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Abstract

Automating radiology report generation can
significantly alleviate radiologists’ workloads.
Previous research has primarily focused on re-
alizing highly concise observations while ne-
glecting the precise attributes that determine
the severity of diseases (e.g., small pleural ef-
fusion). Since incorrect attributes will lead
to imprecise radiology reports, strengthening
the generation process with precise attribute
modeling becomes necessary. Additionally, the
temporal information contained in the histor-
ical records, which is crucial in evaluating a
patient’s current condition (e.g., heart size is
unchanged), has also been largely disregarded.
To address these issues, we propose RECAP,
which generates precise and accurate radiology
reports via dynamic disease progression rea-
soning. Specifically, RECAP first predicts the
observations and progressions (i.e., spatiotem-
poral information) given two consecutive radio-
graphs. It then combines the historical records,
spatiotemporal information, and radiographs
for report generation, where a disease progres-
sion graph and dynamic progression reasoning
mechanism are devised to accurately select the
attributes of each observation and progression.
Extensive experiments on two publicly avail-
able datasets demonstrate the effectiveness of
our model.1

1 Introduction

Radiology report generation (Rennie et al., 2017;
Anderson et al., 2018; Chen et al., 2020), aiming to
generate clinically coherent and factually accurate
free-text reports, has received increasing attention

∗Equal Contribution.
†Corresponding authors.
1Our code is available at https://github.com/wjhou/

Recap.
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Figure 1: An example of a follow-up visit record with
its prior visit record. Part of their observations are listed
with their precise attributes. Enlarged Card. denotes
Enlarged Cardiomediastinum.

from the research community due to its large po-
tential to alleviate radiologists’ workloads.

Recent research works (Nooralahzadeh et al.,
2021; Nishino et al., 2022; Delbrouck et al., 2022;
Bannur et al., 2023; Tanida et al., 2023; Hou et al.,
2023) have made significant efforts in improving
the clinical factuality of generated reports. De-
spite their progress, these methods still struggle
to produce precise and accurate free-text reports.
One significant problem within these methods is
that although they successfully captured the se-
mantic information of observations, their attributes
still remain imprecise. They either ignored histori-
cal records (i.e., temporal information) that are re-
quired for assessing patients’ current conditions or
omitted the fine-grained attributes of observations
(i.e., spatial information) that are crucial in quanti-
fying the severity of diseases, which are far from
adequate and often lead to imprecise reports. Both
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temporal and spatial information are crucial for gen-
erating precise and accurate reports. For instance,
as illustrated in Figure 1, the patient’s conditions
can change from time to time, and the observations
become Better and Stable. Only if accessing the
historical records, the overall conditions could be
estimated. In addition, different attributes reflect
the severity of an observation, such as normal and
top-normal for Cardiomegaly. In order to produce
precise and accurate free-text reports, we must con-
sider both kinds of information and apply stronger
reasoning to strengthen the generation process with
precise attribute modeling.

In this paper, we propose RECAP, which cap-
tures both temporal and spatial information for ra-
diology REport Generation via DynamiC DiseAse
Progression Reasoning. Specifically, RECAP first
predicts observations and progressions given two
consecutive radiographs. It then combines them
with the historical records and the current radio-
graph for report generation. To achieve precise
attribute modeling, we construct a disease progres-
sion graph, which contains the prior and current
observations, the progressions, and the precise at-
tributes. We then devise a dynamic progression
reasoning (PrR) mechanism that aggregates infor-
mation in the graph to select observation-relevant
attributes.

In conclusion, our contributions can be summa-
rized as follows:

• We propose RECAP, which can capture both
spatial and temporal information for generat-
ing precise and accurate free-text reports.

• To achieve precise attribute modeling, we
construct a disease progression graph con-
taining both observations and fine-grained at-
tributes that quantify the severity of diseases.
Then, we devise a dynamic disease progres-
sion reasoning (PrR) mechanism to select
observation/progression-relevant attributes.

• We conduct extensive experiments on two pub-
licly available benchmarks, and experimental
results demonstrate the effectiveness of our
model in generating precise and accurate radi-
ology reports.

2 Preliminary

2.1 Problem Formulation
Given a radiograph-report pair Dc = {Xc, Y c},
with its record of last visit being either Dp =

{Xp, Y p} or Dp = ∅ if the historical record
is missing2, the task of radiology report genera-
tion aims to maximize p(Y c|Xc, Dp). To learn
the spatiotemporal information, observations O
(i.e., spatial information) (Irvin et al., 2019) and
progressions P (i.e., temporal information) (Wu
et al., 2021) are introduced. Then, the report gen-
eration process is divided into two stages in our
framework, i.e., observation and progression pre-
diction (i.e., Stage 1) and spatiotemporal-aware
report generation (i.e., Stage 2). Specifically, the
probability of observations and progressions are de-
noted as p(O|Xc) and p(P |Xc, Xp), respectively,
and then the generation process is modeled as
p(Y c|Xc, Dp, O, P ). Finally, our framework aims
to maximize the following probability:

p(Y c|Xc, Dp) ∝
Stage 1︷ ︸︸ ︷

p(O|Xc) · p(P |Xc, Xp)

·p(Y c|Xc, Dp, O, P )︸ ︷︷ ︸
Stage 2

.

2.2 Progression Graph Construction

Observation and Progression Extraction. For
each report, we first label its observations O =
{o1, . . . , o|o|} with CheXbert (Smit et al., 2020).
Similar to Hou et al. (2023), each observation is
further labeled with its status (i.e., Positive, Nega-
tive, Uncertain, and Blank). We convert Positive
and Uncertain as POS, Negative as NEG, and re-
move Blank, as shown in Figure 1. Then, we extract
progression information P of a patient with Chest
ImaGenome (Wu et al., 2021) which provides pro-
gression labels (i.e., Better, Stable, or Worse)
between two regions of interest (ROIs) in Xp and
Xc, respectively. However, extracting ROIs could
be difficult, and adopting such ROI-level labels
may not generalize well across different datasets.
Thus, we use image-level labels, which only indi-
cate whether there are any progressions between
Xp and Xc. As a result, a patient may have dif-
ferent progressions (e.g., both Better and Worse).
The statistics of observations and progressions can
be found in Appendix A.1.
Spatial/Temporal Entity (Attribute) Collection.3
To model spatial and temporal information, we

2There are two kinds of records (i.e., first-visit and follow-
up-visit). If it is the first visit of a patient, the historical record
does not exist.

3Attributes are included in the entity set as provided by Jain
et al. (2021). For simplicity, we use "attribute" and "entity"
interchangeably in this paper.
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Figure 2: Overview of the RECAP framework. Pro-Encoderp is the progression-related encoder and Obs-Encodero
is the observation-related encoder, respectively. Other modules in the decoder are omitted for simplicity.

collect a set of entities to represent it. For temporal
entities, we adopt the entities provided by (Bannur
et al., 2023), denoted as ET . For spatial entities
ES , we adopt the entities with a relation modify
or located_at in RadGraph (Jain et al., 2021), and
we also filter out stopwords4 and temporal entities
from them. Part of the temporal and spatial entities
are listed in Appendix A.2.
Progression Graph Construction. Our progres-
sion graph G =< V,R > is constructed based
purely on the training corpus in an unsupervised
manner. Specificially, V = {O,ET , ES} is the
node-set, and R = {S,B,W,RS , RO} is the
edge set, where S, B, and W denote three pro-
gressions Stable, Better, and Worse, connecting
an observation with an temporal entity. In addi-
tion, Rs and Ro are additional relations connect-
ing current observations with spatial entities and
prior/current observations, respectively. To extract
spatial/temporal triples automatically, we use the
proven-efficient statistical tool, i.e., pointwise mu-
tual information (PMI; Church and Hanks (1990)),
where a higher PMI score implies two units with
higher co-occurrence, similar to Hou et al. (2023):

PMI(x̄, x̂) = log
p(x̄, x̂)

p(x̄)p(x̂)
= log

p(x̂|x̄)
p(x̂)

,

Specifically, we set x̄ to (oi, rj) where rj ∈ R and

4https://www.nltk.org/

set x̂ to e∗k where e∗k ∈ {ET , ES}. Then, we rank
these triples using PMI((oi, rj), e∗k) and select top-
K of them as candidates for each (oi, rj). Finally,
we use observations as the query to retrieve relevant
triples. We consider edges in the graph: e∗i

rj−→
opk

RO−−→ ocl
rm−−→ e∗n, as shown in the top-right of

Figure 2, consistent with the progression direction.

3 Methodology

3.1 Visual Encoding

Given an image Xc, an image processor is first to
split it into N patches, and then a visual encoder
(i.e., ViT (Dosovitskiy et al., 2021)) is adopted to
extract visual representations Xc:

Xc = {[CLS]c,xc
1, . . . ,x

c
N} = ViT(Xc),

where [CLS]c ∈ Rh is the representation of the
class token [CLS] prepended in the patch sequence,
xc
i ∈ Rh is the i-th visual representation. Simi-

larly, the visual representation of image Xp is ex-
tracted using the same ViT model and represented
as Xp = {[CLS]p,xp

1, . . . ,x
p
N}.

3.2 Stage 1: Observation and Progression
Prediction

Observation Prediction. As observations can be
measured from a single image solely, we only use
the pooler output [CLS]c of Xc for observation
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prediction. Inspired by Tanida et al. (2023), we
divide it into two steps, i.e., detection and then clas-
sification. Specifically, the detection probability
pd(oi) of the i-th observation presented in a report
and the probability of this observation pc(oi) being
classified as abnormal are modeled as:

pd(oi) = σ(Wdi [CLS]c + bdi),

pc(oi) = σ(Wci [CLS]c + bci),

where σ is the Sigmoid function, Wdi ,Wci ∈ Rh

are the weight matrices and bdi , bci ∈ R are the bi-
ases. Finally, the probability of the i-th observation
is denoted as p(oi) = pd(oi) · pc(oi). Note that for
observation No Finding on is presented in every
sample, i.e., pd(on) = 1 and p(on) = pc(on).
Progression Prediction. Similar to observation
prediction, the pooler outputs [CLS]p of Xp and
[CLS]c of Xc are adopted for progression predic-
tion, and the probability of the j-th progression
p(pj) is modeled as:

[CLS] = [[CLS]p; [CLS]c],
p(pj) = σ(Wj [CLS] + bj),

where [; ] is the concatenation operation, Wj ∈
R2h is the weight matrix, and bj ∈ R are the
bias. As we found that learning sparse signals from
image-level progression labels is difficult and has
side effects on the performance of observation pre-
diction, we detach [CLS] from the computational
graph while training.
Training. We optimize these two prediction
tasks by minimizing the binary cross-entropy loss.
Specifically, the loss of observation detection Ld is
denoted as:

Ld = − 1

|O|
∑

[αd · ldi · logpd(oi)

+(1− ldi) · log(1− pd(oi))],

where αd is the weight to tackle the class imbalance
issue, ldi denotes the label of i-th observation di.
Similarly, the loss of observation classification Lc

and progression prediction Lp can be calculated
using the above equation. Note that Lc and Lp are
unweighted loss. Finally, the overall loss of Stage
1 is LS1 = Ld + Lc + Lp.

3.3 Stage 2: SpatioTemporal-aware Report
Generation

Observation-aware Visual Encoding. To learn
the observation-aware visual representations, we
jointly encode Xc and its observations Oc using a
Transformer encoder (Vaswani et al., 2017). Addi-
tionally, a special token [FiV] for first-visit records

or [FoV] for follow-up-visit records is appended to
distinguish them, represented as [F*V]:

hc = [hc
X ;hc

o] = Encodero([Xc; [F*V];Oc]),

where hc
X ,hc

o ∈ Rh are the visual hidden represen-
tations and observation hidden representations of
the current radiograph and observations.
Progression-aware Information Encoding. We
use another encoder to encode the progression in-
formation (i.e., temporal information). Specifically,
given Xp and Y p, the hidden states of the prior
record are represented as:

hp = [hp
X ;hp

Y ] = Encoderp([Xp;Y p]),

where hp
X ,hp

Y ∈ Rh are the visual hidden rep-
resentations and textual hidden representations of
prior records, respectively.
Concise Report Decoding. Given hp and hc, a
Transformer decoder is adopted for report genera-
tion. Since not every sample has a prior record and
follow-up records may include new observations,
controlling the progression information is neces-
sary. Thus, we include a soft gate α to fuse the
observation-related and progression-related infor-
mation, as shown in Figure 2:

Decoder =





hs
t = Self-Attn(hw

t ,h
w
<t,h

w
<t),

h̃c
t = Cross-Attno(hs

t ,h
c,hc),

h̃p
t = Cross-Attnp(h̃c

t ,h
p,hp),

α = σ(Wαh̃
c
t + bα),

ht = α · h̃p
t + (1− α) · h̃c

t ,

pV(yt) = Softmax(WVht + bV),

where Self-Attn is the self-attention module, Cross-
Attn is the cross-attention module, hs

t , h̃
c
t , h̃

p
t ,ht ∈

Rh are self-attended hidden state, observation-
related hidden state, progression-related hidden
state, and spatiotemporal-aware hidden state, re-
spectively, Wα ∈ Rh,WV ∈ R|V|×h are weight
matrices and bα ∈ R, bV ∈ R|V| are the biases.
Disease Progression Encoding. As there are dif-
ferent relations between nodes, we adopt an L-layer
Relational Graph Convolutional Network (R-GCN)
(Schlichtkrull et al., 2018) to encode the disease
progression graph, similar to Ji et al. (2020):

hl+1
vi = ReLU


 1

ci

rj∈R∑

vk∈V
W l

rjh
l
vk

+W l
0h

l
vi


 ,

where ci is the number of neighbors connected
to the i-th node, W l

rj ,W
l
0 ∈ Rh×h are learnable

weight metrics, and hl
vi ,h

l+1
vi ,hl

vk
∈ Rh are the

hidden representations.
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Dataset Model NLG Metrics CE Metrics
B-1 B-2 B-3 B-4 MTR R-L P R F1

MIMIC
-ABN

R2GEN 0.290 0.157 0.093 0.061 0.105 0.208 0.266 0.320 0.272
R2GENCMN 0.264 0.140 0.085 0.056 0.098 0.212 0.290 0.319 0.280
ORGAN 0.314 0.180 0.114 0.078 0.120 0.234 0.271 0.342 0.293
RECAP (Ours) 0.321 0.182 0.116 0.080 0.120 0.223 0.300 0.363 0.305

MIMIC
-CXR

R2GEN 0.353 0.218 0.145 0.103 0.142 0.270 0.333 0.273 0.276
R2GENCMN 0.353 0.218 0.148 0.106 0.142 0.278 0.344 0.275 0.278
M2TR 0.378 0.232 0.154 0.107 0.145 0.272 0.240 0.428 0.308
KNOWMAT 0.363 0.228 0.156 0.115 − 0.284 0.458 0.348 0.371
CMM-RL 0.381 0.232 0.155 0.109 0.151 0.287 0.342 0.294 0.292
CMCA 0.360 0.227 0.156 0.117 0.148 0.287 0.444 0.297 0.356
KiUT 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321
DCL − − − 0.109 0.150 0.284 0.471 0.352 0.373
METrans 0.386 0.250 0.169 0.124 0.152 0.291 0.364 0.309 0.311
ORGAN 0.407 0.256 0.172 0.123 0.162 0.293 0.416 0.418 0.385
RECAP (Ours) 0.429 0.267 0.177 0.125 0.168 0.288 0.389 0.443 0.393

Table 1: Experimental Results of our model and baselines on the MIMIC-ABN and MIMIC-CXR datasets.
The best results are in boldface, and the underlined are the second-best results. The experimental results on the
MIMIC-ABN dataset are replicated based on their corresponding repositories.

Precise Report Decoding via Progression Rea-
soning. Inspired by Ji et al. (2020) and Mu and Li
(2022), we devise a dynamic disease progression
reasoning (PrR) mechanism to select observation-
relevant attributes from the progression graph. The
reasoning path of PrR is oci

rj−→ ek, where rj be-
longs to either three kinds of progression or Rs.
Specifically, given t-th hidden representation ht,
the observation representation hL

oi , and the entity
representation hL

ek
of ek, the progression score

p̂st(ek) of node ek is calculated as:

pst(ek) =
1

|Nek |
∑

(oi,rj)∈Nek

ϕ(hT
tWri [h

L
oi ;h

L
ek
]),

p̂st(ek) = γ · pst(ek)+ϕ(htWsh
L
ek
),

where ϕ is the Tangent function, γ is the scale
factor, Nek is the neighbor collection of ek, and
Wri ∈ Rh×2h and Ws ∈ Rh×h are weight ma-
trices for learning relation ri and self-connection,
respectively. In the PrR mechanism, the relevant
scores (i.e., pst(ek)) of their connected observa-
tions are also included in p̂st(ek) since ht contains
observation information, and higher relevant scores
of these connected observations indicate a higher
relevant score of ek. Then, the distribution over all
entities in G is denoted as:

pG(yt) = Softmax(p̂st(ek)).

Finally, a soft gate gt = σ(Wght + bg) is adopted

to combine pV(yt) and pG(yt) into p(yt):

p(yt) = gt · pV(yt) + (1− gt) · pG(yt),
where Wg ∈ Rh and bg ∈ R are the weight matrix
and bias, respectively.
Training. The generation process is optimized
using the negative log-likelihood loss, given each
token’s probability p(yt) and the probability of gt:

LNLL = −
T∑

t=1

logp(yt),

Lg = −
T∑

t=1

[lgt loggt + (1− lgt)log(1− gt)],

where lgt indicates t-th token appears in G. Finally,
the loss of Stage 2 is LS2 = LNLL + λLg.

4 Experiments

4.1 Datasets

We use two benchmarks to evaluate our models,
MIMIC-ABN5 (Ni et al., 2020) and MIMIC-
CXR6 (Johnson et al., 2019). We provide other
details of data preprocessing in Appendix A.3.

• MIMIC-CXR consists of 377,110 chest X-
ray images and 227,827 reports from 63,478
patients. We adopt the settings of Chen et al.
(2020).

5https://github.com/zzxslp/WCL
6https://physionet.org/content/mimic-cxr-jpg/

2.0.0/
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Model Sections B-2 CE-F1

R2GEN Find. & Imp. 0.212 0.148
IFCC Findings 0.217 0.270
CXR-RePaiR-Sel Impressions 0.050 0.274
BioViL-T Impressions 0.159 0.348
BioViL-T Find. & Imp. 0.213 0.359
ORGAN Findings 0.267 0.385
RECAP (Ours) Findings 0.265 0.393

Table 2: BLEU score and CheXbert score of our model
and baselines on the MIMIC-CXR dataset. Results are
cited from Bannur et al. (2023) and Hou et al. (2023).

• MIMIC-ABN is a modified version of
MIMIC-CXR and only contains abnormal
sentences. The original train/validation/test
split of Ni et al. (2020) is 26,946/3,801/7,804
samples, respectively. To collect patients’
historical information and avoid information
leakage, we recover the data-split used in
MIMIC-CXR according to the subject_id7.
Finally, the data-split used in our experiments
is 71,786/546/806 for train/validation/test sets,
respectively.

4.2 Evaluation Metrics and Baselines

NLG Metrics. BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), and ROUGE
(Lin, 2004) are selected as the Natural Language
Generation metrics (NLG Metrics), and we use the
MS-COCO evaluation tool8 to compute the results.
CE Metrics. For Clinical Efficacy (CE Metrics),
CheXbert9 (Smit et al., 2020) is adopted to label the
generated reports compared with disease labels of
the references. Besides, we use the temporal entity
matching scores (TEM), proposed by Bannur et al.
(2023), to evaluate how well the models generate
progression-related information.
Baselines. For performance evaluation, we com-
pare our model with the following state-of-the-art
(SOTA) baselines: R2GEN (Chen et al., 2020),
R2GENCMN (Chen et al., 2021), KNOWMAT

(Yang et al., 2021), M2TR (Nooralahzadeh et al.,
2021), CMM-RL (Qin and Song, 2022), CMCA
(Song et al., 2022), CXR-RePaiR-Sel/2 (Endo et al.,
2021), BioViL-T (Bannur et al., 2023), DCL (Li
et al., 2023), METrans (Wang et al., 2023), KiUT
(Huang et al., 2023), and ORGAN (Hou et al.,
2023).

7subject_id is the anonymized identifier of a patient.
8https://github.com/tylin/coco-caption
9https://github.com/stanfordmlgroup/CheXbert

Model B-4 R-L CE-F1 TEM
CXR-RePaiR-2 0.021 0.143 0.281 0.125
BioViL-NN 0.037 0.200 0.283 0.111
BioViL-T-NN 0.045 0.205 0.290 0.130
BioViL-AR 0.075 0.279 0.293 0.138
BioViL-T-AR 0.092 0.296 0.317 0.175

RECAP (Ours) 0.118 0.279 0.400 0.304
RECAP w/o OP 0.093 0.260 0.256 0.203
RECAP w/o Obs 0.104 0.270 0.307 0.240
RECAP w/o Pro 0.103 0.266 0.395 0.269
RECAP w/o PrR 0.115 0.279 0.403 0.296

Table 3: Progression modeling performance of our
model and baselines on the MIMIC-CXR dataset. The
*-NN models use nearest neighbor search for report
generation, and the *-AR models use autoregressive de-
coding, as indicated in Bannur et al. (2023).

4.3 Implementation Details

We use the ViT (Dosovitskiy et al., 2021), a vision
transformer pretrained on ImageNet (Deng et al.,
2009), as the visual encoder10. The maximum de-
coding step is set to 64/104 for MIMIC-ABN and
MIMIC-CXR, respectively. γ is set to 2 and K is
set to 30 for both datasets.

For model training, we adopt AdamW
(Loshchilov and Hutter, 2019) as the optimizer.
The layer number of the Transformer encoder and
decoder are both set to 3, and the dimension of
the hidden state is set to 768, which is the same
as the one of ViT. The layer number L of the
R-GCN is set to 3. The learning rate is set to 5e-5
and 1e-4 for the pretrained ViT and the rest of
the parameters, respectively. The learning rate
decreases from the initial learning rate to 0 with
a linear scheduler. The dropout rate is set to 0.1,
the batch size is set to 32, and λ is set to 0.5. We
select the best checkpoints based on the BLEU-4
on the validation set. Our model has 160.05M
trainable parameters, and the implementations are
based on the HuggingFace’s Transformers (Wolf
et al., 2020). We implement our models on an
NVIDIA-3090 GTX GPU with mixed precision.
Other details of implementation (e.g., Stage 1
training) can be found in Appendix A.3.

5 Results

5.1 Quantitative Analysis

NLG Results. The NLG results of two datasets are
listed on the left side of Table 1 and Table 2. As
we can see from Table 1, RECAP achieves the best

10The model card is "google/vit-base-patch16-224-in21k."
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Dataset Model NLG Metrics CE Metrics
B-1 B-2 B-3 B-4 MTR R-L P R F1

MIMIC
-ABN

RECAP 0.321 0.182 0.116 0.080 0.120 0.223 0.300 0.363 0.305
RECAP w/o OP 0.303 0.170 0.109 0.074 0.113 0.227 0.289 0.300 0.280
RECAP w/o Obs 0.302 0.174 0.114 0.079 0.114 0.231 0.341 0.314 0.282
RECAP w/o Pro 0.306 0.169 0.107 0.072 0.114 0.220 0.298 0.361 0.298
RECAP w/o PrR 0.320 0.180 0.115 0.079 0.120 0.224 0.295 0.365 0.301

MIMIC
-CXR

RECAP 0.429 0.267 0.177 0.125 0.168 0.288 0.389 0.443 0.393
RECAP w/o OP 0.350 0.219 0.150 0.109 0.140 0.278 0.356 0.259 0.266
RECAP w/o Obs 0.356 0.224 0.153 0.113 0.144 0.283 0.464 0.281 0.296
RECAP w/o Pro 0.402 0.245 0.161 0.112 0.157 0.278 0.379 0.433 0.386
RECAP w/o PrR 0.415 0.257 0.171 0.119 0.164 0.285 0.381 0.443 0.391

Table 4: Ablation results of our model and its variants. RECAP w/o OP is the standard Transformer model, w/o Obs
stands for without observation, and w/o Pro stands for without progression.

performance compared with other SOTA models
and outperforms other baselines substantially on
both datasets.
Clinical Efficacy Results. The clinical efficacy re-
sults are shown on the right side of Table 1. RECAP

achieves SOTA performance on F1 score, leading
to a 1.2% improvement over the best baseline (i.e.,
ORGAN) on the MIMIC-ABN dataset. Similarly,
on the MIMIC-CXR dataset, our model achieves a
score of 0.393, increasing by 0.8% compared with
the second-best. This demonstrates that RECAP

can generate better clinically accurate reports.
Temporal-related Results. Since there are only
10% follow-up-visits records in the MIMIC-ABN
dataset, we mainly focus on analyzing the MIMIC-
CXR dataset, as shown in Table 3 and Table 6.
RECAP achieves the best performance on BLEU-
4, TEM. In terms of the clinical F1, RECAP w/o
PrR outperforms other baselines. This indicates
that historical records are necessary for generating
follow-up reports.
Ablation Results. We perform ablation analysis,
and the ablation results are listed in Table 4. We
also list the ablation results on progression model-
ing in Table 6. There are four variants: (1) RECAP

w/o OP (i.e., a standard Transformer model, re-
moving spatiotemporal information), (2) RECAP

w/o Obs (i.e., without observation), (3) RECAP w/o
Pro (i.e., without progression), and (4) RECAP w/o
PrR, which does not adopt the disease progression
reasoning mechanism.

As we can see from Table 4, without the spa-
tiotemporal information (i.e., variant 1), the perfor-
mances drop significantly on both datasets, which
indicates the necessity of spatiotemporal modeling
in free-text report generation. In addition, com-

pared with variant 1, the performance of RECAP

w/o Obs increases substantially on the MIMIC-
CXR dataset, which demonstrates the importance
of historical records in assessing the current condi-
tions of patients. In terms of CE metrics, learning
from the observation information boosts the perfor-
mance of RECAP drastically, with an improvement
of 12%. In addition, the performance of RECAP

increases compared with variant w/o PrR. This in-
dicates that PrR can help generate precise and ac-
curate reports.

5.2 Qualitative Analysis

Case Study. We conduct a detailed case study
on how RECAP generates precise and accurate at-
tributes of a given radiograph in Figure 3. RECAP

successfully generates six observations, including
five abnormal observations. Regarding attribute
modeling, our model can generate the precise de-
scription "the lungs are clear without focal con-
solidation", which also appears in the reference,
while RECAP w/o OP can not generate relevant
descriptions. This indicates that spatiotemporal
information plays a vital role in the generation pro-
cess. Additionally, RECAP can learn to compare
with the historical records (e.g., mediastinal con-
tours are stable and remarkable) so as to precisely
measure the observations.
Error Analysis. We depict error analysis to pro-
vide more insights, as shown in Figure 4. There
are two major errors, which are false-positive ob-
servations (i.e., Positive Lung Opacity and Positive
Pleural Effusion) and false-negative observations
(i.e., Negative Cardiomegaly). Improving the per-
formance of observation prediction could be an im-
portant direction in enhancing the quality of gener-
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Prior Radiograph

Current Radiograph
Progression: Stable

1⃝ Enlarged Card./NEG
2⃝ Cardiomegaly/POS
3⃝ Edema/NEG
4⃝ Consolidation/NEG
5⃝ Pneumothorax/NEG
6⃝ Pleural Effusion/NEG

Prior Report: low lung volumes are present. 2⃝ this accentuates the size of the cardiac
silhouette which is likely mildly enlarged. 1⃝ mediastinal and hilar contours are likely
within normal limits. a right brachiocephalic venous stent is re-demonstrated. there is
crowding of the bronchovascular structures with probable 3⃝ mild pulmonary vascular
congestion. 6⃝ no pleural effusion or 5⃝ pneumothorax is identified.

Reference: ap and lateral views of the chest. the lungs are 4⃝ clear of consolidation
or 6⃝ effusion. 2⃝ the cardiac silhouette is enlarged but unchanged. no acute osseous
abnormality is detected. right brachiocephalic venous stent is again noted.

Ours: the lungs are clear without focal consolidation. no pleural effusion or pneumotho-
rax is seen. the cardiac silhouette is top-normal to mildly enlarged. mediastinal contours
are stable and unremarkable. there is no pulmonary edema.

Ours w/o OP: ap upright and lateral views of the chest provided. lung volumes are low
limiting assessment. allowing for this there is 4⃝ no focal consolidation 6⃝ effusion or 5⃝
pneumothorax. 1⃝ the cardiomediastinal silhouette is normal. imaged osseous structures
are intact. no free air below the right hemidiaphragm is seen.

Figure 1: Case study of a follow-up-visit sample, given its prior radiograph and prior report. Attributes of observa-
tions in reports are highlighted in boldface, and spans with colors in reports indicate mentions of observations.
Figure 3: Case study of a follow-up-visit sample, given its prior radiograph and prior report. Attributes of observa-
tions in reports are highlighted in boldface, and spans with colors in reports indicate mentions of observations.

1⃝ Enlarged Card./NEG
2⃝ Cardiomegaly/F.NEG
3⃝ Lung Opacity/F.POS
4⃝ Pneumothorax/NEG
5⃝ Effusion/F.POS

Reference: there is no new consolidation.
right lower lobe pneumonia that was present
in prior exams has significantly improved.
esophageal stent is in unchanged position.
there is no pneumomediastinum or pneumoth-
orax. there is no pleural effusion . mediastinal
and cardiac contours are stable.

Ours: 2⃝ the heart size is normal. the hilar and
mediastinal contours are within normal limits.
there is no pneumothorax. again seen is a 5⃝
small right pleural effusion. the visualized os-
seous structures are unremarkable. there has
been interval improvement of the 3⃝ right basi-
lar opacity.

Figure 1: Error case generated by RECAP. The span and
the spans denote false negative observation and false
positive observation, respectively.

Figure 4: Error case generated by RECAP. The span and
the spans denote false negative observation and false
positive observation, respectively.

ated reports. In addition, although RECAP aims to
model precise attributes of observations presented
in the radiograph, it still can not cover all the cases.
This might be alleviated by incorporating external
knowledge.

6 Related Work

6.1 Medical Report Generation

Medical report generation(Jing et al., 2018; Li et al.,
2018), as one kind of image captioning (Vinyals
et al., 2015; Rennie et al., 2017; Lu et al., 2017; An-
derson et al., 2018), has received increasing atten-
tion from the research community. Some works fo-
cus on recording key information of the generation
process via memory mechanism (Chen et al., 2020,
2021; Qin and Song, 2022; Wang et al., 2023). In
addition, Liu et al. (2021c) proposed to utilize con-
trastive learning to distill information. Liu et al.
(2021a) proposed to use curriculum learning to

enhance the performance and Liu et al. (2021b)
proposed to explore posterior and prior knowledge
for report generation. Yang et al. (2021); Li et al.
(2023); Huang et al. (2023) proposed to utilize the
external knowledge graph (i.e., RadGraph (Jain
et al., 2021)) for report generation.

Other works focused on improving the clinical
accuracy and faithfulness of the generated reports.
Liu et al. (2019a); Lovelace and Mortazavi (2020);
Miura et al. (2021); Nishino et al. (2022); Del-
brouck et al. (2022) designed various kinds of re-
wards (e.g., entity matching score) to improve clin-
ical accuracy via reinforcement learning. Tanida
et al. (2023) proposed an explainable framework
for report generation that could identify the abnor-
mal areas of a given radiograph. Hou et al. (2023)
proposed to combine both textual plans and radio-
graphs to maintain clinical consistency. Addition-
ally, Ramesh et al. (2022) and Bannur et al. (2023)
focus on handling the temporal structure in radiol-
ogy report generation, either removing the prior or
learning from the historical records.

6.2 Graph Reasoning for Text Generation

Graph reasoning for text generation (Liu et al.,
2019b; Tuan et al., 2022) tries to identify relevant
knowledge from graphs and incorporate it into gen-
erated text sequences. Huang et al. (2020) proposed
to construct a knowledge graph from the input doc-
ument and utilize it to enhance the performance
of abstractive summarization. Ji et al. (2020) pro-
posed to incorporate commonsense knowledge for
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language generation via multi-hop reasoning. Mu
and Li (2022) proposed to combine both event-
level and token-level from the knowledge graph to
improve the performance.

7 Conclusion

In this paper, we propose RECAP, which can cap-
ture both spatial and temporal information for gen-
erating precise and accurate radiology reports. To
achieve precise attribute modeling in the generation
process, we construct a disease progression graph
containing both observations and fined-grained at-
tributes which quantify the severity of diseases and
devise a dynamic disease progression reasoning
(PrR) mechanism to select observation-relevant
attributes. Experimental results demonstrate the
effectiveness of our proposed model in terms of
generating precise and accurate radiology reports.

Limitations

Our proposed two-stage framework requires pre-
defined observations and progressions for training,
which may not be available for other types of radio-
graphs. In addition, the outputs of Stage 1 are the
prerequisite inputs of Stage 2, and thus, our frame-
work may suffer from error propagation. Finally,
although prior information is important in generat-
ing precise and accurate free-text reports, historical
records are not always available, even in the two
benchmark datasets. Our framework will still gen-
erate misleading free-text reports, conditioning on
non-existent priors, as indicated in Ramesh et al.
(2022). This might be mitigated through rule-based
removal operations.

Ethics Statement

The MIMIC-ABN(Ni et al., 2020) and MIMIC-
CXR (Johnson et al., 2019) datasets are publicly
available benchmarks and have been automatically
de-identified to protect patient privacy. Although
our model improves the factual accuracy of gener-
ated reports, its performance still lags behind the
practical deployment. The outputs of our model
may contain false observations and diagnoses due
to systematic biases. In this regard, we strongly
urge the users to examine the generated output in
real-world applications cautiously.
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A Appendix

A.1 Observation and Progression Statitics
There are 14 observations: No Finding, Enlarged
Cardiomediastinum, Cardiomegaly, Lung Lesion,
Lung Opacity, Edema, Consolidation, Pneumonia,
Atelectasis, Pneumothorax, Pleural Effusion, Pleu-
ral Other, Fracture, and Support Devices. Table

5 lists the observation distributions annotated by
CheXbert(Smit et al., 2020) in the train/valid/test
split of two benchmarks and Table 7 shows the
progression distributions in our experiments.

#Observation MIMIC-ABN MIMIC-CXR
No Finding/POS 5002/32/22 64,677/514/229
No Finding/NEG 66,784/514/784 206,133/1,616/3,629
Cardiomegaly/POS 16,312/118/244 70,561/514/1,602
Cardiomegaly/NEG 804/4/8 85,448/714/801
Pleural Effusion/POS 10,502/80/186 56,972/477/1,379
Pleural Effusion/NEG 1,948/18/24 170,989/1,310/1,763
Pneumothorax/POS 1,452/24/4 8,707/62/106
Pneumothorax/NEG 1,792/10/26 190,356/1,495/2,338
Enlarged Card./POS 5,202/40/90 49,806/413/1,140
Enlarged Card./NEG 1,194/10/14 129,360/1,006/868
Consolidation/POS 4,104/36/96 14,449/119/384
Consolidation/NEG 3,334/20/34 97,197/788/964
Lung Opacity/POS 22,598/166/356 67,714/497/1,448
Lung Opacity/NEG 748/10/4 8,157/73/125
Fracture/POS 4,458/32/76 11,070/59/232
Fracture/NEG 330/0/0 9,632/72/53
Lung Lesion/POS 5,612/54/112 11,717/123/300
Lung Lesion/NEG 120/2/2 1,972/21/11
Edema/POS 8,704/76/168 33,034/257/899
Edema/NEG 1,898/16/32 51,639/409/669
Atelectasis/POS 19,132/134/220 68,273/515/1,210
Atelectasis/NEG 116/2/0 563/5/9
Support Devices/POS 9,886/58/196 60,455/450/1,358
Support Devices/NEG 394/0/10 1,081/7/11
Pneumonia/POS 17,826/138/260 23,945/184/503
Pneumonia/NEG 3,226/22/34 21,976/165/411
Pleural Other/POS 2,850/30/62 7,296/70/184
Pleural Other/NEG 8/0/0 63/0/0

Table 5: Observation distribution in train/valid/test split
of two benchmarks. Enlarged Card. refers to Enlarged
Cardiomediastinum.

A.2 Spatial and Temporal Entity
Here are some of the spatial entities: healed, frac-
tured, healing, nondisplaced, top, size, heart, nor-
mal, mediastinum, widening, contour, widened,
consolidative, collapse, underlying, developing, fi-
brosis, thickening, biapical, blunting, indistinct-
ness, asymmetrical, haziness, asymmetric, layering,
subpulmonic, thoracentesis, trace, small, adjacent,
tiny, atypical, developing, supervening, multifo-
cal, correct, superimposed, patchy, and borderline.
For temporal entities, we use the same settings of
Bannur et al. (2023), which are: bigger, change,
cleared, constant, decrease, decreased, decreasing,
elevated, elevation, enlarged, enlargement, enlarg-
ing, expanded, greater, growing, improved, im-
provement, improving, increase, increased, increas-
ing, larger, new, persistence, persistent, persisting,
progression, progressive, reduced, removal, resolu-
tion, resolved, resolving, smaller, stability, stable,
stably, unchanged, unfolded, worse, worsen, wors-

2145

https://doi.org/10.18653/v1/2022.findings-acl.33
https://doi.org/10.18653/v1/2022.findings-acl.33
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#VinyalsTBE15
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#VinyalsTBE15
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://openreview.net/forum?id=H-d5634yVi
https://openreview.net/forum?id=H-d5634yVi
http://arxiv.org/abs/2112.15009
http://arxiv.org/abs/2112.15009
http://arxiv.org/abs/2112.15009


Dataset Model NLG Metrics CE Metrics
B-1 B-2 B-3 B-4 MTR R-L P R F1

w. Historical Record Dp

MIMIC
-ABN

RECAP 0.327 0.183 0.117 0.081 0.124 0.227 0.274 0.372 0.297
RECAP w/o OP 0.300 0.164 0.106 0.072 0.110 0.217 0.281 0.274 0.257
RECAP w/o Obs 0.306 0.173 0.110 0.076 0.114 0.233 0.270 0.288 0.259
RECAP w/o Pro 0.295 0.158 0.099 0.070 0.109 0.209 0.249 0.361 0.278
RECAP w/o PrR 0.320 0.177 0.112 0.076 0.121 0.218 0.266 0.377 0.292

MIMIC
-CXR

RECAP 0.423 0.260 0.170 0.118 0.169 0.279 0.387 0.457 0.400
RECAP w/o OP 0.321 0.196 0.131 0.093 0.130 0.260 0.350 0.238 0.256
RECAP w/o Obs 0.347 0.213 0.144 0.104 0.141 0.270 0.465 0.293 0.307
RECAP w/o Pro 0.396 0.236 0.151 0.103 0.153 0.266 0.383 0.447 0.395
RECAP w/o PrR 0.420 0.257 0.168 0.115 0.166 0.279 0.386 0.459 0.403

w/o Historical Record Dp

MIMIC
-ABN

RECAP 0.319 0.182 0.116 0.080 0.120 0.223 0.306 0.360 0.306
RECAP w/o OP 0.303 0.171 0.109 0.074 0.110 0.217 0.299 0.302 0.283
RECAP w/o Obs 0.301 0.174 0.114 0.079 0.114 0.231 0.353 0.313 0.282
RECAP w/o Pro 0.309 0.171 0.109 0.073 0.115 0.222 0.314 0.360 0.302
RECAP w/o PrR 0.320 0.181 0.116 0.079 0.120 0.225 0.299 0.362 0.302

MIMIC
-CXR

RECAP 0.427 0.268 0.180 0.128 0.168 0.294 0.378 0.417 0.374
RECAP w/o OP 0.371 0.236 0.164 0.121 0.130 0.260 0.357 0.259 0.268
RECAP w/o Obs 0.363 0.231 0.161 0.119 0.146 0.291 0.415 0.262 0.277
RECAP w/o Pro 0.406 0.251 0.151 0.103 0.153 0.266 0.364 0.405 0.365
RECAP w/o PrR 0.412 0.257 0.172 0.122 0.163 0.289 0.364 0.414 0.368

Table 6: Ablation results of our model and its variants on progression modeling. RECAP w/o OP is the standard
Transformer model, w/o Obs stands for without observation, and w/o Pro stands for without progression.

#Progression MIMIC-ABN MIMIC-CXR
Better 929/2/19 14,790/110/345
Worse 1,219/6/30 18,083/163/431
Stable 4,114/31/99 41,721/334/1,085
Total 6,440/48/137 64,498/535/1,566
Ratio 9%/8.8%/17% 24%/25.1%/40.6%

Table 7: Progression distribution in train/valid/test split
of two benchmarks.

ened, worsening and unaltered.

A.3 Other Implementation Details
Data Preprocessing. We adopt the preprocessing
setup used in Chen et al. (2020), and the mini-
mum count of each token is set to 3/10 for MIMIC-
ABN/MIMIC-CXR, respectively. Other tokens are
replaced with a special token [UNK].
Implementation Details of Stage 1 Training. Ta-
ble 8 shows the hyperparameters used in Stage 1
training for two datasets. Note that ldi is the weight
for observation detection, and the weights of obser-
vation classification and progression classification
are both set to 1. In addition, two data augmenta-
tion methods are used during training. Specifically,

we first resize an input image to 256 × 256, and
then the image is randomly cropped to 224× 224,
and finally, we flip the image horizontally with a
probability of 0.5. We select the best checkpoint
based on the Macro-F1 of abnormal observations
at this stage.

Hyperparameter MIMIC-ABN MIMIC-CXR
Training Epoch 10 5
Dropout Rate 0.1 0.1
Learning Rate 1e− 4 1e− 4
Batch Size {64,128} {64,128}
Sample Weight (αd) {1, 2,3} {1, 2,3}

Table 8: Selected hyperparameters of Stage 1 training.
The final hyperparameters in boldface are tuned on the
validation set and others are set empirically.

Implementation Details of Stage 2 Training. As
the variant w/o OP and the variant w/o Obs in Table
4 are not trained in Stage 1, they are trained with
more epochs (i.e., 10 epochs).

A.4 Other Experimental Results

We show experimental results of observation pre-
diction and progression prediction during Stage 1
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training in Table 9 and Table 10, respectively.

Dataset D-F1 A-F1 N-F1

MIMIC-ABN 0.539 0.355 0.426
MIMIC-CXR 0.686 0.428 0.759

Table 9: Experimental results of observation prediction
after Stage 1 training. D-F1, A-F1, and N-F1 denote the
F1 of observation detection, abnormal observation pre-
diction, and normal observation prediction, respectively.

Dataset Better Worse Stable Macro
MIMIC-ABN 0.286 0.468 0.934 0.563
MIMIC-CXR 0.389 0.455 0.896 0.580

Table 10: Experimental results of progression prediction
(F1) after Stage 1 training.

Observation P R F1

Enlarged Card. 0.323 0.589 0.417
Cardiomegaly 0.585 0.836 0.689
Lung Opacity 0.489 0.499 0.494
Lung Lesion 0.265 0.044 0.075
Edema 0.562 0.587 0.574
Consolidation 0.285 0.233 0.256
Pneumonia 0.242 0.444 0.313
Atelectasis 0.426 0.800 0.556
Pneumothorax 0.265 0.167 0.205
Pleural Effusion 0.691 0.781 0.728
Pleural Other 0.184 0.050 0.078
Fracture 0.155 0.081 0.107
Support Devices 0.720 0.660 0.689
No Finding 0.265 0.429 0.327

Macro Average 0.389 0.443 0.393

Table 11: Experimental results of each observation after
Stage 2 training.
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