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Abstract

Large Language Model (LLM) trained on
a mixture of text and code has demon-
strated impressive capability in translating
natural language (NL) into structured code.
We observe that semantic structures can be
conveniently translated into code and pro-
pose CODE4STRUCT to leverage such text-to-
structure translation capability to tackle struc-
tured prediction tasks. As a case study, we for-
mulate Event Argument Extraction (EAE) as
converting text into event-argument structures
that can be represented as a class object using
code. This alignment between structures and
code enables us to take advantage of Program-
ming Language (PL) features such as inheri-
tance! and type annotation? to introduce exter-
nal knowledge or add constraints. We show
that, with sufficient in-context examples, for-
mulating EAE as a code generation problem is
advantageous over using variants of text-based
prompts. Despite only using 20 training event
instances for each event type, CODE4STRUCT
is comparable to supervised models trained on
4,202 instances and outperforms current state-
of-the-art (SOTA) trained on 20-shot data by
29.5% absolute F1. By leveraging the inheri-
tance feature of PL, CODE4STRUCT can use
10-shot training data from a sibling event type
to predict arguments for zero-resource event
types and outperforms the zero-shot baseline
by 12% absolute F1. 3

1 Introduction

Large Language Model (LLM) trained on massive
corpora of code mixed with natural language (NL)
comments and docstrings* (e.g., Chen et al. 2021,

"Inheritance is a way to create a hierarchy of classes in PL.

A child class can base upon another class, retaining similar
implementation.

Developers use type annotations to indicate the data types
of variables and input/outputs of functions.

3All code and resources are publicly available at ht tps :
//github.com/xingyaoww/codedstruct.

“Text used to document a specific segment of code.

hengji}@illinois.edu
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(1) Event Ontology

Convert to Python class

class Transport(Movement):

(2) Event Definition
Prompt LLM

Translate the following sentence into an instance of Transport.
The trigger word(s) of the event is marked with **trigger word**.
"Kelly , the US assistant secretary for East Asia and Pacific
Affairs , **arrived** in Seoul from Beijing Friday to brief Yoon ,

the foreign minister ."
wan Input Sentence

transport_event = Transport( Transport
artifact=[ (Event Instance)
PER("Kelly")
] e PER: Kelly 28€Nt
> . . origin
destination=[ destination
GPE("Seoul"), Generated

1, Code
origin=[
GPE("Beijing"),
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(3) Event Instantiation

Figure 1: Event Argument Extraction using code gen-
eration. We convert the existing event type ontology to
PYTHON class definitions. Conditioned on these defi-
nitions, we put the input sentence for event argument
extraction into a docstring as the prompt for code gen-
eration. The generated code (colored in green) can be
mapped to an instance graph of Transport event.

Nijkamp et al. 2022) has demonstrated the abil-
ity to translate natural language instructions into
structured code. We ask if this conversion between
language and code can serve as a bridge to build a
connection between language and semantic struc-
ture, which is the goal of many structured predic-
tion tasks (e.g., semantic parsing, information ex-
traction) in Natural Language Processing (NLP). In
particular, the target structure (e.g., event-argument
graph in Figure 1) can be mapped to code more
straightforwardly compared to natural language,
which often requires careful prompt engineering
(Hsu et al. 2022, Li et al. 2021, Table 2). In addi-
tion, code written in programming languages has
an inherent advantage in representing complex and
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Event Argument Extraction

Event / Entity Type
Transport, VEH

Hierarchical Event Ontology
Movement:Transport

Event Arguments
vehicle

Argument Constraint

Each argument can has a list of multiple
entities; Argument vehicle should be entities of
type VEH.

Weakly-supervised Information

Transport Event describes someone transporting
something in a vehicle from one place to another
place.

Programming Language (Python)

Class definition
class Transport, class VEH

Inheritance
Inheritance is a way to create a hierarchy of classes in PL. A child class can base upon another class
retaining similar implementation.

class Transport(Movement)

Function arguments
def function(vehicle=...)

Type Annotation & Argument Default Value

Type annotations are used by developers to indicate the data types of variables and input/outputs of
functions. If a function is called without the argument, the argument gets its default value (a list in this
case).

def function(
vehicle: List[VEH] = [], ...
)

Docstring or Comments

class Transport(Movement):

self.agent transported self.artifact in self.vehicle vehicle from self.origin
place to self.destination place.

Table 1: Mapping between Event Argument Extraction requirements and features of Python programming lan-

guage.

interdependent structures (Miller, 1981; Sebrechts
and Gross, 1985) with features such as inheritance
and type annotation.

As a case study, we showcase our proposed
CODE4STRUCT on the Event Argument Extrac-
tion (EAE) task, which aims to extract event struc-
tures from unstructured text. EAE is the ideal
testbed for our method due to the close alignment
between EAE and PL as shown in Table 1. In
CODE4STRUCT (Figure 1), we first translate the
entity and event type ontology into Python class
definitions. Conditioned on the relevant class defi-
nitions and the input sentence, we prompt an LLM
to generate an instantiation of the event class, from
which we can extract the predicted arguments.

By leveraging the alignment between PL and
NLP problems, CODE4STRUCT enjoys various ad-
vantages as shown in Table 1. Using PL features
like type annotation and argument default value,
we can naturally enforce argument constraints for
output structures. This allows CODE4STRUCT to
handle multiple or zero argument fillers for the
same argument role by annotating the expected
type (i.e., expect a list of entities) and setting the
default value for each argument (i.e., an empty list
without any entity by default). Furthermore, we can
naturally utilize the event hierarchy by leveraging
inheritance. Inheritance allows a child event class
(e.g., Transport) to reuse most components of
its parent class (e.g., Movement) while preserving
its unique properties. We demonstrate that hierar-
chical event types allow zero-resource event types
to use annotated training examples from their high-

resource sibling types (§4.6).
‘We outline our contributions as follows:

* We propose CODE4STRUCT to tackle struc-
tured prediction problems in NLP using
code generation. As a case study, we use
CODE4STRUCT for Event Argument Extrac-
tion (EAE).

* We perform extensive experiments contrast-
ing the performance of code-based prompt
and two variants of text prompt on different
LLMs and show that code prompt is generally
advantageous over text prompt when sufficient
in-context examples are provided (§4.2).

* We demonstrate that 20-shot CODE4STRUCT
rivals fully-supervised methods trained on
4,202 instances. CODE4STRUCT outperforms
a SOTA approach by 29.5% absolute F1 gain
when 20-shot data are given to both. O-
shot CODE4STRUCT can even outperform the
SOTA on both 20 and 50 shots (§4.5).

We show that integrating the event ontology
hierarchy by class inheritance can improve
prediction. Compared to the zero-shot base-
line, we see 12% F1 gains for zero-resource
event types when using 10-shot examples
from their sibling event types (§4.6).

2 Code Generation Prompt Construction

In Event Argument Extraction (EAE) task, a model
is provided with an event ontology and the tar-
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class Movement(Event): Inherit from " Even class
... # omitt®d For space B .

e e ST )s Hierarchical Event template
W Ontology

self.agent transported self.artifact in self.vehicle vehicle from
self.origin place to self.destination place.

def __init__(
self,
agent: List[GPE | ORG | PER] = [],
artifact: List[FAC | ORG | PER | VEH | WEA] = [],
destination: List[FAC | GPE | LOC] = [],
origin: List[FAC | GPE | LoC] = [],
vehicle: List[VEH] = [],

Entity Type Annotation

self.agent = agent
self.artifact = artifact
self.destination = destination
self.origin = origin
self.vehicle = vehicle

" Translate the following sentence into an instance of Transport. The trigger
WC word(s) of the event is marked with **trigger word**.
"k “Renowned Hollywood madam Heidi Fleiss has been **flown** to Melbourne as guest
fC of honour at Thursday's market debut and , according to Harris , has already
" played a key role in attracting worldwide media attention to the event ."
tr "
transport_event = Transport(
artifact=[PER("Heidi Fleiss"),],
) destination=[GPE("Melbourne"),],
)

Groundtruth Code

!

}

LLM Prompt

from typing import List
class Entity:
def _init_ (self, name: str):
self.name = name
class Event:
def _init_ (self, name: str):
self.name = name

Base Class
Definition

class ORG(Entity):

4o class GPE(Entity): o Ontology
Geopolitical entities such as countries, provinces, Cod
states, cities, towns, etc. GPEs are composite entities, ode .
consisting of ...""" Representation
def __init_ (self, name: str):
super().__init__(name=name)
Relevant Entity Definition(s)
Event Definition
(optional) k In-context Examples
Translate the following sentence into an instance of
Transport. The trigger word(s) of the event is marked
with **trigger word**. Trigger Marking Task
"Kelly , the US assistantysecretary for East Asia and
Prompt

Pacific Affairs , **arrived** in Seoul from Beijing
Friday to brief Yoon , the foreign minister ."

transport_event = Transport(

Figure 2: Prompt components. (1) Ontology code representation contains definitions of entity and event classes,
colored in yellow and blue (§2.1). (2) k-shot examples for in-context learning, colored in orange (§2.3). (3) The
task prompt, appended at the end with partial class instantiation for LLM completion, colored in green (§2.2).

get text to extract from. Similarly, we prompt an
LLM with the ontology that consists of definitions
of event types and argument roles, and input sen-
tences to generate code that instantiates the given
event type. We breakdown the input prompt into
three components: (1) ontology code representa-
tion which consists of Python class definitions for
entity types and an event type (§2.1); (2) optional
k-shot in-context learning examples for the event
type defined in (1) (§2.3); (3) task prompt for com-
pletion (§2.2). We show a breakdown of the full
prompt in Figure 2.

2.1 Ontology Code Representation

To represent the event ontology as code, we con-
catenate the base class definition, entity class defi-
nitions, and event class definitions.

Base Class Definition We define base type
Entity and Event to be inherited by other
classes.

Entity Class Definition We use entity type def-
initions from the Automatic Content Extraction
(ACE) program’. We construct Python classes that
inherit from Ent ity and use the entity type as the
class name (e.g., class GPE (Entity)). We
add a natural language description as a docstring
of the defined class for each entity type.

Shttps://www.ldc.upenn.edu/
collaborations/past-projects/ace

2.1.1 Event Class Definition

We define the event class using the name of the
event type (e.g., class Transport). As ACE
defines its event types in a hierarchical ontology,
mimicking class definitions in Object-Oriented PL,
we inherit the event class definition from its par-
ent (e.g., class Transport (Movement))or
root event type if the event class does not has a par-
ent (e.g., class Movement (Event)). An ex-
ample of hierarchical event definition can be found
in Figure A.9.

We define the argument roles (e.g., destination
of Transport) as input arguments of the con-
structor __init__ 5. We specify the type of each
argument role using Python type annotation, a com-
monly used PL feature: For example, agent:
List [GPE | ORG | PER] means that the
agent argument accepts a list of entities which
could be either of type GPE (Geo-Political Entity),
ORG (Organization), or PER (Person). We assign
each input argument (e.g., agent) to a class mem-
ber variable of the same name.

We include event description templates into the
docstring of the class definition. The event descrip-
tion templates are modified from Li et al. (2021)
by replacing each role with their corresponding
member variable (e.g., self.agent).

2.2 Task Prompt

The task prompt consists of a docstring describing
the task and incomplete event instantiation code for

A constructor is a special function that initializes an in-
stance of a class.
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Prior Work Language Template

DEGREE (Hsu et al., 2022)

somebody was moved to somewhere from some place by some way. somebody or some organization was

responsible for the movement. something was sent to somewhere from some place. somebody or some
organization was responsible for the transport.

BART-Gen (Li et al., 2021)

<argl> transported <arg2> in <arg3> vehicle from <arg4> place to <arg5> place

Text2Event (Lu et al., 2021)

( (Transport returned (Agent <arg>) (Artifact <arg>) (Destination <arg>) (Origin <arg>) (Vehicle <arg>) )

Table 2: Example of language templates for Event Argument Extraction used by Hsu et al. (2022); Li et al. (2021);

Lu et al. (2021).

completion. An example of a task prompt can be
found in Figure 2. The text-based docstring con-
tains a task instruction and an input sentence. We
mark the ground truth trigger words for the input
text by surrounding them with xx. We choose to
use  * as it is used to set text to bold in Markdown
(a markup language for creating formatted text),
which is commonly found in code bases and web
data on which our LLM is trained. The incomplete
code prompt assigns a partial instantiation of an
event class to a variable to trigger the model for
completion, for example, transport_event
= Transport (.

We observed that LLM tends to generate addi-
tional sentences paired with extracted arguments
if no stopping constraint is applied. To focus on
the given EAE task, we stop the code generation
whenever any of the following patterns is generated
by the model: """, class, print, or #.

2.3 In-context Learning

Optionally, we can include in-context learning ex-
amples, which are task prompts (§2.2) paired with
completed event instantiations using ground-truth
arguments (see Figure 2 for a specific example).
For k-shot learning, we concatenate k£ such exam-
ples together. Given a task prompt, we determin-
istically gather k learning examples by collecting
training instances with the same event type, follow-
ing the order of occurrences in the training set.

3 Why Represent Event Structure in PL?

A wide range of NLP tasks have benefited from
LLM (Brown et al., 2020; Hoffmann et al., 2022;
Chowdhery et al., 2022) trained on web-scale lan-
guage corpora. To effectively use LLM trained on
language for EAE, one of the biggest challenges is
to specify the desired output, namely event struc-
tures in our case, using natural language.

There is a tradeoff between the effort put into
defining the output or designing the prompt (e.g.,
Text2Event in Table 2) and the benefit from pre-

training in natural language (e.g., DEGREE and
BART-Gen in Table 2). Text2Event (Lu et al., 2021)
resides at one end of the spectrum with a concise
but unnatural output format. As a result, this formu-
lation under-utilizes the pretraining power of the
model and does not work in low-resource settings
as shown in Table 4. Towards the other end, Hsu
et al. (2022); Li et al. (2021) design manual tem-
plates for the model to fill in. We also design two
variants of language prompt as shown in Figure A.5
and A.6 miciking our code prompt and BART-Gen
style prompt for comparison. Note that these natu-
ral language prompts are much more verbose and,
as shown in §4.2, usually result in sub-optimal per-
formance with sufficient in-context examples.

Essentially, this tradeoff is a result of the mis-
match between the pretraining corpora and task
output formats. Instead of using LLM trained on
only unstructured text, we turn to LLM trained with
a mixture of text and code, where the text is often
aligned in semantics with the accompanying code.
Such Code-LLMs have the ability to convert text
into corresponding code as demonstrated by (Chen
et al., 2021; Nijkamp et al., 2022). Then we can
map the desired output event structure into code
in a straightforward manner and leverage the full
pretraining power of these models. PLs like Python
offer features (e.g., class, docstrings, type annota-
tions, inheritance) that have a significant presence
in the pre-training corpus of Code-LLM due to
frequent usage. CODE4STRUCT leverages these
features to succinctly describe event structures,
which makes it better aligned with Code-LLM. By
leveraging LLM’s learned knowledge from diverse
pre-training domains, CODE4STRUCT can work
well in open-domain, achieving non-trivial zero-
shot performance given unseen event types (§4.5).
CODE4STRUCT is also data-efficient as exempli-
fied by reaching comparable performance to fully-
supervised methods with much fewer annotated
examples (20 per event type) (§4.5).
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4 Experiments

4.1 Experiment Setup

LLM We use CODEX code-davinci-002
(Chen et al.,, 2021), a GPT-3 (Brown et al.,
2020) model finetuned on code, which supports
up to 8k input tokens. We compare its perfor-
mance with InstructGPT (Ouyang et al., 2022)
text—-davinci-002 and its improved version
text-davinci-003, both support up to 4k in-
put tokens. We access these LLMs through OpenAl
API’.

Hyperparameters We prompt LLM to generate
code that instantiates an event using sampling tem-
perature ¢t = 0 (i.e., greedy decoding). We set the
max number of new tokens for each generation to
128, which fits all code outputs for the test set.

Evaluation Tasks We use ground truth event
type and gold-standard trigger words to perform
Event Argument Extraction.

Dataset We evaluate our performance of EAE on
the English subset of Automatic Content Extraction
2005 dataset (ACE05-E)® (Doddington et al., 2004).
We follow Wadden et al. (2019); Lin et al. (2020)
for dataset processing. ACEOS-E has hierarchical
event types with 8 parent types and 33 child types.
Among all child types, roughly half of the event
types (14 out of 33) in ACEOS5-E have less than
50 event instances in the training set. We show
statistics for each event type in Table A.4.

Evaluation metrics We use Argument F1-
score following prior work (Ji and Grishman, 2008;
Liet al., 2021; Hsu et al., 2022): We consider an
argument to be correctly identified when the head
word span of predicted text® matches that of the
human-annotated text (denoted as Arg-I); We con-
sider an argument to be correctly classified if the
role (e.g., agent) of a correctly identified argu-
ment matches that of the human annotation (de-
noted as Arg-C).

4.2 Comparison with Text Prompt

To compare our code-based prompt with text-based
prompts, we design two variants of text prompt:

"https://openai.com/api/

$https://www.ldc.upenn.edu/
collaborations/past-projects/ace

“We find the span of predicted text in the given sentence,
then use spacy library to find its head word.

T mimicking our code prompt (i.e., code im-
itation, Figure A.5) and T2 following BART-
Gen style prompt (Li et al., 2021) (Figure A.6)
which resembles natural language more compared
to 7. Both text prompts have similar compo-
nents as our code-based prompt in Figure 2. Text
prompts rely on natural language to define the re-
quirement and format of the desired output, while
the code prompt utilizes PL syntax. We com-
pare the F1 score difference between the code
prompt (§2) and two variants of text prompts (i.e.,
A = Fleoge — F13,,i € {1,2}) on different
LLMs in Table 3. We include exact performance
numbers of text prompts in Table A.3. We summa-
rize our findings as follows:

* Code prompt outperforms both text prompts
on Arg-C F1 (ie., Ag)_T > 0) for two
text prompt variants and all LLMs except
text-davinci-003 when sufficient in-

context examples are given (i.e., k > 5).

e For x—davinci—-002 LLMs, there are more
significant performance gains from using a
code prompt (i.e., increasing Ag)_T for all 7)
when the number of in-context examples k

increases (for k > 5).

* There is no clear trend on Arg-1 F1 to dif-
ferentiate code and text prompts, except for
text—-davinci—-003, which exhibits simi-
lar behavior that code prompt performs better
with larger k.

« Text prompt 7?2 (BART-Gen style), which
resembles natural language more, performs
poorly under low-shot (kK < 1), primarily
due to the LLM being unable to produce the
desired structure output described using lan-
guage in T®), causing the low-shot code-text
performance gap Ang to be larger compared
to T, These low-shot performance differ-
ences between 71) and T further signify
the need to prompt engineering for language-
based prompts to work well in a low-shot set-
ting.

4.3 Comparison with different LLM

We measure the performance of the same
CODE4STRUCT code prompt across differ-
ent foundational LLMs in §4.1. LLM per-
formance comparison can be found in Fig-
ure 3. text-davinci-002 is an InstructGPT
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Table 3: Performance of the code prompt on the Arg-I and Arg-C metrics and its F1 score difference A(CQT with

two text prompt variants described in §4.2 (i.e., Flcoge — Flg,zl). On Arg-C, there is a trend that the code prompt

performs better (i.e., Ag)

_p > 0) when more in-context examples are provided, except on text—davinci-003.

Model
k-shot

code-davinci-002
Argl AG) Ang ‘ Arg-C Ang

text-davinci-002
2 1 2 1 2 1
AD | At AL A | Agc Al AR | Al AL,

text-davinci-003
2 1 2)
AEZ)—T ‘ Arg-C Aész Aé"—T

0 || 50.6 0.7 50.6 36.0 2.2 36.0 48.9 -2.6
1| 573 0.1 4.7 478 -1.0 4.7 55.8 1.8
5| 58.0 1.1 1.9 525 29 1.1 56.0 =20
10 || 57.2 -1.4 -0.2 52.8 0.8 0.1 60.6 2.7
20 || 62.1 1.7 0.2 58.5 3.6 2.4 59.9 0.9

20.2

53
1.0
2.9
3.7

35.0 -2.4 13.1 49.9 -2.1 153 37.8 -1.4 12.6
45.2 3.0 4.9 56.0 © -15 1.1 44.7 -32 1.1
48.8 3.0 14 59.2 -0.9 -0.7 517 1.4 2.1
53.9 6.4 5.0 62.8 3.1 0.6 56.3 5.0 -1.2
56.5 8.0 5.8 65.0 35 0.7 60.4 78 -0.4

(Ouyang et al., 2022) model finetuned with human
demonstrations based on code-davinci-002,
yet these two LLMs perform similarly in Arg-C F1.
Although having a similar code prompt Arg-C per-
formance, text-davinci-002 generally has a
larger Ang compared to code-davinci-002
of the same k in Table 3 (e.g., +3.6 vs. +8.0, +2.4
vs. +5.8 on 20-shot for both text prompt variants),
suggesting the degradation of text prompt perfor-
mance after finetuning with human demonstrations.
text-davinci-003, which uses reinforce-
ment learning (RL) with reward models to align
with human preference'® (Ouyang et al., 2022),
outperforms other LLMs for £ > 5. In Table 3,
text-davinci-003 obtains superior Arg-C F1
performance (60.4% vs. 56.5% on 20-shot) com-
pared to text-davinci-002. This suggests
RL with reward models effectively improves EAE
performance (i.e., Arg-C) on code prompt.
Interestingly, text —-davinci-003 has a very
different Ag)_ o pattern for text prompt T® com-
pared to T, Like text-davinci-002, in Ta-
ble 3, Arg-C A(ClZT for text prompt T® has an
increasing trend with a similar magnitude (e.g.,
+7.8 vs. +8.0 on 20-shot). That is, in both LLMs,
the code prompt is always better than text prompt
T with k > 5. However, for text prompt 7"(2)
which is more similar to natural sentences, the gap
Ang exhibits a vastly different pattern compared
to other models: code prompt performs on par
or even slightly worse than 73 for k > 5. We
also notice that for zero-shot prediction, 72 on
text-davinci-003 performs better compared
to other LLMs. This indicates that aligning LLM
with RL and reward models helps improve LLM’s
ability to follow zero-shot language instructions.
Even though code prompt still performs supe-
rior to both text prompt variants on 002 LLMs, re-
sults from text—davinci-003 suggest a better-

Yhttps://beta.openai.com/docs/
model-index—-for—-researchers

aligned language model can perform equally well
on a natural text prompt T2 when sufficient in-
context examples are provided.

Arg-l F1

7
f

Arg-CF1

. 60 //: . .

64

62
60
58
56

_'\\

45

54
52 40

50

35

a 5 10 20 30 50 a 5 10 20

Number of In-context Examples (k-shot)

30 50

code-davinci-002 text-davinci-002 —e— text-davinci-003
Figure 3: CODE4STRUCT performance (in F1%) with
different k. We observe improvements with dimin-
ishing returns when we increase the number of in-
context examples. Exact performance numbers can
be found in Table A.3 (code prompt). We stop at
k 20 for text-davinci and k 50 for
code-davinci-002 as including more examples
would exceed the input length limitation imposed by
corresponding LLM.

4.4 Comparison with different &

We examine the performance of code prompts with
varying numbers of examples in Figure 3. We ob-
serve that F1 scores for all metrics generally in-
crease with diminishing returns when providing
more in-context learning examples. The initial
in-context example (k 1) brings the largest
absolute performance gain (+11.8, +10.2, +6.9
Arg-C F1 for three LLMs). For & > 20 on
code-davinci-002, the Arg-I and Arg-C per-
formance plateaus or even slightly degrade, as not
all event types have enough in-context examples
to benefit from increasing & (i.e., only 19 out of
33 event types have more than 50 examples for
in-context learning). To further investigate why the
performance plateaus, we analyze how the sentence
variability (or diversity) of in-context examples in-
fluences Arg-C performance in §A.4; We find that
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Arg-C performance is positively correlated with the
variability of in-context examples which plateaus
as k increases, hinting that in-context learning per-
formance may eventually plateau with increasing
k due to little variability gains from the additional
data.

4.5 Comparison with Supervised Models

Baselines Unlike prior methods trained on the
entire training set, CODE4STRUCT learns from up
to 50 examples (i.e., 39 examples per event type on
average, roughly 1% among all training instances)
to predict arguments for each test event type. To
ensure a fair comparison, for each event type ¢
in the test set, we train a Text2Event model (Lu
et al., 2021) and a DEGREE model (SOTA, Hsu
et al. (2022)) on 20-shot and 50-shot in-context
examples CODE4STRUCT used while providing
gold-standard trigger words. We evaluate both
models trained on event type ¢ on a partition of
the test set that only contains instances of event
type t. We then aggregate F1 scores (micro F1)
across all 31 event types on the test set and report
them in Table 4. Following Hsu et al. (2022), we
also compare with classification-based (DyGIE++
Wadden et al. (2019), BERT_QA Du and Cardie
(2020), OnelE Lin et al. (2020)) or generation-
based (TANL (Paolini et al., 2021), BART-Gen Li
et al. (2021), DEGREE Hsu et al. (2022)) models
trained on the full training set.

Results We report the performance of
CODE4STRUCT using LLMs (§4.1) in com-
parison with prior work in Table 4. We report
the performance of supervised models using the
full dataset from Hsu et al. (2022). Note that
50-shot results for text-davinci are not
available as the 50-shot input prompt will exceed
LLM’s input token length limitation, hence we use
code-davinci-002 for 50-shot comparison.

In the few-shot setting, 20-shot CODE4STRUCT
using text-davinci-003 can surpass DE-
GREE (Hsu et al., 2022), the current state-of-
the-art, by a large margin (+29.5% Arg-C F1).
Our zero-shot CODE4STRUCT using the best-
performing text-davinci-003 model can al-
ready achieve higher Arg-I and Arg-C perfor-
mance than the 20-shot and 50-shot DEGREE.
Despite only learning from 20 examples, 20-shot
CODE4STRUCT achieves comparable performance
with other fully-supervised models trained on 100%
of the training data (4,202 instances).

Model Data Arg-IF1 Arg-CFl
DyGIE++ Full 66.2 60.7
BERT-QA Full 68.2 65.4
OnelE Full 73.2 69.3
TANL Full 65.9 61.0
BART-Gen Full 69.9 66.7
DEGREE Full 76.0 73.5
CODE4STRUCT t cxt —davinci-o03 0-shot 49.9 37.8
Text2Event 20-shot* 23.1 19.1
DEGREE 20-shot* 33.0 30.9
CODE4STRUCT t ext —gavinci-003 20-shot* 65.0 60.4
Text2Event 50-shot* 30.6 26.0
DEGREE 50-shot* 40.8 37.3
CODE4STRUCT code-davinci-002 S0-shot* 62.3 58.1

Table 4: Performance (in F1%) comparison between
best-performing CODE4STRUCT LLM and existing su-
pervised approaches. Performance numbers for all
LLMs can be found in Table A.3. *Some event types
do not have 20 or 50 examples for in-context learning;
on average, we have 39 examples per type for a 50-shot
prompt and 18 examples per type for 20-shot.

4.6 Event Type Hierarchy Improves
Zero-resource EAE

In this section, we show that CODE4STRUCT, when
provided with hierarchical event definitions and
few-shot training instances D., from a sibling
event type e; € Siblings(e) under the same par-
ent event type, can improve performance for child
event type e as good as if training instances D,
from the same event type e were used. This al-
lows zero-resource event types without annotated
data to exploit the event type hierarchy and bene-
fit from their high-resource siblings. We include
an example task prompt with sibling examples in
Figure A.11 and report our results in Table 5.

Setup We split the child types for each parent
type into training and testing types by selecting the
high-resource child type with the largest amount
of training instances to be the training type and
have the rest be testing types. The train-test split
for ACE types can be found in Table A.5. Un-
der the same parent event type, we use data in-
stances from the training type (i.e., a sibling of test-
ing types) as in-context examples to predict argu-
ments for each testing type. We include event class
definition (Figure 2) for parent event type (e.g.,
Transaction), child training (sibling) event
type (e.g., Transfer_Money), and child testing
event type (e.g., Transfer_Ownership). We
show an example of event definition with sibling
type in Figure A.10. The few-shot performance
when using data from a sibling type D, is denoted
with (sibling type) in Table 5. To demonstrate the
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effectiveness of using data from sibling event types,
we compare it with using training instances from
the testing event type itself D, (denoted as (same
type)) and from a random non-sibling event type
(denoted as (non-sibling type)).

Arg-1 Arg-C
0-shot 52.8 429
1-shot (same type) 54.3 50.2
1-shot (sibling type) 57.2 51.9
1-shot (non-sibling type) 56.3 50.3
10-shot (same type) 58.7 55.2
10-shot (sibling type) 60.8 54.9
10-shot (non-sibling type)  58.5 51.0

Table 5: code—-davinci-002 performance (in F1%)
when using examples from the same, sibling or non-
sibling event types for in-context learning. To ensure
a fair comparison, F1 scores are aggregated from 23
test event types in Table A.5 that contains more than 10
training instances.

Results We observe that CODE4STRUCT, when
prompted with training examples from sibling type,
performs on par with the prompt that uses train-
ing examples from the testing type itself on 1-shot
and 10-shot. The substantial performance gain
(+9% Arg-C F1 on 1-shot, +12% Arg-C F1 on 10-
shot, compared with 0-shot) contributed by sibling-
type training examples demonstrate the potential
of applying CODE4STRUCT to zero-resource event
types with no training data by exploiting their hi-
erarchical relationship with other high-resource
event types. Surprisingly, similar to the observation
made by Min et al. (2022), using in-context exam-
ples from a random non-sibling type also benefits
CODE4STRUCT performance, albeit not as helpful
as sibling examples under 10-shot.

5 Related Work

Code-LLM for Structured Task Sun et al.
(2019); Singh et al. (2022) focus on procedural
tasks that aim to control situated agents in an em-
bodied environment by representing the procedure
plan in code. Madaan et al. (2022) uses Code-
LLM to generate a structured commonsense rea-
soning graph represented in code, which is similar
in spirit to our work but in a different task. Gao et al.
(2022) tackles math and symbolic reasoning tasks
by decomposing the natural language problem into
runnable steps using Code-LLM and delegating

solution calculation to a PL interpreter. We lever-
age PL features (e.g., inheritance, type annotation)
to introduce extra information and constraints for
structured prediction, which is largely overlooked
by prior work.

Event Extraction Li et al. (2013); Nguyen et al.
(2016); Yang and Mitchell (2016); Wadden et al.
(2019); Lin et al. (2020) use classification mod-
els and mitigate error propagation from pipeline
models by leveraging global features to predict
event triggers and arguments jointly. Recent work
such as Liu et al. (2020) formulates event extrac-
tion as a reading comprehension problem and Li
et al. (2021); Huang et al. (2021); Paolini et al.
(2021); Hsu et al. (2022) converts event extraction
to a text generation task to better exploit label se-
mantics from pretrained language models. The
most similar work to ours is Text2Event (Lu et al.,
2021), which uses controlled generation to gener-
ate structures in a manually specified linearized
format directly, hindering the model in leveraging
pre-trained NL knowledge. On the other hand, our
approach CODE4STRUCT directly generates struc-
ture in PL instead of using a manually designed
format to fully exploit LLM’s knowledge of PL.

6 Conclusions and Future Work

We propose CODE4STRUCT for structured predic-
tion tasks in NLP by leveraging LLMs trained
on language and code. As a case study, we use
CODE4STRUCT to extract event arguments from
natural language sentences through code genera-
tion. We show that, with sufficient in-context ex-
amples, formulating EAE as a code generation
problem is advantageous over using text-based
prompts. Our proposed CODE4STRUCT rivals
fully-supervised models trained on 4,202 data in-
stances only using 20-shot. It also outperforms a
SOTA model by 29.5% absolute F1 when both
are given the same 20-shot data. Furthermore,
benefitting from hierarchical event definitions,
CODE4STRUCT can predict arguments for zero-
resource event types only using 10-shot training in-
stances from its sibling event type and outperforms
0-shot baseline by 12% absolute F1 score. Going
forward, we plan to expand CODE4STRUCT to a
broader range of more complex structured predic-
tion tasks (e.g., relation prediction, schema match-
ing). We would further explore the executable na-
ture of PL to improve LLM’s ability for structured
prediction.
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Limitations

In this work, our approach assumes event trig-
gers and argument templates (i.e., ontology) are
given. This limits our approach’s applicability, as
it requires an event detection system to produce
event triggers and event types before LLMs can be
prompted to generate event arguments.

We only explore hierarchical events with only 2
levels from the ACEO5-E ontology and data, which
has limited coverage of real-world complex event
hierarchy. Similar to prior event argument extrac-
tion work, our approach relies on a human-curated
hierarchical ontology. We leave automatically dis-
cover hierarchical ontology for future work.

Despite LLMs performing well on EAE with
few-shot data, compared to existing supervised
approaches, their inference is relatively slow and
costly!'! since the LLMs we used are generally
more than 100x larger in the number of parameters.
Prior work (Zhao et al., 2021; Lu et al., 2022) has
demonstrated a strong relationship between per-
formance and in-context demonstrations; however,
for ease of comparison to supervised baselines, we
use the same set of examples from the training set
for in-context learning. We expect better selecting
(Liu et al., 2021) and ordering (Lu et al., 2022) in-
context examples can benefit CODE4STRUCT per-
formance, which we leave for future work.

Ethical Considerations

Since event argument extraction only requires pre-
dicting arguments from the given text, the risk of
generating toxic languages is relatively low as long
as the given test is not toxic. This is because the
prediction can be grounded in the input sentence,
eliminating potential toxic tokens that did not ap-
pear in the original sentence. However, discrim-
ination and bias are possible, as observed in the
foundational LLMs we used (Brown et al., 2020;
Chen et al., 2021; Ouyang et al., 2022), which we
refer to Brown et al. (2020) for detailed discussion.
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A Appendix

A.1 Qualitative Analysis

We show examples of 0-shot and 50-shot
CODE4STRUCT argument extraction result in Fig-
ure A.1. CODE4STRUCT can leverage implicit
commonsense knowledge in LLM to infer argu-
ments not presented in the text. In the first O-
shot example, the model inferred the place of
Welch’s retirement is in the United States. This
is a reasonable guess since Welch, in this exam-
ple, is the former CEO of General Electric (GE),
whose headquarter is in the United States. In the
second 0-shot example, our model inferred that
the Justice:Fine event should take place in
a court, which matches our commonsense knowl-
edge. Interestingly, we observe that increasing the
number of in-context examples from 0-shot to 50-
shot inhibits LLM from generating arguments (i.e.,
making LLMs more conservative), including these
inferred arguments and a correctly predicted argu-
ment (i.e., SEC) in 0-shot predictions.

A.2 Prompt Component Analysis

In this section, we present an empirical analysis
of other prompt component candidates. We com-
pare different prompt components in Table A.1
using code-davinci-002 and following the
same hyper-parameters described in §4.1.

* Event Keywords We augment event-related
keywords into the docstring of event definition
for CODE4STRUCT (illustrated in Figure A.8).
We follow the same keywords used by Li et al.
(2021).

* AMR Zhang and Ji (2021) have demonstrated
the effectiveness of utilizing Abstract Mean-
ing Representation (AMR) (Banarescu et al.,
2013) for information extraction. We exper-
iment with AMR-augmented prompts. We
use armlib '? to predict AMR, and append
the AMR structure after the NL sentence in
the task prompt §2.2 (see Figure A.7 for an
example).

Prompts that include event keywords and AMR
all perform slightly better than CODE4STRUCT un-
der the zero-shot setting on all metrics (Table A.1).

https://github.com/bjascob/amrlib, parse_xfm_bart_large
v0.1.0

3650


http://arxiv.org/abs/2209.11302
http://arxiv.org/abs/2209.11302
http://arxiv.org/abs/2209.11302
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/N16-1033
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://doi.org/10.18653/v1/2021.naacl-main.4
https://github.com/bjascob/amrlib

@-shot Predictions
Earlier documents in the case have included embarrassing
details about perks_Welch [Entity: PER] received as part of

/ argunent; person
his retirement_[Event: Personnel:End-Position] package from
argument: entity S
GE [Entity: ORG] at a\t1me when corporate scandals were
\ _argunent: place
% United States [Entity:
(inferred by the model)

sparking outrage. Loc]

Under terms of the agreement, to be submitted as early as

missing entity [Entity: PER]

Monday to a judge pre51d1ng over the case, MCI [Entity: ORG]

argument: adjudicator
Justice:Fine]

missing argument: adjudicator

would agree to pay the larges vent:

i
>

argument: adjudicator 1
imposed so far by the SEC [Entity: \&PEORG] on a company that
1
is not a broker - dealer , the Jourbal said, citing sources
\ argument: place
Acourt [Entity: FAC]
(inferred by the model)

close to the matter .

Figure A.l:  Examples

of 0-shot and 50-shot
code—-davinci-002 on ACEOS-E. In both 0-shot examples,

50-shot Predictions
Earlier documents in the case have included embarrassing

details about perks_Welch [Entity: PER] received as part of

argument: person
his retiremen Event: Personnel:End-Position] package from

argument: entity
GE [Entity: ORG] at a time when corporate scandals were

sparking outrage.

Under terms of the agreement, to be submitted as early as

issing entity [Entity: PER]

m
Monday to a judge pP951d1ng over the case, MCI [Entity: ORG]

argument: adjudicator
in vent: Justice:Fine]

missing argument: adjudicator
imposed so far by the SEC on a company that is not a broker
missing entity [Entity: ORG]

- dealer , the Journal said, citing sources close to the

missing argument: adjudicator
would agree to pay the larges

matter .

CODE4STRUCT event argument prediction using
LLM can infer an entity that does not

present in the text as an argument (marked with a yellow span). CODE4STRUCT predicts fewer arguments when
the examples are increased to 50-shot. We mark incorrect predictions with strikethrough text. Entities that LLM

failed to predict are marked in red font.

Arg-1F1 Arg-C F1
k-shot 0 1 10 20 50 0 1 10 20 50
CobpE4STRUCT | 50.6 573 572 621 623|360 478 528 585 358.1
+ amr 51.1 547 556 - - 372 442 513 - -
+ keywords 523 573 58.0 61.7 61.7 | 364 473 53.5 577 579

Table A.1: Prompt components analysis on code-davinci-002.

The best scores (in %) are bolded. - means

the result is unavailable due to the input prompt exceeding the corresponding LLM’s supported input token length.

Arg-1 F1 Arg-C F1
k-shot 0 1 10 20 50 0 1 10 20 50
CoDE4STRUCT | 50.6 57.3 572 621 623|360 478 528 585 58.1
- trigger 48.8 544 530 57.6 56.6 | 338 441 489 538 515
- description 514 56.7 562 61.1 61.6 361 472 516 57.1 578
- type annotation | 49.4 572 58.0 615 614|357 48.0 545 576 575
- hierarchy 494 566 555 599 604|343 468 500 554 559

Table A.2: Ablation study on code-davinci-002. The best scores (in %) are bolded.

- means the result is

unavailable due to the input prompt exceeding the corresponding LLM’s supported input token length.

A.3 Ablation Study

In Table A.2, we ablate different prompt compo-
nents described in §2, including event trigger mark-
ing, event description in natural language, type
annotation, and hierarchical ontology. We perform
this ablation study using code-davinci-002.

Event Trigger Marking We find that removing
event trigger marking consistently degrades per-

formance on all metrics over varying numbers of
in-context examples.

Event Description Event descriptions generally
provide a small F1 gain under the few-shot setting.
However, removing event descriptions improves
CODE4STRUCT’s zero-shot performance on argu-
ment identification. 0-shot Arg-I precision is rela-
tively unchanged after removing event descriptions
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(37.4 vs. 37.2). We argue that removing event
descriptions loosens entity-related constraints and
allows LLM to identify more relevant entities. This
is supported by the improvement of 0-shot Arg-I re-
call (78.7 to 81.8) after description removal, which
mainly accounts for the increase in O-shot Arg-1 F1.
Despite being helpful in argument identification
by boosting 0-shot Arg-I recall, we do not see the
benefit of removing descriptions in few-shot Arg-C,
where it performs consistently worse compared to
CODE4STRUCT.

Type Annotation Type annotation is more help-
ful when more in-context examples are provided
(k > 20). Under a low-shot setting, the F1 dif-
ference resulting from type annotation removal
is small and inconsistent across different shots.
Prompts with type annotation consistently outper-
forms prompts without it when sufficient in-context
examples are provided (k > 20). We hypothe-
size that type annotations help disambiguate entity
types accepted for each argument, and such disam-
biguation ability is only needed when the number
of entity instances that appeared in in-context ex-
amples passes a certain threshold (e.g., & > 20).

Hierarchical Event Definition Providing hier-
archical event definition (i.e., the parent class
definition of a given child event class) benefits
CODE4STRUCT performance in high-shot setting
(k > 20). Prompts without parent class defini-
tion perform on par with CODE4STRUCT under
k < 20.

A.4 In-context Example Variability Analysis

0Variability of in-context examples across different event types
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Figure A.2: The variability of k-shot in-context exam-
ples (i.e., average euclidean distance from centroid ex-
ample) across different event types increases with di-
minishing returns when k increases.

Arg-C F1 vs. Variability of in-context examples

60 @ code-davinci-002 s
® text-davinci-002
® text-davinci-003

0.60 0.65 0.70 0.75 0.80 0.85
Variability of in-context examples

Figure A.3: The variability of in-context examples is
positively correlated with code prompt Arg-C perfor-
mance.

To investigate why the Arg-C performance
plateaus with an increasing number of in-context
examples k as shown in Figure 3, we analyze
the sentence variability of a fixed set of in-
context examples (§2.3). We consider the set of
k-shot in-context examples for each event type
e as a cluster D, where |D.| < k and use
sentence-transformer! to embed all the
input sentences from D, into a cluster of vectors
Ve.

We use the average euclidean distance from the
centroid example similar to (Halkidi et al., 2001)
to measure the variability of in-context examples
for each event type e:

1
Variability(e) = A > d(v,v)
€ ’UEVe

where d(-, -) is the euclidean distance between two
vectors and v = |716| > ey, v is the centroid exam-
ple of the cluster V.

We calculate the mean Variability(e) across all
efork € {1,---,50}. In Figure A.2, similar to
Arg-C performance in Figure 3, we find the mean
Variability(e) across all e increases with diminish-
ing returns with increasing k. Furthermore, we
find that, in Figure A.3, Arg-C F1 performance is
positively correlated with the mean Variability(e)
across all e. This suggests the lack of in-context
example variability improvement could be one of
the reasons Arg-C F1 plateaus, even when more
examples are given.

B411-mpnet-base-v2 model
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Model | code-davinci-002 text-davinci-002  text-davinci-003
Metric | Arg-1  Arg-C | Arg-1 Arg-C | Arg-l Arg-C
Prompt k-shot

0] 50.6 36.0 48.9 35.0 49.9 37.8
1| 573 47.8 55.8 45.2 56.0 44.7
5| 58.0 52.5 56.0 48.8 59.2 51.7
code 10 | 57.2 52.8 60.6 53.9 62.8 56.3
20 | 62.1 58.5 59.9 56.5 65.0 60.4
30 | 622 58.4 - - - -
50 | 623 58.1 - - - -
0| 499 38.2 515 374 52.0 39.2
1] 572 48.8 54.0 42.2 57.5 47.9
text (code imitation) 51| 569 49.6 58.0 45.8 60.1 50.3
10 | 58.6 52.0 579 475 59.7 513
20 | 604 54.9 59.0 48.5 61.5 52.6

0] 00 0.0 28.7 219 34.6 25.2
1] 526 43.1 50.5 40.3 54.9 43.6
text (BART-Gen style Li et al. (2021)) 5] 56.1 51.4 55.0 474 59.9 53.8

10 | 574 52.7 57.7 48.9 62.2 57.5
20 | 619 56.1 56.2 50.7 64.3 60.8

Table A.3: Performance of the code and two variants of the text prompts on the Arg-I and Arg-C metrics. 50-
shot results for text-davinci and text prompts are unavailable since the 50-shot prompt length exceeds such
LLM’s input token limitation. Examples of text prompt variants can be found in Figure A.5 (code imitation) and
Figure A.6 (BART-Gen style).

a""'g'"'"'"*-‘'‘"t'’_""df'j""e';j-';"'éy—‘'~\w‘;ument: plaintiff
Anne -“Marie Entity: PER]\'Ued [Event: Justice:Sue]

P argument: defendant
Crichton [Entity: PER] for divorce in September after

their marriage broke down
GPT-3 + text prompt (20-shot)

1/\r‘gument: plaintiff
Anne - Marie“[Entity: PER] suéd [Event: Justice:Sue]

P argument: defendant
Crichton [Entity: PER] for divorce in September after

their marriage broke down
Codex + code prompt (20-shot)

Figure A.4: Example prediction of 20-shot text prompt 7") using text ~davinci-002 and code prompt using
code—davinci-002. In this example, 20-shot text prompt using text-davinci-002 incorrectly predicts
the same entity Anne-Marie as both adjudicator and plaintiff of the Justice: Sue event.
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Description of base entity types:

GPE: Geopolitical entities such as countries, provinces, states, cities, towns,
etc. GPEs are composite entities, consisting of a physical location, a government,
and a population. All three of these elements must be present for an entity to be
tagged as a GPE. A GPE entity may be a single geopolitical entity or a group.

other types omitted for space
( yp pace) (1) Entity Definition(s)

Role definition of event type Movement (Parent type: Event):

. agent (need to be one of GPE or ORG or PER)

. artifact (need to be one of FAC or ORG or PER or VEH or WEA)
. destination (need to be one of FAC or GPE or LOC)

. origin (need to be one of FAC or GPE or LOC)

. vehicle (need to be one of VEH)

Role definition of event type Transport (Parent type: Movement):

uih wnN B

1. agent (need to be one of GPE or ORG or PER)

2. artifact (need to be one of FAC or ORG or PER or VEH or WEA)
3. destination (need to be one of FAC or GPE or LOC)

4. origin (need to be one of FAC or GPE or LOC)

5. vehicle (need to be one of VEH)

Multiple entities can be extracted for the same role, each entity is a
double-quote enclosed string.

Each extracted entity should look like: (Base Entity Type) "content of extracted
string"

If entity is not present in the text, write: ()
Different entities are delimited by a comma.

In this event: [agent] transported [artifact] in [vehicle] vehicle from [origin]
place to [destination] place.

(2) Event Definition

Translate the following sentence into an instance of Transport event. The

Erlgg Translate the following sentence into an instance of Transport event. The
Kel. trigger word(s) of the event is marked with **trigger word**.

Sundi  wRenowned Hollywood madam Heidi Fleiss has been **flown** to Melbourne as
1. a guest of honour at Thursday's market debut and , according to Harris , has
2. & already played a key role in attracting worldwide media attention to the
3. d¢ ayent ."
4.0 9. agent: () ""
5. V€ 5 artifact: (PER) "Heidi Fleiss"

3. destination: (GPE) "Melbourne"

4. origin: () ""

5. vehicle: () "" (3) kR In-context Examples

Translate the following sentence into an instance of Transport event. The trigger
word(s) of the event is marked with **trigger word**.

"Kelly , the US assistant secretary for East Asia and Pacific Affairs ,
**arrived** in Seoul from Beijing Friday to brief Yoon , the foreign minister .
. agent: () ""

. artifact: (PER) "Kelly"

. destination: (GPE) "Seoul"

} 32;§z;é:(?§E2u S (4) Event Instantiation

uuh wNnpR

Figure A.5: Natural language prompt for EAE task following our code prompt design described in section 2. We
ask a LLM to generate event instantiation marked in green.
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Description of base entity types:

GPE: Geopolitical entities such as countries, provinces, states, cities, towns,
etc. GPEs are composite entities, consisting of a physical location, a government,
and a population. All three of these elements must be present for an entity to be
tagged as a GPE. A GPE entity may be a single geopolitical entity or a group.

other types omitted for space
( e : pace) (1) Entity Definition(s)

Role definition of event type Movement (Parent type: Event):

. agent (need to be one of GPE or ORG or PER)

. artifact (need to be one of FAC or ORG or PER or VEH or WEA)

. destination (need to be one of FAC or GPE or LOC)

. origin (need to be one of FAC or GPE or LOC)

. vehicle (need to be one of VEH)

Role definition of event type Transport (Parent type: Movement):

agent (need to be one of GPE or ORG or PER)

. artifact (need to be one of FAC or ORG or PER or VEH or WEA)

. destination (need to be one of FAC or GPE or LOC)

. origin (need to be one of FAC or GPE or LOC)

5. vehicle (need to be one of VEH)

Multiple entities can be extracted for the same role, each entity is a
double-quote enclosed string.

Different entities are delimited by a comma.

Each pair of brackets below contains a role name (e.g., [role_ 11])

Fill in the corresponding role [brackets] with the extracted entities (e.g.,
["entity 1 for_role_ 1", "entity 2 for_role 1"]).

If an entity is not present in the text, write: []

In this event: [agent] transported [artifact] in [vehicle] vehicle from [origin]
place to [destination] place.

uih wWwnN B

A WN PR

(2) Event Definition

Translate the following sentence into an instance of Transport event. The
trigger word(s) of the event is marked with **trigger word**.

IIKe1},, . e S — I L..'|I,~ o VVV,,V,,J:V,,- = . R P P S T L L - _.. -

. Translate the following sentence into an instance of Transport event. The

Sund: : . . .

In tt trigger word(s) of the event is marked with **trigger word**.

["Tok "Renowned Hollywood madam Heidi Fleiss has been **flown** to Melbourne as
guest of honour at Thursday 's market debut and , according to Harris , has
already played a key role in attracting worldwide media attention to the
event ."

In this event: [] transported ["Heidi Fleiss"] in [] vehicle from [] place

to ["Melbourne"] place.
(3) R In-context Examples

Translate the following sentence into an instance of Transport event. The trigger
word(s) of the event is marked with **trigger word**.

"Kelly , the US assistant secretary for East Asia and Pacific Affairs ,
**arrived** in Seoul from Beijing Friday to brief Yoon , the foreign minister .
In this event: [] transported ["Kelly"] in [] vehicle from ["Beijing"] place to
["Seoul"] place.

(4) Event Instantiation

Figure A.6: BART-Gen style (Li et al., 2021) natural language prompt for EAE task. We ask a LLM to generate
event instantiation marked in green. Brackets and double-enclosed strings are designed for ease of parsing free
form natural language.
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Translate the following sentence into an instance of Transport. The trigger
word(s) of the event is marked with **trigger word**.
"Kelly , the US assistant secretary for East Asia and Pacific Affairs ,

**arrived** in Seoul from Beijing Friday to brief Yoon , the foreign minister .

Abstract Meaning Representation of the given sentence:
(a / arrive-01
:ARG1 (p / person
:name (n / name
:opl "Kelly")
:ARGO-of (h / have-org-role-91
:ARG1 (g / government-organization
:name (n2 / name

:opl "East"
:op2 "Asia"
:op3 "and"

:op4 "Pacific"
:op5 "Affairs")
:poss (c / country
:name (n3 / name
:opl "US")))
:ARG2 (s / secretary
:mod (a2 / assistant))))
:ARG3 (c2 / city
:name (n4 / name
:opl "Beijing"))
:ARG4 (c3 / city
:name (n5 / name
:opl "Seoul"))
:time (d / date-entity
:weekday (f / friday))
:purpose (b / brief-01
:ARGO p
:ARG1 (p2 / person
:name (n6 / name
:opl "Yoon")
:ARGO-of (h2 / have-org-role-91
:ARG2 (m / minister
:topic (f2 / foreign))))))

nun

transport_event = Transport(

Figure A.7: Example of an AMR-augmented task prompt. We append the AMR prediction after the input sentence.

Different prompt components compared to CODE4STRUCT are highlighted in yellow.

class Transport(Movement):

wun

self.agent transported self.artifact in self.vehicle vehicle from self.origin place to self.destination place.

Event keywords: transport, move, travel, head.-q_\\\‘_
oEE Event Keywords

def __init_ (
self,
agent: List[GPE | ORG | PER] = [],
artifact: List[FAC | ORG | PER | VEH | WEA] = [],
destination: List[FAC | GPE | LOC] = [],
origin: List[FAC | GPE | LOC] = [],
vehicle: List[VEH] = [],

self.agent = agent
self.artifact = artifact
self.destination = destination
self.origin = origin
self.vehicle = vehicle

Figure A.8: Example of an event-keywords-augmented event definition. Different prompt components compared

to CODE4STRUCT are highlighted in yellow. We use event keywords from Li et al. (2021).
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class Event:
def __init__(self, name: str):
self.name = name

class Movement(Event):
def __init__ Parent Event Type

self,

agent: List[GPE | ORG | PER] = [],

artifact: List[FAC | ORG | PER | VEH | WEA] = [],
destination: List[FAC | GPE | LOC] = [],

origin: List[FAC | GPE | LOC] = [],

vehicle: List[VEH] = [],

self.agent = agent
self.artifact = artifact
self.destination = destination
self.origin = origin

self.vehicle = vehicle .
Child event Transport

class Transport(MoveMEEEST——_——_—lnherlt from parent Movement

"""self.agent transported self.artifact in self.vehicle
vehicle from self.origin place to self.destination place.™""
def __init__ (
self,
agent: List[GPE | ORG | PER] = [],
artifact: List[FAC | ORG | PER | VEH | WEA] = [],
destination: List[FAC | GPE | LOC] = [],
origin: List[FAC | GPE | LOC] = [],

vehicle: List[VEH] =
) [VER] = L], Transport calls the __init__

super(),__init__(“’,,//”_method of its parent Movement

agent=agent,
artifact=artifact,
destination=destination,
origin=origin,
vehicle=vehicle,

)

Figure A.9: Example of a hierarchical event definition. Different prompt components compared to CODE4STRUCT
are highlighted in yellow.
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class Transaction(Event):
def __init_ (
self,
artifact: List[FAC | ORG | PER | VEH | WEA] = [],
beneficiary: List[GPE | ORG | PER] = [],
buyer: List[GPE | ORG | PER] = [],
giver: List[GPE | ORG | PER] = [],
place: List[FAC | GPE | LOC] = [],
recipient: List[GPE | ORG | PER] = [],
seller: List[GPE | ORG | PER] = [],

Parent Event Type

self.artifact = artifact
self.beneficiary = beneficiary
self.buyer = buyer

self.giver = giver

self.place = place
self.recipient = recipient
self.seller = seller

Child event Transfer_Money

PR Transfer_Money(Transaction):<4—”//’——-1nherlt from parent Transaction
"""self.giver ga ney to self.recipient for the benefit of

self.beneficiary in self.place ce."""
def __init_ (
self,
beneficiary: List[GPE | ORG | PER] = [],
giver: List[GPE | ORG | PER] = [],
place: List[FAC | GPE | LOC] = [],
recipient: List[GPE | ORG | PER] = [],

Transfer_Ownership is a
sibling event type of

super().__init_ ( Transfer_Money

beneficiary=beneficiary,
giver=giver,
place=place,
recipient=recipient
Child event Transfer_Ownership
inherit from parent Transaction
class Transfer_Ownership(Transactiony®
"""self.seller gave self.artifact to self.buyer for the benefit of
self.beneficiary at self.place place."""
def __init_ (
self,
artifact: List[FAC | ORG | PER | VEH | WEA] = [],
beneficiary: List[GPE | ORG | PER] = [],
buyer: List[GPE | ORG | PER] = [],
place: List[FAC | GPE | LOC] = [],
seller: List[GPE | ORG | PER] = [],

super().__init_ (
artifact=artifact,
beneficiary=beneficiary,
buyer=buyer,
place=place,
seller=seller,

Figure A.10: Example of a hierarchical event definition with a sibling event type. Different prompt components
compared to Figure A.9 are highlighted in yellow.
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Translate the following sentence into an instance of Transfer_Money. The
trigger word(s) of the event is marked with **trigger word**.

"If the budget goes through as is , why do n't Mr. Begala and Mr. Carville
just **donate** the extra tax money they do n't want ?"

nun

transfer_money_event = Transfer‘_Money(\
giver=[

PER("Begala"), In-context example from
PER("Carville"), sibling type
1, Transaction:Transfer_Money

Translate the following sentence into an instance of Transfer_Ownership.
The trigger word(s) of the event is marked with **trigger word**.
"" The **acquisition** of Banco Zaragozano builds on our existing business
creating the sixth largest private sector banking group in Spain " by
assets , added Jacobo Gonzalez - Robatto , chief executive of Barclays
Spain ."
transfer_ownership_event = Transfer_Ownership(

artifact=[

ORG("Banco Zaragozano"),

1,

) Make prediction for Transaction:Transfer_Ownership

Figure A.11: Example of a task prompt with a 1-shot example from sibling event type. Event definitions for the
task prompt is shown in Figure A.10. Groundtruth prediction is colored green.
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# of Test Instances  # of Train Example
Parent Event Type Child Event Type
Declare-Bankruptcy 2 39
Business End-Org > 24
Merge-Org 0 13
Start-Org 17 21
. Attack 90 1211
Conflict Demonstrate 7 62
Contact Meet 49 194
Phone-Write 8 104
Acquit 1 4
Appeal 6 30
Arrest-Jail 6 72
Charge-Indict 8 95
Convict 6 61
Execute 2 12
Justice Extradite 1 6
Fine 6 22
Pardon 0 2
Release-Parole 1 44
Sentence 11 83
Sue 4 60
Trial-Hearing 5 103
Be-Born 3 44
Die 17 516
Life Divorce 9 20
Injure 1 125
Marry 10 71
Movement Transport 47 561
Elect 13 156
Personnel End-Position 17 143
Nominate 1 11
Start-Position 11 87
Transaction Transfer-Money 12 121
Transfer-Ownership 27 85

Table A.4: The number of Train/Test event instances for 33 event types in ACEOS5-E.
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Parent Event Type Child Event Type (Train) Child Event Type (Test)

End-Org
Business Declare-Bankruptcy Merge-Org*

Start-Org
Conflict Attack Demonstrate
Contact Meet Phone-Write
Acquit
Appeal
Arrest-Jail
Charge-Indict
Convict
Execute
Extradite
Fine
Pardon*
Release-Parole
Sentence
Sue
Be-Born
Divorce
Injure
Marry
End-Position
Personnel Elect Nominate

Start-Position
Transaction Transfer-Money Transfer-Ownership

Justice Trial-Hearing

Life Die

Table A.5: Train/Test split for each parent event type. * denotes child event types that do not have examples in the
ACEOQS-E test set.
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