Joint Dialogue Topic Segmentation and Categorization:
A Case Study on Clinical Spoken Conversations

Zhengyuan Liu’, Siti Umairah Md Salleh',

Hong Choon Oh?, Pavitra Krishnaswamy', Nancy F. Chen!
Institute for Infocomm Research (I’R), A*STAR, Singapore
*Health Services Research, Changi General Hospital, Singapore
{liu_zhengyuan,nfychen}@i2r.a-star.edu.sg

Abstract

Utilizing natural language processing tech-
niques in clinical conversations is effective to
improve the efficiency of health management
workflows for medical staff and patients. Di-
alogue segmentation and topic categorization
are two fundamental steps for processing ver-
bose spoken conversations and highlighting in-
formative spans for downstream tasks. How-
ever, in practical use cases, due to the variety
of segmentation granularity and topic defini-
tion, and the lack of diverse annotated corpora,
no generic models are readily applicable for
domain-specific applications. In this work, we
introduce and adopt a joint model for dialogue
segmentation and topic categorization, and con-
duct a case study on healthcare follow-up calls
for diabetes management; we provide insights
from both data and model perspectives toward
performance and robustness.

1 Introduction

The massive records of clinical communication, es-
pecially the longitudinal follow-up calls, can be
used to scrutinize novel insights into medical his-
tory, treatment plans, and customized education
(Quiroz et al., 2019); but it is time-consuming and
requires domain knowledge for manual operation.
Therefore, there has been growing interest in uti-
lizing speech and natural language techniques to
analyze and distill information from clinical con-
versations (Liu et al., 2019b; Krishna et al., 2021;
van Buchem et al., 2021). While spoken conversa-
tions are often loosely structured, in task-oriented
scenarios, interlocutors calibrate the dialogue flow
to cover targeted topics and agendas (Sacks et al.,
1978). Moreover, when large language models
(Brown et al., 2020) are applied, processing the ver-
bose conversations will substantially increase the
computational complexity and cost. On the other
hand, dialogue segmentation and topic categoriza-
tion (Arguello and Rosé, 2006; Mei et al., 2007) are
useful to handle lengthy inputs, reduce data noise

Nurse: so what about exercise do you do exercise ?
Patient: (yah) | got this (ah) at home (ah)

Nurse: (mm) very good

Patient: (ah) walking

Nurse: so you know all these already that's good
Patient: (yah)(yah)

Nurse: | don't think you smoke right ?

Patient: no no

Nurse: (ah) alcohol | don't think

Patient: nono

Nurse: so what about exercise do you do exercise ?
Patient: (yah) | got this (ah) at home (ah)

Nurse: (mm) very good
Physical Activity

Patient: (ah) walking

Nurse: so you know all these already that's good

Patient: (yah)(yah) 1

Nurse: | don't think you smoke right ? I
I
I

Patient: no no
Nurse: (ah) alcohol | don't think

Patient: no no

Figure 1: A dialogue example with topic segmentation
and categorization. Frames indicate topically-coherent
segments, and the corresponding label is highlighted.
Utterances at the beginning of segments are underlined.

by excluding the task-irrelevant segments, and im-
prove the efficiency of downstream tasks (Liu et al.,
2019c; Khosla et al., 2020). More specifically, dia-
logue segmentation is to extract the structural infor-
mation by splitting the whole session into topically-
coherent segments (Arguello and Rosé, 2006), and
topic categorization labels each segment with a
particular type, providing features for fine-grained
semantic understanding (Mei et al., 2007).
Different from documents, human conversations
include ubiquitous verbal and vernacular expres-
sions, along with disfluencies, thinking aloud, and
repetition. This leads to lower information den-
sity (Sacks et al., 1978) and more topic drifting.
The coherence-based methods typically applied
to passages cannot perform well on spoken dia-
logues. Moreover, since there are few corpora
constructed with the dedicated annotation, most
existing generic (both supervised (Arnold et al.,
2019) and unsupervised (Xing and Carenini, 2021))
models cannot meet the requirements of real-world
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applications and provide reliable system outputs.
This is because (1) there is no unified segmenta-
tion granularity across different data resources, and
(2) the variety of topic definitions increases the
difficulty of domain adaptation, especially where
language resources are limited. In this work, we
conduct a case study on a clinical conversation
scenario. Because of the chronic nature of dia-
betes and its associated complications, diabetes
requires constant attention and regular follow-up
actions (Lawson et al., 2005; Wai Leng et al., 2014).
Nurses schedule calls with patients to track their
compliance status and health condition, and pro-
vide customized coaching and advice (Piette et al.,
2001). To facilitate the communication process,
dialogues are organized according to a checklist
or medical protocol (Kirkman et al., 1994; Taylor
et al., 2003). However, due to the characteristics
of spoken dialogues such as topic drifting and ver-
bosity, the important information is scattered across
the whole conversation, which renders it a represen-
tative use case for dialogue segmentation and topic
categorization (as the example shown in Figure 1).

Since no existing generic models meet the re-
quirements of our domain-specific application, we
investigate a data-driven approach for the clinical
conversation processing task, and our contributions
of this work are as follows:

* We build our in-domain dataset from follow-
up calls for health management with dedicated
annotation of dialogue segmentation and topic
categorization.

* We conduct quantitative and qualitative analy-
ses on the clinical conversation data, and de-
scribe their conversational linguistic features.

* We propose and apply a joint framework for
topic segmentation and categorization, by
equipping a shared language backbone with
functional components.

* We report extensive experimental results, and
evaluate the model performance from the ac-
curacy and robustness perspective.

2 Our Clinical Conversation Corpus

2.1 Data Preparation and Annotation

Our data are constructed on recordings of diabetes
management follow-up calls. The clinical data
were acquired by the Health Management Unit at

Segment Averaged

Number Length
1. Introduction 695 97.41
2. Identification 660 65.02
3. General Education 2194 328.4
4. Oral Medication 909 184.5
5. Insulin 468 171.6
6. Self-Monitoring 1276 165.5
7. Programme 766 196.4
8. Vitals 1033 111.8
9. Medical Experience 782 271.4
10. Base Compliance 252 138.8
11. Appointments 711 199.6
12. Social Chatting 296 245.5
13. Physical Activity 455 147.4
14. Diet Management 662 301.3
15. Hyper/Hypo Incident 140 199.5
16. Other 418 244.2

Table 1: Data statistics of topic categorization. We count
the number of topically-coherent segments of each topic,
and their average word number (length).

Changi General Hospital. This research study was
approved by SingHealth Centralised Institutional
Review Board (Ref: 2019/2803) and A*STAR IRB
(Ref: 2019-079). Telephone care programs are a
viable strategy for bringing diabetes management
services to patients and improving their glycemic
control (Wai Leng et al., 2014), and nurses com-
municate with patients or caregivers following es-
tablished protocols (Lawson et al., 2005; Taylor
et al., 2003). To transform the raw data into a
sample set that can be used for developing com-
putational language solutions, we transcribe and
annotate the call recordings following two steps:
(1) First, speech transcribers are employed for man-
ual speech-to-text conversion to ensure the quality,
and transcripts are fully anonymized. Speaker roles
(e.g., nurse, patient, caregiver) are added to each
utterance. Following previous work (Liu et al.,
2019c), the informal and spontaneous styles of spo-
ken interactions such as interlocutor interruption,
backchanneling, hesitation, false starts, repetition,
and topic drifting are preserved. (2) The annotation
of dialogue segmentation and topic categorization
is then performed using in-house software. Our
linguistic annotators are familiar with clinical con-
versations, and they have finished a training session
on diabetes health management. We formulate the
segmentation granularity and topic categories (see
Table 1) based on the annotation protocol defined
by the healthcare provider. Moreover, there have
been three iterations for the corpus construction,
where we collect feedback from clinical collabora-
tors, refine the annotation scheme, and update the
whole corpus accordingly.
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Figure 2: Utterance-level and word-level length distri-
butions of the annotated clinical conversations.

2.2 Data Statistics

The annotated dataset contains 865 transcripts. As
shown in Table 1, for the dialogue topic analysis,
there are 16 topic types; the class of ‘Other’ in-
cludes topics with less medical information such as
financial support and caregiver. In our fine-grained
annotation, some topics have sub-categories (e.g.,
‘Customized Coaching’ is one sub-topic of ‘Physi-
cal Activity’, ‘Insulin’, and ‘Self-Monitoring’, and
we use their base topic type for the labeling task.
Figure 1 shows one annotated dialogue example
with two topic segments.

(a) Length Distribution With a lower information
density, spoken dialogues are often much longer
than documents. In our transcribed calls, the max-
imum, median, and minimum utterance numbers
are 1996, 221, and 21, respectively; the maximum,
median, and minimum number of words are 16701,
1684, and 70, respectively. The lengthy conver-
sations are usually caused by covering more top-
ics, as well as a detailed discussion. As shown
in Figure 2, nearly 5% samples (at the 95% quan-
tile) are comprised of more than 800 utterances
(6000 words), which significantly surpasses the in-
put limit of many language backbones (Liu et al.,
2019a; Lewis et al., 2020).

(b) Topic Distribution For efficient communica-
tion, nurses organize follow-up calls based on pa-
tient profiles and health management programmes.
As a result, topics present different importance
in the form of frequency and length. As shown
in Table 1, we calculate the segment number of
each topic and their average word number. We ob-

General Education Oral Medication Insulin
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Medical Experience Hyper/Hypo Incident Self-Monitoring
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Figure 3: Speaker distribution of selected topic types.
The proportion of nurse is in red; others are in blue.
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Figure 4: Feature visualization of segment embeddings
via t-SNE. The colored points denote topically-coherent
segments labeled in different topics.

serve that some topics are frequent and more well-
discussed such as ‘General Education’, ‘Medical
Experience’, and ‘Diet Management’ (Nazar et al.,
2016), while some are more targeted and concise
such as ‘Identification’, ‘Vitals’, and ‘Insulin’.

2.3 Conversational Linguistic Features

In order to gain insights into the clinical dialogues,
we conduct three quantitative analyses using the
annotated topic segments. Here are some findings:
(a) Nurses are the main topic coordinator. We
extract the speaker role information from the first
utterance of each segment. As shown in Figure 2,
the dialogue topic shift is mainly led by the nurses,
which is consistent with the purpose of diabetes
follow-up calls (Piette et al., 2001), indicating the
speaker role can contribute to the topic analysis.
(b) Questions lead the topic shifting. Since punc-
tuation marks are retained in our transcribing, we
calculate the number of utterances that end with a
question mark, and it shows that 83% of the topic
shifting starts with an inquiring utterance.

(c¢) Different topics show distinct semantics.
Aside from the in-topic coherence, different topics
will present diverse distribution in a semantic space.
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Figure 5: Overview of the joint framework for dialogue topic segmentation and categorization.

Thus, we conduct a semantic feature visualization.
We obtain segment representations from an unsu-
pervised sentence embedding model SimCSE (Gao
et al., 2021), and use t-SNE (Van der Maaten and
Hinton, 2008) to illustrate their distribution in a
2-dimensional space. As shown in Figure 4, the
language used in different topics is specific, and
varies from one to the other.

3 Joint Model of Dialogue Topic
Segmentation and Categorization

3.1 Task Definition

Given a dialogue D which is composed of m ut-
terances {u1, ug, ..., U, }, (1) a topic segmenter is
applied to score each utterance with ¢ € [0, 1] that
indicates whether it is the first utterance of each
segment; (2) a topic classification model is applied
to determine the topic label of each segment, where
yl € [t1,t2, ..., tx] , and k denotes the categorical
dimension (set at 16).

3.2 Framework Description

Following the task-specific fine-tuning paradigm
(Liu et al., 2019a; Xing and Carenini, 2021), we
build a joint model of dialogue segmentation and
topic categorization by equipping a Transformer-
based language backbone with functional modules,
and its overview is shown in Figure 5.

(a) Token-level Encoder The token-level encoder
consists of a stack of Transformer layers; each layer
contains a multi-head self-attention and a position-
wise feed-forward component. Residual connec-
tion and layer normalization are employed. Its in-
put is represented as [<s>,u, <s>,u2, ..., <8>,Um ],
where special token ‘<s>’1is used as the delimiter.
To maximize the receptive field of the token-level
encoding, we adopt a sliding-window strategy on
full-length input sequences (Wang et al., 2019).
(b) Utterance-level Encoder After token-level con-
text encoding, we obtain the utterance embeddings

by extracting hidden states of all delimiters ‘<s>".
Then a Bi-directional LSTM is used for encoding
at the utterance level (Liu and Chen, 2021).

(c) Dialogue Segmentation Module The segmen-
tation component F., (a linear layer) is applied
to utterance-level representations, predicting the
boundary probability yf. Binary cross-entropy loss
is calculated between the model prediction and
ground truth. As shown in Figure 5, assuming
and ug are the boundary utterances, two topic seg-
ments [u1:us] and [ug:u,, ] are formed.

(d) Topic Categorization Module After dialogue
segmentation, for each topically-coherent span, we
obtain its segment embedding by aggregating and
averaging utterance-level representations. Then the
topic categorization module Fj,;. (another linear
layer) is applied to predict a categorical probability
yt. Cross-entropy is calculated between the model
prediction and ground truth as the loss function.

3.3 Enhancement Description

Based on our analysis in Section 2.3, here we inves-
tigate three methods to improve the model trained
on the limited data.

(a) Conversation Pre-Training Previous work
shows that pre-training on dialogic data is bene-
ficial for conversational tasks (Liu et al., 2022),
thus we leverage a backbone that is particularly cal-
ibrated with utterance-paired contrastive learning
(Zhou et al., 2022).

(b) Utterance Dropout One factor that affects seg-
mentation performance is the imbalance ratio of
boundary and non-boundary spans, which causes
models to overfit on exposure bias. Here we adopt
an utterance-level dropout strategy, where each can
be excluded before feeding to the encoder by a
probability p (set at 0.2).

(c) Windowed Segment Encoding To encourage
the segment embedding to capture useful informa-
tion from a more balanced positional distribution,
we adopt a windowed encoding strategy for the
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Model Type ‘ Pk Score |

Topic Segmentation

WD Score |

F1 Score 1

Precision 1

Topic Categorization

Recall 1

F1 Score 1

0.2542
0.2465 [3.0%]
0.2401 [5.5%]

+ Utterance Dropout

Roberta-base Model
+ Windowed Encoding

0.1526
0.1512 [1.0%]
0.1325 [13.%]

0.7486
0.7511 [0.3%]
0.7762 [3.6%]

0.7691
0.7912 [2.9%]
0.7918 [2.9%]

0.7610
0.7782 [2.3%]
0.7901 [3.8%]

0.7581
0.7814 [3.1%]
0.7847 [3.5%]

0.2451
0.2375 [3.1%]
0.2159 [11.%]

+ Utterance Dropout

DSE-base Model
+ Windowed Encoding

0.1394
0.1341 [3.8%]
0.1252 [10.%]

0.7621
0.7756 [1.8%]
0.7853 [3.0%]

0.7735
0.7937 [2.6%]
0.8093 [4.6%]

0.7703
0.7915 [2.8%]
0.8139 [5.6%]

0.7640
0.7883 [3.2%]
0.8110 [6.1%]

Table 2: Experimental results of segmentation and categorization. Values in brackets denote relative improvement.

Topic Segmentation

Topic Categorization

Model Type Pk Score | WD Score | F1 Score 1 \ Precision 1 Recall T F1 Score 1
Enhanced DSE-base 0.2159 0.1252 0.7853 0.8093 0.8139 0.8110
- w/o Punctuation 0.2284 0.1349 0.7751 0.7733 0.7864 0.7855
- w/o Speaker Role 0.2401 0.1405 0.7662 0.7743 0.7838 0.7803
- Typo Injection 0.2238 0.1286 0.7817 0.7723 0.7811 0.7837

Table 3: Robustness analysis of the enhanced model for topic segmentation and categorization.

topic categorization module. More specifically,
for each segment, we randomly average utterances
within a fixed window size w, which is set at 5.

4 Experimental Results & Analysis

We conduct extensive experiments to assess the
model on our domain-specific application.

4.1 Experimental Data

The annotated clinical conversation data (865 dia-
logue samples) are used for training and evaluation.
We retain the original content of dialogue samples,
including fillers and punctuation marks, and build
model input using sub-word tokenization (Liu et al.,
2019a). We randomly select 8% samples for hold-
out validation, as well as the test set.

4.2 Model Configuration

We applied and compared two language backbones
Roberta-base (Liu et al., 2019a) and DSE-base
(Zhou et al., 2022). AdamW optimizer (Loshchilov
and Hutter, 2019) was used with learning rate of
le—5, weight decay of 1e—2, and a linear learning
rate scheduler. Model dropout (Srivastava et al.,
2014) rate was set at 0.1. Utterance dropout was
only applied at the training stage. Batch size and
epoch number were set at 8 and 15, respectively.
To avoid out-of-memory issues, we split lengthy di-
alogues into multiple grouped segments by concate-
nating adjacent topics (set at 5). Best checkpoints
were selected based on validation results using av-
eraged F1 scores. Models were implemented with
PyTorch! and HuggingFace Transformers?, and all

"https://github.com/pytorch/pytorch
“https://github.com/huggingface/transformers
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Figure 6: Confusion matrix heatmap of topic categoriza-
tion predictions. Values are converted to a percentage.

Topic 15 - 0.00

Topic 16 - 0.00

experiments were run on a single Tesla A100 GPU
with 40G memory.

4.3 Evaluation Metrics

For segmentation evaluation, we apply three stan-
dard metrics: Pk (Beeferman et al., 1999), Win-
Diff (WD) (Pevzner and Hearst, 2002) and macro-
average F1. Pk and WD are penalty metrics ({
denotes lower scores are better) calculated on the
window-based overlap between gold and predicted
segmentation. F1 is the standard harmonic mean of
precision and recall, where higher scores are better
(1). For topic categorization evaluation, we report
F1, precision, and recall scores. At the inference
stage, we obtain topic label predictions based on
gold segmentation to align with the ground truth.

4.4 Evaluation Results

Table 2 shows quantitative evaluation results on
two language backbones and our proposed enhance-
ments. For both segmentation and categorization
tasks, DSE-base outperforms the Roberta-base at
all metrics, demonstrating that further pre-training
on dialogic data can improve the contextualized
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modeling of conversations. Moreover, the joint
model achieves higher performance by adding ut-
terance dropout and windowed encoding. In par-
ticular, dialogue segmentation benefits more from
applying windowed encoding. Regarding topic cat-
egorization, as the normalized confusion matrix
shown in Figure 6, more than half of the topics
obtain acceptable topic labeling results (>0.85 ac-
curacy). However, the scores of some topics are
much lower, such as ‘Medical Experience’ (topic
9) and ‘Hyper/Hypo Incident’ (topic 15), we specu-
late that it is because these two topics are related;
speakers discuss some overlapped points, and their
utterances are not quite semantically distinct. This
observation is also consistent with the embedding
distribution shown in 4, where points of ‘Medical
Experience’ (topic 9) are scattered in the space.
While the limited data pose a low-resource train-
ing scenario, our methods bring a reasonable per-
formance for bootstrapping the dialogue analysis,
and we suppose that the imbalanced categorization
scores across topic types can be ameliorated with
further corpus extension.

4.5 Robustness Analysis

We further analyze how the conversational lin-
guistic features described in Section 2.3 affect the
model’s performance, by testing the well-trained
and enhanced DSE-base model separately on three
data perturbation settings: (1) Since questions often
lead the topic shifting, the first way is to remove all
punctuation marks (e.g., question marks, period,
comma) at the inference stage. (2) As nurses are
the main topic coordinator during the conversation,
we remove the speaker role labels (e.g., nurse, pa-
tient, caregiver) of all utterances to assess model’s
dependency on such features. (3) Moreover, to sim-
ulate the inevitable typos and ASR errors in speech-
to-text conversion, we randomly inject word-level
errors, by randomly replacing or removing words
upon a 15% probability of the input text. As shown
in Table 3, we observe that these manipulations
affect performance, especially removing speaker
role labels. However, the model can still provide
reasonable results, demonstrating that it utilizes
semantic modeling rather than solely relying on
lexical features.

5 Related Work

Topic structure analysis plays a pivotal role in di-
alogue understanding (Arguello and Rosé, 2006;

Takanobu et al., 2018). Dialogue segmentation
is similar to monologue segmentation, and aims
to split a dialogue session into topically-coherent
units. Various approaches originally proposed to
process documents can also be applied to the dia-
logue domain. Due to a lack of training data, there
are many unsupervised models, that exploit various
linguistic features such as the word co-occurrence
statistics (Hearst, 1997; Galley et al., 2003), topical
distribution (Riedl and Biemann, 2012; Du et al.,
2013) to measure the sentence similarity between
utterances, so that topical or semantic changes can
be detected. More recently, with the availability
of large-scale corpora sampled from Wikipedia,
by taking the section mark as the ground-truth seg-
ment boundary (Koshorek et al., 2018; Arnold et al.,
2019), there has been a rapid growth in supervised
approaches for monologue topic segmentation, es-
pecially neural-based approaches (Somasundaran
et al., 2020). In practical use cases, supervised
solutions are favored, as they present robust perfor-
mance and higher learning efficiency.

Language understanding of clinical conversation
has attracted a plethora of research work on in-
depth analysis regarding clinician-patient commu-
nications (Byrne and P.S.Long, 1984; Cerny, 2007,
Wang et al., 2018). More recent work has included
the utterances classification according to SOAP sec-
tions (Schloss and Konam, 2020), dialogue action
detection (Wang et al., 2020), named entity recog-
nition (Jeblee et al., 2019), information extraction
(Rajkomar et al., 2019; Du et al., 2019), extractive
(Lacson et al., 2006) and abstractive summarization
(Liu et al., 2019c; Krishna et al., 2021). Though
the downstream language understanding tasks are
not explored in this work, dialogue segmentation
and topic categorization are beneficial for those
tasks by reducing the computational complexity
and filtering redundant utterances.

6 Conclusion

The variety of segmentation granularity and topic
definition poses challenges to domain-specific dia-
logue modeling and low-resource training. In this
work, we investigated a joint model for dialogue
segmentation and topic categorization. From our
real-world case study on health management calls,
we found that the nurse-to-patient conversations
are shown to be topically organized, and modeling
conversational features is beneficial for improving
performance in practical clinical scenarios.
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Limitations

The data and model used in this work are in English,
thus to apply the approach to other languages, it
will require training data on the specified language
or using multilingual language backbones. More-
over, the segmentation granularity and topic defini-
tion vary across different domains, while our pro-
posed framework and methods are general, when
they are adapted to other conversational data, in-
domain annotation is required to obtain reliable
results.

Ethics and Impact Statement

We acknowledge that all of the co-authors of this
work are aware of the provided ACL Code of Ethics
and honor the code of conduct. The in-domain
samples used in this work are fully anonymized.
Participants are enrolled in the health management
program with consent for the use of anonymized
versions of their data for research. Our proposed
framework and methodology in general do not have
direct medical implications, and are intended to be
used to improve the model’s accuracy and robust-
ness for downstream applications.
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