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Introduction

Bienvenidos to the proceedings of the sixth edition of the workshop on computational approaches for lin-
guistic code-switching (CALCS-2023)! Code-switching is a common phenomenon in the multilingual
communities where multilingual speakers communicate by moving back and forth between the languages
they speak when communicating with other multilingual speakers. This year the workshop is being held
in Singapore on December 7th, 2023 at EMNLP.

This workshop series brings together experts and practitioners that are currently working on different
aspects of code-switching with a special focus on motivating tighter collaborations between speech and
text researchers. We received 15 regular workshop submissions, of which we accepted 8 and 1 non-
archival. Our workshop also aims to motivate new research and energize the community to take on the
challenges posed by code-switching data.

The workshop program includes short talks from regular workshop submissions and keynote speakers.
We also have a stellar invited speaker program with a keynote talk by Preethi Jyothi and Haizhou Li.
We would like to thank the EMNLP workshop organizers for their help during the organization of the
workshop. It would have been great to see everyone face to face in Singapore and we hope that you join
us on December 7th and that you enjoy the program we put together.

Let’s talk code-switching in December!

The Workshop Organizers

Y
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Keynote Talk: Modeling Code-Switch Languages Using
Bilingual Parallel Corpus

Haizhou Li
The Chinese University of Hong Kong, Shenzhen; National University of Sinagapore

Abstract: Language modeling is the technique to estimate the probability of a sequence of words. A
bilingual language model is expected to model the sequential dependency for words across languages,
which is difficult due to the inherent lack of suitable training data as well as diverse syntactic structure
across languages. We propose a bilingual attention language model (BALM) that simultaneously perfor-
ms language modeling objective with a quasi-translation objective to model both the monolingual as well
as the cross-lingual sequential dependency. The attention mechanism learns the bilingual context from
a parallel corpus. We will discuss the study of multilingualism in South East Asia and how code-switch
language models can be useful for language processing.

Bio: Haizhou Li is the X.Q. Deng Presidential Chair Professor in the School of Data Science, The Chine-
se University of Hong Kong, Shenzhen, China. He is also an Adjunct Professor at the National University
of Singapore, Singapore and a Bremen Excellence Chair Professor at the University of Bremen, Germa-
ny. Prior to joining CUHK (Shenzhen), Professor Li has taught at Nanyang Technological University
and National University of Singapore (2006-2016) in Singapore, University of Eastern Finland (2009)
in Finland, and University of New South Wales (2011-2016) in Australia. He was the Principal Scien-
tist and Research Director at the Institute for Infocomm Research (2003-2016), the Agency for Science,
Technology and Research, Singapore. Professor Li is an IEEE Fellow, and ISCA Fellow.

He has served as the Editor-in-Chief of IEEE-ACM Transactions on Audio Speech and Language Proces-
sing (2015-2018), Associate Editor of Computer Speech and Language (2012-2021), Springer Interna-
tional Journal of Social Robotics (2008-2021), and a Member of IEEE Speech and Language Processing
Technical Committee (2013-2015), Awards Board (2021-2023), and Publications Board (2015-2018)
of IEEE Signal Processing Society. He was the President of the International Speech Communication
Association (ISCA, 2015-2017), the President of Asia Pacific Signal and Information Processing As-
sociation (APSIPA, 2015-2016), the President of the Asian Federation of Natural Language Processing
(AFNLP, 2017-2018). He was the General Chair of major scientific conferences including ACL 2012,
INTERSPEECH 2014, and ICASSP 2022.
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Keynote Talk: Resource-efficient Computational Models for
Code-switched Speech and Text

Preethi Jyothi
IIT Bombay

Abstract: Code-switching, i.e., the linguistic phenomenon of switching between languages within and
across sentences, is widely prevalent in multilingual societies. Code-switched inputs pose a serious chal-
lenge to existing speech and NLP models. The challenge mainly emerges due to the limited availability
of natural code-switched data and the inherent diversity in code-switching. In this talk, we will discuss
techniques that aim to effectively address these dual challenges. These techniques will cover how to
exploit monolingual speech and text for code-switching, how to generate synthetic and diverse code-
switched text to augment real data and how to judiciously use existing real code-switched speech and text
in conjunction with other linguistic resources.

Bio: Preethi is an Associate Professor at IIT Bombay. She joined the department in September 2016.
Prior to that, she was a Beckman Postdoctoral Fellow at the University of Illinois at Urbana-Champaign.
She obtained my Ph.D. from the CSE Department at The Ohio State University in 2013. Her research
interests are broadly in the areas of automatic speech recognition and machine learning as applied to
speech, and code-switching.
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TONGUESWITCHER:
Fine-Grained Identification of German-English Code-Switching

Igor Sterner

Simone Teufel

Department of Engineering Department of Computer Science and Technology

University of Cambridge
United Kingdom
is473@cam.ac.uk

Abstract

This paper contributes to German—English
code-switching research. We provide the
largest corpus of naturally occurring German—
English code-switching, where English is in-
cluded in German text, and two methods for
code-switching identification. The first method
is rule-based, using wordlists and morphologi-
cal processing. We use this method to compile
a corpus of 25.6M tweets employing German—
English code-switching. In our second method,
we continue pretraining of a neural language
model on this corpus and classify tokens based
on embeddings from this language model. Our
systems establish SOTA on our new corpus and
an existing German—English code-switching
benchmark. In particular, we systematically
study code-switching for language-ambiguous
words which can only be resolved in context,
and morphologically mixed words consisting
of both English and German morphemes. We
distribute both corpora and systems to the re-
search community.

1 Introduction

A large proportion of the world’s population is
multilingual, and that naturally means that a large
proportion of the world is code-switching daily,
frequently and routinely (Harris and McGhee Nel-
son, 1992; Grosjean, 2010; Grosjean and Li, 2013).
Code-switching occurs when speakers alternate be-
tween languages; this can happen at the sentence,
word, or even subword level. For many multilin-
gual speakers, code-switching is a natural part of in-
formal language, either as a matter of convenience
or possibly because it allows them to express their
intended meanings more precisely. Several psy-
cholinguistic and sociolinguistic theories of code-
switching exist (Poplack, 1980; Joshi, 1982; Myers-
Scotton, 1997; Muysken, 2000; Green and Abu-
talebi, 2013; Filipovi¢ and Hawkins, 2019). The
dominant language is called the matrix language,
while the subordinate language that is included is

1

University of Cambridge
United Kingdom
sht25@cam. ac.uk

Tweet: ich glaub ich muss echt Mrewatchen Elike i feel so
empty was soll ich denn jetzt machen

Translation: I think I really have to rewatch it like i feel so
empty what should I do now

Figure 1: German—English code-switching

called the embedded language (Joshi, 1982). We
refer to any text segment in the embedded language
as an island. In the example of code-switching

shown in Figure 1, like i feel so empty is an is-
land.

Many NLP systems are currently developed to
be capable of handling text from informal contexts.
Code-switching places new pressure on these, par-
ticularly for applications that require the recogni-
tion and precise extraction of meaning from code-
switched text, or even the generation of such text.
Available NLP tools lag behind in this respect
(Aguilar and Solorio, 2020; Dogruéz et al., 2021);
in particular large language models perform best
when fine-tuned on natural code-switching data
(Santy et al., 2021). Our work is aimed towards
NLP tools that can better understand and manipu-
late code-switched language.

We are interested in studying naturally occur-
ring code-switching. Social media, where mostly
informal conversation take place, is an ideal source
of such texts. We study code-switching between
English and German, two closely related languages.
We encounter many high-frequency words of iden-
tical form in both languages, such as “was” in Fig-
ure 1, which is a WH-pronoun in German. If the
same string “was” appeared in English, it would be
the past form of ‘to be’. Importantly, the two mean-
ings are entirely unrelated. Such cases constitute an
interesting corner case for code-switched text, and
are called interlingual homographs (IHs, Dijkstra
et al.,, 1999). A second interesting phenomenon
is that, because German is a morphologically rich
language, its morphology can act on English mor-

Proceedings of the 6th Workshop on Computational Approaches to Linguistic Code-Switching, pages 1-13
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phemes, creating intra-word codeswitching, such
as in the past participle Mrewatchen in Figure 1.
A third property of the German—English language
pair is the high frequency of English loanwords in
German. Loanwords are words of foreign origin
that have been fully assimilated into the main lan-
guage. Loanwords and code-switching constitute a
grey area in language change: whether something
is a loanword or part of an island is a hotly debated
topic in linguistics (Deuchar, 2020; Treffers-Daller,
2022). While we do not directly address the loan-
word distinction in this work, we believe that our
theory-neutral methods can contribute to an empir-
ical way of addressing this in the future.

In this paper, we study German—English code-
switching with an analytic interest in fine-grained
phenomena (e.g. short islands, mixed morphology
and interlingual homographs). This introduces new
aspects to the automatic study of code-switching.
At the same time, we bring scale to the analysis;
the TONGUESWITCHER Corpus includes 25.6M
German-English code-switching tweets with auto-
matic code-switching identification. We release
our corpus and the two code-switching identifica-
tion methods we developed, one rule-based, one
neural .

2 Related work

Code-switching identification and language iden-
tification are closely related tasks, but traditional
language identification (LI) tools can only deter-
mine which languages are present in a given text,
not the precise beginning and end of each island.
For instance, the LI tools provided by Chen and
Skiena (2014) and Joulin et al. (2016b; 2016a)
rely on character-based n-gram models. FastText
(Joulin et al., 2016b,a) uses a character-based n-
gram method to compare statistical properties of
the input text with a pre-compiled frequency profile
of each language. It distinguishes 176 languages,
including English and German, alongside similar
languages such as Luxembourgish and Afrikaans.
Polyglot is another such tool, which is able to iden-
tify more than one single language per document
(Chen and Skiena, 2014). It is built from the CLD2
tool from Riesa and Giuliani (2013), which uses
quadgram ranking. Lingua (Stahl, 2023) is a black-
box LI tool that also offers code-switching identifi-
cation for many language pairs, including German—

!Code, models (neural tagger and code-switching language
model, both with demos) and corpus are all online.

English. It combines a language modelling ap-
proach with hard-coded rules. Its code-switching
identification performance has never been experi-
mentally evaluated.

Nguyen et al. (2020; 2021) present rule-
based code-switching identification systems for
Vietnamese—English and Hindi—English mixed text,
which is based on specially-created wordlists for
each of these language pairs. All words that appear
in both wordlists are manually disambiguated by a
human annotator. This is a simple approach to the
task that affords the researchers control over their
system, as it does not require any training.

Osmelak and Wintner (2023) detect code-
switching at a finer-grained level. In their
Denglisch system, tagging proceeds at token-level,
and the following labels are used: D and E for
German and English tokens respectively; SD, SE
and SO for loanwords imported from German into
English, from English imported German, and from
other languages. There is also an Other category
for unclassifiable items, such as punctuation and
emojis, and a Mixed category for words of mixed
morphology.

Several other code-switching approaches also
model mixed morphology. Nguyen and Cornips
(2016) perform morphological analysis with the
Morphessor tool to address Dutch-Limburgish-
English code-switching, and Mager et al. (2019) de-
tect intra-word code-switches in German—Turkish
and Spanish—Wixarika text using RNNs. Osme-
lak and Wintner (2023) use CRFs, a supervised
machine learning framework, in combination with
manually curated features, such as orthography,
n-gram, morphology, function words, frequency,
lexical components and wordlists. The training ma-
terial consists of 950 Reddit comments containing
60K tokens, balanced between English and Ger-
man. They also use automatically-tagged silver-
standard data to the tune of a further 31,500 com-
ments (5 million tokens). In contrast, our solution
does not require any human-annotated training ma-
terial.

For neural code-switching identification, the use
of word embeddings from a multilingual language
model such as mBERT (Devlin et al., 2019) is one
possible approach. mBERT is an encoder-only
transformer-based model which embeds each token
into a 768-D vector. Santy et al. (2021) found it is
best suited when fine-tuned on naturally occurring
code-switching material. Nayak and Joshi (2022)


https://github.com/igorsterner/TongueSwitcher
https://huggingface.co/igorsterner/german-english-code-switching-identification
https://huggingface.co/igorsterner/german-english-code-switching-bert
https://huggingface.co/igorsterner/german-english-code-switching-bert
https://zenodo.org/records/10011601

pretrain and fintune a BERT-based model for code-
switching identification in Hinglish. They use an
existing tool to collect and automatically label a
large corpus of tweets.

When it comes to gold-standard datasets, the
majority of code-switching datasets are between
(1) languages spoken in India with English (Gupta
et al., 2021; Nguyen et al., 2021; Adda-Decker
et al., 2008), (2) Mandarin with English (Lyu et al.,
2010) and (3) Spanish with English (Mave et al.,
2018; Samih et al., 2016). For German—English
code-switching other than Osmelak and Wintner
(2023), Rijhwani et al. (2017) use a mini-corpus
consisting of 99 Twitter tweets, which is not publi-
cally available. Our corpus is much larger.

3 Corpus construction

The German tweets we use as input were collected
at scale by Kratzke (2022, 2023). The Twitter
language identification algorithm assigns a proba-
ble language at the time of writing of each tweet;
Kratzke chose those that were deemed German.
This resulted in 149.2M input tweets written be-
tween April 2019 to February 2023. We clean the
tweets (URLs are replaced with <URL>, emojis,
emails, phone numbers and mentions are removed)
and run FastText language detection on them, only
keeping tweets that are re-assigned the German tag
or instead assigned an English language tag. This
step eliminates many tweets in Luxembourgish and
other languages too similar to German for Twitter’s
language identifier to catch. 123.7M tweets remain
after this step. In contrast, Osmelak and Wintner
(2023) filter their input to remove those examples
for which Polyglot’s prediction is not both English
and German.

To establish a testset, code-switching annota-
tion was performed by the authors of this paper
on 1252 tweets. We used the Prodigy annotation
tool (Montani and Honnibal, 2018). To use annota-
tion time efficiently, we wanted to make sure that a
good proportion of the cases seen had reasonably
high code-switching occurrences. The tweets were
therefore processed and pre-filtered by a precursor
of TONGUESWITCHER. This system differed from
the final version only marginally, e.g. in the order-
ing of the rules and the quality of the multilingual
stemming algorithm. We then random-sampled
from two subsets: all input tweets (25%), and those
with a high proportion of code-switching (75%).
System annotations were not removed before hu-

man annotation. There were no explicit guidelines.
Annotators discarded tweets in German dialects
such as Swiss German, made sure that German in-
deed acted as the matrix language, and then marked
island start and end points in each surviving tweet.
In 63.5% of cases, boundaries were moved; this
means that annotators did not simply accept the
system’s suggestions. Regarding the annotation
of loanwords, each annotator followed their own
intuition about which words were so common as to
be used as loanwords, additionally using a context-
sensitive definition of loanwords. To establish con-
sistency of the annotation, we randomly sampled
36 tweets consisting of 1172 tokens, which both
annotators labelled. Inter-annotator agreement was
measured at k=0.68 (N=1172, n=3, k=2; Cohen,
1960). The annotators agreed fully on all tokens in
15 out of the 36 tweets. The distribution of island
sizes in the resulting testset is given in Figure 2.

2

Figure 2: Proportion of island sizes in testset. Each
field expresses the total number of tokens occurring in
islands of that size.

4 TongueSwitcher

Our rule-based method takes as input German
tweets and produces labels indicating the language
of each word, or sub-word if the word is of mixed
morphology. The main algorithm applies several
wordlist-based filters to make the decision. Addi-
tional processing applies if a) the word is genuinely
a possible word in both languages or b) it is an intra-
word code switch. All processing in this method is
performed on lowercased words.

4.1 Constructing wordlists

We first compile formal and informal wordlists for
English and German. Our strategy given the re-
sources we have is to compile pure wordlists which
contain words that are guaranteed to be contained
in only one of the two languages (for instance,



“parser” should not be in either pure list), and a
big wordlist to cover as many words as possible
from the matrix language, German. For the “Pure
English” wordlist, we combine the WortSchatz
Leipzig News Corpora (WL, 15K words, Biemann
et al., 2007) and a scraped version of the online
Urban Dictionary (UD, 13K words, Bierner, 2022),
which contains many informal words and phrases
used in English slang. We remove words that ap-
pear 5 times or fewer in the WL corpus and words
that appear 10 times or fewer in the UD.

For German, we use the WL corpora (65K
words), and add Swiss (37K words) and Austrian
(34K words) as we could not automatically filter
out many input tweets written in these dialects. We
also add the more informal online German dictio-
nary dict.cc (583K words, Hemetsberger, 2023).
This list is the basis for our “Big German” wordlist.
For our multilingual stemming, we also need a
wordlist of pure German roots. We start by col-
lecting a smaller wordlist of words appearing more
than twice only in the German WL corpus.

English loanwords need to be removed from the
German lists. Ideally, we would have an exhaus-
tive list of loanwords to handle such words sepa-
rately, but in reality we have access only to a small
list of 3367 known English loanwords in German,
created by Seidel (2010) from an analysis of the
German magazine Der Spiegel. We remove these
from “Big German”. We remove an additional
set of suspected loanwords automatically from the
German wordlists, namely all entries from dict.cc
(Hemetsberger, 2023) where the English word and
its German translation are identical and vice versa.
We also remove a large list of boys’, girls’ and city
names (Weiss, 2022a,b; OnTheWorldMap, 2023)
from both wordlists. Names in our approach are
handled based on the surrounding language in our
n-gram processing (step 7 of our algorithm coming
up in §4.2).

Finally, we also want to remove the many non-
language-specific one or two letter words in our
wordlists (e.g. “eh”), which we consider noise.
Such words can arise from typos, abbreviations,
and general processing problems. Unless such
ultra-short words were included in hand-selected

2 Another reason for removing these loanwords is that some
display mixed morphology. Our algorithm will not detect
mixed morphology if the full word is already in “Big German”.
By removing them, these words are automatically handled by
our mixed word detection steps.

Big German 709,979
Pure German 92,099
Pure English 20,203
Interlingual homographs 120

Table 1: Wordlists compiled, with number of words

lists®, we removed them from all wordlists.

Even after all these stages, there are still words
appearing in both wordlists (many purely English
words in the German wordlists and vice versa).
Many of these are noise. One could whittle them
down entirely manually, as Nguyen and Bryant
(2020) do. We instead first ask the large language
model (LLM) text-davinci-003 (Brown et al.,
2020) for its guess of the primary language of each
word with the following prompt: In one word,
what language is the word: {3}? The LLM
may introduce a bias towards English. We therefore
do not accept the LLLMs predictions blindly, but
manually review all classifications. Knowing the
model’s choice still saved time. We removed the
German ones from the English wordlist, and the
English ones from the German wordlists.

When going through this list manually, we also
find some words that are graphically identical and
have the same meaning in both languages (e.g. ‘di-
verse’)*. If such a word is found, it is removed
from all wordlists. We will treat these based on the
surrounding language later.

Finally, we compiled a list of IHs. Under the
assumption that IHs have different POS in the two
languages, we compute a list of such IHs by tag-
ging an English and a German WL corpus, looking
for shared words with at least one different POS,
modulo capitalisation.

The sizes of the resultant wordlists are given in
Table 1.

4.2 Code-switching identification algorithm

Our code-switching identification algorithm is de-
fined as follows. We first tokenize and POS-tag
each cleaned tweet using the Flair upos-multi
multilingual uPOS tagger (Akbik et al., 2018;
Petrov et al., 2012). Then we apply the following
steps to classify each token. These steps are also
visualized as a flow chart in Figure 3; examples of
tokens handled by each step are given in Appendix

3The hand-selected lists contain 28 English one or two-
character words (e.g. ‘of” and ‘if”) and 24 German one or
two-character words (e.g. ‘zu’ and ‘um’).

*These words are not IHs, because IHs are defined as
having different meanings.
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Table 9. The proportion of tokens in our corpus Split  Tweets Sentences  Tokens Eng. tokens
identified using each step is given in brackets. Train ~ 24.6M 57.8M  741.9M 82.6M
1 (58%)If rd is in our pure Enelish wordlist Dev 1.1M 2.6M 32.9M 3.6M
L L.87%) T aword s mour pure English wordlist, Test 13K 30K 37.5K 2.8K
it immediately receives an English tag.
Total  25.6M 60.4M  774.8M 86.2M

2 (9.3%) If a word is a interlingual homograph
(IH), language identification is attempted using the
words’ part of speech tag.

3 (74.6%) Else, we look the word up in our big
German wordlist and assign a German tag if found.
4 (0.2%) If the word is still not identified, a multi-
lingual stemming system we developed recursively
strips affixes (lists taken from Osmelak and Wint-
ner, 2023) from words until a word (or simple vari-
ations: adding a missing trailing ‘e’ or removing
a double last letter) is found in our pure English
wordlist or no more affixes are found. If an English
stem is found with purely German affixes, the word
is given a Mixed label.

5 (1.4%) We next look for known subwords us-
ing a statistical morphological segmentation sub-
system based on HanTa (Wartena, 2019), a train-
able second-order autoregressive model, where
each morpheme depends on the previous two mor-
phemes to predict the most likely morpheme se-
quence. We train HanTa on the (a) Tiger Corpus
(Brants et al., 2002) for German (b) Brown Corpus
(Francis and Kucera, 1964) for English and (c) a
mixture of both, and attempt segmentation in turn
with these three systems, looking for roots in our
pure English or pure German wordlists. This sub-
system also detects fully monolingual compound
word creations, hence the increase in proportion
compared to 0.2% for the previous step.

Table 2: TONGUESWITCHER Corpus statistics

6 (0.5%) If the unknown word contains an um-
laut, it receives a German tag.

7  (8.2%) Words unknown at this stage which oc-
cur inside single-language islands are assigned the
language of their neighbours. Words at an island
boundary assume the language of the most probable
bigram on either side, based on the frequencies of
the most likely 10,000 bigrams of German and En-
glish we compiled from the WL Corpora for each
language. Otherwise, tokens assume the language
of their nearest identified token.

We implement this algorithm using the frame-
work of Lin and Byrne (2022), resulting in the
TONGUESWITCHER (TS) system. Using this sys-
tem, we next automatically labelled all 123.7M
cleaned input tweets, creating our silver-annotated
data. Based on the silver labels, we excluded tweets
that do not contain at least 50% German tokens, and
at least one English or Mixed token. We split this
corpus by allocating the last two months of data
(Jan, Feb °23) to a development set. A summary of
the corpus with its silver-standard training/develop-
ment data is given in Table 2. Our silver-standard
data has 11% English tokens.

We sanity-check our corpus and the silver-



standard annotations by sampling 5 tweets each
for different island sizes (1 to 20 tokens). Out of
the 100 tweets, 64 were true code-switching. Of
the remaining, 9 were translations and 27 were
monolingual. Most of the monolingual mistakes
arose due to the erroneous identification of single-
token loanwords or named entities’. Overall, we
find the precision acceptable, given that the recall
is likely to be higher than in any currently available
corpus. If we had chosen a stricter condition for
tweets that are selected for our corpus, perhaps to
exclude tweets with only a single-token island as
Nayak and Joshi (2022) do, we could easily raise
precision, but would have missed many interesting
border cases of either code-switching insertions or
loanwords. It is precisely these instances that are
valuable to linguists and lexicographers who study
the process of loanwording.

Of the code-switching tweets, we then counted
how many of the system-predicted islands were cor-
rectly identified®. We found that single-token En-
glish islands had a precision of 62.5 (40 predicted),
two-token islands 87.5 (8 predicted), three-token is-
lands 80.0 (10 predicted) and all island sizes greater
than this (65 predicted) had a precision of 100.0.

Two examples of particularly dense code-
switching are shown in Table 3. TS labels example
(1) perfectly, but for example (2) it incorrectly tags
‘performed’, ‘pushen’, ‘Time-to-Market’ and ‘Re-
launch’ as German’. ‘Top-of-mind-Awareness’ is
not segmented correctly by Flair and hence incor-
rectly identified as the language of the surrounding
tokens, which is German.

5 BERT-based system

We also wanted a neural system that is fine-tuned
for German—English identification, so we could in-
vestigate to which degree neural word embeddings
are suited to the task. To that end, we pretrain a
neural language model on the TONGUESWITCHER
Corpus and fine-tune it for token classification. We
then learn the classification layer using the human-
labelled examples from the Denglisch Corpus. This
system is called tsBERT.

5The TS system does not include any named entity rec-
ognizer, or special handling of loanwords, except using the
wordlists and surrounding language.

®We used a lenient definition of boundaries where over-
lap between system-predicted islands and real islands was
sufficient.

"It did so because these words all happen to make their
way into our “Big German” wordlist, and are also not in our
“Pure English” wordlist.*

6 Experiment

Systems, Competitors, Baselines We evalu-
ate our systems, TONGUESWITCHER (TS) and
tsBERT, against two competitors from the litera-
ture, Denglisch CRF (Osmelak and Wintner, 2023)
and Lingua (Stahl, 2023). The Denglisch system is
not provided as a trained system, so we follow their
procedure in training it. To interpret Denglisch’s
output, we match Denglisch labels onto our re-
duced set as follows: English, German, Mixed are
taken directly. SE becomes English, and SD be-
comes German. Denglisch’s SO labels and punctu-
ation labels are ignored in evaluation.

We construct a strong baseline by prompting the
GPT-4 LLM (OpenAl, 2023) with the prompt given
in Appendix §A.3. We also train baseline neural
classification models by learning the classification
layer directly on (English) BERT (eBERT), Ger-
man BERT (gBERT, DeepsetAl, 2019) and multi-
lingual BERT (mBERT) models.

Datasets We use the TONGUESWITCHER Cor-
pus as pretraining data, and the human-labelled ex-
amples from the Denglisch Corpus (Osmelak and
Wintner, 2023) as finetuning data (after removing
emojis, replacing out-of-vocabulary punctuation
tokens, and removing entries longer than 100 to-
kens).

Our main evaluation uses our own corpus (§3)
with its 1252 tweet testset. We also report results
for our systems and the Denglisch CRF system on
the German—English subpart of the Denglisch Cor-
pus (15% of their corpus sentences, using the same
definition as before). While our BERT-based sys-
tem is trained on their data in the cross-validation
setup, TONGUESWITCHER cannot be trained. We
use this evaluation as a sanity check: if our systems
performed much below the Denglisch system on
this corpus, this would be a cause for alarm.

Training We initialize our BERT-based mod-
els with the bert-base-multilingual-cased
(mBERT) pretrained model (Devlin et al., 2019).
Unlike our rule-based system, this model distin-
guishes between upper and lowercase words. We
continue pretraining for 1 epoch on all 24.6M code-
switching tweets in the TS training corpus. We
finetunne for our task on the Denglisch Corpus
(Osmelak and Wintner, 2023). For evaluation on
their corpus, we train models for the same 10-fold
cross-validation setup as they do. For evaluation
on our testset, we train on 100% of their corpus,



(1) Pronouns: he/him Height: 1,83m Zodiac: Virgo Smoke: nope Tattoo: 3 Piercings: Ohrringe (mehr will ich
auch nicht, allerhochstens noch mehr Ohrlocher) Fav colour: griin Fav drink: Kaffee und oolong milk tea, heif3, mit
einem quarter siiss und tapioka bei meinem bubble tea laden

Translation: Pronouns: he/him Height: 1.83m Zodiac: Virgo Smoke: nope Tattoo: 3 piercings: earrings (I don’t
want more, at most more ear piercings) Favorite colour: green Favorite drink: coffee and oolong milk tea, hot, with

a quarter sugar and tapioca at my bubble tea shop

(2) Wenn wir unsere Skills elevaten und die Units gemeinsam performen, werden wir die Sales auf ein neues
Level pushen. AuBlerdem konnen wir so den Time-to-Market fiir den Relaunch shorten. Das bringt zusétzliche
Top-of-mind-Awareness und pushed die Brand in der Community. Ok? Go!

Translation: If we elevate our skills and perform the units together, we will push sales to a new level. This also
allows us to shorten the time-to-market for the relaunch. This brings additional top-of-mind-awareness and pushes

the brand in the community. Ok? Go!

Table 3: Examples from our TONGUESWITCHER Corpus sanity check

as they do when labelling their silver-standard ma-
terial. Training details are given in the Appendix
§A2.

Metrics We report results separately in token-
based micro-averaged F'| measure (shown as Fy),
and in entity-based F; measure (shown as F). F,
is defined based on the number of islands of En-
glish inside the German matrix text, with strict
boundaries. We use the BIO format (Ramshaw and
Marcus, 1995) for entity representation. Because
code-switching segments are coherent entities in-
side a text, using an entity-based metric should be
more informative than a token-based one, which
ignores the code-switching context of each token.
We report performance on all islands, and we also
introduce a new metric which measures the perfor-
mance of systems for short islands only, namely
those consisting of 2-4 tokens according to our gold
standard. The statistical test we use throughout
this paper is the two-tailed paired permutation test,
approximated by R = 10, 000, with significance
threshold at o = 0.05.

7 Results
German English Mixed Overall
9907 1972 192 12071
Denglisch 975 | 89.1 | 25.6 | 95.5
TS 96.9 87.7 324 94.5
tsBERT 98.9 95.5 60.1 97.8

Table 4: Results on Denglisch corpus; in F}

Table 4 gives results in F; on the G-E subset of the
Denglisch corpus. Our trained tsBERT model out-
performs trained Denglisch in all categories (differ-
ences significant; 4x p<0.01), setting a new SoTA
on this benchmark. The superiority of tsSBERT in
the English category (95.5 vs. 89.1), which is the
core of the task of German—English code-switching

identification, is particularly satisfying. In mixed
word detection, our system achieves a 135% im-
provement over Denglisch.

Revisiting example (2) from Table 3, where
TONGUESWITCHER (TS) made multiple mistakes,
tsBERT fixes all of these mistakes and perfectly
identifies the code-switching. Denglisch pre-
dicts ‘Skills’, ‘elevaten’, ‘Units’, ‘performen’, ‘Re-
launch’, ‘shorten’, ‘pushed’ are all German, and
wrongly suggests that ‘Time-to-Market’ is mixed.

Meanwhile, TS is not trained on any Denglisch
data, as it is rule-based®. In the English and
Mixed categories, TS is statistically indistinguish-
able from Denglisch (p=0.19, p=0.09); in the Ger-
man category, it is significantly outperformed by
Denglisch.

We consider both our systems to pass the sanity
check; we will now turn to our main results on
our own corpus, where no new human-annotated
training material is available to any of the systems.

Table 5 shows the results in precision, recall and
F; for our corpus.

TONGUESWITCHER (F;=97.1 overall) and
tsBERT (F3;=97.0 overall) are indistinguishable
from each other, and significantly better than all
baselines and competitors, with the exception of
the category Mixed. In the mixed category, TS is
better than tsBERT (p<0.01), and tsBERT is indis-
tinguishable from all BERT-based baselines. All
other differences are significant, which means that
GPT-4 (F;=94.3 overall) is inferior to our two TS
systems, as least with our prompting strategy. This
means that TS has established SoTA on our corpus.

TS outperforms all others in the mixed category;
the BERT-based models are the next best. Although

8Note that our treatment of Denglisch’s gold standard (col-
lapsing all ‘Shared German’ tokens to be German) hurts only
TS. For example, TS would say named entities like ‘Berlin’
are English in an otherwise English constituent.



German English Mixed Overall
29761 2757 129 32647
P R K| P R FK| P R F| P R F
Lingua 958 973 965 | 665 576 61.7 0.0 0.0 0.0 | 93.6 93.6 93.6
GPT-4 992 952 972|662 937 775 | 122 163 140 | 948 948 948
Denglisch CRF 984 974 979 | 751 855 799 | 19.0 6.2 94 ] 96.0 96.0 96.0
eBERT 98.7 974 98.0 | 781 86.7 822 | 23.1 380 287|963 963 963
gBERT 988 97.0 979 | 739 876 80.1 | 27.7 341 306 | 959 959 959
mBERT 98.7 975 98.1 | 781 873 824 | 249 326 282|964 964 964
TONGUESWITCHER 993 976 984 | 79.0 93.8 85.8 | 48.0 38.0 424 | 97.1 971 97.1
tsBERT 99.0 979 985 | 815 89.1 851 | 255 388 308 |97.0 970 970
Table 5: Results on our testset
Island Short Island (2-4) all competitors and baselines. Lingua is left far
1192 365 behind. The success of TS on islands is a surpris-
P R F.| P R F . .
ing result, as the majority of tokens are handled by
Lingua 254 140 18.1 | 27.8 345 30.8 . . .
GPT4 445 701 544 | 507 745 604 this system w1thoqt any conte'xt. One explanation
Denglisch 49.0 555 520 | 532 723 613 may be that step 7 in our algorithm (§4.2) performs
¢BERT 540 615 575 | 63.1 707 667 contextual smoothing by assigning the labels of
gBERT 492 584 534|553 710 622 neighbouring tokens to unknown tokens. This han-
mBERT 548 620 582 | 634 737 682 dles spelling mistakes and other word creations by
TS 589 757 662 | 573 773 658 favouring coherent islands.
tsBERT 60.5 665 634 | 667 759 71.0

Table 6: Island-based results

mixed word identification might be seen as a niche
task given the low occurrence frequency of mixed
words, we are happy to see this result because we
think that the mixing of morphologies is an under-
studied phenomenon. Linguists and cognitive sci-
entists requiring empirical data can profit from a
system such as ours that is able to automatically
detect these cases reasonably well.

It is nice to see the small, but significant im-
provement of our tsBERT system over the other
BERT-based models in most categories (those other
than Mixed). This shows that pretraining with the
TONGUESWITCHER code-switching corpus helps.
This language model trained on code-switching
data may be useful to other researchers working on
German—English tasks other than ours, too.

7.1 Islands

So far, we have presented results in a token-based
metric, but this ignores the fact that code-switching
is a context-sensitive phenomenon: we care less
about how many tokens are of which language over-
all, and more about which textual material forms
an island.

Table 6 gives results for P, R and F} for islands
and short islands. Again, the two TS systems beat

For short islands, tsBERT and mBERT are joint
winners with F,=71.0 and F,.=68.2, respectively,
beating TS (65.8), GPT-4 (60.4) and Denglisch
(61.3). TS is better than GPT-4 (p=0.02), while
GPT-4 and Denglisch are indistinguishable. Lin-
gua’s performance, meanwhile, is poor at F,.=30.8.
We suspect Polyglot (Chen and Skiena, 2014)
would have similar problems with this task’.
Denglisch (Osmelak and Wintner, 2023) use Poly-
glot as a filtering tool for all their data and therefore
many cases of short islands of code-switching may
have been lost when the Denglisch corpus was cre-
ated.

7.2 Post-analysis: interlingual homographs

We next performed an analysis of how well the
systems perform on IHs. We compiled a separate
small testset specifically for such cases: tweets con-
taining real IHs. We sorted our previous list of IHs
by the frequency of the less frequent language of
the two (e.g. English ‘war’ rather than the German
verb), and then manually checked up to 100 tweets
in each language for each word. We discarded
words if they show any of the following problem:s:
the word was only ever encountered as a proper
name in one or both languages (e.g. English “los”),

“We base this on the assertion by Lingua’s authors that
Lingua beat Polyglot experimentally (see GitHub). We have
not verified Polyglot’s performance; it was unsuitable as a
baseline for us, as it cannot predict token-level labels.


https://github.com/pemistahl/lingua-py

German English  Overall

146 130 276
Lingua 70.9 55.7 64.9
GPT-4 92.8 92.0 92.4
Denglisch 74.9 72.0 73.6
eBERT 80.0 80.3 84.1
¢BERT 85.4 81.5 83.7
mBRET 84.4 83.7 84.1
TS 84.5 82.8 83.7
tsBERT 89.3 89.1 88.8

Table 7: IH disambiguation results (in F})

(3) Tweet: I don’t get pvaser damit erreichen will.

Translation: I don’t get what he wants to achieve with
that.

(4) Tweet: fang iiber nichstes jahr mit abi an but no
problem zeugnis durchschnitt was 1.5 letztes halb
jahr wird schlechter sein dieses halbjahr tho cuz mental
health yk

Translation: no problem the average result of the end-
of-year report was 1.5 last half-year will be worse this
half-year tho cuz [because] mental health yk [you know]

Table 8: Examples from our IH testset

or the word was so infrequent in German—English
code-switching in the target sense that it didn’t oc-
cur in the top 100 tweets (e.g. English “stark™). We
found 29 true IHs with at least one tweet of true
English and German usage'". For each IH, 2-10
tweets were added to the testset. We attempted to
balance the tweets between German and English
occurrences and prioritised examples where the IH
was at a borderline of an island. This resulted in a
testset of 253 tweets with 276 IH tokens, 47% of
which were in English.

Results are given in Table 7. For IHs, our rule-
based TS (overall F;=83.7) and neural tsSBERT
(overall F;=88.8) outperform trained Denglisch
(overall F3;=73.6) and Lingua (overall F;=64.9; all
Denglisch and Lingua results significantly differ-
ent from all other systems). For the BERT systems,
in all categories, eBERT is indistinguishable from
mBERT, which is indistinguishable from gBERT.
TS is indistinguishable from eBERT, gBERT, and
mBERT in all categories. Overall and for German
tokens, it is also indistinguishable from tsBERT.
GPT-4 and tsBERT are indistinguishable in all cat-
egories (p=0.21, 0.13, 0.08).

The “strong baseline” GPT-4 and our neural sys-
tem tsBERT turn out to be best at the hard task

10Namely war, bin, bad, see, die, man, was, made, ran, toll,

falls, hat, dick, drum, links, still, these, fast, hell, handy, fort,
positives, tag, sage, seen, lose, rum, will, not

of disambiguating these words. Table 8 gives two
examples for the IH ‘was’. In German, this string
is a WH-pronoun, whilst in English it is the past
form of ‘to be’. All systems except Lingua cor-
rectly identify (3) as German. In contrast, the only
system to identify the IH in (4) as English is GPT-4.

8 Conclusion

We have presented two methods for German—
English code-switching identification. Our rule-
based system enabled us to collect the largest cor-
pus of naturally occurring code-switching. Our
BERT-based model, trained on this corpus and fine-
tuned on human-annotated data, established SoTA
on an existing German—English benchmark. We
also established SoTA on our newly formed cor-
pus using token and entity-based metrics. A post-
analysis on interlingual homographs revealed that
neural language models are the best systems for
disambiguating these words. Overall, our study
combines two aspects we think are important for
the future of code-switching: a) the use of large-
scale empirical methods on naturally occurring data
and b) an analytic interest in fine-grained linguistic
phenomena.

9 Future work

We are interested in providing a more objective
definition of loanwording, as opposed to genuine
code-switching, in the light of the debate in linguis-
tics, lexicography and cognitive science. Our future
contribution to this topic will centre around the fact
that the distinction can only be made in context,
more specifically in island-context. Therefore, it is
useful to employ the best tool for island detection,
and we have demonstrated here that our systems
for German—English are very effective. Frequency
also plays a role; loanwords which can be con-
sidered part of German will be far more frequent
in German matrix text than any naturally occur-
ring English words in English islands. We release
frequency-sorted data of the top 10,000 islands of
each island length in the TONGUESWITCHER Cor-
pus. This may serve as a starting point for empirical
studies of this challenge.

Limitations

There may be some bias in our gold standard due to
the pre-selection of tweets found by TS. In the fu-
ture, we plan to create a new gold standard entirely
from scratch, even if this requires more annotation



effort and guidelines. Our current definition relies
on annotators’ intuition too much.

Evaluation of systems such as ours is also diffi-
cult, partly because code-switching language iden-
tification is subjective. In particular, annotators and
NLP systems often introduce English bias (Anasta-
sopoulos and Neubig, 2020; Garrido-Muifioz et al.,
2021).

In our rule-based system, we do not implement
a named entity recognizer. As such, in our corpus,
named entities containing English words are often
incorrectly labelled as English.

The quality of the multilingual part of speech
tagger, alongside its tokenization, also constrains
our method. Tagging all our input tweets with this
tagger required intensive GPU computation.

In terms of our mixed identification methods, our
TONGUESWITCHER system over-segments words
(e.g. verrate), which is a particular problem for
misspelt words.

Ethics Statement

Working with and releasing large corpora of social
media posts raises data privacy concerns. We do
not collect any personal information about the au-
thors of the tweets. We release our corpus to the
research community only.
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A Appendix
A.1 Corpus examples by algorithm step

1 Sagt ein(e) Head(in) ! !! Researchen

Sie mal ein bisschen mehr
2 habn Match mit einer, bin einfach unfihig, dein a

[ with a [Bal, chem. Schidling

3 Freigabeworkflow PR Manager
Product Highlight Insta u Twitter.

4 ich bin grade in einem chat am mit

einem dufBerst platonischen freund
5 Der Vorstand traf sich letztes Wochenende zum
jéhrlichen , dieses Mal in Thun.
6 Danke ich hidnge die dritte Woche mit einer

‘ Nervenwurzelentziindung ‘durch; Schmerzen trotz

starker Medikation tlw from the hell Physio ist gut
7 joko diesem fuf3ball fit lebt immer noch rent free

il my mind wie schon

Table 9: Example of tokens classified in each step

A.2 Training hyperparameters

We use the masked language modelling objective
presented by Devlin et al. (2019). We train us-
ing 4 NVIDIA A100 GPUs, for approximately 30
hours per GPU. We use a batch size of 32, which
amounted to 191,950 steps. We use a learning rate
of le-4 with a warmup of 10,000 steps followed by
linear decay, 8 = (0.9,0.999) and weight decay
= 0.01.

To learn the classification, we train for 3 epochs
using a learning rate of 3e-5, batch size of 16 and
weight decay = 0.01.

A.3 GPT-4 prompt

Sentence: {tweet} Task: Fill in the following
list of words and their labels by identifying
each of the words in the sentence as English
('E'), Mixed ('M') or German ('G'). Punctuation
should be the same language as its surrounding
associated words. Mixed words switch between
English and German within the word. Only use
the tags 'E', 'M' or 'G'. Fill in: {token_1:
"' token_2: '', ...}

We found the output JSON was rarely malformed
or of a different length to the input tokens, but in
those cases where it was we repeated the prompt.
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Abstract

Code-switching (CS), i.e. mixing different lan-
guages in a single sentence, is a common phe-
nomenon in communication and can be chal-
lenging in many Natural Language Processing
(NLP) settings. Previous studies on CS speech
have shown promising results for end-to-end
speech translation (ST), but have been limited
to offline scenarios and to translation to one of
the languages present in the source (monolin-
gual transcription).

In this paper, we focus on two essential yet un-
explored areas for real-world CS speech trans-
lation: streaming settings, and translation to a
third language (i.e., a language not included in
the source). To this end, we extend the Fisher
and Miami test and validation datasets to in-
clude new targets in Spanish and German. Us-
ing this data, we train a model for both offline
and streaming ST and we establish baseline
results for the two settings mentioned earlier.

1 Introduction

Speech technologies are one of the main applica-
tions of machine learning, and are currently de-
ployed in many real-world scenarios. To ensure a
adequate user experience, factors other than accu-
racy need to be taken into account. One of them is
the ability to produce an output in real-time (stream-
ing settings) with a low latency and another one is
effectively handling the distinctive characteristics
inherent in spoken language, like Code-switching.
Code-switching (CS) is the phenomenon in which
a speaker alternates between multiple languages in
a single utterance. Due to globalization (Winata
et al., 2022), it is becoming increasingly prevalent
in spoken language, not only in bilingual commu-
nities but also in monolingual communities.

CS presents a challenge in various natural lan-
guage processing (NLP) settings, such as auto-
matic speech recognition (ASR), machine trans-
lation (MT), and speech translation (ST), due to

*Work done during an internship at Apple.
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the inherent complexity of dealing with two source
languages, as well as the scarcity of CS training
and test data (Jose et al., 2020).

Despite the relevance of ST for CS speech task,
the available literature on the subject is rather lim-
ited. Nakayama et al. (2019) investigate the task
defined as monolingual transcription, i.e. transcrib-
ing a CS utterance using words of only one lan-
guage, hence translating those words that are CS.
Their work proposes and compares different ap-
proaches to evaluate the stated task in Japanese-
English CS to English. Other follow-up work takes
a similar approach (see Section 2).

To date, however, certain essential topics, such
as translation to a language not present in the CS
source or streaming ST, have yet to be explored,
despite its critical importance for real-world us-
age. The primary challenge in translating to a third
language stems from the unavailability of datasets
with such characteristics. Furthermore, streaming
settings present further challenges: achieving a
balance between latency, stability and accuracy is
crucial for delivering a seamless user experience, as
with any streaming task. Besides, CS tasks may re-
quire more context than monolingual ones because
of the added complexity of language mixing. Thus,
addressing the trade-offs between these metrics in
CS streaming ST may prove to be more intricate
than with monolingual data.

In our work, we resolve the two aforementioned
challenges: first, the insufficiency of data and re-
sults for translation to a third language, and second,
the absence of a baseline for streaming CS ST.

To alleviate the data scarcity in CS tasks, we
extend Fisher (Cieri et al., 2004) and Bangor Mi-
ami CS (Deuchar et al., 2014) datasets (combined
English and Spanish source and English targets)
by incorporating Spanish and German targets in
the test and validation sets.! These additions allow

'Data available at https://github.com/apple/
ml-codeswitching-translations.
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us to evaluate the performance of our models on
monolingual transcription (translation to English
or Spanish), but also for the first time in CS ST into
a third language (German) setting baseline results.

Furthermore, this study is the first on streaming
ST for CS speech, and examines errors in tran-
scripts generated by both offline and streaming
models, considering different latency and flickering
constraints, and different training techniques such
as prefix-sampling. We show that prefix-sampling
does not improve the model performance, and that
errors in CS points appear in the same proportion
streaming and offline ST. Our work sets baseline
results and provides insight into the impact of CS
on the performance of different models, and help-
ing to identify potential points for future research
that can contribute to the advancement of the field.
To sum up, the main contributions of our work are:

* We provide baseline results for streaming ST
for CS speech, contrary to previous work that
focuses on offline settings.

* We provide baseline results to CS ST into a
third language, contrary to previous work that
focuses on monolingual transcription. To do
so, we extend the Fisher-Miami CS dataset,
adding Spanish and German targets.

2 Related Work

During the past few years, there has been an in-
creasing interest in CS tasks. Prior work has fo-
cused in MT (Sinha and Thakur, 2005; Winata
et al., 2021; Zhang et al., 2021; Yang et al., 2020)
and ASR (Lyu et al., 2006; Ahmed and Tan, 2012;
Vu et al., 2012; Johnson et al., 2017; Yue et al.,
2019). However, the topic of CS in ST has been
relatively under-explored, and usually concentrat-
ing only on monolingual transcription (Nakayama
et al.,, 2019; Hamed et al., 2022; Weller et al.,
2022), and relying on synthetically generated data
(Nakayama et al., 2019; Huber et al., 2022).

The first work on CS ST was done by Nakayama
et al. (2019). The authors analyse different archi-
tectures and training configurations for Japanese-
English CS to English monolingual transcription.

Weller et al. (2022) present a similar work but in
a different language pair. The authors present a CS
dataset with natural English-Spanish CS text and
speech sources and English text targets, gathering
CS sentences in Fisher and Bangor Miami datasets.
With these data, they are able to evaluate ASR and
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Figure 1: Proposed model architecture. The multimodal
encoder supports training on both speech translation and
text translation data. The tagging scheme is designed to
allow generating either the (code-switched) transcript
or a (monolingual) translation.

ST, although the ST setting is actually monolingual
transcription. The authors explore different archi-
tectures through a two-steps training: a pretraining
on non-CS data and a fine-tuning on CS data. They
find that end-to-end ST models obtain higher accu-
racy than cascaded ones and that accuracy on CS
test sets improves after the fine-tuning step without
noticeably impacting performance on non-CS sets.

Later, Hamed et al. (2022) present a corpus for
Egyptian Arabic-English CS tasks. The dataset
contains text and speech CS sources, and targets
in monolingual English and Egyptian Arabic. By
combining these sets the authors are able to study
ASR (from CS speech to CS text), as well as MT
and ST. However, because of the target languages,
both the ST and MT settings are actually monolin-
gual transcription and a text-to-text variant of this
task.

Finally, Huber et al. (2022) present LAST, a
language-agnostic model for ST and ASR that aims
to replace acoustic language ID gated pipelines by
a unique CS model. However, their work focuses
on inter-sentential CS (when a CS happens just at
sentence boundaries) using synthetic data.

3 Model

We adopt the multimodal model design proposed
by Ye et al. (2021) for speech translation (Fig-
ure 1). This model supports speech transcription,
speech translation, and text translation, and lever-
ages paired data of all three tasks through multitask



training. Similar to Ye et al. (2021), we extract
speech representations using a pretrained wav2vec
2.0 BASE model (Baevski et al., 2020)? which re-
sults in 20ms per frame. To compute downsam-
pled speech representations, wav2vec 2.0 applies
a stack of three convolutional layers, resulting in
160ms per frame: each layer has a kernel of 3
and a stride of 2. To extract text representations
for multitask text-to-text training, we simply use
a 1024-dimensional embedding layer. Next we
attach an encoder-decoder Transformer (Vaswani
et al., 2017) with pre-layer normalization, a hidden
dimension of 1024, dropout of 0.1, five encoder
layers and three decoder layers. The input to the
encoder is either the downsampled speech represen-
tations, or the embedded source text. In the decoder,
we use 1024-dimensional LSTMs (Hochreiter and
Schmidhuber, 1997) instead of self-attention which
obtained better results in preliminary investiga-
tions.

The model is trained in a multi-task fashion,
where we sum the losses of the transcription task,
text translation task, speech translation task, as well
as a CTC loss (Graves et al., 2006) applied on top
of the full encoder. Tasks are weighted equally.

Importantly to our work, we use a shared de-
coder to perform either transcription or translation,
with a language tag indicating the desired output
language for ST, or the tag <src> to generate a
transcript. Note that the transcript will be equiv-
alent to the translation in the source language for
monolingual sentences, but a special token for tran-
scripts is needed to account for CS sentences.

To employ our model in a streaming setting, we
use the re-translation technique (Niehues et al.,
2018; Weller et al., 2021). This technique re-
translates the utterance to update its prior prediction
as additional information is received. To control
the trade-off between latency, flickering, and accu-
racy, we set a mask on the last £ sub-words of the
prior prediction, allowing the model to rewrite only
that part of the output. Therefore, a high & allows
the model to rewrite the whole prediction, obtain-
ing a high accuracy but poor latency and flickering
scores, and on the contrary, setting k = 0 forces
the model to commit to the previous prediction,
hindering the accuracy but leading to no flickering
and the lowest possible latency. Section 5 contains
experiments to obtain the appropriate k.

Specifically, facebook/wav2vec2-base-960h
via Hugging Face Transformers (Wolf et al., 2020).
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4 Datasets

Pre-training

Dataset Language Source #Samples
MUST-C En-Es Original 270 000
En-De Original 234 000
Es-En Original 64 351
De-En Original 71 831
CoVoST En-De Original 232958
Es-De Synthetic 64 351
De-Es Synthetic 71 831
Fisher Es-En Original 130 600
Miami Es-En Original 6 489
Fine-tuning
Dataset Language Source #Samples
En/Es-En  Original 7 398
Fisher  En/Es-Es  Synthetic 7398
En/Es-De  Synthetic 7 398

Table 1: Summary of the training data used during our
two-steps training.

Although our primary target is CS speech, we
train our models on both monolingual and CS data
due to the scarcity of the latter. In particular, we
use the following datsets:

Bangor Miami (Deuchar et al., 2014): The
dataset contains recorded conversations between
bilingual English/Spanish speakers in casual set-
tings, with a high proportion of naturally occurring
code-switched speech. The recordings were ob-
tained using small digital recorders worn on belts,
resulting in low audio quality with background
noise. We use the splits for CS ST defined by
Weller et al. (2022).

Fisher (Cieri et al., 2004): The dataset was col-
lected for ASR by pairing Spanish speakers lo-
cated in the US and Canada through phone calls.
Although it is not a CS focused dataset, it con-
tains a significant amount of CS utterances due to
the speakers being in English-speaking contexts.
The recording was done through phone recordings
in 2004, which makes it a noisy ASR dataset, al-
though less noisy than Miami. We use the splits for
CS ST defined by Weller et al. (2022).



CoVoST (Wang et al., 2020): A multilingual
and diversified ST datset based on the Common
Voice project (Ardila et al., 2020). This dataset in-
cludes language pairs from multiple languages into
English, and it includes low resource languages.

MuST-C (Di Gangi et al., 2019): A dataset for
ST research. It is a large-scale, multi-language
dataset that includes speech recordings from En-
glish TED Talks and corresponding human tran-
scriptions and translations. The dataset covers
translation from English to many languages. The
recording context (TED talks) makes it a quality
clean dataset.

4.1 Data Collection

Miami and Fisher CS sets consist of a source in
CS En/Es, along with CS transcripts and mono-
lingual English transcripts as targets. To expand
the range of languages included, we include the
monolingual Spanish transcript, as well as a new
language not used in the source, namely German.
By including this new language, we will be able
to assess the performance of our models in pure
speech translation, as opposed to previous work on
monolingual transcription. Hence, we collect data
for Miami and Fisher CS test and validation sets in
German and Spanish. The data was translated by
professional translators who were native speakers
in the respective target languages.

4.2 Data Usage and Preparation

Following (Weller et al., 2022), we divide our ex-
periments in two steps: (1) pre-training on mono-
lingual data and, (2) fine-tuning on code switched
data.

During the pretraining we use CoVoST (Es-En,
De-En, En-De splits), MuST-C (En-Es, En-De
splits) and the non-CS sets in Fisher and Miami
datasets (Es-En). Additionally, we use MarianMT
3 model from Hugging Face Transformers pack-
age (Wolf et al., 2020) to translate CoVoST De-En
set to Spanish, and Es-En set to German, obtaining
data for the pairs Es-De and De-Es. During the fine-
tuning step, we focus on Fisher’s code-switched
(Es/En-En) training set (7389 samples) and extend
it for Es/En-Es and Es/En-De translation using the
MarianMT model to translate English targets to
German and Spanish.

We use 200 epochs for the pretraining stage
and 100 epochs for finetuning. We use the Adam

3We manually clean the translations afterward.
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(Kingma and Ba, 2015) optimizer with o = be—4,
£1=0.9, $>=0.98. For pretraining, we use an
inverted square root learning schedule with 500
warm-up steps. For finetuning a tri-stage schedule
with 12.5% warm-up steps, 12.5% hold steps, and
75% decay steps.

For the experiments with prefix sampling, we
use the same training set but prefix-sampling half
of the instances following the approach presented
by Niehues et al. (2018). For a summary of the
data used on each step see Table 1.

5 Experiments

Our experiments follow four main directions: (1)
Finding a reasonable £ to control re-translation
flickering and latency, (2) studying the occurrence
of errors around CS switching points, (3) analyzing
the usefulness of prefix-sampling and (4) estab-
lishing baseline numbers for translation to a third
language and for streaming tasks for CS speech, in-
cluding transcription, monolingual translation, and
translation.

To evaluate our models we will use three differ-
ent metrics. To measure the model accuracy we use
BLEU (Papineni et al., 2002) with SACREBLEU
(Post, 2018) and a beam size of 5. To evaluate the
lag between model input and output we use Aver-
age Lag (AL, Ma et al. (2019)), and to measure
the flickering we use Normalized Erasure (NE, Ari-
vazhagan et al. (2020)). Additionally, we use WER
to evaluate ASR performance.

5.1 Metrics Trade-off and % Analysis

As described in Section 3, our model uses re-
translation (Niehues et al., 2018) to generate a
streaming output. Following the re-translation ap-
proach, we mask the last £ sub-words of an out-
put when predicting the following one. We eval-
uate latency, flickering and accuracy metrics for
k € {0,5,10,15,20,25,30,+00}. As shown in
Figure 2, results are consistent for Fisher and Mi-
ami datasets and across the different language pairs.
All metrics increase together with k. However the
gap between 30 and +oo is much higher in AL and
NE than in BLEU. BLEU shows improvements for
higher & but it is more stable than the other metrics.
For this reason, we henceforth use & = 15, since
BLEU scores are close to optimal while NE and
AL are still low.
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Figure 2: BLEU, Normalized Erasure and Average Lag scores under different streaming constraints. In each
prediction step, the model has to commit to the previous prediction except for the last k£ tokens (sub-words). We
evaluate the performance of the model for k € {0, 5, 10, 15, 20, 25, 30, +-00}.

Fisher Miami
CS Mono. CS Mono.
Model En Es De | En De | En Es De | En De
FISHER CS 233 303 122 229 128 | 197 160 64 119 59
BLEU(T) FISHER CS W/ PREFIXES 23.7 309 122 220 13.0 | 221 183 70 139 6.7
(WELLER ET AL., 2022) 1 25.6 - - 261 - | 147 - - 176 -
AL()) FISHER CS 0.6 0.5 0.6 0.5 0.5 0.5 04 04 04 03
FISHER CS W/ PREFIXES 0.5 0.5 0.5 0.5 0.5 0.5 05 0.5 04 04
NE()) FISHER CS 1.2 1.2 1.3 1.1 1.4 1.2 1.2 14 1.0 1.2
FISHER CS W/ PREFIXES 1.2 1.0 1.2 1.2 1.0 1.0 1.0 1.1 1.6 0.8

Table 2: BLEU, Average Lag (seconds), and Normalized Erasure scores in streaming Speech Translation, for
trainings with and without prefix sampling. In every experiment we set k = 15. {: Best results reported by Weller

et al. (2022) in offline ST.

5.2 Code-Switches and Errors in Predictions

We hypothesize that CS points are points of high
linguistic uncertainty and, therefore, comparably
hard to predict or translate. Hence, words around
CS switch points would tend to be predicted wrong.
We analyze this phenomenon for an ASR task com-
paring offline and streaming models with the aim
of: (1) confirming or denying that more wrong pre-
dictions happen near CS points, (2) studying how
offline or streaming ST can affect the conclusion
of (1).

We analyze the predicted transcripts of our
model in the ASR * task on Fisher CS test set under
three different inference constraints: a streaming
model with £ = 0 (which has no flickering and the

*Note that this can only be evaluated in ASR (not ST),
because of the need of a CS target.
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lowest possible latency), a streaming model with
k = 15 (which we have found to be a reasonable
choice to obtain a better accuracy without a criti-
cal effect on flickering and latency) and an offline
model (which would be equivalent to a streaming
model where £ = +00). We establish a recall-
based metric and count words in the reference tran-
script as predicted right if the word appears in the
predicted transcript, and as predicted wrong other-
wise. We study the proportion of words that are
predicted right and their distance (in words) to a
CS point. Hence, those words at a distance of 1 are
right before or after a CS, and so on. To do so, we
define the Recall at distance d as:

right_pred(d)

R(d) =
(d) right_pred(d) + wrong_pred(d)

ey



Fisher Miami
CS Mono. CS Mono.
Model En BEs De | En De | En Es De | En De
BLEU(D) FISHER CS 41.8 458 2427 355 237 | 494 41.8 199 317 19.5
FISHER CS W/ PREFIXES 41.8 44.1 229 357 225 | 48.1 387 19.1 322 189
AL()) FISHER CS 0.4 0.4 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.2
FISHER CS W/ PREFIXES 0.4 0.4 0.4 04 04 0.2 0.2 0.2 0.2 0.2
NE()) FISHER CS 0.06 0.04 0.06 0.04 0.04 | 0.00 0.00 0.00 0.00 0.00
FISHER CS w/ PREFIXES 0.04 0.04 0.06 0.04 004 | 000 0.00 0.00 0.00 0.00

Table 3: BLEU, Average Lag (seconds), and Normalized Erasure scores in streaming Text Translation, for trainings
with and without prefix sampling. In every experiment we set k = 15.

0.6
§ 0.4
~
0.2 BN Streaming k = 0
B Streaming k = 15
mmm Offline (k = inf)
0.0-

1

2 3 4 5 6 7 8 9 10
Distance to a CS in Words

Figure 3: Analysis of errors in the prediction of words
for different distances to a CS point under different
inference constraints.

The results in Figure 3 show that CS points im-
pact the model’s accuracy. Those words at a dis-
tance of 1 are predicted wrong in the highest pro-
portion for every model. However, starting from
d = 2, the recall increases only slightly, or stays
close to constant, so the effect of a CS does not
last long. Secondly, we also see that although the
streaming setting with £ = 0 has an overall worse
recall, having less available context when making
the predictions does not affect those words close
to CS points more than those that are not. In par-
ticular, we see that the drop between d = 2 and
d = 1is lower for the streaming model with k = 0.
This indicates that, contrary to what we expected,
the lack of context in streaming ST does not have
a negative impact on CS points, and therefore, the
model needs the same context to properly predict
CS or not CS words.

5.3 Usefulness of Prefix-sampling

A frequently used technique to train streaming mod-
els consists of sampling prefixes from part of the
training data. We study the impact of using this
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Figure 4: Analysis of errors in the prediction of words
for different distances to a CS point, with and without
prefix-sampling the training set.

technique in accuracy, latency, and flickering met-
rics and its impact on errors around CS points.

To analyze the usefulness of this training strat-
egy, we compare a model trained on the Fisher CS
set against a model trained on the same set but sub-
stituting half of the complete utterances by prefixes.
As shown in Table 2, prefix-sampling produced an
improvement in BLEU scores, especially in Miami
test sets (up to +2.4). Surprisingly, this training
strategy that aims to improve the performance in la-
tency or flickering worsens the Average Lag scores
and does not significantly impact Normalized Era-
sure.

Furthermore, we study whether prefix sampling
impacts the accuracy of the predictions around CS
points. In Figure 4, we use the same recall metric
as in Section 5.2 to compare both models. We see
that prefix training degrades the accuracy of the
predictions around CS points, especially in those
words at a distance of 1, where the recall drops
from 0.51 in the standard training to 0.45 in prefixes
training.



Fisher Miami
Model CS Mono | CS Mono
FISHER CS 34.9 208 | 633 63.5
WER({) FISHER CS W/ PREFIXES 35.4 29.9 ‘ 60.6 58.1
AL()) FISHER CS 1.0 0.8 0.8 0.6
FISHER CS W/ PREFIXES 0.5 0.4 0.5 0.3
FISHER CS 1.2 1.0 1.2 1.1
NE(}) FISHER CS W/ PREFIXES 1.1 0.8 ‘ 1.2 0.6

Table 4: WER, Average Lag (seconds), and Normalized Erasure scores in streaming Automatic Speech Recognition,
for trainings with and without prefix sampling. In every experiment we set k = 15.

5.4 Performance Analysis

After the experiments described in previous sec-
tions, we have found that using prefix-sampling
does not lead to a noticeable performance improve-
ment. Furthermore, we have seen that masking the
last 15 sub-words in each step during the transla-
tion of a sentence shows an optimal trade-off be-
tween the different evaluation metrics. Since there
is no previous work in CS streaming ST, we can not
fairly compare our results to previous work, and
therefore we aim to set baseline numbers. However
we compare the BLEU scores of our model to the
scores obtained by (Weller et al., 2022) for offline
ST to English (Table 2), to analyse if the perfor-
mance drop between offline and streaming ST is
reasonable. As expected, our streaming model suf-
fers a performance degradation in most of the test
sets compared to the offline model in previous work.
However, CS ST to English in the Miami dataset
obtains an improvement of up to +7.4 BLEU.
When analyzing the performance of German
translation we see that there is an important drop
compared to English and Spanish translation (both
present on the source). CS Speech Translation is
commonly studied and evaluated just in translation
to languages present in the source, therefore we
believe that the performance drop in German is a
relevant finding that shows the importance of not
relying just on monolingual transcription when aim-
ing for CS ST and sets a baseline result for further
work in translation to a third language. Regarding
Average Lag and Normalized Erasure, we present
our results as a baseline, since previous work using
Fisher and Miami datasets was done in offline tasks.
However, to have an estimation of the quality of
our model in these metrics, we compare our scores
with the ones obtained by Weller et al. (2021) on
MuST-C data, which are over 1 for both metrics. In
Table 2, we can see that we obtain similar scores,
therefore we conclude that the performance of our
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model is reasonable regarding flickering and lag.

5.5 Results in Machine Translation and
Automatic Speech Recognition

Although the main scope of this work in Speech
Translation, we evaluate our models for Machine
Translation and Automatic Speech Recognition too.
We can easily do this given that the model we are
using is multitask and allows us to work on each
of the three settings by switching the the input
type and properly defining the a tag to generate the
output.

In Table 3 we can see the results obtained for
MT. We see that, as in ST, prefix sampling does
not improve AL and NE scores. Furthermore, in
the case of MT using prefixes degrades the perfor-
mance of the majority of the models. Regarding
BLEU scores, we observe that as in ST those tasks
that consist on translating to a language present
in the source obtain a much higher accuracy than
those where we translate to German.

In Table 4 we see the results for the ASR setting.
In this case, prefix sampling does work as expected
regarding AL and NE scores, being the models
with prefixes the ones with lower scores. However,
it still has a negative impact on the performance of
the models, specially in Miami test sets. Regarding
WER, the scores obtained for the Miami dataset are
much worse than the ones obtained by Fisher ones,
a pattern that we have not observed in translation
tasks. This could be due to the fact that during
the pretraining, the data used for translation tasks
comes from many different datasets, allowing the
model to properly learn to generalize. However, the
available data with CS targets corresponds mostly
to the Fisher dataset (130 600 samples), compared
to only 6 487 from the Miami dataset (see Table 1
for more details on the data distribution).



6 Conclusions

In this work, we have tackled two open ends in
CS ST: translation to a third language and stream-
ing settigns. To do so, we have trained offline
and streaming models for direct translation and
transcription of CS speech. Furthermore, we have
extended Fisher and Miami test and validation sets
with new Spanish and German targets. By doing
this we have been able to analyse not only mono-
lingual transcription, but also pure translation. We
have observed a drop of up to 18 BLEU points be-
tween the two settings, showcasing the importance
of not relying on monolingual transcription when
aiming for ST models, as has been commonly done
in previous work. Given the greater complexity
of translating to a third language as compared to
monolingual translation, we think that incorporat-
ing additional data would be necessary to tackle
the accuracy drop. However, since natural code-
switched data is limited and generating synthetic
data is beyond the scope of this study, we leave this
for future research.

To summarize, our work presents new data, an
in depth analysis of the impact of CS in the predic-
tions, and results for streaming CS Speech Transla-
tion and translation to a third language, which can
serve as a baseline for future work in a field that
although relevant is still far from solved.

Limitations

Our work is limited to high-resource languages
such as English, German, and Spanish. Therefore,
further work needs to be done tackling low resource
languages in order to achieve real-world CS trans-
lation.
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Abstract

Nepali-English code-switching (CS) has been
a growing phenomenon in Nepalese society, es-
pecially in social media. The code-switching
text can be leveraged to understand the socio-
linguistic behaviours of the multilingual speak-
ers. Existing studies have attempted to iden-
tify the language preference of the multilingual
speakers for expressing different emotions us-
ing text in different language pairs. In this work,
we aim to study the language preference of
multilingual Nepali-English CS speakers while
expressing sentiment in social media. We cre-
ate a novel dataset for sentiment analysis us-
ing the public Nepali-English code-switched
comments in YouTube. After performing the
statistical study on the dataset, we find that
the proportion of use of Nepali language is
higher in negative comments when compared
with positive comments, hence concluding the
preference for using native language while ex-
pressing negative sentiment. Machine learning
and transformer-based models are used as the
baseline models for the dataset for sentiment
classification. The dataset is released publicly.

1 Introduction

In recent years, use of social media and computer
mediated communication has increased with mil-
lions of users everyday. This increase in social
media has consequently increased the use of code
switching (CS) or code mixing content. CS can
be broadly defined as the linguistic behavior of
comprehending the language that is composed of
lexical items and grammatical structure from two
or more languages with no change of the interlocu-
tor or topic. Throughout this paper, we adopt the
stance that the terms ‘code switching’” and ‘code
mixing’ are used interchangeably to refer to the
phenomenon of alternating between two or more
languages within a single discourse. Although
there may be subtle nuances in usage within certain
linguistic contexts, for the purpose of our study,
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both terms are treated as synonymous and describe
the same linguistic behavior.

CS was earlier associated with the spoken lan-
guage, but due to the informal nature of social
media, CS is also found in written form (Bali
et al., 2014). The language spoken by multilin-
gual individual is closely connected to emotion
(Rajagopalan, 2004). Similarly, emotion is a driv-
ing factor for CS behaviour (Ndubuisi-Obi et al.,
2019). Linguistics researchers have found that
multilingual speakers have a certain language of
preference for expressing their emotions (Dewaele,
2010; Rudra et al., 2016). Hence, the task of sen-
timent analysis and socio-linguistic studies based
on the sentiment of multilingual speakers have re-
ceived a lot of attention in the NLP domain. These
studies have shed light on different characteristics
of the society. Several studies have analyzed the
language preference in multilingual societies and
concluded that multilingual speakers indeed prefer
their first language (L1) while conveying their emo-
tions (Agarwal et al., 2017; Rudra et al., 2019). On
the other hand, most studies in the field of code-
switching have only focused on the high-resource
language pairs. Up to now, far too little attention
has been paid to leveraging the growing amount
of Nepali-English CS text in social media and an-
alyzing the language preference for the sentiment
emotions for Nepalese multilingual community.

Sentiment analysis is a computational technique
used to determine the sentiment or emotional atti-
tude conveyed in a text. Sentiment analysis can
help in obtaining insights from the opinion on
certain products or subjects of interest from the
users and help in planning the business strate-
gies (Balage Filho et al., 2012). The applications
and resources for sentiment analysis are mostly
created for high-resourced languages in monolin-
gual settings. However, the annotated data for
monolingual data cannot handle code-switched
scenarios and fails to leverage good results (Al-
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Ghamdi et al., 2016). Several researchers have
constructed the sentiment analysis dataset for code-
switched scenarios (Chakravarthi et al., 2020b;
Hegde et al., 2022). However, to the best of our
knowledge, there is no existing sentiment analysis
dataset for code-switched Nepali-English language
even though Nepali-English mixed language has
emerged as a dialect in the Nepalese community
owing to the increasing use of English elements in
Nepali conversation.(Gurung, 2019).

In this study, we collect the public comments in
code-switched Nepali-English from Youtube plat-
form and annotate them with sentiment annotations.
We hypothesize two different hypotheses to ana-
lyze the relation between the language used in the
comment with the sentiment of the comment and
preferred language for expression of Negative or
Positive sentiments. The contributions of this study
are as follows:

1. We present the first standard code-switched
Nepali-English dataset for sentiment analysis.

2. We perform statistical studies to identify the
language preference by Nepali-English multi-
lingual speakers in social media.

3. We provide experimental analysis of machine
learning- and deep learning-based models on
our code-switched dataset for sentiment anal-
ysis.

2 Related Work

The preferred language for expression of opinions
by multilinguals has been studied by linguists for
a long time. Fishman (1970), studies the behav-
ior of English-Spanish bilinguals and report the
use of English for professional purposes and Span-
ish for informal purposes like chatting. Barredo
(1997) studies the pragmatic functions of Basque-
Spanish code-switching and made several conclu-
sions, one of them being: Basque-Spanish mul-
tilingual speakers normally switch to Spanish to
convey humor and irony. Dewaele (2004) identi-
fies how multilingual speakers highly use their first
language for swearing and taboo words. The au-
thors report that the multilingual speakers, while
using code-switching/mixing, tend to use their
first language for swearing even when the lan-
guage is not understood by their interlocutor(s).
Hindi and Nepali languages are closely related with
each other and belong to the same language fam-
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ily. For Hindi-English code-switched data, Agar-
wal et al. (2017) analyze the English-Hindi code-
switching and swearing pattern on social networks
and conclude that the multilingual speakers have
strong preference for swearing in the dominant
language. Rudra et al. (2019) study different as-
pects of English-Hindi code-switching in Twitter
and identify the preference of expressing negative
sentiments using Hindi language is twice as much
as English. In the context of Nepali-English code-
switching, the study by Gurung (2019) presents a
detailed socio-linguistic study on CS phenomenon
in the conversations between Nepalese people. This
study studies the extent, role of media, and reason
in mixing of Nepali-English languages. To the best
of our knowledge, there is no existing study that
is focused on studying the language preference in
Nepali-English code-switched scenarios.

Computational linguists have been studying
code-switching for a substantial period of time.
Several data resources have been created for the
support of research on code-switching. Solorio
et al. (2014) release code-switched dataset for lan-
guage identification tasks in four language pairs,
Nepali-English being one of them. They extract the
sentences from social media platforms like Twit-
ter and Facebook. Similarly, Patwa et al. (2020)
release the sentiment dataset for code-switched
Hindi-English and Spanish-English language pairs.
The datasets constitutes of code-switched tweets
with sentiment annotation among three classes:
Positive, Neutral, and Negative. A considerable
amount of literature has been published utilizing
Youtube comments as a source of sentiment (or
opinion) text for low-resource language mixed with
English (Chakravarthi et al., 2020a,b; Ravikiran
and Annamalai, 2021; Hegde et al., 2022). While
Nepali-English code-switching has been a growing
phenomenon in Nepalese society, especially in so-
cial media, there is no sentiment analysis dataset
focusing on code-mixed scenarios. Hence, for the
study of the language preference for expressing sen-
timent in code-switched Nepali-English, we create
a sentiment analysis dataset and perform the tests
on our hypotheses.

3 Hypotheses

In this study, we attempt to address the research
question: “Do Nepali-English speakers have a pref-
erence for using native language while expressing
Negative sentiment in social media?” We inves-



tigate this phenomenon using the proportions of
words from certain languages used to express cer-
tain sentiments.

We define two hypotheses to test in this study:

Hypothesis I: There is an association between
sentiment and language proportions.

Hypothesis II: The proportion of Nepali language
use is higher for negative sentences than posi-
tive sentences.

The first hypothesis attempts to test whether
there is any relation between the proportions of
language used for expressing sentiment in social
media or not. If there is an association between
those two, the next hypothesis will check if the
proportion of Nepali language use is higher for
negative sentences than for positive sentences. The
second hypothesis attempts to test the pragmatic be-
havior of the Nepali-English multilingual speakers
in social media.

4 Dataset

4.1 Data Collection

YouTube is one of the most popular social media
platform. The number of videos targeted to Nepali
audiences within the platform is also increasing.
The comments on these videos mostly express the
sentiments of the commentator(s). The study con-
ducted by Ndubuisi-Obi et al. (2019) determine that
the topics that relate to societal tensions (e.g., po-
litical and socio-economics) affect code switching
strongly. Hence, for collecting the comments from
YouTube, top 10 YouTube channels in Nepal under
the category “News&Politics” were listed. All the
comments and their threads from top 50 videos of
each channel were extracted using YouTube API.
No information regarding the commentators were
collected. The comments with less than 4 tokens
and the comments containing Devanagari scripts
were filtered out. In order to filter the non code-
mixed comments, the best performing language
identification model from (Pahari and Shimada,
2023) with F1-score of 94.66 was used. This model
predicts one tag for each token in the sentence out
of five tags: English, Nepali, named-entity, oth-
ers, and ambiguous. The English and Nepali token
counts were used to calculate the Code Mixing
Index (CMI) (Das and Gambick, 2014) for each
sentence using the Equation 1.

25

Table 1: Dataset statistics showing the number of com-
ments in each split and their total.

Positive Neutral Negative Total
Train 2,768 2,918 2875 8,561
Dev 346 365 360 1,071
Test 346 365 359 1,070
Total 3,460 3,648 3,594 10,702
CMT — {100* [1 - mazlw)] ifn>u
0, ifn=u

Where, w; is the number of words in language 1,
n is the total number of tokens, and « is the number
of language independent tokens. The CMI mea-
sures the level of mixing between the languages in
the corpus. In this study, this measure is utilized to
obtain the level of mixing between the languages
in a comment. The comments having CMI less
than 20 are filtered out to ensure the mix of English
and Nepali tokens in the dataset. Furthermore, the
comments often contained personally identifiable
information as person names. These names were
anonymized by replacing random, yet real person
names. The gender of names were maintained dur-
ing the replacement.

4.2 Data Annotation

The pool of filtered comments was randomized for
annotation. Similar to Patwa et al. (2020), anno-
tators were asked to annotate each comment into
three categories: Positive, Neutral, and Negative.
Two annotators were initially assigned to annotate
all the comments. Inter-rater reliability between
the two annotators using Cohen’s kappa (k) (Co-
hen, 1960) was calculated and found it to be 0.55,
suggesting moderate agreement between the anno-
tators. The third annotator reviewed the disagree-
ments between the annotators and resolved them
by consensus. Most of the disagreements were
observed on the borderline cases between neutral
and other two classes. For example, “Background
sound ali low garna paryo.” (English Transla-
tion: “Background sound should be lowered”) was
marked as negative by one, while neutral by the
other. This review can be interpreted as a sugges-
tion to lower the background volume and hence can
fall into the category ‘Neutral’ while this can also
be interpreted as ‘Negative’ emotion as the com-
mentator was bothered by the background sound.



The annotators annotated 10,702 comments in
total. The statistics of the annotated dataset are pro-
vided in Table 1. The dataset is publicly released to
encourage the research on code-mixed sentiment
analysis in Nepali-English language pair.

5 Baseline Classifiers

Traditional machine learning models and
transformer-based models are applied for determin-
ing the sentiments from the Youtube comments as
the simple baseline. The models used in this study
are listed in this section.

5.1 Machine learning-based models

We consider classical machine learning techniques
namely: Support vector machine (SVM) and multi-
layer perceptron (MLP) with different embeddings.
These models are implemented using the sklearn
library (Pedregosa et al., 2011). A ‘linear’ kernel
is used for SVM. The number of hidden layer size
is set to two in case of MLP. The following embed-
dings are used with these classical techniques:

5.1.1 TFIDF

Term frequency inverse document frequency
(TFIDF) is a common algorithm to transform tex-
tual data into numerical representations. This
method quantifies the significance of the words
within the comments while considering their preva-
lence across the entire comments. This method is
used in different NLP tasks due to its simplicity,
interpretability, and computational efficiency.

5.1.2 LASER

Language agnostic sentence representations
(LASER) (Artetxe and Schwenk, 2019) is a
contextualized language model that is based on
BiLSTM encoder and is trained using multiple
sources of publicly available parallel corpora using
the translation objective. The LASER model was
trained to generate the numerical representations
for 93 languages, belonging to more than 30 differ-
ent language families and written in 28 different
scripts. Joint training in different languages makes
this model leverage competitive performance in
low-resource languages.

5.1.3 LaBSE

Language agnostic BERT sentence embedding
(LaBSE) (Feng et al., 2022) is a BERT-based cross-
lingual sentence embedding model trained using
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masked language modeling and translation lan-
guage modeling objectives on translation ranking
tasks. The LaBSE model supports 109 languages.
LaBSE produces similar representations for the par-
allel sentences in different languages. This model
has demonstrated strong performance even on lan-
guages in which the model was not trained exclu-
sively.

5.2 Transformer-based Models

Apart from classical machine learning models, we
conduct experiments with different transformer-
based models as well. Transformer-based models
are the current default methods in NLP field due to
their high performance. The ability of multilingual
transformer based models to produce aligned rep-
resentations of multiple languages are beneficial
for handling code-mixed text (Winata et al., 2021).
The classification model consists of the pre-trained
language model with a linear layer with dropout on
top. The experiments are run using transformers
library (Wolf et al., 2020). AdamW optimizer is
used with the learning rate of 1e — 5. The training
is run for 5 epochs and best performing model in
validation set is used for testing.

5.2.1 mBERT

Multilingual BERT (mBERT) (Devlin et al., 2019)
is the multilingual counterpart of BERT. mBERT
is pre-trained on Wikipedia data from 104 lan-
guages. mBERT model is pre-trained with masked
language modeling and next sentence prediction
objectives. This model is able to produce cross-
lingual representations which can be used for many
multilingual tasks in NLP.

5.2.2 XLM-R

XLM-RoBERTa (XLM-R) (Conneau et al., 2020)
is a transformer model trained for masked language
modeling using monolingual data in 100 languages
with 2.5 TB of text. XLM-R model is the modi-
fied version of XLLM (Lample and Conneau, 2019)
that avoids translation language modeling and em-
ploys RoBERTa (Liu et al., 2019) instead of BERT.
The performance of XLM-R is superior to mBERT
on various cross-lingual benchmarks by 23% in
accuracy in low-resource languages.

5.2.3 MuRIL

Multilingual representation of Indian languages
(MuRIL) (Khanuja et al., 2021) is an Indian subcon-
tinent language family model which is pre-trained



on a large corpora of languages in Indian sub-
continent. The model is pre-trained on 16 Indian
subcontinent languages and English. Masked lan-
guage modeling and translation language model-
ing objectives were used in the pre-training of this
model. This model outperformed other multilin-
gual models on the tasks involving Indian subconti-
nent languages. This model includes both Devana-
gari scripts and its transliterated form during the
training.

6 Results and Discussion

6.1 Hypotheses Test

Sentence Count: In order to identify the dom-
inant language of each comment, we utilize the
same language identification model as discussed
in Section 4.1. For each comment, we identify the
language tags for all tokens in the comment. We
distinguish the dominant language of the comment
utilizing the number of specific language tokens in
the comment. If the number of English language to-
kens is greater than the number or Nepali language
tokens in a comment, we consider the comment
as an English comment and vice versa. When the
number of English language tokens and Nepali lan-
guage tokens are equal, we consider the comment
as having no distinct language. The mosaic chart
on Fig 1 shows the statistics for the number of sen-
tences belonging to each sentiment class against
the dominant language of the sentence. We use
these statistics to run our statistical tests on the
hypotheses explained in Section 3.

Statistical Tests: In order to test the hypothesis I
discussed in Section 3, we use the chi-squared test.
This test is used to check the independence between
two categorical variables. In our case, the variables
are the dominant language and sentiment class. The
null hypothesis for this test is: ‘There is no asso-
ciation between sentiment and language’, while
our alternative hypothesis is Hypothesis I. Signif-
icance levels were set at 1% level. The p-value
obtained from the test was significantly lower than
our significance level. Hence, we reject the null
hypothesis and accept the alternative hypothesis.
In other words, this result supports our Hypothesis
I, i.e., there is an association between sentiment
and language.

Since there is an association between the sen-
timent classes and the dominant language of the
comment, we test our second hypothesis to check
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Figure 1: Mosaic chart showing the frequency of sen-
tences in each language for each sentiment class for the
human annotated comments.

No Dist.

if there is statistically significant difference in the
proportion of use of Nepali language in different
sentiment groups. We test the second hypothe-
sis using the z-test for proportions. The z-test for
proportions is used to test a hypothesis about the
difference between the proportions of two samples.
In our case, we take the proportions of Nepali lan-
guage comments on positive class and on negative
class. The null hypothesis for this test is: ‘The pro-
portion of Nepali language use is the same for neg-
ative sentiment and positive sentiment comments’,
while our alternative hypothesis is the Hypothesis
II. After computing the z-test for proportions, we
found that our z-value is significantly lower than -4,
hence we can reject the null hypothesis and accept
the alternative hypothesis. Hence, statistically we
conclude that the proportion of Nepali language is
higher in negative comments when compared with
positive comments. Moreover, from the same test
conducted for the proportions of English language
in positive and negative comments we noticed the
proportion of English language use was higher in
positive than negative comments in our dataset.

These results reflect those of (Agarwal et al.,
2017; Rudra et al., 2019) who also found that mul-
tilinguals prefer to express the emotions with their
first language. Most of the multilingual people in
Nepal learn their first language, Nepali at home.
Whereas, their second language, English in schools
(Gurung, 2019). Hence, most of the multilingual



don't. 9 sister season

strong

hernu

indian

garda

(a) Positive

aafnodance dr

(b) Neutral

pal o 8 f s fi
o kati ° cxainaz film
| g ©
Y e & Bl désh. . & tw
E 9 g vako; v o
news desh vaneko G =
y natak © " halya thekt
Y A ai r L
D
team g manche Y | d b
dinu rane | 1 § oo
Cyhernas “ lagyo khatepo Ece ‘5gﬂkur
al paryo sab video
mily, "« hOS [
Kt "R =
Zhuicha™ . 4's 5 u ()] oG
imuji - Huee

(]

‘T=hind Al O /E
2SO s e
s Al ML mediaaily support

(c) Negative

hami
haina

Figure 2: Wordclouds of comments across different sentiment classes.

speakers gain the knowledge of English as an in-
structed language. Therefore, this finding is consis-
tent with that of Dewaele (2004) who discusses how
instructed language learners have a limited gen-
eral knowledge of negative words. As a result, the
speakers tend to use the instructed language (i.e.,
English in context of this study) infrequently for ex-
pressing negative sentiments. Figure 2 presents the
wordcloud of comments for each sentiment class
in the dataset. It can be seen from the figures that
more proportion English words can be seen on Pos-
itive wordcloud and more proportions of Nepali
words can be seen on Negative wordcloud.

6.2 Sentiment analysis on CS

Table 2 and 3 shows the experimental results in
terms of F1- score for the machine learning and
transformer-based models respectively. The experi-
ments are performed on the data split explained in
Section 4.2. The average of three runs is reported
on both the tables.

SVM model with TFIDF embedding produces
the best result (0.68 for Macro-, Weighted-F1, and
Accuracy) among the machine learning methods in
the experiment. SVM model performs better than
MLP for all the embeddings except LASER em-
bedding where its performance is similar to that of
MLP. LaBSE and LASER embeddings are the mul-
tilingual sentence embeddings that are trained to
produce the semantically meaningful sentence rep-
resentations by leveraging the neural networks and
cross-lingual training. On the other hand, TFIDF
is a simple model which computes the numeri-
cal representation based on the importance of the
words within the document and across the entire
corpus. Better performance by this simple method
illustrates the added complexity for the models
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trained in monolingual data in multiple languages,
due to the mixing of the languages in our dataset.
Our dataset consists of mixed Nepali-English data.
Transliterated form of Nepali is used in the dataset
which is not used during the training of the afore-
mentioned models. Hence due to the mixing and
the use of romanized script for Nepali language,
the embeddings from the multilingual sentence em-
bedders perform lower than TFIDF.

In case of transformer-based models, all three
models perform in similar fashion. The highest per-
formance is exhibited by MuRIL. All these models
are trained on multiple languages together with the
languages involved in our study: Nepali and En-
glish. While mBERT and XLM-R are trained on
the monolingual data in these languages, MuRIL
is trained on the monolingual data, parallel trans-
lated data, and the transliterated data. As discussed
earlier, transliterated form is observed highly in in-
formal settings like social media platforms and our
dataset contains the transliterated form of Nepali
language. Hence, MuRIL vocabulary takes into ac-
count higher percentage of tokens from our dataset
as compared with mBERT and XLM-R, hence
the performance is better for MuRIL. Few pre-
vious studies (Adhikari et al., 2022; Pahari and
Shimada, 2023) demonstrated that the language
family-specific models can provide significant ben-
efit when fine-tuning training dataset size is of cer-
tain minimum number, which suggests that there is
room for improvement for the performance by in-
troducing more training dataset by some techniques
like data augmentation.

Closer inspection of the table shows that both
machine learning and transformer-based models
demonstrated lower scores for neutral cases when
compared against positive and negative cases. This



Table 2: Experimental results using machine learning-based models.

Embedding Model Negative Neutral Positive MacroF1 Weighted F1 ~ Accuracy
TFIDF SVM 0.67 0.61 0.76 0.68 0.68 0.68
MLP 0.68 0.56 0.74 0.66 0.66 0.66
LaBSE SVM 0.62 0.55 0.72 0.63 0.63 0.63
MLP 0.61 0.53 0.73 0.62 0.62 0.62
Laser SVM 0.64 0.55 0.70 0.63 0.63 0.63
MLP 0.62 0.54 0.73 0.63 0.63 0.63
Table 3: Experimental results using transformer-based models.
Model = Negative Neutral Positive Macro F1 ~Weighted F1  Accuracy
mBERT 0.68 0.59 0.76 0.68 0.68 0.68
XLM-R 0.67 0.54 0.75 0.65 0.65 0.66
MuRIL 0.72 0.60 0.80 0.70 0.70 0.70
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Figure 3: Confusion matrix of the result from the
MuRIL model.

is due to borderline comments that are difficult even
for humans as discussed in Section 4.2. This can
be visualized in the confusion matrix for one run
in the MuRIL model is shown in Fig. 3. 89.2% of
wrong prediction of Negative classes were Neutral
class and 83.1% of prediction of Positive class were
Neutral class.

6.3 Hypothesis test on larger pool of
automatically classified comments

Section 6.1 discussed the hypothesis test on the
limited human annotated data. With the availability
of automatic sentiment classifier as discussed in
Section 6.2, further test is performed on the large
pool of comments. The MuRIL-based classifier is
utilized to automatically classify 27,252 unanno-
tated comments collected in Section 4.1. The dom-
inant language for each comment is determined
using the same language identification model as
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Figure 4: Mosaic chart showing the frequency of sen-
tences in each language for each sentiment class for the
larger pool of automatically annotated comments.

Section 6.1. The mosaic chart on Fig 4 shows the
statistics for the number of comments belonging
to each sentiment class against the dominant lan-
guage of the comment. As visualized in the chart,
the proportion of comments with Nepali as dom-
inant language are higher for negative comments
than for positive comments. Similar to the statis-
tical tests on human annotated data, the statistical
test performed on these automatically annotated
data also validates both of our hypotheses.

6.4 Conclusion

In this study, we collected public comments and an-
notated them with sentiment annotations. With the



help of the newly created dataset, we test and ac-
cept two hypotheses. First hypothesis confirms the
dependence between the language used in the com-
ment and the sentiment of the comment. Second hy-
pothesis confirms the higher proportions of Nepali
comments observed in expressing negative senti-
ments as compared with positive sentiment. Sim-
ilarly, the proportions of English is higher in pos-
itive sentiments than negative. The results aligns
with the conclusion of previous studies (Agarwal
et al., 2017; Rudra et al., 2019), preference of first
language of the speakers for expressing sentiments
or swearing. The results of machine learning meth-
ods show that the multilingual sentence embedders
fail to generate proper representations for code-
switched languages. Considerably more work will
need to be done to generate multilingual embed-
dings that can capture the semantic meaning of
mixed languages as well. Language identification
model trained on code-switched data from Twitter
was used in the analysis. However, the accuracy of
the language identification model was not evaluated
due to unavailability of test data for the Youtube
domain. In future work, we need to evaluate the
model accuracy on this domain, and verify the in-
fluence for our analysis. Furthermore, the findings
raises few socio-lingustic questions about the influ-
ence of English language in Nepalese communities
and its impact on Nepali language, which would
also be a fruitful area for further work.

Limitations

The dominant language for the comments is identi-
fied based on the number of language tokens, which
are identified using automatic language identifica-
tion model that might have non-negligible errors.
We use these data as descriptive statistics and ana-
lyze the aforementioned hypotheses.
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Abstract

Recognizing code-switching (CS) speech of-
ten presents challenges for an automatic speech
recognition system (ASR) due to limited lin-
guistic context in short monolingual segments,
resulting in language confusion. To mitigate
this issue, language identity (LID) is often in-
tegrated into the speech recognition system to
provide additional linguistic context. However,
previous works predominately focus on extract-
ing language identity from speech signals. We
introduce a novel approach to learn language
identity from pure text data via a dedicated lan-
guage identity-language model. Besides, we
explore two strategies: LID state fusion and
language posterior biasing, to integrate the text-
derived language identities into the end-to-end
ASR system. By incorporating hypothesized
language identities, our ASR system gains
crucial contextual cues, effectively capturing
language transitions and patterns within code-
switched utterances. We conduct speech recog-
nition experiments on the SEAME corpus and
demonstrate the effectiveness of our proposed
methods. Our results reveal significantly im-
proved transcriptions in code-switching scenar-
ios, underscoring the potential of text-derived
LID in enhancing code-switching speech recog-
nition.

1 Introduction

Automatic speech recognition (ASR) systems have
long grappled with the complex task of accurately
transcribing multilingual speech, especially when it
involves the phenomenon known as code-switching
(CS). Code-switching, or code-mixing, refers to
the practice of alternating between two or more
languages or dialects within a single conversa-
tion. Within these intricate language mixtures, the
presence of very short monolingual segments fur-
ther compounds the challenge. The limited con-
textual information within these segments often
leads to confusion in recognizing phonetically sim-
ilar words from different languages, substantially
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affecting the overall performance of multilingual
ASR systems (Amazouz et al., 2017; Yilmaz et al.,
2018; Wang et al., 2019). Traditional approaches
to code-switching ASR have resorted to language
identification or code-switching detection systems
as separate pre-processing or post-processing steps.
While these methods have been effective in pro-
viding additional language context (Weiner et al.,
2012a; Vu et al., 2012; Zhang, 2013), they intro-
duce additional complexity to the ASR pipeline
and increase processing time.

The advancement of deep learning has brought
forth a remarkable paradigm shift in multilingual
and code-switching ASR systems. End-to-end
(E2E) approaches have gained substantial attention,
harnessing advanced neural network architectures,
such as the Transformer (Vaswani et al., 2017),
to directly transcribe code-switched speech (Zhou
et al., 2020; Dalmia et al., 2021). These E2E CS
ASR systems automatically capture both the acous-
tic and linguistic characteristics of code-switched
speech, eliminating the need for explicit acoustic
and language modeling. To reduce language con-
fusion in E2E CS ASR systems, researchers have
studied methods for integrating language identity
(LID) information learned from both paired speech-
text data (Shan et al., 2019; Qiu et al., 2020; Zhang
et al., 2021) and unpaired speech data (Li et al.,
2019; Punjabi et al., 2020; Tseng et al., 2021).
However, these prior approaches have predomi-
nantly focused on learning language identities from
speech data, overlooking the untapped potential of
pure text data. Compared to annotated speech data,
text data offers a more accessible and readily avail-
able resource.

This paper explores the possibility of learning
language-switching patterns from pure text data
without relying on speech data. Text-derived fea-
tures, such as part-of-speech tags and syntactic
features, have been shown to improve the perfor-
mance of code-switching language models (Adel
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et al., 2013, 2015; Winata et al., 2018). Inspired
by these achievements, we propose to infer lan-
guage identities from text data and integrate these
text-derived language identities into the end-to-end
CS ASR system. Our objective is twofold: to ac-
quire language-switching syntax and patterns from
text data in the form of language identities, and
to leverage these language identities to mitigate
the language confusion in code-switching speech
recognition. We believe the paired in-domain text
inherently encompasses a wealth of linguistic in-
formation, which can be effectively harnessed to
advance code-switching speech recognition.

To acquire code-switching patterns sorely from
text data, we propose a novel language modeling
scheme, called language identity-language model,
to predict the language identity of the next text to-
ken based on a combined history of previous text
and language identity tokens. The proposed lan-
guage identity-language model is jointly trained
with a Transformer-based ASR model. Further-
more, we explore two strategies for integrating the
predicted language identities into an E2E ASR sys-
tem: LID state fusion and language posterior bias-
ing. In the LID state fusion strategy, we combine
token-level language identity hidden states with
ASR hidden states using learned weights. On the
other hand, the language posterior biasing strat-
egy directly adjusts the ASR posterior probabilities
based on the hypothesized language identities and
language posteriors. We evaluate the effectiveness
of these proposed methods on the SEAME corpus,
a Mandarin-English speech dataset. The results un-
derscore the efficacy of our approaches in reducing
language confusion during code-switching speech
recognition, leading to more accurate transcriptions
of code-switched speech.

The remainder of this paper is structured as
follows: Section 2 reviews the background of
the Transformer-based ASR with parallel speech-
text decoder. Section 3 presents related work for
leveraging language identification in multilingual
and code-switching speech recognition. Section 4
presents the proposed LID-LM for generating lan-
guage identities from pure text data and LID inte-
gration strategies. Section 5 describes the datasets,
models, and evaluation metrics used to assess the
performance of the proposed method. Section 6
presents the results and analysis of the experiments.
Finally, Section 7 summarizes the contributions
and outlines directions for future research.
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Figure 1: The architecture of a Transformer-based ASR
with parallel speech-text decoder.

2 Background

In this section, we briefly review the Transformer-
based ASR architecture with parallel speech-text
decoder that we used to implement our method.

2.1 Transformer with Parallel Speech-Text
Decoder

We use the Transformer-based ASR with parallel
speech-text decoder architecture as our baseline
model, as illustrated in Figure 1. This decoder ar-
chitecture is a variant of the decoder architecture
in the speech-and-text Transformer (Wang et al.,
2023). Our preliminary studies indicate that this
decoder architecture outperforms the vanilla Trans-
former decoder architecture in both monolingual
and code-switching English and Chinese speech
recognition tasks.

The parallel speech-text decoder consists of a
stack of K identical decoder blocks. Each decoder
block comprises two parallel branches: a deep
acoustic branch and a speech decoding branch. The
inclusion of the deep acoustic branch facilitates the
learning of speech-text alignment by projecting the
acoustic representations to a comparable level of
abstraction as the text representation.

The deep acoustic branch generates new deep
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Figure 2: (left) An dual-modality attention module
that adopts dual-modality scaled dot-product attention.
(right) dual-modality scaled dot-product attention.

acoustic states H (*) by attending to the deep acous-
tic states from its previous block as follows,

H® = STDecBlock(H 1), (1)

Meanwhile, the speech decoding branch generates
decoder states Y (%) by attending to the deep acous-
tic states and the decoder states from its previous
block as follows,

y®) — STDecBlock(Y(kfl),H(kfl))‘ )

Finally, the probability of the next text token, given
the complete acoustic feature sequence and its pre-
vious text token history, is calculated using the de-
coder states generated from the last decoder block
as follows,

P(Qn‘X7 yll?’b—l)

= Softmax( Linear (LayerNorm(Y ))).

3)

2.2 Dual-Modality Attention

Another key feature of the parallel speech-text
decoder is the use of the dual-modality attention
mechanism, which is a variation of the on-demand
dual-modality attention proposed in our speech-
and-text Transformer framework. As depicted in
Figure 2, this mechanism establishes dependen-
cies between the text-text representations and text-
speech representations through the mapping of a
query and two sets of key-value pairs into an out-
put representation. The dual-modality attention is
formulated as follows,

DualModality Attention(Qy, K¢, Vi, K, V)

QthT>
va )

= Softmax (
4)
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This multi-head attention mechanism has five in-
put vectors - a query and two sets of key-value
pairs: target query )y, target key K, target value
V4, source key K and source value V;. Here, K.
is the concatenation of K; and K, and V. is the
concatenation of V; and V5.

3 Related Work

Language identification plays a vital role in various
multilingual speech processing applications, par-
ticularly in multilingual or code-switching speech
recognition systems. It provides valuable contex-
tual information that regulates speech recognizers
and reduces language confusion. Early multilin-
gual ASR systems adopted a two-stage approach,
where a language identification component was in-
corporated at the front-end to distinguish speech
from different languages, followed by the use of
monolingual recognizers to transcribe speech in
specific languages at the back-end (Bhuvanagiri
and Kopparapu, 2010; Lyu et al., 2006). Subse-
quently, frame-level language identities predicted
by a dedicated language identification module were
integrated into the ASR decoding process to handle
rapid language changes (Vu et al., 2012; Weiner
et al., 2012b).

With the advancements of deep learning, there
has been a shift towards incorporating language
identification as an auxiliary task, jointly learned
with end-to-end multilingual and code-switching
speech recognition systems (Luo et al., 2018; Zeng
et al., 2018; Li and Vu, 2019; Yin et al., 2022; Liu
et al., 2023). Additionally, Seki et al. (Seki et al.,
2018) dynamically track the language identity in
code-switching utterances by adding language iden-
tity tokens before code-switching points in speech
transcriptions, eliminating the need for an external
language identification module. This LID token
augmentation method is also used in (Zhang et al.,
2021), where different language embeddings are
concatenated with the word embedding of text to-
kens to further enhance the distinguishability be-
tween word embeddings of different languages.

However, existing research has predominantly
concentrated on extracting language identity from
speech signals. In contrast, our work takes an inno-
vative approach, delving into the prospect of learn-
ing language identity directly from raw text data.
By harnessing the rich linguistic information within
textual data, we aim to reduce language confusion
in end-to-end code-switching speech recognition
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Figure 3: Illustration of LM and LID-LM. LM predicts
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language identity and text token history.

systems, leading to more accurate transcriptions.

4 Proposed Method

4.1 Language Identity-Language Model

The goal of language models is to assign proba-
bilities to sequences of words. Let’s consider an
N-length text token sequence represented as as
Y ={vyi,---,Yn,...,yn}. The aim of a neural
language model is to predict the probability distri-
bution P(yy,|y1.,—1) over the vocabulary V, given
the previous text token histories y1.,—1. To explic-
itly incorporate language identity information into
the language model, we introduce a novel language
model scheme called language identity language
model (LID-LM), which takes the input of token
sequences with language identities inserted into the
front of each text token. Figure 3 compares the
original language model with the proposed LID-
LM. The incorporation of language identities into
the output token set enriches the language model,
enabling it to capture nuanced language-specific
characteristics and code-switching patterns from
text data. This LID token augmentation technique
has been shown to be effective in reducing language
confusion in ASR systems (Seki et al., 2018; Zhang
et al., 2021). By augmenting language identities
into the text token sequences, the LID-LM offers an
innovative way to predict language identity without
relying on speech data.

To accommodate the language identity informa-
tion within the LID-LM, we use an augmented
vocabulary V' = V U Ve, Here, V' represents
the set of language identity tokens. The augmented
2N-length sequence Z = {z1,...,2pn,...,22N}
corresponds to the alternating arrangement of lan-
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guage identity tokens and text tokens. In this se-
quence, the odd-indexed tokens represent the lan-
guage identity tokens, while the even-indexed to-
kens represent the text tokens. The LID-LM aims
to predict the probability of the next text token z2,
or the next language identity token zo,,_; based on
the history sequence of language identity and text
tokens zj.9,—1 Or 21.2,,—2, respectively.

For optimization, we adopt the cross-entropy
loss as the loss function for the LID-LM. This loss
function measures the discrepancy between the pre-
dicted token distribution and the true label distri-
bution, and it is normalized by the total number of
tokens in the training data. We denote this loss as
Li;q—1m- In the subsequent subsections where we
describe the LID integration methods, the LID-LM
is jointly trained with the ASR model by using the
following formulation,

Ejoint = alee + (1 - a)ﬁatt + BLlid—tm, (5)

where L. and L, represents the CTC loss and
label smooth loss for the hybrid CTC/Attention
ASR model, and L;;;_;,,, denotes the cross-entropy
loss for the LID-LM. The weights « and 3 control
the contribution of each loss component, enabling
a balanced optimization for the ASR and LID-LM
components.

During the training process, we utilize speech
transcriptions augmented with the groundtruth lan-
guage identities as the input text to train the lan-
guage identity-language models. This ensures that
the LID-LMs learn to associate the correct lan-
guage identities with the corresponding text tokens.
During decoding, we incorporate the previously
decoded text token from the ASR model and its
corresponding language identity as the previous
token history for the LID-LM. This restricts the
LID-LM to generate language identity predictions
based on the ASR model’s previous output tran-
scriptions. In addition, we share the weights of the
text embeddings between the ASR and LID-LM
models. This parameter sharing enables the ASR
model to understand and utilize the language identi-
ties provided by the LID-LM during the integration
strategies described in the subsequent subsections.

4.2 LID State Fusion

The effectiveness of language-specific gating mech-
anisms in multilingual speech recognition has been
demonstrated in a previous work (Kim and Seltzer,
2018). In their approach, the ASR system utilizes
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one-hot vectors as language indicators to modulate
its hidden state in each layer. Building upon this
motivation, we propose a novel LID state fusion
approach to use a gating mechanism to guide the
ASR with language-specific information generated
by the LID-LM. Specifically, the ASR system incor-
porates the language identity information by fusing
the language identity hidden states into its own
decoder output states. By leveraging the language-
specific information provided by the LID-LM, the
ASR system can effectively adapt its predictions
and enhance its performance in code-switching sce-
narios according to the linguistic knowledge and
confidence level implicitly contained in the lan-
guage identity hidden states.

The LID state fusion method is illustrated in Fig-
ure 4. We generate token-level LID hidden states
Zrrp from the LID-LM, utilizing the historical to-
ken sequence of language identity and text tokens
Z1:2n—2. Simultaneously, we apply layer normal-
ization to the hidden states Y (5) of the speech-text
decoder from the last decoder block, generating the
normalized decoder hidden states as follows,

Ypec = LayerNorm(Y (5)). (6)
Next, we fuse the token-level LID representation
with the normalized decoder’s hidden states using
a state fusion gate, producing a combined repre-
sentation Yryg. The state fusion gate employs a
gating mechanism inspired by the work of Sriram
et al. (Sriram et al., 2018), calculated as follows,

G = Sigmoid(Linear(Concat(Yprc, Zrip))),
(N

Zgarep = MatMul(G, Z11p), €))
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Table 1: Dataset statistics of the SEAME corpus used
in the CS experiments.

#Hours #Utterances
Mandarin  English CS Total
Train 96 20,313 20,283 48,342 88,938
Dev. 5 1,163 1,152 2,685 5,000
Evalman 7 1,420 808 4,303 6,531
Evalgge 4 500 2,656 2,165 5,321

Yrus = Linear(Concat(YDEc, ZGATED))-
©)
Finally, the output probability of the next text token,
given the complete acoustic feature sequence, its
previous text token history, and its previous text
and LID token history, is calculated as follows,

P(yn’Xﬁyl:n—la Z1:2n—1)

10
= Softmax(Linear(Yryg)). (10

4.3 Language Posterior Biasing

The adjustment of the ASR system’s posterior prob-
abilities using language posteriors, generated either
by external or internal language identification com-
ponents, has been demonstrated to enhance the
performance of code-switching ASR systems (Liu
et al., 2023; Tseng et al., 2021; Li et al., 2019). In
this study, we investigate the effectiveness of the
language posterior biasing method by leveraging
token-level language posteriors obtained from the
language identity-language model.

In the language posterior biasing method, we
first generate the token-level language posterior
P(z2,—1|221.9n—2) using the LID-LM. Then, we
adjust the ASR’s posterior probabilities by its cor-
responding language posteriors based on the fol-
lowing formulation,

Pbias (yn’X7 yl:n—l)

(11)
= P(yn| X, Y1:n—1) X P(22n-1|21:2n—2),

Here, P(y,|X,yi1.n—1) represents the original
ASR posterior probability for text token y,. The
term P(z2,—1|Z1.2n—2) corresponds to the lan-
guage posterior probability for the language iden-
tity token z9,_1, obtained from the language
identity-language model.

S Experimental Setup
5.1 Dataset

To assess the effectiveness of the proposed meth-
ods, we conduct language identification and code-
switching speech recognition experiments on the



SEAME Mandarin-English speech corpus (Lyu
et al., 2010). This corpus comprises approximately
110 hours of spontaneous code-switching speech
collected from Singapore and Malaysia college stu-
dents and staff members. The recordings were
captured with close-talk microphones during in-
terview and conversation settings. The corpus in-
cludes a mix of inter-sentential and intra-sentential
code-mixing utterances, as well as monolingual
utterances.

In the ASR experiments, we partitioned the
SEAME training set into a development set dev.
and a training set train. Specifically, we randomly
selected 5,000 utterances to form the dev. set, while
the remaining paired data was used for the train set.
It is important to note that the evaluation sets, de-
noted as evaly,q, and evalsge, exhibit varying dis-
tributions of monolingual Mandarin, monolingual
English, and Mandarin-English code-switching ut-
terances, as summarized in Table 1. The eval,an
set is primarily composed of monolingual Man-
darin and code-switching utterances, while the
evalgge set contains a higher proportion of mono-
lingual English utterances.

For the LID experiment, we manually aug-
mented the transcriptions of the above sets by in-
serting the corresponding language identity token
at the beginning of each text token. Given that
we are using the Mandarin-English language pair,
the distinctions between Chinese characters and
the English alphabet are readily discernible. To
ensure consistency and standardization, we utilized
the default SEAME recipe provided by the end-to-
end speech processing toolkit ESPnet (Watanabe
et al., 2018) to distinguish between Chinese and En-
glish tokens. Consequently, there was no need for
inter-annotator agreement within our experimental
setup.

5.2 Implementation Details

Dictionary. To effectively model both English and
Chinese languages, as well as their corresponding
language identities, we construct a bilingual dic-
tionary that includes additional language identity
tokens. For English, we apply the byte-pair encod-
ing (BPE) to the English-only transcriptions of the
SEAME frain set to generate subword units, result-
ing in a vocabulary size of 3,000 as the modeling
units. As for Chinese, we select 5,103 frequently
used Chinese characters extracted from the three
unpaired text datasets. To represent the language
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identities of the text tokens, we introduce LID to-
kens into the output units. Specifically, we include
(en), (man), and (na) tokens to represent the En-
glish, Chinese, and other identities, respectively.
These LID tokens allow explicitly incorporating
language identity information during the modeling
process. Additionally, we incorporate special to-
kens (unk), (sos), and (eos) to handle unknown
words, the start of a sentence, and the end of a
sentence, respectively.

Models. The Transformer-based ASR models
used in our experiments consist of 8 encoder layers
and 6 parallel speech-text decoder layers. The LID-
LM and external LM used for shallow fusion are all
6-layer Transformer decoder models. All models
have output dimension of 256, inner-layer dimen-
sion of 2,048, and 4 attention heads. For the two
proposed LID integration methods, the LID-LM
is co-trained with the ASR models from scratch.
We employ the Adam optimization algorithm with
an initial learning rate of 1.0 for ASR models and
1.0 x 10~ for language models. To schedule the
learning rate, we use the Noam learning rate sched-
uler (Vaswani et al., 2017) with 25,000 warmup
steps for ASR models and use the cosine decay
scheduler (Loshchilov and Hutter, 2016) for LMs
with 1,000 initial steps and 100,000 total steps.
Dropout regularization with a rate of 0.1 is applied
to all models to prevent overfitting. All models
are trained for 50 epochs. The CTC weight « is
set to 0.3 for all models during training and set to
0.5 during decoding. The LID-LM weight j is set
to 0.7 during training. To select the best model
for inference, we average the parameters from the
top 10 epochs based on their performance on the
validation set.

Evaluation. For LID-LM, we report its token-
level language identification accuracy. For ASR
evaluation, we use the Mix Error Rate (MER) as
the performance metric. MER combines the Word
Error Rate (WER) for English tokens and the Char-
acter Error Rate (CER) for Chinese tokens. This
evaluation metric provides a comprehensive assess-
ment of the ASR models’ accuracy in transcribing
both English and Chinese languages within the
Mandarin-English code-switching context.

6 Results and Discussion

6.1 Language Identification Accuracy

We begin by assessing the language identification
performance of the LID-LM. The LID-LM, trained



Table 2: SEAME: MERs on the evaly,q, and evalsg. set. Upper section: E2E ASR systems with LID integration
methods discussed in Section IV. Lower section: Transformer-based ASR model with our proposed LID integration

methods.
MER%
Model Method Fvalyen  Bvalege
GRU-based Encoder-Decoder (Luo Baseline 354 37.8
et al., 2018) LID Joint Learning 34.1 36.5
BLSTM-based Encoder-Decoder (Zeng Baseline 26.4 36.1
et al., 2018) LID Joint Learning 26.0 35.8
LSTM-based Transducer (Zhang et al., Baseline 333 449
2021) CS Point Tagged Text 30.2 41.5
Baseline 21.4 29.5
Transformer-based Shallow Fusion 21.0 29.0
Encoder-Decoder with .
Parallel Speech-Text Decoder LID State Fusmq . 204 28.2
Language Posterior Biasing 21.3 29.2

using the augmented transcriptions of the SEAME
training set, achieves token-level LID accuracies of
78.7% and 80.1% on the eval,,q, and evalsge sets,
respectively. These accuracies surpass the previ-
ously reported LID accuracy of 70.6% in (Weiner
et al., 2012b) that relies on acoustic features to gen-
erate frame-level LID predictions. This outcome
underscores the richness of linguistic information
present in text-only data, indicating its capacity to
provide valuable linguistic clues pertaining to gram-
mar and language switching patterns. Thus, our
findings emphasize the potential of leveraging LID-
LM for accurate and robust language identification
in code-switching speech recognition systems.

6.2 ASR Results

We proceed to evaluate the speech recognition per-
formance of various methods on the SEAME evalu-
ation sets, namely eval,,q, and evalsgye. The upper
section of Table 2 presents the performances of
previous LID integration methods for end-to-end
ASR systems. It can be observed that these meth-
ods result in minor to moderate improvements on
the SEAME evaluation sets. Among them, the CS
point tagged text method proposed by Zhang et
al. (Zhang et al., 2021) achieves the most signifi-
cant improvement, with relative MER reductions
of 9.3% and 7.6% on the evaly,q, and evalgg, sets,
respectively.

The lower section of Table 2 summarizes the per-
formances of our Transformer-based ASR system
and our proposed LID integration methods. The
Transformer-based ASR baseline achieves MERs
of 21.4% and 29.5% on the eval,qn and evalsge
sets, respectively. Shallow fusion with an external
language model trained on the training transcrip-
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tions leads to slight improvements of 1.9% and
1.7% over the baseline ASR system. Our proposed
LID state fusion method demonstrates moderate
relative MER reductions of 4.7% and 4.4% on the
eValman and evalsge sets, respectively. However,
the language posterior biasing method only yields
marginal improvements to the baseline ASR sys-
tem.

The above results suggest that the learned gat-
ing parameter in LID state fusion plays a crucial
role in enabling the ASR system to effectively in-
corporate and utilize the contextual cues provided
by the language identity-language model. By dy-
namically adjusting the contribution of the LID
hidden states, the ASR system is better at capturing
language-specific patterns and transitions, result-
ing in improved code-switching speech recognition
performance. In contrast, the LID posterior fusion
method lacks such an automatic adjusting mecha-
nism, making the system vulnerable to error prop-
agation in the language identification module. As
a result, the effectiveness of leveraging language
identification to enhance speech recognition perfor-
mance is hindered in this approach.

6.3 Error Analysis

To gain insights into the speech recognition perfor-
mances of the Transformer-based ASR model and
the ASR model with the LID state fusion method,
we conducted an analysis of the recognition errors
across three different utterance categories: mono-
lingual Mandarin, monolingual English, and code-
switching Mandarin-English. Figure 5 presents the
error counts for these categories on the dev,,q, and
devgge sets.

The figure shows that the employment of the LID
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Figure 5: Error counts on devy,q, and devsge sets
across three utterance categories. For Mandarin utter-
ances, the error counts refer to character error counts.
For English utterances, the error counts refer to word
error counts. For code-switching utterances, the error
counts refer to mixed error counts.

state fusion method results in a significant reduc-
tion in error counts for code-switching utterances.
Specifically, we observed reductions of 4.9% and
5.6% in error counts on the devy,q, and devsge
sets, respectively. This indicates that the LID state
fusion method effectively mitigates language confu-
sion and improves the overall system performance,
particularly in code-switching scenarios. More-
over, the analysis reveals that the LID state fusion
method also contributes to a reduction in error
counts for monolingual Mandarin and monolin-
gual English utterances, although to a lesser extent
compared to code-switching utterances. This obser-
vation suggests that the incorporation of language
identity information helps the ASR system better
capture language-specific patterns and transitions,
leading to improved recognition accuracy even in
monolingual contexts.

We further analyze code-switching transcription
examples generated by the two ASR models: the
Transformer-based ASR model (referred to as the
baseline model) and the Transformer-based ASR
model employed the LID state fusion method (re-
ferred to as the fusion model). The results are
presented in Table 3. Overall, the transcriptions
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Table 3: Examples of references and transcriptions gen-
erated by the baseline and fusion models. Recognizing
errors (**** means deletion) are indicated in red color.

Transcription
Reference | A M 17 7B > cheese K ME — + . ixX £ 1%
Baseline | K Mfer #8 ~ & KM =+ X 1%
Fusion KA W6 L A4 cheese K HE = -+ F X FE 1%
Reference | & ¥ 7 £ %] T have you made any preparations
Baseline | & ¥ %7 fR F| T ###* every may any preparations
Fusion X ¥E 5 B 2 T have you may any preparations
Reference | F& 24 #& 52 3L AR 4 Lb 5% 4F M right
Baseline | F& K 5K & 3E A8 4 Lb 5% IF # right
Fusion B 2 R SE TR A B BT Y right
Reference | twenty percent if 5% two percent — T A~ IL % & &
Baseline | then 5 percent if /& two percent
Fusion twenty percent i% J& two percent — T A~ L B H J&
Reference | {7 & 13 R 1R fit i5
Baseline | f% &t %5 R 1R fat 15
Fusion 5 48 IR AR fit i

generated by the fusion model demonstrated supe-
rior semantic and grammatical accuracy compared
to those produced by the baseline model, particu-
larly when the monolingual segment context was
short. These findings underscore the effectiveness
of the LID state fusion method in addressing the
challenges associated with code-switching speech
recognition. By leveraging the contextual cues pro-
vided by language identity information, the ASR
system becomes more proficient at distinguishing
between languages and producing accurate tran-
scriptions. The successful transcriptions of code-
switching utterances highlight the LID state fusion
method’s ability to mitigate language confusion
and enhance the system’s performance in complex
linguistic environments.

7 Conclusion

In this paper, we presented a novel language
identity-language model scheme to predict lan-
guage identity from pure text data, eliminating the
need for reliance on speech data. We also explored
two innovative methods to effectively incorporate
text-derived language identity cues into ASR mod-
els. Our code-switching speech recognition experi-
mental evaluations on the SEAME corpus demon-
strated the effectiveness of our methods. By incor-
porating language identity information, our ASR
system exhibits significantly reduced language con-
fusion in transcribing code-switching utterances,
yielding more precise transcriptions for both mono-
lingual and code-switched utterances. Future work
includes further enhancements to the LID-LM ar-



chitecture and investigating additional integration
strategies to better leverage language identity infor-
mation in ASR systems. Additionally, exploring
pre-training and fine-tuning techniques for LID-
LM would open up more possibilities for efficiently
utilizing text data to predict language identity.

Limitations

While our research has made significant strides in
advancing code-switching ASR systems through
the innovative use of text-derived language identity,
there are several limitations that warrant considera-
tion. First, our approach relies on the assumption
that text data sufficiently captures language iden-
tity information. While this assumption holds for
many contexts, it may not fully encompass the rich-
ness of linguistic diversity present in certain code-
switching environments. Second, the performance
of our method may vary across different language
pairs, dialects, or domains. The robustness of the
approach to such variations would benefit from ad-
ditional scrutiny and validation in diverse linguistic
settings. Lastly, our work explores specific inte-
gration strategies (LID state fusion and language
posterior biasing) for incorporating text-derived
language identity cues into ASR models. There
may be alternative strategies or hybrid approaches
that warrant exploration in future research to fur-
ther enhance code-switching ASR systems. These
limitations, while acknowledged, should be viewed
as opportunities for future investigations to expand
upon the foundations we have laid in this study.
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Abstract

While code-mixing is a common linguistic
practice in many parts of the world, collect-
ing high-quality and low-cost code-mixed data
remains a challenge for natural language pro-
cessing (NLP) research. The recent prolifera-
tion of Large Language Models (LLMs) com-
pels one to ask: how capable are these systems
in generating code-mixed data? In this paper,
we explore prompting multilingual LLMs in a
zero-shot manner to generate code-mixed data
for seven languages in South East Asia (SEA),
namely Indonesian, Malay, Chinese, Tagalog,
Vietnamese, Tamil, and Singlish. We find
that publicly available multilingual instruction-
tuned models such as BLOOMZ and Flan-T5-
XXL are incapable of producing texts with
phrases or clauses from different languages.
ChatGPT exhibits inconsistent capabilities in
generating code-mixed texts, wherein its per-
formance varies depending on the prompt tem-
plate and language pairing. For instance, Chat-
GPT generates fluent and natural Singlish texts
(an English-based creole spoken in Singapore),
but for English-Tamil language pair, the system
mostly produces grammatically incorrect or se-
mantically meaningless utterances. Further-
more, it may erroneously introduce languages
not specified in the prompt. Based on our in-
vestigation, existing multilingual LLMs exhibit
a wide range of proficiency in code-mixed data
generation for SEA languages. As such, we ad-
vise against using LLMs in this context without
extensive human checks.

1 Introduction

Code-mixing, also known as code-switching, is
the linguistic practice of alternating between two
or more languages in an utterance or conversa-
tion (Poplack, 1978). It allows individuals to ex-
press culturally-specific ideas, connect with or
differentiate from other interlocutors, and reify
their identities (Bhatia and Ritchie, 2004; Grosjean,
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Figure 1: Depiction of SEA regions, which consist of
a total of 11 countries. We prompt LLMs to generate
code-mixed data of languages used in six South East
Asian countries (colored in dark blue): Brunei, Indone-
sia, Malaysia, Philippines, Singapore, and Vietnam.

1982; Toribio, 2002; Chen, 1996; Dogruéz et al.,
2021). Despite its prevalence across many parts
of the world, computational research into this area
remains understudied (Diab et al., 2014; Aguilar
et al., 2020; Winata et al., 2021, 2022; Zhang et al.,
2023).

One longstanding challenge in this area involves
acquiring high-quality and low-cost code-mixed
data. For one, code-mixing is observed more fre-
quently in colloquial settings and spoken com-
munication, which makes procuring and curat-
ing extensive datasets logistically demanding and
costly (Chan et al., 2009; Winata et al., 2021).
Moreover, despite code-mixing’s prevalence across
social media and digital messaging platforms, con-
solidating such data may be curtailed by legal
guardrails and scalability issues. Recognizing these
challenges, we explore the feasibility of using gen-
erative Large Language Models (LLMs) to ame-
liorate data scarcity in code-mixing research. As
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CM

Assuming that you are an English-Malay bilingual speaker,
how would you write a natural English-Malay code-mixed
sentence about ?

(ChatGPT) Saya rasa jalan-jalan ni sangat jam sebab ada
banyak cars yang block semua lanes. (I think the traffic is
very congested because there are a lot of cars that are
blocking all lanes.)

In this sentence, | have mixed English and Malay
words together to form a code-mixed sentence. The
sentence starts in Malay, with ... <truncated>

(Davinci-003) "Kerja yang mengambil masa yang lama
seperti menunggu lama di laluan raya membuatkan saya
bosan!"

(Davinci-002) The traffic is really bad today.

(a) Template: Assume to be bilingual speaker

Figure 2: Example prompt templates with different languages and

CM

Imitate the speaking style of a person who can speak
Singlish in one sentence about

(ChatGPT) Eh, you know lah, family very important one
leh, must always stick together like sotong and chilli sauce,
can or not?

(Davinci-003) "My family lah, we so close, can go any-
where together one!"

(Davinci-002) My family is the best!

(b) Template: Imitate speaking style

fields and responses from LLMs containing

code-mixed / non-code-mixed sentences. Note that the explanations are a part of ChatGPT’s original generation.
“CM” indicates the level of code-mixing (Section 2.2). See Figure 15 in Appendix for all prompt templates and
responses from other LLMs such as BLOOMZ and Flan-T5-XXL.

recent work shows that LL.Ms can successfully gen-
erate synthetic data (Taori et al., 2023; He et al.,
2023; Tang et al., 2023; Whitehouse et al., 2023),
here we evaluate whether multilingual LLMs can
be prompted to create code-mixed data that look
natural to native speakers (and if so, to what ex-
tent).

To this end, we hone in on languages in South
East Asia (SEA). Home to more than 680 million
people and over 1200 languages, code-mixing is
particularly prevalent in this region due to its coun-
tries’ extended histories of language and cultural
cross-fertilization and colonialism (Figure 1) (God-
dard, 2005; Bautista and Gonzalez, 2006; Reid
et al., 2022). Marked by its distinctive multi-
lingual and multiracial composition today, SEA
presents an opportunity to further research numer-
ous marginalized languages and linguistic prac-
tices in NLP research! (Migliazza, 1996; Goddard,
2005; Joshi et al., 2020; Aji et al., 2022; Winata
etal., 2023; Cahyawijaya et al., 2022). Nonetheless,
publicly available code-mixed datasets relevant to
SEA communities remain limited (Lyu et al., 2010;
Winata et al., 2022).

We prompt five multilingual LLMs, i.e., Chat-
GPT, InstructGPT (davinci-002 and davinci-003)
(Ouyang et al., 2022), BLOOMZ (Muennighoff
et al., 2022), and Flan-T5-XXL (Chung et al.,
2022) to generate code-mixed text that bilingually

"Major languages in SEA countries belong to different
language families such as Indo-European, Thai, Austronesian,
Sino-Tibetan, Dravidian, and Austro-Asiatic. Furthermore,
there are at least thousands of major and minor SEA languages.
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mixes English with either Malay, Indonesian,
Chinese, Tagalog, Vietnamese, or Tamil. All
of these six SEA languages (alongside English)
are used across six SEA countries, namely Singa-
pore, Malaysia, Brunei, Philippines, Indonesia, and
Vietnam. Furthermore, they belong to different
language families—Indo-European, Austronesian,
Sino-Tibetan, Austro-Asiatic, and Dravidian. An
example of a prompt we used is: “Write an English
and Tamil code-mixed sentence about Artificial In-
telligence.” In addition, we prompt these LLMs to
generate texts in Singlish, an English-based creole
widely spoken in Singapore that combines multiple
SEA languages such as Malay, Chinese and Tamil.
We ask native speakers to annotate the naturalness
(i.e., whether a native speaker would speak as such)
and the level of code-mixing in the outputs.

To the best of our knowledge, our work marks
the first attempt at studying the generation of syn-
thetic code-mixed data through prompting LLMs in
a zero-shot fashion without any monolingual refer-
ence texts or explicit linguistic constraints (Solorio
and Liu, 2008; Tarunesh et al., 2021; Rizvi et al.,
2021; Mondal et al., 2022). We find that pub-
licly available multilingual language models such
as BLOOMZ and Flan-T5-XXL are only capable
of code-mixing with loanwords or topic-related
nouns. Most of the time, they fail to code-mix
(despite being advertised as multilingual). While
ChatGPT stands out in its ability to generate code-
mixed texts, it is extremely sensitive to the prompt
template and exhibits a considerable variance of
success in generating natural-sounding code-mixed
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Figure 3: Comparison of performance of different LLMs in generating code-mixed data through zero-shot prompting.
We distribute the result across different code-mixing levels: (0) No code-mixing (Non-CM), (1) Loanword, (2)
Topic-related nouns, and (3) Linguistic Elements.

texts across different language pairs. Additionally,  and (2) English is one of the most widely used

it may erroneously introduce additional languages  languages in code-mixing across SEA countries

not specified in the prompt and wrongly explain  (Kirkpatrick, 2014). We additionally prompt with

the code-mixing of the text. sentences in Singlish, a creole language, to evaluate
Our results lead us to conclude that code-mixing,  how sensitive LLMs are to the diversity of language

at least as of today, is not considered an essential ~ practices in the SEA region. In total, we submitted

component of many multilingual LLMs. Moreover, 210 unique prompts per language model.

the opaque creation of models like ChatGPT makes

it difficult to ascertain the mechanisms that enable ~ 2.2 Evaluation

code-mixing. By highlighting the limited promises L evel of Code-Mixing

of LLMs in a specific form of low-resource data

generation, we advise NLP researchers against us-

ing existing systems to produce synthetic code-

mixed data without extensive human evaluation.

To evaluate outputs, we ask whether LLMs can
produce intrasentential code-mixed text. We adopt
the definition of intrasentential code-mixing from
Berk-Seligson (1986), which covers mixing small

2 Methodology constituents—such as noun and verb phrases—and
large constituents—such as coordinate clauses and
2.1 Prompting Language Models prepositional phrases. Native speakers are then

tasked to manually annotate the collected responses
on a scale from O to 3 using the following coding
guidelines to denote the degree of code-mixedness:

We collect synthetic code-mixed data by prompt-
ing LLMs with requests along two axes: languages
and topics (food, family, traffic, Artificial Intel-
ligence, and weather). See Figure 2 for exam-
ples of different prompt templates. Specifically,

* 0 - No code-mixing: The generated text is
written purely in one language or only exhibits

we explore ChatGPT, InstructGPT (davinci-002 intersentential code-mixing (i.e., switching
and davinci-003) (Ouyang et al., 2022), 176B- at sentence boundaries including interjection,
parameter BLOOMZ (Muennighoff et al., 2022), idiom, and tags). We adopt the definition from
and Flan-T5-XXL (Chung et al., 2022). We use Berk-Seligson (1986).

OpenAl and HuggingFace’s API for prompting (see * 1 - Loanwords: The generated text uses loan-

Appendix B), except in the case of ChatGPT, which words for common terminologies. We con-
we manually queried through its web interface?. sider a word as a loanword if it is listed in
In our prompts, we specify code-mixing between Wiktiopary-”. For example: In the sentence, “I
English and either Indonesian, Malay, Mandarin, like eating pho,” “pho” is a loanword.
Tagalog, Vietnamese, or Tamil. We focused on * 2 - Topic-related nouns: The gen.er.atefi text
code-mixing English with SEA languages for two uses nouns related to the topic specified in the
reasons: (1) extensive literature on code-mixed prompt in another language. For instance, for

. . . . i : WA
English provides a relevant point of comparison, the topic O'f t affl(i’ E}n gxamp}e Would/tie K
K traffic ERRAERE, BIT T — /DS

ChatGPT’s API was not publicly released when we con-

ducted this study. *https://en.wiktionary.org
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Figure 4: Analysis of code-mixed data generated by ChatGPT.

BT Jp/AZ > (Chinese: “The traffic today
is really terrible. I spent an hour driving to get
to the office.”)

3 - Linguistic Elements: The generated
text mixes linguistic elements beyond loan-
words and topic-related nouns at the phrasal
or clausal level. One example is verb phrases:
“My family ay nagplano ng isang malaking
family reunion sa park this coming weekend.”
(Tagalog: “My family has planned a big fam-
ily reunion at the park this coming weekend.”)
This category also includes intraword code-
mixing, e.g., “Kapag busy ang trapiko, mag-
ingat ka sa pagda-drive* para maiwasan mo
ang mga masamang pangyayari.” (Tagalog:
“When traffic is busy, be careful while driving
to avoid accidents.”)

We use this scale instead of popular word-level
metrics such as CMI (Gambiack and Das, 2014)
because our scale more holistically evaluates the
ability of LLMs to code-mix. The lower end of this
scale reflects a lower complexity of code-mixing.
Code-mixing with loanwords is arguably less chal-
lenging, as they are often used in a monolingual
context to begin with. Likewise, code-mixing
topic-related nouns is not as complex as there is
presumably a correspondence between the nouns
in the two languages and is primed by the prompts.

On the other hand, code-mixing prefixes/suf-
fixes, phrases and clauses requires a good grasp
of the intricate morphosyntactic structures of both
languages and can produce syntactically diverse
code-mixed data. Therefore, we consider the LLM
to have successfully generated code-mixed text only
if the text belongs to this category.

*The prefix “pag-” in Tagalog is affixed to the English
word “drive”, resulting in the word “pagda-drive” (the act
of driving). This example demonstrates the application of
Tagalog inflection rules to English words.
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Naturalness

We asked native speakers to annotate the natural-
ness of the generated text on a rating scale of 1—
not natural at all, 2—an annotator may see someone
else from other regions/cultures speaking it, and
3—an annotator may see themselves speaking it. If
the text is not considered natural (rating of 1), we
requested the annotators to document their reasons,
including fluency issues, syntactical errors, and
semantic incorrectness.

Code-mixing practices vary across race, gender,
class, and geography, among other axes. Therefore,
in line with sociolinguistic research, we emphasize
that the “naturalness” of code-mixed text (as per-
ceived by an annotator) is subjective, and depends
on the background and social location of the anno-
tator. All annotators are Al researchers and native
speakers of their respective SEA languages. We
refer to Appendix G for more information about
our annotators and their inter-annotator agreement
scores.

Accurateness

We additionally annotate the accurateness of the
generations to account for task failure or incorrect
explanations. Inaccurate outputs were defined by:

* Failure to follow instructions: Some LLMs
fail to accurately carry out the prompt instruc-
tion (for example, generating monolingual
sentences). We also observe some code-mixed
outputs that include additional languages un-
specified in the prompts.

Inaccurate explanations: ChatGPT, among
other LLMs, tends to explain the code-mixed
phrases, but occasionally provides incorrect
explanations (see Figure 10).



Imagine there are two English-Vietnamese bilingual
speakers talking to each other, can you imagine a conver-
sation between them talking about family?

(ChatGPT) Person A: Hi, how’s your family doing?
Person B: Chao ban, gia dinh t6i dang khde. Con gia dinh
ban thi sao?

Person A: They’re good, thanks for asking. How about
yours?

Person B: Gia dinh t8i cling khde, cdm on ban. Méi day,
t6i da di chai véi 6ng ba va cac em ho clia minh.

Imagine there are two English-Chinese bilingual speakers
talking to each other, can you imagine a conversation
between them talking about weather?

(ChatGPT) English Speaker 1: Hey, have you been out-
side today? It’s really hot!

Chinese Speaker 1: &, S RRKTERIRA -

English Speaker 2: Yeabh, it's been pretty sunny all day.
Chinese Speaker 2: &M, 4K —FERAFRIGH -

Figure 5: Failure cases when we prompt ChatGPT to
imagine two bilingual speakers conversing about a spe-
cific topic.

3 Results

3.1 English-SEA Languages

Figure 3 demonstrates that ChatGPT outperforms
other language models in generating code-mixed
data across six different language pairs, and is par-
ticularly proficient at code-mixing linguistic ex-
pressions. For InstructGPT, the davinci-003 model
demonstrates some ability to generate syntacti-
cally varied code-mixed texts, whereas davinci-002
mostly code-mixes with loanwords. Conversely,
the other two publicly available multilingual LLMs
have extremely limited code-mixing capabilities.
More specifically, Flan-T5-XXL can only code-
mix with loanwords for the Indonesian-English lan-
guage pair, and most of its non-English monolin-
gual outputs suffer from severe fluency issues (see
Appendix D). BLOOMZ is only capable of code-
mixing topic-related nouns for Tamil-English even
though its multilingual pretraining data ROOTS
(Laurencon et al., 2022) and instruction-tuning data
xP3 (Muennighoff et al., 2022) cover Indonesian,
Chinese, Tamil, and Vietnamese. We observe no
direct effects of the proportions of these languages
in the training sets on BLOOMZ’s ability to code-
mix (Appendix E).

We further break down the performance of Chat-
GPT in Figure 4°. In Figure 4(a), we see that

Detailed analysis for davinci-002, davinci-003, Flan-T5-
XXL and BLOOMZ can be found in the Appendix (Figure 11,
Figure 12, Figure 13 and Figure 14).
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ChatGPT is least proficient at mixing linguistic
elements for English-Tagalog. This may be due to
syntactic differences between the two languages;
for example, English exhibits Subject-Verb-Object
(SVO) word order, whereas Tagalog exhibits a
verb-initial structure. Moreover, English demon-
strates nominative-accusative alignment, whereas
Tagalog, being a symmetrical-voice language, uti-
lizes a case system with a typological classifica-
tion that “remains controversial among Austrone-
sian linguists” (Aldridge, 2012, 192). In contrast,
ChatGPT performs the best for English-Indonesian
code-mixing, which may be due to training data
distribution and similarities between the two lan-
guages regarding word order and morphosyntactic
alignment. We also find that ChatGPT is capable
of using either English or a SEA language as the
matrix language, i.e., as the main language of a
sentence as per the Matrix Language Frame model
(Myers-Scotton, 1997).

Figure 4(b) shows ChatGPT’s code-mixing pro-
ficiency based on topics. ChatGPT tends to code-
mix with loanwords when the topic is about “Al”
by mixing the English loanwords “Artificial In-
telligence,” or its short form “AlL” For food, it
tends to code-mix with food-related terms—which
are topic-related nouns—in SEA languages such
as “banh mi” (Vietnamese sandwich). We also
observe some representation biases in specific
language-topic pairs. For instance, when it comes
to food, ChatGPT uses the word “nasi goreng”
(fried rice) for all English-Indonesian responses.
For other topics, such as traffic and weather, it tends
to code-mix phrases related to traffic congestion
and hot weather.

In Figure 4(c), we find the prompt template with
the highest quality results is the one where the
term code-mixing is explicitly defined. In contrast,
the worst-performing template consists of asking
the model to generate conversations between two
bilingual speakers, where the term code-mixing is
unmentioned. In Figure 5, we see that ChatGPT
generates an uncommon pattern of conversations
where one interlocutor speaks in English and the
other speaks in another language entirely (top ex-
ample). Furthermore, ChatGPT may assume there
are four speakers though the prompt asks for a con-
versation between two speakers (bottom example).

In terms of naturalness, we observe a consider-
able variance in ChatGPT’s ouputs, with English-
Tamil being the least natural (Figure 6). Further
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Figure 6: Naturalness of code-mixed (CM) text gener-
ated from ChatGPT. “Semi-Natural” indicates that the
annotators see someone else from other region/culture
speaking it, whereas “Natural” indicates that the anno-
tators see themselves speaking it.
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Figure 7: Models’ performance in generating Singlish
expressions through zero-shot prompting.

analysis shows that ChatGPT either commits gram-
matical mistakes (such as comma splice and redun-
dancy) or generates semantically confusing sen-
tences. We also observe unnatural text patterns
that mix two different script systems of the same
language in the single sentence (for example, the
Tamil script and its transliterated Latin script). We
document these naturalness and fluency issues in
Table 4 (Appendix F) and report the interannotator
agreement scores in Appendix G.

3.2 Singlish

Imagine that you are a Singaporean speaker. How would
you talk about food using Singlish in a single sentence?

(ChatGPT) “Wah, the hawker center got so many sedap
food, like chicken rice, laksa, and rojak, can die for sia!”
(Translation: “Wow, the hawker center has so many deli-
cious foods, like chicken rice, laksa, and rojak, they are to
die for!”)

Figure 8: Singlish sentence and its translation to Stan-
dard English, both generated by ChatGPT.
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Given that Singlish is an English-based creole
language that has lexicalized a lot of words from
many languages such as Malay, Chinese, Tamil,
Cantonese, and Hokkien (e.g., “lah,” “leh,” and
“loh,” etc.), it is difficult to disambiguate loan-
words and linguistic elements. Therefore, we clas-
sify the model success based on a binary scale of
whether the generated sentences contain Singlish
expressions (e.g., interjections, lexicalized phrases
of languages without a standardized writing sys-
tem)®. In Figure 7, we see that ChatGPT and In-
structGPT (davinci-003) have up to a 96% suc-
cess rate in generating Singlish sentences, whereas
Flan-T5-XXL and BLOOMZ have a near-zero suc-
cess rate. Furthermore, we find that ChatGPT is
also capable of translating Singlish expressions into
Standard American English (Figure 8).

While ChatGPT is capable of generating flu-
ent and natural Singlish (Figure 6), we observe
semantic inaccuracies in their word choices that
are discernible by native speakers. In Figure 2(b),
ChatGPT generates an English-Malay code-mixed
phrase “sotong and chilli sauce” where “sotong” is
a Malay word for “squid.” Upon first inspection,
the sentence appears syntactically sound but native
speakers found the analogy between familial con-
nections and the dish (squid with chili sauce) to be
semantically confusing.

OpenAl’s documentation of model differ-
ences’—more specifically, that davinci-003 can
produce higher-quality writing, process more com-
plex instructions, and generate longer content than
davinci-002—does not adequately explain why
ChatGPT and davinci-003 significantly outperform
davinci-002 and other multilingual LLMs in gen-
erating Singlish text. We hypothesize that the per-
formance gap may be due to the larger presence of
Singlish in OpenAl’s training data. Singlish is not
only one of the most well-researched dialects of
English (Sin, 2017), but it also uses the English al-
phabet and Latin script systems (unlike many other
SEA languages), which potentially makes it easier
for LLMs to scrape and parse data in this language.

3.3 Failures of ChatGPT

We notice that ChatGPT may fail to produce cor-
rectly code-mixed text when the nationality of the
speaker is mentioned. Invoking nationality may

SA reference list can be found at https://en.wikipedia.o
rg/wiki/Singlish vocabulary

"https://help.openai.com/en/articles /6779149-how
-do-text-davinci-002-and- text-davinci-003-differ
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Imagine that you are a Malaysian speaker. How would
you talk about traffic using both English and Chinese in a
single sentence?

(ChatGPT) Assuming that you are asking for a sentence
that combines both English and Chinese in a natural and
commonly used way by Malaysian speakers, here is an
example:

“4RH traffic 1R teruk, FZEFFHEEZL KLCC for meet-
ing. ”

This sentence incorporates the English word “traffic” and
the Chinese word “teruk” (which means “bad” or “terrible”
in English) to describe the situation of the traffic being
very bad. The speaker then switches back to English to
express their intention to hurry to KLCC for a meeting.
This kind of code-switching is common in Malaysia, where
speakers often mix languages in their daily conversations.

Figure 9: ChatGPT’s failure to follow the prompt. Un-
derlined texts show its language misclassification.

induce ChatGPT to generate code-mixed texts with
an additional national language of the country. In
the Figure 9 example, because the national lan-
guage of Malaysia is Malay®, ChatGPT not only
returns a code-mixed response that includes the
Malay word “teruk” when prompted for English-
Chinese utterance by a Malaysian, but also mis-
classifies the word “teruk” as Chinese.

While ChatGPT can explain how its generated
text is code-mixed (as illustrated in Figure 2(a)),
we find its justifications unreliable for two reasons.
First, it may hallucinate words that do not exist in
the code-mixed text. For instance, in the top exam-
ple in Figure 10, the English word “cold” does not
exist in the code-mixed text. Second, it may assign
words or phrases to the wrong language. In the bot-
tom example in Figure 10, the phrase “nak minum
air sejuk je” is in Malay, not English. This obser-
vation corroborates Bang et al.’s (2023) finding
suggesting ChatGPT performs poorly on language
identification tasks for low-resource languages.

4 Implications for LLMs and Ways
Forward

In this section, we walk through various implica-
tions of our work for understanding the deploy-
ment of LLMs for synthetic data generation in low-
resource settings, multilinguality in LLMs, impor-
tance of code-mixing ability in generative LLMs,
and research transparency.

Deploying LLMs for Low-Resourced Data Gen-
eration By putting LLMs’ generative capabilities
to the test, we ask in this work if they can gener-
ate high-quality and low-cost code-mixed texts for

$Mandarin Chinese is widely spoken in the country.
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Imagine that you are an Indonesian speaker. How would
you talk about weather using both English and Indonesian
in a single sentence?

(ChatGPT) If | were to talk about weather using both
English and Indonesian in a single sentence, | might say
something like: “Hari ini sangat hot dan panas sekali, saya
rasa aku butuh minum air dingin.” This sentence includes
the English words “hot” and “cold” to describe the weather,
and the Indonesian words “panas” and “dingin” which have
similar meanings. Additionally, the sentence also includes
a personal statement in Indonesian, “saya rasa aku butuh
minum air dingin,” which means “| feel like | need to drink
cold water.”

Code-mixing refers to a phenomenon of combining two or
more languages in a single sentence. Can you generate
a code-mixed English-Malay sentence about weather?

(ChatGPT) “The weather hari ni sangat panas, | rasa
macam nak minum air sejuk je.” (Translation: “The
weather today is very hot, | feel like drinking cold wa-
ter.”)

In this sentence, “hari ni” and “sangat panas” are in Malay,
while “I” and “nak minum air sejuk je” are in English.

Figure 10: Underlined texts show wrong explanations
about the code-mixed text. We italicize the code-mixed
sentences to make it explicit to the reader.

researchers working on a topic plagued by limited
data availability. While we conclude that Chat-
GPT has shown relative success in generating code-
mixed texts for some SEA languages, we advise re-
searchers to exercise heavy caution when using this
data generation technique. Even for Singlish, which
outperforms the other languages examined, we find
that syntactically-sound responses may contain se-
mantic inaccuracies that are difficult for non-native
speakers to detect. Furthermore, its explanations
may be misleading. Due to the lack of reliability,
we strongly suggest researchers to implement ex-
tensive human checks with native speakers if they
wish to pursue this method of data generation.

Multilingual # Code-Mix Compatible Our re-
sults with BLOOMZ and Flan-T5-XXL show that
the ability to code-mix is not acquired by LLMs af-
ter pretraining and/or finetuning with multilingual
data (Laurencon et al., 2022; Muennighoff et al.,
2022; Chung et al., 2022). In other words, for most
NLP models, multilinguality simply means that the
same system can process tasks and generate out-
puts in multiple languages, but not necessarily in
the same sentence. By highlighting this limitation,
we echo previous research motivating the inclusion
of code-mixing abilities in NLP models. Doing so
requires NLP models to capture the dynamics of
combining languages that have different degrees



of typological affinities, as well as pragmatic and
contextual features such as tone, formality, and
other cultural nuances (Winata et al., 2020; Lai and
Nissim, 2022; Kabra et al., 2023).

Towards More Inclusive Language Technology
Recognizing that generative LLLMs are the primary
driving force behind the advancement of Al conver-
sational agents and speech technology (Thoppilan
et al., 2022; SambaNova Systems, 2023; Pratap
et al., 2023), we emphasize the significance of
incorporating code-mixed output recognition and
generation capabilities in LLMs in order to en-
hance the inclusivity and humaneness of language
technology. By enabling conversational agents to
reflect the language-mixing patterns of the users,
people can communicate in ways that are more
comfortable and authentic to their linguistic iden-
tities. In fact, a recent study by Bawa et al. (2020)
has shown that multilingual users strongly prefer
chatbots that can code-mix. Removing the need
for people to adjust their speech patterns to be-
come legible to machines would not only mitigate
the effects of linguistics profiling (Baugh, 2005;
Dingemanse and Liesenfeld, 2022) and hegemonic,
Western-centric technological designs, but also en-
able users to develop more trust with language tech-
nology through naturalistic dialogue interactions.

Research Transparency Aside from showing
that ChatGPT and InstructGPT can code-mix, we
cannot confidently identify Zow the models do so
due to the lack of transparency in how these sys-
tems are developed. Without a window into train-
ing data and engineering processes that went into
models like ChatGPT, we can only speculate that
their training data includes a substantial amount of
code-mixed texts. To help facilitate greater levels of
transparency and accountability, we urge forthcom-
ing LLMs to be more open about how the models
were developed and to document accurately and
comprehensively the training data used.

5 Related Work

Code-Mixed Data in SEA Unlike monolin-
gual data, there is only a limited number of
human-curated code-mixed datasets. This re-
source limitation is more severe in SEA due to
its marginalization in NLP research (Winata et al.,
2022). Popular current code-mixing evaluation
benchmarks (Aguilar et al., 2020; Khanuja et al.,
2020) do not include SEA languages, and ex-
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isting code-mixing studies in SEA only cover a
limited number of language pairs and creoles,
e.g., English-Tagalog (Oco and Roxas, 2012),
English-Indonesian (Barik et al., 2019; Yulianti
et al.,, 2021), Javanese-Indonesian (Tho et al.,
2021), Chinese-English (Lyu et al., 2010; Love-
nia et al., 2022; Zhang and Eickhoff, 2023) and
Singlish (Chen and Min-Yen, 2015; Lent et al.,
2021)°. The current corpus does not even scratch
the surface of the sheer amount of code-mixedness
in SEA (Redmond et al., 2009), where deployable
data is practically non-existent. In this work, we
try to close this gap by exploring the potential of
generating synthetic code-mixed data for the SEA
region by prompting LLMs.

Synthetic Code-Mixing Generation of synthetic
code-mixed data to address data scarcity problem
has been previously explored. Solorio and Liu
(2008), Winata et al. (2019), and Tan and Joty
(2021) have attempted to generate synthetic code-
mixed sentences through word alignment and can-
didate selection from a parallel corpus. Liu et al.
(2020) and Adilazuarda et al. (2022) have similarly
generated synthetic code-mixed sentences by re-
placing words in monolingual sentences with their
machine-translated counterparts, whereas Pratapa
et al. (2018), Rizvi et al. (2021) and Santy et al.
(2021) leveraged parse tree structure for such re-
placements. Another approach is to perform neural
machine translation to translate monolingual sen-
tences to code-mixed ones (Appicharla et al., 2021;
Gautam et al., 2021; Jawahar et al., 2021; Dowlagar
and Mamidi, 2021). In this work, we assess a novel
way of generating synthetic code-mixed sentences
through prompting multilingual LLMs.

6 Conclusion

To ameliorate the scarcity of code-mixed data for
South East Asian languages, we explore generat-
ing synthetic code-mixed data using state-of-the-art
multilingual Large Language Models (LLMs). On
one hand, we find that publicly available LLMs
such as BLOOMZ and Flan-T5-XXL have lim-
ited capability in generating syntactically diverse
code-mixed data. On the other hand, closed-source
models such as ChatGPT and InstructGPT are bet-
ter at generating natural code-mixed text, but their
performance varies substantially depending on the

°To exacerbate the situation, some of the SEA code-mixed
datasets are no longer publicly available.



prompt template and language pairing. Further-
more, many outputs suffer from syntactic, seman-
tic, and reliability issues. Therefore, we caution
against using LLM-generated synthetic code-mixed
data without the involvement of native speakers for
annotating and editing.

7 Limitations

7.1 Effectiveness of Synthetic Code-Mixed
Data on Downstream Tasks

In our study, we did not evaluate how much our syn-
thetically generated code-mixed data improve the
ability of language models to handle code-mixed
text in downstream NLP tasks. While previous
findings have shown that finetuning models with
synthetic code-mixed data yields less performance
gains than with naturally occurring code-mixed
data (Santy et al., 2021), we believe that this perfor-
mance gap will diminish as the quality of synthetic
data generation gets better with future multilingual
LLM:s.

7.2 Lack of Human-Generated Data

While we annotated the degree of code-mixedness
and naturalness, we did not have human-generated,
naturally occurring, code-mixed sentences in re-
sponse to the prompt topics. Therefore, we could
not systematically compare the data distribution
of our synthetic data against the human-generated
data. However, since there are multiple ways in
which a sentence can be code-mixed, our focus in
this work is on how human-like are the sentences,
and this, we believe, was adequately captured by
our evaluation.

7.3 Monolingual Zero-Shot Prompting

Our study only uses prompt templates written in
English to prompt language models in a zero-shot
manner. In future follow-ups, we will (1) use
code-mixed prompt templates such as “Generate
an English-Bahasa sentence” instead of “Gener-
ate an English-Malay sentence” and (2) investigate
LLMs’ capabilities in generating code-mixed data
with in-context few-shot examples.

7.4 Instruction-Tuned Language Models

Our work only covers instruction-tuned language
models. In future work, we will include a com-
parison between multilingual models that are not
finetuned with instructions—for example, GPT3
(davinci) (Brown et al., 2020) and BLOOM (Scao
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et al., 2022)—to explore the effects of instruction
tuning in generating code-mixed data.

7.5 English-Centric Code-Mixing

Our study focuses on generating code-mixed data
only for English-SEA language pairs. For future
studies, we plan to investigate generating code-
mixed data for non-English language pairs com-
monly spoken in SEA countries (such as Malay-
Chinese and Indonesian-Javanese).

7.6 Failures of BLOOM and Flan-T5-XXL

Given the lack of research transparency on why
ChatGPT performs better at code-mixed text gener-
ation, we assume that the publicly available models
such as BLOOM and Flan-T5-XXL are unable to
code-mix due to the lack of code-mixed texts in the
pretraining corpora and code-mixing tasks in the
instruction-tuning datasets. Further investigation is
warranted to understand the effects of code-mixed
text in pretraining and instruction-tuning data on
code-mixed text generation.

7.7 Presence of Synthetic Code-Mixed Data in
Future Pretraining Data

As we advocate for the code-mixing ability in fu-
ture generations of LL.Ms, we are aware of the
potential risks of data feedback, where genera-
tive models that recursively train on data gener-
ated by previous generations may amplify biases
and lose information about the tails of the origi-
nal distribution (Shumailov et al., 2023; Taori and
Hashimoto, 2022). Since these negative effects
can be mitigated through human-generated content
(Shumailov et al., 2023), it becomes imperative for
the NLP community to collect natural code-mixed
data for low-resource languages.

8 [Ethical Considerations

Code-mixing reflects the linguistic, social, and cul-
tural identity of a multilingual community. Re-
searchers and practitioners should approach syn-
thetic code-mixing with sensitivity and respect, and
be cognizant of the potential risks of cultural ap-
propriation or misrepresentation when generating
code-mixed data using LLMs. Since LLMs are
trained on web data, they may encode biases per-
petuating stereotypes, discrimination, or marginal-
ization of specific languages or communities. Prior
work has also documented how synthetic data may
play a role in feedback loops that amplify the



presence of biased language generation (Taori and
Hashimoto, 2022). Therefore, collaboration with
linguists, language experts, and community repre-
sentatives is necessary to avoid the unintentional
perpetuation of stereotypes and cultural insensitiv-

ity.
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A Languages Spoken in SEA

There are more than 1,200 languages spoken in
SEA (Redmond et al., 2009; Maliwat, 2021), 700
of which are spoken in Indonesia (Aji et al., 2022;
Cahyawijaya et al., 2022). We describe the lan-
guages the SEA languages used in the study in the
following paragraphs.

Mandarin Chinese Mandarin Chinese (zh-
Hans), which belongs to the Sino-Tibetan language
family and uses the Hanzi script, is widely spoken
in SEA due to the migration of Chinese people
from the coastal provinces of southeastern China,
such as Fujian, Guangdong, and Hainan. People of
Chinese heritage in SEA frequently use the term
«f£ N\ (hud rén) to express their cultural identity
as an ethnic group, instead of “H[E \” (zhong
gué rén) which is primarily associated with na-
tionality, even though both terms can be translated
as “Chinese (people).” Singapore has the largest
Chinese ethnic group among all SEA countries and
Mandarin Chinese is considered one of the official
languages in Singapore.

The language is characterized as linguistically
“isolating” in that each Chinese character corre-
sponds to one morpheme and that the language
uses very little grammatical inflection. It uses a
logographic writing system, which uses pictograms
(Chinese characters) to represent meaning. Chinese
is also a tonal language with four pitched tones and
one neutral tone. It commonly displays a basic SVO
word order and, instead of conjugating the verbs to
express tenses, uses aspect particles such as | (le)
and ¥ (zhe) to indicate the temporal location of the
sentence.

Indonesian Indonesian (ind) is the national lan-
guage of Indonesia (Indonesia, 2002). It is spo-
ken by around 300 million speakers worldwide.
Indonesian is developed from the literary ‘Classi-
cal Malay’ of the Riau-Johor sultanate (Sneddon,
2003) and has many regional variants. Indonesian
is written in Latin script with a lexical similar-
ity of over 80% to Standard Malay. Indonesian is
non-tonal and has 19 consonants, 6 vowels, and
3 diphthongs. The stress is on the penultimate
syllable and the word order is SVO. It has three op-
tional noun classifiers. Indonesian has two social
registers and a rich affixation system, including a
variety of prefixes, suffixes, circumfixes, and redu-
plication. Most of the affixes in Indonesian are
derivational (Pisceldo et al., 2008).

57

Standard Malay Standard Malay (msa) is the
national language of Malaysia, Brunei, and Singa-
pore, and the language is spoken by approximately
290 million speakers worldwide. The word order of
Standard Malay is SVO with four types of affixes,
i.e., prefixes (awalan), suffixes (akhiran), circum-
fixes (apitan), and infixes (sisipan). Even though
Standard Malay and Indonesian originate from the
same Malay language and are mutually intelligible,
they can differ in spelling and vocabulary. One
example is loanwords. Due to the different colonial
influences from the Dutch and British, Indonesian
primarily absorbs Dutch loanwords whereas Malay
absorbs English loanwords. Both languages can
also differ in the meanings of the same written
words, which are commonly referred to as inter-
lingual homographs. For instance, “polisi” means
“police” in Indonesian but “policy” in Standard
Malay.

Tagalog Tagalog (tgl) is an Austronesian lan-
guage spoken in the Philippines by around 82 mil-
lion native speakers. It is both agglutinative and
pitch-accented, giving it rich and complex mor-
phology (Kroeger, 1993). Tagalog’s standardized
form, known as Filipino, is the country’s official
national language. The difference between Fil-
ipino and Tagalog is more sociopolitical than soci-
olinguistic: Commonwealth Act No. 184 of 1936
created a national committee whose purpose is to
“develop a national language.” This resulted in
the standardization of the Tagalog language into
Filipino. In practice, Filipino is indistinguishable
from Tagalog, albeit with the addition of letters f,
j» ¢, X, and z, plus loanwords (Commonwealth of
the Philippines, 1936).

Vietnamese Vietnamese (vie), the national lan-
guage of Vietnam, is spoken by around 85 million
people worldwide. It is a tonal language belonging
to the Austroasiatic language family and uses ac-
cents to denote six distinctive tones. The sentence
structure of Vietnamese displays the SVO word or-
der, and due to heavy influence from Chinese, it
also uses a rich set of classifiers that are required
in the presence of quantifiers. For instance, instead
of writing “bdn ga,” which literally translates into
“four chickens,” it should be “bdn con ga” where
“con” is a classifier for non-human animate things.

Tamil Tamil (tam) is a Dravidian language origi-
nating from Tamil Nadu and Sri Lanka. It is spoken
by the sizeable Tamil diasporas of Singapore (2.5%



of population (Singapore, 2020)) and Malaysia (9%
of population (Schiffman, 1998)), which resulted
from histories of trade, migration, indentured servi-
tude, and civil unrest. Tamil is an official language
of Singapore (Singapore, 2020), and the only one
originating from India. Tamil is notably diglos-
sic, which means it has a formal literary system,
lacks lexically distinctive stress, and is non-rhotic
(Armstrong). Tamil uses SOV sentence structure.
Tamil-English code-mixing exhibits interesting lin-
guistic phenomena such as nonce loan, wherein
many nonce borrowings from English occupy ob-
jects corresponding to Tamil verbs, and vice versa
(Sankoff et al., 1990).

Singlish  Singlish is a widely-used conversational
language in Singapore. It is an English-based cre-
ole language that arose out of prolonged language
contact between speakers of many different lan-
guages in the country, including Hokkien, Malay,
Teochew, Cantonese, and Tamil. Singlish is spo-
ken by around 4 million speakers, and one unique
feature of the language is its heavy use of prag-
matic particles borrowed from Southern Chinese
dialects. One example of this is “lah,” which in the
sentence, “Her dress is too short lah,” emphasizes
the statement.

B HuggingFace Inference API

We use HuggingFace’s Inference API to prompt
multilingual LLMs since we do not have sufficient
local compute to host models with hundreds of bil-
lions of parameters such as the 176B-parameter
BLOOMZ model (Muennighoff et al., 2022). The
text-to-text task is treated identically as a text-
generation task, and we set max new tokens
(amount of new tokens to be generated) to 100,
temperature to 0.7, and repetition penalty to
1.2.

C OpenAl Inference API

We use OpenAl’s official API to prompt both
davinci-003 and davinci-002. Specifically, we use
openai.Completion.create with a maximum gen-
eration length of 128. We use the default values for
all other parameters.

D Flan-T5-XXL Non-English Outputs

We observe that when Flan-T5-XXL generates non-
English outputs, most of them are nonsensical.
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Here are some of the examples and their trans-
lations.

Indonesian: Ini adalah sebuah udara untuk pengo-
batan minyak dan di sekitar kehidupan.
Translation: This is an air for oil treatment and
around life.

Malay: Artificial Intelligence adalah sebuah kantor
keamanan yang digunakan untuk mengidentifikasi
penduduk yang memiliki anak-anak dalam diri.
Translation: Artificial intelligence is a security of-
fice used for identifying residents who have childen
inside.

Tagalog: Weather niya ang nagsimula sa
pagsasagawa ng kaniyang kargahan ng panahon.
Translation: It was his weather that started carry-
ing out his weather load.

Vietnamese: Nha ng tai ra mt ngi dy xut trn o trng
h nhng ngi ng thng u c thit v.

Translation: The artist has created an outstanding
talent in the field of talented people.

E BLOOMZ’s Training Language
Distribution

BLOOMLZ is created by finetuning the multilingual
176B-parameter language model BLOOM (Scao
et al., 2022) that is pretrained on ROOTS corpus
(Laurengon et al., 2022) on a collection of prompt
instructions known as xP3 (Muennighoff et al.,
2022). Table 1 and Table 2 show the proportion of
SEA languages investigated in our paper existing
in the ROOTS and xP3 datasets respectively. Even
though Indonesian and Chinese are higher in pro-
portion than Tamil, BLOOMZ code-mix better for
Tamil than the former two language with around
20% performance difference.

Languages Percent Distribution (%)
English 30.04
Chinese (Simplified) 16.2
Vietnamese 2.7
Indonesian 1.2
Tamil 0.2

Table 1: Proportion of Languages in the ROOTS corpus
(Laurencon et al., 2022).

F Naturalness and Fluency Issues of
ChatGPT’s Generation

We document a non-exhaustive list of syntactic and
semantic errors as well as reasons for unnaturalness
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Languages Percent Distribution (%)

English 39.25
Indonesian 4.85
Chinese (Simplified) 4.83
Vietnamese 3.27
Tamil 0.97

Table 2: Proportion of Languages in the xP3 datasets
(Muennighoff et al., 2022).

in ChatGPT’s generation in Table 4.

G Annotators and Inter-annotator
Agreement

We have a total of 13 annotators, some of whom
speak more than one SEA language. All of them are
native speakers of their respective SEA languages,
and most grow up in SEA. Many of our annotators
are Al researchers and reside in the Global North.
All the annotators are the authors of the paper.

In Table 3, we report the inter-annotator agree-
ment scores for naturalness annotations using
Fleiss’ Kappa « (Fleiss, 1971), which measures the
agreement between a fixed number of raters when
assigning categorical ratings to the items. It can
be applied to settings with multiple annotators and
not all raters are required to annotate all items. The
closer it is to 1, the higher the agreement among
annotators.

According to the guideline (Landis and Koch,
1977; Altman, 1990), English-Indonesian annota-
tions have a fair agreement, English-Chinese and
Singlish have a substantial agreement, and English-
Tagalog have almost perfect agreement among the
annotators.

Language N(annotators) K
English-Chinese 3 0.6431
English-Indonesian 3 0.2165
English-Malay 1 -
English-Tagalog 2 0.8268
English-Tamil 1 -
English-Vietnamese 1 -
Singlish 3 0.6199

Table 3: Inter-annnotator agreement scores for nat-
uralness of ChatGPT’s generated code-mixed text.
N(annotators) indicates the total number of annotators
and « refers to the Fleiss’ Kappa agreement score.
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Assuming that you are an English-Malay bilingual speaker,
how would you write a natural English-Malay code-mixed
sentence about 7

CM

CM
(ChatGPT) Saya rasa jalan-jalan ni sangat jam sebab ada Imitate the speaking style of a person who can speak
banyak cars yang block semua lanes. (I think the traffic is Singlish in one sentence about
very congested because there are a lot of cars that are
blocking all lanes.) 3 (ChatGPT) Eh, you know lah, family very important one
) leh, must always stick together like sotong and chilli sauce, 3
In this sentence, | have mixed English and Malay can or not?
words together.to form a code-mixed sentence. The e R L T e mpep——n
sentence starts in Malay, with ... <truncateds> where together on):e'" by ety o C2IN O EIY- I
(Davinci-003) "Kerja yang mengambil masa yang lama o oo
seperti menunggu lama di laluan raya membuatkan saya 0 (Davinci-002) My family is the best! 0
bosan! (BLOOMZ) 0
(Davinci-002) The traffic is really bad today. 0 (Flan-T5-XXL) I'm gonna go home to see my family. 0
(BLOOMZ) Traffic jams on the highway. 0
(Flan-T5-XXL) The number of vehicles on the road has 0 (b) Template: Imitate speaking style
decreased by 32% in the past year.
(a) Template: Assume as bilingual speaker
CM
Imagine there are two English-Indonesian bilingual speak-
ers talking to each other, can you imagine a conversation
between them talking about ?
(ChatGPT) Speaker 1: Hey, have you tried the Indonesian
dish, Nasi Goreng?
Speaker 2: Yes, | have. It's one of my favorites. Have you
had it before? 2
Speaker 1: Yes, | have. | really like the combination of CM
flavors. Have you tried Sate Ayam? Code-mixing refers to a phenomenon of combining two or
Speaker 2: Oh yes, | love Sate Ayam! ..<truncated> more languages in a single sentence. Can you generate a
-mi ish-Chi ?
(Davinci-003) "English speaker: | just had the most amaz- ey ’
ing Nasi Goreng for dinner! ) o o
Indonesian speaker: Ah, nasi goreng adalah salah satu gg(gzté\qg?iesdu::%i:gr? fsoraruﬁéﬁrpple. llove eating X 2
makanan khas Indonesia. Apakah kamu suka makanan 2 h J :
Indonesia lainnya? o b " i oy
English speaker: | really like Gado-gado and Ayam Penyet. (Davinci-003) #1255 ! |love potato chips! 0
wstruncated> (Davinci-002) " & i & N MFHFIZIZH . -

(Davinci-002) "A: What's your favorite food? Tofu, tofu, is not is not good good to eat to eat."

B: I love Indonesian food, especially nasi goreng. 1 .

A: Yeah, | love nasi goreng too!" (BLOOMZ) &#JF LIFZ, [EAZEIZKE . 0
(BLOOMZ) "Here is an example: W: Hi Mariam. How was (Flan-T5-XXL) A chef prepares a drink. 0
your trip yesterday? . ) )

M: Oh! It was great fun just like | expected it would be. 0 (d) Template: Explicitly define CM

W: I'm glad. Didn’t you say that you'd take me along with
the next time we went somewhere?
M: Yeah... All right then"

(Flan-T5-XXL) M: What do you think of the food at the
party? Are they good?W: The food at the party is okay, but 0
you don'’t have to eat it.

(c) Template: Two bilingual speakers

Figure 15: All prompt templates with different languages and fields and responses from different LLMs
containing code-mixed / non-code-mixed sentences. Note that the explanations are a part of ChatGPT’s original
generation. “CM” indicates the level of code-mixing (Section 2.2)
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Imagine that you are a speaker. How would
you talk about using both English and
in a single sentence?

(ChatGPT) "Ngay hom nay thdi tiét kha nang néng, so |
think I'll wear my shorts and t-shirt di choi.”

(Davinci-003) I'm sure the weather today is beautiful, thoi
tiét hém nay c6 vé rat dep.

(Davinci-002) | like the weather here because it’s not too
hot and not too cold. Téi thich thdi tiét & day vi né khong
néng qua va khong lanh qua.

(BLOOMZ) Hay tudng tugng ban la nguoi r)c’)i tiéng Viét,

va thi? dling c& hai thif tiéng dé mo ta thoi tiét:
(Flan-T5-XXL) V khach hang nh hangtcdoctncinv
nhng Ing bn s tm thy hangnc do c ¢

(e) Template: Native speaker

Figure 15: (Continued) We also include a template where we specify the

languages and fields.
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Write an English and Tagalog code-mixed sentence about

(ChatGPT) English-Tagalog code-mixed sentence: "Ar-
tificial Intelligence ay isang exciting na teknolohiya na
makakapagbigay ng maraming benepisyo sa society."
Translation: "Artificial Intelligence is an exciting technology
that can provide many benefits sa lipunan."

(Davinci-003) Al is revolutionizing the way we live, trabaho,
at mabuhay ngayon sa pamamagitan ng pagbibigay ng
modernong solusyon sa mga proyekto at pagkukuha ng
ilang mga trabahong naghihintay na ma-automate.

(Davinci-002) Artificial Intelligence is something that we
should be thankful for.

(BLOOMZ) An expert in artificial intelligence explains their
area of expertise to a student with the help of a colleague
who speaks both languages.

(Flan-T5-XXL) Ang pagsusuri ng mas maraming kapasira
ng hariko ay nag-aaral ng sasakyan ng pag-aaral ng pan-
gangalambot, na magtitipon para sa pamamagitan ng pag-
papasagawa ng karangalan ng isang lalaking.

(f) Template: Write a CM sentence

CM

of the speaker in addition to the
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Abstract

The mixing of two or more languages is called
Code-Mixing (CM). CM is a social norm in
multilingual societies. Neural Language Mod-
els (NLMs) like transformers have been effec-
tive on many NLP tasks. However, NLM for
CM is an under-explored area. Though trans-
formers are capable and powerful, they can-
not always encode positional information since
they are non-recurrent. Therefore, to enrich
word information and incorporate positional
information, positional encoding is defined.
We hypothesize that Switching Points (SPs),
i.e., junctions in the text where the language
switches (L1 — L2 or L2 — L1), pose a chal-
lenge for CM Language Models (LMs), and
hence give special emphasis to SPs in the mod-
eling process. We experiment with several posi-
tional encoding mechanisms and show that rota-
tory positional encodings along with switching
point information yield the best results.

We introduce CONFLATOR: a neural lan-
guage modeling approach for code-mixed lan-
guages. CONFLATOR tries to learn to empha-
size switching points using smarter positional
encoding, both at unigram and bigram levels.
CONFLATOR outperforms the state-of-the-art
on two tasks based on code-mixed Hindi and
English (Hinglish): (i) sentiment analysis and
(i1) machine translation.

Code-Mixing: Juxtaposition of two
Languages

Code-mixing is defined as the alternation of two
or more languages during articulation. Recently,
code-mixing has gained a lot of attention in the
area of NLP due to the prevalence of language mix-
ing in multilingual societies such as India, Europe,
US, South Africa, Mexico, etc. In such societies,
code-mixing is fairly commonplace, especially in
informal conversations, where the native language
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® Amazon Al, USA

"University of South Carolina, USA

2saitedja.kandukuri@sijsu.edu
"amitava@mailbox.sc.edu
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is often romanized and code-mixed with an auxil-
iary language. This effect occasionally manifests in
posts originating from the aforementioned sources
on social media platforms such as Twitter, Face-
book, etc. An example of Hindi and English code-
mixing is shown in the following phrase where an
English word, dance, is mixed with Hindi roman-
ized words: Gaaye, aur, kare.

Gaayey1 auryr dancegy kareyt
English translation: sing and dance

With the proliferation of code-mixing on the in-
ternet, it is important to study language processing
and language modeling for code-mixed languages.
While language modeling using neural networks
has come a long way, replacing n-gram language
models with distributed neural representations
(Bengio et al., 2003) to recent large transformer-
based pre-trained language models (LMs) such as
GPT-x (Radford et al., 2019), BERT (Devlin et al.,
2018a) etc., code-mixed language modeling using
state-of-the-art (SoTA) Transformer-based models
is still under-explored.

The biggest hindrance in the adoption of SoTA
Transformer-based LMs for code-mixing can be at-
tributed to data scarcity. While Transformer-based
(Vaswani et al., 2017b) architectures such as BERT
and GPT have set new benchmarks in the domain of
language modeling, they are infamous for their low
sample efficiency. In other words, the voracious
data appetite of Transformers and the lack of sub-
stantial code-mixed datasets in the community is
the primary reason for the technological hindrances
in the area of code-mixed language modeling com-
pared to vanilla language modeling.

To corroborate the aforementioned arguments,
we experiment with Transformer-based models
such as GPT-2 and BERT for code-mixing. We em-
pirically observe that these models perform poorly
on tasks involving code-mixed data. Our hypothesis
is as follows: Since information related to switch-
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ing point is a major component in the context of
code-mixed content, it should thus be incorporated
in downstream processing. Switching points are a
bottleneck for a model’s processing of code-mixed
data and the reason for poor performance using
SoTA neural language models (Chatterjere et al.,
2020). Switching points play a crucial factor when
dealing with CM data. In the next few sections,
we discuss various positional encoding approaches,
switching points, and our approaches for language
modeling on code-mixed data. Our key contribu-
tions are:

* We propose CONFLATOR, an LM system that
incorporates switching point related positional
information.

* Our system improves the performance of ex-
isting models and achieves a new SoTA on
two tasks.

* We investigate, experiment with, and intro-
duce various switching point based positional
encoding techniques.

* We introduce a novel Switching Point based
Rotary matrix for Rotary Positional Encoding
(RoPE).

¢ We curate a new dataset of code-mixed tweets.

2 Related Work

It is important to study code-mixing as it is a part
of most multilingual societies and prevalent in so-
cial media. It is more complex to process code-
mixed text than monolingual text for NLP tasks
(Verma, 1976). Similar line of work was followed
by Bokamba (1988) and Singh (1985) on the com-
plexities of multi-languages on the basis of syn-
tactics and grammar. The difficulties of processing
code-mixed languages on social media is further ex-
acerbated by unusual spellings, many unique ways
of writing the same word, unnecessary capitaliza-
tion etc (Das and Gambick, 2014; Laddha et al.,
2020).

With the growing popularity on social media,
Various tasks like sentiment analysis (Patwa et al.,
2020a; Chakravarthi et al., 2020), translation (Dhar
et al., 2018; Srivastava and Singh, 2020), hate-
speech detection (Bohra et al., 2018; Banerjee et al.,
2020), POS tagging (Vyas et al., 2014), etc. have
been performed on code-mixed data. Methods to
handle code-mixing for text classification include
the use of CNNs (Aroyehun and Gelbukh, 2018;
Patwa et al., 2020b), Transformer or BERT like
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models (Samghabadi et al., 2020; Tang et al., 2020),
ensemble models (Tula et al., 2021; Jhanwar and
Das, 2018), focal loss (Tula et al., 2022; Ma et al.,
2020) etc.

Vaswani et al. (2017a) proposed transformers for
neural language modeling using masked language
modeling (MLM) and next sentence prediction,
which achieved SoTA performance on many NLP
tasks. Devlin et al. (2018b) released mBERT, a
model trained on multilingual corpus that includes
104 languages. A cross lingual language model
XLM was proposed in Lample and Conneau (2019)
which leveraged monolingual and crosslingual cor-
pus for pretraining. Nayak and Joshi (2022) present
a bert pretrained on CM data. However, they do not
make changes to their language model or technique
to handle code-mixed data in particular. Sengupta
et al. (2021) propose a Hierarchical transformer
based architecture that captures the semantic rela-
tionship among words and hierarchically learns the
sentence level semantics of code-mixed data. Ali
et al. (2022) Were one of the first to incorporate
switching point information in positional encoding.
They utilize dynamic positional encodings whereas
our method, CONFLATOR infuses switching point
information in rotatory positional encodings and
also uses both unigram and bigram tokens to get
the final embedding.

3 Data Extraction and Strategies

In this section, we discuss the details of code-mixed
data extraction. Our primary aim is to extract natu-
rally distributed code-mixed data.

3.1 Qualitative and Quantitative Checkpoints
for Hinglish Corpus

The performance of LMs is dependent on the train-
ing data size and quality, along with the vocabu-
lary size. Code-mixed language modeling suffers
from the following challenges: i) data scarcity, ii)
Words from 2 (or more) languages in the same
sentence, iii) Hindi is written using English letters
(i.e. transliteration), hence, there is no standardiza-
tion of spelling - which in effect proliferates word
forms (Laddha et al., 2020, 2022), iii) Code-mixing
is usually found on social media and netizens often
incorporate creativity in their mixing along with
wordplay. We consider two fundamental questions
to guide our data collection:

1. The performance on any NLP task depends on
the data complexity:



Empirical measurement: Consider two 4-
word tweets - 1) T} : wriwriwrswrs and ii)
T; : wpiwrowriwre. Both the tweets have
2 words each from the languages L1 and L2.
Thus the mixing ratio of both the tweets 7; and
Tjis (4—2)/4 = 0.50. However, T; only con-
tains 1 code alternation point whereas 7} con-
tains 3 switches. It is likely that 7; is harder
to process. Hence, we need a metric for the
level of mixing between the languages. We use
Code-Mixing-Index (Gambick and Das, 2016)
(CMI) to measure such complexity. Please re-
fer to section 3.2 for more details on CML.

How much data is good enough?

Empirical measurement: When two lan-
guages blend, it is quite natural that the num-
ber of unique word forms would be much
higher in a Hinglish corpus in comparison to
monolingual English or Hindi corpus. There-
fore, we ask an essential question at the very
beginning, how much data is good enough?
We decide to keep collecting data, until the
Heaps’ curve starts converging so that we
cover most of the unique words.

Heaps’ law (Gopalan and Hopkins, 2020)
states that the number of unique words in a
text of n words is approximated by V' (n) =
KnP where K is a positive constant and 3 lies
between 0 and 1, K invariably lies between
10 and 100 and 3 between 0.4 an 0.6. Heaps’
law is often considered to be a good estimator
to calculate the vocabulary size. To compare,
from the figure 1, it can be seen that, for En-
glish Wiki, the flattening of the Heaps’ law
curve, starts at 40K-50K, whereas for mono-
lingual Hindi, it converges at 80K-90K, but
for Hinglish the same behavior starts around
800K vocabulary and 50M words.

3.2 Code-Mixing Index (CMI)

As mentioned previously, we expect the difficulty
of language processing tasks to increase as the level
of code-mixing increases. To measure the level of
code-mixing in our corpus, we use Code-mixing
Index (Gambick and Das, 2016) :
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Heaps' Law Curve

500000

V.
»
S
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—— B = 0.58 ENGLISH
—— B =0.61 HINDI
—— B = 0.74 HINGLISH

Vocabulary Size (V)

0 1 4 5

2 3
Total number of words (N) le7
Figure 1: Heaps’ plot on 50M word forms in English,
Hindi and Hinglish corpora. The 3 values are 0.58, 0.61,
0.74 respectively.
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Where x denotes utterance, N is the number of

token in x belonging to any language L;, w,, and

wy, are weights. Please refer to Gambick and Das
(2016) for a detailed explanation of CMI.

3.3 Data Acquisition Pipeline

We follow a pipeline similar to (Chatterjere et al.,
2020). We collect CM data from Twitter via the
Twitter API. We need to use relevant keywords
(words unique to Hindi) in our search to get CM
tweets. Words with lexical overlap between Hindi
and English should not be used for searching.
for example, the word do is confusing because
it means two in Hindi. We start with the ICON
2017 Hinglish sentiment analysis dataset (Patra
et al., 2018), which is annotated with word-level
language. From this data, we create two vocabu-
laries V1 and Vg, and generate a vocabulary of
unique Hindi words Vi r_uyn1g = Va1 — 1, where
I = Vur(\Ven. Var-uniq set is then sorted in
descending order, based on the word frequency, and
is used as search words on the Twitter APIL. Once
we get the tweets, we use a word-level language
identifier (Barman et al., 2014) (having 90%-+ ac-
curacy) on the tweets and calculate the CMI of the
tweet. Once we get the word-level language labels,
we can also know where the switching points are.
Tweets with CMI = 0 are discarded. Finally, we
are left with 87k tweets. The CMI distribution of
our data is given in table 1. This dataset is used to
pretrain our models.

Training and Testing data: We collect 87K sen-
tences distributed over all CMI ranges, instead of



CMI # Tweets  Percentage
0-10 7,036 8.05%
11-20 16,481 18.9%
21-30 22,617 25.9%
31-40 22,722 26.0%
41-50 11,404 13.1%
50+ 7,036 8.05%

Mean CMI: 28 Total # of tweets: 87,296

Table 1: CMI distribution of the collected data. The total
number of extracted tweets is 87K.

collecting equal data across the CMI ranges, so
that the resultant languages trained on this corpus
would be able to handle real data. We maintain the
same distribution over both our training and testing
corpora (4:1 ratio), for our language models.

4 The Bottleneck of Code-mixed
Language Modeling: Switching Points

Formally, Switching Points (SPs) are the tokens in
text, where the language switches. For code-mixed
languages, consisting of a pair of languages, there
can be two types of switching points. Suppose the
two languages as part of the code-mixed language
are L1 and L2, a switching point occurs when the
language in the text changes from L1 to L2 or L2
to L1. To explain it better, let us consider the fol-
lowing sample in Hinglish:

gaanay enjoyen kareys
English Translation: Enjoy the song.

In the above example, when the language
switches from Hindi to English (gaanayy enjoygn)
a HI-EN (HIndi-ENglish) switching point oc-
curs. Similarly, a EN-HI(ENglish-HIndi) switch-
ing point occurs at - enjoypN kareg.

In the context of modeling code-mixed lan-
guages, switching points can be considered as or-
dinary bigrams, that occur with other monolingual
bigrams in a corpus. It is easy to infer that particular
SP bigrams will be relatively rare in a given corpus.
Hence, such sparse occurrences of switching point
bigrams make it difficult for any Language Model
to learn their probabilities and context. Since the
language changes at the switching point, LMs are
likely to find it difficult to process these tokens. In
order to counter this challenge, we partition our
code-mixed data into (i) switching points, and (ii)
non-switching points. We then build LMs specifi-
cally for switching points and non-switching points,
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as discussed in the following sections.

CONFLATOR Hypothesis: The CONFLA-
TOR is built on 2 hypotheses. i) Positional informa-
tion is important for language models, especially
when dealing with CM text. ii) Switching points
are the bottleneck for code-mixed language models
(CMLM). We incorporate positional information
of switching points into our CMLM.

5 Positional Encoding Techniques

As discussed, SPs are a major bottleneck hence han-
dling them separately is needed. Positional encod-
ing are necessary for language models to learn de-
pendencies between tokens. Positional embedding
was first introduced by Vaswani et al. (2017b). The
proposed sinusoidal positional encoding is com-
posed of sine and cosine values with position in-
dex as inputs. The encoding techniques are further
improved by Liu et al. (2020) where a dynamic
function is introduced to learn position with gradi-
ent flow and Shaw et al. (2018) learned positional
representation of relative positions using a learn-
able parameter. We talk about different positional
encoding techniques in detail in the following sub-
sections.

We experiment with several contemporary tech-
niques and find that rotary positional encoding (Su
et al., 2021) performs the best.

5.1 Sinusoidal Positional Encoding (SPE)

Vaswani et al. (2017b) introduced a pre-defined si-
nusoidal vector p; € R? which is assigned to each
position i. This p; is added to the word embedding
x; € R% at position i, and x; + p; is used as input
to the model such that the Transformer can differ-
entiate words coming from different positions and
this also assigns each token a position-dependent
attention. - equation 2.

= ﬁ (i +pi)) W) (5 + py) WKJ)T @)

Where W is the weight matrix, Q is query, K is
key, 1 in the layer.

abs

e

5.2 Dynamic Positional Encoding (DPE)

Instead of using predefined periodical functions
like sin, Liu et al. (2020), introduced a dynamic
function ©(7) at every encoder layer. Improving
upon sinusoidal PE, Dynamic PE learns ©(i) in-
stead of a predefined p; to bring dynamic behavior
to the model. At each utterance, this learnable func-
tion O(7) tries to learn the best possible representa-
tion for positional information with gradient flow.



(i) is added to the word embedding w; as given
in equation 3.
(2 +© (1) W) (2 + © () WE)" (3)

_ 1
€ij = ﬁ
5.3 Relative Positional Encoding (RPE)

In absolute PE, using different p; for different posi-
tions i helps the transformer distinguish words at
different positions. However, the absolute PE is not
effective in capturing the relative word order. Shaw
et al. (2018) introduced a learnable parameter aﬁ_ j
which learns the positional representation of the
relative position i-j at encoder layer /. With the help
of this, we can explicitly capture word orders in

our model as follows:
T
() (s )

5.4 Switching Point-based Dynamic and
Relative Positional Encoding (SPDRPE)

Ali et al. (2022) introduce a novel, switching point
based PE. For illustration purposes, consider a
code-mixed Hinglish text - yey; gaanay; enjoygy
karep;. SP-based indices (SPI) set the index to O
whenever an SP occurs. Indexing would normally
be Index = (0, 1, 2, 3), but due to switching point
incorporation, this gets changed to SPI = (0, 1, 0,
0). In addition to this, they use a learning parame-
ter aéf ;» which encodes the relative position i-j at
the encoder layer /. This encoding approach learns
representations dynamically based on SPs along
with the embedding aé_ ; so that it can also capture

relative word orders, as follows: ] r
ey = o (@ +O(SW)) WQ% (@+e ) whivd ) (5)

erel _ 1

o= @)

5.5 Rotary Positional Encoding (RoPE)

Analogous to the idea of electromagnetic waves
going through a polarizer to preserve their relative
amplitude, (Su et al., 2021) came up with the idea
of Rotary Positional Encoding (RoPE). The idea
is to use rotation matrices on the embedding vec-
tors to generate the positional values. The rotation
negates any absolute positional information and
only retains information about the relative angles
between every pair of word embeddings in a se-
quence. We know that the dot product between two
vectors is a function of the magnitude of individual
vectors and the angle between them. Keeping this
in mind, the intuition for RoPE is to represent the
embeddings as complex numbers and the positions
as pure rotations that we apply to them.
Mathematically, the formulations for a simple 2-
dimensional case are defined as follows:
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folwi,i) = (Wow;)eV ™1

g(@i, x50 — §) = Re[(Wou;) (Wica;) eV ~10797)

(6)

where Re|] is the real part of a complex num-

ber and (W ;)" represents the conjugate complex

number of (Wkz;). § € R is a preset non-zero con-

stant. Formulating f q k) as a matrix multiplication,
«M

' () ()

(N
where (z;V, 2;?) is z; expressed in the form of
2D coordinates. In the same way, we can turn func-
tion g into matrix form. By rotating the transformed
embedding vector by an angle in multiples of its
position index, we are able to incorporate relative
position information. Due to this characteristic, it
is termed as Rotary Position Embedding.

In order to generalize the result in 2D to any z;
in Rq where d is even, they divide the d-dimension
space into % sub-spaces and combine them in merit
of the linearity of inner product, turning the atten-
tion formulation:

a1 ,(2)
Wo.rk Wok
(21) 11(22)
Wo.xk Wo

cosmbB, —sinmb1
sinmf1 cosmby

folwii) = (

T
3 _ protary __ 1 rd 7Q1 (. gd TK (o
fox=egm =4 (RM@J.W ) (JL,,,)) (RMQJW : (;,)) ®)
cosmby —sinmbq 0 0 0 0
sinmfy cosmby 0 0 0 0
0 cosmby —sinmbs ... 0 0
RM = 0 0 sinmby cosmby ... 0 0 (9)
0 0 0 0 1105;17;,9(,/2 —smz,r-n,n‘)d/z
0 0 0 0 - sinmbg y  cosmbly)y

where RM is orthogonal and sparse matrix pre-
defined parameters

O = #; = 100002V j ¢ [1,2,...,d/2]. (10)

In contrast to the additive nature of the position
embedding methods used by other works, their ap-
proach is multiplicative. Moreover, RoPE naturally
incorporates relative position information through
rotation matrix product instead of altering terms
in the expanded formulation of additive position
encoding when applied with self-attention.

6 Incorporation of Switching Point
Information in CMLM

Positional encodings help the transformer learn de-
pendencies between tokens at different positions
of the input sequence. To enhance the positional
encodings for code-mixed text, we modify the rota-
tory positional encoding to incorporate switching
point information.



switching point

inverting direction
(using transpose)

Figure 2: Visual intuition for our rotary approach with
switching point incorporation. We consider a linearly
polarized electromagnetic wave and show the change in
rotation whenever a switching point occurs.
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Figure 3: This diagram depicts the higher level under-
standing of the proposed positional embeddings.

6.1 Switching Point-based Rotary Matrix

Switching points are a potential bottleneck for code-
mixing language modeling and to address this prob-
lem, we incorporate switching point based rotary
positional encoding in our architecture. The intu-
ition behind RoPE is electromagnetic waves. The
embeddings are represented as complex numbers
and the positions are represented as pure rotations
that are applied to them. Keeping this in mind, we
address the problem of switching points (SP) with
the help of angles that participate in RoPE. When-
ever we encounter a switching point, we change the

rotation, i.e., we change the direction of these an-
gles. To implement the rotation change, we define a
switching point matrix. The switching point matrix
helps our model identify and learn the patterns of
code mixing in the corpus. Our matrix is defined
with 1s and -1s. When there is a language shift (L1
— L2) or (L2 — L1), i.e., when we encounter a
switching point, we annotate the column value as
-1 and for the successive words in L2, we annotate
column values as 1 until another switching point
occurs.

SPM e R%,,
ifi == SP:
SPM,; = -1
else:
SPM; =1

(11

The visual intuition of our approach is shown in
Figure 2. The switching point matrix (SPM) with
Is and -1s is defined in such a way that it trans-
poses the rotary matrix, intuitively inverting the
rotation at every switching point encounter. There-
fore, the final matrix, i.e., switching point rotary
matrix (SPRM) is a result of element-wise multipli-
cation of the defined switching point matrix (SPM)
with rotary matrix (RM):

SPRM = SPM x RM (12)

egf oy — 4 (sPRM wa (.»z:l))T (sPrRME, W (@) (13)
6.2 Bigram and Switching Point-based Rotary
Positional Encoding (BSPRoPE)

Since the language changes at the SPs, we get two
consecutive tokens with different language hence
we also incorporate the bigram level information in
our model. In this positional encoding method, we
get positional information among the bigrams in an
utterance. We use the technique of switching point
based rotary positional encoding at a word-to-word
level and at bigram level as depicted in Figures 3,4
and mathematically expressed as Equation 16

efrisrioeny — 1 (SPRME, W (wl))T (sPRME WK1 () (14)
eporretery — 4 (SPRMG WA (x,))T (sprRME Wt (@) (15)

prediction —ax eZnigmmSPRotary +bx egz'g'rmnSPRotaTy (16)

where a and b are learnable coefficients. x; and
x; in equation 14 refer to unigram inputs whereas
as in equation 15 they refer to bigram inputs.
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Figure 4: CONFLATOR architecture within the encoder layer. It depicts how the unigrams and bigrams of the input
statement are passed as inputs to our encoder decoder architecture. In this framework, we generate a rotary matrix
and a switching point matrix. By performing element-wise multiplication of the aforementioned matrices, we get
our proposed novel switching point based rotary matrix. We represent the embeddings as complex numbers and their
positions as pure rotations that we apply to them with the help of our switching point based rotary matrix. Then,
upon getting the output layers for unigram and bigram statements separately. We introduce weighted coefficients a
and b for unigram outputs and bigram outputs, respectively. We get our final output layer by adding these weighted

unigram and bigram outputs.
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Figure 5: CONFLATOR is able to differentiate words coming from different positions and give high attention when
a switching point occurs (at baggy and kidary;) while the other models cannot do so.

6.3 CONFLATOR Architecture

The local dependencies for Unigram and Bigram
(Word2Vec trained from scratch) along with un-
igram and bigram SPRM are fed to a 6-headed
Multi-Head attention (MHA) in each encoder layer
of the transformer separately, resulting in 2 atten-
tion matrices. We introduce 2 learnable parameters
« and g that are used as weight coefficient for the
unigram and bigram matrix respectively. The final
matrix is passed to the decoder layer. The embed-
ding and architecture in depicted in figs. 3 and 4.

7 Experiments and Results

For our base models, each training step takes about
0.5 seconds. We train the base models for a total of
100,000 steps or 12 hours. For the big models like
bigram and SPM-based models, the step time is 1.0
seconds. The big models were trained for 250,000
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CMI Range Transformer GPT-2 BERT Conflator
0-10 1018.54 823.71  666.48 492.96
11-20 1210.11 967.01  782.19 501.44
21-30 1401.37 133472 1007.34  544.71
31-40 2688.00 233473 1007.34  800.62
41-50 4421.22 3905.87 4337.02  1095.12

Average 2147.85 1873.20 1701.49 578

Table 2: Perplexity comparison between different mod-
els based on ranges of CMI. Lower Perplexity is better.

steps (2 days). We use ADAM optimizer with 31 =
0.9, B2 =0.98 and € = 1e™. We use the method of
varying the learning rate over the course of training
from Vaswani et al. (2017b).

We use two types of regularization during our
training process: We apply dropout to the output
of each encoder and decoder layer followed by
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Table 3: Results of various position sensitive experiments for Sentiment Analysis on CM text. nHA refers to

n-headed attention.

Models

Positional representation

Bigram BLEU

Sin/Cos Index Dynamic SPI Relative RM SPRM

3HA + Sinusoidal PE v v X X X X X X 17.2
3HA + Dynamic PE X v v X X X X X 17.9
3HA + Relative PE X X X X v X X X 18.4
3HA + Rotary PE v v X X X v X X 249
SOTA (IITH-mrinaldhar) X X v v v X X X 28.4

Unigram SP Relative (USPR) X X X v 4 X X X 9.8

Bigram SP Relative (BSPR) X X v 4 v X X v 7.6
Unigram SPRoPE v v X 4 X v v X 29.1
Conflator (BSPRoPE) v v X v X v v v 25.16
Conflator with StableLM v v X 4 X v v v 29.06
Conflator with Alpaca v v X v X v v v 29.89
Conflator with LLaMA v v X v X v v v 30.15

Table 4: Results of position sensitive experiments for Machine Translation on CM text. Higher BLEU is better.

Normalization. In addition, we apply dropout and
normalization to the sums of the word embeddings
and the positional encodings in both the encoder
and decoder layers. We use a rate of Pg;op = 0.2.

Intrinsic Evaluation: The perplexity scores
of baseline language models in comparison with
CONFLATOR on code-mixed language modeling
task are shown in 2. We see that our model per-
forms much better than other models.

Extrinsic Evaluation: We evaluate our model
on two downstream tasks: (i) sentiment analysis,
and (ii) machine translation. For sentiment analysis,
(Table. 3) we use the data provided by Patwa et al.
(2020a). CONFLATOR achieves 76.23% F1 score
and outperforms the SOTA (Ali et al., 2022). The
main reason for this is learning SP by aggregating
with the help of rotary positional encoding with a
variable length MHA framework. For the machine
translation (Table 4), we use the data provided by
(Dhar et al., 2018). We achieve 29.1 bleu score
and outperform the SOTA (Dhar et al., 2018) using
the Unigram SPRoPE model which is able to learn
the patterns of language mixing with the help of
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switching point based rotary positional encoding.
8 Conclusion & Takeaways

In this work, we report experiments on Hinglish
sentiment analysis and Machine translation prob-
lems through the lens of language modeling. Our
contribution could be seen as following:

(i) We introduce the idea of switching point based
rotary positional encoding. Whenever a switch-
ing point is encountered, we incorporate rotation
change to learn the patterns of language mixing.
(i1) We introduce CONFLATOR, a neural lan-
guage modeling approach for code-mixed lan-
guages. CONFLATOR tries to learn better represen-
tations by means of switching point-based rotary
positional encoding, initially at unigram level and
then at bigram level.

(iii) We empirically prove that CONFLATOR is
learning the patterns of code-mixing which other
models with different positional encodings prove
unsuccessful, as shown in Figure 5.

@iv) It is also noteworthy that CONFLATOR
achieves comparable to SOTA results even without
any pre-trained heavy language model.



9 Limitations

Although our bigram model achieves SOTA on sen-
timent analysis using unigram, it is slightly behind
the bigram model when it comes to machine trans-
lation, where using bigram at the decoder level
resulted in poor performance. Despite conducting
extensive experiments, there lacks a detailed expla-
nation on why the bigram-based approach for MT
fails. Future experiments will focus on exploring
or understanding the issue of bigrams for MT and
coming up with a solution for the same.
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Abstract

Code-Switching (CS) multilingual Automatic
Speech Recognition (ASR) models can tran-
scribe speech containing two or more alter-
nating languages during a conversation. This
paper proposes (1) a new method for creat-
ing code-switching ASR datasets from purely
monolingual data sources, and (2) a novel Con-
catenated Tokenizer that enables ASR models
to generate language ID for each emitted text
token while reusing existing monolingual tok-
enizers. The efficacy of these approaches for
building CS ASR models is demonstrated for
two language pairs, English-Hindi and English-
Spanish, where we achieve new state-of-the-art
results on the Miami Bangor CS evaluation
corpus. In addition to competitive ASR perfor-
mance, the proposed Concatenated Tokenizer
models are highly effective for spoken language
identification, achieving 98%-+ accuracy on the
out-of-distribution FLEURS dataset.

1 Introduction

Automatic Speech Recognition (ASR) systems are
moving from specialized monolingual models to
ASR architectures capable of handling multiple lan-
guages simultaneously (Weng et al., 1997; Waibel
et al., 2000; Kannan et al., 2019; Li et al., 2022;
Pratap et al., 2023). Code-Switching (CS) is a
special category of multilingual speech in which
two or more languages or varieties of languages
are used in the same utterance. It can further be
divided into two categories: inter-sentential code-
switching where the switching between languages
happens predominantly at the sentence boundaries
and intra-sentential code-switching, which hap-
pens within the sentence (Myers-Scotton, 1989).
Most of the work in code-switching ASR is de-
pendent on the availability of a good quality code-
switching speech corpus (Sitaram et al., 2019). One
of the questions that we explore in this paper is:
how to better utilize the readily available mono-
lingual speech corpora and train CS ASR systems

74

that can perform well in real-world code switching
scenarios.

Text post-processing after ASR, e.g. punctua-
tion and capitalization (Guerreiro et al., 2021) and
inverse text normalization (Sunkara et al., 2021),
is another important problem for multilingual and
CS speech systems. Such post-processing is harder
than the monolingual scenario as it requires accu-
rate language identification in addition to transcript
generation. Traditionally, separate Language Iden-
tification (LID) and ASR models have been trained
for the task, usually with a common acoustic en-
coder. Li et al. (Li et al., 2019) was one of the first
few works to propose an end-to-end architecture
for intra-sentential CS ASR. They trained two sep-
arate monolingual ASR systems and a frame-level
LID model. The posteriors of ASR models were
adjusted with the LID scores and greedy decoding
was used without any language model rescoring. In
(Ali et al., 2021), the authors proposed to use multi-
graph weighted finite state transducers, which was
shown to be more effective than Transformer-based
systems for the intra-sentential CS. Recent works
(Seki et al., 2019), (Radford et al., 2022) approach
this problem differently by introducing special LID
symbols such as [EN] [ES], that are added to the
vocabulary for language identification. These sym-
bols are predicted either at the start of the utter-
ance to identify which language the decoded text
belongs to (Radford et al., 2022), or during the ut-
terance to mark spans of decoded tokens belonging
to each language (Seki et al., 2019).

In this paper, we propose a streamlined tech-
nique for learning token level language ID, which
we term Concatenated Tokenizer. Unlike previous
approaches of "aggregating" tokenizers that take
the union of the per-language tokenizer vocabular-
ies (Li et al., 2021) or create a shared sub-word
token set across languages (Pratap et al., 2020a), in
the concatenated tokenizer method we reuse mono-
lingual tokenizers and map them to mutually ex-
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clusive label spaces for each language. This helps
provide explicit language information to the ASR
model while training and leads to inexpensive pre-
diction of token level LID at decoding time.

The main contributions of the paper are as fol-
lows:

1. A scalable and extensible synthetic code-
switching ASR data generation pipeline that
allows us to generate a corpus of any size,
online (e.g. during training) or offline, from
strictly monolingual data sources.

2. The Concatenated Tokenizer method which
can effectively utilize pre-existing monolin-
gual tokenizers and provide token level LID
information while learning multilingual and

CS ASR models.

3. We demonstrate CS speech recognition capa-
bilities of the proposed unified ASR model
on real world data for two language pairs and
spoken language identification capabilities on
the out of distribution FLEURS evaluation
dataset.

2 Multilingual and Code-Switching ASR

Modern Natural Language Processing (NLP) and
ASR models use tokenizers to represent text (Kudo
and Richardson, 2018). The traditional approach
requires that a new tokenizer is learned for each lan-
guage and domain. In ASR, this tokenizer is also
used to reduce the target sequence length to sat-
isfy CTC requirements under aggressive downsam-
pling with respect to original audio length (Graves
et al., 2006). In this section, we discuss the pro-
posed concatenated tokenizer and the synthetic
code-switching data generation pipeline.

2.1 Concatenated Tokenizers

When training multilingual ASR models, mono-
lingual training sets typically have significantly
different characteristics (e.g. total size, quality,
noise levels, etc.), requiring experimentation of
combining them with different ratios for an opti-
mal outcome. Training a different tokenizer on the
combined mixture of datasets for each experiment
becomes a logistical challenge, while the resulting
model must always use the exact same tokenizer
with which they it was trained. Synthetic code-
switching training datasets present an additional
challenge since the tokenizer learns the purely syn-
thetic co-occurrence of adjacent tokens from dif-
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Figure 1: Aggregated vs Concatenated (proposed) to-
kenization approaches for a bilingual English-Spanish
example. Spanish text and tokenizer is represented in
red, English text and tokenizer in blue.

ferent languages, which is unlikely to occur in real
code-switching data. Finally, when training a sin-
gle tokenizer on multilingual data, we must disre-
gard the LID information for each token and need
to rely on an external technique if retention of LID
is desirable.

We propose the concatenated tokenizer tech-
nique to mitigate the above issues. Fig. 1 illustrates
this approach when training a bilingual English-
Spanish model with the vocabulary size of 2K. In
the traditional approach, text transcripts are mixed
in some proportion and a tokenizer is trained on the
joint text corpus. LID information is lost and would
need to be re-supplied if desired. For a CS use case,
training a tokenizer on a synthetic code-switching
dataset directly results in it learning arbitrary tran-
sitions between language samples, and is likely to
be avoided.

In the concatenated tokenizer method, we train
English and Spanish tokenizers with a 1K vocab-
ulary size each on the corresponding monolingual
datasets separately. We allocate the range of IDs
from O through 1023 to English and 1024 through
2047 to Spanish. To achieve that, after tokenization,
we shift each Spanish token by 1024 to ensure that
it lands in its allocated range. The concatenated
tokenizer has, therefore, also 2K tokens. During
training, we use the English tokenizer (shown in
blue) to tokenize each English sample segment, and
the Spanish tokenizer (red) to tokenize each Span-
ish segment. At inference time, the model predicts
a sequence of token ids. If the token ID is in the
range from 0 to 1023, we know that it is an English
token, and we use the English tokenizer to convert
it to text. Similarly, tokens in the range from 1024



to 2047 are Spanish and are sent to the Spanish
tokenizer for detokenization. Language ID infor-
mation is embedded in the ID of each token and can
be used in downstream processing of the resulting
text segments. We name our method concatenated
tokenizer because such tokenizer effectively con-
tains more than one separate monolingual tokenizer
with its preserved non-overlapping token space. In
the above example, we chose to allocate the same
number of tokens to English and Spanish, but that
certainly does not need to be the case when dataset
sizes are very different.

Note that the concatenated tokenizer method dif-
fers significantly from the standard technique of
training an aggregated tokenizer on a mixture of
transcripts and then re-injecting the language in-
formation into the tokenized sequences via spe-
cial LID tokens (Seki et al., 2019), (Radford et al.,
2022). In the latter approach, the special LID to-
kens indicate only the beginning and end of each
monolingual span of text.

The design of the concatenated tokenizer allows
us to easily suppress specific languages from in-
ference when it is known that the audio does not
contain them. We simply do not need to compute
probabilities for token IDs in the ranges correspond-
ing to the suppressed languages, simultaneously
improving performance. Fig. 2 illustrates how this
works with the CTC decoder. Conversely, when
adding language(s) to the decoder, we can trans-
fer existing token weights via weight surgery, ini-
tializing weights for the incremental language(s)
from scratch. The same idea works with the Trans-
ducer decoder as well. This allows for a better
decoder initialization while training multilingual
model from monolingual checkpoints, while im-
proving convergence time.

2.2 Synthetic data generation for Code
Switching ASR

Synthetic code-switching data generation was an
essential step in our work. It enabled us to effec-
tively use the monolingual training data available at
our disposal to generate a diverse set of CS speech
training samples which then was utilized by our
model for training. We had to be careful in the data
generation strategy to ensure that we didn’t intro-
duce a bias of any kind that would make model
training easier but would lead to poor performance
on real world code-switching data. For example,
if we simply stitched different speech samples to-
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Figure 2: Diagram illustrating the benefits of concate-
nated tokenizers for easy addition/suppression of lan-
guages in multilingual ASR models. For simplicity, we
show a single output step of a bilingual ASR model with
a CTC decoder consisting of one feed-forward fully con-
nected layer (FC) with weights W that maps encoder
representation (dimension de,,.) to token logits (dimen-
sion dyocqb, blank symbol omitted). The concatenated
tokenizer has two languages marked by red and blue.
Due to the non-overlapping token mappings for different
languages in the concatenated tokenizer, the FC weights
can easily be separated and modified independently.

gether it would cause inconsistencies and the differ-
ent amplitudes and background conditions can give
the model easy clues for learning this generated
data. Such inconsistencies would not be found in
real life examples, and hence the model would not
be able to generalize its performance. Furthermore,
we didn’t want to bias the generated samples to
start from or end with a particular language, e.g.
English.

We used the algorithm detailed in Fig. 3 for gen-
erating synthetic CS speech data for two or more
languages from their monolingual speech corpus.
Each language was assigned a sampling frequency.
For each synthetic CS sample we define a max and
min duration, which are controllable parameters.
This allows us to generate samples with a specific
duration distribution and also ensures that the sam-
ples are of similar lengths which leads to lesser
padding during batching, leading to more effec-
tive utilization of the data. To have a control over
leading, trailing silences in the synthetic sample
as well as the gap between concatenated samples,
we introduce three parameters: duration beginning
silence, duration ending silence, duration joining
silence. In the current implementation we use si-
lence, but this can easily be extended to adding
noise with a desired SNR. The next step in the al-
gorithm is removal of leading and trailing silences.
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Remove leading and trailing silences from sample,
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’ Append to synthetic sample ‘
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Figure 3: Flowchart of the synthetic CS sample gen-
eration process for two languages. The controllable
hyperparameters have been underlined. The process can
be used for both online synthetic data generation in the
dataloader or offline creation of synthetic speech corpus
as discussed in Section 2.2.

This ensures that we extract only the speech por-
tion from the individual utterances and discard any
silences in the beginning or end of the utterance.
This allows us to have complete control over the
leading, joining, and trailing silences in the gener-
ated sample using our tunable duration parameters
explained earlier. In our current implementation
we use an amplitude based threshold for removing
silence, but this would be extended to voice activity
detection (VAD) in the future iterations. Another
important step in our algorithm is audio amplitude
normalization and scaling. We perform peak ampli-
tude normalization for each sample before concate-
nation and multiply the normalized sample with
the controllable scaling parameter to ensure that
all samples are in a similar amplitude range before
joining, removing the amplitude bias from individ-
ual datasets that provide the monolingual samples.
It should be noted that a similar synthetic speech
data generation idea was proposed in (Seki et al.,
2018), but our approach is more customizable and
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general due to the larger number of controllable
parameters. We found this technique to be use-
ful in generating synthetic samples that are longer
and similar in duration, which accelerates training.
Synthetic CS data generation approaches have also
been explored in the text domain, for training mul-
tilingual language models (Winata et al., 2019) and
translation models (Gupta et al., 2020; Tarunesh
et al., 2021).

In our implementation, we provide both an of-
fline and online version of the synthetic data gener-
ation pipeline. In the offline version, the generated
synthetic corpus using the proposed algorithm is
stored explicitly and can be used to train the ASR
model. In the online version, the synthetic sample
generation process happens in the dataloader, and
is used to feed samples to ASR model for train-
ing. The online data generation approach provides
the advantage of not having to save the generated
synthetic corpus, and hence can be used to rapidly
experiment with different language ratios and other
parameter permutations, generating massive syn-
thetic training CS ASR corpora with no disk space
overhead. The code for the data generation process
is open-sourced and available in NeMo toolkit'.

2.3 Spoken Language Identification

Spoken language identification refers to the task
of identifying the language of a given utterance
directly from audio (Li et al., 2006). This task is
critical for CS ASR because it enables us to reuse
monolingual models to re-score CS decoded output
if we can predict which language was spoken when.
The proposed concatenated tokenizers fit in here
perfectly as they also contain the information of the
language that each predicted token belongs to. To
calculate the efficacy of concatenated tokenizer for
utterance level spoken language identification, we
take the maximum over the predicted language for
each token in the sentence. To ensure a fair com-
parison, we trained our models with the datasets
described in Section 3.1 but evaluated spoken lan-
guage identification performance on the blind test
sets of the FLEURS [26] dataset.

3 Experimental Setup

3.1 Datasets

We used LibriSpeech (Panayotov et al., 2015)(~
960 hours) as the English corpus. For Spanish,

"https://github.com/NVIDIA/NeMo/scripts/
speech_recognition/code_switching
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https://github.com/NVIDIA/NeMo/scripts/speech_recognition/code_switching

we compiled a dataset (~ 1300 hrs after basic
cleaning) consisting of Mozilla Common Voice
7.0 (Ardila et al., 2020), Multilingual LibriSpeech
(Pratap et al., 2020b), Voxpopuli (et al, 2021) and
Fisher (Graff et al., 2010) (all Spanish). For Hindi
training we used the ULCA dataset (Dhuriya et al.,
2022) (~ 2,250 hrs after basic cleaning).

For English-Spanish (en-es) and English-Hindi
(en-hi) synthetic CS data generation we follow the
approach outlined in Section 2.2 to generate a 10K
hour training corpus with the following parameters:
max sample duration 19 sec, min sample duration
17 sec, silence duration 0.02 sec, ending silence
duration 0.02 sec, joining silence duration 0.1 sec.
Using the same parameters, we generated 10 hour
synthetic bilingual CS test sets using monolingual
test sets for both language pairs. Language sam-
pling probabilities were a parameter; we experi-
mented with multiple ratios in the course of our
experiments.

We chose the Miami Bangor corpus (Deuchar
et al., 2014), which consists of full conversations,
as the Spanish out-of-distribution CS test set. Indi-
vidual interactions were extracted using provided
timestamps. All utterances less than 2 seconds
were removed. The final evaluation set has 16
hours with 16620 utterances and 35 unique charac-
ters. As the Hindi CS test set, we use the MUCS
2021 corpus (Diwan et al., 2021). We performed
basic cleaning, leading to a 5 hour set with 3136
samples and 89 unique characters.

3.2 Models and Experiments

We used the Conformer-RNNT Large model (Gu-
lati et al., 2020) (~ 120 M parameters, no exter-
nal LM) and trained it for 200 epochs using the
AdamW optimizer and Noam scheduler with a 20k
steps warmup, 0.0015 peak learning rate and 106
minimum learning rate. We performed the follow-
ing experiments:

* Monolingual: We trained monolingual En-
glish, Spanish, and Hindi ASR models (see
Section 3.1). For each language, we trained an
SPE unigram tokenizer (Sennrich et al., 2016)
with a vocabulary size of 1024.

Bilingual: We trained bilingual English-
Spanish and English-Hindi models. We mixed
the monolingual datasets in different ratios
with the general idea of over-representing the
smaller dataset. We trained two classes of

78

models, one with the concatenated tokenizer
(Section 2.1) and another with a regular (ag-
gregate) tokenizer trained on the combined
text corpus in the 1:1 ratio. We further per-
formed an initialization study for both lan-
guage pairs by training from scratch or start-
ing from either monolingual checkpoint.

Code-Switching (CS): We trained CS
English-Spanish and English-Hindi models
using the synthetic code-switching data high-
lighted in Section 3.1. We experimented with
training from scratch and also the correspond-
ing bilingual (non-CS) model. Further, we
investigated using both concatenated and ag-
gregate tokenizers in all the scenarios.

Language Identification: We used the
English-Spanish and English-Hindi concate-
nated tokenizer trained during the bilin-
gual CS experiments to perform utter-
ance level language identification on the
English (en_us_test, 647 samples), Span-
ish (es_419_test, 908 samples), and Hindi
(hi_in_test, 418 samples) speech samples
from the FLEURS set (Conneau et al., 2023).

4 Results and Discussion

In this section, we present results for the exper-
iments outlined in Section 3.2. Table la shows
performance of monolingual, bilingual and CS
English-Spanish models with different tokenizers
on the English Librispeech and Spanish Fisher test
sets. We used dataset mix ratio (English to Span-
ish) of 2:1 for training the bilingual model in order
to balance the training set. The Fisher test set was
chosen to represent model performance on Spanish
because it was the hardest (highest WER) out of
the four Spanish datasets mentioned in Section 3.1.
Similarly, Table 1b presents the results for the dif-
ferent models for English-Hindi language pair. We
used dataset mix ratio (English to Hindi) of 2:1 as
well for the bilingual model, again aiming to bal-
ance the training set. Results were averaged across
three runs and averaged (Liu et al., 2018) over the
five best model checkpoints.

The results for English-Spanish CS experiments
are highlighted in Table 2a and for English-Hindi
in Table 2b. The numbers for monolingual models
are not reported on the code-switching evaluation
datasets as they are relatively poor, as expected.



Table 1: Monolingual evaluation set results for the English-Spanish and English-Hindi models. We present WER (%)
(lower is better) for multilingual (ml) and code-switched (cs) models trained with concatenated (con) and aggregate
(agg) tokenizers vs monolingual baselines. We observe that the use of the concatenated tokenizer does not hurt
model performance while adding the ability to predict LID for each token.

(a) English-Spanish results on the monolingual English

Librispeech test-other and Spanish Fisher test sets.

(b) English-Hindi results on the monolingual English Lib-
rispeech test-other and Hindi ULCA eval sets.

English Spanish English Hindi
Model Tokenizer LS test-other Fisher-test Model Tokenizer LS test-other ULCA
en mono 5.29 98.37 en mono 5.29 100
es mono 85.68 16.14 hi mono 100 10.53
ml agg 5.00 16.37 ml agg 5.00 10.78
ml con 5.14 16.72 ml con 5.14 10.73
cs agg 5.38 16.35 cs agg 5.42 11.35
cs con 5.28 16.42 cs con 5.29 11.64

Table 2: Performance comparison of the code-switched (cs) English-Spanish and English-Hindi models trained with
concatenated (con) and aggregate (agg) tokenizers on both synthetic and real world blind CS evaluation datasets.
The performance of the multilingual (ml) models has also been reported as a benchmark. We observe that cs models
significantly outperform ml models, highlighting the advantage of using the proposed synthetic CS data for training.

(a) Code-switched English-Spanish models: WER(%) on
synthetic and Miami-Bangor CS evaluation sets.

(b) Code-switched English-Hindi models: WER(%) on syn-
thetic and MUCS CS evaluation sets.

Model Tokenizer synth Miami Model Tokenizer synth MUCS

cs agg 5.51 50.0 cs agg 6.55 30.3
cs con 550 533 cs con 6.57  28.78
ml agg 16.52 58.78 ml agg 35770 62.18
ml con 24.08 63.54 ml con 53.01 100

When multilingual models are used to decode code-
switched speech, we observe that they tend to stick
with the language in which the utterance started and
are not able to switch between languages as they
occur within the utterance. This is evidenced by the
correspondingly high WERs in Tables 2a and 2b,
and is consistent with the fact that the models did
not encounter code-switched data during training.

tion experiments for all the three languages are
presented in Table 3. In the following, we dive
deeper into the results and discuss the findings.

4.1 Bilingual models, effect of model
initialization and tokenizers

From Tables 1a and 1b we observe that the bilin-
gual and CS models achieve comparable perfor-
mance to monolingual models on respective mono-
lingual evaluation sets. This was seen for both
the language pairs considered: English-Hindi and
English-Spanish. It is an interesting result as this
allows us to use a single bilingual code-switched
model instead of creating two separate monolin-
gual models for each language. Initializing training
from either monolingual checkpoint, while accel-
erating training, did not improve the final WER
for both language pairs considered. Using either
a concatenated or an aggregate tokenizer led to
similar performance. However, the concatenated
tokenizer provides additional benefits, such as lan-
guage identification and multilingual LM rescoring,
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To illustrate, here are sample transcripts from
one English-Spanish code-switched audio:
ML model output: con qué departamento puedo
dejar fitbax sobre mi experiencia de compra en la
tienda que estaba ubicada en one td threforme ave
CS model output: con qué departamento
puedo dejar feedbacks sobre mi experiencia de
compra en la tienda que estaba ubicada en
one two three fourth avenue
We can see that the ML model is not able to switch
from Spanish (majority language) to English (un-
derlined for easier visual comparison). On the other
hand, the output of the CS model is 100% accurate.

Finally, the results of the Language Identifica-




Table 3: Spoken language identification using English-
Spanish and English-Hindi concatenated tokenizers on
the FLEURS dataset.

Language  # of samples LID accuracy
English 647 98%
(en_us_test) (632/647)
Spanish 908 100%
(es_419_test) (908/908)
Hindi 418 99%
(hi_in_test) (414/418)

as discussed in the Section 4.3.

4.2 Code-Switching models, effect of model
initialization and tokenizers

Table 1a presents the performance of the English-
Spanish CS ASR models on monolingual test sets:
Librispeech and Fisher. Table 2a presents the cor-
responding results on the code-switched sets: syn-
thetic and the Miami Bangor corpus. Similarly,
for the English-Hindi code-switched ASR models,
Table 1b presents the performance on monolingual
test sets: Librispeech and ULCA, while Table 2b
summarizes the results on the code-switching test
sets: synthetic and MUCS. For both language pairs,
we observed that initializing the code-switched
model from the multilingual checkpoint leads to
better results and faster convergence as opposed to
initializing the model from scratch or from either
monolingual checkpoint. We also experimented
with different language dataset mix ratios and de-
termined that the best results are achieved when the
code-switched dataset is roughly balanced. This
may require oversampling of the smaller language.

In (Weller et al., 2022), the authors reported a
performance of 53% on the Miami Bangor corpus,
which shows that our code-switched models per-
form competitively with the state-of-the-art on real
world samples, while being trained purely from
synthetic code-switched data. Another important
observation is that the concatenated tokenizer per-
forms just as well as the aggregate tokenizer for the
CS models and therefore should be preferred given
the additional benefits that it provides. Concluding
the discussion, we now have a single model that
performs well on monolingual, bilingual, as well
as code-switched data.
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4.3 Concatenated Tokenizers and Language
identification

Table 3 presents utterance-level spoken language
identification performance of the English-Spanish
and English-Hindi models trained with the concate-
nated tokenizer on the test sets of the FLEURS
dataset. We observe that these models are very ac-
curate at predicting the language of the utterances
directly from speech samples. We find it to be sig-
nificant, since these samples are out of distribution
and were not seen by the model during training.

5 Conclusion

In this paper we investigate training of bilingual
and code-switching models using purely monolin-
gual datasets. We propose two novel techniques:
(1) areal-time and offline synthetic code-switching
data generation pipeline and (2) the concatenated
tokenizer method, which allows the model to pre-
dict language ID directly at the level of individ-
ual tokens. We use these two techniques to train
CS ASR models and find that they match monolin-
gual model performance on monolingual evaluation
benchmarks while performing significantly better
on code-switching data. We evaluate model perfor-
mance against synthetic CS test sets as well as real
world Engish-Spanish Miami Bangor and English-
Hindi MUCS corpora. In addition, we find that the
models display strong performance on LID detec-
tion, which we measure using the FLEURS dataset.
Performance of models trained with the novel con-
catenated tokenizer is similar to models trained
with the regular aggregate tokenizer, while offering
the additional benefit of LID detection. The results
suggest that these approaches could be extended
to additional languages without increasing model
architecture complexity. Further, the excellent LID
capabilities of concatenated tokenizer models can
enable us to use monolingual language models to
rescore and further improve code-switched model
predictions. All of this has implications for further
research. The code and model weights have been
released publicly in NeMo?.

Limitations

In this work we present techniques that enable the
development of code-switching speech recognition
models exclusively from monolingual data sources.
To validate the efficacy of the proposed work, we

2https: //github.com/NVIDIA/NeMo
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experimented with two language pairs: English-
Spanish (en-es) and English-Hindi (en-hi). We
selected en-es due to the prevalent bilingual nature
of English and Spanish, while en-hi was chosen as
Hindi and English possess distinct character sets,
thereby allowing us to assess the robustness of our
approach. However, we would need to perform
experiments with a more diverse set of language
pairs to validate if the methods work in general.
Furthermore, more experiments are warranted to
see if the concatenated tokenizer expands to more
than two languages used at a time. As the concate-
nated tokenizer assigns mutually exclusive token
spaces for each language, its size increases with the
inclusion of additional languages. This scalability
challenge may potentially impede the construction
of massive multilingual models. By addressing
these limitations through future research endeav-
ors, we can enhance the comprehensiveness and
applicability of our findings in the realm of code-
switching speech recognition.

Ethics Statement

We adhere to and endorse the principles outlined
in the ACL Ethics Policy. Our work on synthetic
code-switched ASR holds the potential to offer far-
reaching benefits across a spectrum of languages,
spanning from widely spoken to less common ones.
By alleviating the challenges associated with data
collection, our research contributes to the advance-
ment of a more diverse and equitable linguistic
landscape. Furthermore, our exploration of mul-
tilingual models not only streamlines the compu-
tational demands of training and deployment but
also fosters resource efficiency by consolidating
the utility of numerous monolingual models. Fi-
nally, we affirm our commitment to transparency
and openness by sharing all code and models used
in this study, which were exclusively trained on
publicly available datasets, and making them acces-
sible online.
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Abstract

While many speakers of low-resource lan-
guages regularly code-switch between their lan-
guages and other regional languages or English,
datasets of codeswitched speech are too small
to train bespoke acoustic models from scratch
or do language model rescoring. Here we pro-
pose finetuning self-supervised speech repre-
sentations such as wav2vec 2.0 XLSR to recog-
nize code-switched data. We find that finetun-
ing self-supervised multilingual representations
and augmenting them with n-gram language
models trained from transcripts reduces abso-
lute word error rates by up to 20% compared to
baselines of hybrid models trained from scratch
on code-switched data. Our findings suggest
that in circumstances with limited training data
finetuning self-supervised representations is a
better performing and viable solution.

1 Introduction

Over half of the world’s population uses at least two
languages regularly (Ansaldo et al., 2008). Despite
this common occurrence, automatic speech recog-
nition (ASR) models don’t work well with speech
that includes code-switching: when a speaker alter-
nates between two or more languages or varieties
within utterances (Myers-Scotton, 2017). For low-
resource languages, we encounter two issues when
attempting to address this problem: insufficient
data for end-to-end-training and insufficient data
for language modelling.

Recently, self-supervised pre-training of speech
such as wav2vec 2.0 (Baevski et al., 2020) have
proven to give very low error rates for English
ASR. Although very costly to pre-train, the English
models and cross-lingual (XLSR) representations
(Conneau et al., 2020) are available for finetuning
to efficiently make speech recognisers for many
languages.

In this work we ask: Does fine-tuning XLSR
improve recognition of code-switched data over
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traditional training on code-switched data? To
test this phenomenon, we look at four African
languages (isiZulu, isiXhosa, Sesotho, Setswana)
code-switched with English. We also explore three
questions about how to go about this fine-tuning
process. We first experiment with different types
of data to add to the codeswitched dataset in order
to improve ASR performance, asking 1. Should
we add monolingual data? Many other methods
incorporate language identification (language ID)
into models, so we ask: 2. Does it help to add
language identification in our pipeline (either ex-
plicitly or implictly)? . We test this by augmenting
utterances to implicitly identify the language and
use a multi-task learning setup to learn frame-level
language ID and ASR simultaneously. Finally, we
ask: 3. Does a simple n-gram language model
trained on the code-switched data improve perfor-
mance despite the tiny amount of data?. We use the
codeswitched corpus to train bigram and trigram
models which we use when decoding the models.

We find that finetuning multilingual pretrained
models, augmented with a simple trigram language
model, works well for recognizing code-switched
data in low-resource languages, significantly bet-
ter than prior methods of training bespoke models
(CNN-TDNN-F acoustic model + LSTM language
model) from scratch. We find that neither language
ID nor adding monolingual data adds further perfor-
mance gains and perhaps surprisingly, that adding
monolingual data worsened model performance.
Our findings suggest that in circumstances with
limited training data, finetuning self-supervised
representations are likely a better performing and
viable solution.

2 Related Work

In speech processing, work on code-switching can
be divided into code-switching detection (Ralla-
bandi et al., 2018; Yilmaz et al., 2016; Wang
et al., 2019) using language identification (Choud-
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hury et al., 2017) and end-to-end recognition (In-
dra Winata et al., 2018). In this work, we look at
both methods via finetuning of self-supervised rep-
resentations, namely wav2vec 2.0 (Baevski et al.,
2020). Language identification methods either
identify the language before doing the ASR on
the speech or have language ID trained in tandem
with the acoustic model of representations. End-to-
end recognition splits into two main approaches: a
multilingual modelling with cross lingual represen-
tations (Li et al., 2019a; Luo et al., 2018; Zhang
et al., 2022) and parallel modelling generating mul-
tiple transcriptions which are interpolated to re-
sult in one transcription with the highest likelihood
(Ahmed and Tan, 2012; Lyu et al., 2006).

For low-resource languages, we encounter two
issues when attempting to apply these methods:
a lack of sufficient data for end-to-end training
and a lack of sufficient data for neural language
modelling in the low-resource language or the
codeswitched language pair. The absence of a lan-
guage model for the codeswitched pair leads to
prior less computationally expensive methods to
fail and the lack of sufficient data for the model to
generalise, resulting in poor performance of mod-
els.

In our work, we focus on leveraging a pre-
trained self-supervised acoustic model, wav2vec
2.0 (Baevski et al., 2020) to finetune an existing
multilingual acoustic model for our chosen lan-
guage pairs. We incorporate language identifica-
tion to see if this additional signal can improve
performance given the small datasets.

3 Background
3.1 Languages

The languages used in this work are four South
African languages and English. The South African
languages are all Southern Bantu (SB) languages,
in the Nguni and Sotho-Tswana branches. The
English used in this work is English spoken with a
South African accent.

3.2 Data

We use the South African corpus of multilingual
code-switched soap opera speech (Niesler et al.,
2018). It is a corpus of speech collected from 626
South African soap opera episodes, with utterances
from four South African languages: isiZulu, isiX-
hosa, Sesotho and Setswana codeswitched with
English.
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Language N(Or;]islll)ieoarif;fs Language Family
isiXhosa 11.6 SB: Nguni
isiZulu 8.2 SB: Nguni
Sesotho 4.0 SB: Sotho-Tswana
Tswana 3.8 SB: Sotho-Tswana
English 380 IE: Western Germanic

Table 1: An overview of the languages used in this
work. The South African languages are in the Nguni
and Sotho-Tswana branches of the Southern Bantu (SB)
language family and English is in the Western Germanic
branch of the Indo-European (IE) language family.

For additional monolingual data in the languages,
we use the isiZulu, isiXhosa, Sesotho, Setswana
and English portions of the NCHLT Speech Corpus
(Barnard et al., 2014) to add as monoingual supple-
mentary finetuning data. We use the NCHLT-clean
partition of the dataset. The datasets used in this
work are summarised in Table 2.

Lang(s) | No. utts | Duration (hrs)
Soap Eng-Zul 9347 5.45
Opera Eng-Xho | 7941 3.14
Corpus Eng-Sot 6303 2.86
Eng-Tsn 6563 2.83
isiZulu 44673 56.2
isiXhosa | 46651 56.3
gng;l];sT Sesotho 57539 56.3
Setswana | 58414 56.3
English 77412 56.4

Table 2: Summary of the data used in experiments from
both the South African corpus of multilingual code-
switched soap opera speech (Soap Opera Corpus) and
NCHLT-clean Speech Corpus (NCHLT Corpus).

3.3 Baseline Model

We compare our models to those trained from
scratch on this data by Biswas et al. (2022). Their
best performing acoustic model is a Kaldi-based
(Povey et al., 2011) CNN-TDNN-F trained on
all 5 languages and finetuned for each language
pair. For language model decoding, the authors
used a bidirectional LSTM architecture with a 256-
dimensional embedding and 256-dimensional ma-
trices. The LSTMs are trained on language pairs,
resulting in four separate language models. We
compare our methods to the best performing model
for each language pair in this work.

4 Which additional data is helpful?

Given the low-resource natural of codeswitched
speech datasets, we ask which type of data can best



supplement the codeswitched dataset to improve
downstream results. To test this, we “pre-finetune”
the model with additional data other than the Soap
Opera Corpus data for each language pair, before
finetuning it on the codeswitched language pair.

To test whether in-domain data is most useful,
we pre-finetune the model with Soap Opera Corpus
data from all four language pairs for 42000 steps.
This model is then further finetuned with the Soap
Opera Corpus data for each individual language
pair alone for 12000 steps, resulting in the +all 4
pairs models.

To test whether adding monolingual data im-
proves performance, we use NCHLT monolingual
data from each language in a language pair, plus the
data from the corresponding language pair in the
Soap Opera Corpus data to pre-finetune models for
42000 steps. We then further finetune these models
with Soap Opera Corpus data from that specific
language pair, resulting in +monolingual models.

To compare the proposed methods with finetun-
ing with solely Soap Opera Corpus data in the
desired language pair, we finetune the model for
15000 steps with the Soap Opera Corpus data for
that language pair, resulting in the One pair mod-
els.

Table 3 shows the results for these experiments
with greedy decoding.

Lang pair Model type WER
One pair 72.2

xho-eng +all 4 pairs 59.0
+monolingual  77.5

One pair 60.8

zul-eng +all 4 pairs 50.8
+monolingual 67.6

One pair 59.4

sot-eng +all 4 pairs 50.2
+monolingual  63.3

One pair 514

tsn-eng +all 4 pairs 42.7
+monolingual  60.4

Table 3: Effects of additional data used in “pre-

finetuning” on ASR performance. WER is word error
rate of models. +all 4 lang pairs is “pre-finetuned” with
in-domain codeswitched data from the Soap Opera Cor-
pus and +monolingual is “pre-finetuned” with monolin-
gual data in each language in the lamguage pair along
with the Soap Opera Corpus data for that specific pair.

We see that across languages, using
codeswitched-data from all four languages
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(i.e., “pre-finetuning” with Soap Opera Corpus
data from all 4 languages) gives the best results
on each South African language pair. The fact
that adding data from three different languages
helps on the 4th language is somewhat surprising,
and points both to the importance of the similarity
of the 4 languages, and to the fact that all data
are from a single Soap Opera genre. By contrast,
the genre difference from the monolingual read
speech data is enough to severely hurt performance.
In summary, when finetuning multilingual,
self-supervised ASR models on low-resource
codeswitched data, we find that matching domain
and genre properties (such as the presence of
codeswitching) is more important than adding
monolingual data from the same language if the
genre is a mismatch.

5 Does adding implicit or explicit
language id information help?

Prior work has shown that for codeswitched ASR,
simultaneously learning the language identification
(language ID) and ASR improved the ASR perfor-
mance (Luo et al., 2018; Li et al., 2019b; Zeng
et al., 2019). Here we try to add language ID infor-
mation in two ways: by augmenting the data and
by training a classifier.

We experiment with augmenting the Soap Opera
Corpus utterances to encapsulate the bilingualism
in the utterances in lieu of explicit language labels
or timestamps. For each language pair, we use two
methods: language specific casing and language
specific tags. For language specific casing, we dou-
ble the vocabulary size by giving each language a
specific case, e.g., English in uppercase and isiZulu
in lowercase. We then finetune wav2vec 2.0 XLSR
300M with this data for 12000 steps resulting in
+casingID models for each language pair. For lan-
guage specific tags, we put opening and closing
tags on either side of the text in a specific language.
We then finetune wav2vec 2.0 XLSR 300M with
this data for 12000 steps resulting in +tagsID mod-
els for each language pair.

Casing: WHAT IF etholwa amaphoyisa
kugala

Tags: <eng> what if </eng> <zul> etholwa
amaphoyisa kuqala </zul>

Example 1: Demonstration of implicit addition



of language information to our models through
language-specific casing and language-specific
tags.

To train a language ID classifier on our data,
we add a frame-level classification head to the
wav2vec 2.0 XLSR encoder. We use the times-
tamps in the corpus to label frames with either
English or the South African language, and train a
model with cross-entropy loss. The results of the
language ID models are in Table 4.

Language Pair | Lang ID Accuracy
English-isiZulu 97%
English-isiXhosa 98%
English-Sesotho 96%
English-Setswana 97%

Table 4: Results from frame-level language identifica-
tion of the four South African languages and English

The frame-level language ID models work well,
so we try a multi-task setting in hopes of improv-
ing the model performance. We learn language ID
and ASR at the same time, summing the weighted
loss of the two tasks. The loss calculation is sum-
marised in Equation 1. As ASR is the priority,
we always keep the CTC weight higher than the
language ID weight. The resulting models are the
+multitaskID models, with each language pair fine-
tuned for 12 00 steps. The model architecture is
visualised in Figure 1 .

Losscrc+rip = AcrcLerc+(1—Xere)Liip

(D
I/ ‘\
| cEloss | '*) [cTCLoss |
Language ID head L CTC head J
A -
F/"' ™
Wav2vec2 encoder
\ /
AN S/

Figure 1: Our multi-task learning setup for combining
frame-level language ID with CTC by a weighted sum
of the losses.
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Lang pair Model type WER
One pair 72.2

xho-eng +tagsID 83.4
+casingID 87.9

+multitaskID  75.2

One pair 60.8

zul-eng +tagsID 80.8
+casinglD 80.9

+multitaskID  64.2

One pair 59.4

sot-eng +tagsID 76.3
+casingID 89.4

+multitaskID  65.6

One pair 51.4

sn-eng +tagsID 72.6
+casinglD 86.6

+multitaskID  64.5

Table 5: Effects of incorporating language ID on ASR
performance. WER is word error rate of models.
+tagsID uses language specific tags around utterances
in the dataset and +casingID uses one case per lan-
guage (e.g. uppercase for English and lowercase for
isiZulu). Models trained to learn both language ID and
ASR at the same time during finetuning are referred to
as +multitaskID models. The +multitaskID models
work better that +tagsID and +casingID. But none of
the language ID models work as well as the baseline of
not using Language ID at all (the “One pair" row).

The results of our experiments are in Table 5.
For the multi-task setup, the results with the best
language ID and CTC weights are reported.

The multi-task learning setup improves perfor-
mance downstream over language specific casing
and tags, but not over further fine-tuning, possibly
due to the model being hindered rather than helped
trying to learn two tasks at once.

Language specific casing does not improve
model performance, it actually worsens the models
compared to the baselines. This is likely due to the
unnecessary doubling of the vocabulary.

Language ID tags work better than the casing
across languages, however they do not outperform
finetuning without tags. This is likely due to the
fact that the tags do not correspond to any speech,
so the introduction of them creates initial confu-
sion.

In summary, adding language identification in-
formation does not improve ASR performance on
our code-switched dataset. This could be due due
to the lack of data available for training, the fact



that the character sets for our 5 languages are all
overlapping, or the fact that our experiments con-
sist of finetuning and not end-to-end pretraining.
Other work that uses multitask learning for code-
switched speech recognition (Li et al., 2019b; Zeng
et al., 2019; Song et al., 2022; Winata et al., 2018)
has shown success with a language pair with an
non-overlapping character set: English and Man-
darin Chinese. Those English/Chinese models are
also trained from scratch end-to-end, so it is possi-
ble that incorporation of language ID is more useful
during training and less useful at later stages such
as finetuning.

6 Does a language model improve
performance?

For our experiments thusfar, we do greedy decod-
ing from the wav2vec 2.0 model finetuned with a
CTC head. Could adding language model infor-
mation improve performance? The baseline sys-
tem with which we are comparing used an LSTM
language model, suggesting that this information
might be useful.

In this section, we study whether using the tran-
scripts from the Soap Opera Corpus as training data
for a small n-gram language model could improve
accuracy. We train separate bigram and trigram
(word) language models using KenLM (Heafield,
2011) from each of the 4 language-pair datasets,
and then use this language model in decoding.

The language model results for the best finetuned
models per language pair are presented in Table 6.

xho-eng zul-eng sot-eng tsn-eng
Baseline 48.7 433 48.5 435
Greedy 59.0 50.8 50.2 42.7
2-gram 26.7 25.5 30.6 28.9
3-gram 22.1 22.3 234 21.7

Table 6: Effect of language modelling on ASR perfor-
mance (measured in WER). The numbers in the baseline
raw are taken from (Biswas et al., 2022); their system
(which includes an LSTM language model) is compared
to wave2vec 2.0 finetuned on the Soap Opera Corpus
data, using greedy decoding (no LM) as well as bi-
gram, and trigram n-gram models trained with the Soap
Opera Corpus data. Without n-gram language models,
the baseline model outperforms finetuning wav2vec 2.0.
However, training an n-gram language model with the
ASR data improves over the baseline.

Although greedy decoding does not work better
than the baseline (CNN-TDNN-F acoustic model
plus a bidirectional LSTM model) since the base-
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line has a language model, we find that the fine-
tuned models equipped with a simple n-gram lan-
guage model consistently beat baseline models.
These results suggest that fine-tuning large pre-
trained models with only very simple language
model support can be a better solution in low-
resource scenarios.

7 Conclusion

In this work, we have finetuned wav2vec 2.0 XLSR
with codeswitched data of South African languages
and English. We found that this system augmented
with a simple bigram or trigram language model
beats baseline models trained with LSTM language
models. We also found that it helps to add data
from other languages, albeit very related languages
and in the exact the same genre/domain.

We were not able to improve the model with
various kinds of language ID information; these
methods may see more success for languages with
character sets that overlap less, or when there is
enough data to train an end-to-end model from
scratch.

This work demonstrates a method to train ASR
models on codeswitching data with relatively mini-
mal computation and a very basic n-gram language
model, suggesting a direction for addressing an im-
portant task in the low-resource settings that char-
acterise many of the world’s languages.
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