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Abstract

Video sentence localization aims to locate mo-
ments in an unstructured video according to a
given natural language query. A main challenge
is the expensive annotation costs and the anno-
tation bias. In this work, we study video sen-
tence localization in a zero-shot setting, which
learns with only video data without any annota-
tion. Existing zero-shot pipelines usually gener-
ate event proposals and then generate a pseudo
query for each event proposal. However, their
event proposals are obtained via visual fea-
ture clustering, which is query-independent and
inaccurate; and the pseudo-queries are short
or less interpretable. Moreover, existing ap-
proaches ignores the risk of pseudo-label noise
when leveraging them in training. To address
the above problems, we propose a Structure-
based Pseudo Label generation (SPL), which
first generate free-form interpretable pseudo
queries before constructing query-dependent
event proposals by modeling the event tempo-
ral structure. To mitigate the effect of pseudo-
label noise, we propose a noise-resistant itera-
tive method that repeatedly re-weight the train-
ing sample based on noise estimation to train
a grounding model and correct pseudo labels.
Experiments on the ActivityNet Captions and
Charades-STA datasets demonstrate the advan-
tages of our approach. Code can be found at
https://github.com/minghangz/SPL.

1 Introduction

Video sentence localization, which aims to localize
the most salient video segments from an untrimmed
video given a free-form nature language query, has
attained increasing attention due to its potential
applications in video surveillance (Collins et al.,
2000), robot manipulation (Kemp et al., 2007), etc.
The free-form natural language queries allow the
model to be flexibly adapted to the requirements of
different practical applications.
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Figure 1: (a) Training data for fully-supervised models.
(b) Training data for weakly-supervised models. (c) The
zero-shot models are trained with videos only. Existing
pipeline may generate unaligned pseudo event-query
pairs. (d) We construct query-dependent event proposals
by modeling the event temporal structure.

In recent years, the performance of video sen-
tence localization has been improved with the help
of advanced deep learning techniques and mas-
sively annotated data. However, the high anno-
tation cost and the annotation bias still prevent the
practical application of these models. On the one
hand, the process of generating descriptions for the
events in the video and labeling the corresponding
events with the exact start and end timestamps are
labor-intensive. On the other hand, many meth-
ods tend to capture the annotation bias (both in the
query and timestamps) in the dataset, thus affecting
the robustness of these models (Yuan et al., 2021;
Otani et al., 2020). As shown in Figure 1, although
the weakly supervised approaches do not require
the timestamps annotation, the annotation costs of
natural language queries are still unavoidable and

14197

Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 14197-14209
July 9-14, 2023 ©2023 Association for Computational Linguistics


https://github.com/minghangz/SPL

they still suffer language-related annotation bias
(e.g. query style and structure, etc). Therefore, in
this work, we study the video sentence localisation
in a zero-shot setting, i.e. only video data is needed
for training without any manual annotation'.

Existing zero-shot video sentence localization
approaches (Nam et al., 2021; Wang et al., 2022;
Kim et al., 2023) follow the same pipeline, i.e.
looking for event proposals in the video, and then
generating pseudo queries for the events. They ei-
ther construct a simple subject-verb-object pseudo
query by detecting possible verbs and nouns in
the video or directly use the CLIP (Radford et al.,
2021) features of video frames to serve as the query
text features, assuming the visual and text feature
spaces are well aligned. However, there are three
problems in this pipeline. Firstly, their pseudo
queries are either too simple (simple subject-verb-
object structure) or less interpretable (only given
as features), which makes it potentially difficult
to generalize the model to the real queries. Be-
sides, they usually generate nouns and verbs by pre-
trained object detectors or image-text pre-trained
models, where temporal structured information is
absent. Secondly, as shown in Figure 1(c), though
they encourage the pseudo queries to have high
semantic relevance to the proposal, they ignore
the pseudo queries might also have a high score
to the time-span out of the proposal, leading to
miss-alignment between the pseudo queries and
proposals, which may result in the model learning
the incorrect visual and text alignment. Thirdly,
existing methods train the model directly using
pseudo-labels, ignoring the risk of noise in the gen-
erated start and end timestamps. They may fit the
noise during training, resulting in poor test perfor-
mance.

To tackle these problems, we propose a novel
Structure-base Pseudo Label generation pipeline
(SPL) to generate flexible and generalizable
pseudo-labels and reduce the noise in the pseudo-
labels during training. Firstly, to generate free-form
pseudo-queries, we sample video frames and gen-
erate captions using a pre-trained image caption
model. The queries from the caption model are
more diverse and flexible than those simple subject-
verb-object pseudo queries. Secondly, to generate
reasonable events for pseudo-queries, we consider

'In this work, we follow the definition of ‘zero-shot video
sentence localization’ in previous works (Nam et al., 2021;
Wang et al., 2022; Kim et al., 2023), which may be different
from the zero-shot setting in other tasks.

the temporal structure of an event, i.e. the rele-
vance between the query and the content in the
event should be high, while the relevance outside
the event should be low. Specifically, we enumerate
event proposals and select the one with the largest
gap between the semantic relevance to the query
within the event and outside the event, and use
the gap value as the quality of the pseudo query.
To prevent too many queries from describing the
same event, we use non-maximum suppression to
filter out the pseudo-queries whose events have a
high IoU with others and keep the top-K pseudo-
query-event pairs based on their quality. Finally,
to mitigate the effect of pseudo-label noise when
training a fully supervised model using our pseudo-
query-event pairs, we propose a noise-resistant iter-
ative method. We repeatedly re-weight each train-
ing sample based on our noise estimation from
the model’s prediction, and continuously refine
the temporal labels during training. Our pipeline
shows significant performance advantages on the
Charades-STA and ActivityNet Captions datasets.
Our contributions are: (1) We propose a novel
model learning process for zero-shot video sen-
tence localization, which generates free-form
pseudo query candidates first, and then generates
pseudo events according to the temporal structure
of an event. (2) We propose a sample re-weight and
pseudo-label refinement method to reduce the ef-
fect of pseudo-label noise on the model. (3) Exper-
iments on Charades-STA and ActivityNet Captions
demonstrate the advantages of our method.

2 Related Works

2.1 Fully/Weakly Supervised Video Temporal
Localization

The fully supervised methods(Gao et al., 2017;
Wang et al., 2021; Zhao et al., 2021; Zhou et al.,
2021; Huang et al., 2022; Zhang et al., 2020, 2021;
Zheng et al., 2023) usually train a model with the
annotations of start and end timestamps for each
video and query. However, the high cost of manual
annotation limits the scalability of fully supervised
methods. Moreover, as studied in (Yuan et al.,
2021; Otani et al., 2020), the annotation bias in
the dataset may also affect the robustness of these
models. To reduce the annotation cost, the weakly
supervised methods (Lin et al., 2020; Zheng et al.,
2022b,a; Yang et al., 2021; Huang et al., 2021;
Mithun et al., 2019) train the model with only the
videos and annotated queries. However, the weakly
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supervised methods still suffer the language-related
annotation bias, and the annotation costs of natural
language queries are also unavoidable. Therefore,
in this work, we study the video sentence local-
ization using only video data (without any manual
annotation), which is more practical but also more
challenging.

2.2 Zero-shot Video Temporal Localization

In the zero-shot setting, only the video data are
required during training. Existing zero-shot meth-
ods (Nam et al., 2021; Kim et al., 2023; Wang
et al., 2022; Gao and Xu, 2021) follow the same
pipeline, i.e. search event proposals in the video,
and then generate pseudo queries for the events.
PSVL (Nam et al., 2021) first discovers the tempo-
ral event proposals and then generates simplified
pseudo queries by detecting nouns in the video and
discovering appropriate verbs with those nouns.
Gao et al. (Gao and Xu, 2021) directly generate
pseudo query features in the pre-trained visual lan-
guage feature space. However, the pseudo queries
in existing methods are either too simple or less
interpretable. Besides, the existing pipeline does
not take the temporal structure of an event into ac-
count, which may lead to unaligned pseudo-events
and queries. Moreover, they ignore the risk of
pseudo-label noise when leveraging them in model
training. In this paper, we generate free-form in-
terpretable pseudo queries and construct query-
dependent event proposals by modeling the event
temporal structure and propose a noise-resistant
method to mitigate the effect of pseudo-label noise.

2.3 Learning with Noisy Labels

Many works have explored how to train models
with noisy labels on the tasks such as image clas-
sification (Han et al., 2018; Li et al., 2020), object
detection (Li et al., 2020, 2022b), et al. Some ap-
proaches correct the noisy labels by learning from
a small set of clean samples (Xiao et al., 2015; Veit
et al., 2017), or learning with hard or soft labels
using the model predictions (Tanaka et al., 2018;
Yi and Wu, 2019; Li et al., 2020, 2022b). Some
approaches re-weight or select training samples by
estimating the noise in each sample (Li et al., 2020;
Arazo et al., 2019; Chen et al., 2019). Existing
noisy label image classification methods mostly as-
sume noisy labels in different pixels are i.i.d, which
is not realistic in the video sentence localization
task, where pseudo label noise is likely to be in-
troduced near the boundary of the events. To the

best of our knowledge, we make the first attempt
to reduce label noise introduced by pseudo labels
in the video sentence localization task by iterative
sample re-weighting and pseudo-label refinement.

3 Approach

The overview of our model design is illustrated in
Figure 2. Our method is divided into four steps.
In the first step, we generate pseudo queries for
a given video. To obtain realistic free-form na-
ture language queries, we sample video frames and
generate captions using a pre-trained image cap-
tion model, which will serve as our pseudo query
candidates. In the second step, we generate pseudo-
event proposals for each pseudo query. As the
events described by the query should have a cer-
tain structure, i.e. the relevance to the query in the
event should be high, while the relevance to the
query outside the event should be low, we calculate
the similarity between each query candidate and
each video frame. Then, for each pseudo query,
we select the best event proposal with the largest
gap between the correlation within the event and
the correlation outside the event, and the gap is
served as the quality of that pseudo query. As a
good pseudo query should not be too general (e.g.
‘there is a person’ is a bad query), it should be sig-
nificantly more relevant to the corresponding event
in the video than other video segments. Thus, in
the third step, we will only keep the top-k high-
quality proposal-query pairs. In the last step, we
will train a fully supervised model using the filtered
pseudo-query-event pair. To reduce the noise in the
pseudo-labels, we propose to estimate the noise
and then re-weight each sample, while refining the
pseudo-labels during training.

3.1 Pseudo Query Generation

In this step, we will generate free-form natural lan-
guage queries based on the video. The pseudo
queries in previous works are usually too simple
(simple subject-verb-object structure) or unspeci-
fied (only given as features), which have a large
gap between the real nature language queries. Thus,
we propose to generate free-form nature language
queries using a pre-trained image caption model
based on the video frames.

Specifically, given a video V', we first uniformly
sample N frames vy, vs,...,vny. Then, we use a
pre-trained BLIP model (Li et al., 2022a) to gener-

14199



Similarity
—

3.7s 12.1s

Similarity

Query Candidates:
A woman takes shoes off.

A bed in the room.

—»Tlme

Time

s=s5—-5,=02-05=-03
§s=85—5,=08-0.2=0.6
S =

”“/w\m 9s s=0.1 (X) Dropped

351725 s=05 () Kept
L— > Time

| Similarity

|

|

|

@ Kept

Si—S,=05-02=0.3

|

|

|

|

|

|

|

Pseudo Label: :
A woman takes shoes off. |
[3.7s, 12.1s] |
A woman sitting on a bed. |
[3.5s, 17.25] |
|

|

|

|

|

|

|

<«— Event Proposals
S; Mean similarity within event
So Mean similarity outside event
s Event quality

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| A woman sitting on a bed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

Pseudo Label:
A w:)lman takes shoes off. Fully Noise estimation 0.9 Reweight loss Ly :
[3.7s, 12.15] E— Supervised 0.7 I
A woman sitting on a bed. Model Label refinement [4.1s, 11.8s] |
[3.5s,17.25] [5.2s, 18.1s] |
1 Label refinement | |
|

Figure 2: SPL overview. We first generate free-form pseudo queries by generating captions using a pre-trained
image caption model. Then, we generate pseudo event proposals for each pseudo query and filter the pseudo
query-event pairs by modeling the event temporal structure. Finally, we train a fully supervised model using the
filtered pseudo query-event pair, and propose a sample re-weight and pseudo label refinement method to mitigate

the effect of pseudo-label noise.

ate captions for each frame. As a video frame may
be rich in content, we generate multiple queries
for the same frame to ensure that the description
of the frame is as complete as possible. Then, the
captions cy, cg, ..., cps serve as our pseudo query
candidates, where M is the number of captions in
the video. Note that in this step, M will usually be
large in order to ensure that the candidate queries
contain as many meaningful queries as possible.
However, this can also lead to a large number of
low-quality queries in the candidates, which will
be filtered out in the method described in Sec. 3.3

3.2 Pseudo Event Generation

In this step, we generate pseudo-events (i.e. start
and end timestamps) for each pseudo-query can-
didate. Existing methods usually generate query-
independent pseudo-events first, and then generate
pseudo-queries for those pseudo-events. They ig-
nore the temporal structure of real events, i.e. video
within the event should be highly correlated with
the query, while video outside the event should be
lowly correlated with the query. Therefore, we take
full account of in-event and out-of-event relevance
to the query to produce high-quality pseudo-events.

Specifically, for each pseudo-query candidate

c1, ..., cAr, We use pre-trained BLIP text encoder to

extract text features F' = [ff, ..., f¢,] € RM*D,
where D is the feature dimension. Then, for
each video frames vq, ..., vx, we can also use the
BLIP image encoder to extract image features
= [fY, ..., f§] € RV*D_ As the BLIP text
and image feature space are well aligned, We can
directly use the cosine similarity of the text and im-
age features to measure the relevance of the query

and the video frame:
FeFvT

RMXN
[ElE~]

S = 1)

We believe that the most relevant event for a
given query should satisfy the requirement that
videos within the event have a high relevance to the
query and videos outside the event have a low rele-
vance to the query. Therefore, we use the sliding
window to enumerate the possible event proposals
P1, P2, ---s PN,» Where N, is the number of event
proposals. Then, we calculate the average simi-
larity within each event and the average similarity
outside each event, and use the difference between
them as the quality for each event proposal:

Toal T S0 up [ Z Sy @

JEPE
where ;1 is the quality of the k-th event proposal

ik
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Algorithm 1: Pseudo label generation

Input :Training videos
Output : Pseudo query-event pairs

1 for each training video do

2 Generate image captions for video
frames using BLIP model
3 Calculate the similarity between

captions and video frames by Eq.(1)
4 for each pseudo query (caption) do

5 Calculate event quality by Eq.(2)
6 | Keep the best event by Eq.(3)

7 for each the query-event pairs do

8 Calculate query quality by Eq.(4)
9 | Keep top-K query-event via NMS

to the i-th query candidate, .S;; is the relevance of
the i-th query and the the j-th frame, and ||pg|| is
the number of frames in the event proposal py.

Finally, to ensure that the event to each query is
unique, we select the highest quality event proposal
as the pseudo-event label for the ¢-th query:

A~

€; = pj, k = arg max Qik 3)

3.3 Label Filtering

Due to the uneven quality of the large number
of pseudo query-event pairs, we will filter them
further. We believe that a good query-event pair
should not be too general, so the relevance to the
video within the corresponding event should be as
high as possible, while the relevance to the video
outside the event should be as low as possible. This
means that the quality of the best event proposal
for each query candidate in Eq.(2) can also be used
to evaluate the quality of that query-event pair.

Specifically, we define the quality of the ¢-th
query-event pair as:

Qf = maz,”, Qu )

We do not want too many queries describing the
same event in the video, so we will further filter out
those query-event pairs whose events have a high
IoU between others using Non-maximum suppres-
sion. Finally, we will keep the top-K query-event
pairs in order of quality Q€ for a video.

We summarise our pseudo label generation
pipeline including the pseudo event generation and
label filtering in Algorithm 1.

3.4 Training with Noisy Pseudo Label

In this step, we can use the generated pseudo-
queries with their corresponding events to train
any of the fully supervised video sentence local-
ization models. Considering the performance, we
chose the recent open-source model EMB (Huang
et al.,, 2022). EMB conducts a proposal-based
video-text alignment first, and then constructs elas-
tic boundaries with the timestamps between the
predicted endpoints and the manually labeled end-
points. EMB requires the model to select the end-
points in these elastic boundaries and thus models
the uncertainty of the temporal boundaries.

However, most of the existing fully supervised
models are designed for clean training data and may
not be robust enough for pseudo-labels that contain
a lot of noise. Therefore, we design a sample re-
weight and label refinement method to reduce the
effect of label noise on the fully supervised model.

Sample Re-weight. It has been shown neural
networks are trained to fit clean data first and then
to fit the noise (Han et al., 2018; Yu et al., 2019).
Therefore, the confidence of a model in its predic-
tion can reflect the noise in the sample. That is, if
the model is more confident in its predictions and
the predictions are close to the training labels, there
is relatively less noise in the data.

Specifically, we use the video-text matching
score given by EMB between its prediction and
pseudo query as the confidence sf(mf for the
i-th training sample. Then, we calculate the
interaction-over-union (IoU) between the predic-
tion and pseudo label s:°“. The higher s¢f and
5% the lower the noise, and the greater the weight
of the training sample should be. Therefore, we
define the sample weights as:

1 1
1 — gtou + (1 _a)l — geonf

W=« 5)
where « is a hyper-parameter to balance the effects
of 5% and s°*/. Finally, we use the same loss
function as EMB and re-weight different samples
loss using w. By sample re-weight, we can reduce
the negative impact of noisy labels, but we pre-
fer that noisy labels also provide useful training
signals, so we further propose a label refinement
method to correct the noisy labels.

Label Refinement. Since the pseudo-events
may not be accurate enough, we design a label
refinement procedure, so that the model can update
higher-quality pseudo-labels during training.
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During training, if the model is confident in its
prediction, it is possible that the prediction is the
true label. Besides, we also believe that the true
label should not differ too much from the pseudo-
label, so we will also consider the IoU between
the prediction and the pseudo-label to prevent the
model from being overconfident in the wrong pre-
diction. Specifically, we can obtain the visual-text
matching scores sj* for the k-th proposal to the
query in EMB as well as its IoU s};"“ with the
pseudo label. We will select the k-th proposal as
the refined pseudo-label for the next epoch model
training, where k = arg max; (BsT+ (1= B)siew)
and ( is a hyper-parameter. In this way, if the
model has sufficient confidence in the prediction
of the correct label, it is possible to refine the noisy
label to the correct one.

The overall loss function is formulated as:

B
L= wilioe(Vi,ci, é) (6)

=1

where w; is the weight for the i-th pseudo query-
event pair for training, V; is the video, ¢; is the
pseudo query, €; is the refined pseudo event, L, is
the localization loss function used in EMB (Huang
et al., 2022), and B is the batch-size.

4 Experiments

To evaluate our method, we conduct experiments
on the Charades-STA (Gao et al., 2017) and Activi-
tyNet Captions (Krishna et al., 2017) dataset.

4.1 Datasets

ActivityNet Captions. ActivityNet Cap-
tions (Caba Heilbron et al., 2015; Krishna
et al., 2017) was originally collected for video
captioning, which contains 20K videos. There
are 37,417/17,505/17,031 video-query pairs in the
train /val_1/val_2 split. We follow previous works
and report the performance on the val_2 split.
Charades-STA. Charades-STA (Gao et al., 2017)
was built upon the Charades dataset. There are
12,408/3,720 video-query pairs in the train/test
split. We report the performance on the test split.

4.2 Evaluation Metrics

We follow the evaluation metrics ‘R@m’ and
‘mloU’ in the previous work (Nam et al., 2021),
where m is the predefined temporal Intersection
over Union (IoU) threshold. In particular, ‘R@m’
means that the percentage of predicted moments

that have the IoU value larger than m. ‘mloU’ rep-
resents the average Intersection over Union.

4.3 Implementation Details

We use the BLIP model(Li et al., 2022a) to gen-
erate captions for the video. We sample an image
every 8 and 16 frames and use BLIP to generate 10
and 5 captions for each image on the Charades-
STA and ActivityNet Captions datasets respec-
tively. For each video, we only keep the top-10 and
top-5 pseudo queries for Charades-STA and Activi-
tyNet Captions datasets respectively. We train the
EMB (Huang et al., 2022) model using our pseudo
labels and keep the training hyper-parameters con-
sistent. The hyper-parameters in sample re-weight
and label refinement are o« = 3 = 0.75.

4.4 Comparison with Other Methods

Table 1 shows the performance comparison of our
SPL to other methods on Charades-STA and Activ-
ityNet Captions datasets respectively. As we can
see, on the Charades-STA dataset, we led in all
metrics, e.g. the mloU is 4.42% higher than the
second place (Kim et al., 2023). On the ActivityNet
Captions dataset, we obtained the best performance
for R@0.3 and mloU. On the other hand, we out-
perform some of the weakly supervised methods
without using any human annotation, proving the
quality of the pseudo-labels we generated.

4.5 Experiments on Annotation Bias

In Table 2, we empirically investigate how the per-
formance of different methods are affected by the
annotation bias on the Charades-CD dataset (Yuan
et al.,, 2021). Charades-CD re-partitioned the
Charades-STA dataset to obtain the test_iid (in-
dependent and identically distributed (IID)) and
test_ood (out-of-distribution (OOD)) splits.

As we can see, the fully supervised method
EMB (Huang et al., 2022) shows a significant drop
(7.79%) in performance on test_ood split, which
indicates that EMB relies on the annotation bias in
the training data. Our method is not affected by the
annotation bias, and hence there is no significant
drop in performance on the test_ood split. As the
Charades-CD dataset is constructed considering
only the bias in the timestamps, the degradation of
the weakly supervised method CPL (Zheng et al.,
2022b) is also not significant, but their overall per-
formance is worse even with the help of annotated
queries. This proves the quality of the pseudo-
labels we generated.
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Method Su Charades-STA ActivityNet Captions

P | R@03 R@05 R@0.7 mloU |R@03 R@0.5 R@0.7 mloU

2D-TAN (Zhang et al., 2020) - 39.81 2325 - | 5875 4405 2738 -
EMB (Huang et al., 2022) fully | 7250 5833  39.25 53.09 | 6413 4481 2607 4559

MGSL-Net (Liu et al., 2022) - 6398 41.03 - - 51.87 3142 -

CRM (Huang et al., 2021) 5366 3476 1637 - [ 5526 32.19 - -

CNM* (Zheng et al., 2022a) | weakly | 6039 3543 1545 - | 5568  33.33 - -

CPL (Zheng et al., 2022b) 6640 4924 2239 - | 5573 3137 - -

Gao et al.* (Gao and Xu, 2021) 4669 20.14 827 - [ 4615 2638 1164 -
PSVL* (Nam et al., 2021) b0 | 4647 3129 1417 3124 | 4474 3008 1474 29.62
PZVMR* (Wang et al., 2022) 46.83 3321 1851 3262 | 4573 3126 17.84 3035
Kim et al.* (Kim et al., 2023) 5295 3724 1933 36.05 | 4761 3259 1542 3185
SPL* (ours) | no | 6073 4070 19.62 4047 | 50.24 2724 1503 35.44

Table 1: Evaluation Results on the Charades-STA Dataset and ActivityNet Captions Dataset. *These works use
pre-trained models: ours uses BLIP (Li et al., 2022a), CNM, PZVMR, and Kim et al. use CLIP (Radford et al.,
2021), PSVL fine-tune RoBERTa (Liu et al., 2019), Gao et al. uses VSE++ (Faghri et al., 2017).

mloU
iid ood drop

EMB (Huang et al., 2022) fully |55.44 47.65 7.79
CPL (Zheng et al., 2022b) weakly | 35.29 33.28 2.01
SPL (ours) no [41.32 39.61 1.71

Method Sup.

Table 2: Experiment on annotation bias on Charades.

4.6 Reducing Annotation Cost

Our pseudo-label generation method can reduce the
cost of manual annotation. In practice, considering
the balance between performance and annotation
cost, we can manually annotate a portion of data
and use our generated pseudo-labels for the remain-
der. In Figure 3(a), We train a fully supervised
model using partially annotated data and augment
missing data with our generated pseudo-labels.
As we can see, supplementing data with pseudo-
labels improves performance compared with train-
ing without pseudo-labels, and when only using
70% of the manually annotated data, the model per-
formance drops by just 0.14%. This shows the prac-
tical application of our approach in reducing anno-
tation costs and improving annotation efficiency.

4.7 Ablation Studies

To verify the effectiveness of our method, we con-
duct ablation studies on the Charades-STA dataset.

Compare with existing pipeline. In Table 3,
we compare the pipeline used in exsisting methods
and our method. We train our localization model
with PSVL (Nam et al., 2021)’s and our pseudo
queries and events respectively. As we can see in
Table 3, (1) even with the same query from PSVL,

4 -—-EMB w/ pseudo label Lo

41 EMB w/o pseudo label 0.8

3925 3922 =
‘ e 0%
g

E

R@0.7 (%)

0.6
0.

39.25 .4

38.77
8IS 379
100 90 80 70

Percent of labeled data (%) 0050010203 0405 0.6 0.7 0.80.9 10
cleanliness
(a)

Figure 3: (a) Experiment of reducing annotation cost
on the Charades-STA dataset. (b) The average weights
(scaled to [0, 1]) assigned to the samples with different
cleanliness.

Event Query Model ‘ R@0.5 R@0.7 mloU
PSVL PSVL PSVL | 3129 1417 31.24
PSVL PSVL Ours | 29.62 1570 3345
PSVL Ours Ours | 3694 1930 38.31
Ours  Ours  Ours 40.70  19.62 4047

Table 3: Compare with PSVL (Nam et al., 2021)’s
pipeline on the Charades-STA dataset.

our noise-robust localization model still show clear
performance advantages; (2) our pseudo queries
and temporally structured events demonstrate sig-
nificant performance improvements, which proves
the effectiveness of our pipeline. Besides, we cal-
culate the variances of pseudo-query features in
our method and PSVL. The variances are 0.88 and
0.67 respectively, which demonstrates our pseudo-
queries are more flexible and diverse.
Effectiveness of pseudo event generation. Ta-
ble 4 shows the performance of different ways of
generating pseudo-events. ‘Naive’ means randomly
generating events; ‘Expand’ means expanding the
frame where the query is generated until the similar-
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Event generation | R@0.5 R@0.7 mloU
Naive 28.31 11.99 3359
Expand 30.62 1524 35.23
PSVL 3694  19.30 38.31
SPL 40.70  19.62 4047

Table 4: Effectiveness of pseudo event generation.

Label filler | R@0.5 R@0.7 mloU
Random | 2452 1220 34.12
Similarity | 3245 1672 31.85

SPL 4070  19.62  40.47

Table 5: Effectiveness of label filtering.

ity falls below a certain threshold. ‘PSVL’ means
the pseudo-events used in (Nam et al., 2021). It
can be found that our method takes into account
the temporal structure of the event, and therefore
has the best performance.

Effectiveness of label filtering. Table 5 shows
the performance of different ways of selecting
pseudo labels. ‘Random’ means randomly select-
ing K pseudo labels for a video; ‘Similarity’ means
selecting top- K pseudo labels with the highest aver-
age similarity within the event. As we can see, our
method requires not only a high similarity within
the event but also a low similarity outside the event
to prevent the query from being too general and
therefore having the best performance.

Number of training queries. Table 6 shows
the performance trained with different number of
pseudo-labels generated for a video. As we can
see, when the number of pseudo-labels is small,
increasing the number of pseudo-labels improves
the performance. However, when the number of
pseudo-labels is too large, the number of incorrect
pseudo-labels also increases and therefore has a
negative impact on the model.

Effectiveness of reducing label noise. Table 7
shows the effectiveness of sample re-weight and
pseudo-label refinement. As we can see, both
the sample re-weight and pseudo label refinement
improve the performance. In addition, to intu-
itively demonstrate the effect of label re-weight,
we construct a noise-controlled training set by ran-
domly offsetting the temporal annotations in the
Charades-STA dataset. Figure 3(b) shows the aver-
age weights assigned to the samples with different
cleanliness (IoU with true label). As we can see,
the cleaner the sample is, the greater the weight as-
signed to it, which demonstrates that our re-weight

Queries per video ‘ R@0.5 R@0.7 mloU
1 2696 1298 3232
5 35.59 1841 37.70
10 40.70  19.62 40.47
20 4043 1949 39.84

Table 6: Different number of pseudo-queries per video.

Reweight Refine ‘ R@0.5 R@0.7 mloU

X X 38.74 1871 39.38
X v/ | 3968 2013 40.07
v X 39.76  19.78  39.91
v v 40.70  19.62 4047

Table 7: Effectiveness of reducing label noise.

method indeed estimates the noise in the sample.

Choices of hyper-parameters o and 3. In Fig-
ure 4, we compared the performance of using differ-
ent values of hyper-parameters « and 3 in sample
re-weight and label refinement. As we can see,
when « or § is small, our sample re-weight and
label refinement overly relies on the confidence
of the model’s output. This can have a negative
impact when the model’s output confidence is not
accurate. As « and [ gradually increase to 0.75,
the model performance also gradually improves.
When « and g are both 1, we do not re-weight
samples or refine the labels, which exacerbates the
impact of label noise on the model and leads to a
decrease in performance.

4.8 Qualitative Results

Figure 5 shows some qualitative results on the
Charades-STA dataset. In Figure 5(a), we show
some pseudo queries and pseudo events from the
Charades-STA and ActivityNet Captions datasets
respectively. As we can see, we generate the
free-form nature language query for the video and
the pseudo-event is also correct. In Figure 5(b),
we show some predictions of our model on the
Charades-STA dataset. As we can see, the knowl-
edge learned from the pseudo-labels can be gener-

415 425
= 40.47 o 40.49 40.47
405 40.07 405 39.91

39.77

2 393 2
2395 - 2 385
g = 37.

385 36.5

025 05 075 1 025 05 075 1

(a) Different values of a (b) Different values of B

Figure 4: Choices of hyper-parameters « and /3.
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Pseudo Query: a young woman in floral dress taking a photo with a camera
Pseudo Event: g3 15.0s

e
‘R

Pseudo Query: a woman standing by an open kitchen counter

Pseudo Event:
0.0s 41.7s

(a)
Video:

i ™ 'w P
& | T CAl

1D g ] ]
e =§=g ol o

Query: a person walks in a doorway drinking some coffee.

GT

0.2s 9.8s
Prediction

0.0s 8.4s

(b)

Figure 5: (a) Pseudo-labels on the Charades-STA and
ActivityNet Captions datasets respectively. (b) Our pre-
dictions on the Charades-STA dataset.

alized to real queries.

5 Conclusion

In this work, we introduce a novel model SPL for
zero-shot video sentence localization. We first gen-
erate free-form interpretable pseudo queries for
video frames and construct query-dependent event
proposals by modeling the event temporal structure.
To mitigate the effect of pseudo-label noise, we pro-
pose an iterative sample re-weight and pseudo-label
refinement method during training. Experiments
on the Charades-STA and ActivityNet Captions
datasets show the advantages of our method.

6 Limitations

In this work, we propose a structure-based pseudo-
label generation method for zero-shot video sen-
tence localization and propose a noise-resistant
method to reduce the effect of pseudo-label noise.
The limitations of our work are: (1) although
we generate free-form natural language queries,
the distribution of generated queries may still dif-
fer from the distribution of queries in the dataset
(e.g. queries on the Charades-STA dataset usually
start with ‘person’), which may degrade the perfor-
mance during testing; (2) our pseudo label refine-
ment can correct the noisy event labels, but there is
no mechanism to correct noisy queries. These can
be studied as future works.

7 Acknowledgements

This work was supported by the grants from
the Zhejiang Lab (NO.2022NBOABOS5), Na-
tional Natural Science Foundation of China
(61925201,62132001,U22B2048), CAAI-Huawei
MindSpore Open Fund, Alan Turing Institute Tur-
ing Fellowship, Veritone and Adobe. We thank
MindSpore? for the partial support of this work,
which is a new deep learning computing frame-
work.

References

Eric Arazo, Diego Ortego, Paul Albert, Noel O’Connor,
and Kevin McGuinness. 2019. Unsupervised label
noise modeling and loss correction. In International
conference on machine learning, pages 312-321.
PMLR.

Fabian Caba Heilbron, Victor Escorcia, Bernard
Ghanem, and Juan Carlos Niebles. 2015. Activitynet:
A large-scale video benchmark for human activity
understanding. In Proceedings of the ieee conference
on computer vision and pattern recognition, pages
961-970.

Pengfei Chen, Ben Ben Liao, Guangyong Chen, and
Shengyu Zhang. 2019. Understanding and utilizing
deep neural networks trained with noisy labels. In In-
ternational Conference on Machine Learning, pages
1062-1070. PMLR.

Robert T Collins, Alan J Lipton, Takeo Kanade,
Hironobu Fujiyoshi, David Duggins, Yanghai
Tsin, David Tolliver, Nobuyoshi Enomoto, Osamu
Hasegawa, Peter Burt, et al. 2000. A system for
video surveillance and monitoring. VSAM final re-
port, 2000(1-68):1.

Fartash Faghri, David J Fleet, Jamie Ryan Kiros, and
Sanja Fidler. 2017. Vse++: Improving visual-
semantic embeddings with hard negatives. arXiv
preprint arXiv:1707.05612.

Jiyang Gao, Chen Sun, Zhenheng Yang, and Ram Neva-
tia. 2017. Tall: Temporal activity localization via
language query. In Proceedings of the IEEE interna-
tional conference on computer vision, pages 5267—
5275.

Junyu Gao and Changsheng Xu. 2021. Learning video
moment retrieval without a single annotated video.
IEEFE Transactions on Circuits and Systems for Video
Technology, 32(3):1646—-1657.

Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao
Xu, Weihua Hu, Ivor Tsang, and Masashi Sugiyama.
2018. Co-teaching: Robust training of deep neural
networks with extremely noisy labels. Advances in
neural information processing systems, 31.

Zhttps://www.mindspore.cn/

14205



Jiabo Huang, Hailin Jin, Shaogang Gong, and Yang Liu.
2022. Video activity localisation with uncertainties
in temporal boundary. In European Conference on
Computer Vision, pages 724-740. Springer.

Jiabo Huang, Yang Liu, Shaogang Gong, and Hailin
Jin. 2021. Cross-sentence temporal and semantic
relations in video activity localisation. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 7199-7208.

Charles C Kemp, Aaron Edsinger, and Eduardo Torres-
Jara. 2007. Challenges for robot manipulation in
human environments [grand challenges of robotics].
IEEE Robotics & Automation Magazine, 14(1):20—
29.

Dahye Kim, Jungin Park, Jiyoung Lee, Seongheon Park,
and Kwanghoon Sohn. 2023. Language-free training
for zero-shot video grounding. In Proceedings of
the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2539-2548.

R. Krishna, K. Hata, F. Ren, L. Fei-Fei, and J. C. Niebles.
2017. Dense-captioning events in videos. In 2017
IEEE International Conference on Computer Vision
(ICCV).

Hengduo Li, Zuxuan Wu, Chen Zhu, Caiming Xiong,
Richard Socher, and Larry S Davis. 2020. Learn-
ing from noisy anchors for one-stage object detec-
tion. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
10588-10597.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
2022a. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding
and generation. arXiv preprint arXiv:2201.12086.

Shuai Li, Chenhang He, Ruihuang Li, and Lei Zhang.
2022b. A dual weighting label assignment scheme
for object detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 9387-9396.

Zhijie Lin, Zhou Zhao, Zhu Zhang, Qi Wang, and
Huasheng Liu. 2020. Weakly-supervised video mo-
ment retrieval via semantic completion network.

Daizong Liu, Xiaoye Qu, Xing Di, Yu Cheng, Zichuan
Xu, and Pan Zhou. 2022. Memory-guided semantic
learning network for temporal sentence grounding.
arXiv preprint arXiv:2201.00454.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Niluthpol Chowdhury Mithun, Sujoy Paul, and Amit K
Roy-Chowdhury. 2019. Weakly supervised video
moment retrieval from text queries. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11592-11601.

Jinwoo Nam, Daechul Ahn, Dongyeop Kang,
Seong Jong Ha, and Jonghyun Choi. 2021. Zero-
shot natural language video localization. In Proceed-
ings of the IEEE/CVF International Conference on
Computer Vision, pages 1470-1479.

Mayu Otani, Yuta Nakashima, Esa Rahtu, and Janne
Heikkilda. 2020. Uncovering hidden challenges in
query-based video moment retrieval. In BMVC.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models
from natural language supervision. In International
Conference on Machine Learning, pages 8748-8763.
PMLR.

Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and
Kiyoharu Aizawa. 2018. Joint optimization frame-
work for learning with noisy labels. In Proceedings
of the IEEE conference on computer vision and pat-
tern recognition, pages 5552-5560.

Andreas Veit, Neil Alldrin, Gal Chechik, Ivan Krasin,
Abhinav Gupta, and Serge Belongie. 2017. Learning
from noisy large-scale datasets with minimal super-
vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 839—

847.

Guolong Wang, Xun Wu, Zhaoyuan Liu, and Junchi
Yan. 2022. Prompt-based zero-shot video moment
retrieval. In Proceedings of the 30th ACM Interna-
tional Conference on Multimedia, pages 413—421.

Hao Wang, Zheng-Jun Zha, Liang Li, Dong Liu, and
Jiebo Luo. 2021. Structured multi-level interaction
network for video moment localization via language
query. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 7026-7035.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xi-
aogang Wang. 2015. Learning from massive noisy
labeled data for image classification. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 2691-2699.

Wenfei Yang, Tianzhu Zhang, Yongdong Zhang, and
Feng Wu. 2021. Local correspondence network
for weakly supervised temporal sentence grounding.
IEEE Transactions on Image Processing, 30:3252—
3262.

Kun Yi and Jianxin Wu. 2019. Probabilistic end-to-end
noise correction for learning with noisy labels. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7017—
7025.

Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor
Tsang, and Masashi Sugiyama. 2019. How does
disagreement help generalization against label cor-
ruption? In International Conference on Machine
Learning, pages 7164-7173. PMLR.

14206



Yitian Yuan, Xiaohan Lan, Xin Wang, Long Chen, Zhi
Wang, and Wenwu Zhu. 2021. A closer look at tem-
poral sentence grounding in videos: Dataset and met-
ric. In Proceedings of the 2nd International Work-

shop on Human-centric Multimedia Analysis, pages
13-21.

Mingxing Zhang, Yang Yang, Xinghan Chen, Yanli
Ji, Xing Xu, Jingjing Li, and Heng Tao Shen. 2021.
Multi-stage aggregated transformer network for tem-
poral language localization in videos. In Proceedings
of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12669-12678.

Songyang Zhang, Houwen Peng, Jianlong Fu, and Jiebo
Luo. 2020. Learning 2d temporal adjacent networks
for moment localization with natural language. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 12870-12877.

Yang Zhao, Zhou Zhao, Zhu Zhang, and Zhijie Lin.
2021. Cascaded prediction network via segment tree
for temporal video grounding. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 4197-4206.

Minghang Zheng, Yanjie Huang, Qingchao Chen, and
Yang Liu. 2022a. Weakly supervised video moment
localization with contrastive negative sample mining.
In Proceedings of the AAAI Conference on Artificial
Intelligence.

Minghang Zheng, Yanjie Huang, Qingchao Chen, Yuxin
Peng, and Yang Liu. 2022b. Weakly supervised tem-
poral sentence grounding with gaussian-based con-
trastive proposal learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Minghang Zheng, Sizhe Li, Qingchao Chen, Yuxin
Peng, and Yang Liu. 2023. Phrase-level temporal
relationship mining for temporal sentence localiza-
tion. In Proceedings of the AAAI Conference on
Artificial Intelligence.

H. Zhou, C. Zhang, Y. Luo, Y. Chen, and C. Hu. 2021.
Embracing uncertainty: Decoupling and de-bias for
robust temporal grounding. In 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 8441-8450, Los Alamitos, CA, USA.
IEEE Computer Society.

14207



ACL 2023 Responsible NLP Checklist

A For every submission:

¥ Al. Did you describe the limitations of your work?
6

A2. Did you discuss any potential risks of your work?
no potential risks need to be discuss

¥ A3. Do the abstract and introduction summarize the paper’s main claims?
1

A4. Have you used Al writing assistants when working on this paper?
Left blank.

B Did you use or create scientific artifacts?
Left blank.

O B1. Did you cite the creators of artifacts you used?
No response.

0J B2. Did you discuss the license or terms for use and / or distribution of any artifacts?
No response.

0 B3. Did you discuss if your use of existing artifact(s) was consistent with their intended use, provided
that it was specified? For the artifacts you create, do you specify intended use and whether that is
compatible with the original access conditions (in particular, derivatives of data accessed for research
purposes should not be used outside of research contexts)?

No response.

0J B4. Did you discuss the steps taken to check whether the data that was collected / used contains any
information that names or uniquely identifies individual people or offensive content, and the steps
taken to protect / anonymize it?
No response.

L1 B5. Did you provide documentation of the artifacts, e.g., coverage of domains, languages, and
linguistic phenomena, demographic groups represented, etc.?
No response.

0J B6. Did you report relevant statistics like the number of examples, details of train / test / dev splits,
etc. for the data that you used / created? Even for commonly-used benchmark datasets, include the
number of examples in train / validation / test splits, as these provide necessary context for a reader
to understand experimental results. For example, small differences in accuracy on large test sets may
be significant, while on small test sets they may not be.
No response.

C ¥ Dpid you run computational experiments?
4
C1. Did you report the number of parameters in the models used, the total computational budget

(e.g., GPU hours), and computing infrastructure used?
Our model requires only a small amount of computational resources

The Responsible NLP Checklist used at ACL 2023 is adopted from NAACL 2022, with the addition of a question on Al writing
assistance.

14208


https://2023.aclweb.org/
https://2022.naacl.org/blog/responsible-nlp-research-checklist/
https://2023.aclweb.org/blog/ACL-2023-policy/
https://2023.aclweb.org/blog/ACL-2023-policy/

v C2. Did you discuss the experimental setup, including hyperparameter search and best-found
hyperparameter values?
4.3

C3. Did you report descriptive statistics about your results (e.g., error bars around results, summary
statistics from sets of experiments), and is it transparent whether you are reporting the max, mean,
etc. or just a single run?

We report the results of a single run

v C4. If you used existing packages (e.g., for preprocessing, for normalization, or for evaluation), did
you report the implementation, model, and parameter settings used (e.g., NLTK, Spacy, ROUGE,
etc.)?

4.3

D Did you use human annotators (e.g., crowdworkers) or research with human participants?
Left blank.

O DI1. Did you report the full text of instructions given to participants, including e.g., screenshots,
disclaimers of any risks to participants or annotators, etc.?
No response.

(] D2. Did you report information about how you recruited (e.g., crowdsourcing platform, students)
and paid participants, and discuss if such payment is adequate given the participants’ demographic
(e.g., country of residence)?

No response.

[0 D3. Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? For example, if you collected data via crowdsourcing, did your instructions to
crowdworkers explain how the data would be used?

No response.

0 D4. Was the data collection protocol approved (or determined exempt) by an ethics review board?
No response.

0] DS. Did you report the basic demographic and geographic characteristics of the annotator population
that is the source of the data?
No response.

14209



