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Abstract

Mining an argument structure from text is
an important step for tasks such as argu-
ment search and summarization. While studies
on argument(ation) mining have proposed
promising neural network models, they usu-
ally suffer from a shortage of training data. To
address this issue, we expand the training data
with various auxiliary argument mining cor-
pora and propose an end-to-end cross-corpus
training method called Multi-Task Argument
Mining (MT-AM). To evaluate our approach,
we conducted experiments for the main argu-
ment mining tasks on several well-established
argument mining corpora. The results demon-
strate that MT-AM generally outperformed
the models trained on a single corpus. Also, the
smaller the target corpus was, the better the
MT-AM performed. Our extensive analyses
suggest that the improvement of MT-AM
depends on several factors of transferability
among auxiliary and target corpora.

1 Introduction

Argument(ation) mining (AM), the task of iden-
tifying an argument structure from text, has
been gaining attention in recent years (Stede
and Schneider, 2018; Lawrence and Reed, 2019).
Also known as argument(ation) structure parsing
(Kuribayashi et al., 2019), AM typically iden-
tifies argumentative component spans, classifies
the type of the components, and classifies the
relations between the components. In span identi-
fication, we discriminate argumentative text units
(i.e., spans) from non-argumentative ones in a
given text. In component classification, we clas-
sify the spans into argumentative labels such as
Claim and Premise. Relation classification detects
argumentative links between the components and
classifies each link into a relation label such as
Support and Attack.
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Researchers have been utilizing various datasets
(AM corpora) to develop AM models. These
corpora are designed on the basis of differ-
ent theoretical frameworks and conceptualizations

(Daxenberger et al., 2017). For example, Peldszus
and Stede (2016) developed a corpus called the
Microtext Corpus (MTC) on the basis of Freeman’s
theory of the macro-structure of arguments
(Freeman, 2011) to capture hypothetical dialecti-
cal exchanges. Stab and Gurevych (2017) created
the Argument-annotated Essays Corpus (AAEC),
in which a connected tree is used to represent
the structure of each argument in a paragraph. A
notable feature of these AM corpora is that, due to
the lack of a clear underlying framework on which
to base the annotation, new annotated corpora are
likely to diverge in terms of the span, type of
components, and type of relations.

In addition, developing an AM corpus is ex-
pensive because of the annotation cost (Schulz
et al., 2018). For example, Lauscher et al. (2018)
conducted multiple calibration phases when train-
ing annotators to improve the low inter-annotator
agreement, which drove up costs. This suggests
that it would be infeasible to create a sufficiently
large AM corpora for a new domain, and the
resultant lack of data inevitably degrades the
performance of argument structure parsing.

Given the lack of a large annotated AM
corpus, multi-task learning on AM corpora la-
beled with various annotation schemes may be a
promising approach for improving parsing perfor-
mance. Few studies have investigated this except
Schulz et al. (2018) and Putra et al. (2021a,b).
Schulz et al. (2018) showed the effectiveness of
multi-task learning for component classifications
under low-resource settings, while Putra et al.
(2021a) showed how argumentative link predic-
tion can be improved by multi-corpora training.
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CDCP v 1
... Value[l review about 200-300 civil
cases a month and very rarely is
service done improperly.] ...

.. Value[l believe that most
Defendants are  properly
served.] ...

Support

AAEC

... so | believe that Premise[they
will finish their jobs with
excellent result].

Premise[Having  professional
training help employees gain more
confidence in their business] ...

Span start Span end
... [But ¥ill Germany produces way too much
MTC  rubbish] [and too many resources are lost when what
actually should be separated and recycled is burnt.] ...

Segment-

... [They call all times of the day and night, and multiple based

CcDCP times of the day.] [If they don't get you because your have
called ID, they will change their ID and try again.] ...

Non-argumentative unit

... On the other hand, [the significance of competition is that how
AAEC to become more excellence to gain the victory]. Hence it is always
said that [competition makes the society more effective]. ...

Figure 1: Potentially transferable properties between
AM corpora. Top: Two corpora have a similar relation
label. Bottom: MTC and CDCP both use consecutive
segment-based spans.

However, to the best of our knowledge, no prior
studies have conducted extensive analysis for all
AM tasks (i.e., span, component, and relation
tasks) with an end-to-end model because it is
challenging to take various differently annotated
corpora into account for the modeling.

Through our observations, we hypothesize that
parsing performance by multi-task learning can
be improved by the potential transferability be-
tween AM corpora. Figure 1 (top) shows two
different AM corpora: Cornell eRulemaking Cor-
pus (CDCP; Park and Cardie [2018]) and AAEC.
The relations of CDCP (i.e., Reason) and AAEC
(i.e., Support) have different label names but share
the concept of support connectivity, where both
argumentative component pairs have a similar
implicit relation. In Figure 1 (bottom), CDCP
and MTC use a similar type of span. Although
it is not a common definition, we refer to the
span type as segment-based span, where the text
is segmented into consecutive elementary dis-
course units or elementary units in which most
of the units are clauses or sentences (Peldszus
and Stede, 2016), and the text does not contain
or rarely contains non-argumentative component
parts. The potential ability of these transferable
properties is referred to as transferability in this
study.

In this paper, we propose Multi-Task Ar-
gument Mining (MT-AM), an end-to-end
cross-corpus training model for AM, to address

the shortage of training corpora. We first describe
single-corpus learning, namely, a single-task (ST)
model, and then detail the extension of the model
(MT-AM) for multi-task learning on various
corpora. For the ST model, we provide a simple
but flexible architecture called the span-biaffine
architecture that can handle different concepts
of spans, types of component labels, and graph
structures. MT-AM involves two training stages:
multi-task pre-training to capture transferable
properties between auxiliary corpora and a target
corpus, and target corpus fine-tuning to adjust the
parameters for each target corpus.

Experiments using five AM corpora showed
that MT-AM performed generally better than the
ST model. More importantly, the smaller the tar-
get corpus was, the better MT-AM performed,
suggesting the effectiveness of MT-AM for rem-
edying the lack of training data, which is likely in
line with the previous work (Schulz et al., 2018).
To investigate transferability among the corpora,
we also examined all the corpus pairs of an aux-
iliary corpus and target corpus and found that
the choice of auxiliary corpus affects the parsing
performance (Figure 5 and Table 6).

Finally, we further discuss transferability under
low-resource settings and advocate three types of
hypothetical transferability in AM on the basis of
the following observations. (i) Data/training suf-
ficiency: With a small number of data samples or
training steps for the target corpus, MT-AM de-
tected larger number of components or relations
than an ST model (Figure 7). (ii) Annotation com-
patibility: Partial compatibility of the annotation
design between the auxiliary corpora and target
corpus helped MT-AM improve the parsing per-
formance (Figures 8 and 9, and Table 7). (iii)
Semantic compatibility: Argumentative knowl-
edge of an auxiliary corpus that is semantically
compatible with the target corpus could be trans-
ferred using MT-AM (Figure 10 and Table 8).
These insights will be useful for designing an ef-
fective cross-corpus AM method. We released our
code at https://github.com/hitachi
-nlp/graph_parser. All corpora used in this
paper are publicly available from each distributor.

2 Background
2.1 Evolution of AM

Argument(ation) is an activity that involves rea-
soning, in which an arguer attempts to rationally
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justify his or her points on a certain topic (Eemeren
etal., 1996). In natural language processing, stud-
ies on identifying or classifying arguments from
text computationally have been underway for the
past several years (Eckle-Kohler et al., 2015;
Rinott et al., 2015; Park et al., 2015b; Habernal
and Gurevych, 2017; Trautmann et al., 2020;
Trautmann, 2020; Boltuzi¢ and Snajder, 2020).

The main objective of AM is to predict
the argument structure from an unstructured
text (Peldszus, 2014; Peldszus and Stede, 2015;
Lawrence and Reed, 2019; Kuribayashi et al.,
2019). Stab and Gurevych (2017) defined AM as
a pipeline consisting of three tasks: component
identification to predict an argument component
span, component classification to predict an argu-
ment component type such as Claim or Premise,
and structure identification to predict argumenta-
tive relations between the components. Discourse
parsing is sometimes compared with AM. For ex-
ample, Rhetorical Structure Theory (RST; Carlson
et al., 2001) parsing postulates a hierarchical dis-
course structure (Ji and FEisenstein, 2014), and
the model is strictly constrained by the tree-based
rules. In contrast, AM handles a variety of corpora
with different conceptualizations.

AM as Relation Extraction: Many methods
used in AM are derived from dependency
parsing or relation-extraction methods. While
syntactic dependency parsing converts a sen-
tence into word token-to-token relations, AM
converts a text into component-to-component
relations. A widely known method of parsing
component-to-component relations is to use pair-
wise classification. One of the first instances of
this was a feature-based relation extraction devel-
oped by Stab and Gurevych (2014, 2017), who
parsed AAEC by pairwise classification. Persing
and Ng (2016) also applied a relation classifier
for each component pair. Our study follows the
pairwise classification for the relation classifica-
tion as well, and we jointly optimize the span
identification and component classification.

Due to the rapid advancement in neural
architectures, AM has been using representations
contextualized by neural networks. For example,
Eger et al. (2017) used LSTM-ER (Miwa
and Bansal, 2016), which was originally uti-
lized to parse relations between entities, and a
bidirectional LSTM (BiLSTM; Graves and
Schmidhuber, 2005)-based model (Sgggard and
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Goldberg, 2016) to parse the argument structure
on AAEC. Kuribayashi et al. (2019) investigated
a span representation with BiLSTM that takes
into account argumentative markers. Potash et al.
(2017) used an encoder-decoder approach with a
pointer network (Vinyals et al., 2015) to predict
relations between argument components. Niculae
et al. (2017) proposed a neural model in which
a factor graph formulation is provided. Galassi
et al. (2018) proposed a neural architecture for
parsing argument graphs. The model architecture
that we propose in this study is based on biaffine
operation (Dozat and Manning, 2017), which was
used in the work by Morio et al. (2020).

The rapid advances in pre-trained language
models such as Bidirectional Encoder Repre-
sentations from Transformers (BERT; Devlin
etal., 2019 have affected AM studies (Kuribayashi
et al.,, 2019; Mayer et al., 2020). Mayer et al.
(2020) presented a BERT model with a compo-
nent pair classifier for predicting relations. Wang
et al. (2020) also used BERT in encoders. In
contrast to the above studies, since a given input
argument can have many sentences, we use Long-
former (Beltagy et al., 2020) to encode text, as it
can handle a longer input sequence than BERT.

Low-resource Issues: Because AM corpora
tend to be small, the training strategy needs to be
refined to improve parsing under low-resource set-
tings. Schulz et al. (2018) reported that multi-task
learning for component identification is effective,
particularly in data-sparsity settings. Accuosto
and Saggion (2019) proposed a transfer-learning
method that uses contextualized representations
learned from discourse parsing tasks. Chakrabarty
et al. (2019) used Universal Language Model
Fine-tuning (ULMFiT; Howard and Ruder, 2018)
on 5.5 million opinionated claims in a Reddit
corpus for claim detection. In contrast, we use
multiple AM corpora to predict argument struc-
ture. In discourse parsing, Guz et al. (2020) used
a pre-trained language model and training with
silver-standard data for parsing, and Huber and
Carenini (2019) provided a distant supervision
method on an auxiliary sentiment-classification
task. Recently, Putra et al. (2021a) reported that
using multi-corpora learning with selective sam-
pling improves the link prediction performance.
We also study the multi-corpora learning method,
further analyzing the method using an end-to-
end model.
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Table 1: Label distribution for each corpus. We show the number of component labels,

relation labels, and the type of span.

Models for Various AM Corpora: A few stud-
ies, such as those by Cocarascu et al. (2020) and
Galassi et al. (2021), investigated models that
can be used for various AM corpora. Wachsmuth
et al. (2017) provided a unified view for three
AM corpora to analyze the patterns in their over-
all argumentation. In parallel with our study, Bao
et al. (2021) proposed a transition parser for both
tree and non-tree arguments. Compared with that
study, we include end-to-end learning (i.e., from
span identification to relation classification) and
do not require any transition designs.

3 Overview of AM Corpora

We focus on five differently annotated corpora:
AAEC, a medical abstract corpus named Abs-
tRCT (Mayer et al., 2020),' cbcp, MTC, and the
argument-annotated SciDTB (AASD; Accuosto
and Saggion, 2020). These corpora are useful for
discussing differences and similarities in argument
structure. Table 1 shows the label distribution
for these five corpora.? As can be seen, MTC
and AASD are relatively low-resource corpora in
terms of both components and relation labels. The
details of each corpus are as follows.

AAEC (Stab and Gurevych, 2017) contains
student essays. There are two types of data:
essay-level and paragraph-level (Egeretal.,2017).
A stance for a controversial theme is expressed by
a MajorClaim component as well as Claim com-
ponents, and Premise components justify or refute
the Claims. Attack and Support labels are defined
as relations. The span covers a statement, which

IAbstRCT: Abstracts from Randomized Controlled
Trials.

2The CDCP statistics differ from those in Galassi et al.
(2018), probably due to the preprocessing difference of a link
transitive.

can stand in isolation as a complete sentence, ac-
cording to the AAEC annotation guidelines (Stab
and Gurevych, 2017). All components are anno-
tated with minimum boundaries of a clause or
sentence excluding so-called ‘‘shell’”” language
such as On the other hand and Hence it is al-
ways said that, as seen in Figure 1 (bottom).
Thus, this corpus discriminates argumentative text
units from non-argumentative ones, producing
many non-argumentative component parts. This
is different from the segment-based spans that do
not contain or barely contain non-argumentative
component parts.

MTC (Peldszus and Stede, 2016) is based on
Freeman’s theory of the macro-structure of ar-
guments (Freeman, 2011) and incorporates the
ideas of Toulmin (Toulmin, 2003) into dia-
gramming techniques. MTC introduces dialectical
exchange between Pro (proponent) and Opp
(opponent) components. Relations include Add,
Exa (example), Reb (rebut), Sup (support), and
Und (undercut). According to precedent stud-
ies, we pre-processed the Add relations similarly
to Kuribayashi et al. (2019). MTC introduces a
segment-based span where a segment usually
contains a clause or sentence.

CDCP (Park and Cardie, 2018) consists of com-
ments in which five types of components (Fact,
Testimony, Reference, Value, and Policy) and
two types of supporting relations (Reason and
Evidence) are annotated on the basis of the
study by Park et al. (2015a). The spans are
segmented into elementary units with a propo-
sition consisting of a sentence or a clause. CDCP
also discriminates argumentative text units from
non-argumentative ones, but we classify the span
type of CDCP as segment-based because very few
non-argumentative units exist in the corpus. We
pre-processed this corpus using a similar approach
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AAEC MTC CDCP AbstRCT AASD

type tree tree graph graph tree
# texts 1833 112 731 500 60
# components 6089 576 4779 3279 353
# relations 3832 464 1353 2060 293
% trees 7327 100 7.8 31.40 100
% reentrant 0 0 4.29 1.06 0
relation density 0.812 1 0.391 0.767 1
% noncrossing  99.78 94.64 95.08 69.80 95.00

Table 2: Statistics of AM corpora (maximum val-
ues are shown in bold). For AAEC, paragraph-level
statistics are shown.

to Morio et al. (2020), where continuous spans are
merged and transitive closures are processed.

AbstRCT (Mayer et al., 2020) includes ab-
stracts of randomized controlled trials (RCTs)
from the MEDLINE database.®> MajorClaim,
Claim, and Evidence components, along with
Support, Attack, and Partial-attack relations, are
annotated for various diseases (e.g., neoplasm,
glaucoma, hepatitis, diabetes, and hypertension).
Similar to AAEC, this corpus discriminates argu-
mentative text units from non-argumentative ones,
producing non-argumentative component parts.
We used 350 training, 50 development, and 100
test neoplasm texts.

AASD (Accuosto and Saggion, 2020) was cre-
ated to address the lack of a scientific AM corpus.
The authors enriched annotations for a subset
of SciDTB (Yang and Li, 2018) by providing
component types for Proposal, Assertion, Result,
Observation, Means, and Description. Support
and Attack relations are provided on the basis
of the study by Kirschner et al. (2015). AASD also
includes Detail, Additional, and Sequence rela-
tions. The spans are segmented into elementary
discourse units, similar to MTC.

3.1 Discussion of the Five Corpora

Although the five corpora have different designs,
they also share similarities to some extent. For
example, the early datasets such as AAEC and
MTC led to the development of corpora such as
AbstRCT and AASD. As for structural designs,
AAEC and MTC form a tree argument, and AASD is
also tree-based. Table 2 summarizes the statistics

3https://www.nlm.nih.gov/medline/medline
_overview.html.
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of the AM corpora.* The relation density indicates
an averaged value of N,./(N. — 1), where N, and
N, represent the number of relations in a graph
and the number of components, respectively. MTC
and AASD are always composed of 100% tree ar-
guments, so the relation density is 1. Unlike these
corpora, the argument structure of CDCP does not
necessarily form a tree (i.e., a graph). For exam-
ple, given two supporting relations (¢ — b) and
(b — ¢), a transitive relation (a — c¢) is estab-
lished. This is a case of reentrancy (Vilares and
Go6mez-Rodriguez, 2018). The relation density of
CDCP shows that a larger number of components
are isolated. We can also observe differences in
crossing relation, which is known as projectivity
in the context of dependency parsing (Covington,
2001; Oepen et al., 2019). AAEC is mostly
non-crossing, while the structure of AbstRCT
is more complex.

For the relation label design, AM corpora usu-
ally contain support or attack types. For example,
(AAEC; Premise—Support — Claim) has a similar
support type to (CDCP; Fact — Reason — Value),
and (MTC; Opp — Reb — Pro) has a similar attack
type to (AAEC; Premise — Attack — Premise). We
indicate the connection types with different col-
ored text in Table 1, which shows that the support
type appears across all corpora.

Component spans are usually designed to cap-
ture their meaning within a minimum boundary.
As shown in Table 1, MTC, CDCP, and AASD have
segment-based spans in which a text is generally
split into sentences or clauses. In contrast, AAEC
and AbstRCT contain non-argumentative parts
in text.

Certain similarities and differences can be ex-
pected in component types. While AAEC and
AbstRCT share the Claim and MajorClaim com-
ponents, CDCP and AASD provide corpus-specific
types such as Testimony and Proposal.

4 Models

4.1 Task Formalization

Similar to the study by Stab and Gurevych
(2017), we introduce three tasks: (i) Span iden-
tification, which predicts the component span,
(ii)) Component classification, a successive task
of span identification for classifying the com-
ponent label associated with a span, and (iii)

4We used the mtool library (Oepen et al., 2019, 2020) to
compute the statistics.
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Figure 2: Overview of ST model with four output layers
(span, component, link, and relation) on Longformer.

Relation classification, a successive task of the
span identification for detecting and classifying
argumentative relations between the spans.

Formally, we predict a set of spans (S), com-
ponents (C), and their relations (R). A span can
be represented as a pair (s,e) € S, where s and
e are the span start and end character indices,
respectively. The component can be represented
as a triple (s, e, c) € C, where ¢ denotes the type
of component associated with (s, ). The relation
can be represented as (S, Esrc, Stts €gts ) € R,
where sg. and eg, represent the source-side span,
Sig and ey represent the target-side span, and r
indicates the relation label.

4.2 ST Model

Before describing MT-AM, we present an ST
model (Figure 2), which is the basic architecture
of MT-AM. As discussed in Section 3.1, we need
an architecture that does not depend on a specific
span unit or type of graph structure. To this end,
we provide a simple end-to-end architecture, the
concept of which is similar to that in previous
studies (Eberts and Ulges, 2020; Jiang et al.,
2020).

Longformer: We use Longformer-base (Beltagy
etal., 2020), a pre-trained language model that can
handle a long input sequence. To reduce the com-
putational complexity (O(n?) in a self-attention),
Longformer takes both local and global con-
texts into account. The global attention focuses
on inductive bias on a specific task (Beltagy
et al., 2020). The local attention is computed us-
ing a windowed self-attention that reduces the
computation time to O(nw), where w is the
window size.
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hyperparameter AAEC CDCP  AbstRCT
batch size 4

MLP dropout, dim 0.1, 768

Ac 0.18 0.057 0.035
Ae 1.05 0.82 0.58
Ar 0.21 0.15 0.17
LR 9.1e-5  5.6e-5 8.1e-5
LR (multi-task

pre-training) 1.7e-5 2.5e-5 1.9¢-5
epochs (single-task

training) 20

epochs (multi-task

pre-training) 2 4 4
epochs (target corpus

fine-tuning) 18 16 16
auxiliary weight 0.24 0.66 0.76
Adam betal, beta2 0.9, 0.998

Table 3: Rounded hyperparameter values.

We tokenize the input text using Longformer’s
tokenizer, inserting special tokens such as the be-
ginning and ending tokens (i.e., <s> and </s>).
We apply the global attention for the first token
<s> to account for the entire argument.

Span-biaffine Architecture: Asshownin Figure 2,
we developed this architecture by providing task-
specific classifiers on the Longformer.

First, a span classifier produces BIO tags by
means of a multi-layer perceptron (MLP) on top
of Longformer outputs. We obtain span repre-
sentation with average pooling. Gold spans are
used in training, and only predicted spans are used
in inference.

The span representation is then used to classify
the component type. For a span representation of
(s,e), we apply an MLP to obtain a probability
distribution for the component label c.

The span representations are also used to com-
pute relations. Given the different costs required
to detect and classify relations (as shown in
Table 3), we use two biaffine operations (Dozat
and Manning, 2017, 2018), similar to the study
by Morio et al. (2020). A link detection biaffine
classifier predicts if a relation between a source
Span (S, €sre) and target span (S, €1gr) €Xists. A
relation label biaffine classifier predicts the label
r associated with the relation. We use MLPs with
the biaffine classifier as follows:

h(}gt) — Mp(te)

(ei), h;
)

P(yij) = f (BIAFFINE (hg-tgt), h;

7

h!"™ = Mp(™©)

)

(&),



where e; and e; denote the span representations
of the i-th and j-th components, and BIAFFINE
represents the biaffine (or possibly bilinear) oper-
ation. For link detection, f is a sigmoid function,
so P(y;—,;) is a probability value. For relation
label classification, f is a softmax function, so
P (y;_,;) is a probability distribution of labels. By
combining both outputs, we obtain the relation
(Ssrc, €sres Stat, €tgt, ). Note that relation labels are
only backpropagated on the gold links (Dozat and
Manning, 2018).

We consider an imaginary top for the first token
<s>. The top is linked to all components that have
no outgoing relations. This enables us to use an
optimization algorithm to make the graph into
a tree.

Let the cross-entropy loss of the span classifier
be L, cross-entropy loss for the component clas-
sification be L., binary cross-entropy loss for the
link detection be L;, and cross-entropy loss for
the relation label classifier be £;. The objective to
be optimized is £ = ALs + AcLc + MLy + ALy,
where A\ are hyperparameters.

43 MT-AM

We propose MT-AM, an end-to-end model us-
ing a two-staged method (multi-task pre-training
and target corpus fine-tuning), which is similar
to the work of Liu et al. (2019a). We modify
the model architecture of ST for the multi-task
pre-training because the output labels are different
for each corpus, and corpus-specific output layers
are implemented while still sharing Longformer
parameters. In the target corpus fine-tuning, we
further train the model on only the target corpus.

Generally speaking, the objective can be the
sum of losses for each corpus in the multi-task
pre-training, and MT-AM should capture transfer-
able features across different corpora. However,
each auxiliary corpus would still have distant
information, which degrades the parsing perfor-
mance for a target corpus. We therefore provide
a smaller loss weight (van der Goot et al., 2021)
(i.e., auxiliary weight) for the auxiliary corpora.
We also provide a different learning rate (LR)
and epochs for the multi-task pre-training and tar-
get corpus fine-tuning. These hyperparameters are
described later.

We provide the following variants of MT-AM:
MT-AIll, which conducts multi-task pre-training
with all five corpora. An example of MT-All for
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(b) Example of Corpus, — Corpus,,. AAEC is the aux-
iliary corpus (Corpus,) and CDCP is the target corpus
(Corpusy).

Figure 3: Overview of MT-AM.

AAEC is shown in Figure 3a, where the five cor-
pora provide corpus-specific output layers in the
multi-task pre-training. In this case, the auxiliary
corpora are MTC, CDCP, AbstRCT, and AASD.
After a couple of epochs in this stage, we further
fine-tune on the target corpus (i.e., AAEC). Finally,
we evaluate the test data of the target corpus.
Corpus, — Corpus,, which uses a single aux-
iliary corpus (i.e., Corpus,) only for analysis
(see Sections 5.3 and 5.4). We use Corpus,, and
the training data of Corpus, in the multi-task
pre-training. After a couple of epochs in this
stage, we further fine-tune on the target corpus
(i.e., Corpus,). An example of AAEC — CDCP is
shown in Figure 3b.

5 Experiments

We compared the MT-AM and ST models
(Section 5.2), investigated the transferability
(Section 5.3), and conducted an in-depth analyses
under low-resource settings (Section 5.4).

5.1 Experimental Setup

Hyperparameters: We apply dropout (Srivastava
et al., 2014) to the MLP layers. We use the Adam
(Kingma and Ba, 2015) optimizer with a linear
warmup scheduler (Howard and Ruder, 2018).
We tune the LR and A values as well as the
number of epochs in the multi-task pre-training
and the auxiliary weight by Optuna (Akiba et al.,
2019), a hyperparameter optimization framework.



Five-fold cross-validation (CV) is applied to the
training data for the hyperparameter optimization.
MTC and AASD use CV in the experiments, so
instead of tuning the hyperparameters we use
the same hyperparameters as AAEC. To stabilize
the tuning, we fix the total number of training
epochs to 20, set A; = 1, and tune the other A
values by sampling from a uniform distribution
within the range of [0.01,2.0]. We first tune the
hyperparameters related to the ST model and then
those related to the multi-task pre-training (e.g.,
LR, auxiliary weight, and number of epochs). The
number of epochs in the multi-task pre-training
is tuned by sampling from 2, 4, 6, and 8 while
keeping the total number of epochs to 20.

The tuned and fixed hyperparameters are shown
in Table 3. We found that the LR in the multi-task
pre-training was generally lower than that of
the target corpus fine-tuning, suggesting that
multi-task pre-training degrades the target corpus
representation if we use a higher LR.

Implementation Details: After applying the
relation classifiers, we use Chu—Liu/Edmonds’
algorithm (Chu and Liu, 1965) for AAEC, MTC,
AbstRCT,’ and AASD to make the predicted links
(i.e., the score matrix produced by the link detec-
tion) into a tree. We use given training and test
data for AAEC, CDCP, and AbstRCT, examine
30 different seeds, report the average score, and
use ten sets of five-fold CV (Kuribayashi et al.,
2019) for MTC and AASD. Unless otherwise spec-
ified, we use the essay-level data for AAEC. The
development data are randomly sampled from the
training data except for AbstRCT. We use given
development data for AbstRCT. We select the
optimal model on the basis of the development
score by evaluating once every two epochs.

Evaluation Metrics: Let G, and Sy be a
set of gold and system outputs for a task, re-
spectively. Precision P = |Gy N Siask|/|Stask |
recall R = ‘gtask N Stask‘/’gtask , and F =
2PR/(P + R) are then defined. For example,
(id, s,e) € Gspan, Where id indicates an ID inher-
ent to a text. Similarly, (id, s,e,c) € Geomponents
and <7fda SsrCaesrcastgtaetgt,T> € Grelation- We also
introduce the link score (Kuribayashi et al., 2019),
which is used to measure F-scores for determining
the existence of relations regardless of their labels.

SThis is done since most of the AbstRCT components
have only one outgoing relation (Mayer et al., 2020).

Component Relation
F  Macro F Macro
ST 85.21 75.54 66.59 55.66 55.17 42.30
MT-AIl 85.20 75.66 67.03 55.72 55.17 41.92
87.44 79.55 67.16 66.29 55.95
MT-All OS 87.68 80.37* 67.88* 66.91* 55.84
ST 87.68 78.83 73.77 53.43 45.92 33.07
MT-AII 88.11 80.98* 77.59* 57.73* 51.25* 39.65*
89.85 83.70 65.06 55.23 39.27
MT-All OS 91.58* 87.22* 68.55* 60.45* 47.11*
ST 82.88 68.90 65.78 31.94 31.94 16.26
MT-AIl 83.02 68.81 64.24 33.76* 33.74* 17.18*
81.03 82.34 40.15 40.11 20.39
MT-All OS 80.84 80.88 42.15*41.72* 21.21*
ST 70.29 64.16 45.04 39.35 38.38 31.91
Abst—- MT-All 70.93 64.78 44.56 39.74 38.71 33.94*
RCT ST =~ OS 89.37 67.57 59.65 57.10 47.i2°
MT-All OS 89.23 67.14 60.66* 58.05* 50.75*
ST 87.10 69.06 58.06 54.82 49.83 42.10
MT-AIlL 86.70 72.88* 63.57* 58.51 53.89* 47.64*
77.78 6590 63.96 58.30 49.22
MT-All OS 81.93* 71.45* 68.77* 63.40* 54.95*

Corpus Model Span Link

Table 4: F-scores [%]. MT-All (shown in bold)
generally outperformed the ST models. “‘OS”’
denotes oracle span setting. ‘‘Macro’’ repre-
sents macro-averaged F-score. * shows statistical
significance p < 0.05.

Note that the scores of component and relation
classifications are affected by the performance of
the span identification task.

5.2 Comparison of MT-All with ST Model
5.2.1 Effectiveness of MT-AM

To determine the effectiveness of MT-All, we
compared it against the ST model. Table 4 shows
the overall results on the five AM corpora. We also
show oracle span (OS) results, where the compo-
nents and relations are predicted on gold spans, to
determine the improvement for each component
and relation classification. As we can see in the
table, in most corpora, MT-All outperformed the
ST model on average. The largest improvement
by MT-All was observed for MTC and AASD in the
component and relation classification. This would
be because these two corpora are smaller than the
others and MT-All benefited more from the aux-
iliary corpora. However, the ST model performed
better than MT-All for some tasks in AbstRCT
and CDCP. In CDCP, labels that do not have cor-
responding labels in other corpora, such as Policy
and Testimony (see Table 1), would be more
challenging to improve by multi-task learning.
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5.2.2 MT-All under a Low-resource Setting

The above results indicate that the parsing per-
formance of MT-AM improves for low-resource
corpora. Because AM corpora in real settings are
generally low-resource, we further investigated
the effectiveness of MT-AM under the following
three extremely low-resource settings inspired by
Schulz et al. (2018):

1. Sample n [%] texts of the training and
development data in a target corpus.

2. For MT-AM, conduct multi-task pre-training
with auxiliary corpora and the sampled data
of the target corpus. For the target-corpus
fine-tuning, use the sampled data. For ST,
conduct fine-tuning on the sampled data.

3. Evaluate test data in the target corpus.

Similar to the study by Liu et al. (2019a), we
changed the sample amount n to 1%, 10%, or
100%. When n = 1%, the amount of sampled
training data of AbstRCT was 3 (texts) and that
of MTC and AASD was 1.

To investigate the improvement of MT-AM for
an ST model, we used the following metric (larger
is better), similar to the study by Morishita et al.
(2020):

Error reduction [%] = €(ST) — ¢(MT-AM),

where € is a function that computes the error
rate, that is, 100 — F-score [%]. However, it is
more robust to use a degree of error reduction for
errors produced in an ST model as a metric. For
example, error reduction by MT-AM (95 F-score)
for an ST model (90 F-score) is the same as that
by MT-AM (55 F-score) for an ST model (50
F-score). Intuitively, improving the F-score from
90 to 95 is more challenging than improving it
from 50 to 55. Thus, we define the error reduction
rate (ERR; larger is better) as

Error reduction

ERR [%] = 100
%] X TT(ST)

Following the above setting, Figure 4 repre-
sents the ERR by MT-AIll for an ST model with
three different training data amounts.® Overall,
we found that when there was less training data
in the target corpus, the ERR was larger. This
suggests that MT-AM is especially effective in
the low-resource setting, which is likely in line

5We compute ERRs for each CV or seed.
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Figure 4: ERR (with OS for components and relations)
by MT-All for ST with different training data amounts
(n%). We averaged the results of five corpora, re-
moving outliers for visibility. Red line shows average
values over three tasks.

with the previous work (Schulz et al., 2018). On
the other hand, when n = 100%, ERR for relation
and component tasks was larger than that for the
span identification task. However, when n = 1%
or 10%, the ERR for the span identification task
was larger than that for the other tasks. Given
that the span identification task is less semantic’
than component and relation classifications, we
conclude that the ERR of spans can be improved
with less training data. In other words, it is diffi-
cult for the span identification task to benefit from
multi-task learning when the amount of training
data is sufficient. In contrast, relation and compo-
nent tasks are more challenging to train; therefore,
the two tasks require more training data.

5.2.3 Evaluation of the ST Model

To investigate whether our ST model (and hence
the MT-AM model) performs reasonably, we
compared it with the following state-of-the-art
end-to-end AAEC parsers:

e BLCC (Eger et al., 2017), which parses the
argument structure as a sequence tagging
task.

e LSTM-ER (Eger et al., 2017), which
uses LSTM-ER (Miwa and Bansal, 2016)
(originally used to parse relations of entities).

e BiPAM-syn (Ye and Teufel, 2021), a
state-of-the-art parser based on a biaffine
operation and syntactic information.

In addition to the essay-level results, we pro-
vide paragraph-level results. We also provide

"For example, some corpora annotate spans based on
(semi-)automatically split segments for ease of annotation.



Component _ . Relation
Corpus Model  Span F Macro F  Macro
BLCC - 63.23 34.82
AAEC LSTM-ER - 66.21 29.56
ours*ST - 76.55 54.66
BLCC - 66.69 39.83
LSTM-ER - 70.83 45.52
AREC BiPAM-syn - 735 46.4
(para. OUS'ST = 7648 5955
graph- ILP Joint oS 82.6 58.5
lev.) Ptr. Net. oS 84.9 60.8
Span Repr. (0N 85.7 67.8
BERT Trans. OS 88.4 70.6
ours{ST OS 88.40 86.82 69.33 68.14 57.11
ILP Joint oS 85.7 48.6
Ptr. Net. (ON) 81.3 57.7
MTC
Span Repr. oS 83.5 575
oursfST OS 95.65 93.08 65.06 57.89 57.34
TSP-PLBA  OS 78.91 34.04
CcDCP BERT Trans. OS 82.5 373
ours ST OS 81.03 82.34 40.15 40.11 20.39
Abst_Rel.Ro.BERTa (ON) 48.72 17.53
RCT Rel.SciBERT OS 58.21 36.76
ours ST OS 89.37 67.57 59.65 57.10 47.12

Table 5: Comparison of our ST model and other
models. * is computed by C-F1 (100%) and R-F1
(100%) introduced by Eger et al. (2017). T calcu-
lates scores on the basis of label sets introduced by
Kuribayashi et al. (2019) for comparison, where
we map AAEC’s Claim:Against and Claim:For la-
bels into Claim. We also map an MTC’s component
labels to Claim or Premise and relation labels to
Support or Attack.

the following state-of-the-art OS baselines for
reference:

e ILP Joint (Stab and Gurevych, 2017), which
uses integer linear programming (ILP) for
parsing.

e Ptr. Net. (Potash et al., 2017), which uses
a pointer network (Ptr. Net.) to predict
relations.

e Span Repr. (Kuribayashi et al., 2019),
which uses distinct encoders to represent
argumentative markers.

e BERT Trans. (Bao et al., 2021), a
transition-based parser with BERT.

e TSP-PLBA (Morio et al., 2020), a
biaffine-based parser.

e Rel.RoOBERTa/SciBERT (Mayer et al,
2020),® a Transformer (Vaswani et al.,

Shttps://gitlab.com/tomaye/ecai2020
—-transformer_based_am.
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2017)-based AM parser that uses RoBERTa
(Liu et al., 2019b) or SciBERT (Beltagy
etal., 2019).°

All the scores are drawn from the original papers
of the above baselines except for Rel. RoBERTa
and Rel.SciBERT.

Table 5 shows the F-scores, where we can see
that in both essay- and paragraph-level AAEC, our
ST model outperformed other end-to-end models
(i.e., non-OS models). Compared with existing
methods like BiPAM-syn, our model signifi-
cantly improved the relation classification score.
Although our model is not tailored to OS ar-
chitectures or hyperparameters, when combined
with OS it showed comparative or better parsing
scores than the other models. Interestingly, BERT
Trans. had better scores than our model in AAEC,
while our model was better in link detection on
CDCP. Since the architectures of our model and
BERT Trans. are different (cf. graph-based vs.
transition-based; Falenska et al., 2020), we con-
clude that incorporating the advantages of both
methods may improve the parsing performance.

5.3 Discussion: Transferability
among Corpora

To investigate transferability in MT-AM, we first
examined the corpus-wise transferability by all
pairs of Corpus, — Corpus, to determine the
capabilities of each corpus. We then analyzed the
label-wise transferability for relations.

Corpus Preference: Figure 5 shows a matrix
plot created by computing the error reduction (n =
100%) for all Corpus, — Corpus, pairs. The
vertical axis represents the auxiliary corpus and
the horizontal axis represents the target corpus.
As shown in the figure, each corpus pair has a
different corpus preference. The error reduction
in each column varies in accordance with the
Corpus, — Corpus,, pairs. For example, when
AAEC was an auxiliary corpus (i.e., AAEC row),
the error reduction of the relation for AbstRCT
was 0.1 while that for CDCP was 0.95.

From the ‘‘avg’’ columns in Figure 5, we can
evaluate how each corpus works as an auxil-
iary corpus on average. As shown, the lower
resource corpora, MTC and AASD, are less effec-
tive as an auxiliary corpus for MT-AM because

SWe only use the relation classification model, distin-
guishing Attack and Partial-attack labels.
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Figure 5: Error reduction (not ERR) by MT-AM (Corpus, — Corpus, ) for ST models (with OS for components and
relations), showing each auxiliary corpus (vertical; Corpus,) and target corpus (horizontal; Corpus, ) combination.
For example, error reduction in the AAEC —AASD relation is 4.37. *“All”’ represents MT-All. Darker green shows
positive effects of MT-AM and darker blue shows negative effects. Note that the darkness is normalized in each

task (i.e., span, component, or relation).

they produce lower error reduction (AASD-‘‘avg’”’
cells and MTC-‘‘avg’ cells). In both compo-
nent and relation classifications, the average error
reductions of AAEC and CDCP as an auxiliary cor-
pus (i.e., AAEC-‘‘avg’” and CDCP-‘‘avg’’ cells)
were better among all corpora. Because CDCP
forms less constrained argument structures than
tree-constrained argument structures such as MTC
and AASD, we presume that one factor for the high
transferability of CDCP stems from its ability to
represent broad argumentative relations that may
appear in a target corpus. AbstRCT also showed
better error reductions, namely, 1.49 in compo-
nent and 2.21 in relation, as an auxiliary corpus
(i.e., AbstRCT-‘‘avg’’ cells). However, some
auxiliary corpora barely improved error reduc-
tions on the AbstRCT components and relations.
This asymmetry result can be due to a domain
difference.

The above results indicate that the average
error reduction varies depending on the auxiliary
corpus (Corpus,,). On the other hand, the average
performance of MT-AIl (i.e., the “‘All’’-*‘avg”’
cells) shows stable error reductions. For example,
when CDCP was a target corpus, the average error
reduction of MT-All (i.e., ‘‘All’’-CDCP cells) was
better, namely, 0.14 in span and 1.61 in relation,
when compared with all Corpus, — CDCP pairs.
We presume that MT-All stabilized the fluctuation
of performance produced by each auxiliary corpus.

Label-wise Analysis: The label-wise best cor-
pus combinations for the relation perspective are
shown in Table 6 at n = 100%. We report the
best auxiliary corpus with score transition from
ST to MT-AM for each target corpus and its re-
lation labels. For example, the ST model trained
on AAEC produced a 44.54 F-score for Attack
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Target Best auxi-

corpus Relation riary corpus ST — MT ERR

(Corpusy) (Corpus,,)

AAEC Attack CDCP 44.54 — 46.60 3.71
Support CDCP 67.37 — 68.35 3.01
Exa CDCP 347 —21.33 1851

MTC Reb AAEC 53.56 — 59.58 12.96
Sup AAEC 59.68 — 64.22 11.26
Und AAEC 40.38 — 47.79 1243

cpep Evidence AAEC 0.00 - 0.67 0.67
Reason AAEC 40.79 — 41.73  1.59
Attack CDCP 3426 — 3791 555

AbstRCT Partial-Attack MTC 48.37 — 52.28 17.56
Support AASD 58.72 — 58.46 -0.63
Additional CDCP 67.34 —70.11 8.49

AASD Detail CDCP 50.49 — 57.54 14.26
Sequence AbstRCT 6.21 - 17.19 11.71
Support AAEC 66.75 — 71.56 14.46

Table 6: Best auxiliary corpus for relations (with
OS). ST — MT shows score transition from ST
to Corpus, — Corpus,,.

relations, the MT-AM (CDCP—AAEC) that was
best among all corpus combinations produced
a 46.60 F-score, and the ERR between the ST
and MT-AM was 3.71. The results in the table
show that, similar to the corpus-wise analyses,
there is a combination preference. For example,
AAEC and CDCP seem to be the best combina-
tion, where injecting auxiliary CDCP into AAEC
produced a 3.71 ERR in Attack relation and inject-
ing auxiliary AAEC into CDCP produced a 1.59
ERR in Reason relation. CDCP and AAEC are
also better auxiliary corpora for MTC, for exam-
ple, 18.51 ERR for Exa relation by CDCP—MTC
was obtained. On the other hand, CDCP, Abs—
tRCT, and AAEC are better auxiliary corpora
for specific labels of AASD. While CDCP is bet-
ter for Additional and Detail relations, AAEC is



better for the Support relation and AbstRCT is
better for the Sequence relation. This suggests
there could be corpus preferences for specific
relation labels.

The results in Table 6 also indicate that the
ERRs of Attack and Partial-Attack of AbstRCT
significantly improved (5.55 and 7.56 ERR, re-
spectively). In addition, we observed a significant
improvement for labels such as Exa, Reb, and
Und of MTC (18.51, 12.96, and 12.43 ERR,
respectively). Since the numbers of these la-
bels are smaller in each corpus (as shown in
Table 1), we conjecture that the prediction per-
formance of such lower-resource labels improved
thanks to the multi-task learning. Figure 6 shows
the case of an MTC sub-graph at n = 100%.
The ST model trained on MTC sometimes de-
tected a false-positive Und relation from Although
Ukraine... to Despite the..., while MT-AM suc-
cessfully removed the false-positive relation. We
explain this through the ST model trained on AAEC
that was used to parse the MTC text. We found
the predicted graph of the ST model (AAEC) was
similar to the gold graph, since both graphs rep-
resent the second component (i.e., the EU...) as a
root component (i.e., MajorClaim). We conclude
that this transferability between the auxiliary and
target corpora successfully removed the false-
positive relation.

The ERRs for certain relations did not improve
with MT-AM. For example, the ERR of AbstRCT
Support was —0.63 (see Table 6). We presume that
there are two reasons for this: (i) the number of
Support labels is large enough to achieve a reason-
able prediction performance and (ii) AbstRCT is
a more challenging target corpus due to domain
differences. For example, medical knowledge of
AbstRCT cannot be obtained from other corpora.
Also, a different scheme for relations, for exam-
ple, a lower number of non-crossing relations (as
shown in Table 2), could not be transferred from
other corpora.

5.4 Discussion: Typology of Transferability
in AM

We further discuss the results under low-resource
settings to examine the typology of transferability.
We hypothesize that there are three possible types
of transferability: data/training sufficiency, an-
notation compatibility, and semantically induced
compatibility, as follows.

650

[ Gold

Reb Reb
Opp Pro Opp
Desipite Although
the - the U ykraine -

ST model (AAEC)
D
Agains Agains

ST model (MTC)
Reb

(0]¢] ) Pro

7’
~ -
S =m=—"

Und (False-positive)

MT-AM (AAEC->MTC)

Reb Reb

(0] )] Pro Opp

Figure 6: Case study: Predicted results of an MTC
sub-graph with OS. For visibility, we combine model
outputs for several CVs or seeds.

1. Data/Training Sufficiency: Models will not
output minor classes such as ‘B’ in the BIO
tags and positive link classes when insufficient
training data is available or a small number of
training steps is applied. We found that MT-AM
alleviates this problem. Figure 7 shows the number
of predicted components and relations, regardless
of whether the outputs are correct or not. For
relations, we can see in Figure 7b that MT-All
helps increase the link outputs for both AAEC
and CDCP under low-resource settings, suggesting
that the minor positive link class is more often
predicted in MT-All. For components, we can
see in Figure 7a that the number of predicted
components increases for CDCP at n = 1%, while
AAEC shows a different phenomenon where the
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Figure 8: Relationship between span similarity (F-score
of ST model; horizontal axis) for target corpus AASD
and ERR.

number of predicted components by ST is larger
than those by MT-All at n = 1%. This is because
there is a greater number of ‘‘O’’ tags in AAEC
since the span of the corpus is not segment-based.

2. Annotation Compatibility: Under low-resource
settings, because a model cannot exploit much
information of a target corpus in the training,
compatibility of the annotation design between
the auxiliary corpus and target corpus would di-
rectly help multi-task training improve the parsing
performance. To demonstrate this, we define the
span or link similarity!® that approximates the
compatibility between an auxiliary corpus and
target corpus. For span similarity, we compute
the span F-score for a target Corpus,, by using an
ST model trained on another Corpus,,. Similarly,

10Because component-label types of an auxiliary corpus
differ from those of a target corpus, we only investigated
span and link (i.e., unlabeled) similarities.
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Gold T his paper ... readinggg [W e observe, ... logsgg
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searchyy [T he results ... interestingnes. a nd that
... modelspy

(SELAT;E) T his paper ... reading . W e observe, ... modelsggy

CDCP T his paper ... readinggy [W e observe, ... logspy

—AASD T he DSSM ... minimizedgg | T he effectiveness ...

(n =1%) searchygg | T he results ... modelspgy

AbstRCT | T his paper ... reading . W e observe, ... logs .

—AASD T he DSSM ... minimized . T he effectiveness ...

(n =1%) search . T he results ... modelspgy

AbstRCT [T his paper ... readingggy |W e observe, ... logsgy
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(n = 100%) searchygy [T he results ... modelspy

Table 7: Predicted AASD spans. The red box
shows a span start character, and the [blue| box
shows the end. When we add up all the CV
results, the darker box is the more predicted.
See also the original abstract in Gao et al.
(2014).
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Figure 9: Relationship between link similarity (F-score
of ST model) for target corpus AASD and ERR.
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Figure 10: F-score of the root component detection
(with OS) with AbstRCT—AASD for each training
data amount (n%).

we compute the link F-score with OS for a target
Corpus,,.

Since AASD is the smallest corpus in this study,
we examined the relationship between similarity
and the ERR of the corpus. Figures 8 and 9 show
the relationships between the computed similar-
ities and ERRs by Corpus, — AASD.!' Under

""We exclude MTC as an auxiliary corpus because it is too
small to compare with the other corpora.
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Table 8: Predicted root components (with OS). We ad

dup all CV or seed results, so the darker the color,

the more predicted. Gold root component is fourth (i.e., 3. In this...).

the extreme low-resource setting (n 1%), as
shown in Figures 8a and 9a, we observe the
potential for positive correlations between the
similarities and ERRs. This implies that the an-
notation compatibility directly helps multi-task
learning.

Specifically, in terms of the span, CDCP showed
the best compatibility with AASD in Figure 8a
(n = 1%) because both span similarity and ERR
are highest. Abst RCT showed the worst compati-
bility with AASD because both span similarity and
ERR are lower. This is illustrated in Table 7, which
represents the span predictions. At n = 1%, the
ST (AASD) often produced few segments, while
the CDCP — AASD split multiple sentences into
segments that were almost compatible with the
gold segments. Compared with CDCP — AASD,
AbstRCT — AASD produced fewer segments.
This is because AbstRCT spans are partially se-
lected from a text, and are not compatible with
AASD. On the other hand, when n = 100% (as
shown in Figure 8b), we found fewer positive cor-
relations than in n = 1%, suggesting that MT-AM
does not benefit from the compatibility when the
training data amount is sufficient. In fact, as we
can see with AbstRCT — AASD (n = 100%) in
Table 7, the issue of fewer segments produced by
AbstRCT — AASD (n = 1%) has already been
resolved.

In terms of links, CDCP and AAEC in Figure 9a
(n = 1%) showed better compatibility while Abs—
tRCT showed the worst. In contrast with the
span, the correlation can still be observed when
n = 100% (Figure 9b).

3. Semantic Compatibility: Although the
above-mentioned transferability focused on
annotation transfer between auxiliary and target
corpus, we argue that another possible transfer-
ability also exists. That is, in addition to the direct
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transfer based on the link and span similarity
between the auxiliary corpus and target corpus in
the annotation compatibility, we want to examine
the transfer of potential features of the argument
structure. Through our analysis, we found that
MT-AM sometimes improves the root component
detection significantly when n = 10%. Figure 10
shows the F-score for the root component
detection by AbstRCT—AASD for each training
data amount. We can see that, compared with
the ST model, auxiliary AbstRCT significantly
improves the score when n = 10%. We suppose
this is derived from semantic compatibility such
as implicit argumentative knowledge.

To validate this, we show the predicted root
components of AbstRCT—AASD in Table 8. As
mentioned above, annotation compatibility could
be important for improving the parsing perfor-
mance under low-resource settings. Since AASD
and AbstRCT do not have much compatibility,
as shown in Figure 9a, the gold root compo-
nent (i.e., the fourth component) of AASD is less
compatible with the ST model trained on Abs-
tRCT (Table 8(a)). This makes the prediction
of AbstRCT — AASD at n = 1% (Table 8(d))
less similar to the gold. However, as shown in
Table 8 (b), we found that AbstRCT—AASD at
n = 10% predicted the fourth component as the
root. Surprisingly, this result was not observed in
the ST model trained on AASD (Table 8 (c¢)). This
suggests that AbstRCT is able to transfer implicit
argumentative knowledge that can determine the
root component of a small target corpus.

5.5 Limitation

While we have shown both the effectiveness
and the transferability capability of MT-AM, the
results might change depending on the model
architecture, implementation, experimental de-
sign, hyperparameters, and unrecognized factors



of annotations. In addition, the three types of trans-
ferability are not likely to be independent of each
other and are no better than hypotheses. More ex-
periments and discussions will be our future work.

6 Conclusion

In this paper, we focused on argument mining
(AM) for handling a scarcity of resources and
proposed an end-to-end multi-task AM (MT-AM)
model for various corpora. Experiments showed
that the proposed MT-AM generally outperformed
single-task models and further improved the
parsing performance under low-resource settings.

Our extensive analyses suggest that the ad-
vantage of MT-AM is due to its three types of
transferability: data/training sufficiency, annota-
tion compatibility, and semantic compatibility.
In future work, we will develop more accu-
rate MT-AM parsers on the basis of these
transferability hypotheses.

Also, it has been suggested by a reviewer that
using a trained parser to generate a silver corpus
could be a means of extending the training data.
Future work should thus address the develop-
ment of a silver corpus. We are also interested in
multi-lingual training using the proposed system.
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