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Abstract

Large Language Model (LLM) has demon-
strated significant ability in various Natural
Language Processing tasks. However, their ef-
fectiveness is highly dependent on the phrasing
of the task prompt, leading to research on auto-
matic prompt optimization using labeled task
data. We reveal that these prompt optimization
techniques are vulnerable to distribution shifts
such as subpopulation shifts, which are com-
mon for LLMs in real-world scenarios such as
customer reviews analysis. In this light, we
propose a new problem of robust prompt opti-
mization for LLMs against distribution shifts,
which requires the prompt optimized over the
labeled source group can simultaneously gen-
eralize to an unlabeled target group. To solve
this problem, we propose Generalized Prompt
Optimization framework , which incorporates
the unlabeled data from the target group into
prompt optimization. Extensive experimental
results demonstrate the effectiveness of the pro-
posed framework with significant performance
improvement on the target group and compara-
ble performance on the source group.

1 Introduction

LLMs have gained significant attention for their
remarkable performance in a broad range of Nat-
ural Language Processing (NLP) tasks (Ouyang
et al., 2022; Chung et al., 2022; Brown et al., 2020;
Touvron et al., 2023). This success has led to a
shift in the paradigm of solving NLP tasks, mov-
ing away from training task-specific deep models
towards developing task-specific strategies to effec-
tively utilize LLMs (Wei et al., 2022; Kojima et al.,
2022; Wang et al., 2022a; Ye et al., 2023b). In the
new paradigm, the prompt becomes a crucial factor
in ensuring the effectiveness of LLM on the NLP
task, since even slight variations in prompt phras-
ing can largely affect LLM output (Reynolds and
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Figure 1: Illustration of prompt optimization under dis-
tribution shifts. Existing prompt optimization solutions
aim to improve the LLM performance on the training
data, while it is unclear whether the optimized prompt
can be generalized to testing data of the same task but
with distribution shifts.

McDonell, 2021; Gao et al., 2021), making prompt
optimization a promising research direction.

Existing research has explored automatic prompt
optimization methods to eliminate manual effort
in identifying effective prompts for a given task.
These methods can be gradient-based or gradient-
free, depending on the availability of model gradi-
ents. Gradient-based methods optimize the prompt
by calculating its gradients through the LLM
(Schick and Schütze, 2021b,a; Hu et al., 2022).
Gradient-free methods update prompts based on
LLM outputs using techniques such as an itera-
tive search-and-select over the prompt space (Zhou
et al., 2023; Prasad et al., 2022; Pryzant et al.,
2023). This work focuses on gradient-free prompt
optimization as LLMs are evolving into black-box
API services (Sun et al., 2022).

Current gradient-free prompt optimization meth-
ods ignore distribution shifts (Wang et al., 2023),
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where the data an LLM serves may differ from
the labeled data for prompt optimization. Real-
world NLP applications often encounter distribu-
tion shifts, such as new user groups with distinct
linguistic habits in customer review analysis. It is
unclear if prompts hinder the robustness of LLMs
against distribution shifts. To answer this question,
we conduct experiments with the representative gpt-
3.5-turbo-0301 model and prompts optimized by
APE (Zhou et al., 2023) over paired data groups
with distribution shifts. Results on 30 pairs of data
groups from six tasks show the risk of significant
performance gaps under certain distribution shifts.

Based on this finding, we propose a new robust
prompt optimization problem, which aims to opti-
mize task-specific prompts with consideration of
performance on both source and target groups un-
der different distributions. Given an NLP task such
as sentiment analysis, our problem setting has a
labeled source group similar as the conventional
prompt optimization setting and a unlabeled target
group. We keep the target group unlabeled for the
consideration that distribution shifts happen along
time in practice. Labeling the newly coming target
group will cause unnecessary labor cost and latency.
Accordingly, the main challenge for solving this ro-
bust prompt optimization problem is incorporating
unlabeled data into prompt optimization.

To this end, we propose the Generalized Prompt
Optimization (GPO) framework to obtain a task-
specific prompt for both source and target groups.
To jointly considering the two groups in prompt op-
timization, the key lies in labeling the target group
in an automatic and reliable manner by adapting
knowledge from the labeled source group. Towards
this goal, we leverage the strong power of LLM
in zero-shot labeling, and prompt ensemble to en-
hance the labeling robustness. Experimental results
on three tasks demonstrate the effectiveness of our
framework in improving the performance on the
target group and simultaneously preserving a com-
parable performance on the source group. To sum
up, our contributions are threefold:

• We reveal the robustness issue of prompt opti-
mization against distribution shifts and propose
a new robust prompt optimization problem.

• We propose the Generalized Prompt Optimiza-
tion framework, which generates robust prompts
considering both labeled and unlabeled data.

• We conduct extensive experiments on three NLP

tasks, validating the rationality and effectiveness
of our proposed framework.

2 Preliminary Experiments

Prompt optimization aims to find the best prompt
p that can instruct LLMs to predict the output y
based on the concatenation of p and task input
x, where x, y and p are all sequences of tokens.
Formally, given an NLP task with a dataset {(x, y)}
following a distribution P , the goal is to obtain

po = argmax
p∈Z

E(x,y)∼P [r(LLM(p, x), y)], (1)

where Z denotes the prompt optimization space
and r is the evaluation metric to compare the LLM
output with the ground truth output y, e.g., Accu-
racy. Existing studies usually leverage gradient-
based or gradient-free methods to automatically
optimize the prompts. Since LLMs are evolving
into black-box API services, gradient-free methods
become increasingly important. However, they ig-
nore distribution shifts between training and testing
data. In this light, we conduct controlled experi-
ments to answer the following research question:

Are prompts optimized by existing gradient-free
methods robust to distribution shifts?

2.1 Evaluation Protocol

We conduct the controlled experiments between
a pair of data groups with distribution shifts, i.e.,
a source group {(xs, ys)} following a distribution
Ps, and a target group {(xt, yt)} with a distribu-
tion Pt, where Pt ̸= Ps. We intend to examine
whether the prompt ps optimized on the source
group can generalize to the target group. Specifi-
cally, given ps and pt optimized on the target group,
we compare the performance of ps on the target
group E(x,y)∼Pt

[r(LLM(ps, x), y)] with that of pt

E(x,y)∼Pt
[r(LLM(pt, x), y)].

Datasets. We select 16 datasets from six popu-
lar NLP tasks, where each pair of groups under
the same task is treated as the source and tar-
get groups. Following recent out-of-distribution
(OOD) research (Yang et al., 2022), we take each
dataset as a group and regard different backgrounds
and topics across the datasets as the distribution
shifts. For the sentiment analysis task, we adopt
Yelp (Zhang et al., 2015), Flipkart (Vaghani and
Thummar, 2023), IMDB (Maas et al., 2011) and
Amazon (Zhang et al., 2015) of different topics.
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Source
Target

MNLI ANLI

MNLI 73.4 ± 1.0 45.4 ± 1.9
ANLI 73.3 ± 1.3 46.0 ± 1.5

(a) Natural language inference

Source
Target

RTE HANS

RTE 78.3 ± 0.8 67.2 ± 1.1
HANS 79.0 ± 0.8 68.4 ± 1.8

(b) Textual entailment

Source
Target

DSTC7 Ubuntu Dialog MuTual

DSTC7 58.4 ± 0.8 78.9 ± 0.3 74.2 ± 2.2
Ubuntu Dialog 56.9 ± 1.3 78.7 ± 0.5 74.4 ± 2.1
MuTual 52.2 ± 4.4 74.7 ± 6.0 76.7 ± 3.4

(c) Dialog

Table 1: Results for tasks without large generalization
performance gap across groups.

For the natural language inference task, we uti-
lize MNLI (Williams et al., 2018), and ANLI (Nie
et al., 2020) which is an adversarial dataset for
MNLI. For the textual entailment, we use RTE
(Wang et al., 2018) and its OOD dataset HANS
(McCoy et al., 2019). For commonsense QA, we
use SocialIQA (Sap et al., 2019), PIQA (Bisk et al.,
2020), and OpenbookQA (Mihaylov et al., 2018),
which focus on different types of commonsense
knowledge. For the multi-turn dialog reasoning,
we use DSTC7 (Gunasekara et al., 2019), Ubuntu
Dialog (Lowe et al., 2015), and MuTual (Cui et al.,
2020). Besides, for the numerical QA task, we use
the samples of two different answer types (i.e., nu-
merical values and text spans) in DROP (Dua et al.,
2019) as two groups. See Appendix A.1 for details.

Experimental Setup. We adopt APE (Zhou et al.,
2023), an effective gradient-free prompt optimiza-
tion method, for prompt generalization analysis.
To highlight the effect of prompts, we conduct ex-
periments under the zero-shot setting without in-
context examples. For the backbone LLMs, we
leverage gpt-3.5-turbo-0301 by calling the OpenAI
API1. For all classification tasks (all tasks except
for DROP), we use accuracy as the evaluation met-
ric. For DROP, we utilize its standard evaluation
metric — F1. Following the setting of APE, we
randomly sample N -shot training and N -shot vali-
dation samples for prompt optimization, and repeat
the experiments for five runs with different sampled

1https://chat.openai.com/.

Source
Target

Yelp Flipkart IMDB Amazon

Yelp 79.7 ± 0.7 78.4 ± 1.9 87.1 ± 1.9 88.4 ± 1.9
Flipkart 69.1 ± 8.7 85.1 ± 2.9 85.2 ± 9.4 85.9 ± 12.5
IMDB 71.1 ± 8.2 76.9 ± 13.4 91.9 ± 0.9 90.4 ± 5.2
Amazon 75.5 ± 1.5 85.6 ± 2.1 91.5 ± 0.8 93.5 ± 1.4

(a) Sentiment analysis

Source
Target

SocialIQA PIQA OpenbookQA

SocialIQA 75.6 ± 1.4 82.0 ± 6.0 71.2 ± 5.2
PIQA 68.9 ± 6.9 83.6 ± 2.9 69.2 ± 5.1
OpenbookQA 79.9 ± 1.0 84.5 ± 1.6 80.1 ± 2.4

(b) Commonsense QA

Source
Target

Number Spans

Number 51.9 ± 2.8 20.1 ± 1.3
Spans 57.7 ± 2.9 63.1 ± 2.2

(c) DROP

Table 2: Results for tasks with significant generalization
performance gap across groups. Bold font indicates the
largest value for each column.

data to report the averaged results. More implemen-
tation details can be found in Appendix A.2.

2.2 Experimental Results

Demonstration of Generalization Performance
Gap. Table 1 shows the tasks without a large
generalization gap between the performance of
prompts ps and pt, and Table 2 shows the tasks
with large gaps (Accuracy gap>8.0) on some
groups. The row headers refer to the source groups
for prompt optimization while the column headers
show the target groups to test optimized prompts.
The generalization performance gap between ps

and pt can be observed by comparing the values in
the same column.

From the tables, we can observe: 1) The gener-
alization performance gap may not exist for pre-
viously studied OOD and adversarial groups (see
Table 1), including the groups of the natural lan-
guage inference and the textual entailment tasks.
This is possibly attributed to the strong generaliza-
tion ability of LLMs. 2) However, under some data
groups of Table 2 such as the sentiment analysis
datasets (e.g., Flipkart and Yelp) and the common-
sense QA datasets with different topics (e.g., PIQA
and OpenbookQA), and the DROP groups with
different answer types, there are still significant
generalization performance gaps, demonstrating
the existence of the generalization issue of prompt
optimization. 3) Surprisingly, the prompt ps op-
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Source
Target

Yelp Flipkart IMDB Amazon

Yelp - 0.33 1.62 1.62
Flipkart 0.30 - 0.57 0.56
IMDB 0.25 0.29 - 0
Amazon 0.25 0.27 0 -

(a) Label distribution shifts. Smaller values indicate less distri-
bution shifts.

Source
Target

Yelp Flipkart IMDB Amazon

Yelp - 0.65 0.73 0.76
Flipkart 0.59 - 0.55 0.63
IMDB 0.70 0.63 - 0.81
Amazon 0.71 0.70 0.78 -

(b) Input similarity. Larger values indicate less distribution shifts.

Table 3: Results for (a) label distribution shifts (b) input
similarity of the sentiment analysis datasets. Bold font
indicates the least distribution shift for each column.

timized from the source group does not always
perform worse than the prompt pt optimized on the
target group. In Table 2(b), ps from OpenbookQA
performs even better than pt for SocialIQA. Be-
sides, for DROP in Table 2(c), ps from Spans also
performs better than pt from Number. In the fol-
lowing section, we try to explore the reasons for
the above three observations.

Exploration on the Factors Affecting Prompt
Robustness. Based on the above observations,
we further explore two research questions.
Q1: Why do the prompts optimized on source
groups perform differently on a target group?
Q2: Why does the prompt optimized on the source
group perform even better than the prompt opti-
mized on the target group in some cases?

For Q1, we conjecture that the varied perfor-
mance gaps are attributed to different distribution
shifts between the source and target groups. To
verify this, we examine two metrics to measure
two kinds of distribution shifts: 1) the label shifts
measured by the KL divergence, and 2) the input
similarity quantified by the n-gram similarity of
the input corpora of the two groups. Their detailed
implementation is illustrated in Appendix A.3. We
show the results of the sentiment analysis task as
an example in Table 3. We can observe that the
smallest label distribution shifts and the largest in-
put similarity in Table 3 generally coincide with
the best generalization performance on each tar-
get group in Table 2, indicating the correlation
between distribution shifts and generalization per-

SocialIQA PIQA OpenbookQA

word 1-gram 0.43 0.51 0.58
char 4-gram 0.50 0.60 0.65

(a) The n-gram diversity.

Source
Target

SocialIQA PIQA OpenbookQA

SocialIQA - 0.39 0.38
PIQA 0.47 - 0.46
OpenbookQA 0.51 0.52 -

(b) The word 1-gram coverage ratio between groups.

Source
Target

SocialIQA PIQA OpenbookQA

SocialIQA - 0.51 0.51
PIQA 0.60 - 0.58
OpenbookQA 0.66 0.64 -

(c) The character 4-gram coverage ratio between groups.

Table 4: Evaluation on (a) the n-gram diversity and
(b) word 1-gram coverage ratio (c) character 4-gram
coverage ratio of commonsense QA datasets to study
the even higher generalization performance. Bold font
indicates the largest value for each column.

formance. Nevertheless, the two metrics cannot
perfectly explain the performance on all tasks (cf.
Appendix A.3). Therefore, Q1 is still a challenging
research question, requiring further exploration in
future work.

For Q2, we conjecture that the outstanding gen-
eralization performance is because a source group
with large diversity covers heterogeneous patterns
in the target group, leading to a more robust prompt
ps than pt. To explore this, we measure the het-
erogeneity of source and target groups by calcu-
lating the percentage of unique n-grams, and the
percentage of n-grams of the target group covered
by the source group. For illustration, we present
the results of the commonsense QA task in Table 4.
From Table 4(a), we can observe that OpenbookQA
has the most diverse input according to the n-gram
statistics. Moreover, OpenbookQA covers a large
proportion of n-grams of SocialIQA and PIQA.
These partly explain the superiority of the prompts
optimized on OpenbookQA (see Table 2).

3 Robust Prompt Optimization

In this section, we first formulate a robust prompt
optimization problem and propose a GPO frame-
work to enhance the robustness of the prompts.

3.1 Problem Definition

To enhance the generalization ability of prompts,
we propose a robust prompt optimization prob-
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Figure 2: The GPO Framework.

lem. Specifically, given an NLP task such as sen-
timent analysis, it aims to optimize a task-specific
prompt for the data groups with different distri-
butions. We consider the popular scenario where
a source group Gs = {(xs, ys)} following a dis-
tribution Ps and {xt} in a unlabeled target group
Gt = {(xt, yt)} ∼ Pt (Pt ̸= Ps) are available
while {yt} is unseen during prompt optimization.
The objective becomes utilizing Gs = {(xs, ys)}
and {xt} to optimize a task-specific prompt robust
to the samples from either Ps or Pt.

Reasons for Access to Unlabeled Target Group.
In a real-world deployment, LLMs continually en-
counter the testing data with distribution shifts. Col-
lecting the input features {xt} of the target group
is feasible. For example, when using LLMs as web
services to solve user queries of certain NLP tasks,
it is easy to collect extensive user queries as unla-
beled target groups. However, labeling {xt} may
be time-consuming and costly, and thus we intend
to optimize robust prompts without the labels of
the target group.

A Task-Specific Prompt vs. One Prompt for
Each Group. To tackle the generalization issue
of optimized prompts, an intuitive approach is to
optimize a separate prompt for each data group, yet
this simplistic approach faces several limitations
in real scenarios. In real-world deployment, it not
only requires additional computation costs to con-
struct more prompts, but also needs to accurately
classify each testing sample into the appropriate
group of the same distribution, thereby resulting
in increased computation costs, latency, and new
challenges for precise group classification. Further-

more, the collected source group data cannot cover
all potential target groups, and the prompts opti-
mized on the source groups may inevitably test on
the examples from previously unseen groups. Thus,
we aim at improving the generalization ability of
one task-specific prompt across different groups.

3.2 GPO Framework

To obtain a robust prompt for both the source and
target groups, it is natural to jointly consider Gs

and Gt for prompt optimization. However, Gt lacks
the labels {yt} that are commonly required by the
gradient-free optimization methods (refer to Ta-
ble 5 for the inferior results without labeling). With
the impressive capabilities of LLMs on zero-shot
labeling, we propose to utilize LLMs to label {xt}.
Considering that noisy labels may damage the qual-
ity of optimized prompts, we further present two
strategies to improve labeling accuracy.

As illustrated in Figure 2, we first propose a Meta
Prompt to instruct LLMs to acquire knowledge
from the labeled source group and generate a series
of prompts. Thereafter, we utilize a prompt ensem-
ble labeling strategy to apply generated prompts
to an LLM for precise labeling of {xt}. In detail,
we derive a three-step framework to perform the
labeling with two strategies, and then conduct joint
prompt optimization as shown in Figure 2.

1. Prompt Generation via Meta Prompt. Fol-
lowing APE, we utilize a Meta Prompt to ask
LLM to generate prompts for labeling by feed-
ing the examples of Gs (see an example in Fig-
ure 2). Based on strong language understanding
and reasoning abilities, LLMs can infer the re-
lationships between the inputs and outputs of
the examples and provide general and precise
task prompts. We use different splits of Gs to
generate K different prompts in total.

2. Prompt Ensemble Labeling Strategy. Given
K prompts, we utilize each of them to label {xt}
with an LLM, and thus obtain K candidate la-
bels for each example. We adopt an ensembling
strategy and select the label with the highest
consistency among the K candidate labels for
each example. Besides, inspired from Wang
et al. (2022a), we set a consistency threshold
T ∈ [0, 1] to only accept the labeled examples
that have more than T percent of prompts agreed
on the label. Eventually, we obtain a filtered la-
beled set G∗

t for the target group.
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3. Joint Prompt Optimization. Finally, we mix
Gs and G∗

t to run APE for joint prompt opti-
mization and obtain the final optimized prompt.
As G∗

t may have fewer samples than Gs after
filtering with T , we perform a random upsam-
pling on G∗

t to have the same data number as Gs

before running APE. A brief illustration about
APE can be found in Appendix A.2.

4 Experiments

4.1 Setup
Datasets. We experiment GPO with three tasks:
sentiment analysis, commonsense QA, and DROP.
For each task, we select a pair of groups with gen-
eralization performance gap as source and target
groups, and ablate the labels for the target groups.
Compared Methods. We adopt the following base-
line methods: 1) APE; 2) APO (Pryzant et al.,
2023), the state-of-the-art gradient-free prompt op-
timization method for LLM; 3) APE-ut, a naive
generalization solution by incorporating the unla-
beled target group input into APE; 4) the Upper
Bound, which represents the performance of the
prompt optimized on the target group data with
ground-truth labels by APE; and 5) our proposed
GPO; We also show the results of simple human-
written prompts that are general for the task, and
the revised versions by PromptPerfect2 which is an
automatic prompt engineering website.
Evaluation Protocol. We utilize two strategies
for testing: Top 1 and Ensemble. Top 1 refers to
using the single optimized prompt with the best
validation performance, while Ensemble refers to
labeling with all obtained K prompts and accept
the output with the most agreement on the prompts.
We utilize the same N -shot data as the preliminary
experiments and also report the averaged results
for five runs. More implementation details are il-
lustrated in Appendix A.4.

4.2 Performance Comparison
Compare to Generated Prompts. From Table 5,
we can observe the followings: 1) GPO achieves
superior performance for all target groups in both
Top 1 and Ensemble testing, validating its effective-
ness. However, there is still space for improvement
towards the Upper Bound for all tasks, showing the
challenge of the generalization problem. 2) GPO
achieves comparable source group performance for
all tasks, showing its improvement on the target

2https://promptperfect.jina.ai.

Yelp (Source) Flipkart (Target)

Top 1 Ensemble Top 1 Ensemble

APE 79.7 ± 0.7 79.7 ± 1.0 78.4 ± 1.9 81.3 ± 1.4
APO 78.9 ± 0.5 79.7 ± 0.8 74.7 ± 3.0 76.4 ± 1.4
APE+ut 78.9 ± 1.4 78.8 ± 1.4 80.3 ± 2.0 80.7 ± 2.1
GPO 79.1 ± 0.7 78.7 ± 0.9 80.5 ± 2.1 84.5 ± 2.0

Upper Bound - - 85.1 ± 2.9 87.2 ± 0.5

(a) Sentiment analysis.

SocialIQA (Source) OpenbookQA (Target)

Top 1 Ensemble Top 1 Ensemble

APE 75.6 ± 1.4 69.6 ± 5.3 71.2 ± 5.2 74.8 ± 3.2
APO 76.1 ± 2.7 72.3 ± 2.6 72.4 ± 2.5 66.1 ± 7.2
APE+ut 77.9 ± 1.3 78.9 ± 0.8 77.5 ± 3.0 79.2 ±1.2
GPO 76.7 ± 2.0 78.9 ± 1.2 78.7 ± 3.3 79.7 ± 0.8

Upper Bound - - 80.1 ± 2.4 80.8 ± 1.1

(b) Commonsense QA.

Number (Source) Spans (Target)

Top 1 Ensemble Top 1 Ensemble

APE 51.9 ± 2.8 51.0 ± 3.2 20.1 ± 1.3 18.2 ± 0.2
APO 55.7 ± 0.8 54.5 ± 2.1 20.2 ± 2.4 20.0 ± 2.2
APE+ut 52.0 ± 1.8 53.1 ± 1.2 16.1 ± 3.5 17.7 ± 2.8
GPO 52.2 ± 6.0 53.6 ± 3.0 27.7 ± 12.0 26.7 ± 4.9

Upper Bound - - 63.1 ± 2.2 63.7 ± 0.8

(c) DROP.

Table 5: Results of the compared methods. Bold font
indicates the best performance for each column.

group does not largely hinder the source group.
Compared with APE, GPO shows increased per-
formance on the source groups of SocialIQA and
Number by incorporating the target group data,
which is in line with the finding in Table 2. 3)
Across baselines, APO outperforms APE on the
source groups of the last two tasks and achieve com-
parable performance on sentiment analysis, show-
ing its effectiveness for prompt optimization. How-
ever, the generalization ability is only comparable
to APE since APO performs worse than APE on
several target groups. 4) APE-ut achieves improved
target group performance for the first two task, indi-
cating the benefit of incorporating unlabeled target
group data for generalization. However, for Spans
where obtaining accurate target labels is challeng-
ing (as shown by the low F1 values), APE-ut largely
underperforms GPO, showing the importance of
target group labeling especially for difficult tasks.

Compare to Human-written Prompts. From
Table 6, we further observe that GPO outperforms
human-written prompts and PromptPerfect for sen-
timent analysis and commonsense QA tasks. How-
ever, on the most difficult task DROP, GPO under-
performs human-written prompts. This is poten-
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Yelp (Source) Flipkart (Target) SocialIQA (Source) OpenbookQA (Target) Number (Source) Spans (Target)

Human 78.7 80.0 71.3 60.0 54.9 37.1
PromptPerfect 77.3 83.3 74.7 64.0 54.0 26.9
GPO best 78.7 84.5 78.9 79.7 52.2 27.7

Table 6: Performance comparison for the human-written prompts, PromptPerfect and the more effect testing strategy
of GPO (Top 1 or Ensemble, denoted as GPO best). Bold font indicates the best performance for each column.

tially because the inaccurate labels for Spans hinder
the prompt optimization. Similarly, PromptPerfect
also fail to optimize human-written prompts for
DROP.

4.3 Ablation Study

Yelp Flipkart

Top 1 Ensemble Top 1 Ensemble

GPO 79.1 ± 0.7 78.7 ± 0.9 80.5 ± 2.1 84.5 ± 2.0
w/o cons 78.8 ± 1.2 78.7 ± 0.4 81.5 ± 1.4 84.0 ± 0.9
w/o cons+t-train 79.9 ± 0.8 79.7 ± 1.0 80.3 ± 3.2 81.3 ± 1.4

(a) Sentiment analysis.
SocialIQA OpenbookQA

Top 1 Ensemble Top 1 Ensemble

GPO 76.7 ± 2.0 78.9 ± 1.2 78.7 ± 3.3 79.7 ± 0.8
w/o cons 76.0 ± 2.8 78.1 ± 1.4 77.6 ± 3.8 78.8 ± 2.2
w/o cons+t-train 77.9 ± 1.6 69.6 ± 5.3 78.2 ± 2.2 74.8 ± 3.2

(b) Commonsense QA.
Number Spans

Top 1 Ensemble Top 1 Ensemble

GPO 52.2 ± 6.0 53.6 ± 3.0 27.7 ± 12.0 26.7 ± 4.9
w/o cons 49.3 ± 2.8 51.0 ± 2.1 20.6 ± 2.1 22.2 ± 3.2
w/o cons+t-train 51.3 ± 3.6 50.9 ± 1.6 20.4 ± 1.9 18.7 ± 2.2

(c) DROP.

Table 7: Ablation study. Bold-font and underline indi-
cate the best and second-best results, respectively.

We study the effect of prompt ensemble labeling
and joint prompt optimization by evaluating two
modifications of GPO: (1) setting the consistency
threshold as 0, denoted as w/o cons; and (2) remov-
ing the target group training data during the final
prompt generation, denoted as w/o cons+t-train.
From Table 7, we can observe that: 1) In all cases
except for Flipkart with Top 1 evaluation, GPO
performs better than w/o cons on target groups,
showing the effectiveness of the consistency thresh-
old. 2) Among the three tasks, DROP has large
improvement between w/o cons and GPO on both
source and target groups then the other two tasks.
We hypothesis that this discrepancy is related to the
different degrees of improvement in the labeling
accuracy by the consistency threshold, which will
be further discussed in Section 4.4. 3) Comparing

Flipkart OpenbookQA Spans

w/o cons 81.9 69.8 3.6
GPO 94.2 84.3 3.7

Table 8: The labeling accuracy comparison for the target
group training and validation data on GPO and w/o cons.
The results for Spans here is accuracy instead of F1.

w/o cons and w/o cons+t-train, removing the target
group training data benefits the Top 1 results of the
source group, but harms the Ensemble results of
the target groups. It has less effect on the target
group Top 1 results since the two methods still use
target group validation data.

4.4 In-depth Analysis

Analysis on the Effect of the Consistency Thresh-
old. To further reveal the effect of consistency
threshold, we first show the labeling accuracy of
the target group training and validation data for
GPO and w/o cons in Table 8. We can observe that
applying the consistency threshold can improve
the labeling accuracy for all target groups. By
examining the relationship between this labeling
accuracy improvement and the performance differ-
ence between GPO and w/o cons in Table 7, it can
be explained that for Flipkart and OpenbookQA,
where the labeling accuracy is already high under
w/o cons, further improving the labeling accuracy
by the consistency threshold is unlikely to achieve
large performance gain. Conversely, in the case
of Spans with low labeling accuracy, even a minor
improvement can result in significant performance
gains. To explore the connection between labeling
accuracy and target group performance further, we
conducted an experiment where we manually as-
signed incorrect labels to varying proportions (0%,
50%, and 90%) of the target training and valida-
tion data. The results are illustrated in Figure 3.
It can be observed that as the percentage of incor-
rect labels increases, the overall performance on
the target group generally decreases, emphasizing
the importance of labeling accuracy for achieving
effective generalization.
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Figure 3: Target group performance under different per-
centage of wrong labels. The blue dotted line indicates
the labeling accuracy of GPO as in Table 8.

Top 1 Ensemble
APE GPO APE GPO

Vicuna-7B 38.4 ± 25.3 63.5 ± 15.6 43.9 ± 21.3 71.9 ± 13.1
Vicuna-13B 66.8 ± 18.4 68.3 ± 13.7 60.7 ± 9.5 70.7 ± 10.8
GPT-3.5 78.4 ± 1.9 80.5 ± 2.1 81.3 ± 1.4 84.5 ± 2.0
GPT-4 77.5 ± 13.7 85.3 ± 2.7 83.3 ± 0.0 85.4 ± 2.4

Table 9: Performance comparison of APE and GPO on
Flipkart of different backbone LLMs.

GPO with Different Backbone LLMs. We also
conducted experiments with GPO using different
backbone LLMs, including Vicuna 7B and 13B
(Chiang et al., 2023) which are notable smaller-
sized LLMs, and GPT-4 (OpenAI, 2023). Table 9
shows the generalization results on Flipkart with
Yelp as the source group for APE and GPO on dif-
ferent backbone LLMs. Due to the small sizes of
the Vicuna models, generating the exact sentiment
label as the answer can be challenging. Therefore,
we extract the sentiment labels from their outputs
before calculating the accuracy. The results show
that there is room for enhancing the generalization
performance in APE across various LLMs, and
GPO consistently outperforms APE in all cases.
Notably, when applying GPO to the smaller Vicuna
7B model, there is a significant improvement that
allows it to reach the same performance level as
the Vicuna 13B model. Across LLMs, the smaller-
sized Vicuna models achieve relatively worse per-
formance, and the powerful GPT-4 achieves the
best performance on GPO.

5 Related Work

Generalization Ability and Robustness of LLM.
Researchers have been investigating the gener-
alization ability and robustness of LLMs since
their recent breakthrough. LLMs like ChatGPT
have shown significant improvement in out-of-
distribution (OOD) and adversarial tasks (Wang
et al., 2023), although they are still imperfect (Chen
et al., 2023). Some LLMs still rely on shortcuts

and spurious correlation (Tang et al., 2023; Stolfo
et al., 2022). Moreover, LLMs remain vulnerable
to adversarial perturbations and achieve inconsis-
tent results (Wang et al., 2023; Ye et al., 2023a;
Liang et al., 2022). Additionally, LLMs demon-
strate high sensitivity to the prompt (Reynolds and
McDonell, 2021; Zhu et al., 2023) and the selec-
tion of in-context examples (Liu et al., 2022; Ru-
bin et al., 2022). Lastly, instruction tuning allows
LLMs to generalize to novel tasks (Ouyang et al.,
2022; Wang et al., 2022b,a). We specifically focus
on the generalization issue of prompt optimization
on the distribution shifts within one task.

Prompt Optimization. Obtaining effective
prompts for applying LLM in NLP tasks is a popu-
lar research area. Prompt tuning methods (Li and
Liang, 2021; Lester et al., 2021; Qin and Eisner,
2021; Gu et al., 2022) learn soft continuous vectors
as prompts in the LLM input using gradients
from the task objective. Recent studies have also
focused on gradient-free prompt optimization for
black-box LLM, such as reinforcement learning-
based methods (Zhang et al., 2023; Deng et al.,
2022; Diao et al., 2022), search-based methods
(Brown et al., 2020; Prasad et al., 2022; Pryzant
et al., 2023), and other gradient-free optimization
techniques like evolutionary algorithms (Sun et al.,
2022) and boosting (Hou et al., 2022). Among
them, the state-of-the-art methods leverage the
power of LLMs for prompt optimization, such as
prompt generation and evaluation by LLM (APE
(Zhou et al., 2023)) and prompt editing following
critiques (APO (Pryzant et al., 2023)), where we
mainly compare with them. Notably, while some
previous work on prompt tuning has addressed
generalization across tasks and models (Su et al.,
2022; Vu et al., 2021; Qin et al., 2023), and domain
adaptation (Tam et al., 2022; Guo et al., 2022), this
paper specifically focuses on the generalization
issue of gradient-free prompt optimization.

6 Conclusion

In this paper, we revealed the generalization issue
of prompt optimization for LLMs under distribu-
tion shifts. We observed that the prompt optimized
on the source data group may have a performance
drop on the target group with distribution shifts.
We performed an initial analysis aiming at identi-
fying the factors that correlate to the varied gen-
eralization performance across groups, including
label distribution shift and input distribution sim-
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ilarity. To enhance the generalization ability of
LLMs, we proposed a Generalized Prompt Opti-
mization framework to jointly consider the source
and target groups for robust prompt optimization.
Experimental results validated the effectiveness of
our proposed framework in boosting the robustness
of the prompts on the source and target groups. In
future work, we plan to study the prompt general-
ization to unseen target groups without available
inputs {xt}, and explore prompt generalization abil-
ity with in-context examples from different groups.
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Limitations

Firstly, this work discusses the generalization abil-
ity of prompts while ignoring the effect of other
LLM inputs such as in-context examples. The
choice of in-context examples might also affect
the robustness of LLMs. Future work can look into
the generalization issue of the prompt in combina-
tion with in-context examples. Secondly, this work
assumes the availability of the inputs {xt} of the
target group. It is under-explored how to achieve
generalized prompt optimization to completely un-
seen groups without {xt}. To improve the robust-
ness on these groups, we believe it is helpful to
extend this work toward robust prompt optimiza-
tion on multiple heterogeneous groups. Thirdly,
we acknowledge that the scope of our research
is limited to black-box LLMs capable of under-
standing instructions, where gradient-free prompt
optimization with instructing LLM is a suitable
choice. For smaller LMs without instruction under-
standing abilities, e.g., BERT (Devlin et al., 2019)
and T5 (Raffel et al., 2020), they are generally not
black-box and are more advantageous to utilize
gradient-based prompt optimization methods.
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A Appendix

A.1 Dataset Details

For each dataset, we use the original training set
to split into training and validation sets, and ran-
domly sample a subset from the original validation
set as our test set as sometimes the labels for the
original test set are not available. Following the
official implementation of APE 3, we split the orig-
inal training set with 1000 training samples, and
the rest as validation samples. For MNLI, we sam-
ple the same number of matched and mismatched
validation data as the test set. For ANLI, we use
R2. For Yelp and Flipkart, we assign the review
scores of 0 and 1 as negative, 3 as neutral, and
4, 5 as positive. For multi-turn dialog reasoning,
we select the instances of MuTual within 5 dialog
turns, Ubuntu and DSTC7 within 7 dialog turns,
and reduce the number of choices to 4 for all three
datasets. We show an example of LLM input for
each task in Table 11, and the dataset statistics in
Table 10.

A.2 Additional Implementation Details for
Preliminary Experiments

The APE performs prompt optimization by itera-
tively generating and selecting the prompts lever-
aging LLM. For prompt generation, it utilizes a
meta prompt to instruct LLM to infer prompts from
given input-output examples. Then, the generated
prompts are evaluated on validation data to select
the prompts with good task performance. After
that, APE leverages LLM to perform Monte Carlo
search by iteratively paraphrasing the current effec-
tive prompts and performing evaluation on them to
obtain optimized prompts.

Following the official implementation, for
prompt generation, the sampled N -shot training
data are divided into K splits to generate K

3https://github.com/keirp/automatic_prompt_
engineer/tree/main.

# Train&Val # Test N Shot K Prompt

Yelp 650000 150 36 6
Flipkart 75138
IMDB 25000
Amazon 100000

SocialIQA 33410 150 36 6
PIQA 16113
OpenbookQA 4957

Number 2000 150 36 6
Spans 2000

MNLI 392702 1000 16 4
ANLI 45460

RTE 2490 277 16 4
HANS 30000 1000

DSTC7 43824 150 9 9
Ubuntu Dialog 94107
MuTual 4783

Table 10: Statistics for the train, validation and test
splits for each dataset, and the values of shot number
N and prompt number K for each task. The Train&Val
are further split into 1000 training samples and the rest
as validation samples.

prompts by LLM for further selection. For each
task, we try the value of N as 9, 16, 25, 36, and
K as N ’s factors, to ensure obtaining effective
prompts, where APE is not very parameter sensi-
tive. Moreover, we ablate the Monte Carlo search
since it is optional and not significant for our tasks.

Given the randomness of the backbone LLM,
we set the temperature of the LLM as 0, top p as
1.0. We set the max tokens for prompt generation
as 100 to try to ensure no truncation, and keep
other LLM parameters the same as the official APE
implementation. The parameters N and K are
shown in Table 10.

A.3 Additional Details and Results for the
Exploration on the Factors Affecting
Prompt Robustness.

Calculation of Q1 Metrics. The label distribu-
tion shift quantifies the divergence of the label
distributions between two groups for classification
tasks, calculated by the KL divergence of their label
distributions,

DKL =
∑

y∈Y
Prs(y)log(

Prs(y)

Prt(y)
)

where Y is the label space of the task, and Prs(y)
and Prt(y) denote the probability of the label y in
the source and target groups, respectively.
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Dataset Input Example Labels

Yelp Dr. Goldberg offers everything I look for in a general practitioner. He’s nice and easy to talk
to without being patronizing; he’s always on time in seeing his patients...

positive, negative, neutral

OpenbookQA The sun is responsible for (A) puppies learning new tricks (B) children growing up and
getting old (C) flowers wilting in a vase (D) plants sprouting, blooming and wilting.

A, B, C, D

MNLI Premise: One of our number will carry out your instructions minutely. Hypothesis: A
member of my team will execute your orders with immense precision.

entailment, neutral, contra-
diction

HANS Sentence 1: The doctors supported the scientist. Sentence 2: The scientist supported the
doctors.

entailment,
non−entailment

DSTC7 S: Hello! A: Hello! S: I’m wondering for next semester what class should I take. A: Given
your experience, I suggest you take EECS 280. S: Do you know what the size of that class
is? Answer Choices: (A) EECS 481 covers dealing with structuring principles, pragmatic
aspects of the production of software systems, design methodologies and informal analysis.
(B) The class size is normally around 167 students. (C) Based on the classes you’ve taken,
this class shouldn’t be extremely demanding. (D) This course has a discussion section.

A, B, C, D

Number Question: How many in percent weren’t 45 to 64? Context: In the city, the year 2010
population was spread out with 26.3% under the age of 18, 13.6% from 18 to 24, 30.7% from
25 to 44, 21.1% from 45 to 64, and 7.2% who were 65 years of age or older. The median age
was 32 years. For every 100 females, there were 92.5 males. For every 100 females age 18
and over, there were 88.4 males.

e.g., 78.9

Table 11: Dataset examples for each task. The output for classification tasks is one of the Labels, while for Number
the output is a string of numerical value.

The input similarity quantifies the n-gram simi-
larity of the input corpuses of the two groups. Sup-
pose that we sample M inputs from the source
and target groups respectively, denoted as xs =
{xs1 , ..., xsM } and xt = {xt1 , ..., xtM }, we calcu-
late the Spearman’s rank order correlation between
the bag-of-word vectors of xs and xt,

ρ =
cov(Vs, Vt)

δ(Vs)δ(Vt)

where Vs and Vt denotes the ranked bag-of-word
vectors of xs and xt on the vocabulary of xt.

Calculation of Q2 Metrics. We sample the same
amount of inputs from SocialIQA, PIQA and Open-
bookQA, and denote the input corpuses as x1, x2
and x3. Firstly, we calculate the proportion of
unique n-grams for each group against the num-
ber of all n-grams for the three corpuses as

|n-grams(xi)|
|n-grams({x1, x2, x3})|

, i = 1, 2, 3

where n-gram(·) returns the set of unique n-grams,
and the braces denotes mixing the inputs.

Secondly, we think the source group that has
already covered a larger proportion of n-grams of
the target group may promote better generaliza-
tion, and we calculate the proportion of n-gram
coverage between the source and target groups as

|n-grams(xs) ∩ n-grams(xt)|
|n-grams(xt)|

For both metrics, the n-gram(·) is calculated
as both word 1-gram and character 4-gram using
scikit-learn.

Q1 Metrics for More Tasks. Table 12 and Ta-
ble 13 show the two Q1 metric results for common-
sense QA and Dialog tasks. Linking the results
with the generalization performance in Table 1 and
Table 2, we have the following observations. 1)
For each target group of the commonsense QA
task, the largest value for input similarity coheres
with the best generalization performance, but the
smallest value of label distribution shifts does not
correlate to the best generalization performance. 2)
For the Dialog groups, the zero label distribution
shifts and the close input similarities cohere with
the subtle generalization performance difference on
each target group. 3) The evaluation metrics cannot
be compared across target groups nor across tasks.
e.g., the source group SocialIQA performs better
on PIQA than OpenbookQA (cf. Table 2), but the
input similarity is higher for OpenbookQA. Also,
MuTual has smaller input similarity with Ubuntu
(input similarity is 0.56, and generalization per-
formance is 74.7) but better generalization perfor-
mance than PIQA generalizing to SocialIQA (input
similarity is 0.57, and generalization performance
is 68.9) (cf. Section 2). These findings reveals the
benefits and limitations of the Q1 metrics.
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Source
Target

SocialIQA PIQA OpenbookQA

SocialIQA - 2.44 0.27
PIQA 0.38 - 0.59
OpenbookQA 1.59 3.17 -

(a) Commonsense QA

Source
Target

Mutual DSTC7 Ubuntu Dialog

Mutual - 0 0
DSTC7 0 - 0
Ubuntu Dialog 0 0 -

(b) Dialog

Table 12: Results for label distribution shifts. Smaller
value indicates smaller distribution shift. Bold font
indicates the smallest value for each column.

Source
Target

SocialIQA PIQA OpenbookQA

SocialIQA - 0.59 0.62
PIQA 0.57 - 0.69
OpenbookQA 0.61 0.67 -

(a) Commonsense QA

Source
Target

MuTual DSTC7 Ubuntu Dialog

MuTual - 0.55 0.56
DSTC7 0.56 - 0.56
Ubuntu Dialog 0.57 0.57 -

(b) Dialog

Table 13: Results for input similarity. Larger value
indicates smaller distribution shifts. Bold font indicates
the largest value for each column.

A.4 Details for Baseline Implementation

For all compared methods, the LLM parameters
such as temperature, top p, max tokens are the
same as in Appendix A.2. The implementation and
results for APE follow the preliminary experiments
as illustrated in Appendix A.2 and Section 2. For
APO, we follow the original parameter setting ex-
cept for number of optimization step as 1 because
the three tasks do not need multi-round optimiza-
tion. For GPO, the value K is unchanged from
APE. The consistency threshold for GPO are 0.83
(5 out of 6 prompts) for sentiment analysis and com-
monsense QA, and 0.33 (2 out of 6 prompts) for
DROP. Note that APE and APO are not designed
to utilize the unlabeled target group data so we
only observe the direct generalization performance,
while APE-ut and GPO utilize the N -shot source
group data and N -shot target group data. All of
the above methods do not need to apply Monte
Carlo search following the official implementation
of APE. We use one 32GB GPU to perform in-

ference for Vicuna models. We present the meta
prompt of APE and APE-ut, the initial prompt for
APO, the human-written prompts, the revised ver-
sions by PromptPerfect here.

• APE meta prompt:
I provide my friend with an instruction. Based
on the instruction, I gave him several inputs,
and he generated the corresponding outputs.
Here are the input-output examples:[DEMO].
Please briefly illustrate the instruction and
describe the output format. The instruction is
to

• APE-ut meta prompt:
I provide my friend with an instruction. Based
on the instruction, I gave him several in-
puts, and he generated the corresponding
outputs. Here are the input-output exam-
ples:[Source]. Here are also some unlabeled
examples. Please consider these examples as
well for prompt generation:[Unlabeled Tar-
get].Please briefly illustrate the instruction
and describe the output format. The instruc-
tion is to

• APO initial Prompts:
For Yelp: Provide a sentiment analysis of the
following text. Answer Positive Neutral or
Negative as labels.
For SocialIQA: Give answer to the following
multi choice question. Provide only the single
letter as labels.
For Number: Answer the following question
based on the context which involves numerical
calculation. Provide only the numerical value
that directly answers the question.

• Human Prompts:
For sentiment analysis: Provide a sentiment
analysis of a given input text. The output for-
mat is a single word indicating whether the
sentiment is positive, negative, or neutral.
For commonsense QA: Give answer to the fol-
lowing multi choice question which involves
commonsense knowledge. Provide only the
single letter (a, b, c, or d) as labels.
For DROP: Answer the following question
based on the context which involves numer-
ical reasoning. Provide only the direct answer
the question, which can be a numerical value
or a short string.
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• PromptPerfect:
For sentiment analysis: Your task is to perform
a sentiment analysis on a given input text and
provide a single word indicating whether the
sentiment is positive, negative, or neutral. The
input text may contain any language or style
of writing. Please ensure that your analysis
takes into account the overall tone and con-
text of the text.Your response should be con-
cise and clear, providing a single word that
accurately reflects the sentiment of the input
text. If there are multiple sentiments present
in the text, please choose the one that best
represents the overall feeling conveyed by the
author.Please note that your analysis should
take into account all relevant factors, such
as tone, language use, and content. Your re-
sponse should also be flexible enough to allow
for various types of input texts.
For commonsense QA: Please choose the best
answer for the following multiple choice ques-
tion. Choose the one answer that best fits the
given scenario. Please provide only the single
letter (a, b, c, or d) as labels.
For DROP: Your task is to answer a numeri-
cal question based on a given context involv-
ing numerical reasoning. Please provide a
direct answer to the question, which can be
a numerical value or a short string.Please
note that your response should be concise
and directly answer the question. The ques-
tion may involve various numerical data, such
as percentages, averages, or counts. You
should focus on identifying the relevant in-
formation and providing a clear and accurate
answer.Additionally, please ensure that your
response is flexible enough to allow for var-
ious relevant and creative answers based on
the context provided.

A.5 Case Study
We present a case study by presenting the best
prompt among the five runs for sentiment analysis
and DROP as shown in Table 14. We can observe
that the optimized prompt for a single group often
contains group-specific background information as
highlighted by underline which may hinder robust
prompt generalization. On the contrary, the opti-
mized prompts of GPO are more general and thus
performs well on both groups. Note that for Spans,
the optimized prompt is also general enough and
thus can generalize well to Number as shown in

Table 2.

Yelp Provide feedback on various experiences, such as
dining, shopping, and service. The output format is
a sentiment analysis, where the input is analyzed
to determine whether the experience was positive,
negative, or neutral. The output is a single word
indicating the sentiment of the experience.

Flipkart Provide a sentiment analysis of customer reviews.
The input consists of a customer review of a prod-
uct, and the output is a binary classification of the
sentiment as either positive or negative.

GPO provide a sentiment analysis of a given text. The
output format is a single word indicating whether the
sentiment is positive, negative, or neutral.

Number Answer a specific question based on a given context.
The output format is a numerical value that directly
answers the question asked.

Spans Answer a specific question based on a given context.
The output format is a single word or phrase that di-
rectly answers the question asked.

GPO Answer questions based on given con-
text information. The output format is
a numerical value or a single word answer.

Table 14: Case study on the prompts optimized by APE
from a source group, and GPO.

K Flipkart Ensemble

3 81.2 ± 1.3
6 84.5 ± 2.0
9 85.8 ± 1.9
12 85.2 ± 1.8
18 85.3 ± 1.4

Table 15: Generalization performance of GPO on Flip-
kart with different numbers of candidate prompts K.

A.6 Study on the Impact of the Number of
Candidate Prompts

We examine the effect of varying the number of
candidate prompts K on GPO performance in our
36-shot sentiment analysis task. We test the K
values in {3, 6, 9, 12, 18}. The results on the target
group Flipkart are shown in Table 15. We observe
that the generalization performance stabilizes as K
reaches a specific value, in this case is 6, indicating
that further generating more prompts are unlikely
to yield significant improvements in performance.
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