
Proceedings of the 27th Conference on Computational Natural Language Learning (CoNLL), pages 548–560
December 6–7, 2023. ©2023 Association for Computational Linguistics

548

Future Lens: Anticipating Subsequent Tokens from a Single Hidden State

Koyena Pal
Northeastern University

pal.k@northeastern.edu

Jiuding Sun
Northeastern University

sun.jiu@northeastern.edu

Andrew Yuan
UMass Amherst

awyuan@umass.edu

Byron C. Wallace
Northeastern University

b.wallace@northeastern.edu

David Bau
Northeastern University

d.bau@northeastern.edu

Abstract

We conjecture that hidden state vectors corre-
sponding to individual input tokens encode in-
formation sufficient to accurately predict sev-
eral tokens ahead. More concretely, in this pa-
per we ask: Given a hidden (internal) represen-
tation of a single token at position t in an in-
put, can we reliably anticipate the tokens that
will appear at positions ≥ t + 2? To test this,
we measure linear approximation and causal
intervention methods in GPT-J-6B to evaluate
the degree to which individual hidden states
in the network contain signal rich enough to
predict future hidden states and, ultimately, to-
ken outputs. We find that, at some layers, we
can approximate a model’s output with more
than 48% accuracy with respect to its predic-
tion of subsequent tokens through a single hid-
den state. Finally we present a “Future Lens”
visualization that uses these methods to create
a new view of transformer states.

1 Introduction

Do hidden states in large language models (LLMs)
encode tokens farther than a single token ahead?
If so, how can we decode this sequence of tokens
from a single state? In this work we empirically
investigate these questions using GPT-J-6B (Wang
and Komatsuzaki, 2021). We train models to pre-
dict hidden states several tokens ahead of a given
position t based only on a contextualized represen-
tation of the input at this position.

Auto-regressive transformer language models
are typically trained to predict one token ahead, but
recent work has hinted that individual hidden states
may contain more information than just probabili-
ties of the following token. For example, Meng et
al. (2022a) trace information flow from subject to-
kens to associated attribute predictions many steps
ahead. Elsewhere, Gurnee et al. (2023) suggest
that neurons in early layers are dense with informa-
tion, while middle layers have dedicated neurons
that represent high-level contextual features.

Other related efforts have passed hidden interme-
diate states directly to the decoder head (skipping
in-between layers) to “verbalize” such embeddings
(Din et al., 2023; Belrose et al., 2023; nostalge-
braist, 2020). Studies of memorization (Carlini
et al., 2021, 2023, 2019) have identified the pres-
ence of very long memorized sequences generated
by language models, and Zhang and He (2020)
shows that progressively dropping layers during
computation can still achieve a similar prediction
output of the model when compared against their
fully computed model run.

In this work we ask: To what extent can we ex-
tract information about future (beyond subsequent)
tokens from a single hidden token representation?
To answer this, we conduct three experiments. First,
extending the ideas of Tuned Lens (Belrose et al.,
2023; Din et al., 2023) and the Logit lens (nostal-
gebraist, 2020), we train linear models to approx-
imate future model predictions several tokens in
the future, in order to reveal the extent to which
individual hidden states may directly encode sub-
sequent tokens. Second, we perform a causal in-
tervention study in which we transplant individual
hidden states from one context to a completely
different context and measure the extent to which
future tokens that were predicted in the original
context can be predicted in the foreign context. Fi-
nally, we fit a “soft prompt” to explicitly learn an
optimal prompt that permits reading out informa-
tion about subsequent tokens from a hidden state.

2 Methods

To unveil the information about “future” tokens
implicitly encoded in a single transformer state
vector, we develop and compare several methods
for predicting future tokens from a single hidden
state. Each of our methods has the same goal: Ex-
tract accurate predictions of a model’s probability
distribution several tokens ahead, based on the in-
formation in only one hidden state at a single layer

549

at one token of the transformer.
For our evaluations we use an autoregressive

transformer (Vaswani et al., 2017) language model
defined as a function G : X → Y over vocabu-
lary V of size |V | = dv. G takes in a sequence of
tokens x = [x1,, xT] ∈ X,xi ∈ V and maps
this to a probability distribution yT ∈ Y ⊂ [0, 1]dv ,
which (greedily) predicts the next-token xT+1 =
argmax yT . To generate additional tokens, the top
predicted token xT+1 is added to the sequence of to-
kens [x1,, xT , xT+1] and the process is repeated
until the next N tokens are produced.

To calculate each predicted probability distri-
bution from an input sequence x, the transformer
performs a sequence of computations at L layers;
this can be decomposed as:

G(x) = D(bL(· · · (b2(b1(E(x)))) · · ·)) (1)

Where the first step E :→ Rdh embeds each input
token into an initial hidden representation, e(xi) =
h0i ∈ Rdh ; each layer bl : Rdh×T → Rdh×T trans-
forms the sequence of representations; and the de-
coder D : Rdh → Y decodes the predicted proba-
bility distribution yT = D(hLT) from the last layer
at the last token. We write the output of layer l as
Hl = bl(H

l−1), where:

H l = (hl1, ..., h
l
T) ∈ Rdh×T (2)

When generating a sequence of tokens beyond the
given starting prefix of length T , we write:

yT+i = G([x1, .., xT+i−1, xT+i]) (3)

xT+i+1 = argmax yT+i (4)

Our goal is to devise methods that can anticipate
what G will predict for yT+1 through yT+N from
only a single hidden state at hlT .

2.1 Direct Vocabulary Prediction
Let hlT denote the hidden representation induced
by G for token xT at intermediate layer l ≤ L,
and let yT+N denote the subsequent-token distribu-
tion predictions produced by G after token xT+N .
To predict yT+N from hlT alone, we train a linear
model gθ to predict logits ẑT+N that approximate
ŷT+N after softmax:

ẑT+N = gθ(h
l
T) (5)

ŷT+N = softmax(ẑT+N) ≈ ŷT+N

Since this model directly predicts the subsequent
predictions over the full vocabulary from hlT , we
call it the direct vocabulary prediction model.

...

Figure 1: LLM to Linear Model Approximation
Overview. Given a hidden state, hlT , the linear model,
fθ, is trained to output a future hidden state hLT+1. In
this example hlT is the encoding that would lead to the
prediction of ‘New,’ and fθ uses only that information
to predict hLT+1 that would predict ‘York.’

2.2 Linear Model Approximation

We also test a linear model based on the tuned
logit lens (Belrose et al., 2023; Din et al., 2023)
approach, which anticipates future hidden states
within the transformer and decodes them using
the pretrained decoder head. Differently from that
work, we model hidden states at future tokens in
rather than only at later layers.

Beginning with the hidden representation hlT ,
we create a model to predict a hidden state hLT+N
at the final layer L, and subsequent token xT+N .
To predict hLT+N from hlT , we train a linear model:

ĥLT+N = fθ(h
l
T) ≈ hLT+N (6)

The vocabulary can be read from the predicted
ĥLT+N by applying the pretrained decoder head
of the transformer. In Figure 1, we show an ex-
ample of one such linear model. Suppose that we
have trained a linear model parameterized by θ, fθ,
that takes in the last token hidden representation
of the input at layer l to generate a hidden state at
layer L of the following token hidden representa-
tion. When we input the following in G: “Madison
Square Garden is located in", we get “New" as the
highest-probability prediction atN = 0 and “York"

550

at N = 1. We use the linear model to approximate
this based on the hidden representation of TN (i.e.,
“in") at layer l ≤ L as our input; the ideal output
of the linear model given this would be the hidden
state at TN+1 and layer L, which is associated with
predicting “York” as the most probable token.

This approach differs from the direct vocabulary
approach by reusing the pretrained decoder head of
the transformer. We find that this marginally aids
predictions at the latest layers l near L. Based on
the observation that other pretrained transformer
parameters may encode memorized calculations
that facilitate decoding of subsequent tokens, we
next turn to other approaches that utilize larger
portions of the pretrained transformer to predict
future tokens.

2.3 Fixed Prompt Causal Intervention

The next method we consider involves a single-
state causal intervention where we transplant the
hidden state hlT into the transformer while it is de-
coding an unrelated bit of context. The question is
whether this transplantation steers the model to gen-
erate tokens related to the prefix that induced hlT .
If it does, this indicates that information about sub-
sequent tokens (in the original sequence) is promi-
nently encoded in hlT .

Figure 2 depicts the procedure. On the left,
we show the original context from which hlT is
read; here x = [x1, ..., xT] is “Madison Square
Garden is located in" where x1 is “Madison" and
xT is “in". This results in a sequence of outputs
[xT+1, ..., xT+N] which will read “New York City.”
On the right, we run a single generic fixed-context
prompt c = [c1, ..., cM] (e.g., “Please, tell me
something about" where c1 is “Please" and cM is
“about") through the transformer. One would not
anticipate that this generic prompt would cause the
transformer to predict “New York City”.

Using an intervention, we now directly test that
hypothesis that a single hidden state at layer l and
token T within the original run contains the infor-
mation necessary to predict subsequent tokens. We
transplant the original run’s state vector hlT into the
corresponding location hlM in the fixed-context run,
then allow the transformer to proceed. If the nec-
essary contextual information is present in the new
run, the resulting tokens generated would become
“New" for the current token generation and “York"
and “City” for the subsequent token generations.

Formally, let the sequence x = [x1, ..., xT] de-

note an input context that causes the model to sub-
sequently generate [xT+1, ..., xT+N], and let and
c = [c1, ..., cM] represent a generic fixed-context
prompt where T and M represent the lengths of
the original and fixed input prompts, respectively.
When each are passed through G, we get the fol-
lowing predicted distributions:

yT = G(x) ∈ [0, 1]|V | (7)

ŷ∗M = G(c) ∈ [0, 1]|V |

Denote the intervention that replaces hlM from the
fixed-context run with state hlT from the original
run as:

ŷM = G(c ||hlM := hlT) (8)

If, after the intervention, the new predicted distribu-
tion ŷM ≈ yM approximates the prediction in the
original context, that will reveal that hlT specifically
encodes information needed for that prediction.

Furthermore, we can deduce what hlT encodes
about subsequent token predictions n steps ahead
by adding the generated tokens to the input and
comparing the following predictions:

yT+i = G(x+ [xT+1, ..., xT+N]) (9)

ŷM+i = G(c+ [xT+1, ..., xT+N] ||hlM := hlT)

The context prompt c could be chosen as any
sequence of tokens. In practice, some prompts are
more amenable to this intervention than others. In
our experiments, we will test a small set of highly
generic phrases.

2.4 Learned Prompt Causal Intervention

In the previous section, we have described an in-
tervention that could reveal information predictive
of upcoming tokens encoded in a single hidden
state, by steering generation when grafted into com-
pletely unrelated contexts.

However, in cases where this “fails”, it does
not necessarily mean that the hidden state does
not encode similar information; it may just be less
prominent. To evaluate the degree to which such
signal is present in these cases, we next explore an
approach in which we learn to surface information
about subsequent tokens from individual contextual
token embeddings. This procedure is shown in
Figure 3.

Specifically, we optimize a parameterized prefix,
copt = [c1, ..., cM] to extract this information from

551

... ...

Figure 2: Illustration of Fixed prompt Causal Intervention. The left and right sides represent two different trans-
former model runs. On the left hand side, we have the original run of Madison Square Garden ... in New York.
We transplant the hidden state, hlT to the other transformer model run, which has a fixed generic context, Tell me
something about, as its input. With hlT replacing the hidden state at hlM , we measure the tendency of this modified
transformer run to reveal the probability distribution in hlT . In such cases, it would reveal that hlT was predicting,
for instance, ‘New York City.’

...
...

Figure 3: Learned context prompt Causal Intervention Overview. The left and right sides represent two different
transformer model runs. The general setup is the same as Figure 2. The difference lies in the context provided in
the transformer run on the right hand side. Instead of manually thinking of a context, we provide a learned context
to increase the tendency of decoding the subsequent tokens predicted by hlT . We do so by training the context, c,
with LKL criterion and the objective to match the subsequent token prediction, such as ‘York’ in this instance.

552

the hidden state. For each decoder layer l, we train
the corresponding prefix c

(l)
opt = [c

(l)
1 , ..., c

(l)
M] to

maximize the probability of the model yielding the
exact subsequent phrase after the original context.
In particular, we conduct the same causal interven-
tion in the hidden states hlT . We then optimize the
probability distribution of the subsequent genera-
tion under the learned context to be the same as the
original model when all its previous generation is
given correctly:

argminKL(ŷM+N ; yT+N) (10)

Where the predicted distribution ŷn is given using
the same intervention as described in Eq. 9:

ŷM+n = G([c1, ..., cM , xT+1, .., xT+N]

||hlM := hlT) (11)

We hence optimize this objective with the model
frozen and only prefix left to be trained. Notably,
our approach is different from the implementation
of prefix tuning (Li and Liang, 2021) in the sense
that we back-propagate the gradient through the
model instead of a temporary MLP, as empirically it
produces a significantly better optimized context.

3 Experiments and Results

3.1 Data
We perform evaluation on samples of the Pile (Gao
et al., 2020), which is the 825GB dataset used to
train GPT-J-6B (Wang and Komatsuzaki, 2021) as
well as other LLMs.

To train the linear models, we sample 100,000
tokens that have an average of 518 sized-context.
Amongst the 100,000 token samples, we use 10,000
of them to train for our learned prompt experiment.
For testing our methods, we sample another 1000
tokens that have an average previous context length
of 535. To simplify our analysis of the degree to
which single hidden token representations encode
subsequent n-grams, we draw our samples from
contexts in which the original transformer model
made a correct prediction.

More specifically, we randomly sampled train
and test data points from the subset of token loca-
tions where the autoregressive transformer under
consideration correctly predicts the following to-
ken. In Table 1, we break down the types of tokens
present in the testing data by categorizing the last
token (T) of the prefix as well as the generated
tokens outputs of GPT-J , through greedy (argmax)

decoding, at N = 0, 1, 2, 3 with respect to various
properties, such as whether they are lower-cased to-
kens that start with a space, or are numerical tokens,
and so on.

3.2 Evaluation Metrics

For evaluation we adopt the same metrics used
in prior related work Din et al. (2023), namely
Precision@k and Surprisal.

Precision@k measures the appearance of the top
probability token in the output at N tokens ahead
we predict from the hidden state with respect to
the observed top-k tokens from GPT-J-6B model
output. Higher values are better here because these
mean the actual token at the corresponding future
token was accurately predicted.

Surprisal, on the other hand, is the minus log
probability according to the GPT-J-6B model out-
put of the highest probability token according to
the proposed probing methods. Lower is better for
this measure. because such values imply that the
top predicted tokens are deemed probable by the
model.

3.3 Experimental Setup

Linear Model We train two types of linear mod-
els — one with an output space of 4096 (the hid-
den representation size used by GPT-J-6B), and
the other one with 50,400 (the vocabulary space
of the same). GPT-J-6B comprises 28 layers. We
train 4 instances for each of these layers, one for
each different “future” token position we consider
(n = 0, 1, 2, 3). As input we accept the source
hidden state, i.e., hlT . Our output is either the hid-
den state, i.e., hLT+N or the decoded output at the
position (vocabulary distribution) T +N .

Fixed Prompt Causal Intervention This is
an evaluation-only setup where we choose four
generic context prompts and perform causal inter-
vention on these contexts as shown in Figure 2. The
four fixed context prompts that we test are:

• Hello! Could you please tell me more about "

• The multi-tokens present here are "

• The concepts in this hidden state listed are: (

• <|endoftext|> This state is describing about the

following concept:

The hidden states are gathered from layer l of the
last token of the context tokens and are transplanted
into the hidden representation of the last token in
the generic prompts at the same layer l.

553

Properties Last Original
Context Token

N = 0 N = 1 N = 2 N = 3 Examples

Lowercase No Space 12 14.5 18.1 13.1 13.4 ‘itability’, ‘aka’, ‘ension’
Lowercase With Space 42 39.1 37.1 38.4 36.7 ‘ sense’, ‘ tests’, ‘ punitive’
Uppercase No Space 2.4 2.7 2.2 2.8 1.6 ‘V’, ’TABLE’, ’SE’
Uppercase With Space 1.9 2.4 1.1 1.5 1.7 ‘ STAR’, ‘ UK’, ‘ USA’
Token length < 4 57.8 59.8 64.3 59.9 63.2 ‘*’, ‘ate’, ‘</’
Token length ≥ 4 42.2 40.2 35.9 40.5 37 ‘ validation’, ‘ Subaru’, ‘ulsion’
Punctuation 15.7 14.5 17.3 15.2 19 ‘-’, ‘.’, ‘</’
Numerical 2.4 2.7 1.9 3.2 2.8 ‘1998’, ‘001’, ‘5’

Table 1: Data Frequency of different token properties on the Last Prefix Tokens and GPT outputs at N=0,1,2,3.
Each number in the table is a percentage of the test dataset, which is of size 1000.

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n@
1

N = 0

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 1

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 2

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 3
Learned prompt
Fixed prompt
Linear Model
Linear Vocab
Pile Bi-gram

Figure 4: Accuracy (Precision@1) using the transplanted hidden representation. The N = 0 case models immedi-
ate next-token prediction, and N ≥ 1 are the subsequent-token cases that are the focus of our work. The learned
prompt is best able to recover future token information from hidden states of a preceding individual token, with
predictive accuracy peaking at middle layers, with more than double the accuracy of a bigram baseline. A linear
model predicting the hidden state fares comparably to predicting directly into the output vocabulary.

Learned Prompt Causal Intervention We then
compare with trained prompts with the same to-
ken length as the fixed prompts. We train a soft
prompt for each layer l from 1 to 28. Each learned
prompt is trained by maximizing the probability of
generating the token from the prefix context at the
penultimate layer, when the hidden state is trans-
planted at layer l at the last token of the soft prompt,
in the same way as the fixed prompts are applied.
We train a prefix with a length of 10. This method
performs best and is our main method.

3.4 Unveiling Subsequent Tokens

Figure 4 and Figure 5 illustrate the difference be-
tween our method and the baselines. The learned
prompt optimized with the objective of predicting
the next token (N=1) has the best performance.
On average, the precision@1 is 24.8% higher, pre-
cision@5 is 25.3% higher, and precision@10 is
25.1% higher than the best baseline method. For
the surprisal, the learned prompt also has the low-
est value, which indicates its efficacy at maximally
unveiling the information behind the hidden states.

4 Related Work

Knowledge Prediction and Manipulation Re-
cent works have delved into LLM internals to bet-
ter understand how such models predict the next
token at each computation step. Geva et al. (2021),
for instance, find that the feed-forward layers in
transformers operate as key-value memories, al-
lowing one to intervene at those layers to modify
the next token output (Geva et al., 2022). Frame-
works such as ROME (Meng et al., 2022a) and
MEMIT (Meng et al., 2022b) scale such manipula-
tions to edit knowledge in stored in LLMs.

The consensus that has emerged in these papers
is that some early-middle and late layer calcula-
tions contribute the most to the final predicted to-
ken. Tools such as Logit lens (nostalgebraist, 2020)
and Tuned lens (Belrose et al., 2023; Din et al.,
2023) allow us to look at the top-k values of the
transformer at every layer and token to see early
next-token predictions. Katz and Belinkov (2023)
used logit lens to visualize semantic information
flow in GPT-2 models. In contrast to these ap-
proaches, we aim to characterize how the current

554

1 5 10 15 20 25 28
In-Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0
Su

rp
ris

al
N=0

Learned prompt
Fixed prompt
Linear Model
Linear Vocab

1 5 10 15 20 25 28
In-Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

N=1

1 5 10 15 20 25 28
In-Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

N=2

1 5 10 15 20 25 28
In-Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

N=3

Figure 5: Average surprisal of the model after transplantation. Again the learned prompt performs best, confirming
the presence of subsequent-token information encoded at middle-layer hidden states.

LENS N=1 N=2 N=3

Accuracy
LEARNED 97.0 48.4 43.7 46.9
FIXED 97.0 20.8 30.0 36.5
HS 98.0 29.2 19.0 15.8
VOCAB 85.7 27.5 19.4 14.7

Surprisal
LEARNED 0.6 4.5 4.4 3.9
FIXED 0.6 8.8 6.5 5.7
HS 0.8 14.1 13.2 13.1
VOCAB 0.9 15.3 14.4 14.2

Table 2: Best accuracy and surprisal results for each
method. LEARNED refers to the Learned Prompt
Causal Intervention Method; FIXED denotes the Fixed
version. HS is the Linear Model variation that predicts
Hidden State; VOCAB, is the Linear Model variation
that predicts a distribution over the vocabulary directly.

hidden state would affect the prediction of not only
the next token, but also tokens farther ahead.

Early Exit Decoding To optimize the running
time and space requirements of training models,
prior work has looked at “early exit” strategies,
which usually involves stopping at earlier layers of
computation and estimating the final predictions
based on those computations (Schuster et al., 2022;
Xin et al., 2021; Kong et al., 2022; Zhang and He,
2020; Din et al., 2023). The takeaway from these
methods is that it is possible to achieve prediction
performance comparable to that observed when all
layers are used even when dropping a couple of
computational layers for each token. For instance,
Din and colleagues (2023) used linear transforma-
tions to predict a later layer’s hidden representation
from an earlier layer at the same token. This ap-
proach was able to preserve ∼95% of the full trans-
former model outputs on GPT-2 (Radford et al.,

2019) and BERT (Devlin et al., 2018). This result
implies that initial model layers encode information
that to a large degree determines the final output.
In this work we test the limits of this phenomenon
by evaluating the degree to which a single hidden
representation for the token at position T can be
used to predict tokens multiple steps ahead (i.e., at
T +N).

Memorization in Language Models Due to the
potentially sensitive information present in the
datasets used to train language models (LMs), past
work has investigated what, when, and why memo-
rization occurs (Carlini et al., 2021, 2019; Feldman
and Zhang, 2020; Lehman et al., 2021), how mem-
orization changes as a function of training data
size (Carlini et al., 2023; Wei et al., 2022), and
how other memorized information can be detected
based on model internal states (Haviv et al., 2023).

These works have collectively illustrated that
there are some text snippets that LMs remember
and can output verbatim or in closely paraphrased
versions (“approximate memorization”; Ippolito
et al. 2023). Other work (Haviv et al., 2023) has
shown that earlier layers of models tend to promote
memorized concepts or tokens, while later layers
boost model confidence in these tokens. Our paper
can be viewed as an extension of this work on
investigating memorization of multi-token phrases:
we ask whether and to what extent a single model
hidden state encodes multi-token information.

Prompt Tuning Prompt Tuning has emerged
as a parameter-efficient method for fitting LMs
for new downstream tasks. By freezing the LM
and optimizing only the soft prompt parameters,
models are able to achieve performance compa-
rableto that observed after fine-tuning all param-
eters. Li et al. (2021) introduced prefix tuning
which entailed training plug-and-play prefix that

555

Last Context Token
Type

Linear: Vocab Space Linear: Hidden State Fixed Context Learned Context

Lowercase No Space 21.7 25.2 9.2 32.5
Lowercase With Space 26.4 20.8 19.2 51.9
Uppercase No Space 29.2 26.3 0.0 23.3
Uppercase With Space 26.3 26.3 10.5 31.6
Token length < 4 26.5 24.9 21.8 46.9
Token length ≥ 4 23.9 24.4 18.0 52.1
Punctuation 28.7 28.7 16.6 47.8
Numerical 12.5 16.7 20.8 33.3

Table 3: Accuracy of predicting N = 1 token ahead (yT+1, which predicts xT+2) based on hidden representation
of the last context token(xT). Results are shown for layer l = 14, where the learned prompt model is most accurate.

steers the behavior of the LMs for the downstream
tasks. Other work (Wallace et al., 2019) applied a
gradient-based method to search for the best dis-
crete prompts which enable the model to produce
desire generation. Sun and colleagues (2023) train
the prefix soft prompt as a way of aligning seman-
tically equivalent instructions in latent space.

5 Discussion

In this paper we explored the degree to which we
are able to decode multi-token outputs subsequent
to a particular token on the basis of its hidden
representation alone. The results in Table 2 and
Figures 4 and 5 indicate that such representations
encode such information, at least to some degree.
Among the decoding methods we assessed, learned
prompts are best able to predict such future tokens.
Both the linear and the learned prompt models
achieve better accuracy than the empirical bigram
baseline atN = 1 (the horizontal line in Figure 4).1

When this bigram model is run on the testing data,
it achieves 20.1% accuracy. Interestingly, predic-
tive accuracy of the learned prompt model peaks
at the middle-layer hidden states, suggesting that
subsequent-token information is encoded at those
middle layers; this pattern is very different from the
immediate next-token N = 0, in which accuracy
peaks at the last layer.

The learned prompt model realizes an accuracy
sufficiently good to be potentially useful as a ‘Logit
lens’-like tool to provide insights about subsequent
token information contained in hidden states within
LLMs. This provides a way to decode a short se-
quence of tokens encoded in a hidden state, rather
than only the single immediate token prediction.

1The bigram baseline is collected from 900,000 documents
from the Pile dataset.

To further explore the contexts in which these
methods seem better (or worse) able to predict sub-
sequent tokens, we categorize input token (the last
original context token) into eight (non-mutually ex-
clusive) categories, shown in Table 3. We report
the model accuracies when using layer 14, where
the learned prompt model peaks.

While all categories of token types are predicted
better by the learned prompt than by the linear
model, the relative improvement is highest when
the last context token is a lowercase token preceded
by a space, or a longer token. This suggests that
information about how to complete long words may
not be immediately accessible by a linear model
decoder, but that they can be made accessible by
using the parameters of the pretrained model as
done by the learned prompt intervention method.

We have also observed that the accuracy of pre-
dicting subsequent tokens is correlates with the
model’s confidence in its next token prediction. In
the case ofN = 1, for instance, the learned prompt
intervention method’s calibrated accuracy is 26%,
57%, 77%, and 95% for model confidence groups
of 0-30%, 30-60%, 60-90%, and 90%-100%, re-
spectively. These trends appear in N = 2 and
N = 3 as well. This suggests that we might gain-
fully use this decoding method as a probing tool,
trusting that predicted future tokens are generally
accurate when the model is confident.

Does future information appear only in the pres-
ence of higher-level concepts? For example, one
might hypothesize that in cases the language model
predicts an entire named entity, that the probing
method might decode future predictions more accu-
rately. To investigate this, we performed sub-group
analyses on test results to characterize how well
the best probing method performed specifically for
multi-token named entities. Interestingly, we found

556

L1

L2

L3

L26

L27

L28

Mart y Mc Fly from

Figure 6: The Future Lens applied to the hidden states of GPT-J-6B processing Marty McFly from. Each cell
illustrates the most likely sequence of future tokens that the respective hidden state predicts. The darker boxes
correspond to higher probabilities/confidence.

little difference: when examining just the named
entity cases, we observe similar or slightly lower
accuracy: 44%, 42% and 37% for N = 1, 2, 3, sug-
gesting that future information is present broadly,
not only for long entity names.

In sum, we have found that a single hidden state
encodes information about outputs more than one
token ahead, and we have demonstrated three dif-
ferent methods that can decode them for GPT-J-6B.

Application: Future Lens We apply the
Learned Prompt Intervention Method to create a
novel probing tool we call the Future Lens. Given
a soft prompt, we perform the intervention using
the states arising from the user’s prompt to provide
a view into what the hidden states encode about
future tokens. In Figure 6, we show an example
for the prompt: “Marty McFly from". The Future
lens reports the anticipated four tokens from every
hidden state in the model (across layers).

In the Future Lens visualization, every cell
represents a hidden state from a particular layer
("L{digit}") at a specific token. The shade of each
cell indicates the average confidence of the model

with respect to the corresponding token predictions
(darker shades indicate greater confidence). For
example, at the cell representing the hidden state
at Layer 25 at the token “from", we can see that
the confidence in the predicted tokens “Back to the
Future" is strong. This particular state suggests
that the LLM already knows that Marty McFly
is related to the Back to the Future movie. Inter-
estingly, the model also assumes “Marty” to have
the surname Donough. Returning to the predic-
tions at token “from", we see that the early layers
seem to first predict countries such as Australia
or cities such as Boston. However, through future
predictions, we can see the model begins to as-
sociate Marty McFly with a movie around Layer
6. Hence, through this tool, we can gain further
insights about the model’s chain of predictions at
every hidden state. All code and data for demo
and implementation is made available at: https:
//github.com/KoyenaPal/future-lens

Acknowledgements This work was supported by Open

Philanthropy and by the National Science Foundation (NSF)

award 1901117. We thank the Center for AI Safety (CAIS)

for making computing capacity available for this research.

https://github.com/KoyenaPal/future-lens
https://github.com/KoyenaPal/future-lens

557

References
Nora Belrose, Zach Furman, Logan Smith, Danny Ha-

lawi, Igor Ostrovsky, Lev McKinney, Stella Bider-
man, and Jacob Steinhardt. 2023. Eliciting latent
predictions from transformers with the tuned lens.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2023. Quantifying memorization across neural lan-
guage models. In The Eleventh International Con-
ference on Learning Representations.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej
Kos, and Dawn Song. 2019. The secret sharer: Eval-
uating and testing unintended memorization in neu-
ral networks. In Proceedings of the 28th USENIX
Conference on Security Symposium, SEC’19, page
267–284, USA. USENIX Association.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ul-
far Erlingsson, Alina Oprea, and Colin Raffel. 2021.
Extracting training data from large language models.
In USENIX Security Symposium.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Alexander Yom Din, Taelin Karidi, Leshem Choshen,
and Mor Geva. 2023. Jump to conclusions: Short-
cutting transformers with linear transformations.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179–211.

Vitaly Feldman and Chiyuan Zhang. 2020. What neu-
ral networks memorize and why: Discovering the
long tail via influence estimation. In Proceedings
of the 34th International Conference on Neural In-
formation Processing Systems, NIPS’20, Red Hook,
NY, USA. Curran Associates Inc.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. 2020. The pile: An
800gb dataset of diverse text for language modeling.

Mor Geva, Avi Caciularu, Guy Dar, Paul Roit, Shoval
Sadde, Micah Shlain, Bar Tamir, and Yoav Goldberg.
2022. LM-debugger: An interactive tool for inspec-
tion and intervention in transformer-based language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 12–21, Abu Dhabi,
UAE. Association for Computational Linguistics.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are
key-value memories. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 5484–5495, Online and

Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine
Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
2023. Finding neurons in a haystack: Case studies
with sparse probing.

Adi Haviv, Ido Cohen, Jacob Gidron, Roei Schuster,
Yoav Goldberg, and Mor Geva. 2023. Understand-
ing transformer memorization recall through idioms.
In Proceedings of the 17th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 248–264, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Daphne Ippolito, Florian Tramèr, Milad Nasr, Chiyuan
Zhang, Matthew Jagielski, Katherine Lee, Christo-
pher A. Choquette-Choo, and Nicholas Carlini.
2023. Preventing verbatim memorization in lan-
guage models gives a false sense of privacy.

Michael I Jordan. 1997. Serial order: A parallel dis-
tributed processing approach. In Advances in psy-
chology, volume 121, pages 471–495. Elsevier.

Shahar Katz and Yonatan Belinkov. 2023. Interpreting
transformer’s attention dynamic memory and visual-
izing the semantic information flow of gpt.

Jun Kong, Jin Wang, Liang-Chih Yu, and Xuejie Zhang.
2022. Accelerating inference for pretrained lan-
guage models by unified multi-perspective early ex-
iting. In Proceedings of the 29th International Con-
ference on Computational Linguistics, pages 4677–
4686, Gyeongju, Republic of Korea. International
Committee on Computational Linguistics.

Eric Lehman, Sarthak Jain, Karl Pichotta, Yoav Gold-
berg, and Byron C Wallace. 2021. Does bert pre-
trained on clinical notes reveal sensitive data? arXiv
preprint arXiv:2104.07762.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for genera-
tion. arXiv preprint arXiv:2101.00190.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022a. Locating and editing factual asso-
ciations in GPT. Advances in Neural Information
Processing Systems, 36.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2022b. Mass
editing memory in a transformer. arXiv preprint
arXiv:2210.07229.

nostalgebraist. 2020. interpreting gpt: the logit lens.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa De-
hghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and Don-
ald Metzler. 2022. Confident adaptive language
modeling. In Advances in Neural Information Pro-
cessing Systems.

http://arxiv.org/abs/2303.08112
http://arxiv.org/abs/2303.08112
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://arxiv.org/abs/2012.07805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/2303.09435
http://arxiv.org/abs/2303.09435
https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
http://arxiv.org/abs/2101.00027
http://arxiv.org/abs/2101.00027
https://aclanthology.org/2022.emnlp-demos.2
https://aclanthology.org/2022.emnlp-demos.2
https://aclanthology.org/2022.emnlp-demos.2
https://doi.org/10.18653/v1/2021.emnlp-main.446
https://doi.org/10.18653/v1/2021.emnlp-main.446
http://arxiv.org/abs/2305.01610
http://arxiv.org/abs/2305.01610
https://aclanthology.org/2023.eacl-main.19
https://aclanthology.org/2023.eacl-main.19
http://arxiv.org/abs/2210.17546
http://arxiv.org/abs/2210.17546
http://arxiv.org/abs/2305.13417
http://arxiv.org/abs/2305.13417
http://arxiv.org/abs/2305.13417
https://aclanthology.org/2022.coling-1.414
https://aclanthology.org/2022.coling-1.414
https://aclanthology.org/2022.coling-1.414
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://openreview.net/forum?id=uLYc4L3C81A
https://openreview.net/forum?id=uLYc4L3C81A

558

Yixuan Su, Deng Cai, Yan Wang, David Vandyke, Si-
mon Baker, Piji Li, and Nigel Collier. 2021. Non-
autoregressive text generation with pre-trained lan-
guage models. In Proceedings of the 16th Con-
ference of the European Chapter of the Associa-
tion for Computational Linguistics: Main Volume,
pages 234–243, Online. Association for Computa-
tional Linguistics.

Jiuding Sun, Chantal Shaib, and Byron C Wallace.
2023. Evaluating the zero-shot robustness of
instruction-tuned language models. arXiv preprint
arXiv:2306.11270.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information process-
ing systems, 30.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. arXiv preprint
arXiv:1908.07125.

Ben Wang and Aran Komatsuzaki. 2021. Gpt-j-6b: A
6 billion parameter autoregressive language model.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raf-
fel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Met-
zler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. 2022.
Emergent abilities of large language models. Trans-
actions on Machine Learning Research. Survey Cer-
tification.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min
Zhang, Tao Qin, and Tie yan Liu. 2023. A survey
on non-autoregressive generation for neural machine
translation and beyond.

Ji Xin, Raphael Tang, Yaoliang Yu, and Jimmy Lin.
2021. BERxiT: Early exiting for BERT with better
fine-tuning and extension to regression. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 91–104, Online. Association for
Computational Linguistics.

Minjia Zhang and Yuxiong He. 2020. Accelerating
training of transformer-based language models with
progressive layer dropping.

https://doi.org/10.18653/v1/2021.eacl-main.18
https://doi.org/10.18653/v1/2021.eacl-main.18
https://doi.org/10.18653/v1/2021.eacl-main.18
https://openreview.net/forum?id=yzkSU5zdwD
http://arxiv.org/abs/2204.09269
http://arxiv.org/abs/2204.09269
http://arxiv.org/abs/2204.09269
https://doi.org/10.18653/v1/2021.eacl-main.8
https://doi.org/10.18653/v1/2021.eacl-main.8
http://arxiv.org/abs/2010.13369
http://arxiv.org/abs/2010.13369
http://arxiv.org/abs/2010.13369

559

A Appendix

Additional Figures

In this main paper, we report results based on models that are trained to optimize the N = 1 single
token-ahead prediction, and we test those models for predictive accuracy for other N .

The same methods can also be used to optimize subsequent tokens, and the results of those methods are
shown here. We find that optimizing for N = 1 works best and generalizes surprisingly well to other N ,
but that that optimizing for other N does not perform well for N = 1.

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n@
1

N = 0

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 1

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 2

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 3
Learned prompt
Fixed prompt
Linear Model
Linear Vocab
Pile Bi-gram

Figure 7: The Precision@1 (Accuracy) of all the methods trained with predicting the currently decoded token
(teacher-forcing)

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n@
1

N = 0

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 1

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 2

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 3
Learned prompt
Fixed prompt
Linear Model
Linear Vocab
Pile Bi-gram

Figure 8: The Precision@1 (Accuracy) of all the methods trained with predicting the 1st next token

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n@
1

N = 0

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 1

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 2

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 3
Learned prompt
Fixed prompt
Linear Model
Linear Vocab
Pile Bi-gram

Figure 9: The Precision@1 (Accuracy) of all the methods trained with predicting the 2nd next token

560

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ec
is

io
n@

1
N = 0

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 1

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 2

1 5 10 15 20 25 28
In-Layer

0.0

0.2

0.4

0.6

0.8

1.0

N = 3
Learned prompt
Fixed prompt
Linear Model
Linear Vocab
Pile Bi-gram

Figure 10: The Precision@1 (Accuracy) of all the methods trained with predicting the 3rd next token

Limitations

In our exploration with extracting far future tokens from single hidden states, we have mostly trained
and tested on English data whose size, 100,000, is still relatively small compared to the data size that
GPT-J-6B was actually trained in. Furthermore, the experiments were only conducted in GPT-J-6B.
While the presence of subsequent token information in a single hidden state is evident in this model, it
would be more comprehensive to run these experiments in other LLMs. Since there are no specific prior
works that focused on decoding far future tokens from a single hidden state, we did not have any prior
baselines we would refer to. While we did create a bigram baseline in the case of predicting 2 tokens in
the future (N = 1) and also create linear models as a first decoding method, there could be baselines with
other architectures like Recurrent Neural Networks (Jordan, 1997; Elman, 1990) and Non-Autoregressive
generation (Su et al., 2021; Xiao et al., 2023). Lastly, our experiments were up to 4 tokens in the future,
i.e., N = 0, 1, 2, 3. It would be intriguing to scale and test up to how many tokens in the future does a
single state actually encode and predict.

