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Abstract

Image and text retrieval is one of the founda-
tional tasks in the vision and language domain
with multiple real-world applications. State-of-
the-art contrastive approaches, e.g. CLIP (Rad-
ford et al., 2021), ALIGN (Jia et al., 2021),
represent images and texts as dense embed-
dings and calculate the similarity in the dense
embedding space as the matching score. On
the other hand, sparse semantic features like
bag-of-words models are inherently more inter-
pretable, but believed to suffer from inferior ac-
curacy than dense representations. In this work,
we show that it is possible to build a sparse
semantic representation that is as powerful as,
or even better than, dense presentations. We ex-
tend the CLIP model and build a sparse text and
image representation (STAIR), where the im-
age and text are mapped to a sparse token space.
Each token in the space is a (sub-)word in the
vocabulary, which is not only interpretable but
also easy to integrate with existing informa-
tion retrieval systems. STAIR model signifi-
cantly outperforms a CLIP model with +4.9%
and +4.3% absolute Recall@1 improvement
on COCO-5k text—image and image—>text re-
trieval respectively. It also achieved better per-
formance on both of ImageNet zero-shot and
linear probing compared to CLIP. !

1 Introduction

Learning high-quality and performant representa-
tions from large-scale image-text data has been
intensively studied in recent years. Improved
vision-language representation benefits many ap-
plications, including image-text retrieval (Chen
et al., 2015; Plummer et al., 2015), VQA (Antol
et al., 2015; Johnson et al., 2017), and image cap-
tioning (Vinyals et al., 2015). The resurgence of
interest in contrastive learning has fueled recent ad-
vances. State-of-the-art models like CLIP (Radford
et al., 2021) and ALIGN (Jia et al., 2021) employ
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Figure 1: Learning a sparse and interpretable em-
bedding for a vision-language model. CLIP (Rad-
ford et al., 2021) and ALIGN (Jia et al., 2021) learn
a compact dense embedding, while STAIR aims to
learn a sparse and interpretable embedding in a high-
dimensional space. Each dimension in the sparse em-
bedding represents a (sub-)word from a large dictionary,
with a non-negative importance weight.

dedicated encoders for images and text, enabling
joint embedding in a shared space. By enhancing
the cosine similarity for aligned pairs and dissimi-
larity for unmatched pairs, these contrastive models
achieve remarkable performance in fine-tuning and
zero-shot generalization for image-text retrieval,
VQA, and image classification tasks.

Despite the impressive benchmark performance,
the dense embedding space is usually considered
as a black box and challenging to interpret. The
meaning of an dense embedding is determined
by its vector relationships with other embeddings,
rather than corresponding directly to any human-
understandable concept. This lack of direct cor-
respondence with interpretable concepts hinders
the transparency and interpretability. Moreover, de-
ploying a retrieval model trained with a contrastive
objective to real-world large-scale image-text re-
trieval is a non-trivial task. Despite approximated
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nearest neighbor search (Guo et al., 2020; John-
son et al., 2019a) can be used to retrieve from a
dense embedding space, the cost can be high when
scaling up to billions of images. Additionally, tradi-
tional approaches like inverted indexes, commonly
employed by search engines, cannot be straight-
forwardly applied to the dense embeddings. The
lack of interoperability further complicates the in-
tegration of dense embeddings with other retrieval
features without additional training. In comparison,
interpretable sparse embeddings possess distinct
advantages across numerous applications. More
detailed discussion can be found in Appendix D.

The community has explored sparse and inter-
pretable image representations extensively. Early
approaches, e.g. bag-of-words and topic models
(Csurka et al., 2004; Fei-Fei and Perona, 2005;
Lazebnik et al., 2006) were widely coupled with
SIFT descriptor (Lowe, 2004) but found to exhibit
inferior performance compared to dense vectors
(Lin et al., 2011; Sanchez et al., 2013). Other
endeavors, like deep visual-semantic embedding
(Frome et al., 2013) using ImageNet topics yielded
more interpretability but still failed to outperform
dense representations (Faghri et al., 2017).

We hypothesize that the gap between sparse se-
mantic and dense embedding stems from two pri-
mary factors: (1) Previous works on semantic em-
bedding inadequately explored large-scale training
to capture the rich semantics in the image-text do-
main. (2) Most existing semantic embedding meth-
ods are built on a fixed vocabulary (e.g. thousand of
concepts), which cannot handle out-of-vocabulary
concepts. In this paper, we present a new model,
named STAIR, and a multi-stage training recipe to
learn a Sparse Text And Image Representation to
tackle the aforementioned challenges. Our sparse
representation not only matches but also outper-
forms the dense image-text representations.

Inspired by the recent success of sparse represen-
tation in information retrieval field (Bai et al., 2020;
Formal et al., 2021b), STAIR encodes the image
and text into a sparse and grounded token space,
as illustrated in Figure 1. Specifically, images and
text are mapped to sparse and interpretable in a
high-dimensional space, where each dimension is
associated with an actual (sub-)word from a large
dictionary, with non-zero weights. Notably, the
proposed multi-stage training recipe plays a critical
role in the grounding of the sparse embedding.

We conduct a comparative analysis between

the STAIR model and a CLIP model, sharing the
same architecture and dataset. Experiment results
a significant improvement of STAIR model over
CLIP on image-text retrieval tasks, with +4.9% and
+4.3% recall@1 on COCO-5K (Chen et al., 2015)
text—image and image—text retrieval respectively.
STAIR models also demonstrate similar or better
performance on zero-shot classification and linear
probing tasks including ImageNet. To quantify the
interpertability of the embeddings, we define an in-
terpretable space using BERT vocab. Experiments
suggest STAIR is substantially more interpretable,
achieving a Top-1 accuracy 32.9% on ImageNet,
outperforming CLIP’s accuracy of 13.7%.

2 Approach

We begin with an overview of the dual-encoder
architecture to establish the basis of our research.

2.1 Dual-Encoder Contrastive Learning

Given a dataset of image-text pairs D = {(z;,v:)},
where x; and y; represent the image and text respec-
tively, a dual encoder learns a similarity M (x,y),
such that the aligned pair (x;, y;) is assigned higher
similarity score compared to the unmatched pairs
sampled from a negative sample set D).

A dual-encoder architecture comprises an image
encoder Fiyage and a text encoder Ergxr. Each
encoder E consists of two components: 1) a stan-
dard input-specific neural network f(-) and 2) a
projection head ¢(-) that maps the features into
embeddings in a joint dense embedding space:

E() =g(f()) (1

where f(-) is typically a transformer model and
g(+) is a pooling layer.

The similarity between an image = and text y is
measured by cosine similarity:

E(z)"E(y)
M(z,y) = @)
1E@)E@)
The dual encoder is trained by minimizing the
contrastive 10ss Lcon:

M(ws,y:)/T

€D, eM(='y")/T
3)

where D; = D! U {(z;,y;)} denotes the positive

pair and its negative set for each pair, and 7" is the

softmax temperature.

e

1
Lcon = —@ zi:lOg Z(

z'y')
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Figure 2: Diagram of STAIR architecture. It employs a dual-encoder architecture. Different than dense models
like CLIP or ALIGN, STAIR maps the dense embeddings to a sparse latent embedding space via a token prediction
head. In addition to a regular contrastive loss to minimize an image-text matching loss, a FLOPs (Paria et al., 2020)
loss is added to encourage sparsity of image and text embeddings.

2.2 STAIR

Following CLIP (Radford et al., 2021), STAIR also
adopts a dual-encoder architecture. As depicted
in Figure 2, it consists of an image encoder and
a text encoder, both comprising a feature extrac-
tion network f(-) and a projection head ¢g(-). In
particular, the dense project head g(+) is replaced
with a Token Projection Head, which maps the
representation to a sparse embedding space. A vo-
cabulary V is used as the basis of embedding space
for interpretability purpose.

The token projection head g(-) comprises two
components: (1) a mapping function that maps
the input sequence h to a sequence of weights for
each token j in the vocabulary space V, and (2) a
pooling layer that summarizes the sequence into a
sparse embedding in the vocabulary space V.

For the mapping function, we leverage the
BERT (Devlin et al., 2019) masked language model
(MLM) prediction head p(-):

p(h;) = ¢ - TRANSFORM(hj) +b  (4)

where h; = f(-) corresponds to the j® token in
the sequence of the feature extraction network out-
put. The TRANSFORM function comprises a FC
layer with GELU activation and a LAYER NORM
layer, and e and b are the linear mapping and bias
in MLM prediction head that maps the output to
vocabulary space. The weights of e is tied with
token embedding lookup table in the text encoder.

For the pooling layer, we adopt the approach
from Formal et al., 2021b,a to aggregate the weight
of token j to sparse embedding ENC:

ENC = log(1 + RELU(m?X(p(hj))))

(&)

RELU activation non-negativity of token weights

Stage 1: g e

Masked Text

Encoder
Image Text
Encoder Encoder

ﬁ “the bird is perched

on the tree”
Stage 3: / Image \ /
Full Model training Encoder

]

Stage 2:
Frozen Image
Encoder

oo
ggos
g;aﬁ

Image
_Encoder

Encoder

“the bird is perched
on the tree”

Text \
Encoder

Unleash both text and

“the bird is perched
image encoders.

on the tree”

Figure 3: Training strategy for STAIR model. (1)
The text output is masked to only predict the weights of
tokens that occur in the input. (2) The image encoder is
frozen and the mask is removed from the text encoder.
(3) All constraints are removed.

and adding the log function empirically improves
performance by suppressing overwhelmingly large
weights (Zhao et al., 2021). Consequently, the
image embedding ENC™ASE and text embedding
ENC™XT are sparse vectors residing in a |V|-
dimensional space defined by the vocabulary.

In practice, relying solely on the ReLLU opera-
tor in Eq. (5) often leads to insufficient sparsity.
To obtain better control over sparsity, we incorpo-
rate FLOPs regularization loss (Paria et al., 2020)
to encourage a small number of non-zeros token
embeddings in V:

N
1 i
LrLops = Z(N > ENC;E)V

keVv i=1

(6)
By combining the contrastive loss and the FLOPs
loss, the STAIR model is optimized by:

L = Leon + M Lri0ps + A2LE s

(N

where A1 and A\ are FLOPs regularization weights
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Table 1: Model Size (Unit: Millions). The number of
parameters of STAIR is comparable to CLIP.

Text Encoder  Image Encoder

CLIP 53.7 88.6
STAIR 53.8 86.8

for image and text embeddings, respectively. No-
tably, by adjusting these weights, STAIR embed-
dings can achieve a high level of sparsity, resulting
in an effective embedding size even smaller than
CLIP. Details are discussed in Section 6.3.

3 Training Details

The STAIR model aims to achieve two goals: 1)
aligning text and images in the sparse embedding
space; 2) grounding the sparse embedding dimen-
sion with human-understandable (sub-)word in the
vocabulary. In other words, the image and text
embeddings should reside in a space defined by
basis vectors that correspond to interpretable to-
kens. However, in practice, we found that simply
replacing the dense projection head with a token
prediction head alone does not guarantee the 2"
goal outright. This is because the images and text
are distinct modalities with inherent semantic gaps,
and contrastive loss alone only encourages text/im-
age alignment. We shown in Section 5.2 that the
model learns a shortcut by relying on less common
tokens to bridge the modality gap.

To address this challenge, we propose a multi-
stage training approach that sequentially bridges
the discrepancy between the sparse embedding
space and the interpretable space defined by the
vocabulary as illustrated in Figure 3.

Stage 1: Training image embedding with
masked tokens In the first stage, we co-train both
encoders while applying a binary mask to the text
embedding. Formally, given the text input y, the
masked text embedding is formulated as:

ENCyiask = 9(f(y)) - MASK(y) (8
where MASK; = 1 if the i token exists in 7, and
9(f(y)) predicts the weights of the non-masked to-
kens. In other words, the text embedding is forced
to activate the only the tokens appearing in the
original text input, while disregarding others. By
matching with the masked text embedding, the im-
age encoder learns to ground its image embedding
on the tokens from the paired text. Consequently,
after the stage 1, it anchors the image embeddings

to meaningful tokens in the interpretable space de-
fined by V.

Stage 2: Training with frozen image encoder
In this stage, out focus shifts to grounding the text
embedding to the same interpretable space. The
key idea is to leverage the image encoder teach the
text encoder as a teacher model to guide the training
of the text encoder. Specifically, we freeze the im-
age encoder while training the text encoder to align
its image embedding using contrastive loss. After
stage 2 training, both image and text embeddings
are positioned within the same human-interpretable
embedding space constructed by V.

Stage 3: Joint fine-tuning of both encoders
The initial two-stage training establishes a solid
foundation for both encoders to produce human-
interpretable embeddings. In stage 3, we enhance
the performance of image-text matching by jointly
finetuning both encoders.

Experiments show that this multi-stage training
recipe is critical for the embedding interpretability.
A qualitative and quantitative comparison between
training with multi-stage recipe and without can be
found in Section 6.1 and Appendix C.

4 Experiments

4.1 Datasets

Our dataset is a combination of internal and pub-
lic datasets, totaling 1.1B image-text pairs. The
public datasets consists of Conceptual Caption 3M
(Sharma et al., 2018) and Conceptual Captions
12M (Changpinyo et al., 2021). The internal dataset
consists of 1B image-text pairs, including a 134M
clean licensed dataset (see Appendix A for details)
and a 971M noisy web-crawled dataset. The web-
crawled dataset is mined using a similar approach
as described in ALIGN (Jia et al., 2021). We fur-
ther filter the data using a public CLIP model?,
removing pairs with a CLIPScore (Hessel et al.,
2021) below 0.2.

4.2 Configurations

In the experiment, we train a CLIP model and a
STAIR model for comparison. For both models,
we utilize transformer (Vaswani et al., 2017) as
the backbone with modified CLIP-B/16 (Radford
et al., 2021) configurations. The text encoder is a
12-layer Transformer with 512 hidden dimensions

2https://huggingface.co/openai/
clip-vit-base-patchl16
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Table 2: Zero-shot text/image retrieval. Reporting recall@K on Flickr30K and COCO.

COCO 5K Flickr30K
text — image image — text text — image image — text
R@l R@5 R@10 R@l R@5 R@10 | R@l R@5 R@I0 R@l R@5 R@I10
CLIP 362 622 72.2 534 783 85.6 63.0 86.7 92.5 79.6 955 98.1
STAIR | 411 654 75.0 577 805 87.3 66.6  88.7 93.5 81.2 96.1 98.4

Table 3: Zero-shot classification accuracy. Reporting the top-1 accuracy (%) across 9 datasets.

‘ ImageNet Caltech-101 CIFAR-100 SVHN DTD OxPet OxFlowers Eurosat RESISC45
CLIP 65.1 823 63.2 42.0 53.6 85.8 67.7 524 64.3
STAIR 65.6 82.5 63.4 53.0 56.3 85.9 68.2 51.0 62.8

and 8 attention heads, while the image encoder is a
12-layer ViT with 768 hidden dimensions and 12
attention heads. The text input is tokenized using
BERT WordPiece tokenizer (Devlin et al., 2019)
with a vocabulary of 30,522 tokens. The maximum
text input sequence length is set to 76.

The CLIP model is trained for 600K steps using
the LAMB optimizer (You et al., 2020) with a learn-
ing rate of 1e~3 and a weight decay of 1e 2. The
learning rate is warmed up for the first 10k steps
and then linear decay to 0. The STAIR model goes
through 3 stages, with each stage trained for 300K,
300K, and 600K steps, using the same configura-
tion as CLIP. To mitigate catastrophic forgetting,
a smaller max learning rate of le~* is adopted
in stage 3. FLOPs regularization weights are set
to A\] = Ay = le? by default, following the
quadratic growth in Formal et al., 2021a. Unless
specified otherwise, all models are trained using a
global batch size of 16,384. All our experiments
were conducted using 64 A100 GPUs.

It is noted that the proposed STAIR model does
not introduce additional parameters compared to
CLIP, because the linear projection e for both the
image and text modalities parameters with token
embedding lookup table as described in Section
2.2. The detailed number of learnable parameters
for each model are summarized in Table 1.

4.3 Zero-Shot Text Image Retrieval

Table 2 shows the recall@K (K=1, 5, 10) perfor-
mance of image/text retrieval tasks on Flickr30K
(Plummer et al., 2015) and COCO-5K (Chen et al.,
2015). The metrics are reported with a prompt
of “a photo of ” added before the original caption,
following Radford et al. (2021). We observe a sig-
nificant improvement of STAIR models compared
to the CLIP baseline, with a 4.9% and 4.3% en-

hancement in recall@1 for COCO-5K text—image
and image—text retrieval, respectively. Similar
improvements are observed on the Flickr30K.

4.4 Zero-Shot Visual Classification

In Table 3, we report zero-shot image classifica-
tion top-1 accuracy on 9 datasets using the same
prompts set from Radford et al. (2021). The re-
sults indicate that STAIR either outperforms or per-
forms competitively with CLIP on most datasets.
Particularly, STAIR shows significantly better per-
formance on SVHN that requires an exact match,
thanks to its token grounding capability. However,
we observe that STAIR also struggles with spe-
cialized out-of-distribution tasks, such as Eurosat
(Helber et al., 2019) and RESISC45 (Cheng et al.,
2017), which is consistent with the observations
from Radford et al. (2021).

4.5 Linear Probe of Visual Classification

We also compare the linear probe performance us-
ing the same 9 datasets in Table 4. We observe that
the STAIR model consistently achieves superior
results compared to CLIP, even on Eurosat and RE-
SISC45, where it exhibits weaker performance in
zero-shot. This improvement can be attributed to
the larger embedding dimensionality of 30,522 in
the STAIR model, compared to 512 in CLIP. More-
over, with sparsity enforced in STAIR, there is no
extra cost on storage and computation compared to
the dense embeddings (further discussed in Section
6.3).

5 Interpretability

5.1 Quantatively analysis

Interpreting high-dimensional embeddings poses a
challenge because their representations in the em-
bedding space R? do not naturally correspond to
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Table 4: Linear probe classification accuracy. Reporting the top-1 accuracy (%) across 9 datasets.

\ ImageNet Caltech-101 CIFAR-100 SVHN DTD OxPet OxFlowers Eurosat RESISC45
CLIP 77.0 94.9 76.7 65.8 80.6 88.8 97.6 95.1 92.6
STAIR 78.1 96.1 71.7 72.5 82.7 91.7 98.2 95.9 93.9

Input

##200: 0.34, ##oso: 0.33, ##zhou:

CLIP 0.31, ##jia: 0.31, ##jiang: 0.31,
#ifeng: 0.3, ##mei: 0.3, ##hua:
0.3, ##bei: 0.3, ##chen: 0.3

#trip: 0.33, #thopper: 0.33, ##tsa:
0.32, ##boarding: 0.32, ##jet: 0.31,
##ghan: 0.31, ##eki: 0.31, ##avia:
0.31, ##cat: 0.31, ##cot: 0.31

panda: 2.38, bear: 1.63, zoo: 1.52,

STAIR Show: 1.19, wildlife: 1.16, bears:
1.13, china: 1.1, snowfall: 1.01,
giant: 1.01, mammals: 0.98

cat: 1.39, suitcase: 1.14, luggage:
1.08, cats: 1.01, amused: 0.83,
muttering: 0.81, traveling: 0.79, pets:
0.78, packing: 0.77, kitten: 0.77

Figure 4: Examples of most relevant (sub-)words
in the lexicon space and the similarities in CLIP
and STAIR. STAIR provides more interpretable visual
concepts compared to CLIP. ## indicates subword from
the vocabulary.

easily understandable human concepts. To over-
come this challenge, Kim et al. (2018) proposed
leveraging an interpretable space R spanned
by vectors c representing human-interpretable con-
cepts. From this standpoint, interpreting the em-
bedding can be seen as a mapping F : R* — RH.

For image-text dual encoder models, a suitable
interpretable space that connects multimodalities is
a lexicon space spanned by basis vectors c rep-
resenting human-understandable tokens, words,
phrases, and/or sentences. The interpretation can
then be determined by the similarity between the
embedding and each basis vector, Sim(-, c). The
lexicon space is crucial for comparing interpreta-
tions between different models. For example, if
we have an embedding from an image of a dog but
the lexicon space does not include a concept for
"dog," it becomes challenging to understand the
image embedding itself.

Zero-shot image classification is a restricted
form of functionally-grounded interpretability eval-
uation (Doshi-Velez and Kim, 2017) as its inter-
pretable space is predefined by its classes and
dataset specific. However, in practice, the inter-
pretable space can be both lack of human labels
and unlimited (Ghorbani et al., 2019). To lift the
constraint, we expand our interpretable space as the

Table 5: Improved interpretability of the STAIR
model. We report the top-K accuracy (%) of the la-
bel among all of the vocabulary in the tokenizer on the
ImageNet, CIFAR-100, and CalTech-101 datasets.

ImageNet Top-1 Top-10 Top-50 Top-100
STAIR 329 69.0 83.8 87.7
CLIP 13.7 343 47.0 51.9
CIFAR-100 Top-1 Top-10 Top-50 Top-100
STAIR 10.3 56.8 754 80.7
CLIP 8.0 28.9 44.7 50.5
CalTech-101 Top-1 Top-10 Top-50 Top-100
STAIR 29.3 45.4 56.0 64.8
CLIP 8.1 242 38.9 43.8

vocabulary of the BERT WordPiece Tokenizer (De-
vlin et al., 2019), approximating a lexicon space
that covers any human-interpretable concepts. Note
that, under this definition, the embedding space
becomes the same as the interpretable space for
STAIR and F reduces to an identity function. Sim-
ilar to zero-shot image classification, we consider
an image embedding easier to interpret if it is closer
to its ground-truth class in the lexicon space. This
task is generally more challenging than the tradi-
tional zero-shot classification because the candi-
dates now become the entire vocabulary, which is
much more than the predefined classes.

We compare the interpretability of CLIP and
STAIR on three datasets, ImageNet, CIFAR-100,
and Caltech-101 and use the Top-K accuracy as
quantitative metrics. Specifically, if a ground-truth
class is tokenized into separated sub-words ¢y in
the vocabulary, we consider the maximum sim-
ilarity over the sub-words, maxy,(Sim(-,c¥)) as
the final similarity. As shown in Table 5, our re-
sults demonstrate that STAIR exhibits significantly
superior interpretability compared to CLIP in the
interpretable space.

5.2 Qualitatively analysis

We also conduct a qualitative examination to com-
pare the interpretability of embeddings from the
STAIR and CLIP models. In Figure 4, we present
the top Sim(-, c*) (sub-)words in the interpretable
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Figure 5: Predictions from STAIR model. Top 20 tokens predicted by STAIR for an image. Font size indicates
prediction weight. The original caption is shown below the image. Detailed weights are provided in Appendix F.

space defined by the BERT WordPiece vocabulary
for each image. We see that STAIR is better at
capturing visual concepts that humans can easily
understand than CLIP, which is consistent with
our quantitative analysis. Additionally, we observe
that the top tokens from CLIP tend to have similar
matching scores while STAIR avoids the problem
by adopting Eq. (5) in the Token Projection Head.
Figure 5 shows more examples of (sub-)words with
the highest weights from STAIR embeddings given
each image. The results suggest that STAIR is capa-
ble of grounding images to tokens that are semanti-
cally related. For example, it can infer “wedding”
from the picture depicting a bride and groom cut-
ting a cake. This grounding and interpretability
ability of STAIR is highly valuable for debugging
and understanding the model’s behavior. For ex-
ample, we observe a bias towards activating the
"https" token in many predicted embeddings. We
find that mainly stems from a substantial portion
of web-mined content in our training data, where
"https" frequently appears in associated texts.

6 Analysis and Discussion

6.1 Necessity of Multi-stage training

Multi-stage training strategy plays crucial role in
ensuring STAIR embedding grounded to meaning-
ful tokens. To demonstrate its necessity, we train a
single-stage model, denoted as STAIRsnGLE-STAGE

Input STAIRSinge-stage STAIR
#itated 1.55| #igh 1.14/ | sking 1.62| #riding | 1.14
norris 1.29| funded | 1.13 | hd 1.59| gripped | 1.12
- stella 1.25 ud 1.08| | daytime 1.29) crippled | 1.11
scarcely | 1.22 gonzales | 1.06| | skier 1.18 silhouette 1.11
© 118 clue 1.06 | flick 147 sku 1.07
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A person riding downhill
on skis on a snowy hill,

scarcely | 1.62| thugs 1.35
paralyzed | 1.86 ##rona | 1.18

mountains | 2.11 | snowy 1.06
downhill | 1.33 capped | 0.95

= papal 151 reunite | 1.09 | | ski 1.31 https | 0.86
with large mountains in ##mable | 1.49 ##vot 1.07| | riding 1.25 deals 0.74
the background. clue 1.42| kitchens | 1.03 | | skiing 1.06| skier 0.73
E torque 150 ##piration | 1.00] | teddy 1.64| #toh 1.10

% | eminent | 1.34  lower 0.99, | bear 1.48 | table 1.07

3 =P messed 1.26 | ##itated | 0.95 | toys 1.19| fairs 1.02

nottingham | 1.10 harta 0.94 | bears 1.18 stuffed | 1.02

skirmish | 1.08| necessity | 0.91| | pumpkin | 1.12] flick 0.98

) #iteration | 2.52  ennial 1.37 | | teddy 2.83| buddies | 0.90

A group of different eminent | 1.99  nottingham | 1.32 | blue 2.04] colourful | 0.88
colored teddy bears distant 1.57 ##mable | 1.26 | table 1.67, toys 0.83
sitting on top of a blue = bombed 1.56  religions | 1.26 | | https 1.29 | plush 0.78
table. invariably | 1.46  intuition | 1.16 | bears 1.22] entertained| 0.78

Figure 6: Examples of top predictions and weights
from STAIR models. STAIRgygie-stage predic-
tions are disconnected from the actual input meaning,
while STAIR predictions from multi-stage training are
grounded to input semantics. ## indicates subword from
the vocabulary.

for comparison. Figure 6 illustrates the predic-
tions from STAIRgnGLe-STAGE and the multi-stage
STAIR models, respectively. We observed that
STAIRsnGLE-STAGE tends to redefine the semantic
meaning of tokens and repurpose them to match
images and text. For instance, tokens such as “em-
inent” and “nottingham” are redefined as topics
related to teddy bears, as they consistently appear
for teddy bear related images. Similarly, “clue” is
reinterpreted as a concept related to skiing. While
we can deduce the new semantic meaning through
reverse engineering, this task is non-trivial. In con-
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Figure 7: Ablation on multi-stage training. Stage 1
establishes a solid foundation for zero-shot performance.
Stage 2 enhances performance primarily on ImageNet.
Stage 3 provides additional improvements on both Ima-
geNet and COCO/Flickr30K.

trast, the inclusion of multi-stage training ensures
that tokens retain their original meaning, resulting
in a human-readable embedding .

6.2 Ablation on Multi-stage training

In this section, we qualitatively study the effect
of the multi-stage training strategy on zero-shot
transfer. Figure 7 shows the top-1 accuracy of Im-
ageNet classification and recall@1 on COCO-5K
and Flickr30K image-text retrieval for each stage
separately. We observe that even in stage 1, reason-
able performance can already be achieved, despite
the restricted activation of text tokens. Stage 2 pro-
vides additional improvements, particularly in the
classification task. Stage 3 significantly enhances
the text-image matching capability, as evidenced
by the improvements in all metrics.

6.3 Ablation on Sparsity

Embedding sparsity is crucial for ensuring the ef-
ficiency of similarity computation and retrieval
speed. In STAIR, the strength is controlled by the
FLOPs regularization weights. To study its impact,
we train three STAIR models with regularization
weights A = A\ = \g € {le72,1e 3, 1e74}. We
examines their text and image embedding sparsity,
i.e. the number of tokens with non-zero weights
in the predictions, as well as their zero-shot trans-
fer performance on is ImageNet, COCO-5k, and
Flickr30k as summarized in Figure 8.

The results suggest that, when A > le3, the ef-
fective number of tokens in STAIR is significantly
lower than the dense embedding dimension of 512
used in CLIP for text embeddings. Since the time

3Interestingly, the STAIRsingLe-sTace Model is still able
to achieve comparable performance to multi-stage training
on various retrieval and classification tasks. Further details
on STAIRsnGLe-sTaGe training and quantitative results can be
found in Appendix C.
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Figure 8: Ablation on FLOPs regularization weights.

complexity of sparse embeddings dot product is lin-
ear to the smaller number of non-zero units in two
embeddings, STAIR models are more efficient in
conducting similarity computation during retrieval
compared to CLIP. Moreover, we observe that more
tokens are activated in the image embeddings than
in the text embeddings. One explanation is that the
image semantics is usually broader and more gen-
eral while the text meaning is more specific. We
also notice that when A is large, text embedding
tends to be more sparse especially when the inputs
are shorter. On the other hand, the regularization
weights show a negative impact on zero-shot per-
formance, particularly in the case of retrieval tasks.

7 Related Work

Image and text retrieval Image-text retrieval ap-
proaches can be categorized into dual-encoder and
cross-encoder approaches. In the dual-encoder ap-
proach, images and text are encoded separately as
dense embeddings. DeVISE (Frome et al., 2013)
was one of the pioneering dual-encoder models.
With the advent of transformers, Radford et al.
(2021) proposed CLIP that leverages large-scale
pretraining datasets and established new state-of-
the-art across multiple benchmarks. Finetuning the
visual model (Dosovitskiy et al., 2021) and lan-
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guage model (Devlin et al., 2019) further improves
performance. On the other hand, the cross-encoder
approach like UNITER (Chen et al., 2020) employs
a single encoder for both image and text inputs.
While cross-encoder models capture fine-grained
alignment between image and text but are slower
at inference, dual-encoder models offer faster re-
trieval speed with precomputed embeddings.

STAIR follows the dual-encoder approach but
introduces a novel aspect by using sparse embed-
dings instead of dense embeddings. This choice of
sparse embeddings in STAIR leads to improved in-
terpretability and better retrieval performance com-
pared to dense embeddings.

Document retrieval via sparse embedding
Sparse embedding has been widely used in infor-
mation retrieval (Dai and Callan, 2019; Bai et al.,
2020; Jang et al., 2021). By hashing the sparse
embeddings, retrieval can be efficiently performed
using an inverted index system. Our work draws
inspiration from SPLADE (Formal et al., 2021b,a)
employing sparse embeddings. However, unlike
SPLADE, our approach tackles retrieval across
modalities. The semantic gap between images
and text makes designing a joint sparse embedding
space challenging. Additionally, grounding images
and text to meaningful tokens is a non-trivial task.
In STAIR, we propose a streamlined approach that
enables fast retrieval speed, interpretability, and
high retrieval accuracy in the multimodal setting.

8 Conclusion

In this paper, we introduced STAIR (Sparse Text
And Image Representation), an approach that en-
codes image and text inputs into sparse embeddings
within a sparse token space. We also employed a
multi-stage training strategy to ensure that the em-
beddings are grounded in meaningful tokens. By
comparing STAIR with the CLIP model, we ob-
served that STAIR achieved superior performance
on image-text retrieval tasks and demonstrated bet-
ter results on various zero-shot and linear probing
classification tasks. Furthermore, through quantita-
tive and qualitative analysis, we illustrated the in-
terpretability advantage of our sparse embeddings
over dense embeddings, making them more easily
understandable for humans.

Limitations

While STAIR demonstrates several strengths in
image-text representation and interpretation, it is

important to acknowledge its limitations. We dis-
cuss the following aspects as areas for future im-
provement and exploration.

Interpretability Loss of Word Order The
vocabulary-based representation employed by
STAIR, utilizing a unigram vocabulary for sparse
embeddings, demonstrates strong performance in
various scenarios. However, it may encounter chal-
lenges in interpretability for humans when dealing
with phrases or sentences that rely on the specific
order of words, such as distinguishing between
"dog chasing cat" and "cat chasing dog". While the
sparse embeddings still maintain competitive per-
formance in terms of text-image semantic match-
ing, humans may find it difficult to infer the in-
tended semantics solely from individual activated
tokens. To address this limitation, future research
could explore incorporating bigram representations
or combining sparse and dense embeddings to cap-
ture a wider range of linguistic nuances and en-
hance interpretability.

Prediction Bias Another limitation pertains to
potential prediction biases that can arise from the
training data, particularly due to web-mined con-
tent (Chang et al., 2019; Dev et al., 2021). The
prevalence of certain concepts or biases in web data
can influence the model’s predictions, leading to
unintended biases in image-text retrieval or classi-
fication tasks, as well as impacting interpretability.
Addressing this issue requires careful considera-
tion of the training data sources and strategies to
mitigate biases during model training.

Computation Overhead of Multi-Stage Train-
ing We acknowledge that the multi-stage training
process in STAIR requires more iterations than
the baseline CLIP model, resulting in increased
computation overhead. It is worth noting that the
additional computational cost through the multi-
stage training is necessary to achieve interpretabil-
ity. We provide a fair comparison by reporting the
performance of a single-stage STAIR model trained
under the same computation budget in Appendix
C. The results demonstrate that even the single-
stage STAIR model performs competitively with or
outperforms CLIP, showcasing the efficacy of the
approach within given computational constraints.
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A Clean Licensed Dataset

The High Quality Image Text Pairs (a.k.a. HQITP-
134m) dataset consists of approximately 134m di-
verse and high quality images paired with descrip-
tive captions and titles. Images range in spatial
resolution from 320 to 2048 pixels on the short
side. All images are JPEG format and most are
RGB. Each example image is associated with a ti-
tle, and a list of several captions. On average, these
captions consist of 20.1 tokens, with the shortest
caption consisting of just one token and the longest
spanning over 1000 tokens. This dataset was li-
censed to our industrial research lab by a third
party for commercial use.

B Impact of training data and global
batch size

In Section 3, both the CLIP and STAIR models
were trained on the 1.1B dataset with a batch size
of 16,384, which was determined by our computa-
tion budget. To investigate the impact of training
data and global batch size, we conducted additional
experiments. Specifically, we trained a CLIP model
with a batch size of 32,768, denoted as CLIP3,,
and compared its performance with the OpenAl
CLIP-B/16 benchmark (Radford et al., 2021). The
benchmark model was trained on a 400M dataset
with a batch size of 32,768, as shown in Table 6.
Our implemented CLIP3,x performs competitively
on ImageNet and achieves significantly better re-
sults on retrieval tasks when trained on our larger
1.1B dataset.

Furthermore, we observed that the choice of
global batch size has a noticeable impact on both
zero-shot classification and retrieval benchmarks.
Despite using a smaller batch size, the STAIR
model outperforms other models on the COCO
image/text retrieval task. This highlights the ef-
fectiveness of the STAIR approach even with a
reduced batch size.

It is important to emphasize that our primary
focus is on introducing a novel approach to image-
text representation learning. Despite smaller batch
size, fair comparisons can be made when models
are trained under similar condition. The STAIR
approach is not limited to a specific model and can
be applied to other dual-encoder architectures such
as ALIGN (Jia et al., 2021) and GLIP (Li et al.,
2022).

C Single-stage training

In this section, we investigate the performance of
the STAIR model when trained without the multi-
stage training strategy described in Section 3. We
denote this variant as STAIRgnGLE-STAGE. The
STAIRsnGLE-STAGe MOdel shares the same archi-
tecture as the multi-stage STAIR model depicted in
Figure 1, and it is trained using the same configura-
tions for 600K steps as the CLIP model described
in Section 4.2. The FLOPs regularization weights
A1 and A9 are set to the same values as the STAIR
model, i.e., A\ = Ao = le 3.

Table 7 presents the zero-shot image-text re-
trieval and classification performance of the two
versions of the STAIR model and the baseline
CLIP model. Remarkably, the STAIRgnGLE-STAGE
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Table 6: Zero-shot transfer of open-source CLIP vs our CLIP using 32K batch size. We report recall@K on
Flickr30K and COCO, and top-1 accuracy (%) on ImageNet. We attach our 16K batch-size STAIR metrics for

reference.
ImageNet COCO 5K Flickr30K
Data Size  Batch Size Acc@1 text — image image — text text — image image — text

R@1 R@l1 R@l1 R@1
CLIPopenat 400M 32,768 68.6 333 54.1 63.5 82.3
CLIP32k 1.1B 32,768 68.3 39.0 574 67.0 85.0
CLIP 1.1B 16,384 65.1 36.2 534 63.0 79.6
STAIR 1.1B 16,384 65.6 41.1 57.7 66.6 81.2

Table 7: Zero-shot text/image retrieval and classification of STAIRgngLE-sTaGe. We Teport recall@K and top-1
accuracy (%). Bold indicates the best overall performance.

COCO 5K Flickr30K
text — image image — text text — image image — text

R@l R@5 R@10 R@l R@5 R@10 | R@l R@5 R@l10 R@l R@5 R@I10
CLIP 362 622 72.2 534 783 85.6 63.0 86.7 92.5 79.6 955 98.1
STAIRsiGLe-sTace | 40.5  64.9 74.9 577  80.3 87.4 66.7 88.6 93.7 81.0  96.7 98.5
STAIR 411 654 75.0 577 805 87.3 66.6  88.7 93.5 81.2 9%6.1 98.4

ImageNet Ca;toelch' le(’;)R' SVHN DTD OxPet OxFlowers FEurosat RESISC45
CLIP 65.1 82.3 63.2 42.0 53.6 85.8 67.7 524 64.3
STAIRSNGLE-STAGE 64.0 81.5 63.7 394 56.7 85.9 67.0 49.5 62.2
STAIR 65.6 82.5 63.4 53.0 56.3 85.9 68.2 51.0 62.8

model achieves similar performance to the multi-
stage trained model in terms of zero-shot tex-
t/image retrieval and classification tasks. Both
STAIRsnGLE-STAGE @and STAIR models outperform
the CLIP model across most of the metrics.

However, it is important to note that the in-
terpretability of the STAIRgngLe-STAGe Model is
considerably worse, as indicated in Table 8. As
discussed in Section 5.2, the STAIRsnGLE-STAGE
model functions as a multi-modal clustering algo-
rithm that repurposes words as weighted token cen-
troids. The contrastive objective trains the model
to prioritize matching the aligned image and text
using these token centroids. However, it lacks the
capability to effectively constrain the predicted to-
kens to their original human-readable meanings
compared to multi-stage training.

D Token Based vs Embedding Based
Search

The development of embedding-based retrieval
systems has gained significant attention in recent
years (Hassantabar et al., 2021; Johnson et al.,
2019a; Lin et al., 2021b). While these systems
show promising progress, deploying large-scale
embedding-based search systems still poses sev-
eral challenges. Firstly, embedding-based systems

often rely on approximated neighbor search tech-
niques, such as k-means clustering and product
quantization, to handle large-scale scenarios. These
operations can be computationally costly and may
require additional approximations or quantization
to reduce memory usage, leading to a loss of pre-
cision. Additionally, updating the index with new
data often necessitates extra computation or even
re-computation, as operations like k-means cluster-
ing and product quantization are data-dependent.

In contrast, token-based retrieval systems in
STAIR do not face these challenges, as the indexing
is based directly on the tokens themselves. Further-
more, the tokens in STAIR are optimized with a
FLOPs regularizer to encourage a uniform distri-
bution among sparse tokens, which benefits the
retrieval process. Moreover, the interpretable na-
ture of the token-based system provides additional
advantages, such as the ability to build customized
query trees using logical operators, leverage token-
based blacklists/whitelists on both the query and
index side, and combine with other token-based
features in the inverted index system. This ben-
efits applications like web image search, where
supplementary signals such as image alt text and
surrounding textual content play important role be-
sides the image content itself.
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Table 8: Interpretability of STAIRgxLe-sTAGE. We Teport the top-K accuracy (%) of the label among all of the

vocabulary. Bold indicates the best overall performance.

ImageNet CIFAR-100 CalTech
Top-1  Top-100 | Top-1 Top-100 | Top-1 Top-100
CLIP 13.7 51.9 8.0 50.5 8.1 43.8
STAIRSINGLE—STAGE 0.0 0.6 0.0 0.3 0.0 0.2
STAIR 329 87.7 10.3 80.7 293 64.8

Table 9: Retrieval Speed Comparison. STAIR
achieves better retrieval speed compared to CLIP with
comparable retrieval accuracy (%).

QPS R@10 R@25
CLIP 602 421 552
STAIR 141 425 557

D.1 Retrieval Speed

Retrieval speed between dense and sparse embed-
ding has been extensively studied in the informa-
tion retrieval community (Shen et al., 2022; Las-
sance and Clinchant, 2022). For instance, the Shen
et al. (2022) demonstrates that a sparse model can
achieve similar or better efficiency and accuracy
trade-offs compared to a dense model. One can
tune the retriever, such as using the top N tokens,
which still results in strong performance. However,
latency and accuracy depend heavily on the imple-
mentation and configuration of retrieval systems.

We conducted a preliminary comparison of CLIP
and STAIR models using the popular retrieval li-
braries FAISS (Johnson et al., 2019b) and Py-
serini (Lin et al., 2021a) on a 1M-scale dataset
sampled from COCO (Chen et al., 2015). The pre-
liminary results are summarized in Table 9 showing
that STAIR is capable of achieving 2x speed over
CLIP while maintaining comparable retrieval ac-
curacy. Comprehensive comparison would require
more extensive experimentation, which we will
leave as future work.

E Text Encoder Free Applications

The token grounding capability of the STAIR
model opens up possibilities for more efficient ap-
proaches to existing tasks. In this section, we ex-
plore two potential applications: /) Text Encoder-
Free Localization, and 2) Text Encoder-Free Image-
Text Retrieval.

E.1 Text Encoder Free Localization

The STAIR model is capable of localizing image
regions related to an arbitrary query (e.g., an object)
from the vocabulary without relying on the text side
for inference *.

Recall that the image encoder uses a vision trans-
former that divides the original image into grids.
Equation 4 introduces the mapping function p(-),
which projects each token/grid representation to the
vocabulary space, where each dimension represents
the activation of the corresponding token from the
vocabulary. Building on this, we can identify the
regions correlated with a query by examining the
activation scores of the input tokens at each grid.
Figure 9 illustrates examples of images given arbi-
trary text queries and their corresponding activation
heatmaps. In the first example, we visualize the
activation maps for the queries “German Shepherd
Dog”, “Dog”, and “Cat”. Both “German Shepherd
Dog” and “Dog” align well with the actual dog in
the image. In contrast, the activations for the “Cat”
query spread across the entire image. Additionally,
we observe that the activation heatmap for “Dog”
aligns better compared to the heatmap for “German
Shepherd Dog”. This is because the multi-token
query is decomposed into multiple tokens from the
pre-defined vocabulary, and tokens “German” and
“Shepherd” often represent other concepts rather
than a dog. As mentioned in Section 8, a better-
tuned vocabulary, which includes “German Shep-
herd Dog” as a single token, would help address
this issue.

We hypothesize that the localization capability
of STAIR models stems from the max pooling op-
eration in Eq. 5. According to Ranasinghe et al.,
2022, simply changing the image and text encoder
poolers to max pooling can significantly enhance
the localization and segmentation capability of a
CLIP model. While the CLIP model still requires
text encoding to align with the patch representa-

*In cases where a query is not in the vocabulary or consists
of multiple tokens, the query are tokenized into in-vocabulary
tokens, and their average is used for localization.
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Image (ImageNet) German Shepherd Dog (L)
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Bookcase (L)
T

Police Man

Figure 9: Qualitative examples of text inference free
localization in STAIR . Left side shows the original
images from ImageNet or COCO 5K. Right side shows
the queries and their activation heatmaps. (L) indicates
the query is the original ImageNet label of the image.
(The heatmap colors are normalized for better visualiza-
tion, not representing real values.)

tions from the image, STAIR does not rely on any
inference from the text side. These findings high-
light the potential of STAIR models for localization,
segmentation, and open vocabulary detection tasks,
which we leave as future work.

E.2 Text Encoder Free Image-Text Retrieval

Another notable advantage of the STAIR model
is its ability to enable text-encoder-free retrieval
systems. Figure 10 compares the dual-encoder ar-
chitecture with the text-encoder-free architecture.
Specifically, we utilize the image encoder of STAIR
to generate sparse image embeddings, while the
texts are directly converted into MASK in the vo-
cabulary space after tokenization, serving as the
sparse text embeddings. Unlike the dual-encoder
approach that requires inference from both the im-
age and text encoder, this architecture only relies
on the former, making it suitable for applications
with restricted latency requirements. Note that it
also differs from retrieval systems built with fixed
taxonomies using inverted indexes since it can han-
dle any free text inputs.

Table 10 summarizes the zero-shot performance
of the text-encoder-free STAIR model, denoted

/ Image \ / Text \ / Image \
Encoder Enciader Encoder

“the bird is perched
on the tree”

“the bird is perched
on the tree”

Dual Encoder Text Encoder Free

Figure 10: Dual encoder vs text encoder free archi-
tecture. Text-encoder-free architecture contains only
image encoder and uses MASK as text embedding.

as STAIRyace, compared to the original STAIR.
While it may not match the performance of the dual
encoder baseline, the results are encouraging given
its potential. We observe that the text-encoder-
free STAIR demonstrates relatively stronger per-
formance in ImageNet classification compared to
text/image retrieval tasks. This discrepancy is due
to the fact that ImageNet classes are generally more
concise. In contrast, captions from COCO-5k and
Flickr30k often contain more stop words, which are
treated with equivalent importance as semantically
meaningful tokens by MASK. This indicates signif-
icant room for improvement in text-encoder-free
performance, which we leave as future work.

F Image Prediction Weights

We provide the detailed weights of predicted tokens
for each image from Figure 5 in the Table 11 for
reference.
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Table 10: Zero-shot of STAIR with and without text encoder inference. We report recall @K on Flickr30K and
COCO, and top-1 accuracy (%) on ImageNet.

ImageNet COCO 5K Flickr30K
Acc@1 text — image image — text text — image image — text
R@1 R@1 R@1 R@1
STAIR 65.6 41.1 57.7 66.6 81.2
STAIRwace 50.0 21.0 272 40.4 47.0

Table 11: Detailed weights of STAIR predicted tokens. Top 20 tokens predicted by STAIR for an image. ##
indicates subword from the vocabulary.

##gul: 2.09, ##l: 1.56, photograph: | cake: 1.75, wedding: 1.47, cakes: 1.31, | sydney: 1.98, australia: 1.92, australian:
1.35, plumage: 1.19, waves: 1.18, | flick: 1.26, tier: 1.25, grapes: 1.23, fruit: | 1.42, opera: 1.33, kay: 1.32, ##dling:
ashore: 1.13, beaches: 1.12, beach: 1.1, | 1.18, weddings: 1.15, receptions: 1.09, | 1.27, paddle: 1.17, canoe: 1.16, harbour:
bird: 1.09, reintroduced: 1.08, version: | marriage: 1.0, ##lr: 0.99, ##illy: 0.98, | 1.1, rowing: 1.04, competitors: 1.01,
1.07, subspecies: 1.04, schleswig: 0.97, | slicing: 0.98, fruits: 0.88, berries: 0.87, | swimming: 0.97, regatta: 0.96, prosper-
flick: 0.89, vague: 0.84, wave: 0.81, | marriages: 0.86, traditionally: 0.86, | ous: 0.95, aquatics: 0.88, race: 0.85, in-
stillness: 0.79, turbulent: 0.79, repub- | cheese: 0.86, lighted: 0.84, parties: 0.82 | habit: 0.85, waterfront: 0.79, pink: 0.79,
lished: 0.78, coasts: 0.78 wider: 0.78

N 1
airport: 1.6, airline: 1.35, airlines: 1.22, | sheep: 1.74, herd: 1.54, goats: 1.36, | nippon: 2.26, ana: 2.03, airline: 1.7,
window: 1.22, airports: 1.21, delta: | cumbria: 1.32, flick: 1.29, livestock: | aircraft: 1.4, airlines: 1.37, 77: 1.36, air-
1.21, nexus: 1.06, lax: 0.99, concourse: | 1.29, driving: 1.27, goat: 1.24, scot- | port: 1.3, el: 1.16, flights: 1.09, depart-
0.97, ##fk: 0.92, gate: 0.87, flights: | land: 1.09, traffic: 1.04, lamb: 1.02, | ing: 1.06, ##7: 1.01, republished: 0.92,
0.86, traveled: 0.84, view: 0.82, airways: | loch: 1.01, tyrol: 0.94, skye: 0.92, un- | busiest: 0.91, boeing: 0.9, livery: 0.88,
0.79, aircraft: 0.76, mildly: 0.76, ##lr: | usual: 0.92, flock: 0.91, animals: 0.9, | aviation: 0.87, creditors: 0.85, spotting:
0.75, rainy: 0.75, traveling: 0.75 heading: 0.89, roadside: 0.87, inaccessi- | 0.8, japan: 0.75, commons: 0.72,

_ \ ) ble: 0.85
; ",,- "

ABBEY

ROAD NW8

abbey: 2.7, westminster: 2.43, nw: 2.03, | geese: 1.86, goose: 1.75, canada: 1.4, | thanksgiving: 1.72, turkey: 1.46, roast:
##minster: 1.87, northwest: 1.82, west: | photograph: 1.31, mating: 1.18, ducks: | 1.26, very: 1.25, pie: 1.23, christmas:
1.78, ab: 1.67, ##bey: 1.62, roads: 1.6, | 1.18, ##oides: 1.14, brant: 1.13, sub- | 1.04, ##cans: 1.02, mmm: 1.01, chicken:
##3: 1.59, ##ey: 1.56, road: 1.51, abby: | species: 1.12, wildlife: 1.11, awhile: 1.1, | 0.99, holidays: 0.88, feast: 0.82, repub-
1.38, sign: 1.23, minister: 1.22, peter- | courtship: 1.08, version: 1.04, swans: | lished: 0.81, stuffing: 0.78, dinner: 0.76,
borough: 1.21, ##mist: 1.13, nwa: 1.0, | 0.97, lake: 0.97, pond: 0.95, sired: 0.95, | bread: 0.76, tasted: 0.75, convinces:
agreed: 0.97, n: 0.94 synchronized: 0.94, duck: 0.94, flick: | 0.75, televised: 0.74, meal: 0.73

0.93
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