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Abstract

Event representation learning has been shown
beneficial in various downstream tasks. Current
event representation learning methods, which
mainly focus on capturing the semantics of
events via deterministic vector embeddings,
have made notable progress. However, they
ignore two important properties: the multi-
ple relations between events and the uncer-
tainty within events. In this paper, we propose
a novel approach to learning multi-relational
probabilistic event embeddings based on con-
trastive learning. Specifically, the proposed
method consists of three major modules, a
multi-relational event generation module to au-
tomatically generate multi-relational training
data, a probabilistic event encoding module
to model uncertainty of events by Gaussian
density embeddings, and a relation-aware pro-
jection module to adapt unseen relations by
projecting Gaussian embeddings into relation-
aware subspaces. Moreover, a novel contrastive
learning loss is elaborately designed for learn-
ing the multi-relational probabilistic embed-
dings. Since the existing benchmarks for event
representation learning ignore relations and un-
certainty of events, a novel dataset named MR-
PES is constructed to investigate whether mul-
tiple relations between events and uncertainty
within events are learned. Experimental results
show that the proposed approach outperforms
other state-of-the-art baselines on both existing
and newly constructed datasets.

1 Introduction

Events, carrying world knowledge, are the major
research targets in Natural Language Processing
(NLP) for decades. Distributed event representa-
tion learning has been shown beneficial in various
NLP tasks, such as sentiment analysis (Zhou et al.,
2021), event detection (Deng et al., 2021) and text
generation (Chen et al., 2021).

*Corresponding author.
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Figure 1: An example in the MRPES dataset, where
shaded areas represent confidence intervals of the den-
sity embeddings.

Early event representation learning methods
mainly focused on the way of composing event
components, such as by Multilayer Percep-
trons (Granroth-Wilding and Clark, 2016), Re-
current Neural Networks (Modi, 2016), and Ten-
sor Networks (Weber et al., 2018). Latter work
tried to incorporate various external knowledge
into event representation learning, such as knowl-
edge graphs (Ding et al., 2016), extra event fea-
tures (Lee and Goldwasser, 2018), or common-
sense knowledge (Ding et al., 2019). Recently,
Gao et al. (2022) showed the effectiveness of in-
corporating contrastive learning (Chen et al., 2020)
in event representation learning by simultaneously
utilizing weakly supervised contrastive learning
and prototype-based clustering. So far, similar
to word representation learning (Mikolov et al.,
2013; Pennington et al., 2014), current approaches
for event representation learning mainly aim to
capture the semantics of events based on large-
scale co-occurrence training data by making the
semantically-similar events closer in embedding
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space.

Though notable progress has been made, most
existing methods still have two limitations. On
the one hand, they ignore the multiple relations
between events, which means every event pair that
occurs together will be pushed closer whatever the
actual relation between them. As shown in Fig-
ure 1(a), both event (man go to hospital) and
event (man be healthy) will be pushed closer to
event (he contracted disease), which means they
will be pushed closer too. It is problematic as
they are semantically different. On the other hand,
the inherent uncertainty or polysemy of events
is ignored. A more general event is used to de-
scribe more situations, reflecting higher uncertainty
in its meaning (Athiwaratkun and Wilson, 2018;
Zhang et al., 2021). As shown in Figure 1(a),
event (he contracted disease) is a general de-
scription for illness, which is semantically similar
to two specific events (man have headache) and
(person catch cold) which are different from each
other. However, restricted by the triangle inequal-
ity, it is hard for a vector embedding to be close to
the other two points that are apart from each other.

In this paper, we propose a Multi-relatiOnal
pRobabilistic Event embedding method based
on Contrastive Learning (MORE-CL) to solve
the above limitations. Specifically, we utilize
COMET (Bosselut et al., 2019), a commonsense
generative model, to generate multi-relational pos-
itive samples for contrastive training. A prob-
abilistic event encoder based on BERT (Devlin
et al., 2019) is proposed to generate Gaussian event
embeddings by estimating the mean vector and
variance matrix. To deal with unseen relations,
a relation-aware projector is employed to deter-
mine the relation-based event pair context auto-
matically with an attention mechanism and project
the density embeddings into relation-specific sub-
spaces. Finally, the original InfoNCE loss (Oord
et al., 2018) is modified to learn multi-relational
probabilistic embedding. To investigate the effec-
tiveness of the proposed method, a multi-relational
probabilistic event similarity dataset named MR-
PES is constructed. Experimental results show
that MORE-CL outperforms other baselines by a
large margin on both original and new benchmark
datasets.

In conclusion, our contributions are three-fold:

* A novel method, MORE-CL, is proposed to
model the multiple relations between events

and the uncertainty within events using pro-
jected Gaussian density embeddings with con-
trastive learning.

* A multi-relational probabilistic event similar-
ity dataset named MRPES is constructed and
annotated to evaluate whether the multiple
relations between events and the uncertainty
within events are learned.

* Experimental results show the effectiveness
of the proposed method on both original and
newly constructed benchmark datasets.

2 Related Work

Event Representation Learning. Most exist-
ing event representation learning methods aim to
project textual event descriptions represented into
a dense vector where the semantic information
of events is preserved as much as possible. Pre-
vious works either explored ways to effectively
compose event components such as by tensor net-
work (Ding et al., 2015; Weber et al., 2018) or exter-
nal knowledge to improve the learning of event em-
beddings (Ding et al., 2016; Lee and Goldwasser,
2018; Ding et al., 2019). Besides textual signal,
Zhang et al. (2021) proposed to utilize event im-
ages as external knowledge. Generally, they can
be categorized as methods learned by the margin
loss based on a pair of a positive sample and a neg-
ative sample. Recently, Gao et al. (2022) explored
contrastive learning (Chen et al., 2020) in event
representation learning, which outperformed previ-
ous margin loss-based methods by a large margin,
showing the effectiveness of contrastive learning in
this task. It should be pointed out that SWCC pro-
posed by (Gao et al., 2022) implicitly captures re-
lation information by performing prototype-based
clustering. However, SWCC is not trained on rela-
tional data explicitly and only captures one relation
between the events. Our work follows this line of
research and makes improvements by considering
multiple relations between events and uncertainty
within events.

Script Event Prediction. A task closely related to
event representation learning is script event predic-
tion or script learning. Script learning focuses on
modeling a sequence of events and predicting what
will happen next. Previous works on script learning
mainly focused on different neural architectures to
learn event embeddings and model the sequence,
such as MLP (Modi, 2016; Granroth-Wilding and
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Figure 2: The overall architecture of MORE-CL, best viewed in colors.

Clark, 2016) and LSTM (Pichotta and Mooney,
2016b,a). Recently, some works tried to enhance
script learning by incorporating knowledge of vari-
ous discourse relations (Lee and Goldwasser, 2019;
Zheng et al., 2020), which is similar to our work.
However, our work mainly focuses on the modeling
of the event itself instead of the sequence.

3 Method

As shown in Figue 2, MORE-CL consists of three
modules. Firstly, the training events extracted from
a large corpus are fed into the multi-relational
event generation module to generate positive sam-
ple events for contrastive learning. Then, the train-
ing events as well as their multi-relational positive
samples are encoded as multivariate Gaussian den-
sity embeddings by the probabilistic event encod-
ing module. After that, the density embeddings are
projected into relation-specific subspaces by the
relation-aware event projection module. Finally,
three modules are jointly optimized by the modi-
fied contrastive learning loss. The details of each
step are discussed as follows.

3.1 Multi-relational Event Generating

It is critical for contrastive learning to construct
positive samples for training data. The common
practices to generate positive samples in NLP tasks
are token replacement, token shuffling, or token re-
moving (Yan et al., 2021). However, such methods
are not suitable for generating positive event sam-
ples because events are sensitive to word change.
Recently, the dropout mechanism is employed to
generate positive samples (Wu et al., 2021), which
is still not suitable for our scenario because the pos-
itive samples generated by dropouts cannot encode

relational prior knowledge.

Therefore, we propose to employ COMET
(Bosselut et al., 2019), a commonsense generative
model, to automatically generate multi-relational
positive samples for training events. Specifically,
COMET is a transformer-based generative model
trained on the commonsense knowledge graph,
ATOMIC (Sap et al., 2019) for automatically com-
monsense knowledge graph construction. Given
the head event as X® = {zf, ...,:cfs‘} and rela-
tion as X" = {xf, ...,xrﬂ}, where xs are word
tokens, COMET generates the tail event as X° =

{z§, ...,xfo|} by:
X° = COMET([X*, X"]) (1)

Given a set of training events D = {¢; =
(z1,72, ..., T|¢;|) }1=1, €ach event e; is fed into
COMET as head event X?*. As for relations, the
nine default training relations {r; ;?:1 in COMET
are employed. The details of relations used for
training are listed in Appendix A. Then, relational
positive samples are generated for each event un-
der each relation and the multi-relational positive
event sample set {efnj|i =1,.,n;j=1,...,k}is
obtained by:

e;, = COMET ([e;, 5]) )

3.2 Probabilistic Event Encoding

Previous event representation learning methods
usually adopt specific neural network architec-
tures with static word embeddings as the event en-
coders (Granroth-Wilding and Clark, 2016; Modi,
2016). Recent work show the effectiveness of the
pre-trained language model such as BERT (Devlin
et al., 2019) in event encoding (Gao et al., 2022). In
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this paper, we also employ BERT as the backbone
of the event encoder.

To represent the uncertainty and polysemy of
events, we propose to learn density event embed-
dings instead of point event embeddings. In this
paper, we choose multivariate Gaussian distribution
as the density. The reasons are two-fold. On the
one hand, Gaussian distributions only require two
parameters and are easy to optimize. On the other
hand, Gaussian distribution has an analytical form
under many calculations such as Kullback-Leibler
(KL) divergence.

In the probabilistic event encoding module, an
event ¢; = {1,...,7),} (for both the original
training data and the generated positive samples) is
first fed into the BERT encoder to get their semantic
representation by:

q; = {[CLS],{El,...,{I,'|ei|,[SEP].} (3)

i v, 0 vlire] = BERT(qi) (4)

7 ey’

where vs are the vector representations by BERT
and g; is the input query for the event e; by con-
catenating the token sequence with the special to-
ken [CLS] and [SEP]. The vector representation of
[CLS] token v[(é)LS] is utilized as the semantic rep-
resentation for e;. For simplification, we assume
the variance matrixes of density embeddings are
diagonal. Therefore the variance matrixes can be
fully specified by the variance vectors at the diag-
onal. Then the semantic representation for e; is
projected to the mean vector and variance vector of
the Gaussian embedding by two specific Multilayer
Perceptrons (MLPs):

i = MLP;ean (U[(é)LS]>

. (&)
o} = MLPvar(”[(é)LS])
The density representation z; of the event e; is:
2 = N (i, diag(c?)) (6)

where diag(v) means matrix taking v as diagonal.

3.3 Relation-aware Event Projecting

The original contrastive learning algorithm learns
representations in a common embedding space,
which requires the embeddings of positive sam-
ple pairs to be close and those of negative pairs
to be separate. However, we argue that for multi-
relational learning, the original contrastive learning

may not be valid. Similar to knowledge graph em-
bedding, an event may have multiple aspects and
various relations may focus on different aspects of
events, which makes a common space insufficient
for modeling. Therefore, inspired by the knowl-
edge graph embedding methods (Wang et al., 2014;
Lin et al., 2015), we propose to perform contrastive
learning of different relations at different relation-
specific hyperplanes to make sure that different
relations do not affect each other during learning.

Give a event embedding z; and a relation r, we
project z; by:

fr(z) = zi — w! ziw, (7)

where w, denotes the normal vector for hyper-
planes of . Based on projection f,(-), the Gaus-
sian event embedding z; is projected into a sub-
space with w, as a normal vector. It should be
noted that a linear transformation of Gaussian dis-
tribution is still Gaussian. Therefore the density
embedding after projection is still Gaussian den-
sity.

Such transformation requires the normal vec-
tor for hyperplanes of relation, which is learned
during training and unknown for an unknown re-
lation. However, in the real world, the relations
between events are various, which can not be enu-
merated during the model training. Therefore, it
is necessary for our method to be generalized to
unknown relations. To deal with this problem, an
attention-based mechanism is proposed to learn the
relation-specific normal vectors w automatically
based on the context of event pairs. To be more
specific, given an event pair with unknown relation
{es,e;}, we first obtain their context embedding
c by concatenating them together and feeding the
concatenation into the BERT encoder by:

gij = {[CLS], e;, 5, [SEP].} ()

(0151 -+ V] = BERT(q;5) 9)

Again, the representation of token [CLS] is utilized
as the event pair context embedding c;; = U[((Z:]L)S]-
Then the attention mechanism is adopted to learn
the context-aware relation normal vector w,, based

on a set of relation hyperplane normal vectors
k .
{w;} j=1by:

exp(cij - wy)

alii) —
k
Zt:l emp(cij ‘wi)

T

(10)

6165



Wi =" afew, (11)
r=1
w((fj ) is normalized by:
N (i5)
(i5) w(ai) (12)
[lwa™’[[?

The Gaussian density embeddings of e; and e; are
projected as:

fa(z:) = pi — (W) T pe )

. L (13)
fa(zi) = pj — (@I pjwlD
3.4 Multi-relational Probabilistic Contrastive

Learning

As stated before, contrastive learning is employed.
However, the original InfoNCE loss (Chen et al.,
2020) is designed for single-relational (similar or
dissimilar) deterministic embedding, which is not
suitable for multi-relational probabilistic embed-
ding.

Therefore, we modify the original InfoNCE loss.
One important component of the InfoNCE loss is
the distance function, where the cosine similarity
is usually employed. For Gaussian density embed-
dings, we utilize the symmetric KL divergence to
serve as the distance function. The distance func-
tion g(+, -) is:

g(a,b) = exp{ - (KL(al[b) + KL(bl[a))} (14)

where a and b are two density embeddings, T is
the temperature parameter.

Then we set the multi-relation part of the loss
function as:

n k
er-9(fa(z1)fa (")
9(fa(2:),fa (N + e n (o) 90 (20,57 (25))
(15)

log

where zﬁi) is the density embedding of the positive
sample under the relation r for the event ¢;, z;
is the density embedding of e;, N(¢) is the index
set of in-batch negative sample of e¢; and ¢, is the
weight parameter for the relation r. Note that for
the calculation of distance for negative samples,
we use vanilla relational projection f,(-) instead of
attention-based relational projection f,(-) to keep
the negative pairs separate for every relation.

To capture the event semantics, we also intro-
duce the dropout-based positive samples during
contrastive training:

n k
Lap = — Z Z
=1 r=1
er-g(fr(z:), fr(z)
9(fr () fr (2N e sy 9(Fr (20), 50 (25)
(16)

log

where z§+) is the density embedding of the dropout-

based positive sample for the event e;. It should be
noted that vanilla relational projection f.(-) is used
for the calculation of positive samples in this part
as we want the dropout-based positive samples to
be close to the training samples for every relation.

As discussed in Gao et al. (2022), introducing
the original Mask Language Modeling (MLM) loss
L1m into learning is beneficial for the backbone
encoder. The final loss function is obtained by
adding the above three terms together:

L InfoNCE = Bﬁmr + Edp + Lonim (17)

where [ is the loss weight parameter.

4 Experiments

In this section, we investigate the effectiveness of
MORE-CL by comparing it with several competi-
tive baselines both on the conventional event simi-
larity task and the proposed multi-relation proba-
bilistic event similarly task.

4.1 Implementation Details

Following previous works (Weber et al., 2018;
Ding et al., 2019; Gao et al., 2022), the training
events are extracted from the New York Times Gi-
gaword Corpus using Open Information Extraction
system Ollie (Mausam et al., 2012). Specifically,
we use the same filter setting as (Gao et al., 2022),
which results in 4,029,877 distinct events. For each
event, we use COMET to generate its positive sam-
ples under the 9 default relations. The details of
generation are shown in Appendix A.

The backbone used in the encoder module is
BERT-base-uncased. The learning rate is set as
4e-7. The model is trained with a batch size of 125
and total epochs of 2 by an Adam optimizer. The
optimal dimension of Gaussian density embedding
is chosen by experiments and set to 500. The loss
weight parameter [ is set to 0.01. The temperature
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parameter 7 is set as 0.3 and the weight parame-
ters for relations € are set to 0.1. In practice, we
assume the output of network MLP,,,-(-) is the log
of variance vector which is taken exponential when
used to keep it non-negative. At each batch, the
calculated KL divergence values are normalized by
min-max normalization to make the training pro-
cess more stable. The model is implemented by
PyTorch (Paszke et al., 2019).

4.2 Datasets

Hard Similarity Dataset. Weber et al. (2018) pro-
posed a dataset of 115 samples to identify the se-
mantically similar event pairs from the dissimilar
pairs. To make the dataset more difficult, the pos-
itive samples are annotated to have little lexical
overlaps with the anchor events while the negative
samples are annotated to have high overlaps. Ding
et al. (2019) extended this dataset to 1000 sam-
ples. For both datasets, accuracy is adopted as an
evaluation metric, where a sample is successfully
processed if and only if the similarity between the
positive pair is higher than the similarity between
the negative pair.

Transitive Sentence Similarity. Kartsaklis and
Sadrzadeh (2014) proposed this fine-grained simi-
larity dataset, which contains 108 pairs of transitive
sentences that consist of a subject, a verb, and an
object. Each pair of events is assigned with similar-
ity scores from 1 to 7 by human annotators, where
a higher value indicates more similar events. For
this dataset, Spearman’s correlation between the
similarity score is predicted by each method and
the average annotated similarity score is employed
as the evaluation metric.

Multi-Relational Probabilistic Event Similarity
(MRPES). The previous two datasets are designed
to evaluate the single-relational deterministic event
representations. To further investigate whether the
knowledge of multiple relations between events
and uncertainty within events is learned, we pro-
pose a new multi-relational probabilistic event sim-
ilarity dataset (MRPES). MRPES is an extension of
Weber’s dataset, containing 115 samples. As shown
in Table 1, each sample in MRPES contains 1 an-
chor event, 1 negative sample, 4 relational positive
samples, and 2 probabilistic positive samples. The
anchor events and negative samples are taken from
(Weber et al., 2018), while the rest of the events are
manually annotated. For relational positive sam-
ples, we choose two learned relations oEffect and

xNeed and two unknown relations contrast and
sequential. For probabilistic positive samples, we
annotate each anchor event with two semantically-
related events while these two events are semanti-
cally different. For the relational test, the setting is
the same as the original Hard Similarity Dataset.
For the probabilistic test, a sample is successfully
processed if and only if the similarities between
two positive samples are both greater than its simi-
larity with the negative sample. The details of the
dataset are listed in Appendix B.

Anchor Negative
journalist capture animal  journalist capture image
oEffect xNeed

animal is caught person be a hunter

Contrast
animal escaped

Probabilistic_1
man hunt deer

Sequential
person sell animal

Probabilistic_2
kid catch insect

Table 1: An example in the MRPES dataset.

4.3 Baselines

Following (Gao et al., 2022), three types of meth-
ods are employed for comparison:

* Event representation methods: EM Comp.,
Role Factor Tensor and Predicate Tensor are
all proposed by (Weber et al., 2018) to learn the
interactions of event components with tensor net-
works. SWCC (Gao et al., 2022) is the current
SOTA method for the event similarity task by in-
corporating contrastive learning and prototypical
clustering simultaneously.

¢ Event representation methods with external
knowledge: KGEB (Ding et al., 2016) incorpo-
rates knowledge graph information. FEEL (Lee
and Goldwasser, 2018) employs animacy and
sentiment as extra features of events. NTN-
IntSent (Ding et al., 2019) utilizes sentiment and
intent of events to enhance event representations.

* Multi-relational script learning methods:
SAM-Net (Lee and Goldwasser, 2019) incor-
porates discourse relations into script learning.
UniFA-S (Zheng et al., 2020) utilizes scenario
knowledge for event representations.

4.4 Main Results

Similarity datasets results. The experimental re-
sults for three similarity datasets are shown in Ta-
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Hard similarity%  Transitive sentence

Method
Original Extended similarity (p)
EM Comp. (Weber et al., 2018) 33.9 18.7 0.57
Predicate Tensor (Weber et al., 2018) 41.0 25.6 0.63
Role Factor Tensor (Weber et al., 2018) 43.5 20.7 0.64
SWCC (Gao et al., 2022) 80.9 72.1 0.82
KGEB (Ding et al., 2016) 52.6 49.8 0.61
FEEL (Lee and Goldwasser, 2018) 58.7 50.7 0.67
NTN-IntSent (Ding et al., 2019) 77.4 62.8 0.74
SAM-Net (Lee and Goldwasser, 2019) 51.3 452 0.59
UniFA-S (Zheng et al., 2020) 78.3 64.1 0.75
MORE-CL 89.6 84.9 0.81

Table 2: Results on the similarity datasets. The best results are bold. Part of results are taken from (Gao et al., 2022).

known relation

unknown relation

probablistic test

Method
oEffect xNeed Contrast Sequential one both
SwcCcC 42.6 60.0 66.1 56.5 65.2 42.6
MORE-CL  88.7 85.2 81.7 77.4 81.7 67.0

Table 3: Results on the MRPES dataset. Best results are bold. “one” for the probabilistic test denotes at least one
positive sample is successfully predicted, while “both” denotes both positive samples are successfully predicted.

ble 2. It can be observed that MORE-CL outper-
forms all the other baselines on two hard similar-
ity datasets by a large margin except that on the
transitive sentence similarity dataset, MORE-CL
achieves similar results as SWCC. It might be at-
tributed to the under-calibration of Gaussian den-
sity embeddings, which is also found in (Zhang
et al., 2021). It can also be observed that methods
with external knowledge or multi-relation knowl-
edge generally outperform those without using ex-
ternal knowledge.

MRPES results. As SWCC generally outper-
formed other methods by a large margin in the
similarity task, we only compare our method with
SWCC on the MRPES dataset. As shown in Ta-
ble 3, MORE-CL outperforms SWCC greatly. The
reason is obvious that SWCC is a single-relational
deterministic event representation method with-
out modeling multiple relations and uncertainty
of events. Moreover, the high accuracy scores for
two known relations show that MORE-CL learns
the training relations well. It can also be found
that scores for unknown relations are slightly lower
than known relations’, showing that MORE-CL
can generalize to unknown relations.

As for the probabilistic test, the result is interest-
ing. For the case of at least one sample correct, the
performance gap between SWCC and MORE-CL

is 16.5% while for the case of both samples cor-
rect, the performance gap increases to 24.4%. It
further verifies our assumption that it is hard for
point embeddings to model that one embedding is
close to the other two embeddings which should be
separated.

4.5 Model Analysis

In this part, we remove or change three compo-
nents of MORE-CL and generate four experiment
settings to investigate their effects on the perfor-
mance, where setting S5 is the original model.

* S1 is the setting where the probabilistic event en-
coding module is replaced with a normal BERT
encoder, and the symmetric KL similarity is re-
placed with cosine similarity.

* S2 is a model where the multi-relational event
generation module is removed, and the dropout-
based positive samples are utilized for contrastive
learning.

* S3 is the setting where the relation-aware event
projection module is removed. For inference, the
test samples are processed under all 9 training re-
lations respectively and the final decision is made
by averaging the results for 9 training relations.
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. Hard similarity%  Transitive sentence = .2
Settings
Original Extended similarity (p) T % e o X Type
Si 79.1 65.9 0.82 B SO L e S -
s2 87.0 82.6 0.78 L 2 I R
S3 88.7 83.2 0.80 3 AS
S4 87.8 83.5 0.80 :
S5 89.6 84.9 0.81 do .
Type
Table 4: Ablation study on similarity dataset. . p ) Anchor
o L 0@ ... K .‘ ® oEffect
050~ y , n‘:&.ﬁ g..’ xNeed

N

0.85- - L dataset

Extended
=== Original

0.80- Transitive

200 400 600
dim

Figure 3: Results of MORE-CL with different embed-
ding dimensions on three similarity datasets.

* S4 is the setting where a simple version without
attention replaces the relation-aware event pro-
jection module. For training, an extra relation-
specific normal vector is introduced for project-
ing all event pairs with unknown relations, for
inference, the normal vector for unknown rela-
tions is employed for projection. In practice, we
utilize the co-occurrence data to learn this normal
vector.

It can be observed from Table 4 that without the
probabilistic encoding module, the performances of
MORE-CL on hard similarity datasets drop dramat-
ically while the performance on the transitive sen-
tence similarity dataset increases slightly. The per-
formance fluctuation over hard similarity datasets
comes from two parts. On the one hand, the Gaus-
sian density embeddings model the uncertainty
within events. On the other hand, the relational
positive event samples are generated automatically,
which will certainly introduce noise into the model.
The performance fluctuation over the transitive sen-
tence similarity dataset further shows that the Gaus-
sian density embeddings are under-calibrated.

To investigate the optimal dimension for MORE-
CL, we perform experiments with different embed-
ding dimensions on three similarity datasets. As
shown in Figure 3, the performances of MORE-CL
increase first and then decrease with the embedding
dimension growth, which is concordant with the
majority of event representation learning methods.

Figure 4: Visualization of the embeddings learned by
SWCC (upper part) and MORE-CL (lower part) on the
MRPES dataset. For MORE-CL, only the mean vectors
are used for visualization.

It should be noticed that the optimal embedding
dimension of MORE-CL is smaller than SWCC.
The reason might be that the density embeddings
can carry more information compared with point
embeddings at the same embedding dimension.

4.6 Visualization

To get a more intuitional understanding of multi-
relational embedding learning, we present a visu-
alization of embeddings learned by SWCC and
MORE-CL with T-SNE (Van der Maaten and Hin-
ton, 2008). As shown in Figure 4, the embeddings
learned by SWCC for three types of events are
mixed up, while the embeddings learned by MORE-
CL are separated.

5 Conclusion

In this paper, to model the multiple relations be-
tween events and uncertainty within events, we
propose a multi-relational probabilistic event rep-
resentation learning method, MORE-CL, based on
the projected Gaussian embedding with contrastive
learning. To be more specific, MORE-CL consists
of three modules, a multi-relational event genera-
tion module to incorporate relational knowledge
of events, a probabilistic event encoding module
to model uncertainty with Gaussian density em-
beddings, and a relation-aware projection module
to adapt to unseen relations. What’s more, we
also present a new dataset to test the knowledge
of multiple relations and uncertainty learned by
event representation methods. The experimental
results for both existing and new datasets show the
effectiveness of the proposed method.
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Limitations

Though achieving promising results in the experi-
ments, our work still has the following limitations.

* As shown in Table 2 and Table 3. The proposed
Gaussian embedding may have a calibration prob-
lem leading to performing badly on fine-grained
similarity tasks measured by Spearman’s correla-
tion.

* The proposed method assumes that all relations
are symmetric and adopts a symmetric similarity
measurement. However, not all the relations are
symmetric. And the ability to deal with unsym-
metric relations with unsymmetric measurement
is one important advantage of density embed-
dings which point embeddings do not have.

* The proposed MRPES dataset should be im-
proved in terms of quantity and quality. The
number of test samples should be increased to
over a thousand to get more statistically robust
results. The types of unseen relations should
be also increased to have a more comprehensive
investigation of the ability to generalize on rela-
tions. The negative samples should be elaborately
designed to provide the anchor event with differ-
ent negative samples under different relations.
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Relation Explanation Example
xIntent ~ Why does X cause the event PersonX wanted to be nice
xNeed  What does X need to do before the event? PersonX knows PersonY well
xAttr How would X be described? PersonX is caring
xEffect  What effects does the event have on X? PersonX will want to chat with PersonY
xReact  How does X feel after the event? PersonX will feel good
xWant  What would X likely want to do after the event? PersonX will want to chat with PersonY
oEffect ~ What effects does the event have on others? PersonY will smile
oReact How do others feel after the event? PersonY will feel flattered
oWant  What would others likely want to do after the event? PersonY will compliment PersonX back

Table 5: Relations explained in Multi-relational event generation. Explanation and examples are taken from (Sap
et al., 2019). The head entity is (PersonX pays PersonY a compliment). X denotes the subject of the head entity, and

o denotes the subject of the tail entity.

Type Explanation Example
Anchor Event that will be tested. journalist capture animal
. Event that is textually similar and semantically . . .
Negative s Jjournalist capture image

dissimilar to the anchor event.
oEffect What effects does the anchor event have on others? animal is caught

Seen relations

What does X need to do before the anchor

xNeed person be a hunter
event?
. Contrast What is the opposite of the anchor event? animal escaped
Unseen relations . . . .
Sequential What is most likely to happen after the anchor event? person sell animal

Prbabilistic est - ropapilistic_

Probabilistic_2
anchor event.

An event that is semantically similar to the anchor event.
Another event that is semantically similar to the

man hunt deer

kid catch insect

Table 6: Relations in the MERPES dataset.

A Relations explained in Multi-relational
event generation

COMET (Bosselut et al., 2019) is a transformer-
based generative model trained on the common-
sense knowledge graph, ATOMIC (Sap et al.,
2019), which employs 9 types of relations of
ATOMIC. ATOMIC constructs event triplets by
asking If-then questions. For example, for a com-
monsense “if X pays Y a compliment, then then Y
will likely return the compliment”, the relation be-
tween these two events is “what would others likely
want to do after the event?””, which is denoted as
oWant in ATOMIC, then this commonsense will
be transformed as an event triplet {(PersonX pays
PersonY a compliment), oWant, (Y will compliment
PersonX back}. To capture more knowledge of rela-
tions between events, we also employ all 9 types of
relations to generate positive samples. The details
of the relations used are shown in Table 5.

B Relations explained in MERPES
dataset

To further investigate the knowledge of multiple
relations and uncertainty learned by the event rep-

resentation learning methods, we propose a multi-
relational probabilistic event similarity dataset
(MRPES). Every sample in MRPES data consists
of 8 events. The details of each event and its expla-
nation is shown in Table 6.
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