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Abstract

Generative adversarial networks (GANs)
and denoising diffusion probabilistic models
(DDPMs) have recently achieved impressive
performances in image and audio synthesis. Af-
ter revisiting their success in conditional speech
synthesis, we find that 1) GANs sacrifice sam-
ple diversity for quality and speed, 2) diffu-
sion models exhibit outperformed sample qual-
ity and diversity at a high computational cost,
where achieving high-quality, fast, and diverse
speech synthesis challenges all neural synthe-
sizers. In this work, we propose to converge
advantages from GANs and diffusion models
by incorporating both classes, introducing dual-
empowered modeling perspectives: 1) FastD-
iff 2 (DiffGAN), a diffusion model whose de-
noising process is parametrized by conditional
GANs, and the non-Gaussian denoising distri-
bution makes it much more stable to implement
the reverse process with large steps sizes; and
2) FastDiff 2 (GANDiff), a generative adver-
sarial network whose forward process is con-
structed by multiple denoising diffusion iter-
ations, which exhibits better sample diversity
than traditional GANs. Experimental results
show that both variants enjoy an efficient 4-
step sampling process and demonstrate superior
sample quality and diversity.1

1 Introduction

Speech synthesis has seen extraordinary progress
with the recent development of deep generative
models in machine learning (Lv et al., 2023b; Ye
et al., 2023b; Zhang et al., 2021, 2022c; Li et al.,
2023). Previous models (Oord et al., 2016; Kalch-
brenner et al., 2018) generate waveforms autore-
gressively from mel-spectrograms yet suffer from
slow inference speed. Non-autoregressive meth-
ods (Huang et al., 2022c, 2023a; Ye et al., 2023a;
Jiang et al., 2021) have been designed to address
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1Audio samples are available at https://

RevisitSpeech.github.io/

this issue, they generate samples with extremely
fast speed and achieve comparable voice quality
with autoregressive models.

Among them, Generative adversarial networks
(GANs) (Creswell et al., 2018; Mao et al., 2019;
Jiang et al., 2022) and denoising diffusion proba-
bilistic models (DDPMs) (Ho et al., 2020; Song
et al., 2020) are two popular classes of deep gener-
ative models that have demonstrated surprisingly
good results and dominated speech synthesis: Jang
et al. (2021) utilize local-variable convolution to
capture different waveform intervals with adversar-
ial learning. Kong et al. (2020a) propose multi-
receptive field fusion (MRF) to model the periodic
patterns matters. (Kong et al., 2020b) introduce a
time-aware wavenet for conditional diffusion mod-
eling. Huang et al. (2022b) and Lam et al. (2022)
utilize a noise predictor to learn a tight inference
schedule for skipping denoising steps.

Despite their success in the high-fidelity genera-
tion, few studies have compared these two classes
of deep generative models in conditional speech
synthesis. In this work, we conduct a comprehen-
sive study to revisit GANs and diffusion models,
and empirically demonstrate that: 1) GANs tend to
generate high-quality speeches but do not cover the
whole distribution, which sacrifice sample diver-
sity for quality and speed; and 2) diffusion models
exhibit outperformed sample quality and diversity,
buy they typically require a large number of it-
erative refinements. To this end, simultaneously
achieving high-quality and diverse speech synthe-
sis at a low computational cost has become an open
problem for all neural synthesizers.

In this work, we converge advantages from both
classes by incorporating GANs and diffusion mod-
els, introducing dual-empowered modeling per-
spectives for high-fidelity speech synthesis: 1) Fast-
Diff 2 (DiffGAN): a diffusion model whose denois-
ing process is parametrized by conditional GANs,
and the non-Gaussian denoising distribution makes
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it much more stable to implement the reverse pro-
cess with large step sizes; and 2) FastDiff 2 (GAN-
Diff): a generative adversarial network whose
forward process is constructed by multiple denois-
ing diffusion iterations, which exhibits better sam-
ple diversity than traditional GANs. Experimental
results show that both variants enjoy an effective
4-iter sampling process and demonstrate the out-
performed sample quality and diversity. Moreover,
we show that both variants generalize well to the
mel-spectrogram inversion of unseen speakers.

The main contributions of this work are summa-
rized as follows:

• We revisit two popular deep generative mod-
els (diffusion models and GANs) in conditional
speech synthesis, introducing dual-empowered
modeling perspectives to converge advantages
from both classes.

• FastDiff 2 (DiffGAN) removes the common as-
sumption of Gaussian distribution and utilizes
conditional GANs to parametrize the multimodal
denoising distribution, implementing the reverse
process with large step sizes more stably.

• FastDiff 2 (GANDiff) breaks the one-shot for-
ward of conditional GANs into several denoising
diffusion steps in which each step is relatively
simple to model, and thus it exhibits better sam-
ple diversity than traditional GANs.

• Experimental results show that both enjoy an ef-
fective 4-iter sampling process, providing a prin-
cipled way for high-fidelity and diverse speech
synthesis at a low computational cost.

2 Background on Speech Synthesis

With the development of deep generative mod-
els (Ye et al., 2023b; Lv et al., 2023a, 2022;
Zhang et al., 2022a,b), speech synthesis technol-
ogy has made rapid progress up to date. Most
models (Wang et al., 2017; Ren et al., 2019; Huang
et al.; Cui et al., 2021; Huang et al., 2023b; Ye et al.,
2022) first convert input text or phoneme sequence
into mel-spectrogram, and then transform it to
waveform using a separately trained vocoder (Ku-
mar et al., 2019; Kong et al., 2020a; Huang et al.,
2022a). In this work, we focus on designing
the second-stage model that efficiently synthesizes
high-fidelity waveforms from mel-spectrograms.

Neural vocoders require diverse receptive field
patterns to catch audio dependencies, and thus

previous models (Oord et al., 2016; Kalchbrenner
et al., 2018) generate waveforms autoregressively
from mel-spectrograms yet suffer from slow infer-
ence speed. In recent years, non-autoregressive
methods (Prenger et al., 2019; Kumar et al., 2019;
Kong et al., 2020b) have been designed to address
this issue, which generates samples with extremely
fast speed while achieving comparable voice qual-
ity with autoregressive models. Below we mainly
introduce two popular classes of deep generative
models (diffusion models and GANs) for condi-
tional speech synthesis:

2.1 Generative Adversarial Networks

Generative adversarial networks (GANs) (Kumar
et al., 2019; Huang et al., 2021) are one of the most
dominant non-autoregressive models in speech syn-
thesis. Morrison et al. (2021) propose a chun-
ked autoregressive GAN for conditional waveform
synthesis, Lee et al. (2022) utilize a large-scale
pretraining to improve out-of-distribution quality,
Bak et al. (2022) investigate GAN-based neural
vocoders and proposes an artifact-free GAN-based
neural vocoder.

The generator G aims to transform noise z into
G(z) that mimics real data, while the discriminator
D learns to distinguish the generated samples G(z)
from real ones. GANs jointly train a powerful
generator G and discriminator D with a min-max
game:

min
G

max
D

V (G,D) = Ex∼p(x)[log(D(x))]

+Ez∼p(z)[log(1−D(G(z)))],
(1)

However, GAN-based models are often difficult
to train, collapsing (Creswell et al., 2018) without
carefully selected hyperparameters and regulariz-
ers, and showing less sample diversity.

2.2 Diffusion Probabilistic Models

Denoising diffusion probabilistic models
(DDPMs) (Ho et al., 2020) are likelihood-based
generative models that have recently advanced the
state-of-the-art results in most image and audio
synthesis tasks. Denote data distribution as q(x0),
the diffusion process is defined by a fixed Markov
chain from data x0 to the latent variable xT , which
gradually adds noise to the data q(x0) in T steps
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Model Quality Speed Diversity
MOS (↑) MCD (↓) PESQ (↑) RTF (↓) NDB (↓) JS (↓)

GT 4.32±0.06 / / / / /

GAN 4.08±0.07 1.48 3.87 0.001 34 0.0016
Diffusion 4.16±0.09 1.62 3.92 4.70 22 0.0010

Table 1: Comparison of GANs and diffusion models for speech synthesis. We crowd-source 5-scale MOS tests via
Amazon Mechanical Turk, which are recorded with 95% confidence intervals (CI). We implement real-time factor
(RTF) assessment on a single NVIDIA V100 GPU.

AH2, linear 42

ph = AH2 ph = AW1 ph = THph = S

Figure 1: Comparison of sample distribution coverage between diffusion models and GANs. We randomly choose 4
different phonemes (ph = AH2, S,AW1, TH) in this case study.

with pre-defined noise schedule βt:

q(x1, · · · ,xT |x0) =
T∏

t=1

q(xt|xt−1)

q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI)

(2)

The reverse process is to recover samples from
Gaussian noises parameterized by shared θ. A guar-
antee of high sample diversity typically comes at
the cost of hundreds of denoising steps:

pθ(x0, · · · ,xT−1|xT ) =
T∏

t=1

pθ(xt−1|xt) (3)

pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σθ(xt, t)
2I)

It has been demonstrated that diffusion probabilis-
tic models (Dhariwal and Nichol, 2021; Xiao et al.,
2021) can learn diverse data distribution in multiple
domains, such as images and time series. However,
an apparent degradation could be witnessed when
reducing reverse iterations, making it challenging
to get accelerated.

3 Preliminary Study

In image generation, superior sample diver-
sity (Dhariwal and Nichol, 2021; Ho et al., 2020;
Song et al., 2020) is a crucial reason for the diffu-
sion model to produce high-quality samples even
on the challenging dataset. Due to the distinc-
tive advantages of diversity and distribution cov-
erage over GANs, diffusion models have been
demonstrated to generate realistic and vivid images,
achieving the current state-of-the-art measured by
FID.

Despite the comprehensive studies of GANs and
diffusion models for image generation, few have
compared these two classes of deep generative mod-
els in speech synthesis, where an audio signal is dif-
ferent (Oord et al., 2016; Kalchbrenner et al., 2018)
for its long-term dependencies, high sampling rate,
and strong condition. In this section, we provide
an empirical study and investigate the character-
istic of both classes with close model capacity in
speech. Specifically, we evaluate the performance
(including sample quality, speed, and diversity) and
explore how distribution coverage impacts sample
quality by auditory sensation.

3.1 Experimental Setup

We prepare 20 unseen samples from the bench-
mark LJSpeech dataset (Ito and Johnson, 2017)
for evaluation. For a fair comparison, we im-
plement the GAN and diffusion model with a
shared backbone (Huang et al., 2022b), which com-
prises three Diffusion-UBlock and DBlock with
the up/downsample rate of [8, 8, 4]. Following the
common practice (Kumar et al., 2019; Yamamoto
et al., 2020), we remove the time embedding in
GAN and introduce an auxiliary multi-resolution
STFT loss to stabilize adversarial learning. More
information has been attached in Appendix D.1.

3.2 Visualization

We further visualize the marginal distributions
P (x|ph) of diffusion models and GANs in Fig-
ure 1. Specifically, we 1) randomly sample 100
latent noises z for each testing audio and obtain
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2000 utterances in total. 2) split the generated utter-
ances into phoneme-level samples according to the
boundary obtained by forced alignment (McAuliffe
et al., 2017) and transform them into linear spec-
trograms; 3) compute the histograms 2 and smooth
them into probability density functions with kernel
density estimation for better visualization.

3.3 Analyses

Based on the evaluation results presented in Ta-
ble 1 and the marginal distributions illustrated in
Figure 1, we have the following observations:

Diffusion models demonstrate better sample
diversity at the cost of slow inference speed. A
more diverse data distribution could be observed in
samples generated by diffusion models, demon-
strating a better mode convergence. Diffusion
models are better at data sharpness, diversity, and
matching marginal label distribution of training
data. However, sampling from diffusion models of-
ten requires thousands of network iterations, which
is significantly slower than GAN and makes their
application expensive in practice.

GANs trade off diversity for quality and
speed. A distinct degradation of mode conver-
gence could be witnessed in GANs, which tend
to produce samples but do not cover the whole dis-
tribution, indicating a collapsed distribution and
less sample diversity. To conclude, GANs sacri-
fice diversity for quality and speed, while the con-
strained distribution does not hinder their ability to
generate high-fidelity samples. Compared to dif-
fusion models, GANs enjoy high-quality speech
synthesis with a minor gap of 0.08 in MOS, while
even demonstrating an outperformed performance
in MCD evaluation. Regarding inference speed,
GANs enjoy an effective one-shot sampling pro-
cess, significantly reducing the inference time com-
pared with competing diffusion mechanisms.

4 Methods

After revisiting GAN and diffusion models for
speech synthesis, we witness that 1) GANs sac-
rifice sample diversity for better quality and speed,
producing high-quality samples but not covering
the whole distribution. 2) Diffusion models ex-
hibit outperformed sample quality and diversity,
requiring iterative refinement at a high computa-
tional cost. In this section, we aim to converge

2We obtain similar results among different frequency bands
and choose the 70-th bin for illustration.

advantages from both classes, introducing dual-
empowered modeling perspectives for high-fidelity,
fast, and diverse speech synthesis.

4.1 Overview
This section presents our proposed models dually
empowered by GANs and diffusion: 1) FastDiff 2
(DiffGAN): a diffusion model whose denoising pro-
cess is parametrized by conditional GANs, and thus
the non-Gaussian denoising distribution makes it
much more stable to implement the reverse process
with large step sizes; and 2) FastDiff 2 (GANDiff):
a generative adversarial network whose forward
process is constructed by multiple denoising dif-
fusion distributions, thus exhibiting better sample
diversity than traditional GANs.

4.2 Diffusion Mechanism Leveraging GAN
Diffusion models commonly assume that the de-
noising distribution can be approximated by Gaus-
sian distributions. However, the Gaussian assump-
tion holds only in the infinitesimal limit of small
denoising steps, which requires numerous steps in
the reverse process. As such, reducing the number
of iterative steps always causes a distinct degrada-
tion in perceptual quality.

In this work, we propose FastDiff 2 (DiffGAN)
leveraging conditional GANs to model the de-
noising distribution q(xt|xt−1), and thus the non-
Gaussian multimodal distribution makes it much
more stable to implement the reverse process with
large steps sizes. Specifically, our forward diffu-
sion process is set up with the main assumption that
the number of diffusion iterations is small (T = 4).
The training is formulated by matching the condi-
tional GAN generator pθ(xt−1|xt) and q(xt|xt−1)
using an adversarial loss that minimizes a diver-
gence Dadv per denoising step. The discriminator
Dϕ (xt−1,xt, t) is designed to be diffusion-step-
dependent, which supervises the generator to pro-
duce high-fidelity speech sample. The min-max
objective can be expressed as:

min
θ

∑

t≥1

Eq(t) [Dadv (q (xt−1 | xt) ∥pθ (xt−1 | xt))] , (4)

LG =
∑

t≥1

Eq(xt)Epθ(xt−1|xt)
[
(Dϕ (xt−1,xt, t)− 1)2

]
,

(5)

LD =
∑

t≥1

Eq(xt)q(xt−1|xt)
[
(Dϕ (xt−1,xt, t)− 1)2

]

+ Epθ(xt−1|xt)
[
Dϕ (xt−1,xt, t)

2] , (6)
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x0 xt−1 xt x̃0 x̃t−1
q(xt−1|xt, x̃0)

Real/Fake?Dφ(xt−1,xt, t)Condition

fθ(xt|t, c)

⋯ ⋯
Real/Fake?

x̃0x̃T x̃t−1x̃t x0
pθ(xt|xt−1)

Dφ(x0)

DiffGAN-Wave

GANDiff-Wave

(a) Shared architecture

Noisy Audio

DBlock (8)

Conv1d (32)

DBlock (8)

DBlock (4)

Conv1d (1)

Output

Diffusion-UBlock (4)

Diffusion-UBlock (4)

Diffusion-UBlock (8)

Dynamic Condition (𝑡, 𝑐)

(b) Training process

q(xt|xt−1)

Figure 2: The overall architecture for dual-empowered speech models. In subfigure (a), it takes noisy audio xt as
input and conditions on diffusion time index t and Mel-spectrogram c.

Where Dadv depends on the adversarial training
setup, and the fake samples from pθ (xt−1 | xt) are
contrasted against the real one from q (xt−1 | xt).
Reparameterization on diffusion model. Differ-
ent from the conventional diffusion models that
require hundreds of steps with small βt to estimate
the gradient for data density, recent works (Sal-
imans and Ho, 2022; Liu et al., 2022) have wit-
nessed that approximating some surrogate vari-
ables, e.g., the noiseless target data gives better
quality. We reparameterize the denoising model by
directly predicting the clean data x0. Free from es-
timating the gradient for data density, it only needs
to predict unperturbed x0 and then add perturbation
with the posterior distribution q(xt−1|xt,x0) (for-
mulated in Appendix B), and the reverse transition
distribution can be expressed as:

pθ(xt−1|xt, c) = q (xt−1 | xt, x̃0 = fθ(xt|t, c)) (7)

4.3 GAN Leveraging Diffusion Mechanism
GAN-based models are often difficult to train, col-
lapsing (Mao et al., 2019) without carefully se-
lected hyperparameters and regularizers, and show-
ing less sample diversity. Besides, these mod-
els show distinct degradation in training stability,
which cannot generate deterministic values due to
the complex data distribution.

In this work, we propose FastDiff 2 (GANDiff)
leveraging diffusion mechanism to construct the
forward process by multiple denoising iterations,
and thus we expect it exhibits better training sta-
bility and sample diversity compared to traditional
one-shot GANs. To be more specific, we 1) ini-
tialize the generator G with a pre-trained diffusion
teacher; 2) conduct 4-iter denoising to generate x̃0

with gradient, which is regarded as the forward
process of the generator; and finally 3) G plays an
adversarial game with the discriminator D, and the

min-max objective can be expressed as:

LG = Eqdata

[
(Dϕ (x̃0)− 1)2

]
(8)

LD = Eqdata

[
(Dϕ (x̃0))

2 + (Dϕ (x0 − 1))2
]

(9)

We empirically find that the initialization of dif-
fusion teacher provides a better understanding of
noise schedules, and it reduces the difficulties of
adversarial learning by orders of magnitude. Fast-
Diff 2 (GANDiff) breaks the forward process of
one-shot conditional GAN into several denoising
diffusion iterations, in which each step is relatively
simple to model. Thus, it exhibits better sample
diversity than traditional one-shot GANs.

4.4 Architecture
As illustrated in Figure 2(a), we take a stack of
time-aware location-variable convolution (Huang
et al., 2022b) as a shared backbone to model long-
term time dependencies with adaptive conditions
efficiently. Convolution is conditioned on dynamic
variations (diffusion steps and spectrogram fluc-
tuations) in speech, which equips the model with
diverse receptive field patterns and promotes ro-
bustness.

We build the basic architecture of discriminator
upon WaveNet (Oord et al., 2016). It consists of
ten layers of non-causal dilated 1-D convolutions
with weight normalization. The discriminator is
trained to correctly classify the generated sample
as fake while classifying the ground truth as real.
More details have been attached in Appendix C.

4.5 Loss Objective
Adversarial GAN Objective. For the genera-
tor and discriminator, the training objectives fol-
low (Mao et al., 2017), which replaces the binary
cross-entropy terms of the original GAN objec-
tives (Goodfellow et al., 2014) with least squares
loss functions for non-vanishing gradient flows.
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Frequency-domain Reconstruction Objective.
To stabilize adversarial learning, we include
frequency-domain sample reconstruction loss
objective by applying the multi-resolution
STFT (Short Time Fourier Transform) operation
STFT (·) (given in Appendix F):

Lθ = LSTFT (x̃0,x0) (10)

4.6 Training Algorithm

The training procedures of the proposed FastDiff
2 (GANDiff) and FastDiff 2 (DiffGAN) have been
illustrated as follows. The sampling algorithms
have been attached in Appendix D.2.

Algorithm 1 Training FastDiff 2 (DiffGAN)

1: Require: FastDiff 2 (DiffGAN) generator θ,
discriminator ϕ, and mel condition c.

2: repeat
3: Sample x0 ∼ qdata, ϵ ∼ N (0, I), and t ∼

Unif({1, · · · , T})
4: Sample xt, xt−1 according to E.q (2)
5: x̃0 = fθ(xt|t, c)
6: Sample x̃t−1 ∼ q(xt−1|xt, x̃0) according

to E.q (7)
7: Take gradient descent steps on ∇θ(Lθ+LG)

according to E.q (10) and (5)
8: Take gradient descent steps on ∇ϕLD ac-

cording to E.q (6)
9: until FastDiff 2 (DiffGAN) converged

Algorithm 2 Training FastDiff 2 (GANDiff)

1: Require: Diffusion teacher α with schedule β
(T = 4) derived by noise predictor, FastDiff 2
(GANDiff) generator θ, discriminator ϕ, and
mel condition c.

2: Initialize θ parameters using teacher α
3: repeat
4: for t = T, · · · , 1 do
5: Sample x̃t−1 ∼ pθ(xt−1|xt, c)
6: end for
7: Take gradient descent steps on ∇θ(Lθ+LG)

according to E.q (10) and (8)
8: Take gradient descent steps on ∇ϕLD ac-

cording to E.q (9)
9: until FastDiff 2 (GANDiff) converged

5 Related Works

5.1 Diffusion Probabilistic Model

The diffusion probabilistic model is a family of gen-
erative models with the capacity to learn complex
data distribution, which has recently attracted a
lot of research attention in several important do-
mains. Diffusion models generate high-fidelity
samples yet inherently suffer from slow sampling
speed, and thus multiple methods have conducted
extensive investigations to accelerate the sampling
process: Chen et al. (2020) utilize a grid search
algorithm for a shorter inference schedule. Liu
et al. (2021) introduces a shallow diffusion mech-
anism that starts denoising at a particular distribu-
tion instead of Gaussian white noise. Huang et al.
(2022b); Lam et al. (2022) utilize a noise predictor
to learn a tight inference schedule for skipping de-
noising steps. Their designs make diffusion models
more applicable to real-world deployment, while
the diffusion/denoising mismatch leads to quality
degradation during jumping sampling steps. In this
work, we avoid this mismatch by incorporating
GANs into diffusion models, which makes it much
more stable to implement the reverse process with
large step sizes.

5.2 Generative Adversarial Network

Generative adversarial networks (GANs) (Jang
et al., 2021; Kong et al., 2020a) are one of the
most dominant deep generative models for speech
generation. UnivNet (Jang et al., 2021) has demon-
strated its success in capturing different waveform
intervals with local-variable convolution. HIFI-
GAN (Kong et al., 2020a) proposes multi-receptive
field fusion (MRF) to model the periodic patterns
matters. However, GAN-based models are often
difficult to train, collapsing (Creswell et al., 2018)
without carefully selected hyperparameters and reg-
ularizers, and showing less sample diversity. Differ-
ently, we incorporate diffusion models into GANs
and break the generation process into several con-
ditional denoising steps, in which each step is rela-
tively simple to model. Thus, we expect our model
to exhibit better sample diversity.

6 Experiments

6.1 Experimental Setup

6.1.1 Dataset
For a fair and reproducible comparison against
other competing methods, we use the benchmark
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Model Quality Speed Diversity
MOS (↑) STOI (↑) PESQ (↑) RTF (↓) NDB (↓) JS (↓)

GT 4.32±0.06 / / /

WaveNet (MOL) 3.95±0.08 / / 85.23 0.34 0.002
WaveGlow 3.86±0.08 0.961 3.20 0.029 0.73 0.015
HIFI-GAN 4.06±0.10 0.970 3.63 0.002 0.70 0.012
UnivNet 4.05±0.09 0.969 3.54 0.002 0.71 0.010

Diffwave (6 steps) 4.06±0.09 0.966 3.72 0.093 0.81 0.012
WaveGrad (50 steps) 4.00±0.00 0.954 3.33 0.390 0.68 0.012
FastDiff (4 steps) 4.09±0.10 0.971 3.78 0.017 0.66 0.014

FastDiff 2 (DiffGAN) (4 steps) 4.16±0.10 0.972 3.73 0.017 0.47 0.004
FastDiff 2 (GANDiff) (4 steps) 4.12±0.08 0.979 3.90 0.017 0.27 0.002

Table 2: Comparison with other neural vocoders in terms of quality, diversity and synthesis speed. For sampling,
we used 50 steps in WaveGrad, 6 steps in DiffWave and 4 steps in FastDiff, respectively, following (ivanvovk,
2020), (philsyn, 2021), and (Huang, 2022).

LJSpeech dataset (Ito and Johnson, 2017) which
consists of 13,100 audio clips of 22050 Hz from a
female speaker for about 24 hours. To evaluate the
model generalization ability over unseen speakers
in multi-speaker scenarios, we prepare the VCTK
dataset (Yamagishi et al., 2019), which is downsam-
pled to 22050 Hz to match the sampling rate with
the LJSpeech dataset. VCTK consists of approx-
imately 44,200 audio clips uttered by 109 native
English speakers with various accents. Following
the common practice, we conduct preprocessing
and extract the spectrogram with the FFT size of
1024, hop size of 256, and window size of 1024
samples.

6.1.2 Model Configurations
FastDiff 2 (DiffGAN) and FastDiff 2 (GAN-
Diff) share the same backbone comprising
three Diffusion-UBlocks and DBlocks with the
up/downsample rate of [8, 8, 4], respectively. The
discriminator consists of ten layers of non-causal
dilated 1-D convolutions, whose strides are linearly
increasing from one to eight except for the first and
last layers. Channels and kernel sizes are set to 64
and 5, respectively. Both variants share the same
number of denoising steps (T = 4) in both train-
ing and inference. The multi-resolution STFT loss
is computed by the sum of three different STFT
losses described in Appendix F.

6.1.3 Training and Evaluation
Both models are trained with constant learning rate
lr = 2 × 10−4 on 4 NVIDIA V100 GPUs. We
use random short audio clips of 25600 samples
from each utterance with a batch size of 16 for
each GPU. We crowd-source 5-scale MOS tests
via Amazon Mechanical Turk to evaluate the audio

quality. The MOS scores are recorded with 95%
confidence intervals (CI). Raters listen to the test
samples randomly and are allowed to evaluate each
audio sample once. We adopt additional objec-
tive evaluation metrics including STOI (Taal et al.,
2010), PESQ (Rix et al., 2001) to test sample qual-
ity, and NDB, JS (Richardson and Weiss, 2018) for
sample diversity. To evaluate the inference speed,
we implement the real-time factor (RTF) assess-
ment on a single NVIDIA V100 GPU. More infor-
mation about objective and subjective evaluation is
attached in Appendix E.

6.2 Comparsion With Other Models

We compared our proposed models in audio quality
and sampling speed with competing models, in-
cluding 1) WaveNet (Oord et al., 2016), the autore-
gressive generative model for raw audio. 2) Wave-
Glow (Prenger et al., 2019), the parallel flow-based
model. 3) HIFI-GAN V1 (Kong et al., 2020a) and
UnivNet (Jang et al., 2021), the most popular GAN-
based models. 4) Diffwave (Kong et al., 2020b),
WaveGrad (Chen et al., 2020), and FastDiff (Huang
et al., 2022b), three diffusion probabilistic models
that generate high-fidelity speech samples. For easy
comparison, the results are compiled and presented
in Table 2, and we have the following observations:

For our GAN-empowered diffusion model, Fast-
Diff 2 (DiffGAN) has achieved the highest MOS
compared with the baseline models, with a gap of
0.16 compared to the ground truth audio. Regard-
ing inference speed, it enjoys an effective 4-iter
sampling process and enables a speed of 58x faster
than real-time on a single NVIDIA V100 GPU
without engineered kernels. FastDiff 2 (DiffGAN)
provides a principled way to accelerate DDPMs in
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both training and inference, avoiding quality degra-
dation caused by a training-inference mismatch
in baseline diffusion models (FastDiff, WaveGrad,
Diffwave). It is worth mentioning that FastDiff
2 (DiffGAN) maintains the outperformed sample
diversity inherited in DDPMs.

For diffusion-empowered GANs, FastDiff 2
(GANDiff) also demonstrates high-quality speech
synthesis with the MOS of 4.12. For objective eval-
uation, it further presents the new state-of-the-art
results in PESQ and STOI, superior to all baseline
models. Moreover, we can see that it achieves a
higher JSD and NDB compared to baseline GAN
models. It breaks the generation process into sev-
eral conditional denoising diffusion steps, in which
each step is relatively simple to model. Thus, we
expect our model to exhibit better mode coverage
and sample diversity than traditional GANs (HIFI-
GAN, UnivNet).

To conclude, by incorporating GAN and diffu-
sion models, the dual-empowered speech models
converge advantages from both classes and achieve
high-quality and diverse speech synthesis at a low
computational cost.

6.3 Ablation Study
We conduct ablation studies to demonstrate the
effectiveness of several designs, including the dif-
fusion reparameterization and frequency-domain
objective in dual-empowered speech models. The
results of both subjective and objective evaluation
have been presented in Table 3, and we have the
following observations: 1) Replacing the diffusion
reparameterization design and parameterizing the
denoising model by predicting the Gaussian noise
ϵ has witnessed a distinct degradation in perceptual
quality. Specifically, FastDiff 2 (DiffGAN) directly
predicts clean data to avoid significant degrada-
tion when reducing reverse iterations. 2) Remov-
ing the sample reconstruction loss objective results
in blurry predictions with distinct artifact (Kumar
et al., 2019) in both variants, demonstrating the
effectiveness of the multi-resolution STFT regular-
ization in stabilizing adversarial learning, which is
helpful to improve the quality of generated wave-
forms with a MOS gain.

6.4 Generalization To Unseen Speakers
We use 40 randomly selected utterances of 5 un-
seen speakers in the VCTK dataset that are not
used in training for out-of-distribution testing. Ta-
ble 4 shows the experimental results for the mel-

Model MOS (↑) STOI(↑) PESQ (↑)

GT 4.32±0.06 / /

FastDiff 2 (DiffGAN) 4.16±0.10 0.972 3.73
w/o DR 2.40±0.08 0.922 3.19
w/o RO 2.40±0.08 0.922 3.19

FastDiff 2 (GANDiff) 4.12±0.08 0.979 3.90
w/o RO 2.71±0.07 0.954 3.15

Table 3: Ablation study results. Comparison of the
effect of each component on quality. DR: diffusion
reparameterization, RO: reconstruction objective.

Model MOS (↑) STOI(↑) PESQ (↑)

GT 4.30±0.06 / /

WaveNet (MOL) 3.80±0.07 / /
WaveGlow 3.65±0.07 0.870 3.10
HIFI-GAN 3.76±0.09 0.862 3.14
UnivNet 3.79±0.08 0.887 3.21

Diffwave (6) 3.80±0.09 0.873 3.22
WaveGrad (50) 3.73±0.07 0.856 3.15
FastDiff (4) 3.84±0.08 0.894 3.25

FastDiff 2 (DiffGAN) (4) 3.96±0.07 0.910 3.28
FastDiff 2 (GANDiff) (4) 3.92±0.08 0.912 3.57

Table 4: Comparison with other neural vocoders of
synthesized utterances for unseen speakers.

spectrogram inversion of the samples from unseen
speakers: We notice that both variants produce
high-fidelity samples and outperform baseline mod-
els. They universally generate audio with strong
robustness from entirely new speakers outside the
training set.

7 Conclusion

In this work, through revisiting two popular classes
(diffusion models and GANs) of deep generative
models, we observed that 1) GANs tended to gener-
ate samples but did not cover the whole distribution,
and 2) diffusion models exhibited outperformed
sample quality and diversity while requiring it-
erative refinement at a high computational cost.
To achieve high-quality, fast and diverse speech
synthesis, we converged advantages by incorporat-
ing GANs and diffusion models, introducing dual-
empowered modeling perspectives: 1) FastDiff 2
(DiffGAN), a diffusion model whose denoising pro-
cess was parametrized by conditional GANs, and
the non-Gaussian denoising distribution made it
much more stable to implement the reverse process
with large step sizes; and 2) FastDiff 2 (GANDiff):
a generative adversarial network whose forward
process was constructed by multiple denoising dif-
fusion iterations, and it exhibited better mode cov-
erage and sample diversity. Experimental results
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showed that both variants enjoyed an efficient 4-
step sampling and demonstrated superior sample
quality and diversity. We envisage that our work
serve as a basis for future speech synthesis studies.

8 Limitations and Potential Risks

The adversarial learning still requests a proper se-
lection of hyperparameters, otherwise the training
procedure could be unstable. Besides, training
speech diffusion probabilistic models typically re-
quire more computational resources, and degrada-
tion could be witnessed with decreased training
data.

Our proposed model lowers the requirements for
high-quality speech synthesis, which may cause
unemployment for people with related occupations,
such as broadcasters and radio hosts. In addition,
there is the potential for harm from non-consensual
voice cloning or the generation of fake media, and
the voices of the speakers in the recordings might
be overused than they expect.
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A Detailed Formulation of DDPM

We define the data distribution as q(x0). The dif-
fusion process is defined by a fixed Markov chain
from data x0 to the latent variable xT :

q(x1, · · · ,xT |x0) =
T∏

t=1

q(xt|xt−1), (11)

For a small positive constant βt, a small Gaussian
noise is added from xt to the distribution of xt−1

under the function of q(xt|xt−1).
The whole process gradually converts data x0 to

whitened latents xT according to the fixed noise
schedule β1, · · · , βT , where ϵ ∼ N (0, I):

q(xt|xt−1) := N (xt;
√

1− βtxt−1, βtI) (12)

Efficient training is optimizing a random term of t
with stochastic gradient descent:

Lθ =

∥∥∥∥ϵθ
(
αtx0 +

√
1− α2

tϵ

)
− ϵ

∥∥∥∥
2

2

(13)

Unlike the diffusion process, the reverse process
is to recover samples from Gaussian noises. The
reverse process is a Markov chain from xT to x0
parameterized by shared θ:

pθ(x0, · · · ,xT−1|xT ) =
T∏

t=1

pθ(xt−1|xt), (14)

where each iteration eliminates the Gaussian noise
added in the diffusion process:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t), σθ(xt, t)
2I) (15)

B Diffusion Posterior Distribution

Firstly we compute the corresponding constants
respective to diffusion and reverse process:

αt =
t∏

i=1

√
1− βi σt =

√
1− α2

t (16)

The Gaussian posterior in the diffusion process
is defined through the Markov chain, where each it-
eration adds Gaussian noise. Consider the forward
diffusion process in Eq. 12, which we repeat here:

q(x1, · · · ,xT |x0) =
T∏

t=1

q(xt|xt−1),

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI)

(17)

We emphasize the property observed by (Ho
et al., 2020), the diffusion process can be computed
in a closed form:

q(xt|x0) = N (xt;αtx0, σtI) (18)

C Model Hyperparameters

C.1 Architectures

As illustrated in Table 5, we list the hyper-
parameters of dual-empowered speech models.

Table 5: Architecture hyperparameters of FastDiff 2
(DiffGAN)/FastDiff 2 (GANDiff).

Module Parameter
DBlock Hidden Channels 32
DBlock Downsample Ratios [4, 8, 8]
Diffusion UBlock Hidden Channels 32
Diffusion UBlock Upsample Ratios [8, 8, 4]
Time-aware LVC layers Each Block 4
Time-aware LVC layers Kernel Size 256
Diffusion Kernel Predictor Hidden Channels 64
Diffusion Kernel Predictor Kernel Size 3
Diffusion Embedding Input Channels 128
Diffusion Embedding Output Channels 512
Use Weight Norm True

Total Number of Parameters 15 M

C.2 Diffusion hyperparameters

We list the diffusion hyper-parameters in Table 6.

Table 6: Diffusion hyperparameters.

Diffusion Hyperparameter

FastDiff 2 (GANDiff):
β = [3.6701e−7, 1.7032e−5, 7.908e−4, 7.6146e−1]
FastDiff 2 (DiffGAN):
β = Linear(1× 10−4, 0.1, 4)

D Training and Inference details

D.1 Preliminary Study

Both models are trained with constant learning rate
lr = 2 × 10−4 on 4 NVIDIA V100 GPUs. We
conduct preprocessing and extract the spectrogram
with the FFT size of 1024, hop size of 256, and
window size of 1024 samples.

For audio quality, we adopt objective evalua-
tion metrics including MCD (Kubichek, 1993) and
PESQ (Rix et al., 2001). We crowd-sourced 5-
scale MOS tests via Amazon Mechanical Turk.
Raters listened to the test samples randomly, where
they were allowed to evaluate each audio sample
once. To evaluate the sampling speed, we imple-
ment the real-time factor (RTF) assessment on a
single NVIDIA V100 GPU. NDB and JSD metrics
are employed to explore the diversity of generated
mel-spectrograms.
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Algorithm 3 Sampling with FastDiff 2 (DiffGAN)

1: Input: FastDiff 2 (DiffGAN) generator θ, and
mel condition c.

2: Sample xT ∼ N (0, I)
3: for t = T, · · · , 1 do
4: Sample xt−1 ∼ pθ(xt−1|xt) =

q(xt−1|xt, x̃0 = fθ(xt|t, c))
5: end for
6: return x0

Algorithm 4 Sampling with FastDiff 2 (GANDiff)

1: Input: FastDiff 2 (GANDiff) generator θ, and
mel condition c.

2: Sample xT ∼ N (0, I)
3: for t = T, · · · , 1 do
4: Sample xt−1 ∼ pθ(xt−1|xt)
5: end for
6: return x0

D.2 Sampling Algorithm

E Evaluation Matrix

E.1 Objective Evaluation
Perceptual evaluation of speech quality
(PESQ) (Rix et al., 2001) and The short-
time objective intelligibility (STOI) (Taal et al.,
2010) assesses the denoising quality for speech
enhancement.

Number of Statistically-Different Bins (NDB)
and Jensen-Shannon divergence (JSD). They mea-
sure diversity by 1) clustering the training data into
several clusters, and 2) measuring how well the
generated samples fit into those clusters.

Mel-cepstral distortion (MCD) (Kubichek, 1993)
measures the spectral distance between the synthe-
sized and reference mel-spectrum features.

E.2 Subjective Evaluation
All our Mean Opinion Score (MOS) tests are
crowd-sourced and conducted by native speakers.
The scoring criteria have been included in Table 7
for completeness. The samples are presented and
rated one at a time by the testers, each tester is
asked to evaluate the subjective naturalness of a
sentence on a 1-5 Likert scale. The screenshots
of instructions for testers are shown in Figure 3.
We paid $8 to participants hourly and totally spent
about $600 on participant compensation.

F Multi-resolution STFT loss details

By applying the multi-resolution short time fourier
transform, we respectively obtain the spectral
convergence (Lstft−sc) and log STFT magnitude
(Lstft−mag) of LSTFT in frequency domain:

Lstft−sc =
∥STFT(x0)− STFT(x̃0)∥F

∥ STFT(x0)∥F
(19)

Lstft−mag =
1

N
∥ log(STFT(x0))− log(STFT(x̃0))∥1,

(20)

where ∥ · ∥F and ∥ · ∥1 denote the Frobenius
and L1 norms. N denotes the number of elements
in the magnitude; The final multi-resolution STFT
loss is the sum of M losses with different analysis
parameters(i.e., FFT size, window size, and hop
size), and we set M = 3:

LSTFT =
1

M

M∑

m=1

(
L(m)

stft−sc + L(m)
stft−mag

)
(21)
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Table 7: Ratings that have been used in the evaluation of speech naturalness of synthetic and ground truth samples.

Rating Naturalness Definition

1 Bad Very annoying and objectionable dist.
2 Poor Annoying but not objectionable dist.
3 Fair Perceptible and slightly annoying dist
4 Good Just perceptible but not annoying dist.
5 Excellent Imperceptible distortions

Figure 3: Screenshot of MOS testing.

Table 8: The details of the multi-resolution STFT loss. A hanning window was applied before the FFT process.

FFT size Frame shift Window size

1024 600 120
2048 120 250
512 240 50
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etc. or just a single run?
See section 6.1.3

�3 C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?
See section 6.1.1

D �3 Did you use human annotators (e.g., crowdworkers) or research with human participants?
See section 6.1.3

�3 D1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
See section 6.1.3 and section E in Appendix.

�3 D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?
See section 6.1.3 and section E in Appendix.

� D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?
Not applicable. Left blank.

�3 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
See section 6.1.3 and section E in Appendix.

� D5. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
Not applicable. Left blank.
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