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Abstract

Large language models (LLMs) pre-trained on
massive corpora have demonstrated impressive
few-shot learning ability on many NLP tasks.
A common practice is to recast the task into a
text-to-text format such that generative LLMs
of natural language (NL-LLMs) like GPT-3
can be prompted to solve it. However, it is non-
trivial to perform information extraction (IE)
tasks with NL-LLMs since the output of the IE
task is usually structured and therefore is hard
to be converted into plain text. In this paper, we
propose to recast the structured output in the
form of code instead of natural language and
utilize generative LLMs of code (Code-LLMs)
such as Codex to perform IE tasks, in particu-
lar, named entity recognition and relation ex-
traction. In contrast to NL-LLMs, we show
that Code-LLMs can be well-aligned with these
IE tasks by designing code-style prompts and
formulating these IE tasks as code generation
tasks. Experiment results on seven benchmarks
show that our method consistently outperforms
fine-tuning moderate-size pre-trained models
specially designed for IE tasks (e.g., UIE) and
prompting NL-LLMs under few-shot settings.
We further conduct a series of in-depth anal-
yses to demonstrate the merits of leveraging
Code-LLMs for IE tasks.1

1 Introduction

Information extraction (IE) aims to recognize struc-
tured information from plain text. It spans various
tasks with diverse output structures such as named
entity recognition (NER), relation extraction (RE),
etc. (Sang and Meulder, 2003; Grishman, 2019;
Wang et al., 2021a; Zhong and Chen, 2021; Lu
et al., 2022). To express and address these different
tasks in a unified framework, recent works propose
to linearize the output structures into unstructured
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1Code is available at https://github.com/dasepli/CodeIE
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Figure 1: Illustrations of performing structured NER
task with NL-LLMs and Code-LLMs, respectively. In
contrast to prompting NL-LLMs with plain natural lan-
guage, we utilize Code-LLMs with structured code-style
prompts to mitigate the output discrepancy between the
pre-training and inference stages.

strings and solve the IE tasks with sequence gen-
eration models (Yan et al., 2021b; Huguet Cabot
and Navigli, 2021; Paolini et al., 2021; Josifoski
et al., 2022; Lu et al., 2022). For example, given
the input sentence "Steve became CEO of Apple
in 1998 ." of a NER task, UIE (Lu et al., 2022)
generates the target as a sequence "((person:
Steve) (organization: Apple))".

While this kind of linearizing approach achieves
promising results with sufficient training data, it
still performs poorly under the few-shot scenario.
For instance, compared with full-data training, the
performance dropped by around 20% when apply-
ing UIE on a 5-shot NER task CoNNL03 (Lu et al.,
2022).

Considering the tremendous few-shot adapt-
ing capabilities of large language models
(LLMs) (Brown et al., 2020; Rae et al., 2021;
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Chowdhery et al., 2022; Hoffmann et al., 2022),
we manage to employ them to perform few-shot
IE tasks, especially the few-shot NER task and
RE task. Typically, for NLP tasks like text
classification, previous works reformulate them
into text-to-text generation formats and prompt
the LLMs of natural language (NL-LLMs) like
GPT-3 (Brown et al., 2020) to generate the
answer. In contrast, due to the complex structure
inside the targets of IE tasks, linearized targets
of previous works like "((person: Steve)
(organization: Apple))" are usually
"unnatural", resulting in a mismatch between the
output format at the pre-training time and the
inference time (see Figure 1(a)). As a consequence,
when using these flattening methods to perform
IE tasks with pre-trained language models, the
predicted outputs are fragile and often require
complex decoding strategies to be post-processed
into valid structures (Lu et al., 2022; Josifoski
et al., 2022).

In this paper, we propose to frame these two
IE tasks into code generation tasks and leverage
the LLMs of code (Code-LLMs) to address them.
We argue the abundant structured code informa-
tion encoded in the pretrained Code-LLMs can
benefit these IE tasks. As demonstrated in Figure
1(b), it is easy to convert the text-to-structure IE
task into a structure-to-structure code generation
task, while transforming it into a text-to-text for-
mat can be difficult. Take the example input in
Figure 1, "Steve became CEO of Apple in 1998
.", we wrap it into a piece of Python code, and
formulate the structured entity outputs as Python
dictionaries with keys "text" and "type". We
compose them into a Python function that is seman-
tically equivalent to the NER example, which is
shown as follows:
def named_entity_recognition(input_text):

""" extract named entities from the input_text . """

input_text = "Steve became CEO of Apple in 1998 ."

entity_list = []

# extracted named entities

entity_list.append({"text": "Steve", "type": "person"})

entity_list.append({"text": "Apple",\

"type": "organization"})

After demonstrating a few training samples with
the same format, we feed the code-style prompt
(the highlighted lines with light grey color) into
Code-LLMs and get the structured prediction.

We conduct experiments on seven benchmarks
of NER and RE tasks, and carefully analyze the
benefits of our approach (named CODEIE). The
findings are as follows:

Model
Type

Generative? Extremely
Large?

Structured
Pre-train? Few-Shot

NER and RE
TasksUnified

Framework
Few-shot
Learning

Structured
Task

Pre. Models
(e.g., UIE)

! % ! %

NL-LLMs
(e.g., GPT-3)

! ! % %

Code-LLMs
(e.g., Codex)

! ! ! !

Table 1: A high-level comparison between previous IE
Models, NL-LLMs and Code-LLMs. The bottom row
illustrates our approach.

1) Prompting Code-LLMs (e.g., Codex (Chen
et al., 2021)) with code-style inputs consis-
tently outperforms fine-tuning UIE, a spe-
cially pre-trained model for IE tasks, and
prompting NL-LLMs (e.g., GPT-3) under few-
shot settings.

2) With the same LLM (either NL-LLM or Code-
LLM), the code-style prompt performs better
than the linearized text prompt, demonstrat-
ing the advantage of representing structured
targets with code.

3) With the same prompt (either natural lan-
guage or code), the Code-LLM (i.e., Codex)
achieves better performance than the NL-
LLM (i.e., GPT-3), demonstrating the merits
of performing IE tasks with Code-LLMs.

4) Compared with natural language prompts, us-
ing the code-style prompts showed higher fi-
delity to the output structures, i.e., the outputs
have a lower structural error rate.

The high-level differences between previous
moderate-size models, NL-LLMs, and Code-LLMs
for IE tasks are summarized in Table 1.

2 CODEIE

In this section, we first formulate the two IE tasks
we focus on, named entity recognition (NER) and
relation extraction (RE) in Section 2.1. Then we
describe how we recast these structured prediction
tasks into code generation tasks (Section 2.2) and
prompt Code-LLMs to perform them (Section 2.3)
under the few-shot scenario. We use Python lan-
guage for our code generation tasks since public
Python codebases are abundant and Code-LLMs
are sufficiently pre-trained on them.

2.1 Task Formulation
Given an input sentence x with l tokens
x1, x2, . . . , xl, IE tasks are to predict structured
target y from x.
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def named_entity_recognition(input_text):

""" extract named entities from the input_text . """

input_text = "Steve became CEO of Apple in 1998"

entity_list = []

# extracted named entities

entity_list.append({"text": "Steve", "type": "person"})

entity_list.append({"text": "Apple", "type": "organization"})

"Steve became CEO of Apple in 1998"

"Steve": "person"

"Apple": "organization"

Code-LLMs

Code Prompt

Prediction

NER

(a) Converting NER into code generation task

def relation_extraction(input_text):

""" extract the relations of named entities from the input text. """

input_text = "Steve became CEO of Apple in 1998"

entity_relation_list = []

# extacted relations

entity_relation_list.append({"rel_type": "work for", \

"ent1_type": "person", "ent1_text": "Steve", \

"ent2_type": "organization", "ent2_text": "Apple"})"Steve": "person" "Apple": "organization"

Code-LLMs

Code Prompt

Prediction

RE

"work for"

"Steve became CEO of Apple in 1998"

(b) Converting RE into code generation task

Figure 2: The way to convert NER and RE into code generation task.

The target y of NER is a set of (e, t) pairs, where
e is an entity span (e.g., "Steve") and t is the
corresponding entity type (e.g., "person"). The
entity span is a sequence of tokens from x, and the
entity type belongs to a pre-defined entity type set
T .

The prediction target y of RE is comprised of a
set of triplets (e1, r, e2), where e1 and e2 are two
entity spans from x and r ∈ R is the semantic rela-
tion (e.g., "work for") between the two entities.
Here R denotes a pre-defined relation type set. In
addition to extracting the relation of entities, we are
often interested in also predicting the entity types
t1 and t2 of entities e1 and e2 at the same time.

In the few-shot setting, we are given a small set
of annotated samples {(xi, yi)}ni=1 that consists of
k samples per class to compose a k-shot setting.

2.2 Formulating IE Tasks into Code
Generation Task

In order to utilize generative Code-LLMs for IE
tasks, we reformulate IE tasks as code generation
tasks. The code generation task is to predict the sub-
sequent code sequence given an incomplete piece
of code. Hence, we can recast the input and output
of the IE task into an incomplete piece of code and
the code to be predicted, respectively, such that
they can compose a complete piece of code that
is semantically equivalent to the original sample
while maintaining the syntax of the programming
language.

In this work, we mainly use Python functions to

represent IE tasks. We wrap the input text x into a
code-style prompt xc and represent the output struc-
ture y with structured Python elements, such as the
list, dictionary, etc. As shown in Figure 2, for NER
and RE tasks, we first transform the task name into
the name of the Python function and add a docstring
to illustrate the goal of the task. We assign the input
text string x to a variable input_text. Then we
initialize an empty list to save the output and ap-
pend a descriptive comment like "# extracted
named entities" to prompt Code-LLMs to
put named entities into the list. We pack the above
code as our code prompt xc.

For the structured target y, we utilize the
append method of Python list and represent each
basic information unit (e.g., a pair for NER tasks
or a triplet for RE tasks) as a Python dictionary.
Hence, the target yc to be predicted by Code-LLMs
is reformulated into a list of dictionaries. For NER,
we add Python dictionaries with keys "text"
and "type" to the list, where the values of the
dictionaries are the corresponding entity span and
entity type. For RE, we similarly add dictionaries
with keys "rel_type", "ent1_type",
"ent1_text", "ent2_type", and
"ent2_text" to the list to represent the
structured target.

The Code-LLM is expected to complete the list
conditioning on the function name, docstring, and
input text. Figure 2 shows examples of formulating
an original IE sample into a code-style one.

15341



It is worth noting that the design space of the
code-style prompt is large and hard to be fully
explored. The formulation described above is a
straightforward instance using Python. We also ex-
plore several other formulations to recast IE tasks
into code generation tasks, which can be found in
Appendix A.1.

2.3 Prompting Code-LLMs with In-Context
Demonstrations

Despite the carefully designed prompt, it is non-
trivial to perform IE tasks by prompting Code-
LLMs without any samples. Therefore, it is neces-
sary to let Code-LLMs be aware of a few labeled
samples in typical few-shot settings.

With the increasing size of pre-trained language
models, fine-tuning is becoming more and more
expensive or even infeasible since recent LLMs
are usually released as black-box APIs (Sun et al.,
2022). Hence, instead of fine-tuning Code-LLMs
on the few-shot dataset, we explore including the
labeled samples in the context and performing in-
context learning (Brown et al., 2020). We select
n samples {(xi, yi)}ni=1 from the training dataset
and convert them to corresponding code-style pairs
{(xci , yci )}ni=1. We concatenate them as a string
to compose the in-context demonstrations xc1 ⊕
yc1 . . . x

c
n ⊕ ycn. Given an arrived test sample x, we

first convert it to a code prompt xc and prepend the
demonstration context, i.e., xc1⊕yc1 . . . x

c
n⊕ycn⊕xc.

After feeding the constructed input into the Code-
LLM, we are expected to get an output yc that is
formatted as the same as yc1, yc2, . . . ycn (see Figure
2). We find that yc almost always retains the syntax
of Python language and is easy to be converted
back to its original structure y.

3 Experiments

3.1 Setup
Datasets We evaluate our approach on NER
task with CoNLL03 (Sang and Meulder, 2003),
ACE04 (Doddington et al., 2004) and ACE05-
E(Walker et al., 2006). For relation extrac-
tion, we evaluate on datasets CoNLL04 (Roth
and Yih, 2004), ACE05-R (Walker et al., 2006),
NYT (Riedel et al., 2010) and SciERC (Luan et al.,
2018). Table 2 shows the dataset statistics. We
follow Lu et al. (2022) to preprocess all these
datasets.

Code-LLMs For Code-LLMs, we conduct ex-
periments mainly with the code-davinci-002

|Ents| |Rels| #Train #Val #Test

CoNLL03 4 - 14,041 3,250 3,453
ACE04 7 - 6,202 745 812
ACE05-E 7 - 7299 971 1060
CoNLL04 4 5 922 231 288
ACE05-R 7 6 10,051 2,420 2,050
NYT 3 24 56,196 5,000 5,000
SciERC 6 7 1,861 275 551

Table 2: Statistics of the datasets used in our experi-
ments. |Ents| and |Rels| denote the number of entity
types and relation types. #Train, #Val and #Test denote
the sample number in each split.

version Codex from OpenAI. Codex is a large
language model adapted from GPT-3 and fur-
ther pre-trained on open-source codebases. The
code-davinci-002 version Codex supports
8k input tokens at most. We get the model pre-
dictions by querying OpenAI API2 in the few-shot
in-context prompting way. We generate up to 280
tokens with greedy decoding.

Baselines We compare our approach with two
kinds of few-shot learning methods:

1) Fine-tuning We fine-tune the base and large
versions of two moderate-size pre-trained
models: T5 and UIE. T5 is a sequence-to-
sequence model pre-trained on large-scale text
corpora. UIE is a model further pre-trained
from T5 on the structured datasets. UIE uti-
lizes the textual structured extraction language
(SEL) to express the output structures. We use
the same approach and parameters with Lu
et al. (2022) when fine-tuning T5 and UIE.

2) Prompting We compare our approach
with prompting NL-LLMs, in particular
GPT-3. We mainly experiment with the
text-davinci-002. We use a text
prompt, of which the format is slightly
modified from SEL. As shown in Fig-
ure 1(a), given an input text x, the text
prompt and output format are like "The
text is x. The named entities
in the text: " and "((person:
...)(organization:...))", respec-
tively. See Appendix A.2 for more details
of the text prompt. The approach and
super-parameters of NL-LLMs prompting
and Code-LLMs prompting are identical.

2https://openai.com/api
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Entity Relation
Model Prompt

Type CoNLL03 ACE04 ACE05-E CoNLL04 ACE05-R NYT SciERC AVG

Full Data

Pre. SoTA - 93.21 86.84 84.74 73.60 65.60 92.70 35.60 76.04
UIE-large text 92.99 86.89 85.78 75.00 66.06 - 36.53 -

Few Shot

#shot (#sample) 5 (25) 2 (16) 2 (16) 5 (25) 2 (14) 1 (24) 2 (16)

T5-base text 33.68±29.17 7.25±12.00 9.09±15.74 14.56±13.87 0.00±0.00 5.59±9.68 0.00±0.00 10.02
UIE-base text 70.37±0.54 44.31±1.61 39.71±0.91 45.63±1.50 8.69±1.41 - 5.69±0.49 -
T5-large text 53.08±7.71 24.67±5.26 24.31±4.74 10.03±8.75 1.41±0.74 15.29±8.76 0.25±0.43 18.43
UIE-large text 70.62±3.22 45.08±3.63 43.03±2.26 47.68±2.29 9.59±4.89 - 7.30±2.01 -

GPT-3 text 68.84±1.29 45.51±0.23 48.93±0.49 39.67±2.44 5.13±1.24 16.07±4.67 4.39±0.98 32.65
GPT-3 code 81.00±1.49 53.44±1.44 52.98±1.53 51.33±1.34 12.33±2.06 24.81±1.90 4.67±0.67 40.08
Codex text 72.66±0.66 49.58±1.37 49.55±1.14 47.30±2.25 10.08±2.06 24.63±6.74 5.40±2.65 37.03
Codex code 82.32±0.37 55.29±0.37 54.82±2.09 53.10±2.02 14.02±3.27 32.17±1.46 7.74±1.54 42.78

Table 3: Experiment performances on NER and RE benchmarks. Our approach is highlighted with light grey.
The full data fine-tuning performances come from UIE. For the few-shot setting, we evaluate T5-base, UIE-base,
T5-large and UIE-large with fine-tuning, and GPT-3 and Codex by few-shot prompting with two different prompt
types. The text prompt is the structured extraction language (SEL) introduced by UIE. The code format is introduced
in Section 2.2. We set the shot number (#shot) and the corresponding sample number (#sample) differently to fit
into the GPT-3 maximum length limitation (4097 tokens).

Few-Shot Setting For each IE task, we randomly
sample k training samples for each entity or rela-
tion type to construct a k-shot training set. The
value of k varies across different datasets to satisfy
the maximum length limitation (4097) of GPT-3.
To be compatible with datasets that contain samples
with empty targets, we regard those empty-target
samples as an additional class and include k sam-
ples belonging to that class in the training set.

Evaluation Same as previous work (Lu et al.,
2022), we use Entity F1 and Relation Strict F1 as
the evaluation metrics for NER tasks and RE tasks,
respectively. Under these metrics, an entity span
prediction is correct if its offsets and entity type
match the golden entity. And a relation prediction
is correct if the relation type is correct and the
corresponding offsets and types of its entities are
correct. Since few-shot training is of high variance,
we perform 3 runs with different random seeds for
each experiment and report the mean and standard
deviation of the metric.

3.2 Results
LLMs vs. Moderate-sized Models As shown in
Table 3, LLMs (GPT-3 and Codex) achieve supe-
rior performance over moderate-sized models (T5
and UIE) under few-shot settings, demonstrating a
strong few-show learning ability on IE tasks. Espe-
cially, on average performance over the seven con-
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Figure 3: Performance with different shot numbers on
CoNLL03 (NER) and CoNLL04 (RE) datasets.

sidered benchmarks, our proposed CODEIE (Codex
+ code prompt) achieves the best results, improving
T5-large and T5-base by 132% and 327%, respec-
tively. In addition, under 1-shot learning settings,
CODEIE improves the performance of UIE-large
by more than 60% on CoNLL03 and CoNLL04
benchmarks (see Table 6 in the Appendix).

Code Prompt vs. Text Prompt We then com-
pare the performance of code prompt vs. text
prompt when using the same LLM, i.e., compar-
ing ⟨GPT-3 + text prompt⟩ with ⟨GPT-3 + code
prompt⟩ and comparing ⟨Codex + text prompt]
with ⟨Codex + code prompt⟩. As a result, we
find that prompting LLMs with code yields sig-
nificant improvement (23% for GPT-3 and 16% for
Codex). What is surprising is that code prompt is
even more beneficial to GPT-3, which is not specif-
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Model Prompt
Design

Entity
CoNLL03

Relation
CoNLL04

GPT-3
struct lang 68.84±1.29 39.67±2.44

natural lang 46.36±12.56 40.90±3.67

Codex

func def 82.32±0.37 53.10±2.02

class init 81.29±0.72 52.32±0.94

func exec 84.05±1.24 53.32±3.47

func init- 81.95±1.01 53.59±1.10

Table 4: Performance of different prompt designs.
"struct lang" and "func def" are the "text" and "code"
prompt types respectively in our main experiments.

ically trained on code data.

Code-LLMs vs. NL-LLMs When using the
same kind of prompt and comparing the used
LLMs, i.e., comparing ⟨GPT-3 + text prompt⟩ and
⟨Codex + text prompt⟩ and comparing ⟨GPT-3 +
code prompt⟩ and ⟨Codex + code prompt⟩, we find
that Codex consistently surpasses GPT-3, demon-
strating that code pre-training can be beneficial to
IE tasks.

Different Shot Numbers We further compare
these approaches under different shot numbers on
CoNLL03 and CoNLL04. As shown in Figure 3,
we can see that the obtained phenomenons still hold
when increasing the number of shots.

Different Prompt Designs The design of the
prompt can be an important factor affecting the
model performance (Min et al., 2022). Hence, we
explore additional prompt designs for both text
prompt and code prompt. The detailed prompt
deigns can be found in Appendix A. The experi-
mental results are shown in Table 4, from which we
find that code prompts consistently outperform text
prompts. Hence, the superior performance of using
code prompts is mainly contributed by the code
style instead of some specific instance of prompt
design.

Different LLMs To verify the versatility of
the proposed approach and the observed find-
ings, we further conduct experiments with
text-davinci-001 version of GPT-3 and
code-davinci-001 version of Codex. As
shown in Table 7, the previous findings still hold
across the two different versions.

4 Analysis

To take a closer look at the difference between
prompting NL-LLMs with textual format input and

CoNLL03 ACE04 ACE05-E CoNLL04 ACE05-R NYT SciER
0k

5k

10k

15k

20k

25k

pp
l

T5-base+text
CodeT5-base+code

Figure 4: Format consistency between the input format
and the model (measured by perplexity) for text prompt
and code prompt on 7 datasets.

prompting Code-LLMs with code format input, in
this section, we define several informative metrics
and conduct in-depth analyses to shed some light
on the following question: what contributes to the
final performance of CODEIE for IE tasks?

4.1 Format Consistency

We can see from Figure 1(a) that an apparent in-
appropriateness to use NL-LLMs for IE tasks is
the inconsistency between the structured output
format at inference time and NL-LLMs that are
trained on natural language at pre-training time,
while the format of code-style output aligns well
with Code-LLMs. It has been evidenced that adapt-
ing pre-trained models to downstream tasks in a
manner that is well aligned with it pre-training
paradigm usually achieves better few-shot learning
performance. Hence we assume the promising per-
formance of CODEIE partly comes from the better
format consistency between the code-style sample
and the pretrained code model.

To verify this hypothesis, given a sample, we
compare the perplexities of a pre-trained language
model on its text format and a pre-trained code
model on its code format. Formally, given a gener-
ative model M , the conditional perplexity ppl of a
sample (x, y) is as follows,

pplM (y|x) =
m∏

i=1

PM (yi|y1 · · · yi−1, x)
− 1

l . (1)

For an original IE sample (x, y), we first transform
it to its natural language text pair (xt, yt) and its
code piece pair (xc, yc), and then compute the con-
ditional perplexity of them with the language model
Mnl and the code model M c, respectively, i.e., the
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Figure 5: Structural error rate of different combinations
of LLM and prompting methods. Prompting LLMs with
code exhibits higher structure fidelity.

pplMnl(yt|xt) and pplMc(yc|xc). A lower condi-
tional perplexity means the output format aligns
well with the pre-training distribution of the model.

Since LLMs usually limit user access by their
black-box APIs, we instead utilize two agent mod-
els T5 (Raffel et al., 2020) and CodeT5 (Wang
et al., 2021b) to calculate the perplexities. CodeT5
is a variant of T5 model that is further pre-trained
on code data. We calculate the perplexities on the
previous seven datasets with the base verison of
the two models, namely T5-base and CodeT5-base.
Figure 4 shows the mean perplexities of two base
version models on the training samples of each task.
We can observe the perplexity of the text format
outputs measured by T5-base is usually larger than
code format outputs measured by CodeT5-base.
That means, transforming IE samples to code for-
mats can better align with the data distribution of
code pre-training and therefore the pre-trained code
language model.

4.2 Model Fidelity

Besides the low format consistency of prompting
ML-LLMs, we find that NL-LLMs are more likely
to generate outputs with structural and semantic er-
rors when performing few-shot IE tasks than Code-
LLMs. In other words, Code-LLMs seem to be
more faithful to the demonstrated few-shot sam-
ples than NL-LLMs. To quantitatively measure the
model fidelity, we define two metrics:

Structure Fidelity Structure fidelity measures
how faithful the model is to the structure of demon-
strations provided in the context. This can be sim-
ply measured by calculating the structural error
rate, which is the proportion of generated samples
with structural errors. In particular, we construct a

Task Error Type Samples

NER
Entity type

not in T

currency, company, time, event,
profession,organizational indicator,

finanical, object, event

RE
Relation type

not in R
called, organization, person, relate,

specialize, assumption, cause, assign

Table 5: Semantically errant samples detected in our
experiments. These errant samples mainly came from
GPT-3.

parser with a series of hand-written rules to trans-
form the model-generated outputs back to the de-
sired format and filter out samples with invalid
structures. Figure 5 demonstrates the structure fi-
delity of different models with different prompts
on the seven benchmarks. Results show that the
outputs generated by GPT-3 and Codex using text
prompts are fragile while using code prompts tends
to generate nearly zero structurally erroneous sam-
ples. Besides, with the same text prompt, Codex
tends to generate fewer structurally errant samples
than GPT-3, demonstrating its superior understand-
ing ability on general structured input instead of
being limited to existing programming languages.

Semantic Fidelity Another measurement of
model fidelity is semantic fidelity, which is de-
signed for those samples that have a valid structure
and can succeed in our parser but are semantically
incorrect. The difference between the defined se-
mantic fidelity and the conventional prediction er-
ror is that semantic fidelity mainly considers model
behaviours that violate the formulation of the task,
e.g., predicting an entity type that does not exist in
the given entity type set or extracting an entity span
that does not appear in the input text. Some exam-
ple semantic errors detected in our experiments are
listed in Table 5. We report the statistical result of
the tasks in Table 8 and Table 9 in the Appendix.
As a result, we find that GPT-3 generated more se-
mantic errors than Codex though some of the errors
seem to be "correct" but are out of the pre-defined
class set. In a nutshell, GPT-3 tends to generate
free-form results and Codex is more faithful to the
demonstrations provided in the context and there-
fore is more predictable for IE tasks.

4.3 Fine-grained Performance

In addition, we conduct a fine-grained evaluation
to compare different approaches. In addition to
the F1 score, precision and recall are also impor-
tant metrics for NER and RE tasks. To investigate
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Figure 6: Model Performance Details on NER and RE Tasks. We report the averaged metric scores of all the NER
or RE datasets.

how different LLMs and prompting methods affect
precision and recall, we report the two metrics in
Figure 6. Results show that: (a) The code prompt
improves model performance in both precision and
recall; (b) Compared with GPT-3, Codex achieves
higher recall and comparable precision on NER
tasks and and achieves both higher precision and
recall on RE tasks.

5 Related Work

Generative Information Extraction Generative
information extraction which frames IE tasks as to-
ken generation tasks receive more attention recently
due to their potential to unify different tasks (Yan
et al., 2021a; Josifoski et al., 2022). Yan et al.
(2021a) designs various ways to linearize entities
into a sentence to unify various named entity recog-
nition subtasks. TANL (Paolini et al., 2021) uses
augmented language to improve the effect of gener-
ative models. Lu et al. (2022) also proposes a struc-
tured extraction language (SEL) and pre-trains their
UIE model with this language on multiple struc-
tured datasets. These works linearize the structure
output of IE tasks into text format to align the pre-
trained models. Different from them, we propose to
recast the structural samples of IE tasks into struc-
tural code format and utilize aligned pre-trained
code models to perform the tasks.

Code-LLMs for Complex Tasks Recent works
show Code-LLMs perform better on complex
tasks like commonsense and symbolic reasoning
(Madaan et al., 2022; Cheng et al., 2022), math-
ematical logic (Suzgun et al., 2022) and event ar-
gument prediction (Wang et al., 2022) tasks. We
focus on the two mainstream IE tasks different from

them, i.e., NER and RE. Besides, in-depth analyses
are conducted to provide more insights.

LLMs for Few-Shot NER and RE While LLMs
like GPT-3 have shown strong few-shot learning
abilities in many NLP tasks, limited works have
explored their capabilities on typical IE tasks like
NER and RE. Epure and Hennequin (2021) evalu-
ate GPT-2 (Radford et al., 2019) on open-domain
NER tasks with few-shot demonstrating. A re-
cent work (Gutiérrez et al., 2022) tests the per-
formance of GPT-3 on biomedical NER and RE
tasks and finds it underperforms compared to fine-
tuning smaller pretrained models. Its concurrent
work (Agrawal et al., 2022) finds that GPT-3 per-
forms well on few-shot clinical IE tasks. We con-
duct our experiments on more general NER and RE
datasets and find GPT-3 can achieve comparable
performance to fine-tuning the UIE model. Be-
sides, we successfully employ the LLMs of code
with better performances for these IE tasks.

6 Conclusion

We propose the first work to utilize the structured
Code-LLMs with code-style prompts to perform
the few-shot NER and RE tasks. Experiments show
our approach consistently surpasses the UIE mod-
els and the NL-LLMs counterpart under the few-
shot setting. We conducted extensive analysis and
find the performances come from better format
consistency and model fidelity, etc. We think these
analyzes can facilitate future work. As the further
works, we will employ CODEIE on more IE tasks
in different domains, and inspect the robustness of
it.
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Limitations

Though our approach demonstrates better perfor-
mances than the baseline models, how to design
a good code-format prompt has not been fully in-
spected. Besides, we mainly conduct experiments
on the black-box GPT-3 and Codex models but
they are not open-sourced and querying the GPT-3
model cost the economic budget. And the use of
LLMs may bring environmental pollution. Another
limitation of our approach is that the Code-LLMs
mainly trained on programming language datasets
with English annotations. Exploring our model on
non-English datasets (like Chinese datasets) is the
future work.
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A Prompt Format Design

A.1 Code Format Prompts
We design several code-style prompt formats. We
use the input sentence "Steve became CEO of
Apple in 1998 ." and the corresponding entities
("Steve": person, "Apple": organization) and rela-
tions ("work for" of the two entities "Steve" and
"Apple") as a running sample for the NER and RE
tasks.

The name of the format design is denoted with
different font. we demonstrate the Python format
prompt for NER and RE tasks. The prompt part
is highlighted with grey color and the following
codes are the expected output. We list the designed
format as follows:

1. func def: our main code format prompt
to transform the IE tasks into code formats.

For the NER task, the format is

def named_entity_recognition(input_text):

""" extract named entities from the input_text . """

input_text = "Steve became CEO of Apple in 1998 ."

entity_list = []

# extracted named entities

entity_list.append({"text": "Steve", "type":

"person"})↪→
entity_list.append({"text": "Apple","type":

"organization"})↪→

For the RE task, the format is

def relation_extraction(input_text):

""" extract the relations of named entities from the

input_text . """↪→
input_text = "Steve became CEO of Apple in 1998"

entity_relation_list = []

# extacted relations

entity_relation_list.append({"rel_type": "work for",

"ent1_type": "person", "ent1_text": "Steve",

"ent2_type": "organization", "ent2_text":

"Apple"})

↪→
↪→
↪→

2. class init: we describe the IE tasks
with the Python class.

For the NER task, the format is

class NamedEntityRecognition:
""" extract named entities from the input_text . """

def __init__(self, input_text):

self.input_text = "Steve became CEO of Apple in

1998 ."↪→
entity_list = []

# extracted named entities

entity_list.append({"text": "Steve", "type":

"person"})↪→
entity_list.append({"text": "Apple",\

"type": "organization"})
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For the RE task, the format is

class RelationExtraction:
""" extract the relations of named entities from the

input_text . """↪→
def __init__(self, input_text):

self.input_text = "Steve became CEO of Apple in

1998"↪→
entity_relation_list = []

# extacted relations

entity_relation_list.append({"rel_type": "work

for", "ent1_type": "person", "ent1_text":

"Steve", "ent2_type": "organization",

"ent2_text": "Apple"})

↪→
↪→
↪→

3. func exec: describe the IE tasks as a
function execution procedure.

For the NER task, the format is

# extract named entities from a sentence .

input_text = "Steve became CEO of Apple in 1998 ."

output = named_entity_recognition(input_text)

# the output is

# {"text": "Steve", "type": "person"}

# {"text": "Apple", "type": "organization"}

For the RE task, the format is

# extract the relations of named entities from from a

sentence .↪→
input_text = "Steve became CEO of Apple in 1998"

output = relation_extraction(input_text)

# the output is

# {"rel_type": "work for", "ent1_type": "person",

"ent1_text": "Steve", "ent2_type": "organization",

"ent2_text": "Apple"}

↪→
↪→

4. func init-: perturb the rational format
design by exchanging the format design of NER
and RE tasks.

For the NER task, the format is

def relation_extraction(input_text):

""" extract the relations of named entities from the

input_text . """↪→
input_text = "Steve became CEO of Apple in 1998 ."

entity_relation_list = []

# extracted relations

entity_relation_list.append({"text": "Steve", "type":

"person"})↪→
entity_relation_list.append({"text": "Apple","type":

"organization"})↪→

For the RE task, the format is

def named_entity_recognition(input_text):

""" extract named entities from the input_text . """

input_text = "Steve became CEO of Apple in 1998"

entity_list = []

# extacted named entities

entity_list.append({"rel_type": "work for",

"ent1_type": "person", "ent1_text": "Steve",

"ent2_type": "organization", "ent2_text":

"Apple"})

↪→
↪→
↪→

A.2 Text Format Prompts
Similar to the above section (A.1), we describe the
textual format prompt we used given the text input
"Steve became CEO of Apple in 1998 .". The text
input prompts are all the same and we highlighted
the expected outputs with blue colour.

1. struct lang: our mainly used text
format prompt.

For the NER task, the transformed format is:

The text is "Steve became CEO of Apple in 1998
.". The named entities in the text: ((person:
Steve)(organization: Apple))

For the RE task, the transformed format is:

The text is "Steve became CEO of Apple in
1998 .". The relations of named entities in
the text: ((person: Steve (work for:
Apple)) (organization: Apple))

2. natural lang: a more "natural" for-
mat to describe the structures in natural language.

For the NER task, the transformed format is:

The text is "Steve became CEO of Apple
in 1998 .". The named entities in the
text: "Steve" is "person". "Apple"
is "organization".

For the RE task, the transformed format is:

The text is "Steve became CEO of Apple
in 1998 .". The relations of named enti-
ties in the text: person "Steve" work for
organization "Apple".
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Model Prompt
Type

Entity Relation

CoNLL03 ACE04 ACE05-E CoNLL04 ACE05-R NYT SciERC
UIE-large text 46.75±6.13 35.25±2.31 34.29±1.93 25.81±5.93 5.15±4.43 - 4.65±0.61

Codex code 75.89±1.79 54.27±2.14 51.91±2.51 43.05±3.42 7.09±4.40 32.17±1.46 6.05±0.82

RoI↑ 62.33 % 53.96 % 51.39 % 66.80 % 37.67 % - 30.11 %

Table 6: The 1-shot results of UIE-large and Codex, and Rate of Increase (RoI) of Codex than UIE-large.

Model Prompt
Type

Entity Relation

CoNLL03 ACE04 ACE05-E CoNLL04 ACE05-R NYT SciERC
text-davinci-002 text 68.84±1.29 45.51±0.23 48.93±0.49 39.67±2.44 5.13±1.24 16.07±4.67 4.39±0.98

code-davinci-002 code 82.32±0.37 55.29±0.37 54.82±2.09 53.10±2.02 14.02±3.27 32.17±1.46 7.74±1.54

text-davinci-001 text 38.55±6.11 29.23±1.49 29.73±2.22 19.63±4.37 0.89±0.66 - 0.87±0.22
code-davinci-001 code 61.86±1.88 33.62±3.85 36.26±1.45 28.75±1.90 1.65±1.55 - 1.91±0.30

Table 7: Performances of different LLMs. text-davinci-001 is an InstructGPT model based on the
previous GPT-3 model with Feedback Made Easy strategy. code-davinci-001 is an earlier version of
code-davinci-002.

Entity Label Error Entity Span Error

CoNLL03 ACE04 ACE05-E CoNLL03 ACE04 ACE05-E

#test 3453 812 1060 3453 812 1060

#in-context shot 5 2 2 5 2 2

GPT-3+text 15 298 414 113 140 114
GPT-3+code 57 755 949 28 73 57
Codex+text 3 30 64 90 88 141
Codex+code 8 536 601 18 51 37

Table 8: Detailed Errors on NER datasets. "Entity Label Error" means the predicted label is not in the predefined
label set. "Entity Span Error" means the predicted span is not in the original input text. The reported error numbers
are counted by summing 3 different seeds.

Ent1 Type Error Ent1 Span Error Relation Type Error

CoNLL04 ACE05-Rel NYT SciERC CoNLL04 ACE05-R NYT SciERC CoNLL04 ACE05-R NYT SciERC

#test 288 2050 5000 551 288 2050 5000 551 288 2050 5000 551

#in-context shot 5 2 1 2 5 2 1 2 5 2 1 2

GPT-3+text 2 1078 669 335 26 266 491 160 169 617 3274 358
GPT-3+code 3 410 102 410 13 105 1029 105 6 12 2000 50
Codex+text 1 815 100 815 20 155 477 155 84 820 315 820
Codex+code 0 346 10 346 1 108 544 108 2 0 141 17

Table 9: Detailed Errors on RE datasets. "Ent1 Type Error" means the predicted entity type of the first entity is not
in the predefined type set. "Ent1 Span Error" means the predicted span of the first entity is not in the original input
text. "Relation Type Error" means the predicted label is not in the predefined relation type set. The reported error
numbers are counted by summing 3 different seeds.
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