
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 9988–10006
December 6-10, 2023 ©2023 Association for Computational Linguistics

Revisiting Block-based Quantisation:
What is Important for Sub-8-bit LLM Inference?

Cheng Zhang1, Jianyi Cheng1, Ilia Shumailov2, George A. Constantinides1, Yiren Zhao1

1Imperial College London, 2University of Oxford
{cheng.zhang122, jianyi.cheng17, g.constantinides, a.zhao}@imperial.ac.uk

ilia.shumailov@chch.ox.ac.uk

Abstract

The inference of Large language models
(LLMs) requires immense computation and
memory resources. To curtail these costs, quan-
tisation has emerged as a promising solution,
but existing LLM quantisation mainly focuses
on 8-bit. In this work, we explore the statisti-
cal and learning properties of the LLM layer
and attribute the bottleneck of LLM quantisa-
tion to numerical scaling offsets. To address
this, we adapt block quantisations for LLMs,
a family of methods that share scaling factors
across packed numbers. Block quantisations
efficiently reduce the numerical scaling offsets
solely from an arithmetic perspective, with-
out additional treatments in the computational
path. Our nearly-lossless quantised 6-bit LLMs
achieve a 19× higher arithmetic density and
5× memory density than the float32 baseline,
surpassing the prior art 8-bit quantisation by
2.5× in arithmetic density and 1.2× in mem-
ory density, without requiring any data calibra-
tion or re-training. We also share our insights
into sub-8-bit LLM quantisation, including the
mismatch between activation and weight dis-
tributions, optimal fine-tuning strategies, and a
lower quantisation granularity inherent in the
statistical properties of LLMs. The latter two
tricks enable nearly-lossless 4-bit LLMs on
downstream tasks. Our code is open-sourced 1.

1 Introduction

Pre-trained Large Language Models
(LLMs) (Brown et al., 2020; Black et al.,
2021; Zhang et al., 2022) have demonstrated
impressive performance on a range of Natural
Language Processing (NLP) tasks. However,
their underlying computational and memory costs
are a critical bottleneck to their usability. For
instance, the larger variants in the GPT family
scale up to hundreds of billions of parameters,
requiring at least 300GB of memory to store

1https://github.com/ChengZhang-98/llm-mixed-q

these parameters in a float16 format (Brown
et al., 2020). Quantisation serves as a natural
solution for reducing the cost of running inference
on these LLMs (Yao et al., 2022; Xiao et al.,
2022; Dettmers et al., 2022), as a low-precision
format enables cost savings across all relevant
efficiency metrics: reduced on-chip memory,
increased arithmetic intensity for matrix multiplies,
and decreased DRAM bandwidth requirement.
On the other hand, the growing popularity of
running services such as ChatGPT (OpenAI, 2022)
provides an impetus for exploring the use of
custom silicon to support LLM inference. This
raises the question: What would a low-precision
number system look like in these near-future LLM
hardware accelerators (ASICs)?

LLM quantisation is challenging because of
the activations with large absolute magnitudes,
also known as activation outliers (Bondarenko
et al., 2021; Xiao et al., 2022). Previous ap-
proaches have proposed various techniques to ad-
dress such outliers. However, these either require
additional treatments in the integer quantisation
domain (LLM.int8() and SmoothQuant) or yield
unsatisfactory performance (ZeroQuant); and prior
work has primarily focused on arithmetics that can
be ported to GPUs. We observe that the presence
of outliers necessitates different scaling factors at a
finer granularity than per-tensor or per-token level
(Yao et al., 2022; Xiao et al., 2022). This insight
naturally leads us to revisit arithmetic systems with
small exponents, such as MiniFloat (Sun et al.,
2019), Block Minifloat (Fox et al., 2021), Block
Logarithm (Miyashita et al., 2016), and Block
Floating Point (Kalliojarvi and Astola, 1996), as
they can effectively represent outliers in Trans-
former models. To the best of our knowledge, our
work is the first to systemically investigate short-
exponent arithmetics for LLM quantisation.

Figure 1 illustrates the variance of the tensors
joining the GEMMs in an OPT-6.7B (Zhang et al.,

9988

https://github.com/ChengZhang-98/llm-mixed-q

METHOD (QW, QACT) BITWIDTH PTQ OR TAQ # QUANTISED GEMMS

ZEROQUANT (YAO ET AL., 2022) (
√

,
√

) W4A8 TAQ 8/8
LLM.INT8() (DETTMERS ET AL., 2022) (

√
,
√

) W8A8∗ PTQ 6/8
GPTQ (FRANTAR ET AL., 2022) (

√
, ×) W4 PTQ + DC 6/8

SMOOTHQUANT (XIAO ET AL., 2022) (
√

,
√

) W8A8 PTQ + DC 6/8
OURS (

√
,
√

) W6A6/W4A4 PTQ/TAQ 8/8

Table 1: A comparison of different LLM quantisation methods. (QW, QAct) shows whether quantisations are
applied to weights or activations, WxAy means x-bit quantisation for weights and y-bit quantisation for activation.
PTQ and TAQ represents Post Training Quantisation and Training After Quantisation respectively. DC means data
calibration. There are eight general matrix multiplications (GEMMs) per transformer layer (1⃝- 8⃝ in Algorithm 2).
Only ZeroQuant and ours quantise all of them. Other approaches leave 4⃝ and 5⃝ in float32/float16 format,
which take up 20.6% floating-point operations in OPT-6.7B’s self-attention. ∗ means outliers in LLM.INT8() is
computed in float16; this improves arithmetic density but memory density is kept identical to canonical float16.

Algorithm 1 Transformer layer
Require: X ▷ Input features
Require: H ▷ Number of heads

1: Xn ← LayerNorm(X)
2: for i ∈ [0, H) do
3: Qi ←XnWQi

1⃝
4: Ki ←XnWKi

2⃝
5: Vi ←XnWVi

3⃝
6: Ai ← QiK

T
i√

dk
4⃝

7: Âi ← softmax(Ai, axis← −1)
8: Bi ← ÂiVi 5⃝
9: end for

10: Bc ← concat(B0, . . . , BH−1)
11: B0 ← BcW0 + b0 6⃝
12: Bn ← LayerNorm(B0 +X)
13: B1 ← ReLU(BnW1 + b1) 7⃝
14: B2 ← B1W2 + b2 8⃝
15: O ← B2 +B0 +X
16: return O

0 5 10 15 20 25 30
2−15

2−11

2−7

2−3

21

25

Layer ID

V
ar

ia
nc

e
Q

K

V

Bc

B1

WQ

WK

WV

W0

W2

W1

Figure 1: The algorithm on the left is the forward pass computation of a single Transformer layer (Vaswani et al.,
2017) in mainstream LLMs, wherein values in blue (e.g. Xn) represent tensors with predetermined min-max values,
such as the outputs of a normalisation layer or softmax. Values in red have unbounded min-max, and are plotted on
the upper right for different layers of OPT-6.7B (Zhang et al., 2022). We show that for almost all activation tensors,
their variances increase at deeper layers, resulting in scaling offsets in their quantisation, while weight tensors on
the lower right have smaller variances. This statistical trend enlightens our LLM quantisation study.

2022). After feeding 128 samples from Wikitext2
to the pretrained float32 model, we make three in-
teresting observations. 1) The variance of most ac-
tivations in Figure 1 increases with the depth of the
layer; 2) Certain tensors (e.g. K) consistently have
a greater variance compared to others; 3) All the
weight variance is smaller than activations. Similar
trends can be observed in other LLMs. We provide
a variance plot of Vicuna-7B (Zheng et al., 2023)
in Appendix (Figure 4).

The presence of varying numerical ranges across
layers and tensors poses a challenge to the efficacy
of a single quantisation configuration for the en-

tire network. From an arithmetic perspective, we
refer to this phenomenon as numerical scaling off-
sets, as it requires different numerical ranges and
granularities for quantisation. To ensure optimal
performance, these layers should be subjected to
fine-grained non-linear quantisation strategies.

Table 1 provides a comparison between our work
and existing LLM quantisation methods. Our quan-
tisation considers all GEMMs (8/8) in transformer
layers and both Post-Training-Quantisation (PTQ)
and Training-After-Quatisation (TAQ) scenarios.
In this work, we also explore suitable places to
perform TAQ and quantisation search within the

9989

entire NLP pipeline. We make the following con-
tributions:

• We address the LLM quantisation problem
with activation outliers and examine it as a
scaling offsets problem from an arithmetic de-
sign perspective. We demonstrate the efficacy
of a family of arithmetic systems with short
exponents shared across a block of numbers.

• We propose a novel quantisation framework
based on block arithmetic, and demonstrate its
effectiveness in performing W6A6 inference
for various tasks. Our nearly-lossless W6A6
outperforms prior work in terms of arithmetic
density and memory density, without requir-
ing data calibration or fine-tuning.

• We present two methods to achieve 4-bit quan-
tisation on downstream tasks: one is fine-
tuning-based, and the other is mixed-precision
search. The latter further demonstrates the po-
tential advantage of shifting LLM inference
to cost-effective ASICs.

2 Related Work

While quantisation of earlier Machine learning
(ML) models has been extensively studied, effec-
tive quantisation of LLMs still remains an open
problem. In this section, we review the previous
works on block-based quantisation and compare to
the existing LLM quantisation techniques.

2.1 Block-based Quantisation

Block-based quantisation is a technique that quan-
tises a block of values into a compact format, where
the elements within each block share common dig-
its. This technique offers a significant memory foot-
print reduction while maintaining a minor round-
off error. A number of previous works rely on
this method to quantise Convolutional Neural Net-
works (CNNs). Lin et al. utilised a linear com-
bination of multiple binary bases, equivalent to
each binary matrix having a scaling factor (Lin
et al., 2017). Subsequently, Zhang et al. intro-
duced LQ-Nets that rely on a form of block quan-
tisation with a shared scaling factor at the vec-
tor level (Zhang et al., 2018). Further investiga-
tions explored grouping numbers at various gran-
ularities, including layer-wise (Wu et al., 2018b),
channel-wise (Krishnamoorthi, 2018), and vector-
wise quantisation (Dai et al., 2021).

It is worth noting that sharing a scaling factor is
similar to, but not necessarily the same as, sharing
the exponent (Darvish Rouhani et al., 2020). This
distinction arises because scaling factors can be
arbitrary float32 values, whereas exponent val-
ues must be integers represented by the assigned
number of bits. Our work focuses on sharing the
exponent or exponent bias. When the block size
of the shared exponent is 1, we fall back to the
minifloat representation such as FP8 (Sun et al.,
2019). These approaches showed promising re-
sults primarily for vision models or relatively small
Transformer-based models, while we shift the fo-
cus to quantising LLMs with a significantly larger
parameter count.

2.2 LLM Quantisation

Efficient quantisation techniques for language
models have been explored in previous works.
Zafrir et al. proposed an approach for quantising
BERT (Shen et al., 2019) into 8-bit integers (Zafrir
et al., 2019), while Shen et al. (Shen et al., 2019)
proposed Hessian-based ultra-low precision quan-
tisation for the same model. Zhang et al. (Zhang
et al., 2020) quantised BERT to ternary values lever-
aging layer-wise knowledge distillation, and Bai et
al. (Bai et al., 2021) further pushed the quantisation
of BERT weights to binary values.

The recent surge of interest in quantising LLMs
has presented a unique challenge distinct from the
prior art summarised above. This challenge stems
from the increased model sizes of LLMs. Yao
et al. proposed ZeroQuant, which quantises both
weights and activations of large transformers into
small integers with shared scaling factors (Yao
et al., 2022). However, as mentioned by Xiao et al.
(2022), ZeroQuant suffers from a severe accuracy
loss. Dettmers et al. introduced LLM.int8(), a
method that computes outlier GEMMs in float16
and the rest in 8-bit integer (Dettmers et al., 2022).
Xiao et al. extended 8-bit LLM quantisation with
their PTQ technique named SmoothQuant, Xiao
et al. proposed SmoothQuant which scales down
activations by row and scales up weights by col-
umn proportionally before 8-bit fixed-point quanti-
sation (Xiao et al., 2022). Frantar et al. proposed
GPTQ, which quantises the weights of LLMs to
3 or 4-bit integers while keeping the activations
in float32. Most LLM quantisation methods, di-
rectly or indirectly, reserve LLM activation outliers.

9990

IEEE Float16 (FP16)
1-bit sign, 5-bit exponent, 10-bit mantiisa

IEEE Float32 (FP32)
1-bit sign, 8-bit exponent, 23-bit mantissa

shared exp biasshared exp bias

MiniFloat / Denormed Minifloat (DMF)
1-bit sign, 4-bit exponent, 3-bit mantiisa

Block Minifloat (BM)
1-bit sign, -bit exponent, -bit mantissa

-bit shared exponent bias

...

Block Floating Point (BFP)
1-bit sign, -bit mantissa

-bit shared exponent

shared exp

...

Block Logorithm (BL)
1-bit sign, -bit exponent

-bit shared exp bias

...

Sign

Exponent

Mantissa

Exp bias

...... ...

Figure 2: An illustration of different quantisation methods considered in this work: MiniFloat (Sun et al.,
2019) and Denormed MiniFloat (DMF), Block MiniFloat (BM) (Fox et al., 2021), Block Floating-Point
(BFP) (Darvish Rouhani et al., 2020) and Block Logarithm (BL).

3 Method

In this section, we outline our quantisation strategy
for LLMs. We first define block-based quantisation
and then describe the metrics we use for evaluating
quantisation methods. Finally, we detail a preci-
sion search that lowers the quantisation granularity
down to the tensor level, effectively accommodat-
ing the statistical distribution inherent in LLMs.

3.1 Block-based Arithmetic

Figure 2 illustrates the data representation we ex-
plore to address LLM quantisation as well as the
standard float32/float16. We outline the speci-
fications for traditional floating-point numbers and
extend them to block-based quantisation. Detailed
definitions can be found in Appendix C.

Standard floating-point A standard IEEE
floating-point number is defined as a 4-tuple,
(s, e,m, b) (Kahan, 1996). s ∈ {0, 1} is the sign
bit, e ∈ N is the exponent field; b ∈ N is the ex-
ponent bias; and m ∈ N is the mantissa. Let the
bit widths of the exponent and the mantissa be E
and M , respectively. The IEEE standard float32
(FP32) number has E = 8 and M = 23, where
the other bit is used as the sign bit. Note that the
exponent bias depends on E: b = 2E−1 − 1, sepa-
rating the exponent field symmetrically. Similarly,
float16 (FP16) has E = 5 and M = 10.

MiniFloat and Denormalised MiniFloat Mini-
Float is an efficient floating-point representation
that requires fewer bits than traditional floating-
point numbers. Traditionally, an 8-bit MiniFloat
inherits the definition of FP32 by assigning E = 4
and M = 3. We saturate MiniFloat when e =
2E − 1 and thus no ± inf is included.

In this paper, we also introduce a Denormalised
MiniFloat (DMF) with zero as the implicit lead-
ing bit in the mantissa. Similar to MiniFloat, we
saturate the infinity to a maximum finite value.
DMF provides a higher precision than MiniFloat
for small values at the expense of narrowing down
the value range. We investigate this trade-off in the
context of quantising LLMs.

Block MiniFloat, Block Floating-Point and
Block Logarithm As shown in Figure 2, Block
quantisation packs values in a block in which a
common scaling factor is shared across N values
where N is the block size, reducing the computa-
tion in vector inner products. This work mainly
explores three block quantisation arithmetics on
LLMs: BM, BFP and BL.

Block Minifloat (BM) shares a B-bit exponent
bias (Fox et al., 2021). This representation achieves
high precision and high range at the same time, at
the cost of a larger quantisation error at medium
value than standard floating point. This is poten-
tially amenable to values in a multimodal distribu-

9991

tion, where values close to a peak can be efficiently
represented in a block. Block Floating-Point (BFP)
shares an E-bit exponent. This shared exponent
bounds the range in the block and is amenable to
values with small block variances. Block Loga-
rithm (BL) sets the mantissa in BM to 1 and shares
a B-bit exponent bias, resulting in values that are
powers-of-twos. This contrasts with BFP and is
amenable to values with large dynamic ranges.

All these quantisation methods are non-linear
and thus can be useful tools to address the scaling
offsets phenomenon depicted in Figure 1. More-
over, the hyper-parameter block size allows for flex-
ible quantisation granularity, ranging from layer-
wise, tensor-wise, and channel-wise, to slice-wise
(a slice along the token/channel vector).

3.2 Arithmetic and Memory Densities
Reducing model size is not the only advantage
of quantisation; it also simplifies the computation,
thereby accelerating inference. We evaluate quanti-
sation arithmetics using adopted memory and arith-
metic densities (Darvish Rouhani et al., 2020). We
define memory density as the reciprocal of the size
of the activation and weight data in a model, and the
arithmetic density as the reciprocal of the area/the
number of Look-Up-Tables (LUTs) to synthesise
a multiply-accumulate (MAC) unit, which serves
as the basic cell for matrix multiplication in cus-
tom inference circuits. An efficient quantisation
method should make a good trade-off among task
accuracy, memory density, and arithmetic density.
We implemented MAC units with different above-
mentioned arithmetics in FPGAs to obtain the num-
ber of LUTs. A detailed description of this proce-
dure can be found in Appendix D.

3.3 Quantisation Search
Previous works (Dong et al., 2019; Habi et al.,
2020) observed that the layers in CNNs exhibit
varying tolerance, or “sensitivity”, to quantisation
– we also notice this phenomenon in LLMs. The
crucial aspect is identifying the layers that are sen-
sitive and determining tailored quantisation config-
urations. To achieve this, we apply Tree-structured
Parzen Estimator (TPE) (Bergstra et al., 2011) to
conduct a fine-grained search for quantisation pre-
cision multiple times and analyse the statistics in-
herent in the quantised models that recover more
accuracy. Our search space is constructed on a per-
tensor basis, allowing each input tensor or weight
tensor in 1⃝- 8⃝ (See Algorithm 2) to have its own

Method Config E M B

Fixed-point W8A8 - 7 -
MiniFloat W8A8 4 3 -
DMF W8A8 4 3 -
BFP W8A8 8 7 -
BFP W6A6 8 5 -
BFP W4A4 8 3 -
BM W8A8 4 3 8
BL W8A8 7 - 8

Table 2: The quantisation configuration used in the
following sections, where E, M , and B are the bit-
width of exponent (shared exponent), mantissa, and bias
(shared bias) respectively.

precision. The search space increase exponentially
as the layer count increases. We leverage accu-
racy and memory density to design the objective
function: Of = acc + α · mem. Here Of , acc,
mem represent the objective function, accuracy,
and memory density of the searched quantised mod-
els, respectively. The constant α is used to balance
acc and mem. To determine the α for a specific
search, we initially set α to 1.0 and perform the
search while recording the values of (acc,mem)
until convergence. The final value of α is deter-
mined as accc

memc
, where (accc,memc) represents

the converged values. Detailed search parameters
are in Appendix B.

4 Evaluation

We conducted a comprehensive set of experiments
to identify the key factors influencing the perfor-
mance of sub-8-bit LLMs. We begin with a lan-
guage modelling task to eliminate less promising
quantisation methods (Section 4.2), and then run
the promising ones on downstream tasks. For the
tasks that proved challenging even for FP32 mod-
els, we resort to fine-tuning. Additionally, we
conducted a mixed-precision search on two tasks
where the quantised 4-bit model struggle. The re-
sults of this search provide insights into how to
further refine quantisation at the tensor level.

4.1 Experiment setup
Baselines We compare our approach with four
baselines: 8-bit plain fixed-point quantisation,
LLM.int8() (Dettmers et al., 2022), GPTQ (Fran-
tar et al., 2022), and SmoothQuant (Xiao et al.,
2022). We amend SmoothQuant’s source code to
ensure its consistency with their paper (See Ap-

9992

Method Config
Perplexity (↓) Hardware metrics

125M 350M 1.3B 2.7B 6.7B Mem ↑ Arith ↑
FP32 - 27.65 22.00 14.62 12.47 10.86 1× 1×
LLM.int8() W8A8† 27.72 22.03 14.64 12.49 10.86 2× < 7.7×
GPTQ W4∗ 31.12 24.24 15.47 12.87 11.39 < 1.6× -
SmoothQuant W8A8 -‡ -‡ 14.62 12.50 10.85 < 4× < 7.7×
SmoothQuant-c W8A8 -‡ -‡ 17.97 26.88 42.90 4× 7.7×
Fixed-point W8A8 275 117 1.78E4 7.81E3 3.77E3 4× 7.7×
MiniFloat W8A8 28.16 22.24 15.03 12.73 10.99 4× 17.4×
DMF W8A8 30.41 23.89 18.08 14.55 11.95 4× 17.4×
BFP W6A6 28.27 22.22 15.08 12.54 10.90 4.9× 19.2×
BFP W4A4 41.94 33.98 24.70 19.34 13.59 7.1× 37.3×
BM W8A8 5.6E3 2.7E4 1.17E4 1.33E4 8.61E3 3.8× 14.4×
BL W8A8 780 1.26E3 323 950 289 3.8× 16.1×

Table 3: Perplexity (↓) values with zero-shot Post-Training-Quantisation (PTQ) on WikiText2, this means we directly
quantise the pre-trained model and apply on WikiText2. Mem and Airth represent Memory and Arithmetic density
accordingly. DMF, BM, BFP and BL represent Denormalised MiniFloat, Block Minifloat, Block Floating Point and
Block Logarithm respectively. SmoothQuant-c is our improved implementation where the two activation matrix
multiplications are now also quantised. † means the inliner matrix multiplications are calculated in 8-bit fixed-point,
and outliers are calculated in FP16. ∗ means the weights of GPTQ are kept in FP32. ‡ means SmoothQuant
repository does not include the weight scaling matrices for 125M and 350M. We highlight the best block-based
quantisation arithmetic, 6-bit BFP, considering perplexity, memory density, and arithmetic density together.

Model FP32 LLM.int8() W6A6 BFP

LLaMA-7B 5.79 5.83 (+0.04) 5.83 (+0.04)
Vicuna-7B 7.06 7.07 (+0.01) 7.08 (+0.02)
Alpaca-7B 7.01 7.02 (+0.01) 7.02 (+0.01)
LLaMA-13B 5.17 5.22 (+0.05) 5.20 (+0.03)
Vicuna-v1.5-13B 6.13 6.16 (+0.03) 6.16 (+0.03)

Table 4: Perplexity (↓) values of LLM family quantized
by W6A6 BFP. We compare our method with FP32 and
LLM.int8() and find that our method achieves nearly
lossless perplexity on Wikitext2. We exclude GPTQ and
SmoothQuant-c in this table because they have obvious
perplexity increase larger than 0.2 and 5.0 respectively.

pendix B) and add this amended version (referred
to as “SmoothQuant-c”) to the result table.

Quantisation configuration Table 2 clarifies the
quantisation configuration used in the following
sections, where E, M , and B are the bit-width
of exponent (shared exponent), mantissa, and bias
(shared bias) respectively. All these representations
include a 1-bit sign bit. The block size of block-
based methods is set to [1, 16] for both the weight
and activation matrix (a slice along matrix row in
Algorithm 2) unless otherwise specified.

Models and datasets We choose the represen-
tative OPT (Zhang et al., 2022) family, and
evaluate on Wikitext2 (Merity et al., 2016),
ARC(easy) (Clark et al., 2018), LAMBADA (Pa-
perno et al., 2016), PIQA (Bisk et al., 2020),
COPA (Roemmele et al., 2011), QNLI (Wang et al.,
2018), SST2 (Socher et al., 2013), MRPC (Dolan
and Brockett, 2005), and COLA (Warstadt et al.,
2019). To demonstrate the generalizability of our
method, we also report the Wikitext2 perplexity of
quantized LLaMA models (Touvron et al., 2023;
Chiang et al., 2023; Taori et al., 2023). Following
prior work (Zhang et al., 2022; Xiao et al., 2022),
we use lm-eval-harness (Gao et al., 2021) to
evaluate models on downstream tasks in the con-
text of zero-shot prompting.

4.2 Zero-shot PTQ on Wikitext2 and
downstream tasks

In this section we present our results in a setup we
call zero-shot Post-Training-Quantisation (PTQ),
which was also adopted by prior work on LLM
quantisation (Dettmers et al., 2022; Frantar et al.,
2022; Xiao et al., 2022). In this approach, we
take a pre-trained OPT model from Huggingface,
quantise it, and apply it on Wikitext2 to calculate

9993

Method Config
Mean accuracy (↑,%)

125M 350M 1.3B 2.7B 6.7B

Float32 - 52.7 57.5 69.6 65.4 73.4

LLM.int8() W8A8 52.5 (-0.2) 58.3 (+0.8) 69.2 (-0.4) 65.3 (-0.1) 73.5 (+0.1)
LLM.int4() W4A4 50.8 (-1.9) 55.8 (-1.7) 67.0 (-2.6) 64.5 (-0.9) 72.5 (-0.9)
SmoothQuant-c W8A8 - - 67.2 (-2.4) 65.2 (-0.2) 72.2 (-1.2)

MiniFloat W8A8 52.1(-0.6) 55.1(-2.4) 64.7(-4.9) 65.7(+0.3) 70.5(-2.9)
BFP W4A4 47.8 (-4.9) 51.7 (-5.8) 57.2 (-12.4) 55.7 (-9.7) 67.2 (-6.2)
BFP W5A5 51.1 (-1.6) 56.8 (-0.7) 65.5 (-4.1) 64.6 (-0.8) 72.0 (-1.4)
BFP W6A6 52.6 (-0.1) 57.6 (+0.1) 67.8 (-1.8) 65.5 (+0.1) 72.9 (-0.5)
BFP W8A8 52.8 (+0.1) 57.6 (+0.2) 69.1 (-0.5) 65.2 (-0.2) 73.1 (-0.3)

Table 5: Mean accuracy (↑,%) values with zero-shot prompting PTQ on ARC (easy), COPA, LAMBADA, PIQA,
and SST2, this means we directly quantise the pre-trained model and benchmark on these downstream tasks using
zero-shot prompting. We highlight 6-bit BFP which also achieves an accuracy close to FP32 on these tasks.

perplexity, and the eight downstream tasks short-
listed in Section 4.1 to calculate accuracy. The
zero-shot PTQ setup is particularly advantageous
in scenarios where LLMs lack prior knowledge,
as it eliminates the need for downstream task fine-
tuning and Training-After-Quantisation (TAQ).

Perplexity on Wikitext2 Table 3 compares our
results with the baselines in terms of perplexity,
memory density, and arithmetic density. Similar to
prior work (Dettmers et al., 2022; Xiao et al., 2022),
plain fixed-point quantisation performs poorly. In
contrast, non-linear arithmetic, such as MiniFloat,
yields a significantly better perplexity at a similar
memory density. MiniFloat yields slightly better
results than DMF, indicating the 2× higher range
is more important than precision in this context.

Block-based quantisation exhibits inconsistent
performance on Wikitext2. A noteworthy result is
that our 6-bit BFP achieves higher memory den-
sity, higher arithmetic density, and lower perplex-
ity than the prior art GPTQ and SmoothQuant-c
without requiring data calibration. BM and BL per-
form poorly compared to BFP. BM was originally
proposed in the context of Quantisation-Aware-
Training (QAT), whereas our evaluation is based
on PTQ. Without retraining, the 3-bit mantissa of
BM and the 1-bit mantissa of BL may be the reason
for the poor perplexity.

Table 4 shows the perplexity of W6A6 BFP on
LLaMA family, including LLaMA-7B/-13B (Tou-
vron et al., 2023), Vicuna-7B (Zheng et al., 2023),
Alpaca-7B (Chiang et al., 2023), and Vicuna-
v1.5-13B (Chiang et al., 2023), with FP32 and

LLM.int8() as baselines. We observe that 6-bit
BFP still achieves nearly lossless perplexity on
these models, verifying the efficacy of our method
across model architectures.

Accuracy on downstream tasks We exclude
fixed-point, DMF, BM, and BL from downstream
task evaluation due to their poor language mod-
elling performance. Table 5 represents the mean ac-
curacy on ARC (easy), COPA, LAMBADA, PIQA,
and SST2. The results of QNLI, MRPC, and COLA
are not included in this table as even FP32 LLMs
exhibited poor accuracy close to random guess. A
plot depicting how these methods match FP32 ac-
curacy as the model scales up and a complete result
table are in Appendix E.

Besides LLM.int8() and SmoothQuant-c, we
also report a 4-bit version LLM.int8() (referred
to as LLM.int4()) reported by Dettmers (2023)
on downstream tasks. We observe that 6-bit
BFP achieve nearly lossless accuracy, below FP32
and LLM.int8(), and above SmoothQuant-c and
LLM.int4(). Note that 6-bit BFP has the high-
est memory density and arithmetic density among
these methods. The 4-bit BFP suffers severe accu-
racy degradation because its shared exponent and
3-bit mantissa cause large quantisation errors.

Overall, we make the following observations:

• Fixed-point representation performs inade-
quately due to unability of linear quantisation
to address the scaling offset issue caused by
varying variances.

• LLMs have different tolerance to block-based

9994

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce
≤ 4-bit 5-bit 6-bit 7-bit

Figure 3: The bit width distribution of Q in Line 6, Algorithm 2 from 2688 searches. We identify the layers less
tolerant to aggressive quantisation in OPT-2.7B. For example, layers 18, 25 and 30 often need more bits than
other layers. Keeping these layers in relatively high precision recovers the accuracy from 36.2% to 61.3% without
decreasing the memory density, equivalent to a 4.3-bit OPT-2.7B on average.

quantisations. BM and BL exhibit subpar per-
formance compared to BFP, indicating that
non-linear quantisation still needs sufficient
mantissa length to capture the learned weight
distribution, or retraining may be required.

• BFP strikes a good balance in the trade-
off between range and resolution. Our
nearly-lossless 6-bit LLMs, without data
calibration/re-training, outperform prior art
methods in terms of perplexity (accuracy),
memory density, and arithmetic density.

We also observe that sub-6-bit BFP has a severe
accuracy drop. To address this problem, we fur-
ther investigate two approaches for improving the
accuracy of 4-bit LLMs.

4.3 4-bit LLMs via fine-tuning

Previous study (Brown et al., 2020; Zhang et al.,
2022) reported FP32 LLMs’ low accuracy on sev-
eral downstream tasks in the context of zero-shot
prompting. In our experiments, OPTs also exhibit
poor accuracy on QNLI, MRPC, and COLA. Fine-
tuning language models on downstream tasks has
proven to be helpful for improving accuracy (De-
vlin et al., 2019). We explore the fine-tuning and
quantisation of LLMs on downstream tasks.

There are two stages where quantisation can be
applied. LLMs are typically pre-trained in FP32.
The first option is to continue fine-tuning the FP32
model on downstream tasks and subsequently quan-
tise this fine-tuned FP32 model. We refer to this
setup as PTQ on fine-tuned FP32. The second op-
tion is to quantise the pre-trained FP32 model and

retrain this quantised model on downstream tasks,
which we refer to as TAQ on downstream tasks.

We compare these two cases on four downstream
tasks (SST2, QNLI, MRPC, and COLA) that zero-
shot prompting struggles to handle. The result table
is in Appendix F. We observe that:

• Both options effectively improve accuracy, en-
abling nearly lossless downstream accuracy
even if 4-bit BFP is applied.

• TAQ on downstream tasks reaches a slightly
better accuracy (a gain of 0.2% on average)
than PTQ on fine-tuned FP32 given the same
bit-width. However, the former is harder to
optimize through backpropagation because of
the forward quantisation error and the Straight-
Through Estimator (STE) (Bengio et al., 2013)
used in backpropagation.

4.4 4-bit LLMs via mixed precision

Currently, our block-based quantisation uses a uni-
form configuration, where the block size and bit-
width remain constant across the entire model.
What if we push the barrier further? Existing
works on CNN compression have explored mixed-
precision quantisation (Wu et al., 2018a; Wang
et al., 2019), thereby increasing memory density.
This subsection lowers the block size granularity
and the bit-width granularity to the tensor level to
demonstrate uncharted possibilities of aggressive
LLM quantisation.

Variation-aware block size By comparing the
activation variance and weight variance in Figure 1,
we observe that the weight variance remains stable

9995

and much smaller, suggesting that we can increase
the weight block size while decreasing the activa-
tion block size. This approach enhances accuracy
while maintaining memory density.

Mixed-precision We repeat the quantisation
search described in Section 3.3 on downstream
tasks and filter out less promising quantisation con-
figurations using an accuracy threshold and a mem-
ory density threshold. Each time we start TPE
search with a different random seed, so the distribu-
tion of filtered quantisation configurations exposed
the sensitivity of the searched tensors in LLMs. An
example of a mixed-precision search result is pre-
sented in Figure 3. We find certain layers were con-
sistently assigned with higher precision, while oth-
ers tended to have lower bit widths. By preserving
high precision for these sensitive layers, we recov-
ered the 4-bit LLM accuracy from 36.2% to 61.3%
on LAMBADA without compromising memory
density. The memory density of the searched OPT-
2.7B is 7.42×, which is slightly better than the uni-
form 4-bit BFP’s 7.11×. Figure 7 in Appendix G
compares uniform 4-bit BFP and mixed-precision
4-bit BFP on LAMBADA and ARC (easy), high-
lighting the effectiveness of our mixed-precision
quantisation. We include more tasks and model
sizes in Appendix G. In conclusion, variance-aware
block size and mixed precision allow aggressive
quantisation beyond 6-bit without fine-tuning.

5 Conclusion

This study focuses on addressing the scaling off-
set issue in LLMs and provides valuable insights
into the quantisation of LLMs. Through exten-
sive experimentation, we identify key factors that
significantly impact LLM quantisation. When aim-
ing for quantisation above or equal to 6-bit, BFP
surpasses previous methods in terms of accuracy,
memory density, and arithmetic density, without
requiring for data calibration or training. Moreover,
we demonstrate that fine-tuning or mixed precision
techniques enable 4-bit LLMs on downstream tasks.
Fine-tuning is suitable for GPUs, and mixed preci-
sion has the potential to shift the inference platform
from GPUs to cost-effective ASICs. Our findings
contribute to advancing the field of LLM quantisa-
tion and provide practical guidance for achieving
good quantisation performance. Our work has been
open-sourced and will also contribute to an ML
hardware framework named MASE for hardware
deployment (Cheng et al., 2023).

Limitations

Different from many prior arts in LLM quantisation
that focus on integers, our work puts particular em-
phasis on minifloat variants. However, the potential
gains of our work have not manifested in GPU sys-
tems due to a lack of CUDA kernel implementation.
The implementation of some proposed quantisation
methods in this paper requires specialised kernels
and hardware, however, a major focus of our work
is to explore potential designs for next-generation
hardware to run LLM inference. Another limita-
tion is that our search algorithm does not include
arithmetic density due to a lack of hardware models
for LLMs. We ran a mixed-precision search with
hardware models on a small transformer. The result
included in Appendix G is promising. We leave suf-
ficient study on hardware-aware LLM quantization
as a future work.

References
AMD Xilinx Vivado. 2023. [link].

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing
Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. 2021. Binarybert: Pushing the limit of bert
quantization.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
2013. Estimating or propagating gradients through
stochastic neurons for conditional computation.
arXiv preprint arXiv:1308.3432.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Balázs Kégl. 2011. Algorithms for hyper-parameter
optimization. Advances in neural information pro-
cessing systems, 24.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2021. Understanding and overcoming
the challenges of efficient transformer quantization.
arXiv preprint arXiv:2109.12948.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

9996

https://www.xilinx.com/support/university/vivado.html
http://arxiv.org/abs/2012.15701
http://arxiv.org/abs/2012.15701
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715

Jianyi Cheng, Cheng Zhang, Zhewen Yu, Alex
Montgomerie-Corcoran, Can Xiao, Christos-Savvas
Bouganis, and Yiren Zhao. 2023. Fast prototyping
next-generation accelerators for new ml models us-
ing mase: Ml accelerator system exploration. arXiv
preprint arXiv:2307.15517.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zim-
mer, William Dally, and Brucek Khailany. 2021. Vs-
quant: Per-vector scaled quantization for accurate
low-precision neural network inference. Proceedings
of Machine Learning and Systems, 3:873–884.

Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming
Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vino-
gradsky, Sarah Massengill, Lita Yang, Ray Bittner,
et al. 2020. Pushing the limits of narrow precision in-
ferencing at cloud scale with microsoft floating point.
Advances in neural information processing systems,
33:10271–10281.

Tim Dettmers. 2023. Bitsandbytes.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. 2019. Hawq: Hessian
aware quantization of neural networks with mixed-
precision. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 293–
302.

Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone,
Philip Leong, et al. 2021. A block minifloat rep-
resentation for training deep neural networks. In

International Conference on Learning Representa-
tions.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and
Dan Alistarh. 2022. Gptq: Accurate post-training
quantization for generative pre-trained transformers.
arXiv preprint arXiv:2210.17323.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Hai Victor Habi, Roy H Jennings, and Arnon Netzer.
2020. Hmq: Hardware friendly mixed precision
quantization block for cnns. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXVI 16,
pages 448–463. Springer.

William Kahan. 1996. Ieee standard 754 for binary
floating-point arithmetic. Lecture Notes on the Status
of IEEE, 754(94720-1776):11.

Kari Kalliojarvi and Jaakko Astola. 1996. Roundoff
errors in block-floating-point systems. IEEE transac-
tions on signal processing, 44(4):783–790.

Raghuraman Krishnamoorthi. 2018. Quantizing deep
convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342.

Xiaofan Lin, Cong Zhao, and Wei Pan. 2017. Towards
accurate binary convolutional neural network.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Daisuke Miyashita, Edward H Lee, and Boris Mur-
mann. 2016. Convolutional neural networks us-
ing logarithmic data representation. arXiv preprint
arXiv:1603.01025.

OpenAI. 2022. Introducing chatgpt. Accessed on June,
23th, 2023.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The LAMBADA dataset: Word
prediction requiring a broad discourse context. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1525–1534, Berlin, Germany.
Association for Computational Linguistics.

Melissa Roemmele, Cosmin Adrian Bejan, and An-
drew S Gordon. 2011. Choice of plausible alter-
natives: An evaluation of commonsense causal rea-
soning. In AAAI spring symposium: logical formal-
izations of commonsense reasoning, pages 90–95.

9997

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://github.com/TimDettmers/bitsandbytes
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
http://arxiv.org/abs/1711.11294
http://arxiv.org/abs/1711.11294
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
//https://openai.com/blog/chatgpt
https://doi.org/10.18653/v1/P16-1144
https://doi.org/10.18653/v1/P16-1144

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and Kurt
Keutzer. 2019. Q-bert: Hessian based ultra low pre-
cision quantization of bert.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631–1642, Seattle, Washington, USA. Association
for Computational Linguistics.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. 2021. Roformer: En-
hanced transformer with rotary position embedding.
arXiv preprint arXiv:2104.09864.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang
Wang, Swagath Venkataramani, Vijayalakshmi Viji
Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash
Gopalakrishnan. 2019. Hybrid 8-bit floating point
(hfp8) training and inference for deep neural net-
works. Advances in neural information processing
systems, 32.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song
Han. 2019. Haq: Hardware-aware automated quan-
tization with mixed precision. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8612–8620.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuan-
dong Tian, Peter Vajda, and Kurt Keutzer. 2018a.
Mixed precision quantization of convnets via differ-
entiable neural architecture search. arXiv preprint
arXiv:1812.00090.

Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi.
2018b. Training and inference with integers in deep
neural networks. arXiv preprint arXiv:1802.04680.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien De-
mouth, and Song Han. 2022. Smoothquant: Accurate
and efficient post-training quantization for large lan-
guage models. arXiv preprint arXiv:2211.10438.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang,
Xiaoxia Wu, Conglong Li, and Yuxiong He. 2022.
Zeroquant: Efficient and affordable post-training
quantization for large-scale transformers. Advances
in Neural Information Processing Systems, 35:27168–
27183.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe
Wasserblat. 2019. Q8bert: Quantized 8bit BERT. In
2019 Fifth Workshop on Energy Efficient Machine
Learning and Cognitive Computing - NeurIPS Edi-
tion (EMC2-NIPS). IEEE.

Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and
Gang Hua. 2018. Lq-nets: Learned quantization for
highly accurate and compact deep neural networks.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao
Chen, Xin Jiang, and Qun Liu. 2020. Ternarybert:
Distillation-aware ultra-low bit bert.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

A Tensor variance in LLMs

We investigate the variance trend of Vicuna-
7B (Chiang et al., 2023) and observe the same trend
of increasing activation variances as OPT-6.7B. Fig-
ure 4 depicts the forward pass of Vicuna-7B and the
variance trend of its tensors. Interestingly, the vari-
ances of self-attention input activations (Q′

i and K′
i

in line 6 of the algorithm above) are consistently
high from the first Transformer layer to the last in
Vicuna-7B. We assume this is because of the Ro-
tary Positional Encoding (RoPE) (Su et al., 2021)
layers.

We additionally analyse the trend of increasing
activation variance when the model size increases,

9998

http://arxiv.org/abs/1909.05840
http://arxiv.org/abs/1909.05840
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.1109/emc2-nips53020.2019.00016
http://arxiv.org/abs/1807.10029
http://arxiv.org/abs/1807.10029
http://arxiv.org/abs/2009.12812
http://arxiv.org/abs/2009.12812

Algorithm 2 Transformer layer (Vicuna)
Require: X ▷ Input features
Require: H ▷ Number of heads
1: Xn ← LayerNorm(X)
2: for i ∈ [0, H) do
3: Qi ←WQiXn

4: Ki ←WKiXn

5: Vi ←WViXn

6: Q′
i ← RoPE(Qi), K′

i ← RoPE(Ki)

7: Ai ← Q′
iK

′
i
T√

dk

8: Âi ← softmax(Ai, axis← −1)
9: Bi ← ViÂi

10: end for
11: Bc ← concat(B0, . . . , BH−1)
12: Bo ←W0Bc

13: Bn ← RMSNorm(Bo +Xn)
14: G←WGBn

15: U ←WUBn

16: D ←WD(SiLU(G
⊗

U))
17: O ← D +Bo +X
18: return O

0 5 10 15 20 25 30

2−15

2−11

2−7

2−3

21

Layer ID
V

ar
ia

nc
e

Xi

Q′
i

K′
i

Vi

Bi

U

G

D

WQi

WKi

WVi

W0

WU

WG

WD

Figure 4: The algorithm on the left is the forward pass of Vicuna-7B. The graph on the right depicts how the tensor
variances change with layer number. We observe the same trend of increasing activation variances in Vicuna-7B,
which is similar to OPT-6.7B. interestingly, the variances of self-attention input activations (Q′

i and K′
i in line 6 of

the algorithm above) are consistently high from the first Transformer layer to the last in Vicuna-7B. We assume this
is because of the Rotary Positional Encoding (RoPE) (Su et al., 2021) layers.

In Figure 1, for OPT-6.7B, we plotted the variances
of all tensors that have unbounded input ranges and
that are taken as input operands to matrix multipli-
cations in the Transformer layer. Figure 5 further
illustrates the results for OPT-350M and OPT-2.7B.
We observe that:

• If we consider V, Bc and B1 as the main
information path 2, these components have
much smaller variances than K and Q.

• Bigger models tend to have small variances
at shallow layers and larger variances at deep
layers.

These observations explain why linear quanti-
sation, such as integer quantisation, is effective
for smaller models but struggles with larger ones.
This increasing activation variance trend can be
considered into variance-aware block size. Since
a higher variance implies a higher possibility of
extreme outliers, we can apply larger block sizes
to those tensors with smaller variance and smaller
block sizes to those with higher variance. Limited
by time, we leave this exploration as well as the
combination of fine-tuning, variance-aware block
size, and mixed precision in future work.

2The computation of Q and K yields attention factors
(post-softmax) that are applied to V.

B Experiment details

B.1 Setup and Implementation

Hardware resources We run the experiments us-
ing four NVIDIA RTX3090s, three A100s, and
eight V100s with 64GB, 192GB, and 128GB RAM
respectively. The evaluation of PTQ perplexity
on Wikitext2 takes around 64 GPU hours in to-
tal; the zero-shot prompting evaluation on down-
stream tasks takes around 160 GPU hours in total;
the fine-tuning of FP32 models on SST2, QNLI,
MRPC and COLA takes around 30 GPU hours
in total; the fine-tuning of quantised BFP models
takes around 70 GPU hours in total; the evaluation
of fine-tuned models takes around 6 GPU hours in
total; the mixed-precision search takes around 120
GPU hours in total.

Implementation We download the model codes
and pre-trained weights from HuggingFace Trans-
formers 3 and implement the quantisation arith-
metics using PyTorch 4. We use Vivado to re-
port arithmetic density and Optuna5 to perform
the mixed-precision search.

3https://github.com/huggingface/transformers
4https://github.com/pytorch/pytorch
5https://optuna.readthedocs.io/en/stable/

index.html

9999

https://github.com/huggingface/transformers
https://github.com/pytorch/pytorch
https://optuna.readthedocs.io/en/stable/index.html
https://optuna.readthedocs.io/en/stable/index.html

0 5 10 15 20
2−15

2−11

2−7

2−3

21

25

Layer ID

V
ar

ia
nc

e

Q K V Bc B1

(a) OPT-350M

0 5 10 15 20 25 30
2−15

2−11

2−7

2−3

21

25

Layer ID

V
ar

ia
nc

e

Q K V Bc B1

(b) OPT-2.7B

Figure 5: We demonstrate a similar analysis to Figure 1, where on the left we have OPT-350M variance vs layer ID
and OPT-2.7B variance vs layer ID on the right. The trend of increasing activation variance is more obvious on
larger models.

Evaluation We follow the code base of
GPTQ (Frantar et al., 2022)6 to estimate LLM’s per-
plexity on Wikitext2. We chop Wikitext2’s test set
into sequences of 2000 tokens, feed the sequences
to LLMs, and normalise the cross entropy loss by
the sequence length and batch size. To evaluate
LLM accuracy on downstream tasks, we follow
OPT (Zhang et al., 2022) and SmoothQuant (Xiao
et al., 2022) to use lm-eval-harness in the zero-
shot prompting setup.

B.2 Comparison with SmoothQuant

The SmoothQuant paper (Xiao et al., 2022) de-
clares all the eight GEMMs (1⃝- 8⃝ in 2) are quan-
tised. However, their codes7 do not support quantis-
ing 5⃝ and 6⃝, which takes up 19.6% floating-point
operations (FLOPs) in OPT-6.7B’s self-attention.
We amend their code and refer to the amended
version as “SmoothQuant-c”, which should be the
same as SmoothQuant-O2 in the paper. We observe
that SmoothQuant-c has much higher perplexity
and slightly lower accuracy on downstream tasks
than SmoothQuant. Besides, the SmoothQuant
repository does not include the scaling factor files
of OPT-125m and OPT-350m, so the perplex-
ity/accuracy for these two models is missing in
our result table.

B.3 Comparison with LLM.int8()

We give a short comparison between LLM.int8()
and our method. LLM.int8() is different from

6https://github.com/IST-DASLab/gptq
7https://github.com/mit-han-lab/smoothquant

plain 8-bit fixed-point quantization. In LLM.int8()
all the tensors are stored as FP16 numbers, which
is the reason why LLM.int8() has 2× memory
density while plain 8-bit fixed-point has 4× mem-
ory density in Table 3. LLM.int8() targets GPUs
while ours targets ASICs. LLM.int8() is not
as friendly as uniform BFP to ASICs, because
LLM.int8() separates one matrix multiply into
two (one for inliers the other for outliers), casts
inliers to 8-bit, performs an 8-bit matrix multiplica-
tion for inliers and an FP16 matrix multiplication
for outliers respectively. This separation is per-
formed on the fly. In comparison, 6-bit uniform
BFP does not require a runtime separation or an
FP16 matrix multiply engine. All tensors are stored
and calculated in 6-bit BFP.

B.4 Quantisaion search

The specific search configuration depends on model
size, task, and FP32 performance. We use the ac-
curacy threshold and memory density threshold to
sort out promising mixed-precision configs. Given
a model and a task, the accuracy threshold is 2%
below the FP32 values. The memory density is set
to 7.1% in most search configs.

Note that to estimate the memory density of
quantisation config candidates, we need the model
architecture information including input sizes and
weight sizes for all the GEMMs in Algorithm 2
across all layers. We implement a FLOP profiler
to collect this information and feed it as input to
the search algorithm. The numeric values of these
parameters can be found in the bash scripts of our

10000

https://github.com/IST-DASLab/gptq
https://github.com/mit-han-lab/smoothquant

source code.

C Definition of quantisation arithmetics

FP32, FP16 and MiniFloat A traditional
floating-point representation follows IEEE floating-
point standard (Kahan, 1996), which can define
a floating-point number as a 4-tuple, (s, e,m, b),
where

• s ∈ {0, 1} is the sign bit of the number;

• e ∈ N is the exponent field;

• b ∈ N is the exponent bias; and

• m ∈ N is the mantissa.

Given the bit widths of the exponent and the man-
tissa be E and M , the value x of a floating-point
number can be obtained via:

x =





(−1)s × 21−b × m
2M

e = 0

(−1)s × 2e−b × (1 + m
2M

) 0 < e < 2E − 1

(−1)s ×∞ e = 2E − 1,m = 0

NaN others
(1)

where e is the unsigned integer value repre-
sented by the exponent bits, and m is the un-
signed integer value represented by mantissa bits.
The exponent bias (b) is a constant depending on
E: b = 2E−1 − 1. FP32, FP16, and MiniFloat
have E = 8,M = 23, E = 5,M = 10 and
E = 4,M = 3, respectively. Note that the “1” in
the fraction term of Line 2, Equation (1) comes
from the implicit leading bit in the mantissa.

We additionally saturate MiniFloat when e =
2E − 1, thus the value of a MiniFloat is

x =





(−1)s × 21−b × m
2M

e = 0

(−1)s × 2e−b × (1 + m
2M

) 0 < e ≤ 2E − 1

NaN others
(2)

DMF The definition of DMF is the same as Mini-
Float except that there is no implicit leading bit in
the mantissa:

x =

{
(−1)s × 2e−b × m

2M
e ≤ 2E − 1

NaN others
(3)

BM, BL, and BFP BM (Fox et al., 2021) shares
the exponent bias and was proposed in the context
of Quantisaion-Aware-Training (QAT). When an
FP32 value is cast to BM, the exponent bias is
determined by the maximum value in the block.

BFP (Darvish Rouhani et al., 2020) shares the
exponent and was proposed in the context of PTQ.

Similar to BM, the shared exponent bias is also
determined by the maximum FP32 values when
casted from FP32.

Logarithm quantisation was proposed
by Miyashita et al. (2016) to perform QAT
on CNNs. Block Logarithm (BL) was used as a
baseline to compare with BM in (Fox et al., 2021).
BL shares the exponent bias and does not have
mantissa bits (mantissa is always 1).

Basically, block-based quantisation facilitates
the vector’s inner product by simplifying the ac-
cumulation after multiplication. For example, the
inner product between two BFP vectors x and y is,

x · y
=(−1)sxeex [x1, . . . , xB−1] ·
(−1)syeey [y1, . . . , yB−1]

=(−1)sx+syeex+ey [x1y1 + · · ·+ xB−1yB−1]

(4)

where B is the block size. Since exponents are
shared across vectors, the element products can be
accumulated without shifting. The block sizes of
the two vectors are not necessarily the same.

D Estimate arithmetic density via logic
synthesis

We implemented the hardware designs of the cor-
responding modules and measured their arithmetic
density using hardware synthesis tools. Each de-
sign contains versions for Int8, Float32, Mini-
Float and all the block arithmetic types above.
All these designs are functionally verified in
AMD Xilinx simulator on a set of test vectors.
The hardware arithmetic density is obtained us-
ing the same formulation by Darvish Rouhani et
al. (Darvish Rouhani et al., 2020) with area in
FPGAs. The area results were obtained from the
post-Place & Synthesis report in AMD Xilinx Vi-
vado (AMD Xilinx Vivado, 2023). We estimate the
total circuit area in LUTs, and a DSP is considered
to be equivalent to 100 LUTs. We used the Ultra-
Scale+ family of FPGA devices for experiments,
and the version of AMD Xilinx software is 2020.2.
The arithmetic densities of various quantisation
methods are present in Table 6.

E PTQ on downstream tasks

We quantised the pre-trained model and apply it to
the downstream tasks in the zero-shot prompting
setup. Figure 6 depicts how the performance of
quantised models scale with model sizes. Our 6-
bit BFP align with FP32 at various model sizes.

10001

Method Config Block size #DSPs #LUTs Area factor Arithmetic density

FP32 - 1 5 335 835 1×
Integer W8A8 1 1 9 109 7.7×
MiniFloat W8A8 1 0 48 48 17.4×
BM W8A8 1 0 27 51 16.4×
BFP W8A8 16 0 544 58 14.4×
BL W8A8 1 0 28 52 16.1×
BFP W6A6 16 0 313 43.6 19.2×
BFP W4A4 16 0 358 22.4 37.3×

Table 6: The arithmetic density of various quantisation configurations explored in this paper. To calculate the area
factor, we convert the Digital Signal Processing units (DSPs) to equivalent LUTs to get the area factor, and then
divide the quantisation arithmetic’s area factor density by FP32.

125M 350M 1.3B 2.7B 6.7B

50

55

60

65

70

75

Model size

M
ea

n
ac

cu
ra

cy
(%

)

FP32 LLM.int8() LLM.int4()

SmoothQuant-c 6-bit BFP 4-bit BFP

Figure 6: Mean accuracy (↑, %) of various quanti-
sation methods on downstream tasks. We observe
that 6-bit BFP align with FP32 as model size scales,
above SmoothQuant-c and LLM.int4(), below FP32
and LLM.int8(). Note that 6-bit BFP () achieves
the highest memory density and arithmetic density
among these methods. 4-bit BFP () has a severe
accuracy drop.

Table 7 presents the detailed accuracy of each task.
Note that QNLI, MRPC, and COLA results are not
included in this table because even FP32 LLMs
yield an accuracy close to random prediction.

F PTQ on fine-tuned FP32 vs TAQ on
downstream tasks

Table 8 compares the two options on four down-
stream tasks (QNLI, SST2, COLA, MRPC), that
FP32 LLM cannot handle. We observe that both
align 4-bit BFP LLMs’ performance with FP32 on
downstream tasks.

G Searched mixed-precision LLMs

Mixed-precision quantisation is also helpful for re-
covering downstream task accuracy. Figure 7a and
Figure 7b depict the performance of 4-bit LLMs on
LAMBADA and ARC (easy) as the model scales
up. The searched mixed-precision configuration
effectively recovers the accuracy. Figure 8 and 9 is
the activation distribution after searching on LAM-
BADA 2688 times. Keeping these layers in high
precision effectively recovers the accuracy from
36.2% to 61.3% without decreasing the memory
density, equivalent to a 4.3-bit OPT-2.7B.

H Mixed-precision with hardware model

We additionally performed a hardware-aware quan-
tization search on BERT-Base (Devlin et al., 2018).
We implemented the actual BFP hardware on
FPGAs via high-level synthesis and model the
hardware cost using Token per second (TPS) for
speedup and TPS per LUT (TPS/LUT) for cir-
cuit area efficiency. Our hardware-aware search
takes accuracy, memory bitwidth, and hardware
cost as feedback. We compare the search traces of
hardware-aware search and software-only search
in Figure 10, and observe that the hardware-aware
search curve is higher than the original one, prov-
ing our new objective function guides the search
for better hardware efficiency. We will scale up
experiments in future work.

10002

Method Config Model size ARC (easy) COPA LAMBADA PIQA QNLI SST2 Average

FP32 -

125M 43.5% 66.0% 37.9% 63.0% 49.4% 53.3% 52.7%
350M 44.0% 72.0% 45.2% 64.4% 49.5% 61.8% 57.5%
1.3B 57.0% 79.0% 57.9% 71.7% 51.3% 82.2% 69.6%
2.7B 60.8% 77.0% 63.6% 73.9% 51.1% 51.7% 65.4%
6.7B 65.6% 81.0% 67.7% 76.3% 50.9% 76.5% 73.4%

LLM.int8() W8A8

125M 43.6% 66.0% 37.7% 63.0% 49.5% 52.1% 52.5%
350M 43.8% 72.0% 45.3% 64.2% 49.5% 66.1% 58.3%
1.3B 57.5% 79.0% 57.7% 71.6% 51.1% 80.1% 69.2%
2.7B 60.6% 78.0% 62.9% 72.9% 51.2% 52.1% 65.3%
6.7B 65.5% 83.0% 66.6% 76.1% 50.7% 76.4% 73.5%

LLM.int4() W8A8

125M 41.5% 65.0% 34.3% 62.1% 49.5% 51.1% 50.8%
350M 41.6% 68.0% 44.6% 64.0% 49.5% 60.8% 55.8%
1.3B 55.9% 78.0% 54.5% 70.0% 51.7% 76.6% 67.0%
2.7B 58.7% 77.0% 62.2% 73.7% 51.3% 50.8% 64.5%
6.7B 64.5% 81.0% 66.2% 74.7% 51.6% 76.4% 72.5%

SmoothQuant-c W8A8

125M - - - - - - -
350M - - - - - - -
1.3B 55.8% 78.0% 55.3% 71.2% 51.1% 75.9% 67.2%
2.7B 60.4% 77.0% 64.0% 72.6% 51.3% 51.7% 65.2%
6.7B 65.3% 81.0% 68.5% 74.7% 51.1% 71.6% 72.2%

BFP W6A6

125M 42.6% 69.0% 37.1% 62.6% 49.4% 51.6% 52.6%
350M 43.7% 72.0% 42.8% 65.1% 49.6% 64.6% 57.6%
1.3B 57.0% 79.0% 51.8% 71.6% 51.5% 79.7% 67.8%
2.7B 60.9% 76.0% 64.1% 73.3% 49.9% 53.1% 65.5%
6.7B 65.2% 80.0% 67.2% 75.8% 50.9% 76.1% 72.9%

BFP W4A4

125M 37.0% 65.0% 28.7% 58.9% 49.1% 49.5% 47.8%
350M 39.9% 65.0% 38.7% 58.9% 49.3% 55.9% 51.7%
1.3B 50.0% 71.0% 41.4% 65.7% 50.2% 58.1% 57.2%
2.7B 52.4% 70.0% 36.2% 68.0% 51.4% 51.7% 55.7%
6.7B 61.5% 84.0% 56.0% 73.1% 52.3% 61.1% 67.2%

MiniFloat W4A4

125M 42.9% 66.0% 38.3% 62.7% 49.6% 50.8% 52.1%
350M 44.0% 69.0% 44.9% 64.2% 49.8% 53.3% 55.1%
1.3B 57.2% 80.0% 54.6% 71.4% 51.5% 60.2% 64.7%
2.7B 59.9% 75.0% 63.4% 73.7% 49.8% 56.7% 65.7%
6.7B 64.9% 82.0% 67.3% 76.0% 51.8% 62.2% 70.5%

Table 7: A complete comparison of LLM quantisation methods on downstream tasks in the zero-shot prompting
setup. QNLI, MRPC, and COLA results are not included because even FP32 LLMs yield an accuracy close to
random prediction.

10003

Task Fine-tuning style Config Model size zero-shot prompting epoch 0 epoch 1 epoch 2

SST2

FP32

W32A32 125m 53.3% 91.2% 92.9% 92.6%
W32A32 350m 61.8% 92.3% 93.1% 93.4%
W32A32 1.3b 82.2% 93.9% 93.2% 94.0%
W32A32 2.7b 51.7% 94.6% 94.5% 94.7%

PTQ on downstream

W5A5 125m 49.5% (-3.8%) 91.3% (0.1%) 91.7% (-1.2%) 92.0% (-0.6%)
W5A5 350m 55.9% (-5.9%) 92.7% (0.4%) 92.5% (-0.6%) 92.2% (-1.2%)
W5A5 1.3b 58.1% (-24.1%) 93.7% (-0.2%) 93.2% (0.0%) 93.6% (-0.4%)
W5A5 2.7b 51.7% (0.0%) 94.0% (-0.6%) 95.3% (0.8%) 94.5% (-0.2%)

TAQ on downstream

W5A5 125m 49.5% (-3.8%) 92.0% (0.8%) 92.0% (-0.9%) 91.6% (-0.9%)
W5A5 350m 55.9% (-6.0%) 91.1% (-1.3%) 91.6% (-1.5%) 91.6% (-1.7%)
W5A5 1.3b 58.1% (-24.1%) 94.3% (0.3%) 94.2% (0.9%) 94.2% (0.1%)
W5A5 2.7b 51.7% (0.0%) 94.6% (0.0%) 95.0% (0.4%) 94.7% (0.0%)

QNLI

FP32

W32A32 125m 49.4% 87.8% 88.3% 88.7%
W32A32 350m 45.9% 86.5% 88.5% 89.1%
W32A32 1.3b 51.3% 89.0% 90.6% 91.7%
W32A32 2.7b 51.1% 61.2% 73.8% 85.3%

PTQ on downstream

W5A5 125m 49.1% (-0.3%) 82.0% (-5.8%) 80.8% (-7.5%) 85.7% (-2.0%)
W5A5 350m 49.3% (-0.2%) 85.5% (-0.9%) 87.3% (-1.2%) 88.2% (-0.9%)
W5A5 1.3b 50.2% (-1.1%) 88.6% (-0.5%) 89.1% (-1.5%) 90.3% (-1.4%)
W5A5 2.7b 51.4% (0.2%) 60.9% (-0.3%) 71.6% (2.2%) 84.2% (-1.1%)

TAQ on downstream

W5A5 125m 49.1% (-0.3%) 86.1% (-1.7%) 87.4% (-0.9%) 88.2% (-0.5%)
W5A5 350m 49.3% (-0.2%) 85.5% (-1.0%) 88.3% (-0.1%) 88.6% (-0.5%)
W5A5 1.3b 50.2% (-1.1%) 86.6% (-2.5%) 89.5% (-1.1%) 91.1% (0.7%)
W5A5 2.7b 51.4% (0.2%) 86.2% (25.0%) 88.1% (14.3%) 92.5% (4.3%)

COLA†

FP32

W32A32 125m 0.0% 41.2% 47.3% 49.8%
W32A32 350m 0.0% 13.0% 39.8% 47.2%
W32A32 1.3b -6.9% 29.1% 56.3% 56.9%
W32A32 2.7b -3.5% 0.0% 8.0% 25.9%

PTQ on downstream

W5A5 125m -1.1% (-1.1%) 37.9% (-3.3%) 40.4% (-6.9%) 49.3% (-0.5%)
W5A5 350m 0.0% (0.0%) 7.5% (-5.5%) 32.8% (-7.0%) 46.0% (-1.2%)
W5A5 1.3b -1.6% (5.3%) 21.0% (-8.1%) 51.9% (-4.4%) 55.8% (-1.1%)
W5A5 2.7b -3.1% (0.0%) 0.0% (0.0%) -2.1% (-10.1%) 26.0% (0.1%)

TAQ on downstream

W5A5 125m -1.1% (-1.1%) 43.1% (1.9%) 41.1% (0.7%) 43.7% (-5.6%)
W5A5 350m 0.0% (0.0%) 12.7% (-0.3%) 31.5% (-1.3%) 42.1% (-3.9%)
W5A5 1.3b -1.6% (5.3%) 33.9% (4.8%) 49.0% (-2.9%) 54.6% (-1.2%)
W5A5 2.7b -3.1% (0.4%) 0.7% (0.7%) 0.0% (2.1%) 18.6% (-7.4%)

MRPC

FP32

W32A32 125m 68.4% 70.8% 76.8% 79.7%
W32A32 350m 68.4% 68.4% 69.6% 70.6%
W32A32 1.3b 66.4% 69.6% 70.8% 66.7%
W32A32 2.7b 67.9% 70.1% 81.6% 82.6%

PTQ on downstream

W5A5 125m 68.4% (0.0%) 71.3% (0.5%) 74.0% (-2.8%) 78.8% (-0.9%)
W5A5 350m 68.4% (0.0%) 68.4% (0.0%) 69.6% (0.0%) 69.4% (-1.2%)
W5A5 1.3b 57.8% (-8.6%) 69.1% (-0.5%) 70.1% (-0.7%) 67.6% (0.9%)
W5A5 2.7b 60.3% (-7.6%) 68.6% (-1.5%) 79.9% (-1.7%) 78.9% (-3.7%)

TAQ on downstream

W5A5 125m 68.4% (0.0%) 70.3% (-0.5%) 71.6% (-5.2%) 77.8% (-1.9%)
W5A5 350m 68.4% (0.0%) 69.4% (1.0%) 69.7% (0.1%) 70.6% (0.0%)
W5A5 1.3b 57.8% (-8.6%) 68.9% (-0.7%) 71.1% (0.3%) 71.1% (4.4%)
W5A5 2.7b 60.3% (-7.6%) 68.4% (-1.7%) 68.4% (-13.2%) 81.4% (-1.2%)

Table 8: The comparison between PTQ fine-tuned FP32 and TAQ on SST2, QNLI, COLA, and MRPC. Both cases
align 4-bit BFP LLMs with FP32 after fine-tuning. The latter may achieve slightly better accuracy. † means COLA
is evaluated using the Matthews Correlation Coefficient (MCC), while the other tasks are evaluated using accuracy.

10004

125M 350M 1.3B 2.7B 6.7B
25

35

45

55

65

Model size

M
ea

n
ac

cu
ra

cy
(%

)

FP32 4-bit uniform 4-bit mixed

(a) LAMBADA

125M 350M 1.3B 2.7B 6.7B

40

50

60

Model size

M
ea

n
ac

cu
ra

cy
(%

)

FP32 4-bit uniform 4-bit mixed

(b) ARC (easy)

Figure 7: The accuracy of FP32 model, 4-bit uni-
form BFP, and 4-bit mixed-precision on LAMBADA
and ARCH (easy) in the zero-shot prompting context.
Searched mixed-precision quantisation configuration
captures the distribution inherent in LLMs, effectively
recovering the accuracy.

5 10 15 20 25 30
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce ≤ 4-bit 5-bit 6-bit 7-bit

(a) Xn in Line 3, Algorithm 2.

5 10 15 20 25 30
0

0.5

1

Layer ID
Pe

rc
en

ta
ge

of
oc

cu
rr

en
ce ≤ 4-bit 5-bit 6-bit 7-bit

(b) Xn in Line 4, Algorithm 2.

5 10 15 20 25 30
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce ≤ 4-bit 5-bit 6-bit 7-bit

(c) Xn in Line 5, Algorithm 2.

5 10 15 20 25 30
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce ≤ 4-bit 5-bit 6-bit 7-bit

(d) Ki in Line 6, Algorithm 2.

5 10 15 20 25 30
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce ≤ 4-bit 5-bit 6-bit 7-bit

(e) Ai in Line 8, Algorithm 2.

Figure 8: The searched bit-width distribution of OPT-
2.7B. Notably, some layers are frequently assigned rel-
atively high precision, indicating these layers are less
tolerant to quantisation.10005

5 10 15 20 25 30
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce ≤ 4-bit 5-bit 6-bit 7-bit

(a) Vi in Line 8, Algorithm 2.

5 10 15 20 25 30
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce ≤ 4-bit 5-bit 6-bit 7-bit

(b) Bc in Line 11, Algorithm 2.

5 10 15 20 25 30
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce ≤ 4-bit 5-bit 6-bit 7-bit

(c) Bn in Line 13, Algorithm 2.

5 10 15 20 25 30
0

0.5

1

Layer ID

Pe
rc

en
ta

ge
of

oc
cu

rr
en

ce ≤ 4-bit 5-bit 6-bit 7-bit

(d) B1 in Line 14, Algorithm 2.

Figure 9: The searched bit-width distribution of OPT-
2.7B. Notably, some layers are frequently assigned rel-
atively high precision, indicating these layers are less
tolerant to quantisation.

20 100 500 1,000 3,600

5.36

5.49

Time (s)

O
f

hardware-aware
software-only

Figure 10: A comparison between the new hardware-
aware search algorithm and the previous one that only
considers accuracy and memory density. We introduce
two additional hardware metrics, Token Per Second
(TPS) and TPS Per LUT (TPS/LUT), such that the
search algorithm can be aware of the hardware effi-
ciency. The new objective function is Of = acc+ α1 ·
mem + α2 · tps + α3 · tpl, where tps and tpl denote
TPS and TPS/LUT respectively. We plot the traces of
both searches versus search time for BERT-base. We
observe that the hardware-aware curve is higher than
the original one, proving our new objective function
guides the search for better hardware efficiency in terms
of speedup and circuit area.

10006

