, our ablations directly show
that it is not sufficient. In the target domain our full
system achieves 87% F1 (Table 4). Simply apply-
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Method HTNAME HTGEN
F1 Prec Rec F1 Prec Rec

All LFs − HTGEN LFs .88 ± .01 .85 ± .01 .92 ± .01 .81 ± .02 .76 ± .03 .84 ± .03
All LFs − HTUNSUP LFs .86 ± .02 .82 ± .02 .91 ± .02 .82 ± .02 .77 ± .03 .84 ± .03
All LFs − HTGEN LFs− HTUNSUP LFs (Domain Data) .88 ± .01 .85 ± .01 .92 ± .01 .75 ± .02 .71 ± .03 .78 ± .03
All LFs −Antirules .85 ± .01 .79 ± .01 .92 ± .01 .81 ± .02 .75 ± .03 .84 ± .03
All LFs −Antirules− HTGEN LFs .85 ± .01 .79 ± .01 .93 ± .01 .81 ± .02 .75 ± .03 .84 ± .03
All LFs −Antirules− HTUNSUP LFs .83 ± .02 .76 ± .01 .92 ± .01 .81 ± .02 .76 ± .03 .84 ± .03
All LFs −Antirules− HTGEN LFs − HTUNSUP LFs .82 ± .02 .76 ± .02 .92 ± .02 .81 ± .01 .76 ± .03 .84 ± .03
Only HTGEN LFs .76 ± .01 .76 ± .02 .76 ± .02 .81 ± .02 .79 ± .03 .81 ± .03
Only HTGEN LFs +Antirules .86 ± .01 .82 ± .01 .92 ± .01 .75 ± .04 .82 ± .05 .64 ± .05
Only HTUNSUP LFs .87 ± .01 .88 ± .01 .88 ± .01 .81 ± .03 .77 ± .04 .81 ± .04
Only HTUNSUP LFs +Antirules .87 ± .01 .92 ± .02 .85 ± .02 .76 ± .04 .83 ± .05 .66 ± .05
Only HTGEN LFs + HTUNSUP LFs .85 ± .01 .85 ± .02 .87 ± .02 .82 ± .03 .78 ± .03 .81 ± .03
Only HTGEN LFs + HTUNSUP LFs +Antirules .86 ± .02 .86 ± .01 .86 ± .01 .82 ± .03 .79 ± .04 .81 ± .04

Table 6: Ablation results of SWEET. −Antirules indicates removal of the antirule LFs component of SWEET.
HTGEN LFs or HTUNSUP LFs indicates LMs fine-tuned on HTGEN or HTUNSUP respectively.

ing language models trained on ChatGPT-labeled
data achieves 82% at best (Table 5), significantly
lower. Conversely, our approach without using any
ChatGPT-labeled data maintains 88% F1 (Table 6,
“SWEET– DomainData”).

6.2 Label Efficiency
Our pipeline eliminates the need for human label-
ers as it is independent of training labels for the
task at hand, making use of existing open-source la-
beled data for fine-tuning language models instead.
This is advantageous over other label-dependent
NER models, especially in the HT domain where
data labeling is costly and time-consuming. Be-
ing label independent is also beneficial in terms
of ethics and privacy as the HT domain contains
many examples of private information like names,
locations, social media tags, and phone numbers.
These types of data would no longer need to be
read by a crowdsource worker or human labeler
in order to generate labels for training. More im-
portantly, our method is also independent of LFs
trained on the same data as the domain. For e.g,
SWEET excluding LFs trained on HTGEN and
HTUNSUP (SWEET − DomainData) performs
as well or even better than SWEET.

7 Conclusion

In this paper, we introduced SWEET, a weak su-
pervision pipeline that extracts person names from
escort ads without the need for manual labeling.
The experimental evaluations show that SWEET
achieves SOTA results on the HTNAME dataset
with an F1 score of 0.87, outperforming the previ-
ous SOTA by 9% while also generalizing better to
CoNLL2003 and WNUT2017 datasets. Moreover,

SWEET maintains or improves this performance on
removing any LFs trained on relevant domain data.
SWEET does not require any human annotators and
labeling which is a very important improvement
over previous methods because it allows it to be
applied easily to real-world datasets. It can also be
easily adapted to other domains by designing spe-
cific new labeling functions. We also release a new
public escort ad dataset HTGEN that uses ChatGPT
for both data generation and labeling, which will
improve reproducibility and benchmarking in this
domain where most data cannot be shared publicly,
as it contains personal information.

8 Limitations

Despite SWEET having achieved SOTA results on
HTNAME, several limitations need to be consid-
ered while interpreting the findings.

1. Dataset Size and Diversity: The HTNAME

database used in this research is a modified ver-
sion of HT1k from Li et al. (2022). The dataset
contains a limited number of data (around 1000
ads). 5-fold evaluation is deployed to accom-
modate for this small size. While generating
HTGEN, although efforts were made to ensure
its representativeness and diversity, HTGen’s
data may still not be 100% representative of
real data. This may limit the generalizability
of the models trained on it to other domains or
datasets.

2. Explainability and transparency: HT is
a high-stakes application domain and trans-
parency, explainability, and accuracy are all
equally important. SWEET has the ability to
aggregate multiple models together to get a final
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prediction. However, it uses HMM for aggre-
gation which is more complex and less explain-
able than the ad-hoc way deployed by Li et al.
(2022). Moreover, the output of the fine-tuned
LFs is also less interpretable. SWEET sacrifices
some explainability for increased performance.
However, thanks to its modularity, the HMM
aggregator can be swapped out for a more ex-
plainable method.

3. Cost: We were able to improve performance by
aggregating BERT models fine-tuned on a va-
riety of NER datasets. This is time-consuming
and costly. We used industrial-grade GPUs
(RTX8000, V100 and A100) to fine-tune the
BERT models.

4. Privacy: The HT domain contains private in-
formation like a person’s name, address, social
media tag, email, and phone number. Although
the HTNAME and HTUNSUP datasets consists
of ads scraped from public websites, these web-
sites may not be fully regulated, and thus, data
coming from these ads may violate the privacy
of individuals being advertised in those ads. We
had to refrain from releasing these datasets be-
cause of privacy and ethical concerns. Thus,
directly replicating our results on HTNAME and
HTUNSUP is not possible. To help counteract
this and improve reproducibility, we released
HTGEN.

5. Lack of variety: We have shown that the HT-
GEN dataset generated by ChatGPT contains
realistic-sounding ads. However, the ads tend to
be more repetitive than our datasets (HTUNSUP,
HTNAME) with real data scraped from the web.
Changing the temperature settings and other pa-
rameters showed promise at boosting the varia-
tion in the generations but the model was more
inclined to produce nonsensical sentences. Fu-
ture work should aim at increasing variety in the
generated ads and keep noise withing a desired
range. With more variety of data in the gen-
erations, it would also be possible to decrease
the size of HTGEN by reducing the number of
redundant examples.

Ethics Statement

Rigorous ethical considerations were taken during
the process of this research. The data we use is
publicly available, and due to the nature of the ad-
vertisements, there are no reasonable expectations
for privacy. However, due to the sensitivity of the
data, Ethics Approval has been obtained from the

Research Ethics Board Office at the authors’ uni-
versity for using this type of data. We have also
studied the current best practices for the project
through a commissioned Responsible AI Institute
evaluation, one of whose recommendation was to
focus on a human-centered design. To this end, we
have biweekly consultations with human trafficking
survivors and have been mindful of not reproducing
biases in the design of the algorithm. No personal
attributes such as age, physical descriptors, eth-
nicity, etc were used. In addition, we have also
reviewed the current law and policy implications
through a comprehensive legal risk assessment and
mitigation memorandum from a law firm. As the
laws and policies in this domain are catching up
with the technologies, we also plan to conduct re-
search in close collaboration with domain experts
into the most ethical approach to AI in this do-
main. Lastly, for transparency and accountability,
all of the algorithms being developed will be made
available online. Data scraping scripts and our
datasets (except those synthetically generated) will
not be shared publicly to maintain confidentiality
and anonymity.
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Reader’s discretion: Appendix D contains ex-
amples of escort ads that contain vulgar and
explicit language. If you prefer to avoid explicit
language or find such content uncomfortable,
we advise you to stop reading before reaching
appendix D.

A Labeling Functions

Fine-tuned Models For fine-tuning the Token-
Classification models, we use a wrapper from Hug-
gingface (Wolf et al., 2020) AutoModelForToken-
Classification class to compile different backbones,
here RoBERTa and DeBERTaV3. We adopt the
train-test split of CONLL2003 and WNUT2017
from the Huggingface datasets (Lhoest et al.,
2021) for the convenience of reproducing the re-
sults ("wnut_17" for WNUT2017, "conll2003" for
CoNLL2003). For FewNERD-L1 and WikiNER-
en, we directly downloaded the official stored file
and parsed it to the same format as a Dataset loaded
from the Datasets Library for running the experi-
ments.

In the training stage, the learning rate is
relative to batch size, which is 2 × 10−5 ×
(batch_size/128). We train for 5 epochs with
AdamW optimizer (Loshchilov and Hutter, 2017)
(weight_decay=0.01) on one A100 (40GB) GPU.
Detailed information about both the size of the
training datasets and the used training batch size
are listed in Table 1.

Individual Labeling Functions We provide the
performance of individual labeling functions in this
section. Table 7 shows the performance of LFs used
in the NEAT (Weakly Supervised) experiment in
Table 3. Table 8 and Table 9 shows the results of in-
dividual fine-tuned models used as LFs in SWEET.

Model F1 Precision Recall
Label-Indep NEAT Rules .43 ± .03 .88 ± .02 .28 ± .02
Label-Indep NEAT Dictionary .78 ± .02 .83 ± .02 .74 ± .02
Label-Indep NEAT Disambiguation .79 ± .02 .80 ± .02 .77 ± .02

Table 7: NEAT-based LFs scores on HTNAME evalu-
ated on 5-fold test sets.

Model Dataset F1 Precision Recall

DeBERTaV3-base

HTUNSUP .67 ± .11 .82 ± .14 .57 ± .14
CoNLL2003 .97 ± .02 .98 ± .02 .99 ± .02
Few-NERD-L1 .92 ± .01 .95 ± .01 .91 ± .01
WikiNER-en .96 ± .01 .97 ± .02 .97 ± .02
WNUT2017 .58 ± .04 .56 ± .04 .65 ± .04

RoBERTa-base

HTUNSUP .74 ± .06 .84 ± .07 .60 ± .07
CoNLL2003 .98 ± .02 .98 ± .02 .99 ± .02
Few-NERD-L1 .92 ± .01 .94 ± .02 .92 ± .02
WikiNER-en .93 ± .03 .94 ± .05 .97 ± .05
WNUT2017 .89 ± .02 .87 ± .02 .88 ± .02

Table 8: Fine-tuned model LFs of SWEET on
CoNLL2003 evaluated on 5-fold test sets.

Model Dataset F1 Precision Recall

DeBERTaV3-base

HTUNSUP .41 ± .11 .50 ± .14 .52 ± .14
CoNLL2003 .72 ± .04 .71 ± .08 .73 ± .08
Few-NERD-L1 .66 ± .12 .82 ± .13 .41 ± .13
WikiNER-en .65 ± .11 .69 ± .13 .52 ± .13
WNUT2017 .62 ± .09 .71 ± .15 .47 ± .15

RoDERTa-base

HTUNSUP .53 ± .07 .56 ± .13 .63 ± .13
CoNLL2003 .71 ± .05 .67 ± .08 .71 ± .08
Few-NERD-L1 .61 ± .10 .67 ± .10 .45 ± .10
WikiNER-en .65 ± .10 .63 ± .09 .57 ± .09
WNUT2017 .67 ± .09 .81 ± .14 .48 ± .14

Table 9: Fine-tuned model LFs of SWEET on
WNUT2017 evaluated on 5-fold test sets.

B ChatGPT and the HT Domain

ChatGPT is an advanced language model devel-
oped by OpenAI and built upon the GPT architec-
ture. Although the training data that is used to train
ChatGPT is not made public, it is built upon the
GPT (Generative Pre-trained Transformer). These
models were trained on Common Crawl, a dataset
that includes a wide range of web content and ad-
related content. By providing essential background
and convincing ChatGPT that it is a researcher that
studies human trafficking, we were able to guide
it to generate a list of patterns generally seen in
escort ads (Figure 2).
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Figure 2: ChatGPT’s Understanding of HT Domain

C Problems with LLMs

Large language models, such as ChatGPT have
garnered recognition from researchers for their ver-
satility on a wide range of NLP tasks while ex-
hibiting commendable performance compared to
other SOTA models. Nevertheless, it is imperative
to acknowledge that these models have also faced
significant scrutiny and critical appraisals. In this
context, we mainly highlight the issue of Encoding
Bias.

Due to the large size of the datasets used to train
LLMs, it is very difficult to check and verify every
part of the training dataset for potential bias. Thus,
it is common for large language models to exhibit
various types of bias as stated in (Bender et al.,
2021; Hutchinson et al., 2020; Kurita et al., 2019).
When building HTGEN, we observed that the gen-
erated text had a propensity to include derogatory
language (Figure 3), and sexually explicit words
(Figure 4). It also generated ads that have a nega-
tive sentiment towards the black community (Fig-
ure 5). Of all the examples generated in HTGEN,
black people are denied services more than any
other ethnic group. No mention of the words found
in Figures 3 and 4 had occurred in any prompting
processes. This ability to generate realistic sound-
ing ads suggests that there is a good chance it had
exposure to escort ads during its training process.

D Examples of escort ads

Figure 3: Derogatory or Offensive Language

Figure 4: Usage of Vulgar and Sexually Ex-
plicit Words

Figure 5: Racism in HTGEN

Figure 6: Example ad From HTNAME

Figure 7: Example ad From HTGEN
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