
Onception: Active Learning with Expert
Advice for Real World Machine Translation
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Active learning can play an important role in low-resource settings (i.e., where annotated data is
scarce), by selecting which instances may be more worthy to annotate. Most active learning
approaches for Machine Translation assume the existence of a pool of sentences in a source
language, and rely on human annotators to provide translations or post-edits, which can still
be costly. In this article, we apply active learning to a real-world human-in-the-loop scenario
in which we assume that: (1) the source sentences may not be readily available, but instead
arrive in a stream; (2) the automatic translations receive feedback in the form of a rating,
instead of a correct/edited translation, since the human-in-the-loop might be a user looking for
a translation, but not be able to provide one. To tackle the challenge of deciding whether each
incoming pair source–translations is worthy to query for human feedback, we resort to a number
of stream-based active learning query strategies. Moreover, because we do not know in advance
which query strategy will be the most adequate for a certain language pair and set of Machine
Translation models, we propose to dynamically combine multiple strategies using prediction
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with expert advice. Our experiments on different language pairs and feedback settings show that
using active learning allows us to converge on the best Machine Translation systems with fewer
human interactions. Furthermore, combining multiple strategies using prediction with expert
advice outperforms several individual active learning strategies with even fewer interactions,
particularly in partial feedback settings.

1. Introduction

The state of the art on most NLP tasks has been dominated by supervised neural
approaches, and Machine Translation (MT) is no exception (Barrault et al. 2020). The
impressive results obtained by neural models became possible due to the growing
amount of annotated data available; however, this growth is not observed for most
languages, since annotation (or, in the case of MT, translation) is a time-consuming
and expensive process. This motivates the use of low-resource learning methods (i.e.,
methods that can make the most of minimal annotation effort). Active learning is one
such method, as it allows us to choose which instances should be annotated, based
on some criterion that measures their informativeness (Cohn, Atlas, and Ladner 1994;
Settles 2010). Active learning has been extensively applied to MT (e.g., Haffari, Roy, and
Sarkar 2009; Ambati, Vogel, and Carbonell 2011; González-Rubio and Casacuberta 2014;
Zeng et al. 2019), mostly in a pool-based setting (i.e., when a pool of source segments
is available and one has to choose which segments should be translated by a human
annotator).

Existing active learning approaches for MT assume a scenario where a human
annotator either provides the translations for (readily available) segments in the source
language or post-edits the translations outputted by an MT model (in the case of
Interactive MT). To the best of our knowledge, no active learning work has explored
a real world scenario in which the end users of MT systems (e.g., Web MT services)
not only provide the source segments to be translated, but may themselves be a source
of feedback. In this case, the human would be looking for a translation, rather than
providing it, but they might still be able to provide feedback (e.g., in the form of a
rating) on whether the automatic translation makes sense in the target language. Such
ratings could be useful for fine-tuning an MT model (or an ensemble of models) and
require considerably less effort than providing a translation from scratch or post-editing
a translation. Given these assumptions, our hypothesis is that we can use active learning
to go a step further and reduce the need for human intervention.

Thus, we build on our previous work (Mendonça et al. 2021), in which we leveraged
human ratings to learn the weights of an ensemble of multiple arbitrary MT models
in an online fashion, in order to dynamically select the best MT models more often and
continually improve the ensemble’s performance, as new source segments arrive, for the
language pairs in hand. We extend this proposal by incorporating stream-based active
learning strategies that decide, for each pair source–translations, whether it is worthy to
query the user for a rating, thus reducing the effort needed to improve the performance
of the MT ensemble.

Moreover, because we do not know in advance which strategies will be the most
effective for a certain language pair and ensemble of models, we dynamically combine
multiple active learning strategies using the online framework of prediction with ex-
pert advice (drawing inspiration from another previous work of ours that focused on
sequence labeling tasks [Mendonça et al. 2020]). Thus, we introduce a second layer of
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online learning1 that learns the strategies’ weights based on the performance of the
online MT ensemble at each user interaction, so that the best performing strategies will
be used more often in the next interactions.

We thus address the following research questions:

RQ1 Can an active learning approach converge to the best systems with fewer human
interactions?

RQ2 Does it pay off to dynamically combine multiple query strategies using expert
advice (rather than using a single strategy)?

Our contribution is four-fold:

1. A stream-based active learning solution that makes the most of an
ensemble of pre-trained models by taking advantage of reduced human
effort to dynamically adapt the ensemble to any language pair in hand;2

2. A set of experiments in a much lower-resource setting than most existing
related literature, as we use datasets containing only as many as 1,000 to
2,000 source segments;

3. A set of stream-based query strategies that are model-independent, and
do not require any additional pre-training data (unlike recent active
learning approaches to MT [Liu, Buntine, and Haffari 2018b; Finkelstein
2020]);

4. A novel application of prediction with expert advice and active learning
to MT in which we dynamically combine multiple stream-based
strategies (instead of committing to a single strategy a priori).

Our experiments on multiple Conference on Machine Translation (WMT) datasets
(Barrault et al. 2019, 2020; Freitag et al. 2021a) show that using active learning indeed
allows us to converge to the top rated MT systems for each language pair, without prior
knowledge of them, while sparing human interactions. Moreover, since the best query
strategy varies across language pairs and online learning settings, combining multiple
active learning strategies using prediction with expert advice is generally a safer option
than committing to a single strategy (especially in scarce and/or unreliable feedback
settings), and often outperforms several individual strategies.

The remainder of this article is structured as follows: in Section 2, we provide
some background on the frameworks of active learning and prediction with expert
advice; in Section 3, we present related work regarding the use of online and active
learning in MT; in Section 4, we provide the starting point of our work and define the
problem we are tackling; in Section 5, we propose a set of stream-based active learning
strategies to reduce human intervention while improving an MT ensemble; in Section 6,
we propose the combination of multiple active learning strategies under the framework
of prediction with expert advice; in Section 7, we present the details of our experiments,
whose results are reported and discussed in Section 8; finally, in Section 9, we wrap up
this article and present future work directions.

1 Thus onception, in the sense of “dream within a dream” used in the movie Inception.
2 The code for our experiments can be found at https://github.com/vania-mendonca/Onception.
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2. Background

In this section, we provide the necessary background on the learning frameworks
applied in this work: active learning (Section 2.1) and prediction with expert advice
(Section 2.2).

2.1 Active Learning

Active learning is a learning framework that aims at minimizing the amount of anno-
tated data needed to train a supervised model by choosing which instances should be
annotated, based on some criterion that measures their informativeness (query strategy)
(Cohn, Atlas, and Ladner 1994; Settles 2010).

Active learning is most commonly used in a pool-based setting (see Algorithm 1):
A model is trained on an initially small labeled set L and further retrained as L is
iteratively augmented with an instance (or a batch of instances) selected from a pool
of unlabeled instances U . Each instance (or batch) ut is selected according to a query
strategy (line 4) and sent to be annotated by a human (line 5). The now annotated
instance(s) u∗t are removed from U and added to L, and this process repeats itself until
a budget of T instances is exhausted.

However, there might be situations in which one does not have access in advance
to a pool of unlabeled instances, but rather accesses them progressively (consider,
for example, an interactive system). In such situations, a stream-based setting can be
followed instead (see Algorithm 2). In this setting, for each unlabeled instance (or batch
of instances) ut that occurs in the stream, the query strategy has to decide whether it is
worthy to ask the human for its annotation (line 3).

Active learning query strategies can be based on information related to the learning
models, on the characteristics of the data, or a mix of both. Model-based strategies rely
on criteria such as the model’s confidence on its prediction (e.g., Uncertainty Sampling
[Lewis and Gale 1994]), the disagreement among the predictions of different mod-
els (e.g., Query-by-Committee [Seung, Opper, and Sompolinsky 1992]), or the change
expected in the model after being retrained with the selected instances (e.g., Fisher
Information [Settles and Craven 2008]). Data-based strategies, on the other hand, focus
on the representativeness of the instances—either how similar an instance is to the
unlabeled set U (Density), or how much it differs from the labeled set L (Diversity)
(Fujii et al. 1998), with some strategies combining both criteria (e.g., Exploration-Guided
Active Learning [Hu, Jane Delany, and Mac Namee 2010]). Finally, a popular strategy

Algorithm 1 Pool-based active learning
Input: model, labeled set L, unlabeled set U , budget T, batch size B

1: for t← 1 to T do
2: model.train(L)
3: Ŷ← model.predict(U )
4: ut ← selectInstances(U , Ŷ,L, B)
5: u∗t ← askAnnotation(ut)
6: L← L ∪ u∗t
7: U ← U − ut
8: end for
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Algorithm 2 Stream-based active learning
Input: model, labeled set L, stream of unlabeled instances S

1: for each ut ∈ S do
2: ŷt ← model.predict(ut)
3: if selectInstance?(ut, ŷt) then
4: u∗t ← askAnnotation(ut)
5: L← L ∪ u∗t
6: model.train(L)
7: end if
8: end for

that combines both the model uncertainty about its predictions and the instances’
Density with respect to U is Information Density (Settles and Craven 2008). In the case
of a stream-based setting, in which the decision on whether to select an instance cannot
depend on the remaining unlabeled instances, query strategies may rely on a threshold
to make its decision instead.

More recently, several studies have proposed to learn the query strategy from
data (known as Learning To Active Learn), instead of using the previously mentioned
heuristics (or in combination with them). These works framed the problem of selecting
an instance to be annotated as a regression problem (Konyushkova, Raphael, and Fua
2017), as a policy that can be learned using reinforcement learning (Fang, Li, and Cohn
2017) or imitation learning (Liu, Buntine, and Haffari 2018a,b; Vu et al. 2019), and also
as an adversarial problem (Deng et al. 2018).

2.2 Prediction with Expert Advice

Prediction with expert advice is a popular framework for online learning (i.e., a learning
setting in which learning takes place continually, as the data arrives—in a sequential
order—rather than through offline training (Hoi et al. 2021)). A problem of prediction
with expert advice can be seen as an iterative game between a forecaster and the
environment, in which the forecaster consults different sources (experts) in order to
predict an outcome that will occur in the environment (Cesa-Bianchi and Lugosi 2006).
Thus, at each iteration t, the forecaster consults the predictions p̂j,t, j = 1 . . . J made by
a set of J weighted experts, in the decision space D. Considering these predictions, the
forecaster makes its own prediction, p̂f,t ∈ D. At the same time, the environment reveals
an outcome yt in the decision space Y (which may not necessarily be the same as D).
Based on this outcome, a loss can be derived in order to update the experts’ weights
ω1, . . . ,ωJ.

To learn the experts’ weights, one can use an online learning algorithm, such as
Exponentially Weighted Average Forecaster (EWAF) (Cesa-Bianchi and Lugosi 2006), an
algorithm with well-established performance guarantees. In EWAF, at each iteration t,
the forecaster randomly selects one of the experts’ predictions following the probability
distribution based on the experts’ weightsω1,t−1 . . .ωJ,t−1, as shown in Equation (1):

p̂f,t =

∑J
j=1ωj,t−1p̂j,t∑J

j=1ωj,t−1
(1)
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where p̂j,t is the vector containing the current probabilities for each possible decision
in D, according to expert j. Then, the forecaster and each of the experts receive a non-
negative loss (`f,t and `j,t, respectively), measuring how far their predictions were from
guessing the outcome yt that occurred in the environment. The weightωj,t of each expert
j = 1 . . . J is updated according to the loss received by that expert, as follows:

ωj,t = ωj,t−1e−η`j,t (2)

In the update rule above, if:

η =

√
8 log J

T (3)

it can be shown that the forecaster’s regret for not following the best expert’s advice is
bounded, as follows:

T∑
t=1

`f,t − min
j=1,...,J

T∑
t=1

`j,t ≤
√

T
2 log J (4)

that is, that the forecaster quickly converges to the performance of the best expert after
T iterations (Cesa-Bianchi and Lugosi 2006).

3. Related Work

In this section, we present an overview of existing studies that have applied the frame-
works introduced in the previous section to MT, namely, active learning (Section 3.1),
online learning (Section 3.2), and combinations of both (Section 3.3).

3.1 Active Learning for Machine Translation

The earliest proposals that attempted to select training data in a clever way in MT,
despite not explicitly mentioning active learning, relied on criteria that could be seen
as a query strategy (and ended up later inspiring active learning approaches), such
as unseen n-gram frequency and sentence TF-IDF (Eck, Vogel, and Waibel 2005), or
similarity/n-gram overlap to the test set (Hildebrand et al. 2005; Lü, Huang, and
Liu 2007; Ittycheriah and Roukos 2007). Since then, a vast variety of active learning
approaches to MT have been proposed, mostly in pool-based and batch-mode settings.3

Focusing on Statistical MT, query strategies proposed were mainly based on phrase
tables (e.g., phrase frequency on L or U [Haffari, Roy, and Sarkar 2009], and phrase
translation uncertainty/entropy [Ambati, Vogel, and Carbonell 2011]); language models
(e.g., n-gram utility [Haffari, Roy, and Sarkar 2009]; perplexity [Mandal et al. 2008],
and KL divergence [Ambati 2012]); alignment of the parallel data (Ambati, Vogel, and
Carbonell 2011); the MT model’s confidence on the translation (Haffari, Roy, and Sarkar
2009; González-Rubio, Ortiz-Martı́nez, and Casacuberta 2011); estimations of the trans-
lation error (Ananthakrishnan et al. 2010) or of the translation’s quality (Logacheva

3 For a more comprehensive analysis of data selection and active learning approaches in a pool-based
setting for MT (up to 2015), see Eetemadi et al. (2015).
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and Specia 2014); and the round-trip translation accuracy (i.e., the error between a
source sentence and the source obtained by translating the translation) (Haffari, Roy,
and Sarkar 2009). Query strategies commonly seen in other tasks have also been
used in MT, namely, Query-by-Committee (Mandal et al. 2008), Information Density
(González-Rubio and Casacuberta 2014), Diversity, Density and combinations of both
(e.g., static sentence sorting [Eck 2008], Density-weighted Diversity [Ambati, Vogel,
and Carbonell 2011], and n-gram coverage [González-Rubio, Ortiz-Martı́nez, and
Casacuberta 2012; González-Rubio and Casacuberta 2014]). All of this work addressed
a pool-based setting, except for that of González-Rubio et al. (González-Rubio, Ortiz-
Martı́nez, and Casacuberta 2011, 2012; González-Rubio and Casacuberta 2014), who
addressed a stream-based setting (although in the latter two studies, the authors used
pool-based strategies to select the most useful instances from the current batch, rather
than using stream-based strategies).

With the Neural MT takeover, strategies based on neural models’ details and
Diversity/Density strategies based on embedding similarity have been preferred over
n-gram, alignment, and phrase-based strategies. Peris and Casacuberta (2018) ex-
tended the proposals of González-Rubio et al. for Statistical MT (González-Rubio,
Ortiz-Martı́nez, and Casacuberta 2011, 2012; González-Rubio and Casacuberta 2014) by
adding strategies based on coverage sampling (i.e., coverage of the attention weights
over the source sentence, as a potential indicator of how good the alignment between
the source and the translation is) and attention distraction (i.e., whether an MT model’s
attention is dispersed along the source sentence). Zhang, Xu, and Xiong (2018) used
the decoder’s probability for the translation (as a form of uncertainty) and proposed a
Diversity strategy based on subword-level embeddings, using FASTTEXT (Bojanowski
et al. 2017). Zeng et al. (2019) made an extensive comparison of several query strategies
found in the MT literature on a Neural MT system based on the Transformer architecture
(Vaswani et al. 2017). They also introduced two new strategies: a variant of round-
trip translation based on the likelihood of the source sentence according to the reverse
translated model, and a Diversity strategy based on the cosine distance applied to the
source sentences’ subword-level embeddings (following Zhang, Xu, and Xiong 2018),
contextual embeddings (BERT [Devlin et al. 2019]), and paraphrastic embeddings (i.e.,
contextual embeddings fine-tuned in a paraphrase dataset [Wieting and Gimpel 2018]).
These two strategies, along with Density-weighted Diversity (following Ambati, Vogel,
and Carbonell 2011), outperformed the remaining strategies in use. Finally, Hazra et al.
(2021) addressed the problem of redundancy across the batch of instances selected by
a given query strategy at each iteration, proposing the removal of redundant sentences
using a model-aware similarity approach, on top of either one of three model-based
query strategies: Uncertainty Sampling, coverage sampling, and attention distraction
(following Peris and Casacuberta [2018] in the latter two strategies).

Moreover, Learning To Active Learn strategies, which learn the query strategy from
data, have also been applied to Neural MT. Liu, Buntine, and Haffari (2018b) viewed
the query strategy as a policy network learned on a higher-resource language pair using
imitation learning: The query strategy corresponds to a policy that learns by observing
the inputs and output of an optimal policy; this optimal policy is trained on a higher-
resource dataset, and its learning goal is to distinguish which instances are worthy of be-
ing annotated, based on how much each instance improves the performance of the task
model on a development set, if added to the task model’s labeled set. Their approach
outperformed three heuristic strategies based on sentence length and uncertainty for
most of the language pairs considered. Finkelstein (2020) learned a a stream-based
query strategy that should decide, for each incoming sentence, whether its translation
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should receive human feedback. This query strategy was a neural network pre-trained
on a parallel corpus, which learned when to ask for feedback based on the CHRF score
(Popović 2015) between each sentence’s automatic translation and its gold translation.
The query strategy network was later retrained based on the human translator feedback
(which can be given to a sentence when the query strategy asks for it, or by post-editing
the final document), upon each document completion, based on the CHRF score between
automatic and human made/post-edited translations. However, this proposal was not
compared to other active learning query strategies.

Our proposal for applying active learning to MT differs from these works in several
aspects. First, only a few proposals consider a stream-based setting (González-Rubio,
Ortiz-Martı́nez, and Casacuberta 2012; González-Rubio and Casacuberta 2014; Peris
and Casacuberta 2018), and most of them end up applying pool-based strategies to
select a subset of instances to be annotated among the current batch, instead of using
stream-based strategies. Second, the two exceptions that use stream-based strategies
rely solely on strategies that are either model-based (González-Rubio, Ortiz-Martı́nez,
and Casacuberta 2011; Finkelstein 2020) or require pre-training on additional data
(Finkelstein 2020). However, because our starting point is an ensemble of arbitrary (and
potentially black-box) MT models, and considering that we want to minimize the need
for additional data, we constrain our solution to be model-independent and purely
heuristic. Finally, our proposal differs from all of the works reviewed above in that we
assume that the human-in-the-loop will not provide translations nor post-edits. Instead,
we assume that the human will just rate the automatic translations, which is a form of
feedback that requires less effort and is more plausible in practical applications such as
Web MT services or MT shared tasks.

3.2 Online Learning for Machine Translation

There have been a number of online learning approaches applied to MT in the past,
mainly in Interactive MT and/or post-editing MT systems. Most approaches aimed
at learning the parameters or feature weights of an MT model (Mathur, Cettolo, and
Federico 2013; Denkowski, Dyer, and Lavie 2014; Ortiz-Martı́nez 2016; Sokolov et al.
2016; Nguyen, Daumé III, and Boyd-Graber 2017; Lam, Kreutzer, and Riezler 2018),
fine-tuning a pre-trained model for domain adaptation (Turchi et al. 2017; Karimova,
Simianer, and Riezler 2018; Peris and Casacuberta 2019), or incorporating new parallel
data from an unbounded stream (Levenberg, Callison-Burch, and Osborne 2010).

Most of these studies used human post-edited translations as a source of feedback,
with the exceptions being the systems competing for WMT’17 shared task on online
bandit learning for MT (Sokolov et al. 2017), as well as Lam, Kreutzer, and Riezler (2018),
who used (simulated) quality judgments.

In contrast to these approaches, few studies used online learning to address the
challenge of combining multiple MT models and dynamically finding the most appro-
priate ones for the language pair and set of models in hand. One such study is that of
Naradowsky, Zhang, and Duh (2020), who dynamically selected the best MT system
for a given MT task or domain using stochastic multi-armed bandits and contextual
bandits. The bandit algorithms learned from feedback simulated using a sentence-level
BLEU score (Papineni et al. 2002) between the selected automatic translation and a
reference translation. Another one is a previous work of ours (Mendonça et al. 2021), in
which we framed the problem of dynamically converging to the performance of the best
individual MT system as a problem of prediction with expert advice (when feedback is
available to the translations outputted by all the systems in the ensemble) and adversarial
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multi-armed bandits (Robbins 1952; Lai and Robbins 1985) (when feedback is only
available for the final translation chosen by the ensemble). We simulated the human-
in-the-loop by using actual human ratings obtained from an MT shared task (Barrault
et al. 2019), when available in the data, and proposed different fallback strategies to
cope with the lack of human ratings for some of the translations.

We thus build upon our previous work (Mendonça et al. 2021), since it is the only
one that takes advantage of human quality ratings rather than translations or post-edits.
This setting not only reduces the human effort involved in improving the MT ensemble,
but it also should prove to be more suitable to represent real-world MT scenarios, such
as Web translation systems or MT shared tasks, in which the human-in-the-loop is not
expected to provide a translation.

3.3 Combining Online Learning and Active Learning

To the best of our knowledge, there are no studies that combine multiple query strate-
gies using online learning frameworks for MT. The studies that relate the most to our
proposal in MT are those of Haffari, Roy, and Sarkar (2009), who combined multiple
pool-based strategies in a weighted ensemble, learned a priori on a development set,
and Peris and Casacuberta (2018), who proposed an ensemble of stream-based query
strategies, in which all strategies contributed equally (the strategies’ votes are combined
using a vote-entropy function [Dagan and Engelson 1995]). Both works differ from what
we are proposing, since the weights of our ensemble of query strategies are learned
dynamically based on human feedback, rather than fixed or learned a priori. Moreover,
to the best of our knowledge, there are no online ensembles of stream-based query
strategies in the literature either.

However, the combination of multiple pool-based active learning strategies using
online learning frameworks has been previously proposed for other tasks, mainly bi-
nary and multi-class classification.

Baram, El-Yaniv, and Luz (2004) framed the problem of selecting a query strategy
using multi-armed bandits (Auer et al. 1995) and multi-armed bandits with experts
(Auer et al. 2002), which, unlike prediction with expert advice (recall Section 2.2),
assume that only the expert/arm selected knows its loss. The variant based on experts
took advantage of multiple strategies and performed in line with the best individual
strategy for binary classification problems.

Osugi, Kun, and Scott (2005) also used multi-armed bandits with experts (Auer
et al. 2002) to learn the best strategy for binary classification problems (but with a
different loss function than Baram, El-Yaniv, and Luz [2004]), and outperformed the
two individual query strategies considered, as well as Baram, El-Yaniv, and Luz (2004).

Hsu and Lin (2015) presented a modification of an algorithm for multi-armed
bandits with experts so that it would compute a reward (loss function) for all the query
strategies that selected the same instance as the chosen strategy (instead of only to that
strategy). This approach performed in line with the best individual query strategies,
and outperformed Baram, El-Yaniv, and Luz (2004).

Chu and Lin (2016) built on Hsu and Lin (2015), but applied contextual bandits
instead, and also proposed to transfer the ensembles of query strategies learned in one
dataset to other datasets. Their approach performed in line with the best two individual
query strategies and outperformed Hsu and Lin (2015).

Pang et al. (2018) proposed a modification of multi-armed bandits with experts, to
account for non-stationary loss functions (i.e., the best expert might vary over time), in
binary and multi-class classification tasks. Their approach outperformed or performed
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in line with the best individual strategies and outperformed both Baram, El-Yaniv, and
Luz (2004) and Hsu and Lin (2015) in non-stationary datasets.

Finally, in a previous study of ours (Mendonça et al. 2020), we combined multi-
ple well-studied pool-based query strategies for two sequence labeling tasks (Part-of-
Speech tagging and Named Entity Recognition), using prediction with expert advice.
Our approach was able to converge to the performance of the best individual query
strategies, and nearly reached the performance of a supervised baseline (which used
twice the annotation budget).

Inspired by our previous work, we propose combining multiple query strategies
using prediction with expert advice, now in a stream-based setting. Our goal is to
converge to the most useful strategy without needing to evaluate them a priori for
each language pair and set of MT models, since a change in these factors might have
an impact on which query strategy proves more useful, as discussed by Lowell, Lipton,
and Wallace (2019).

4. Problem Definition

In this article, we build on our previous work in which we combined online learning and
MT (Mendonça et al. 2021), as it is compatible with the online interaction assumptions
under consideration.

As mentioned in Section 3.2, in our previous work, we considered two feedback
settings: a full feedback setting (i.e., feedback is assumed to be available to the trans-
lations outputted by all the MT systems in the ensemble), and a partial feedback
setting (feedback is only available for the final translation chosen by the ensemble).
For the first case, we applied prediction with expert advice, using EWAF to learn the
systems’ weights; for the partial feedback setting, we turned to adversarial multi-armed
bandits, learning the systems’ weights using Exponential-weighting for Exploration and
Exploitation (EXP3) (Auer et al. 1995). The multi-armed bandits framework follows a
slot-machine metaphor, so each “expert” is referred to as an arm. At each iteration, EXP3
selects one arm in a similar fashion to EWAF (randomly based on the distribution of the
arms’ weights); the main difference between these two algorithms lies in the loss, which
is computed only for the selected arm in the case of EXP3.

Thus, in this scenario, each MT system is an expert (or arm) j = 1 . . . J, associated
with a weight ωj (all the systems start with the same weight). An overview of the
learning process is illustrated in Figure 1: At each iteration t, a segment srct is selected
from the source language corpus and handed to all the MT systems. Each system
outputs a translation translj,t in the target language, and one of these translations is
selected as the forecaster’s decision, according to the probability distribution given by
the systems’ weights. The chosen translation translf,t (in the partial feedback setting)
or the translations outputted by all the systems (in the full feedback setting) receive
a human score scorej,t, from which a loss `j,t is derived for the respective MT system.
Finally, the weight ωf,t−1 of the chosen system (in the partial feedback setting) or the
weights ω1,t−1 . . .ωJ,t−1 of all the systems (in the full feedback setting) are updated
based on the loss computed.

In this work, our first challenge is to decide whether each incoming segment srct
and respective translations transl1,t, . . . , translJ,t are informative enough so that the trans-
lations are worthy of being rated by a human. To address this challenge, we propose
using a number of stream-based query strategies, which we detail in Section 5. We note
that we make no assumptions about whether we have full or partial feedback; therefore,
our contribution in this article builds on both feedback settings.
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Figure 1
Overview of the online learning process applied to MT, at each iteration t (Mendonça et al. 2021):
A source segment is translated by each of the MT systems in the ensemble; out of their
translations, one of them is chosen as the most likely according to the online algorithm in use;
the chosen translation (in the partial feedback setting), or all the translations (in the full feedback
setting) receive a human score, based on which the MT system behind the chosen translation
(partial feedback) or all the MT systems (full feedback) receive a loss and see their weights
updated. The gray dashed arrows represent flows that only occur in the full feedback setting.

Our second challenge is to make the best use of multiple query strategies available,
considering that we do not know a priori which query strategy will be the most ade-
quate for a given language pair and set of models. To tackle this challenge, we propose
combining multiple strategies under the framework of prediction with expert advice,
updating their weights in an online fashion. We describe this approach in Section 6.

5. Stream-based Active Learning for MT

Given the online nature of our scenario, we operate under a stream-based setting (recall
Section 2.1), in which we assume that we only have access to one source segment (and
its respective automatic translations) at a time. However, in order to more easily adapt
certain query strategies to this setting, we store the segments that have been scored
by the human in a human-scored set L and the segments that have been discarded
(i.e., for which the human was not asked a score) in a discarded set U . Because we are
dealing with a stream-based setting, the decision of whether to select a certain segment
is based on whether the values computed by each query strategy are above or below a
given threshold. The stream-based active learning process applied to our MT scenario
is illustrated in Figure 2 and detailed in Algorithm 3.

For each source segment srct, we obtain the translations outputted by each MT
model mj ∈M (lines 4–7). Given these translations, the forecaster chooses a translation
translf,t as the most likely to be the best (line 8), according to the online algorithm under
consideration (EWAF for the full feedback setting or EXP3 for the partial feedback
setting). Then, we apply a query strategy to decide whether we should ask a human
to score that segment’s translations (line 9). Depending on the query strategy in use, L
or U may also be taken into account. If the query strategy decides that the segment’s
translations should be scored by the human, the weights ω1, . . . ,ωJ associated with
the MT models are updated based on the score received by the respective translations
transl1,t, . . . , translJ,t (in the full feedback setting—lines 10–15), or only the weight of the
MT model that outputted the forecaster’s choice, mf , is updated (in the partial feedback
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Figure 2
Overview of the stream-based active learning process applied to our online MT ensemble,
at each iteration t: The translation chosen by the online algorithm (partial feedback) or the
translations outputted by all the MT systems (full feedback) only receive a human score if the
query strategy decides so. We keep track of the pairs source–translation(s) that were scored in
the L set, and the ones that were not scored are stored in the U set. The gray dashed arrows
represent flows that only occur in the full feedback setting.

Algorithm 3 Stream-based active learning for an online MT scoring
Input: MT modelsM = m1, . . . , mJ, stream of source segments S, human-scored set L,

discarded set U
1: ω1,0, . . . ,ωJ,0 ← 1
2: L,U ← ∅
3: for each srct ∈ S do
4: for each mj ∈M do
5: translj,t ← mj.translate(srct) # Obtaining translations
6: translt ← translt ∪ translj,t
7: end for
8: translf,t, mf ← forecasterMT(translt) # Choosing a translation
9: if selectInstance?(srct, translf,t, translt,L,U ) then # Query strategy

10: if full feedback setting then
11: for each mj ∈M do
12: scorej,t ← askHumanScore(srct, translj,t)
13: scorest ← scorest ∪ scorej,t
14: ωj,t ← mj.updateWeight(scorej,t) # MT systems’ weights update
15: end for
16: else if partial feedback setting then
17: scoref,t ← askHumanScore(srct, translf,t)
18: ωf,t ← mf .updateWeight(scoref,t) # Chosen MT system’s weight update
19: end if
20: L← L ∪ {srct, translt, scoref,t, scorest} # Tracking scored segments
21: else
22: U ← U ∪ {srct, translt} # Tracking segments that were not scored
23: end if
24: end for
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setting—lines 16–19). The scored segment is then added to L (line 20). If the current
segment was not selected by the query strategy to be scored, it is added to U instead
(line 22). The process repeats itself for as long as the stream of segments goes on.

Our stream-based setting, as well as the model-independence and low-resource
requirements in our scenario, severely constrain which query strategies are worthy to
use. In other words, we want to avoid strategies that: (1) rely on model details, since we
assume the MT systems available to be black-box and that we only have access to the
model’s output (translation); (2) rely on an unlabeled set, since it is not available in a
stream-based setting; or (3) imply any kind of additional training (as it is the case, for
instance, of Learning To Active Learn or strategies based on language models). We thus
propose the use of the following criteria as query strategies.

Translation Disagreement: We follow the Query-by-Committee strategy (Seung,
Opper, and Sompolinsky 1992), by computing the disagreement among the transla-
tions outputted by the MT models in the ensemble (see Equation (5)). If the average
agreement among all the translations transl1,t, . . . , translJ,t, AvgAgr, is below a given
threshold, then the segment should be scored by the human. We compute the agreement
between two translations using: (1) a lexical similarity measure (Jaccard; Jaccard 1912),
considering the segment’s words as the basic unit; (2) the cosine similarity between pre-
trained contextual segment-level embeddings (BERT; Devlin et al. 2019); (3) a translation
evaluation metric (BLEU; Papineni et al. 2002), applied in a segment-level fashion.

AvgAgr (translt) = 1
J2−J

2

 J∑
j=1

j−1∑
j′=1

agreement
(
translj,t, translj′,t

) (5)

Translation Difficulty: Inspired by earlier work that used Quality Estimation as a data
selection criterion (Logacheva and Specia 2014), we measure the difficulty of translating
a segment srct using a Quality Estimation metric based on the perplexity of the trans-
lation, PRISM (Thompson and Post 2020) (see Equation (6)). If the average quality of
a segment’s translations, AvgQuality, is below a given threshold (i.e., if the metric does
not expect the translations outputted by the MT models considering the source segment
srct) then the segment should be scored by the human.

AvgQuality (translt) = 1
J

 J∑
j=1

Prism
(
translj,t, srct

) (6)

Diversity with Respect to Scored Segments: We apply the Diversity strategy (Fujii
et al. 1998) to a stream-based setting by computing how much the current source
segment srct differs from the human-scored set L. If the average similarity between srct
and each source segment in L is below a given threshold, then the segment should be
scored by the human. We compute the similarity between two segments using: (1) a lex-
ical similarity measure (Jaccard; Jaccard 1912), considering the segment’s words as the
basic unit, and (2) the cosine similarity between pre-trained contextual segment-level
embeddings (BERT; Devlin et al. 2019). We also compute a variant of Diversity based
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on n-gram coverage (Ambati, Vogel, and Carbonell 2011; Zeng et al. 2019), according to
Equation (7) (where I is the indicator function).

Div (srct,L) =

∑
s∈ngram(srct ) I

(
s /∈ ngram(L)

)
|ngram (srct) |

(7)

Density with Respect to Discarded Segments: We introduce a modified version of
Density (Fujii et al. 1998), in which we compare the current source segment srct to the
segments in the discarded set U (i.e., those that were not scored by the human). In other
words, if the average similarity between srct and each source segment in U is above
a given threshold, then the segment should be scored by the human. We compute the
similarity between two segments using the same measures as in the Diversity strategy.
Once again, we also compute a variant based on n-gram coverage (Ambati, Vogel, and
Carbonell 2011; Zeng et al. 2019), according to Equation (8) (where # (s|X ) denotes the
frequency of the n-gram s in the n-grams of setX , and λ is a decay parameter to penalize
n-grams seen in the human-scored set L).

Den (srct,U ,L) =

∑
s∈ngram(srct ) # (s|U ) e−λ#(s|L)

|ngram(srct)||ngram(U )| (8)

The inclusion of this strategy may be counterintuitive, since it chooses segments that are
representative of those ignored so far (i.e., of those that were considered not informative
enough to be scored by the human); however, at a certain point, it might be the case that
the ignored segments are actually more representative of potential future sentences;
therefore, it may be useful to ask the human to score them.

6. Combining Query Strategies Using Expert Advice

The introduction of active learning query strategies to decide whether to prompt the
human to score the translation(s) outputted by the MT ensemble raises a new challenge:
choosing the most appropriate query strategy for a given language pair and MT ensem-
ble, without any prior knowledge nor pre-evaluation of the performance of each strat-
egy, considering that their performance might be inconsistent across settings (Lowell,
Lipton, and Wallace 2019). To tackle this challenge, we follow another previous work of
ours, in which we combined different query strategies in a pool-based scenario for two
sequence labeling tasks, using online learning under the framework of prediction with
expert advice (Mendonça et al. 2020).

In our stream-based active learning scenario, each expert corresponds to a query
strategy k = 1, . . . , K, to which a weight φk is assigned (all the query strategies start
with the same weight). The learning process is illustrated in Figure 3 and Algorithm 4.
At each iteration, each query strategy casts a Boolean value indicating whether the
current segment’s translation(s) should be scored by the human (lines 10–13). The fore-
caster randomly chooses one of the query strategies’ votes (line 14), based on the dis-
tribution of the strategies’ weights (recall Equation (1) in Section 2.2). Depending on the
forecaster’s vote, the current segment’s translation(s) are scored by the human (or not),
and the weights of the MT systems in the ensemble are updated accordingly, as already
seen in Section 5.
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Figure 3
Overview of the stream-based active learning process with expert advice at each iteration t:
instead of applying a single query strategy (Figure 2), we have multiple query strategies in
parallel. For each pair source–translation(s), each strategy votes on whether the translation(s)
should receive a human score. One of the strategies’ votes is chosen according to EWAF. If the
chosen vote is in favor of scoring, the improvement of the MT ensemble after the scoring is used
as a loss function to update the query strategies’ weights.

We want to award a greater weight to the strategies that cast the best votes, to make
those strategies more likely to be considered in future iterations. This raises a question:
How can we measure the success of each query strategy? Because our end goal is to
improve the MT ensemble, we measure its improvement at each weight update by
considering the regret RM for not choosing the best MT system’s translation at each
iteration, up to the current iteration T (Equation (9)), which can be seen as a dynamic
regret (Pang et al. 2018). Note that this regret formulation deviates from the traditional
formulation, in that we compare the forecaster to the best sequence of decisions overall
(whose cumulative loss is given by

∑T
t=1 minj=1,...,J `j,t), instead of the best expert overall

(whose cumulative loss would be given by minj=1,...,J
∑T

t=1 `j,t). This way, we can ensure
that our ensemble of active learning strategies learns from the best policy possible.

RM =
T∑

t=1

`f,t −
T∑

t=1

min
j=1,...,J

`j,t (9)

Thus, at each iteration, we consider the variation of the regret, ∆RM = RM,t −
RM,t−1, to compute the loss function `k,t that, in turn, will allow us to update the weights
φ1, . . . ,φK of all the query strategies (line 29): Those who voted in favor of scoring will
receive a loss proportional to the increase in the regret, while the remaining strategies
will receive a loss inversely proportional to the regret’s increase (Equation (10)).

`k,t =

{
∆RM if votek,t = 1
1−∆RM if votek,t = 0 (10)

Note that, if the forecaster’s vote was against human scoring, there is no change in
the regret of the MT ensemble; therefore we cannot update the weights of the query
strategies.
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Algorithm 4 Stream-based active learning with expert advice
Input: MT modelsM = m1, . . . , mJ, stream of source segments S , query strategies Q =

q1, . . . , qK, human-scored set L, discarded set U
1: ω1,0, . . . ,ωJ,0 ← 1
2: φ1,0, . . . ,φK,0 ← 1
3: L,U ← ∅
4: for each srct ∈ S do
5: for each mj ∈M do
6: translj,t ← mj.translate(srct) # Obtaining translations
7: translt ← translt ∪ translj,t
8: end for
9: translf,t, mf ← forecasterMT(translt) # Choosing a translation

10: for each qk ∈ Q do
11: votek,t ← qk.selectInstance?(srct, translf,t, translt,L,U ) # Query strategy
12: votest ← votest ∪ votek,t
13: end for
14: votef,t ← forecasterAL(votest) # Choosing a query strategy
15: if votef,t == True then
16: if full feedback setting then
17: for each mj ∈M do
18: scorej,t ← askHumanScore(srct, translj,t)
19: scorest ← scorest ∪ scorej,t
20: ωj,t ← mj.updateWeight(scorej,t) # MT systems’ weights update
21: end for
22: else if partial feedback setting then
23: scoref,t ← askHumanScore(srct, translf,t)
24: ωf,t ← mf .updateWeight(scoref,t) # Chosen MT system’s weight update
25: end if
26: RM,t−1 ← RM,t
27: RM,t ← updateRegret() # Updating the regret of the MT ensemble
28: for each qk ∈ Q do
29: φk,t ← qk.updateWeight(RM,t−1, RM,t) # Query strategies’ weights update
30: end for
31: L← L ∪ {srct, translt, scoref,t, scorest} # Tracking scored segments
32: else
33: U ← U ∪ {srct, translt} # Tracking segments that were not scored
34: end if
35: end for

We follow a slightly different approach for the scenario when we only have partial
feedback for the translations outputted by the MT systems (i.e., when using multi-
armed bandits to learn the weights of the MT ensemble). Because only the MT system
corresponding to the currently chosen arm receives a loss, we do not know what would
have been the optimal choice in hindsight, on a real world scenario. Thus, instead
of considering the cumulative loss for the forecaster and what would be the optimal
cumulative loss in hindsight, we compute the regret as the difference between the
average loss for the forecaster and the average loss of the arm with the lowest average loss
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at that iteration (obtained considering the amount of times that arm was chosen). In this
case, ∆RM may vary between−1 and 1, thus we compute `k,t as shown in Equation (11).

`k,t =

{
∆RM+1

2 if votek,t = 1
1− ∆RM+1

2 if votek,t = 0
(11)

For the cases where the lowest loss is zero, not as a merit of the arm’s performance, but
because such arm has not been chosen yet, we assume its loss to be the average between
zero and the highest average loss so far among the remaining arms.

7. Experimental Setup

To validate our proposals, we performed an experiment using data from two MT shared
tasks, which include human scores, allowing us to simulate an online interaction setting.
In this simulation, the learning goal of the online MT ensemble is to give a greater
weight to the top ranked MT systems competing for each language pair, based on the
human scores received by their translations, and without knowing in advance which
systems are the best.

Our experiment’s goal is to converge to the top MT systems with as little human
intervention as possible. Particularly, we want to observe how fast this happens: (1)
using each individual stream-based query strategy proposed in Section 5; (2) using the
online ensemble of query strategies, proposed in Section 6. However, we note that our
true goal is to gradually and dynamically converge to the MT systems that received the
best feedback in an online scenario where there is no gold knowledge of which systems
would be the best.

In this section, we detail the data used (Section 7.1), the loss functions for the MT
ensemble (Section 7.2), the implementation details for the query strategies (Section 7.3),
the computing infrastructure on which the experiments were performed (Section 7.4),
and the evaluation metrics considered (Section 7.5).

7.1 Data

We performed our experiments on the test datasets made available for the News
Translation shared tasks in both WMT’19 (Barrault et al. 2019) and WMT’20 (Barrault
et al. 2020). Regarding WMT’19, we performed our experiments on the same selection
of language pairs as in our previous work (Mendonça et al. 2021), since it offers a
diverse coverage of phenomena in the dataset: English → German (en-de), French →
German (fr-de), German→Czech (de-cs), Gujarati→ English (gu-en), and Lithuanian
→ English (lt-en). The test sets for these language pairs are summarized in Table 1. For
each language pair, each source segment is associated with the following information:

• A reference translation in the target language (produced specifically for
the task);

• The automatic translation outputted by each system competing in the
task for that language pair;

• The average score obtained by each automatic translation, according to
human assessments made by one or more crowd-sourced human
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Table 1
Overview of the language pairs from the WMT’19 datasets considered in our experiments.

en-de fr-de de-cs gu-en lt-en

Test set size (# segments) 1,997 1,701 1,997 1,016 1,000
Competing systems 22 10 11 12 11
Human assessments coverage 86.80% 23.52% 62.94% 75.00% 100.00%

evaluators, in two formats: a raw score in [0;100] and a z-score in
[−∞; +∞]. Not all the automatic translations received a human
assessment;

• The number of human evaluators for each automatic translation (if there
were any).

Regarding WMT’20, we used the two language pairs that were scored by pro-
fessional translators after the shared task, using Scalar Quality Metric (SQM) scores
(henceforth referred to as pSQM) (Freitag et al. 2021a): English → German (en-de)
and Chinese → English (zh-en).4 These datasets are summarized in Table 2. For each
language pair, each source segment is associated with:

• The automatic translation outputted by each MT system selected by
Freitag et al. (2021a), out of the ones competing in the shared task;

• A set of human-made translations (which were also scored by the
professional translators);

• The pSQM score (a scalar number between 0 and 7) reflecting the quality
of each translation (human or automatic) according to a given
professional translator;

• The ID of the professional translator responsible for each score.

Due to inconsistencies in the format of the .tsv files provided with the pSQM anno-
tations, some source segments and/or translations were missing/misplaced; because
these represented just a few cases, we discarded the entries with empty sources or
translations. Then we computed the average of the pSQM scores per translation.

For each language pair, we report our experiment on a single shuffle of the respec-
tive test set, so that the original order of the segments would not bias the results. We
report a single run instead of an average of multiple runs, since different runs of the ac-
tive learning approaches could lead to the weights being updated in different iterations
for the same segments (depending on whether each active learning strategy/Onception
decided to ask for human feedback); thus it would not be viable to average across runs
accurately.5

4 The datasets annotated with pSQM scores are available in: https://github.com/google/wmt-mqm-human
-evaluation.

5 However, we ran our experiments in additional shuffles of the gu-en dataset, and we observed a similar
pattern of performance across shuffles.
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Table 2
Overview of the language pairs from the WMT’20 datasets annotated with pSQM scores.

en-de zh-en

Test set size (# segments) 1,418 2,000
Competing systems 7 8
Human translators 3 2
Human scores coverage 100% 100%

7.2 MT Loss Functions

In order to compute the loss function for the online learning algorithms applied to the
ensemble of MT systems (EWAF for the full feedback setting, or EXP3 for the partial
feedback setting), we used the human raw scores available for each segment (WMT’19)
or the average of the pSQM scores provided (WMT’20). We normalized all the scores
to be in the interval [0, 1] and rounded them to two decimal places, to avoid exploding
weight values due to the exponential update rule. It should be noted that the use of
these specific scores merely aims at simulating a human in a realistic situation, but our
approach should be agnostic to the score format or range.

As we can see in Table 1, not all segments received at least one human score in the
WMT’19 shared task. Thus, we rely on the fallback strategies proposed in our previous
work (Mendonça et al. 2021):

• HUMAN-ZERO: If there is no human score for the current translation, a
score of zero is returned;

• HUMAN-AVG: If there is no human score for the current translation, the
average of the previous scores received by the system behind that
translation is returned as the current score;

• HUMAN-COMET: If there is no human score for the current translation,
the COMET score (Rei et al. 2020) between the translation and the pair
source–reference available in the corpus is returned as the current score
(see Mendonça et al. [2021] for details).

In this experiment, for each combination of language pair and feedback setting,
we considered only the fallback strategy that obtained the best results in Mendonça
et al. (2021), as shown in Table 3. For WMT’20, all the translations received at least one
pSQM score, so we did not need to use any fallback strategies.

Table 3
Loss functions considered for each combination of language pair (WMT’19) and feedback
setting.

Language pair Full feedback Partial feedback
en-de HUMAN-AVG HUMAN-ZERO
fr-de HUMAN-COMET HUMAN-ZERO
de-cs HUMAN-COMET HUMAN-COMET
gu-en HUMAN-ZERO HUMAN-COMET
lt-en HUMAN-ZERO HUMAN-ZERO
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It should be noted that, in our work, the decision on whether to prompt the human
for feedback regarding a translation does not take into account whether the human is
actually available, interested, or capable of providing such feedback (since, in a realistic
scenario, one cannot guess that in advance). We thus keep these fallback strategies to
cope with situations in which the human is prompted to provide feedback but chooses
not to do it.

7.3 Active Learning Implementation Details

For each combination of language pair and feedback setting, we compared the following
approaches:

• A baseline using all the data available to update the weights of the MT
models;

• Each individual query strategy proposed in Section 5 and summarized
below, plus a random strategy:

– Diversity based on (1) Jaccard (DivJac), and (2) the cosine of
sentence-level BERT (DivBERT);

– Density based on (1) Jaccard (DenJac), and (2) the cosine of
sentence-level BERT (DenBERT);

– Translation Disagreement based on (1) Jaccard (TDisJac), (2)
the cosine of sentence-level BERT (TDisBERT), and (3)
sentence-level BLEU (TDisBLEU);

– Translation Difficulty based on PRISM (TDiff);

– N-gram coverage Diversity (DivNgram) and Density
(DenNgram).

• An active learning approach combining multiple individual query
strategies using prediction with expert advice, as described in Section 6:

– Onception (all) combines all the query strategies listed
above (including the random baseline);

– Onception (no Density) combines all the query strategies
except the Density based ones, since this query strategy is
based on segments that were previously discarded for
scoring;

– Onception (no Density and TDiff) combines all the query
strategies except the Density based ones and Translation
Difficulty; we only report this variation for gu-en since
PRISM was not trained in Gujarati.

Concerning the implementation of the query strategies, we made the following
decisions. For the strategies based on n-gram coverage, we extracted all n-grams up to
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trigrams, using NLTK (Bird, Klein, and Loper 2009). For Translation Disagreement, we
computed BLEU using SacreBLEU (Post 2018). For the query strategies using contextual
embeddings, we extracted pre-trained embeddings using BERT as a Service (Xiao 2018)
and the Base Cased models (English for the English segments and Multilingual for the
remaining languages).6 Before extracting the embeddings, as well as when using Jaccard
or before extracting n-grams, we removed punctuation from the segments. Before ex-
tracting n-grams or using Jaccard, we also lowercased the segments and tokenized them
(we used the JIEBA tokenizer for Chinese7 and the NLTK tokenizer for the remaining
languages).

Regarding the thresholds based on which the query strategies decide whether
to query the human for feedback, we obtained them by averaging the similarity/
agreement/PRISM/n-gram coverage values from the first five iterations, so that the
thresholds could be within a viable range of values. This was needed to make sure that
the strategies would not end up never selecting any segment to be scored or selecting
all of them. We refer to Appendix A for the list of thresholds used.

7.4 Computing Infrastructure

We performed our experiment on a PC with a Windows operating system with an
Intel Core CPU i7-9750H @ 2.60GHz CPU, 32GB RAM, and a NVIDIA GeForce RTX
2060 6GB GDDR6, except for the extraction of the BERT embeddings for the WMT’19
datasets, which was performed on a shared machine with 24 Intel Xeon CPU E5-2630
v2 @ 2.60GHz and 257 GB RAM.

7.5 Evaluation Metrics

The main goal of our experiment is to observe how fast each approach converges
(i.e., gives a greater weight) to the best MT models for each language pair. As the
gold standard, we consider the top ranked models on the WMT’19 official ranking
(listed in Table 4), and the top “systems” (most of which being the human translators)
according to Multidimensional Quality Metric (MQM) scores given by professional
translators for the WMT’20 datasets (listed in Table 5).8 Thus, for each human interaction
(and subsequent update to the MT ensemble’s weights), we report the performance of
each approach by computing the overlap between the top n = 3 systems with greatest
weights according to our approaches, ŝn, and the top n = 3 systems according to the
shared task’s official ranking/MQM scores, s∗n :

OverlapTopn =
|ŝn ∩ s∗n|

n , n = 3 (12)

We are focused only on the top MT systems since, in a realistic scenario (e.g., a Web
MT service), a user would most likely only care about the main translation returned,
or would at most consider one or two alternative translations. Moreover, the success
of our approach is not restricted to converging to the best system, since the scores
obtained in the WMT’19 shared task are not reliable enough to discriminate between

6 https://github.com/google-research/bert/.
7 https://github.com/fxsjy/jieba.
8 Given that we could not find the third top system reported by Freitag et al. (2021a)—VolcTrans (Wu et al.

2020)—in the datasets provided, we considered the fourth top system (WeChat AI) instead.
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Table 4
Top 3 performing systems for each language pair in the WMT’19 News Translation shared task
(Barrault et al. 2019). The systems named “online-[letter]” correspond to publicly available
translation services and were anonymized in the shared task.

Top 3 z-score Raw score

e
n
-
d
e Facebook-FAIR (Ng et al. 2019) 0.347 90.3

Microsoft-sent-doc (Junczys-Dowmunt 2019) 0.311 93.0
Microsoft-doc-level (Junczys-Dowmunt 2019) 0.296 92.6

f
r
-
d
e MSRA-MADL (Xia et al. 2019) 0.267 82.4

eTranslation (Oravecz et al. 2019) 0.246 81.5
LIUM (Bougares et al. 2019) 0.082 78.5

d
e
-
c
s online-Y 0.426 63.9

online-B 0.386 62.7
NICT (Dabre et al. 2019) 0.367 61.4

g
u
-
e
n NEU (Li et al. 2019) 0.210 64.8

UEDIN (Bawden et al. 2019) 0.126 61.7
GTCOM-Primary (Bei et al. 2019) 0.100 59.4

l
t
-
e
n GTCOM-Primary (Bei et al. 2019) 0.234 77.4

tilde-nc-nmt (Pinnis, Krišlauks, and Rikters 2019) 0.216 77.5
NEU (Li et al. 2019) 0.213 77.0

Table 5
Top 3 performing systems for each language pair according to MQM scores (Freitag et al. 2021a).
The entries named “Human-[letter]” correspond to human translators. Note that lower MQM
scores correspond to higher quality translations.

Top 3 MQM score pSQM score

e
n
-
d
e Human-B 0.75 5.16

Human-A 0.91 4.90
Human-P 1.41 4.32

z
h
-
e
n Human-A 3.43 4.34

Human-B 3.62 4.29
WeChat AI (Meng et al. 2020) 5.13 4.02

similarly performing systems (due to the lack of a large enough coverage of human
assessments as well as the fact that these scores were crowd-sourced, rather than given
by professionals). However, for a more detailed account of the performance of each
approach, we report additional metrics in the appendix: (1) the evolution of the rank
correlation (using Kendall’s τ) between the MT systems sorted by their online learning
weights and the official ranking/MQM scores (Appendix B); (2) the evolution of the
weights of the query strategies when using Onception (Appendix C).

8. Results and Discussion

In this section, we focus on the evolution of the OverlapTopn=3 throughout human
feedback interactions. The overlap value is represented by the heatmap color scale:
The darkest blue corresponds to a full overlap of the top 3 systems, while light yellow
represents a lack of overlap between the online algorithm’s learned top systems and
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the official top. Each iteration corresponds to a segment that was seen and whose
translations received a human score, leading to an update to the MT systems’ weights
in the online ensemble. In other words, the approaches for which the heatmap bars
are shorter consult the human fewer times, thus requiring less human effort, which
is what we are aiming for (provided that it does not impact the ability to find the top
systems). We note that, in this work, we assume a potentially endless stream of incoming
source segments; thus, in this experiment, the maximum number of iterations for each
language pair is given by the total amount of source segments available in the respective
dataset.

8.1 Full Feedback Setting

Figures 4–8 (WMT’19) and Figures 9–10 (WMT’20) represent the evolution of the
OverlapTopn=3 for the full feedback setting (i.e., when all the translations for a given
segment receive a human—or fallback—score). The first thing we can notice is that, for
all language pairs, most active learning approaches allow us to reduce the number of
segments for which the human is prompted to score the translations (as indicated by
the shorter heatmap bars).

Starting with the WMT’19 dataset, for en-de, the query strategies that make their
decision based on the translations (TDisJac, TDisBERT, TDisBLEU, and TDiff) are the
most promising, converging to the total of the top 3 MT systems within much fewer
interactions than the baseline without active learning (within 200–400 weight updates),
allowing us to spare hundreds of human interactions without harming the MT ensemble
performance. Onception (no Density) gets to the full top 3 slightly earlier than the
baseline, while the Onception version that uses all the query strategies follows a very
similar pattern as the baseline (which means it did not spare many human feedback
interactions).

As for fr-de, both the baseline and most query strategies converge to the full top 3
early (within the first dozens of interactions), which indicates that, in this situation, any
active learning strategy would be useful to avoid redundant human interactions.

A similar landscape can be found for de-cs, with several query strategies settling
on the top 3 systems slightly earlier than the baseline (namely, DenJac, DenBERT, all the
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Figure 4
Overlap of the top 3 MT systems for en-de (WMT’19) in the full feedback setting (figure best
seen in color).
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Figure 5
Overlap of the top 3 MT systems for fr-de (WMT’19) in the full feedback setting (figure best
seen in color).
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Figure 6
Overlap of the top 3 MT systems for de-cs (WMT’19) in the full feedback setting (figure best
seen in color).
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Figure 7
Overlap of the top 3 MT systems for gu-en (WMT’19) in the full feedback setting (figure best
seen in color).
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Figure 8
Overlap of the top 3 MT systems for lt-en (WMT’19) in the full feedback setting (figure best
seen in color).
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Figure 9
Overlap of the top 3 MT systems for en-de (WMT’20) in the full feedback setting (figure best
seen in color).
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Figure 10
Overlap of the top 3 MT systems for zh-en (WMT’20) in the full feedback setting (figure best
seen in color).
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TDis strategies, and TDiff). Once again, using active learning could allow us to avoid
redundant human effort.

As for gu-en, both Onception approaches seem to pay off, as they give a greater
weight to the top 3 systems more consistently than the baseline and the individual query
strategies. Even so, all the approaches (starting with the baseline) seem to “forget” at
least one of the top systems. Among the Onception approaches, the one that does not
include TDiff performs slightly better overall, which is expected, considering that the
metric used by TDiff (PRISM) had not been trained on Gujarati.

For lt-en, both Onception approaches and some query strategies settle on the full
top 3 earlier than the baseline, with the best strategy being random sampling. This
suggests that using an active learning strategy that does not rely on a threshold (as
is the case of random sampling) might be useful.

Moving to the WMT’20 dataset, for en-de, both the baseline and all the active
learning approaches (either the individual strategies or Onception) reach the top 3
systems in about 20 interactions, which suggests that most interactions in this situation
would be redundant. As such, using any active learning strategy would allow us to
skip those redundant interactions. Recall that, for this dataset, the translation ratings are
more reliable and consistent than the crowd-sourced scores available for the WMT’19
datasets, which likely explains the quick convergence toward the top 3.

Finally, for zh-en, the strategies that allow us to settle on the top 3 systems for the
longest are TDiff and random sampling. Both the baseline and the remaining strategies
end up only allowing us to find 2 of the top 3 systems, similarly to gu-en (perhaps
indicating that the most valuable feedback would be at later interactions).

8.2 Partial Feedback Setting

Figures 11–15 (WMT’19) and Figures 16–17 (WMT’20) represent the evolution of the
OverlapTopn=3 for the partial feedback setting (i.e., when only the forecaster’s selected
translation receives a human—or fallback—score). At first glance, we can notice that
the overall performance of both the baseline and all the active learning approaches is
generally more inconsistent than in the full feedback setting, which can be explained by
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Figure 11
Overlap of the top 3 MT systems for en-de (WMT’19) in the partial feedback setting (figure best
seen in color).
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Figure 12
Overlap of the top 3 MT systems for fr-de (WMT’19) in the partial feedback setting (figure best
seen in color).
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Figure 13
Overlap of the top 3 MT systems for de-cs (WMT’19) in the partial feedback setting (figure best
seen in color).
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Figure 14
Overlap of the top 3 MT systems for gu-en (WMT’19) in the partial feedback setting (figure best
seen in color).
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Figure 15
Overlap of the top 3 MT systems for lt-en (WMT’19) in the partial feedback setting (figure best
seen in color).
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Figure 16
Overlap of the top 3 MT systems for en-de (WMT’20) in the partial feedback setting (figure best
seen in color).
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Figure 17
Overlap of the top 3 MT systems for zh-en (WMT’20) in the partial feedback setting (figure best
seen in color).
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the fact that there is fewer feedback to learn from (since only the MT system selected at
each iteration receives a score).

Starting with the WMT’19 dataset, for en-de, most active learning strategies and
Onception not only allowed us to spare human interactions, but it allowed us to find
1 or 2 top systems (most notably, TDisJac), while the baseline was not able to do so
for most of the interactions. This suggests that using active learning might be useful,
preferably Onception, to avoid strategies that do not perform so well.

As for fr-de, once again the baseline never finds the top 3 systems, while Onception
and some individual strategies do (albeit briefly). While the overlap values are mostly
inconsistent throughout the human interactions for all the approaches, it might still pay
off to use active learning.

For de-cs, both Onception and several individual strategies (most notably TDisJac)
find and stick with the top 3 systems earlier/for longer than the baseline, with Oncep-
tion doing so more consistently. This suggests that, not only using active learning might
pay off, but using Onception might be a safer bet than committing to one strategy.

As for gu-en, the baseline never finds more than one top system, while some query
strategies do, with Onception (No Density) and TDisJac briefly finding the full top 3.
Surprisingly, the version of Onception that does not include TDiff does not perform as
well as Onception (No Density), despite the fact that PRISM (the metric used by TDiff)
had not been trained on Gujarati.

For lt-en, once again, only two approaches found the full top 3 (albeit briefly):
Onception and DivBERT. Despite the overall “forgetfulness” of some top systems by
most approaches, using active learning still seems to pay off, as most strategies are able
to find 2 top systems for longer/earlier than the baseline.

Moving to the WMT’20 dataset, for en-de, both Onception versions allow us to find
the full top 3 more consistently and much earlier than the baseline and the individual
query strategies, suggesting its usefulness in this setting.

Finally, for zh-en, only Onception (both versions) and TDiff are able to find the full
top 3 (albeit not for long) and overall outperform the baseline in the earliest interactions.
Once again, despite the inconsistent performances found across the partial feedback
setting, Onception appears to be more useful than sticking to an arbitrary individual
strategy or not using active learning at all.

8.3 Discussion

Full vs. Partial Feedback:. From the results above, we can see that for most language pairs
in the full feedback setting, active learning can be helpful to skip redundant human
effort in providing feedback (i.e., without harming the MT ensemble performance), with
most strategies keeping up with the baseline’s performance. This suggests that, in some
cases, even just a random sampling strategy might be enough to make the most of as
little feedback as possible. Using Onception might not be as critical in this setting, as
opposed to the partial feedback setting, in which the individual strategies’ performance
is far more inconsistent. In the potential impossibility of pre-evaluating strategies prior
to deployment, Onception is a safer bet for partial feedback settings, as it allows us to,
at least, dodge the worst strategies.

WMT’19 vs. WMT’20 Datasets:. The pSQM ratings available for the WMT’20 datasets
were provided by a pool of only 6 raters (which means that many segments’ translations
were scored by the same raters), all of whom were professional translators. Moreover,
there was a full score coverage for these datasets. This contrasts with the datasets for
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WMT’19, whose scores were crowd-sourced and often lacking for certain translations.
This might explain why the overall performance for the WMT’19 datasets is more incon-
sistent across iterations (as well as the inconsistency across language pairs for WMT’19).
However, the overall performance for the WMT’20 was also more inconsistent than
initially expected—this can be explained by the fact that all the “competing systems”
were very balanced (some were actually human translators and the remaining systems
selected for pSQM/MQM annotations by Freitag et al.a [2021a] were mostly the top
systems according to the WMT’20 ranking).

Performance across Different Strategies:. Although we could not find any pattern in terms
of which strategies were the best (as expected from Lowell, Lipton, and Wallace’s [2019]
findings), it was anticipated that Diversity and Density strategies would be more prone
to be inconsistent, as they more critically depend on an appropriate choice of threshold
values—if the threshold is too strict, these strategies will not have any previous seg-
ments in L or U to compare the current segment with. We observed this sensitivity at its
peak with the n-gram coverage strategies, which barely asked for any human feedback
in our experiments, while often failing to capture 2 or more top systems.

RQ1: Can an active learning approach converge to the best systems with fewer human
interactions?

As observed in the results reported above, for all language pairs and feedback settings
considered, there is at least one query strategy that accelerates the process of finding
the top 3 systems (or a subset of them). However, which query strategy should be
used in each situation is not a trivial question to answer, since the performance of the
query strategies under consideration varies greatly across language pairs and feedback
settings. This was a predictable result considering the previous findings of Lowell,
Lipton, and Wallace (2019) (observed in a pool-based active learning setting), which
we now corroborate for a stream-based active learning setting.

RQ2: Does it pay off to dynamically combine multiple query strategies using expert
advice (rather than using a single strategy)?

Considering the result discussed in the previous research question (i.e., that the best
performing query strategy varies across settings), it generally pays off combining mul-
tiple strategies using online learning (i.e., using Onception), since we do not know in
advance which strategy will perform better for a given setting, and could end up com-
mitting to one of the worst ones. We should note that we are not concerned regarding
which specific query strategies are chosen more often, but whether Onception is able
to perform in line with or better than the best strategies and dodge the worst ones, in
terms of the MT ensemble performance.

Keeping that in mind, at a first look at the results reported, one could think that
Onception would not always pay off, since this approach is not always perfectly aligned
with the performance of the best query strategies (i.e., it does not verify the performance
guarantees of EWAF). However, this behavior is foreseeable since Onception is learning
from an imperfect source of feedback—the regret of the MT ensemble, which, during the
first updates, may not reflect accurately what would be the best options overall, since it
is being learned simultaneously. Despite this apparent limitation (caused by the lack of a
reliable metric to learn the best strategies), our Onception approaches still pay off: They
often perform better than the baseline and most individual strategies, finding the full
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Figure 18
Evolution of the rank correlation for en-de (WMT’20) and the partial feedback setting (figure
best seen in color).

top 3 systems earlier (i.e., requiring less human effort), and, perhaps more importantly,
they tend to ignore the worst strategies, proving to be especially useful in the partial
feedback setting.

Moreover, Onception often correlates well with the official ranking overall, as it is
the case for en-de and the WMT’20 dataset (Figure 18). This result is particularly rele-
vant for the WMT’20 datasets, as the competing systems are more balanced, meaning
that even if Onception does not get the full top 3 correctly, it is probably relying on the
next best systems.

9. Conclusions and Future Work

In this work, we contributed with an active learning solution that reduces the human
effort needed to learn an online ensemble of MT models deployed simultaneously. We
adapted multiple well-known query strategies to a stream-based setting, all of them
being model-independent and compliant with a low-resource setting (as they do not
require any additional pre-training data). Because we do not know in advance which
query strategies will be more useful on a given setting, we dynamically combined
multiple strategies using prediction with expert advice. In our experiments, this re-
vealed itself to be a safer option than to commit to a single query strategy for most
settings, often outperforming several individual strategies and sparing the need for
human interaction even further.

One aspect to take into account is the the trade-off between the computational effort
of running multiple strategies simultaneously and the resulting benefit. In practice,
this trade-off will depend on how much effort is behind each strategy; thus, although
our Onception approach is agnostic to the query strategies in the ensemble, this does
not necessarily exclude a step of pre-filtering the strategies to use based on the effort
to use each strategy. Moreover, the decision to use Onception versus using a single
query strategy (or even just random sampling) should also be weighted against the
characteristics of setting in hand: Settings in which feedback might be less reliable or
might not be available for multiple MT systems seem more likely to benefit from the
effort involved in running a combination of multiple strategies (as opposed to settings
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in which feedback might be more reliable or abundant, for which random sampling
might suffice).

For future work, some extensions to our solution could be considered, namely: (1)
using dynamic thresholds for the query strategies, rather than fixed ones (since some
strategies may need to be more or less strict when choosing segments at different points
of the learning process, particularly in the case of the Diversity and Density strategies);
(2) using stochastic and/or contextual bandits, as well as non-stationary experts, to
combine the query strategies (since the best strategy tends to vary as new segments
arrive, and a greater emphasis on exploration might be beneficial); and (3) extending
these experiments on more recent datasets, such as the ones from the WMT’21 shared
tasks (Akhbardeh et al. 2021; Freitag et al. 2021b).

Appendix A. Query Strategies’ Thresholds

These values represent the thresholds of similarity/agreement/quality estimation
based on which each strategy decides whether it is worthy to ask for human feedback
on a pair source-translation(s).

Table A1
Threshold values used for each query strategy and dataset.

Query strategy WMT’19 WMT’20

en-de fr-de de-cs gu-en lt-en en-de zh-en

DivJac 0.09 0.06 0.03 0.02 0.003 0.09 0.07
DivBERT 0.91 0.90 0.90 0.95 0.91 0.94 0.90
DenJac 0.05 0.07 0.03 0.02 0.01 0.06 0.07
DenBERT 0.92 0.91 0.90 0.94 0.91 0.93 0.89
TDisJac 0.63 0.59 0.41 0.25 0.65 0.59 0.75
TDisBERT 0.975 0.969 0.962 0.948 0.983 0.983 0.993
TDisBLEU 0.48 0.40 0.28 0.14 0.41 0.45 0.62
TDiff −0.70 −0.89 −1.33 −4.74 −1.16 −0.76 −1.06
DivNgram 0.90 0.88 0.95 0.96 0.99 0.88 0.91
DenNgram 0.00035 0.00052 0.00049 0.00025 0.00020 0.00015 0.00025
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Appendix B. Rank Correlation Evolution

The following figures depict the evolution of the rank correlation (Kendall’s τ) between
the shared task’s official ranking (WMT’19) or the ranking given by the MQM ratings
(WMT’20) and the ranking given by the weights learned using online learning.

Full Feedback

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

10
50

11
00

11
50

12
00

12
50

13
00

13
50

14
00

14
50

15
00

15
50

16
00

16
50

17
00

17
50

18
00

18
50

19
00

19
50

Iteration #

Baseline
Onception (no Density)

Onception (all)
DivJac

DivBERT
DenJac

DenBERT
TDisJac

TDisBERT
TDisBLEU

TDiff
DivNgram

DenNgram
random

Ap
pr

oa
ch

es

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure B.1
Evolution of the rank correlation for en-de (WMT’19) (figure best seen in color).
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Figure B.2
Evolution of the rank correlation for fr-de (WMT’19) (figure best seen in color).
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Figure B.3
Evolution of the rank correlation for de-cs (WMT’19) (figure best seen in color).
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Figure B.4
Evolution of the rank correlation for gu-en (WMT’19) (figure best seen in color).
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Figure B.5
Evolution of the rank correlation for lt-en (WMT’19) (figure best seen in color).
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Figure B.6
Evolution of the rank correlation for en-de (WMT’20) (figure best seen in color).
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Figure B.7
Evolution of the rank correlation for zh-en (WMT’20) (figure best seen in color).
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Figure B.8
Evolution of the rank correlation for en-de (WMT’19) (figure best seen in color).
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Figure B.9
Evolution of the rank correlation for fr-de (WMT’19) (figure best seen in color).
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Figure B.10
Evolution of the rank correlation for de-cs (WMT’19) (figure best seen in color).
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Figure B.11
Evolution of the rank correlation for gu-en (WMT’19) (figure best seen in color).
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Figure B.12
Evolution of the rank correlation for lt-en (WMT’19) (figure best seen in color).
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Figure B.13
Evolution of the rank correlation for zh-en (WMT’20) (figure best seen in color).
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Appendix C. Query Strategies’ Weights Evolution

The following figures depict the evolution of the weights of the query strategies when
using Onception. We note that the x-axis is shorter than in the previous plots, and its
length might vary, since it represents only the iterations for which a request for a score
was made.
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Figure C.1
Evolution of the query strategies’ weights for en-de and EWAF (figure best seen in color).
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Figure C.2
Evolution of the query strategies’ weights for fr-de (WMT’19) (figure best seen in color).
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Figure C.3
Evolution of the query strategies’ weights for de-cs (WMT’19) (figure best seen in color).
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Figure C.4
Evolution of the query strategies’ weights for gu-en (WMT’19) (figure best seen in color).
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Figure C.5
Evolution of the query strategies’ weights for lt-en (WMT’19) (figure best seen in color).
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Figure C.6
Evolution of the query strategies’ weights for en-de (WMT’20) (figure best seen in color).
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Figure C.7
Evolution of the query strategies’ weights for zh-en (WMT’20) (figure best seen in color).
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Figure C.8
Evolution of the query strategies’ weights for en-de (WMT’19) (figure best seen in color).
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Figure C.9
Evolution of the query strategies’ weights for fr-de (WMT’19) (figure best seen in color).
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Figure C.10
Evolution of the query strategies’ weights for de-cs (WMT’19) (figure best seen in color).
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Figure C.11
Evolution of the query strategies’ weights for gu-en (WMT’19) (figure best seen in color).
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Figure C.12
Evolution of the query strategies’ weights for lt-en (WMT’19) (figure best seen in color).
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Figure C.13
Evolution of the query strategies’ weights for en-de (WMT’20) (figure best seen in color).
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Figure C.14
Evolution of the query strategies’ weights for zh-en (WMT’20) (figure best seen in color).
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