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Abstract

The knowledge graph is a structure to store
and represent knowledge, and recent studies
have discussed its capability to assist language
models for various applications. Some vari-
ations of knowledge graphs aim to record ar-
guments and their relations for computational
argumentation tasks. However, many must sim-
plify semantic types to fit specific schemas,
thus losing flexibility and expression ability.
In this paper, we propose the Hierarchical
Argumentation Graph (Hi-ArG), a new struc-
ture to organize arguments. We also introduce
two approaches to exploit Hi-ArG, including
a text-graph multi-modal model GreaseArG
and a new pre-training framework augmented
with graph information. Experiments on two
argumentation tasks have shown that after fur-
ther pre-training and fine-tuning, GreaseArG
supersedes same-scale language models on
these tasks, while incorporating graph infor-
mation during further pre-training can also
improve the performance of vanilla language
models. Code for this paper is available at
https://github.com/1jcleo/Hi-ArG.

1 Introduction

Debating is a fundamental formal process to find
solutions and gain consensus among groups of peo-
ple with various opinions. It is widely accepted in
politics (Park et al., 2015; Lippi and Torroni, 2016),
education (Stab and Gurevych, 2014, 2017) and
online discussions (Habernal and Gurevych, 2017).
As more and more formal and informal debates
are launched and recorded on the Internet, organiz-
ing arguments within them has become crucially
valuable for automated debate preparation and even
participation (Slonim et al., 2021).

Recently, language models have shown domi-
nating advantages in various argumentation tasks
(Gretz et al., 2020; Rodrigues and Branco, 2022).
However, such tasks often rely on logical relations
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Figure 1: An example of Hi-ArG extracted from the con-
versation between Alice and Bob. TOPO to TOP3 rep-
resent top nodes corresponding to different arguments.
GO to G3 represent intra-argument sub-graphs whose
detailed structures are omitted. rec. and -rec. repre-
sent recommend and not recommend respectively.

between arguments and semantic relations between
mentioned entities. To explicitly provide these re-
lation links, Al-Khatib et al. (2020) borrowed the
form of knowledge graphs and introduced the Argu-
mentation Knowledge Graph (AKG) to represent
entity relations extracted from arguments. They
also applied AKG to fine-tune a language model
for argument generation tasks (Al Khatib et al.,
2021).

Despite the effectiveness of AKG, we argue that
semantics within arguments can be better mod-
eled. In this paper, we propose the Hierarchical
Argumentation Graph (Hi-ArG), a graph structure
to organize arguments. This new structure can re-
tain more semantics within arguments at the lower
(intra-argument) level and record relations between
arguments at the upper (inter-argument) level. We
claim that Hi-ArG provides more explicit informa-
tion from arguments and debates, which benefits

14606

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 14606—14620
December 6-10, 2023 ©2023 Association for Computational Linguistics


https://github.com/ljcleo/Hi-ArG

language models in argumentation tasks.
For instance, consider the following conversa-
tion about whether guns should be banned:

* Alice: We should ban guns. Guns are killing
people.

* Bob: No, guns can prevent killing if everyone
has one, so we shouldn’t ban them.

Alice and Bob have opposite opinions, yet their ev-
idence focuses on the topic’s same aspect (killing).
In Hi-ArG (see Figure 1), all their claims and
premises can live together and connect through
inter-arg (supporting/attacking) and intra-arg (se-
mantic relations between concepts like guns and
killing) links.

To validate the power of Hi-ArG, we propose
two approaches to exploit information from the
graph. First, we introduce GreaseArG, a text-graph
multi-modal model based on GreaseLM (Zhang
et al., 2022) to process texts with sub-graphs from
Hi-ArG simultaneously. Second, we design a new
pre-training method assisted by Hi-ArG, which
is available for both GreaseArG and vanilla lan-
guage models. To examine the effectiveness of
these approaches, we conduct experiments on two
downstream argumentation tasks namely Key Point
Matching (KPM) and Claim Extraction with Stance
Classification (CESC).

In general, our contributions are:

* We propose Hi-ArG, a new graph structure to
organize various arguments, where semantic
and logical relations are recorded at intra- and
inter-argument levels.

* We design two potential methods to use the
structural information from Hi-ArG, including
a multi-modal model and a new pre-training
framework.

* We validate the above methods on two down-
stream tasks to prove that Hi-ArG can enhance
language models on argumentation scenarios
with further analysis.

2 Related Work

Computational argumentation is an active field in
NLP focusing on argumentation-related tasks, such
as argument mining (Stab and Gurevych, 2014;
Persing and Ng, 2016; Habernal and Gurevych,

2017; Eger et al., 2017), stance detection (Augen-
stein et al., 2016; Kobbe et al., 2020), argumenta-
tion quality assessment (Wachsmuth et al., 2017;
El Baff et al., 2020), argument generation (Wang
and Ling, 2016; Schiller et al., 2021; Alshomary
et al., 2022) and automated debating (Slonim et al.,
2021). A majority of these tasks are boosted with
language models recently (Gretz et al., 2020; Fried-
man et al., 2021; Rodrigues and Branco, 2022),
and studies have discussed various ways to inject
external argumentation structure or knowledge to
such models (Bao et al., 2021; Dutta et al., 2022).

Meanwhile, several works have discussed proper
methods to retrieve arguments from data sources
(Levy et al., 2018; Stab et al., 2018; Ajjour et al.,
2019), yet a majority of them keep the text form
unchanged, resulting in loose connections between
arguments. One of the methods to manage textual
information is to represent it as knowledge graphs;
however, popular knowledge graphs mainly record
concept relations (Auer et al., 2007; Bollacker et al.,
2008; Speer et al., 2017). To cope with this issue,
Heindorf et al. (2020) proposed a knowledge graph
that stores causal connections between concepts.
Al-Khatib et al. (2020) further developed this idea
and introduced the argumentation knowledge graph
(AKG), which can be seen as the first approach
to organize arguments structurally, and has been
employed in a few downstream tasks (Al Khatib
et al., 2021).

A flaw of the AKG is that relations between con-
cepts are highly simplified, losing rich semantic in-
formation. The representation of semantic relations
has been long studied as the task of semantic role la-
beling (SRL, Palmer et al. 2005; Bonial et al. 2014;
Li et al. 2018; Shi and Lin 2019). While traditional
SRL keeps the linear form of sentences, Banarescu
et al. (2013) proposed abstract meaning represen-
tation (AMR), a graph-based structure to express
semantic relations. Being similar to knowledge
graphs, the idea becomes natural to record argu-
ments in AMR graphs and organize them, then uti-
lize them for downstream tasks in a similar way as
typical knowledge graphs, especially accompanied
with language models (Yang et al., 2021; Zhang
et al., 2022; Amayuelas et al., 2022).

3 The Hi-ArG Framework

In this section, we introduce the detailed structure
of Hi-ArG. We also propose a fully automated con-
struction procedure applicable to different corpora.
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3.1 Structure

As described in Section 1, Hi-ArG can be divided
into the lower intra-argument level and the upper
inter-argument level. In the remaining part of this
paper, these two levels will be inferred as intra-arg
and inter-arg graphs, respectively.

Intra-arg Graph This level represents the se-
mantic relations within a particular argument,
mainly related to semantic analyses like Abstract
Meaning Representation (AMR, Banarescu et al.
2013). Since AMR is a highly abstract structure
suitable for organizing semantic relations among
concepts, it is introduced as the primary backbone
of the lower level of the argumentation graph. More
specifically, nodes in the intra-arg graph represent
single semantic units connected with directed edges
following the AMR schema. Arguments are linked
to a node naming the top node, whose respective
sub-graph fully represents the argument. More de-
tails of AMR concepts and their relation to intra-arg
graph components can be found in Appendix A.

Inter-arg Graph The inter-arg level represents
logical relations among arguments like supporting
or attacking. Relation edges can connect arguments
(top nodes) directly or through proxy nodes if mul-
tiple arguments need to be packed together. Formal
logic and traditional argumentation theories (like
the ones in Toulmin, 2003 or Budzynska and Reed,
2011) can be applied to this level.

The Hi-ArG structure has several advantages.
First, note that different arguments can share one
single top node if they have identical meanings.
Such design allows efficient argument organization
across paragraphs or documents. Second, if parts
of sub-graphs of different top nodes are isomorphic,
these parts can be merged, and thus the sub-graphs
become connected. This way, arguments about
common concepts may be grouped more densely,
and debates around specific topics are likely to be
associated.

3.2 Construction Pipeline

Based on the structure described above, We pro-
pose a brief construction pipeline for intra-arg
graphs, as illustrated in Figure 2. Once the intra-arg
graph is created, the inter-arg graph can be easily
attached to the corresponding top nodes. Construct-
ing inter-arg graphs usually depends on external
annotations or argumentation mining results, and

adding edges from such information is straightfor-

ward; hence, we will not cover the details here.
The construction pipeline can be split into three

stages: (1) extracting, (2) parsing, and (3) merging.

Extracting Stage In the extracting stage, docu-
ments in the corpus are cut into sentences, and valid
sentences are treated as arguments. The standard
of valid arguments can be adjusted according to
specific task requirements.

Parsing Stage As soon as arguments are ex-
tracted from the corpus, they are parsed into sepa-
rate AMR graphs in the parsing stage. AMR pars-
ing models can be applied to automate this stage.
Besides parsing, additional operations can be per-
formed during this stage, such as graph-text align-
ing (Pourdamghani et al., 2014).

Merging Stage After obtaining AMR graphs for
each argument, the final merging stage will com-
bine all these separate graphs into one Hi-ArG. This
can be realized by iteratively merging isomorphic
nodes or, more specifically, eliminating nodes with
common attributes and neighbors.

3.3 Adapting Exploitation Scenarios

A few issues exist when applying Hi-ArG to more
specific models and tasks. In this section, we in-
troduce adaptations of the Hi-ArG structure to two
common scenarios where the original one could
cause problems. For instance, we apply these two
adaptations to GreaseArG, one of our exploitation
methods proposed in Section 4.

Incorporating Text Two issues arise when pro-
cessing text information and its corresponding Hi-
ArG sub-graph. On the one hand, this sub-graph
may not be connected; on the other hand, multi-
ple sentences in one text can point to the same top
node, which could confuse each other. To resolve
these problems, an extra link node is added for each
sentence, along with a single edge connecting it to
the corresponding top node. Furthermore, all link
nodes are connected by another root node to ensure
that the final graph is connected.

Message Passing A significant problem when
processing Hi-ArG sub-graphs in message-passing
models like graph neural networks (GNN) is that
such graphs are directed, and directed edges cannot
pass information in the reverse direction. To make
message-passing algorithms effective, each edge is
accompanied by a reversed edge, whose attribute is
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Figure 2: A construction pipeline for Hi-ArG intra-arg graphs.

also a reverse of the original edge. This is possible
for intra-arg graphs because AMR can change the
direction of edges by adding to or removing from
the edge label the passive mark -of, and for inter-
arg graphs, a similar approach can be used.

4 Exploiting Hi-ArG

Knowledge graphs can participate in various stages
of standard NLP pipelines, such as information
retrieval and model training. In this section, we in-
troduce two methods of exploiting Hi-ArG on the
model side. First, we present a model structure sim-
ilar to GreaseLM (Zhang et al., 2022), referred to
as GreaseArG, that simultaneously digests text and
Hi-ArG data. We also propose further pre-training
tasks specially designed for GreaseArG. Second,
we develop a novel pre-training framework that
modifies the method to construct training samples
with another self-supervised pre-training task.

4.1 GreaseArG

Processing and understanding graph structures like
argumentation graphs can challenge language mod-
els since they can only handle linear informa-
tion like text segments. Following GreaseLM,
GreaseArG uses graph neural network (GNN) lay-
ers as add-ons to facilitate this issue.

Figure 3 illustrates the structure of GreaseArG.
Like GreaseLLM, GreaseArG concatenates a GNN
to transformer-based language models per layer
and inserts a modality interaction layer between
layers of LM/GNN. An interaction token from the
text side and an interaction node from the graph
side exchange information at each interaction layer.

Hi-ArG adaptations mentioned in Section 3.3
are applied so GreaseArG can properly process Hi-
ArG sub-graphs. More specifically, for a series of
sub-graphs, we create link nodes 51, S2, ... con-

nected to the root nodes of each sub-graph, and
an extra root node R connected to all link nodes,
as shown in Figure 3; furthermore, reversed edges
(labels not displayed; with embeddings e{, €], . . .)
are added to the connected directed graph to allow
message passing in GNN.

Instead of using a specific prediction head as
in GreaseLM, in GreaseArG, a cross-modal atten-
tion layer is appended after the output of the last
LM/GNN layer, generating the final representation
vectors of both text tokens and graph nodes. An-
other critical difference between vanilla language
models and GreaseArG is that Grease ArG needs
to generate word embeddings for special tokens in
the AMR graph like :ARGO and ban-@1. This is
achieved by increasing the vocabulary and adding
slots for them.

In this paper, we adopt ROBERTa! (Liu et al.,
2019) as the LM backbone of GreaseArG, and
Graph Transformer (Dwivedi and Bresson, 2020)
as the GNN backbone.

4.2 Pre-training Tasks for GreaseArG

Before heading towards the second exploitation
method, we introduce more details about the pre-
training tasks for GreaseArG. Since GreaseArG
handles information from two modalities, we ar-
gue that pre-training this model should cover both.
Here, we propose six tasks categorized into two
classes: masking tasks and graph structure tasks.
Each of the six tasks corresponds to a specific task
loss; these losses are summed up to form the fi-
nal pre-training loss. Figure 4 illustrates the two
categories of tasks with inputs from Figure 3.

Masking Tasks Following Liu et al. (2019), we
use Masked Language Modeling (MLM) as the

"Unless explicitly stated, ROBERTa will always refer to
RoBERTa-base.
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Figure 3: GreaseArG model structure when processing text with its Hi-ArG sub-graph. {tg, 1, ...} are token
embeddings generated by the token embedding layer, whose transformed versions after at least one LM layer are
denoted by {t~0, t, ... }. Sy and Sy are link nodes added to connect subgraph roots recommend-01 and kill-01,
while R is the extra root node added to connect link nodes S7 and Ss; labels of reversed edges are not displayed for
clarity. {v1,v2,vs, ...} are node embeddings generated by the node embedding layer, whose transformed versions

after at least one GNN layer are denoted by V' = {v7, 02, 03, . .

.} E ={eo, €, e1,€, ...} are edge embeddings

generated by the edge embedding layer (prime marks indicate reversed edges), which remain unchanged throughout
the process. The embedded graph through one or more GNN layers is noted as G = (V, F) in the joint block.

text pre-training task. For AMR-based intra-arg
graphs, Masked Components Modeling (MCM,
Xia et al. 2022) can be treated as the graph ver-
sion of MLM, where the model needs to predict
attributes of masked components. In this paper,
we consider masked node modeling (MNM) and
masked edge modeling (MEM).

Graph Structure Tasks Graph structure tasks,
focusing on learning structural information, consist
of Graph Contrastive Learning (GCL), Top Order
Prediction (TOP), and Edge Direction Prediction
(DIR). GCL requires the model to discriminate
nodes with randomly permuted attributes, follow-
ing the modified GCL version from Zheng et al.
(2022). TOP aims to predict the relative order of
two consecutive link nodes from a document. DIR
requires the model to determine the original direc-
tion of each edge in the bi-directed graph.

4.3 Augmenting Pre-Training with Relatives

Most language models today are pre-trained with
chunks of text data, where continuous sentences
from one or more documents are sampled and con-
catenated (Radford et al., 2018; Liu et al., 2019).
When further pre-training GreaseArG, documents
can refer to debates and other argumentation docu-
ments in the training corpus. Thus, sentences are
sampled according to their original order continu-
ously.

However, such a method does not exploit struc-
tural knowledge in Hi-ArG, a perfect tool for find-
ing attacking or supporting statement pairs. Hence,
we can augment original training samples with

topic-related sentences from Hi-ArG called rela-
tives. In an augmented sample, each relative is
linked to a specific sentence in one of the sampled
documents and is inserted after that particular docu-
ment. This provides another approach to generating
pre-training samples.

For any specific sentence, its relatives are sam-
pled from related sentences found in Hi-ArG,
weighted by the two-hop similarity in the sentence-
node graph Gy,. Gy, is a bipartite graph between
link nodes of sentences and nodes from the orig-
inal Hi-ArG sub-graph, where each link node is
connected to all nodes that form the semantic of its
sentence; original edges that appeared in Hi-ArG
are not included. The two-hop similarity between
two sentences (link nodes) is the probability that a
random walk starting from one link node ends at
the other link node in two steps.

Relative Stance Detection (RSD) Suppose the
topic and stance of sampled documents and rela-
tives are known beforehand. In that case, we can
classify each relative as supporting, attacking, or
non-relevant concerning the document it relates
to. Based on this observation, we propose a new
pre-training task called Relative Stance Detection
(RSD). In RSD, the model must predict the above
stance relation between documents and their rela-
tives. The final pre-training loss will include the
corresponding loss of RSD, which is also computed
by cross-entropy.
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5 Experiments

To examine our approaches to exploit Hi-ArG, we
apply them to selected argumentation tasks and
compare the results with previous work. All mod-
els are further pre-trained on argumentation corpus
with generated Hi-ArG and then fine-tuned on spe-
cific downstream tasks. We report the main results
at the end of this section.

5.1 Downstream Tasks

The performance of GreaseArG on argumentation
tasks is evaluated on two downstream tasks — key
point matching (KPM) and claim extraction with
stance classification (CESC), covering argument
pairing, extraction, and classification.

Key Point Matching This task (Bar-Haim et al.,
2020a,b) aims to match long arguments with sets of
shorter ones called key points. It is evaluated by the
mean AP (mAP) of predicted scores between each
candidate pair of arguments and key points. Some
pairs are labeled as undecided if the relation is
vague. Therefore, the mAP is further split into strict
and relaxed mAP based on how to treat predictions
on such pairs.

Claim Extraction with Stance Classification
This (Cheng et al., 2022) is an integrated task that
merges claim extraction and stance classification.
In this task, the model needs to extract claims from
a series of articles under a specific topic and then
identify their stances. This task is evaluated as a
3-class classification task.

5.2 Dataset

In this section, we introduce the dataset used for
further pre-training and task-related datasets for
fine-tuning and evaluation. We construct each
dataset’s corresponding Hi-ArG using the graph-
construction pipeline mentioned in Section 3.2. Ap-
pendix B describes the details of this procedure
across datasets.

5.2.1 Further Pre-training

Few works concern high-quality argumentation
corpus sufficiently large for effective further pre-
training. Among them, the args.me corpus (Ajjour
et al., 2019) contains sufficient documents and ar-
guments for further pre-training. Therefore, we
construct the Hi-ArG of the args.me corpus to gen-
erate further pre-training samples.

Because KPM and CESC are highly related to
inter-arg graphs, we only further pre-train models
with intra-arg graphs to avoid bias towards these
downstream tasks. Details about the construction
of Hi-ArG for further pre-training can be found in
Appendix C.

5.2.2 Fine-tuning and Evaluation

We choose a specific dataset for each down-
stream task and construct its Hi-ArG, following the
pipeline in Section 3.2. The training, dev, and test
sets are processed separately, and we only construct
intra-arg graphs like when building the further pre-
training dataset.

KPM: ArgKP-2021 The 2021 Key Point Analy-
sis (KPA-2021) shared task (Friedman et al., 2021)
provides a dataset for KPM called ArgKP-2021,
covering 31 topics. Since they also report results
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KPM CESC
Model
Strict mAP  Relaxed mAP  Mean of mAP Macro F; Micro I

KPM ModernTalk 75.4 90.2 82.8 — —
Baseline MatchTstm 74.5 90.2 82.4 — —
CESC Pipeline — — — 55.95 88.56
Baseline Multi-label — — — 60.25 91.22

no FP 71.342.8 87.7+3.6 79.543.2 59.01+1.13 89.0040.50
RoBERTa FP w/o aug. 72642, 882,55 804,43 59.5941.29 89.5810.96

FP w/ aug. 72.7154 879416 80.3+1.9 60.0840.95 89.3610.31

FP w/ mix 72.24238 87.6+1.5 79.9121 61.07 .5, 90.28 .,

no FP 72.5i3_0 88.8i2.1 80.6i25 58-81i0.82 88.75i1,35

FP w/o aug. 73.6:t1.3 89.310.7 81.4:‘:0.6 59~03:|:0.62 89.76;&),34
GreaseArG  pp w/aug.  75.8.,,  89.5.,, 82.6,,,  59.65112r  89.61i14

FP w/ mix 71.542.1 85.7+1.5 78.641.7 60.52 1 95 89.83, ¢ 23
KPM SMatchToPR 78.9 92.7 85.8 — —
Baseline NLP@UIT 74.6 93.0 83.8 - -
(large) Enigma 73.9 92.8 83.3 - -

Table 1: Main result on KPM and CESC. FP: further pre-training; aug.: relative-augmented samples; mix: FP
samples can either be plain or augmented, selected randomly during FP. The last model group shows KPM results
from models with large-scale backbones. Bold font indicates the best results (except for the last group) under each
evaluation metric; underscores indicate the best results within the model group (RoBERTa/GreaseArG). We also
provide standard deviations of each metric across runs, shown next to the average.

from other models on this dataset, we use it to
conduct experiments on KPM.

CESC: IAM Besides the integrated task, Cheng
et al. (2022) also proposed a benchmark dataset
called IAM for training and evaluation. This
dataset is generated from articles from 123 differ-
ent topics. We adopt this dataset for CESC experi-
ments.

5.3 Implementation

We conduct all experiments on NVIDIA GeForce
RTX 4090 and repeat 4 times under different ran-
dom seeds. In each run, the best model is chosen
according to the performance on the dev set; the
final result on the test set is the average of the ones
from the best models in all 4 runs. Model and train-
ing configurations, including checkpointing rules,
are listed in Appendix D.

To obtain further pre-training samples, especially
augmented ones, we apply a few more operations
on the pre-training dataset, details described in Ap-
pendix C. Note that documents from args.me nat-
urally contain stance labels towards their conclu-
sions. Therefore, we include the RSD task when
pre-training with relative-augmented samples.

5.4 Baseline Models

KPM A handful of participants in KPA-2021
have described their method for KPM, with which

we compare our models. These methods can be
categorized into two groups: sentence pair classifi-
cation predicts results on concatenated input, and
contrastive learning uses the similarity between
argument and key point representations.

CESC Cheng et al. (2022) proposed and exam-
ined two approaches for CESC, pipeline and multi-
label. The pipeline approach first extracts claims
from articles and then decides their stances. The
multi-label one treats this task as a 3-class classifi-
cation task, where each candidate argument can be
positive, negative, or unrelated to the given topic.

5.5 Main Results

Table 1 lists the main results on both downstream
tasks. We use pair classification for our models in
KPM experiments, which gives better results than
contrastive learning. For KPM, we select 5 best
results from Friedman et al. (2021): SMatchToPR
(Alshomary et al., 2021) and MatchTstm (Phan
et al., 2021) use contrastive learning; NLP@UIT,
Enigma (Kapadnis et al., 2021) and ModernTalk
(Reimer et al., 2021) use pair classification. For
CESC, we select the results of both approaches
mentioned in Cheng et al. (2022).

GreaseArG, after further pre-training with a por-
tion of samples augmented, showed comparable
(on KPM) or better (on CESC) performance se-
lected base-scale baselines on either task. While
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Model Support F1  Contest Fi
RoBERTa 40.43 47.74
GreaseArG 40.59 46.25

Table 2: Fj scores on support/contest claim class on
CESC. Here, we only show results from FP-with-mix
models.

Model Strict Relaxed Mean
MatchTstm 745 90.2 824
no FP 67.3 839 T75.6

FP w/o aug. 69.7 86.4 78.0

ROBERTa  pp /aug.  69.1  85.1  77.1
FPw/mix 70.0 86.3 78.1

no FP 63.7 81.1 724

FP w/o aug. 65.6 81.7  73.7

GreaseArG pp \/aue. 69.6  86.6 78.1
FPw/mix 683 84.3 76.3

Table 3: Evaluation result on KPM, using contrastive
learning instead of pair classification. Bold font indi-
cates the best results within each group.

vanilla RoBERTa gives worse results” than baseline
models, on CESC it gains a significant boost when
further pre-trained with mixed samples. Our re-
sults being compared are the mean of 4 runs; when
taking random fluctuations into account, further
pre-trained GreaseArG can easily supersede base-
scale models and even be on par with large-scale
baselines.

6 Analysis

6.1 GreaseArG vs. Vanilla LM

As seen in Table 1, under the same further pre-
training settings, GreaseArG significantly outper-
forms vanilla ROBERTa on all metrics of KPM.
However, on CESC, the order is reversed. Table 2
demonstrates the F scores of each stance class
(support and contest). While GreaseArG super-
sedes RoBERTa concerning supporting claims, its
performance on contesting claims is not as good
as RoBERTa’s. This result aligns with the ones on
KPM, where GreaseArG shows an advantage since
matching pairs of arguments and key points must
have the same stance toward the topic.

2For CESC, RoBERTa without further pre-training is
equivalent to the multi-label model. However, we use different
random seeds and average results across all runs; hence, the
final F} scores are different from what is reported by Cheng
et al. (2022).

Model Macro F; Micro F}
GreaseArG, FP w/ mix  60.52 89.83
w/o MNM 59.87(—0.65) 89.54(—0.29)
w/o MEM 59.83(—0.69) 89.78(—0.05)
w/o GCL 60.36(—0.16) 89.92(+0.09)
w/o TOP 59.76(—0.76) 89.91(+0.08)
w/o DIR 59.67(—0.85) 89.48(—0.35)

Table 4: Pre-training task ablation results on CESC,
based on GreaseArG, further pre-trained with mixed
samples. Only graph-related tasks are considered.

Model Support Fi Contest F
GreaseArG, FP w/ mix  40.59 46.25
w/o GCL 40.04(—0.55) 46.26(-+0.01)
w/o TOP 38.51(—2.08) 45.96(—0.29)

Table 5: F) scores on support/contest claim class on
CESC when ablating GCL/TOP.

6.2 Relative-Augmented Further Pre-training

As shown in Table 1, adding samples augmented
with relatives generally helps improve further pre-
training. This phenomenon is more significant
with GreaseArG and on the CESC task. Inter-
estingly, models could prefer various portions
of augmented samples for different downstream
tasks: both vanilla ROBERTa and Grease ARG pre-
fer mixed samples during further pre-training on
CESC, yet this strategy has shown adverse effects
on KPM.

6.3 Alternative Approach for KPM

We further investigate the impact of different down-
stream approaches. Table 3 illustrates the results
on KPM under the same setup but using contrastive
learning as the downstream approach. Since the
model computes the representation of arguments
and key points separately, it cannot exploit the
potential graph connections between them, which
could be why GreaseArG is worse than RoOBERTa.
Nonetheless, further pre-training benefits both
models, where the gap between GreaseArG and
RoBERTa nearly disappeared. Although the base-
scale MatchTstm (Phan et al., 2021) from Fried-
man et al. (2021) show better results, this model
has introduced other strategies to improve model
performance and thus cannot be compared directly.

6.4 Contributions of Pre-training Tasks

We conduct ablation experiments on CESC us-
ing GreaseArG, further pre-trained with mixed

14613



. . Hi-ArG  RoBERTa, GreaseArG,
Argument Candidate Key Point Gold Label Jaccard o FP FP w/ aug.
Mandatory vaccination .
I do not agree to force contradicts basic rights non-matching 00417 0.001 1.263
children without parental Th ts and not
consent should not be fair © parents and no matching 0.1 —0.132 1.609

the state should decide

Table 6: KPM sample where GreaseArG corrects vanilla RoOBERTa. Hi-ArG Jaccard is the Jaccard Similarity
between intra-arg node sets of argument and key point. Note that predicted scores across models are not comparable.

KPM (mAP) CESC (F})
S. R. M. Macro Micro

RoBERTa FPw/mix 72.2 87.6 79.9 61.07 90.28
GreaseArG FP w/aug. 75.8 89.5 82.6 59.65 89.61

24.0 35.2 29.6 34.29 56.73
43.5 58.8 51.2 41.60 69.02

Model

Direct

ChatGPT Explain

Table 7: ChatGPT performance on KPM and CESC.
Direct: the model generates the prediction directly. Ex-
plain: the model generates an explanation before the
final prediction. Table headers are the same as Table 1.

samples, to measure the contributions of various
graph-related pre-training tasks during further pre-
training (the importance of MLM is obvious). Re-
sults are listed in table 4. All ablated models per-
form worse concerning the macro F;. At the same
time, a few of them have higher micro Fi, indi-
cating that such ablation improves performance in
some classes yet harms others. Tasks related to
graph components contribute more; conversely, re-
moving Graph Contrastive Learning (GCL) causes
a less significant effect.

To further investigate the increasing micro £}
when ablating GCL and Top Order Prediction
(TOP), table 5 illustrates £ scores on claim classes
when ablating either task. Ablation caused a sig-
nificant drop in support F} yet did not significantly
increase contest Fy. This indicates that the higher
micro Fj is due to the imbalance between claims
and non-claims (527 against 6, 538): ablating these
tasks might slightly improve claim extraction but
could harm stance classification.

6.5 Hi-ArG Information Benefit

To examine the benefits of Hi-ArG information on
downstream tasks, we compare model predictions
on the KPM task, which is the candidate key point
with the highest predicted score for each argument.
We chose RoBERTa without further pre-training,
and GreaseArG further pre-trained with augmented
samples as target models. Among all 723 argu-

ments, 94 have seen the label of their predicted key
point changed, of which 58 or 61.7% have positive
changes. Table 6 demonstrates such a positive ex-
ample. We can see that the argument and candidate
key points have common Hi-ArG nodes, which
GreaseArG can exploit.

6.6 Comparing with LLM

Large language models (LLMs) like ChatGPT and
GPT-4 have recently shown competitive perfor-
mance on various applications without fine-tuning
(OpenAl, 2023). In response to this trend, we con-
duct primitive experiments that apply ChatGPT
(gpt-3.5-turbo) on KPM and CESC, using in-
context learning only. For KPM, we ask the model
to give a matching score to maintain the evaluation
process. For CESC, we asked the model to treat the
task as a 3-class classification and predict the class
label. All prompts consist of the task definition and
several examples.

Table 7 demonstrates the results, comparing
them with our best results. ChatGPT gives poor
results when asked to predict directly, even with
examples given. Asking the model to explain be-
fore answering can improve its performance, but it
has yet to reach our models and other baselines.
While these primitive experiments have not in-
volved further prompt engineering and techniques,
they have shown that more efforts (such as Hi-ArG)
are needed for LLMs to handle computational ar-
gumentation tasks.

7 Conclusion

In this paper, we propose a new graph structure
for argumentation knowledge, Hi-ArG. We design
an automated construction pipeline to generate the
lower intra-arg graph. To exploit information from
Hi-ArG, we introduce a text-graph multi-modal
model, GreaseArG, and a novel pre-training frame-
work. On two different argumentation tasks (KPM
and CESC), these approaches create models super-
seding current models under the same scale.
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Limitations

Despite the above results, this paper has a few limi-
tations for which we appreciate future studies. First,
the quality of Hi-ArG can be further improved us-
ing more powerful models and tools. Second, we
only test on small language models due to resource
limitation, yet, we conjecture that integrating Hi-
ArG and LLMs could also be a potential solution
to some current problems in LLMs, such as hallu-
cination.
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A AMR and Hi-ArG Intra-arg Graphs

In semantic analysis, Abstract Meaning Represen-
tation (AMR, Banarescu et al. 2013) is a highly
abstract structure representing semantic informa-
tion of sentences and documents. An AMR is
a rooted, directed graph with labeled nodes and
edges, where nodes record concepts or predicates
and edges record semantic relations between them.
In this way, sentences semantically identical can
be assigned to the same AMR graph, even if they
are syntactically different.

In a general AMR graph, concepts (as nodes)
can be English words, PropBank (Palmer et al.,
2005) framesets (a predicate labeled with semantic
arguments), or predefined keywords such as nega-
tion (-); relations (as directed edges) can be frame
arguments defined in PropBank, or other relations
that predicate phrases cannot cover (domain, topic,
quantity, date/time, list element, etc.).

For example, in Figure 5, both sentences can be
represented by the given AMR graph. Concepts
in the graph include gun, person, and kill-01,
where kill is a PropBank frameset and kill-01
is one of its role sets, meaning “causing to die”.
Relations in the graph include :ARGO and :ARGT,
following the roleset definition of kil1-@1 where
: ARGO the killer and : ARG1 the corpse.

Due to its capability to express the semantics of
multiple sentences compactly, we introduce AMR
as the primary backbone of the intra-arg graph of
Hi-ArG. More specifically, an argument is stored
in the intra-arg graph in its AMR form, keeping
all nodes and edges unchanged. Moreover, each
AMR graph has a root node that can visit all of
the nodes in the graph through the directed edges;

Guns kill N kill-01
people.
:ARG@/ \ARm
People are killed
by guns. > gun person

Figure 5: An example of an AMR graph representing
two sentences: “Guns kill people” and “People are killed
by guns.”

thus, we choose this root node as the top node of
the argument so that its descending subgraph is
exactly the AMR graph of the argument. Finally,
we force every AMR graph recorded in Hi-ArG to
be acyclic, following the strict definition of AMR
graphs, since every edge in an AMR graph can
be reverted by appending to or removing from its
relation label a passive mark -of.

B Hi-ArG Construction Details

B.1 Extracting Stage

We use spaCy> to cut documents into sentences.
Some basic rules can be applied to filter out in-
valid sentences for most corpus, such as limiting
the minimum number of words or forcing all char-
acters to be printable. While advanced filtering
based on argumentation mining models can also be
applied to enhance argument quality, in this paper,
we only focus on basic filters, which are easier to
implement.

B.2 Parsing Stage

AMR parsing can be tedious when conducted man-
ually; however, the recent development of language
models has made automatic AMR parsing possi-
ble on large corpora. Although the AMR graphs
generated by these models could contain noise, the
negative effect is acceptable in specific applications
such as pre-training (Bai et al., 2022). In this paper,
we apply a BART-based (Lewis et al., 2020) model
implemented by amr1ib* to this stage to generate
AMR graphs for all datasets.

B.3 Merging Stage

We implement the iterative merging method in this
stage based on node isomorphism. To identify iso-
morphic nodes, each node is labeled by its attribute
(text), its child nodes, and the attributes of edges
between them (referred to as child edges). Two
nodes are called directly isomorphic if they share

3https: //spacy.io/
4https: //github.com/bjascob/amrlib
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# node
29.4M

# token
141M

# edge
61.0M

# top.
5.23M

# sent.
6.08M

Table 8: Statistics of the pre-training dataset constructed
from the args.me corpus. The number of tokens is com-
puted based on the RoBERTa tokenizer.

the same node attribute, child nodes, and child edge
attributes — therefore must have identical labels.
Note that merging nodes may only change the la-
bel of their entrance nodes, as AMR graphs are
acyclic. Meanwhile, merging directly isomorphic
nodes can make these nodes, if isomorphic, directly
isomorphic. Thus, all isomorphic sub-graphs can
be merged by repeatedly merging directly isomor-
phic nodes.

C Further Pre-training Details

C.1 Hi-ArG Construction

In args.me, documents are recorded as conclusion—
premise pairs, where the premises can be for or
against the conclusion. During the extracting stage,
premise sentences shorter than 5 words or contain
unprintable characters are excluded; the conclusion
sentence, leading the whole document, is rewritten
as “..” is right/wrong.> The parsing and merging
stages are the same as described in Section 3.2, yet
we also include an extra graph-text aligning using
amrlib for multi-modal mask generation.

The final further pre-training dataset contains
6,080, 249 sentences and a large Hi-ArG. More
detailed statistics of the dataset are listed in Table 8.
Note that several sentences share the same meaning.
Hence each group of such sentences corresponds
to one single top node.

C.2 Relative Searching

As mentioned in Section 4.3, we can search for
relatives in Hi-ArG with the help of the sentence-
node graph. Since the full sentence-node graph of
args.me is too large to perform a weighted sampling
for all sentences, we introduce a few constraints on
candidate sentence pairs to reduce computation:

1. Sentences must not share one top node in the
original Hi-ArG.

2. Sentences must come from documents under
the same topic or conclusion.
SFor instance, if a document supports the conclusion We

should ban guns, then the first sentence extracted from the
document will be “We should ban guns” is right.

3. Sentences must not appear too close in the
source corpus: there should be at least L sen-
tences between them.

4. Only nodes connected to no more than S sen-
tences are considered.

5

5. Leading hint sentences (“...” is right/wrong.)
will not have sampled relatives, though they
can be relatives of other sentences.

The third constraint is to prevent relatives from ap-
pearing in the training sample twice, and the fourth
is to exclude pairs with only weak connections
through “public” nodes representing common con-
cepts. In this paper, we use L = 31 and .S = 500.
Although several sentences cannot find any relative
under these constraints, 32.10% of all sentences
have at least one candidate match.

Due to the limitation of computational resources,
we sample relatives before pre-training, among
which 45.88% are of the same stance. This ratio is
balanced enough for a valid RSD task for further
pre-training.

C.3 Multi-modal Mask Generation

Although random masking can help language mod-
els learn text representations, improving mask se-
lection with extra information from Hi-ArG is pos-
sible. Here we propose a special masking proce-
dure to generate more valuable masks on both texts
and graphs (nodes and edges):

1. Masks are generated on graphs, where the
probability of each node being masked is pro-
portional to the number of sentences it is re-
lated to, and of each edge, the weight product
of nodes on both sides. In this way, common
nodes and edges across sentences are more
likely to be masked and let the model focus
on such intersections. The overall mask ratio
can still be controlled at a specific level.

2. A pre-mask on text is computed based on
graph masks, achieved using graph-text align-
ments generated beforehand. Each masked
node and each node with a masked edge looks
for any aligned token spans and mask them,
creating a base text mask that shall not leak
information between text and graph.

3. If the pre-mask does not reach the desired
mask ratio for text, extra masks will be gen-
erated on non-mask tokens to satisfy the re-
quirement.
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Model Configuration Value
Maximum # Tokens 512
Node PE Dimension 4
# Joint Blocks 9
GNN Hidden Size 256
Graph Transformer Attention Heads 2
# Mix Layers 1
Mix Layer Hidden Size 512
Cross-modal Attention Heads 8

Table 9: Model configuration of GreaseArG. Configura-
tions not mentioned here inherit values from RoBERTa-
base and Graph Transformer.

Pre-training Configuration Value
Batch Size 32

# Tokens per Sample 512
Optimizer AdamW
LM Learning Rate 5x107°
Non-LM Learning Rate 1x1074
LR Decay inverse_sqrt
Warmup Steps 2500
Total Steps 180, 000

Table 10: Pre-training configuration for both RoOBERTa
and GreaseArG.

D Implementation Details

D.1 Model

Table 9 lists model configuration parameters ap-
plied to all experiments. Graph Transformer re-
quires positional embeddings (PE) for every node
to encode positional information. Following the
suggestions by Dwivedi and Bresson (2020), lapla-
cian eigenvectors are chosen as node PEs, calcu-
lated on a bi-directed graph removing all edge at-
tributes.

D.2 Further Pre-training

Table 10 lists hyper-parameters used during fur-
ther pre-training, applied to both RoBERTa and
GreaseArG. Training samples are guaranteed to fill
up 512 tokens by concatenating as many sentences
as possible. The total training step is approximately
one epoch concerning the training set (95% of all
pre-training data), rounding to ten thousand for
checkpoint generation.

D.3 Fine-tuning

Fine-tuning hyper-parameters for the two down-
stream tasks are listed in Table 11.

D.4 Checkpointing Rules

For each pre-training model and configuration,
checkpoints are saved every 10 000 steps, and these

Fine-tuning Configuration KPM CESC
Batch Size 32 128
Optimizer AdamW AdamW
Learning Rate 2x107° 4x107°
LR Decay inverse_sqrt  inverse_sqrt
Warmup Ratio 0.1 0.1
Total Epochs 20 20

Table 11: Fine-tuning configuration for KPM and
CESC.

checkpoints will be used as base models during
fine-tuning. In the fine-tuning stage, after each fine-
tuning epoch, evaluation will be conducted on dev
and test sets. Test results from the model with the
highest gold metric on the dev set will be chosen
as the final test result of the current random seed.
The mean of strict and relaxed mAP is selected for
KPM as the gold metric; for CESC, the macro F
is selected.
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