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Abstract

Post-stroke speech and language deficits (apha-
sia) significantly impact patients’ quality of
life. Many with mild symptoms remain un-
diagnosed, and the majority do not receive
the intensive doses of therapy recommended,
due to healthcare costs and/or inadequate ser-
vices. Automatic Speech Recognition (ASR)
may help overcome these difficulties by im-
proving diagnostic rates and providing feed-
back during tailored therapy. However, its
performance is often unsatisfactory due to the
high variability in speech errors and scarcity
of training datasets. This study assessed the
performance of Whisper, a recently released
end-to-end model, in patients with post-stroke
aphasia (PWA). We tuned its hyperparameters
to achieve the lowest word error rate (WER)
on aphasic speech. WER was significantly
higher in PWA compared to age-matched con-
trols (10.3% vs 38.5%, p < 0.001). We demon-
strated that worse WER was related to the more
severe aphasia as measured by expressive (overt
naming, and spontaneous speech production)
and receptive (written and spoken comprehen-
sion) language assessments. Stroke lesion size
did not affect the performance of Whisper. Lin-
ear mixed models accounting for demographic
factors, therapy duration, and time since stroke,
confirmed worse Whisper performance with
left hemispheric frontal lesions. We discuss the
implications of these findings for how future
ASR can be improved in PWA.

1 Introduction

Aphasia is a language impairment that causes diffi-
culties in speaking, understanding and/or writing
coherent and meaningful sentences. This deficit
negatively impacts numerous daily activities, such
as working, shopping or participating in commu-
nity and leisure experiences. As a consequence,
patients with aphasia report high levels of depres-
sion, passiveness, social exclusion and a general
decline in their quality of life (Spaccavento et al.,

2014). Overall, there are at least 2 000 000 people
in the USA (National Aphasia Association) and
more than 350 000 people in the UK with apha-
sia (Stroke Association). Roughly 45% of apha-
sic disorders arises following a stroke (Ali et al.,
2015). Stroke cases, mortality and morbidity have
increased substantially over the last two decades,
with 70% increase in incident strokes, 43% deaths
from stroke, and 143% DALYs Feigin et al. (2022).
Consequently, the incidence of aphasia has also
increased. Importantly, the presence of aphasia per
se worsens the overall stroke outcomes (Lazar and
Boehme, 2017; Geranmayeh et al., 2016). There-
fore, due to the psycho-social burden and the cur-
rent increase in stroke cases, early diagnosis and
treatment of aphasia need to be addressed.

The mainstay treatment of aphasia is speech and
language therapy; it entails practices with language
exercises for improving language ability, as well as
adjusting to new ways of communicating (Palmer
et al., 2018). According to the results of differ-
ent meta-analyses, higher intensity speech therapy
treatment is strongly associated with greater treat-
ment efficacy (Robey 1998; Bhogal et al. 2003;
Kelly et al. 2010; Breitenstein et al. 2017). Pro-
viding ongoing efficient treatment, however, can
be challenging due to limited resources, which can
make face-to-face speech therapy costly and dif-
ficult to achieve for every patient need (Palmer
et al., 2012; Le et al., 2018). The situation became
worse especially after the COVID-19 pandemic cri-
sis, that led to the suspension or the slowdown of
non-urgent care, including speech and language
therapies (Chadd et al., 2021).

A solution for these issues might be the use of
speech recognition models, able to remotely and au-
tomatically transcribe long pieces of conversation
to easily analyse patients language profiles and to
give tailored treatments. Nevertheless, even though
Automatic Speech Recognition (ASR) tools have
been already explored in research, until now these
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have been slow to catch up with the performance
obtained in healthy speech (Abad et al., 2013; Le
et al., 2016; Jamal et al., 2017; Le et al., 2018).
Indeed, the models trained on healthy data struggle
to achieve high accuracy in metrics like Word Error
Rate (WER) or Phoneme Error Rate (PER), mostly
due to the features of aphasic speech.

Speech from PWA is largely thought to have se-
mantic (meaning) and phonological (speech sound)
errors, as well as dysfluencies, each with indepen-
dent recovery trajectories (Stefaniak et al., 2022).
Furthermore, aphasic speech has characteristics
that might include: slow and hesitant elocution
with episodes of agrammatism (e.g. absence or
improper use of function words and verbs - Dam-
ico et al. 2010), word-finding problems that af-
fect mostly nouns and picturable action words,
frequent stammer, as well as an overall flow of
speech that is often fragmented, choppy, unintel-
ligible and/or awkwardly articulated (Abad et al.,
2013). These aspects can be influenced also by
motor control problems like apraxia and dysarthria,
frequently present in aphasia, which may also pro-
duce articulation distortion and aberrant prosody
(Le et al., 2016). Hence, the challenges that these
models need to address include the high variability
of speech errors, both between and within apha-
sic individuals, as well as the lack of satisfactory
training datasets.

We tested the performance of a state-of-art
sequence-to-sequence ASR transformer model that,
to our knowledge, has not been used yet on clinical
data. This model, released by Open AI (Radford
et al., 2022), is named Whisper1 and it is known for
its superior performance in healthy speech when
compared with other notable commercial and open-
source ASR systems. The feasibility of this model
in clinical practice is supported by the low WER
in healthy speakers, and the powerful large multi-
lingual weakly supervised dataset on which it was
trained. Moreover, the ability to run Whisper lo-
cally, will help to preserve the privacy of patients’
sensitive data and allow testing in compliance with
local and continental regulations. For the purpose
of this study, the Whisper testing is done on a novel
database of speech of PWA that we have created.

We fine-tuned Whisper parameters relevant for
aphasic speech, detailed in Section 3.2. This led
us to retrieve the best model according to the low-

1The model name comes from the acronym of WSPSR
standing for Web-scale Supervised Pretraining for Speech
Recognition

est WER to test on speech audio. We then com-
pared the patients’ WER to an aged-matched con-
trol group that performed the same speech produc-
tion task. After correlation analyses, we created
linear mixed-effects models and observed interest-
ing and significant relations with the average per-
formance of the ASR (see Section 4). According
to these results, our analysis offers useful insights
to consider for our next steps, from which other re-
searchers can also benefit. We expect that our study
will advance the work of ASR for PWA, enriching
and inspiring the research of the natural language
processing community applied in the healthcare
framework.

2 Related Work

Since the introduction of ASR technology in clini-
cal studies, algorithms have had to deal with several
challenges. The variability and complexity of dis-
ordered speech, sometimes unintelligible, has led
researchers to move forward with the creation of
novel ASR trained with pathological speech data.
Nevertheless, an additional difficulty they have to
face is the scarcity of datasets of such disordered
speech, limiting the accuracy and/or the generalis-
ability of the results. An example of this is the
work of Peintner and colleagues (2008), which
extracted language features from their corpus for
distinguishing different frontotemporal lobar de-
generation, one of which includes progressive non-
fluent aphasia. Although the study demonstrated
encouraging outcomes, it was conducted on a com-
paratively limited dataset, and no examination was
performed regarding the reliability of the features
extracted using ASR.

Similarly, Fraser et al. (2013) attempted to differ-
entiate and diagnose primary progressive aphasia
(PPA) and two of its sub-types, semantic dementia
(SD) and progressive non-fluent aphasia (PNFA)
extracting 58 lexical and syntactic features. Us-
ing a reduced dataset, an optimized support vector
machine (SVM) and random forests (RF) classi-
fiers, Jin and colleagues (2022) tried to face the
problem of the dataset with data augmentation on
a recognition model for patients with dysarthria.
They reached an overall WER of 27.8% on the
UASpeech test set, underlining that the lowest pub-
lished WER on the subset of speakers with "Very
Low" unintelligibly was of 57.3%.

Differently, Kohlschein and colleagues (2017)
used the speech elicited in the Aachen Aphasia
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Test assessment as a database to train their algo-
rithm. They built a model that automatically anal-
ysed pathological speech to identify patients’ apha-
sia type and severity based solely on acoustic fea-
tures. AphasiaBank, a large database open to mem-
bers, was used by Le and colleagues (2018) to
successfully detect medically-relevant quantitative
measures to predict aphasia with WER (Word Er-
ror Rate) of 39% in spontaneous aphasic speech.
Their previous work, with a WER of 45% (Le and
Provost, 2016; Le et al., 2017), established the
first ASR baseline on AphasiaBank, showing that
this dataset can guide the understanding of aphasic
speech recognition.

In Le et al. (2017), the authors used an acous-
tic modelling architecture of multi-task DBLSTM-
RNN (double bidirectional long short-Term mem-
ory recurrent neural network) with four hidden
BLSTM with 2 diverse language models for de-
coding. The authors investigated features based
on speech duration, the quality of pronunciation,
phone edit distance, and dynamic time warping on
phoneme posteriorgrams. On the other hand, Le
et al. (2018), even though using a similar pipeline,
chose to investigate lexical diversity and complex-
ity, posteriorgram-based dynamic time warping,
pairwise variability error, dysfluency and informa-
tion density in aphasic speech. Lastly, like the
work of Qin et al. (2016), a Cantonese version of
AphasiaBank has been implemented by Liu et al.
(2018), together with the CUSENT and CanPEV
Cantonese corpora. In this case, as an evalua-
tion metric they used a Syllable Error Rate (SER)
with the AphasiaBank and a multilayer time delay
neural network (MT-TDNN) with a bidirectional
long short-term memory (BLSTM) model struc-
ture. This obtained 18.5% of WER for unimpaired
speech and 42.4% for impaired speech.

An alternative strategy is to employ ASR that
already exists as per study by Mahmoud and col-
leagues (2023), where the authors customised ex-
isting ASR for a specific research goal, selecting
Microsoft Azure Speech-to-Text API or Google
Speech-to-Text API. In this study we are adopting
a similar approach: given the impressive perfor-
mance of Whisper on healthy speech, largely due
to its training dataset being several orders of magni-
tude larger than preceding ASR, we expect Whisper
accuracy to be similar to aforementioned models
trained on aphasic data.

Table 1: Sample Characteristics

Control
(N = 23)

Patients
(N = 23)

Mean (Standard Deviation)

Age (months) 59.96 (11.24) 61.45 (10.98)

Gender

Male 10 14

Female 13 9

Grammatical Complexity∗ 15.17 (3.59) 9.60 (4.33)

Productivity 127.83 (59.87) 91.41 (53.66)

Lexical Diversity∗ 60.65 (21.85) 37.01 (16.64)

Fluency∗∗∗ 136.81 (39.66) 68.31 (39.13)

Flawed Syntax (%)∗∗ 3.53 (8.60) 37.08 (34.16)
∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001

3 Methods

3.1 Dataset

For our study, we used the SONIVA (Speech recOg-
NItion Validation in Aphasia) database, a compre-
hensive validation database that we are creating
for training automated aphasic speech recognition
in the research and clinical setting. SONIVA is
composed of speech recordings derived from PWA
taking part in the IC32 study (Imperial Compre-
hensive Cognitive Assessment in Cerebrovascular
Disease; Gruia et al. 2022), and PLORAS study
(Predicting Language Outcome and Recovery After
Stroke; Seghier et al. 2016). The SONIVA database
aims to be a large and comprehensively annotated
speech database including quantitative measures
of speech and English as well as IPA transcrip-
tions. With this dataset we are producing quantita-
tive summary measures from the Comprehensive
Aphasia Test (CAT; Swinburn et al. 2004). To un-
derstand the various relations with the WER, we
included into statistical models the patients’ CAT-
derived summary measures, quantitative measures
of spontaneous speech, size and location of stroke
lesion, and demographic factors.

We used as input to Whisper the data of 46 par-
ticipants, divided into an aged-matched controls
group (N = 23) and PWA (Patients with aphasia;
N = 23). For patients, audio speech was collected
across multiple time-points since their stroke, re-
sulting in a total of 38 audio files. The speech is
recorded during the picture description task from
the CAT assessment (Swinburn et al., 2004).

The audio was transcribed verbatim by a speech

2https://www.ic3study.co.uk
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therapist and 3 trained postgraduate students, with
excellent inter-rater reliability (73% overall word-
level match). The text is in CHAT format (Codes
for the Human Analysis of Transcripts; MacWhin-
ney 2014), managed and analyzed through the
CLAN software. Using CLAN, the following
measures were generated: grammatical complex-
ity (mean length of utterance in morphemes), pro-
ductivity (number of total words), lexical diversity
(number of different words), fluency (words per
minute) and flawed syntax (incorrect utterances
that do not have at least one verb, copula, modal, or
participle). All these measures are included in the
sample characteristics in table 1, together with the
Mann-Whitney tests results in case of significant
differences between groups.

3.2 End-to-end Transformer

With 680 000 hours of training on noisy data, of
which approximately 20% is derived from non-
English languages, its performance on healthy
speech has been near human-level with respect to
accuracy (Radford et al., 2022). In addition to
Whisper’s large training dataset, its superior per-
formance is enhanced by the weakly supervised
transcription. Its labels are not fully precise or
complete, but rather are noisy or partial, because
the authors used an ASR to create the labels, which
are not perfect and prone to errors. Nevertheless,
in order to improve the labels’ quality, any text
that seemed to be created automatically was dis-
carded. This included the elimination transcrip-
tions that had only upper- or lower-case letters or
lacked punctuation, as these were probably gener-
ated by machines rather than people. Once they
created this dataset, the original version of Whis-
per was trained and used to understand what was
wrong with the data (through error rating metrics)
for manually inspecting the low-quality parts and
creating an iterative training process.

The model architecture is a sequence-to-
sequence transformer, commonly used since 2017
(Vaswani et al., 2017) for its reliability. The audio
chunks are initially transformed into an 80-channel,
25 ms window, 10 ms stride Mel spectrogram. The
features are scaled between -1 and 1 with a mean of
0 throughout the sample. Interestingly, their multi-
task training set has special tokens as task specifiers
or classification targets (such as language identi-
fication or timestamp tokens). Whisper uses the
same byte-level BPE text tokenizer used in GPT-2

(Sennrich et al. 2015; Radford et al. 2019) for the
English-only models, as they have both English-
only and multi-language models, released in differ-
ent sizes (from 39M parameters for tiny model to
1.55B parameters for large model).

3.3 Hyperparameters Fine-Tuning
We conducted a grid search fine-tuning, choosing
the best performing model based on the WER.
Therefore, we took into account the following
hyperparameters: 1) the model size (base, small,
medium, with 74 M, 244 M and 769 M parameters
respectively); 2) ‘compression_ratio_threshold’
(2.0, 2.4, 2.8, 3.2) and 3) ‘logprob_threshold’ (-1.5,
-1.0, -0.5, -0.25). These parameters were chosen
as they were close to the default values, which are
‘2.4’ for the compression_ratio and ‘-1.0’ for the
logprob_threshold.

The ‘compression_ratio_threshold’ regulates the
degree of audio compression on the input speech.
In case of PWA speech, low pitch is very frequent
so modulating this normalisation parameter may be
useful. Whisper used this compression rate during
decoding as a criterion for adjusting its temperature
parameter, increasing it when the generated text
had a compression rate higher than 2.4 (Radford
et al., 2022).

On the other hand, the ‘log prob_threshold’ reg-
ulates the required probability to add a new token
to the vocabulary of the ASR. This fine-tuning is
particularly helpful when in the PWA might appear
frequent neologisms (newly coined word). Lower
log-probability thresholds could lead to a bigger vo-
cabulary and more accurate compression, but may
also increase computational complexity. Also here
Whisper used the average log probability over gen-
erated tokens as a criterion for adjusting the temper-
ature during decoding, increasing the temperature
when the average log probability fell below -1.0.
By selecting values of -1.5, -1.0, -0.5, and -0.25 for
‘log prob_threshold’, it is possible to evaluate how
these thresholds impact the balance between explor-
ing alternative options and maintaining reliability
in the generated text.

3.4 Evaluation metrics
The evaluation of the ASR performance was done
with the WER based on string edit distance, calcu-
lating the least number of steps necessary to convert
one string from Whisper output to the string from
the actual manual transcription. However, since
the WER penalizes also innocuous differences, we
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Figure 1: WER distribution density of the Whisper
model for patients (N = 23) and age-matched con-
trols (N = 23).
∗∗∗ : p < 0.001

had to pre-process the human transcript in CHAT
format, similarly to the work of Torre et al. (2021).
This procedure is justified as well by the special
symbols used that tag phenomena like semantic in-
consistencies, repetitions, retracing or sound frag-
ments prevalent in speech from PWA. The CHAT
symbols that mark such phenomena have been re-
moved, eliminating also all punctuation.

In the case of neologisms, if the word was not
particularly clear, the transcribers would write the
literal phonetic alphabet version. For the evalua-
tion of these non-words, they were transformed into
the latin alphabet leaving their phoneme sequence
unchanged. It should also be noted that human
transcriptions included false starts and unique sym-
bols for filler words like “uhuh”, “um”, and other
isolated sounds or interjections, which we decided
to preserve since it is a peculiarity of speech from
PWA. For the group comparison, we extracted only
the participants lines for both the human and ASR
transcription, deleting the assessor or carer speech.

3.5 Statistical Analysis
Before modelling the data, to understand the per-
formance difference of Whisper across groups, we
compared the WER of patients and controls. In
case of repeated measurements, to derive descrip-
tive statistics, we averaged over sessions and then
over participants to obtain group characteristics.
Instead, the models considered all available infor-
mation without losing any variability of the data.
All the summary outcomes took into account the
specific observation weights (e.g. the length of
the speech in each audio sample). Due to the
non-normality of the distributions and the fact that

the samples were independent, we used a Mann-
Whitney test.

In addition, a correlation analysis was conducted
to establish significant relationships between the
WER and CAT scores, as well as the lesion features.
Due to the continuous variables considered, we
used Pearson correlation coefficients. Furthermore,
to pinpoint the associations between our main vari-
ables of interest, we used linear mixed-effects mod-
els, able to take into account the characteristics of
the samples such as repeated measurements and
unbalanced data, as well as adjusting the results for
potential confounders (Fitzmaurice et al., 2012).

4 Results

Through the grid search optimisation, we gener-
ated a total of 48 models, obtained by the com-
binations of the three aforementioned parameters.
The model that performed best, according to the
lowest WER, was the one that used the medium
model, with compression_ratio_threshold at 2.0,
and logprob_threshold at −1.5. The WER dif-
fered significantly between controls and patients
(U = 497, p < 0.001, fig.1), patients had an
almost four-fold increase in WER than the control
group (38.5% vs 10.3%).

Considering the correlation analysis, CAT scores
and WER associations were all found to be signifi-
cant and they are shown in figure 2. All the three
scores of CAT showed a negative relation with the
outcome, reflecting in general a worse precision
of the ASR in the case of patients with more se-
vere aphasia. As far as the stroke lesion volume is
concerned, no significant correlation was found.

Since we wanted to adjust results for potential
confounders and find significant and meaningful
relations, we modelled the data with mixed-effect
models and reported the outcomes in table ??. In
total, four main clusters of models were run to
evaluate the effects of lesioned hemisphere, lesion
presence considered singularly, CAT scores, and
lesion volume on the abilities of the ASR to tran-
scribe correctly the speech. All the models were
adjusted for socio-demographic (age, gender and
years of education) and aphasia-related informa-
tion (time of test since stroke and hours of speech
therapy).

Comparing patients with lesions in left and right
hemispheres, the ASR performed worse in terms
of WER in left temporal and frontal lobes, as well
as in the left parietal lobe, although this last as-
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(a) (b) (c)

Figure 2: Association between Word Error Rate of the ASR and the patients’ CAT results for (a) Total Picture
description score, (b) Naming Score and (c) Comprehension Score.

sociation was not statistically significant. Testing
individual lobes confirmed that ASR performance
is worse in patients with left frontal lobe lesions,
linking it to the localization of expressive language.
Moreover, even considering these models, the le-
sion volume features did not show any significant
result.

Finally, CAT derived Total Picture description
score, Naming Score and Comprehension Score all
had negative relations with the WER, representing
higher errors when patients performed poorly in
the tests.

5 Discussion

The evaluation of the ASR using the WER met-
ric allowed us to understand how well Whisper,
a model trained on a very large healthy speech
dataset, performs on PWA speech. We were able
to optimise the performance of Whisper based on
three hyperparameters, observing similar outcomes
in terms of WER when comparing the performance
of fine-tuned Whisper model with the performances
of previously described ASR systems tailored for
PWA.

Using two measures of overt speech production
(CAT naming and CAT Total Picture description
score for spontaneous speech production) and a
measure of speech comprehension (CAT compre-
hension score), we were able to show that ASR
performances is related to the severity of aphasia.
These results were confirmed by the mixed-effect
models when adjusting for confounding factors
such as demographics, time since stroke or dura-
tion of therapy. Our findings are in keeping with
the study by Torre et al. (2021) that reported 55.5%
WER in severe and 22% in mild cases of aphasia.

Furthermore, we showed for the first time that

stroke lesion location is related to the performance
of the ASR. Speech from patients with left later-
alised lesions, and more specifically in the left
frontal lobe, was the hardest to recognise using
Whisper. This result is consistent with the known
localisation of spoken language processing in the
brain. Specifically, frontal lobes, together with
other parts of the language network, are thought to
be primarily implicated in higher-order language
functions, such as sentence comprehension, produc-
tion, speech planning and overt speech production
(Geranmayeh et al., 2014). Temporal lobes are
essential for language processing and retrieval of
semantic information during overt naming (Binder
et al. 2020; Binney et al. 2010). Future studies
can use information about stroke lesion or brain
anatomy to improve ASR training and performance
in PWA.

Qualitatively, we noted in some cases Whisper
was capable of transcribing filler words (such as
“hum”, “umm”), frequently observed in PWA. De-
spite this, the WER occasionally increased as a
result of the frequent usage of fillers. False starts
(e.g. ‘The k- kit- umm... the kitty’) were rarely de-
tected and transcribed correctly. There were cases
when some words were uttered with low speech
volume and were not detected at all, as well as
unintelligible words that were skipped altogether
by Whisper. These qualitative observations need
to be validated with quantitative analysis on larger
aphasia-specific datasets to identify PWA speech
features that contribute to the worse performance
of ASR in PWA. The ‘confidence’ of the ASR in
detecting these aspects can accordingly be reduced,
and more specific ASR training can be performed
on speech encompassing these specific features.
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WER %

Estimate s.e. p 95% CI σ2
group(s.e.)

Hemisphere Lesion (Left vs Right)
Temporal (Left) 26.72 12.98 0.040 [1.28, 52.16] 137.28 (11.18)

Parietal (Left) 19.79 16.70 0.236 [-12.95, 52.53] 162.68 (12.43)

Frontal (Left) 38.22 13.32 0.004 [12.12, 64.32] 128.92 (10.44)

Brain Lobe Lesioned (Yes vs No)
Temporal

Left (Yes) 6.96 8.21 0.397 [-9.14, 23.05] 178.74 (12.56)

Right (Yes) -25.98 11.95 0.030 [-49.41, -2.55] 126.47 (9.37)

Parietal
Left (Yes) 15.54 9.37 0.097 [-2.83, 33.91] 130.29 (10.58)

Right (Yes) -16.47 15.80 0.297 [-47.44, 14.50] 165.17 (11.86)

Frontal
Left (Yes) 28.56 10.23 0.005 [8.52, 48.61] 92.86 (8.37)

Right (Yes) -25.98 11.95 0.030 [-49.41, -2.55] 126.47 (9.37)

Language Assessments
Total Picture description score -0.81 0.23 0.000 [-1.26, -0.37] 88.37 (6.98)

Naming Score -0.32 0.15 0.037 [-0.62, -0.02] 109.48 (8.33)

Comprehension Score -0.64 0.31 0.041 [-1.25, -0.03] 165.84 (11.12)

Lesion Volume
Left Hemisphere Lesion 0.25 0.28 0.378 [-0.30, 0.80] 171 (12.1)

Right Hemisphere Lesion -1.59 1.28 0.215 [-4.09, 0.92] 161.24 (11.52)

Total Volume 0.20 0.30 0.512 [-0.39, 0.79] 173.1 (12.38)

Table 2: Results of Linear Mixed-Effect regressions on Hemisphere Lesioned, the exact location of the lesion,
Language Assessments, and Lesion Volume. The models are adjusted for socio-demographic factors (age, gender,
and years of education) and aphasia-related information (time of test since stroke and hours of speech therapy).

6 Conclusion and Future Work

This study evaluated the performances of the Whis-
per end-to-end ASR model on speech derived from
patients with post-stroke aphasia. The results
highlight the importance of taking lesion location
and stroke severity into account when develop-
ing speech therapy diagnostics or interventions for
PWA using ASR models. Our findings require ver-
ification in larger speech databases derived from
patients with post-stroke aphasia and their gener-
alisability needs to be assessed in cases of aphasia
resulting from other conditions, such as neurode-
generative dementias, which may have different
characteristics.

Despite fine-tuning the in-built Whisper parame-
ters to optimise the model performance in this clin-
ical population, we demonstrated that even though
Whisper has a competitive performance compared
to existing aphasia-specific ASR, it still lacks suf-
ficient clinical diagnostics accuracy. Furthermore,
additional ASR metrics such as the confidence of
the ASR transcription or the Phoneme Error Rate
could be adopted in future research. A further limi-
tation of this work is the small speech database used
in this paper. We are actively building a detailed
annotated large speech and language database from

hundreds of patients with post-stroke aphasia, with
the aim of training and developing ASR for patho-
logical speech. We expect that such work will
promote greater confidence in the use of AI and
specifically NLP for healthcare intervention.
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