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Abstract

This paper focuses on Named Entity Recog-
nition for South-Slavic languages using pre-
trained multilingual neural network models.
We investigate whether the performance of the
models for a target language can be improved
by using data from closely related languages.
The results show that this is not the case for
the Slovene language, while for Croatian and
Serbian, the results are better in selected cross-
lingual settings. The most significant perfor-
mance improvement is observed for the Ser-
bian language, which has the smallest corpora,
showing the potential of the method in less-
resourced settings.

1 Introduction

Named Entity Recognition (NER) is one of the
cornerstones of the NLP tasks and is widely used in
many real-life applications, including in the news
industry. In our study, we focus on South-Slavic
languages and investigate whether the performance
of the models for a target language can be improved
by using data from closely related languages.

The research on NER has a long history. Already
in the 90s, the research was performed by Grish-
man and Sundheim (1996), followed by Sang and
De Meulder (2003); Segura-Bedmar et al. (2013),
to mention a few of the early works. Early litera-
ture focused on rule-based models (Yu et al., 2020),
which were based on a set of pre-defined patterns,
and hand-crafted rules (e.g., LTG, NetOwl). These
approaches were followed by the unsupervised
methods (Collins and Singer, 1999; Nadeau et al.,
2006), where no annotated data were required. The
advent of machine learning algorithms opened a
novel direction for NER tasks where feature engi-
neering gained more traction (Krishnan and Man-
ning, 2006; Mansouri et al., 2008; Liu et al., 2020).
With recent advances in neural networks, NER was
formulated as a sequence-labelling task and took
advantage of the neural systems, especially Trans-

formers, to minimize the effort of feature engi-
neering (Lample et al., 2016; Tran et al., 2021).
Ensemble systems that combine different machine
learning (Ekbal and Saha, 2011; Saha and Ekbal,
2013) and neural representation (Tran et al., 2021)
or architectures (Chiu and Nichols, 2016; Liu et al.,
2018) were also under consideration. Besides rich-
resourced languages (e.g., English), there is a shift
to several less-resourced ones, including the Slavic
family (see several organized shared tasks Pisko-
rski et al. (2017, 2019, 2021)).

The availability of multilingual large language
models and transfer learning strategies (Devlin
et al., 2019) have simplified the cross-lingual trans-
fer for a variety of NLP tasks. This opened new
opportunities in the development of multilingual
applications, especially in settings with limited re-
sources. Cross-lingual learning allows for overcom-
ing the problems with the lack of data, including
in zero- and few-shot learning, where no or very
small number of data for the target language is
available. Moreover, getting the performance of
a multilingual neural model as close as possible
to the performance of a monolingual one can be
very beneficial also in terms of simplicity and scal-
ability, as a single model can be used instead of
many monolingual ones. Last but not least, even
if data for the target language is available, adding
data in other languages can lead to an improvement
in results.

Multilingual models have been used in a large
number of tasks, including cross-lingual hate-
speech detection (Pelicon et al., 2021b), zero-shot
sentiment analysis (Pelicon et al., 2021a) as well
as for NER (Arkhipov et al., 2019; Suppa and
Jariabka, 2021). It was shown that the multilin-
gual BERT transformer model outperforms the
BiLSTM-CRF model for the NER task. The perfor-
mance can be even further improved with a word-
level CRF layer (Arkhipov et al., 2019). Neverthe-
less, it is also evident that XLM-Roberta outper-
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Table 1: List of Used Corpora, which shows each corpus
with an abbreviated name used in this paper, followed
by the number of sentences, the number of tokens it
contains, and lastly, its long name.

Corpus Sentences Tokens Long Name

Slovene

bsnlp 18106 400291 BSNLP 2017/21 (Piskorski et al., 2021)
500k 9483 193611 ssj500k 2.3 (Krek et al., 2021)
ewsd 2024 31233 ELEXIS-WSD 1.0 (Martelli et al., 2022)
scr 18139 391526 SentiCoref 1.0 (Žitnik, 2019)

Croatian

bsnlp 820 18704 BSNLP 2017 and 2021 (Piskorski et al., 2021)
500k 24780 504227 hr500k 1.0 (Ljubešić et al., 2018)

Serbian

set 3891 86726 SETimes.SR 1.0 (Batanović et al., 2018)

Bosnian

wann 8917 199378 WikiANN / PAN-X (Rahimi et al., 2019)

Macedonian

wann 16227 156467 WikiANN / PAN-X (Rahimi et al., 2019)

forms BERT (Suppa and Jariabka, 2021) in such
tasks. The closest to our paper is the work by Prele-
vikj and Zitnik (2021), who showed that the mono-
lingual NER model performance for the Slovene
language is practically equal to that of a multilin-
gual one.

In our paper, we focus on NER in Slovene, Croa-
tian and Serbian and aim to answer the follow-
ing question: does fine-tuning with related lan-
guages influence the performance of a multilingual
model compared to fine-tuning only in the target
language?

The rest of the paper is structured as follows.
First, we present the corpora we used and how
we preprocessed them, followed by their analysis.
Next, we continue with presenting the methodol-
ogy, where we first introduce the measures, models,
hyper-parameters, and software used. Finally, we
continue by evaluating the results and by presenting
conclusions.

2 Data Description

In this section, we first present all the corpora used.
Then, we continue with the description of the con-
version of these datasets to the expected format and
conclude with the corpora structure analysis.

We used the most common and established NER
corpora for selected languages (see Table 1). The
assumption and strategy for gathering corpora were
also: “the more, the better.”

We used NER tags in IOB2 (Ramshaw and Mar-
cus, 1995) format from the CoNLL-2003 shared
task (Tjong Kim Sang and De Meulder, 2003) as

a common denominator for all corpora and experi-
ments. Each corpus was first combined if split, then
converted to a common format, reshuffled, and split
to train/validation/test set in an 80/10/10 ratio.

We produced combined corpora by concatenat-
ing the sets without further reshuffling so that the
experiments could be repeated.

Our study uses Slovene, Croatian, and Serbian
as target languages. However, in addition to those,
also Bosnian and Macedonian are considered as
the source languages, as they are closely related.

Corpora used are presented in Table 1. Note that
the ones for Slovene were obtained from BSNLP
and parts of a newly published combined Training
corpus SUK 1.0 (Arhar Holdt et al., 2022), which
contained NER annotations (ssj500k, ELEXIS-
WSD, and SentiCoref).

2.1 Data Conversion
The first obstacle was the different NER tags used
in corpora. We decided to keep only the com-
mon tags: PER, LOC, and ORG. For example,
the BSNLP corpus uses PRO and EVT tags, while
the wann corpus lacks a MISC tag common to 500k
training corpora. All non-common tags, including
MISC, were replaced with O (outside IOB).

The second obstacle was the difference in for-
mat. BSNLP corpus, for instance, uses separate
files for verbatim text and NER tags, with no po-
sitional reference between one another. We used
CLASSLA (Ljubešić and Dobrovoljc, 2019) sen-
tence segmentation and tokenization with a custom
conversion script to solve this problem.

In addition, we removed a small amount (54) of
very short sentences, as they were often noisy (e.g.
conversion errors).

Next, we converted corpora from standard
CoNLL format to CSV format with two fields:

• Sentence: whitespace separated sentence
word tokens.

• NER: white space separated NER tags for
each sentence word token.

Table 2: Example whitespace separated sentence word
tokens with corresponding IOB2 NER tags.

Obtoženka Asia Bibi zapustila Pakistan

O B-PER I-PER O B-LOC

Finally, we split the corpus data into train, vali-
dation, and test sets.
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2.2 Corpora analysis
Comparing the corpora showed the differences
that could potentially be problematic for obtaining
aligned model performance. Especially consider-
ing the NER tag ratios where the WikiANN auto-
matically annotated corpora structure was standing
out (see Table 3 and Figure 1). This is also one of
the reasons why in our experiments, WikiANN cor-
pora were only considered for additional training
but not as target language gold standards.

Table 3: Analysis of Combined Corpora - shows each
language’s combined corpora number of tokens per sen-
tence, followed by the number of NER tags per token.
Finally, the PER, LOC, and ORG columns show the
ratios with respect to all NER tags.

Lang. tok./sent. NER/tok. PER% LOC % ORG %

sl 21.29 9.09% 31.70% 22.20% 34.13%
hr 20.43 7.41% 28.71% 20.55% 30.82%
sr 22.29 12.01% 29.96% 30.12% 32.35%
bs 7.81 36.91% 31.65% 29.67% 38.67%
mk 9.64 28.07% 34.89% 30.32% 34.79%

Figure 1: WikiANN corpus skew

Fortunately, we were unable to detect any incon-
sistencies regarding performance measurements.

3 Methodology

In the following section, we present the methodol-
ogy used in our experiments to test our hypothe-
sis that the NER classification F1-score increases
when we fine-tune the pre-trained multilingual
model with an additional, related language.

3.1 Method
The selected method was first to select the pre-
trained embeddings, train the baseline model for
each language and produce NER classification mea-
surements. Baseline models were fine-tuned with
only one - target language.

We experimented with two multilingual mod-
els, BERT multilingual base model (cased) (De-
vlin et al., 2018) and XLM-RoBERTa (base-sized
model) (Conneau et al., 2019). However, pi-
lot results showed better performance of XLM-
RoBERTa, which was used in the final experiments
presented in this paper.

Next, we combined additional language corpora,
re-trained the model, and measured performance on
the target language test set again. We focus only on
three selected languages for evaluation, Slovene,
Croatian and Serbian, but consider Bosnian and
Macedonian as additional source languages.

We used the HuggingFace transformers Python
library (Wolf et al., 2020) for all the experiments.

3.2 Parameters
For all the experiments, we used the following
hyper-parameters:

• 256 max-length for tokenizer

• PyTorch’s AdamW algorithm with 5e-5 learn-
ing rate

• batch size of 20

• 40 epochs (preliminary runs showed best F1-
scores between epochs 15 and 35)

• F1-score for best model selection and training
progression.

4 Evaluation

In the following section, we define the F1-score
we used for evaluation. Then we present the ex-
periment results: the evaluation of the pre-trained
multilingual model, followed by the evaluation of
fine-tuning for each language.

For all classification measurements, the Seqe-
val library (Nakayama, 2018) was used. Although
the library uses CoNLL evaluation by default, we
chose “strict” mode evaluation. When calculating
measurements, the strict mode also considers the
IOB2 tag’s “beginning” and “inside” parts. There-
fore the NER tags must match exactly.

4.1 Evaluation measure
For the evaluation of the classification models, we
used the traditional F-measure or balanced F-score,
which is the harmonic mean of precision and recall:

F1-score = 2 · Precision ·Recall

Precision+Recall
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The Precision and Recall are defined as:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

given that:

• FP: a NER tag that is predicted but not present
in the test.

• FN: a NER tag present in the test but missing
in our prediction.

• TP: a NER tag that is correctly predicted.

The overall F1-score, used in the evaluation ta-
bles and figures, is a macro-averaged F1-score over
all three NER tags. Macro-averaged F1-score is
computed using the arithmetic mean of all the per-
class F1 scores:

Macro-averaged F1-score =
1

n

n∑

i=1

F1i

where F1i is the F1-score for ith NER tag.
The average distance from the baseline was used

as a measure to show the overall variability of dif-
ferent models tested with the same test set. We
also report the maximum reduction in error rate
achieved for each tag.

4.2 Results
Here, we present results for the three target lan-
guages.

4.2.1 Slovene

Figure 2: Slovene language test set model performance

The Slovene test set shows surprising model stabil-
ity. This stability comes, assumingly, from larger
corpora compared to the others. It might be that
the quality of the corpora also plays a crucial role
in this observation.

Table 4: Slovene language test set model performance

Model PER F1 LOC F1 ORG F1 Overall F1

baseline sl 0.963 0.963 0.931 0.952

sl.sr 0.963 0.955 0.921 0.946
sl.hr 0.962 0.960 0.924 0.948
sl.hr.sr 0.964 0.958 0.925 0.949
sl.hr.sr.bs 0.964 0.953 0.926 0.948
sl.hr.sr.bs.mk 0.962 0.952 0.926 0.947

avg. dist. 0.00071 0.0070 0.0063 0.0043
error reduction 2.7% - - -

If we observe the average distance from the base-
line in the table’s last row, we can see that it is only
near 0.5%. For the PER tag, the error rate is re-
duced by a small amount (2.7%), but other tags are
not improved.

4.2.2 Croatian

The Croatian language test set shows higher vari-
ability when tested with different models, most sig-
nificantly on the ORG tag. It might be that the other
corpora training is influencing variability. However,
there is now some overall performance gain from
the training: we can see that the average distance
from the baseline is 0.5-1%, with reductions in
error rates between 6 and 11%.

Figure 3: Croatian language test set model performance

Table 5: Croatian language test set model performance

Model PER F1 LOC F1 ORG F1 Overall F1

baseline hr 0.934 0.911 0.874 0.906

hr.sr 0.932 0.921 0.888 0.914
sl.hr 0.925 0.915 0.878 0.906
hr.sr.bs 0.922 0.912 0.856 0.897
sl.hr.sr 0.923 0.908 0.865 0.899
sl.hr.sr.bs 0.938 0.927 0.873 0.912
sl.hr.sr.bs.mk 0.925 0.911 0.861 0.899

avg. dist. 0.0076 0.0055 0.0098 0.0062
error reduction 6.1% 18.0% 11.1% 8.5%
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4.2.3 Serbian

The Serbian language test set showed the most sig-
nificant increase in performance over the baseline.
Its average distance in performance measurements
from the baseline is from approximately 0.5% to
2.5%, with large reductions in error rate of 43%-
68%. The main suspect for this phenomenon is
the Serbian corpus size. It is the smallest included
in this analysis, and therefore benefits most from
additional cross-lingual training on other corpora.

Figure 4: Serbian language test set model performance

Table 6: Serbian language test set model performance

Model PER F1 LOC F1 ORG F1 Overall F1

baseline sr 0.962 0.979 0.914 0.954

sl.sr 0.979 0.980 0.934 0.965
hr.sr 0.987 0.988 0.956 0.978
hr.sr.bs 0.982 0.987 0.945 0.973
sl.hr.sr 0.979 0.979 0.946 0.969
sl.hr.sr.bs 0.971 0.976 0.920 0.957
sl.hr.sr.bs.mk 0.988 0.978 0.942 0.970

avg. dist. 0.019 0.0037 0.026 0.015
error reduction 68.4% 42.9% 48.8% 52.2%

5 Conclusion

We have shown that model performance can be
influenced substantially by cross-lingual training
with other language corpora, but that improvements
only seem to occur if the target language has rela-
tively small corpora. While for Slovene, the mono-
lingual setting generally performs better, for Croa-
tian and Serbian, the results are slightly better in
selected cross-lingual settings. The most signifi-
cant performance improvement is shown for the
Serbian language, which has the smallest corpora.
This indicates that fine-tuning with other closely re-
lated languages may benefit only the “low resource”
languages.

Our initial hypothesis has not been fully upheld,
but the result is still beneficial. First, when con-
sidering less-resourced settings, leveraging closely
related languages is beneficial. Second, the perfor-
mance does not degrade much if we fine-tune the
model with additional language corpora from the
same family. This is an important finding, as using
a multilingual model in an application is a simpler
solution than having several monolingual models.

In future work, we propose further investigating
how performance changes when distantly related
languages are used for fine-tuning the models. This
will further benefit the usage in an industrial setting
if the performance is not degraded, as having a sin-
gle model that supports more languages with sim-
ilar performance to monolingual training is more
scalable and practical.
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and Tomaž Erjavec. 2018. Training corpus SE-
Times.SR 1.0. Slovenian language resource reposi-
tory CLARIN.SI.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the association for computational linguistics,
4:357–370.

Michael Collins and Yoram Singer. 1999. Unsupervised
models for named entity classification. In 1999 Joint
SIGDAT conference on empirical methods in natural
language processing and very large corpora.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Asif Ekbal and Sriparna Saha. 2011. Weighted vote-
based classifier ensemble for named entity recog-
nition: a genetic algorithm-based approach. ACM
Transactions on Asian Language Information Pro-
cessing (TALIP), 10(2):1–37.

Ralph Grishman and Beth M Sundheim. 1996. Mes-
sage understanding conference-6: A brief history.
In COLING 1996 Volume 1: The 16th International
Conference on Computational Linguistics.

Simon Krek, Kaja Dobrovoljc, Tomaž Erjavec, Sara
Može, Nina Ledinek, Nanika Holz, Katja Zupan,
Polona Gantar, Taja Kuzman, Jaka Čibej, Špela
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