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Introduction

Welcome to SemEval-2022!

The Semantic Evaluation (SemEval) series of workshops focuses on the evaluation and comparison of
systems that can analyze diverse semantic phenomena in text, with the aims of extending the current sta-
te of the art in semantic analysis and creating high quality annotated datasets in a range of increasingly
challenging problems in natural language semantics. SemEval provides an exciting forum for researchers
to propose challenging research problems in semantics and to build systems/techniques to address such
research problems.

SemEval-2022 is the sixteenth workshop in the series of International Workshops on Semantic Evalua-
tion. The first three workshops, SensEval-1 (1998), SensEval-2 (2001), and SensEval-3 (2004), focused
on word sense disambiguation, each time expanding in the number of languages offered, the number
of tasks, and also the number of teams participating. In 2007, the workshop was renamed to SemEval,
and the subsequent SemEval workshops evolved to include semantic analysis tasks beyond word sense
disambiguation. In 2012, SemEval became a yearly event. It currently takes place every year, on a two-
year cycle. The tasks for SemEval-2022 were proposed in 2021, and next year’s tasks have already been
selected and are underway.

SemEval-2022 is co-located (hybrid) with The 2022 Annual Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL-2022) on July 14 - 15. This year’s SemEval
included the following 12 tasks:

• Lexical semantics

– Task 1: CODWOE - COmparing Dictionaries and WOrd Embeddings

– Task 2: Multilingual Idiomaticity Detection and Sentence Embedding

– Task 3: Presupposed Taxonomies - Evaluating Neural-network Semantics (PreTENS)

• Social factors & attitudes

– Task 4: Patronizing and Condescending Language Detection

– Task 5: MAMI - Multimedia Automatic Misogyny Identification

– Task 6: iSarcasmEval - Intended Sarcasm Detection in English and Arabic

• Discourse, documents, and multimodality

– Task 7: Identifying Plausible Clarifications of Implicit and Underspecified Phrases in In-
structional Texts

– Task 8: Multilingual news article similarity

– Task 9: R2VQ - Competence-based Multimodal Question Answering

• Information extraction

– Task 10: Structured Sentiment Analysis

– Task 11: MultiCoNER - Multilingual Complex Named Entity Recognition

– Task 12: Symlink - Linking Mathematical Symbols to their Descriptions
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This volume contains both task description papers that describe each of the above tasks and system de-
scription papers that present the systems that participated in the tasks. A total of 12 task description
papers and 221 system description papers are included in this volume.

SemEval-2022 features two awards, one for organizers of a task and one for a team participating in a
task. The Best Task award recognizes a task that stands out for making an important intellectual contri-
bution to empirical computational semantics, as demonstrated by a creative, interesting, and scientifically
rigorous dataset and evaluation design, and a well-written task overview paper. The Best Paper award
recognizes a system description paper (written by a team participating in one of the tasks) that advances
our understanding of a problem and available solutions with respect to a task. It need not be the highest-
scoring system in the task, but it must have a strong analysis component in the evaluation, as well as a
clear and reproducible description of the problem, algorithms, and methodology.

2022 has been another particularly challenging year across the globe. We are immensely grateful to the
task organizers for their perseverance through many ups, downs, and uncertainties, as well as to the lar-
ge number of participants whose enthusiastic participation has made SemEval once again a successful
event! Thanks also to the task organizers who served as area chairs for their tasks, and to both task orga-
nizers and participants who reviewed paper submissions. These proceedings have greatly benefited from
their detailed and thoughtful feedback. Thousands of thanks to our assistant organizers Siddharth Singh
and Shyam Ratan for their extensive, detailed, and dedicated work on the production of these procee-
dings! We also thank the members of the program committee who reviewed the submitted task proposals
and helped us to select this exciting set of tasks, and we thank the NAACL 2022 conference organizers
for their support. Finally, we most gratefully acknowledge the support of our sponsor: the ACL Special
Interest Group on the Lexicon (SIGLEX).

The SemEval-2022 organizers: Guy Emerson, Natalie Schluter, Gabriel Stanovsky, Ritesh Kumar, Alexis
Palmer, and Nathan Schneider
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Abstract

Word embeddings have advanced the state of
the art in NLP across numerous tasks. Under-
standing the contents of dense neural represen-
tations is of utmost interest to the computa-
tional semantics community. We propose to
focus on relating these opaque word vectors
with human-readable definitions, as found in
dictionaries. This problem naturally divides
into two subtasks: converting definitions into
embeddings, and converting embeddings into
definitions. This task was conducted in a mul-
tilingual setting, using comparable sets of em-
beddings trained homogeneously.

1 Introduction

Word embeddings are a success story in NLP. They
have been equated to distributional semantics mod-
els (Lenci, 2018; Boleda, 2020), a theory of seman-
tics which relates the meaning of words to their
distribution in context (Harris, 1954). Recently
introduced contextualized word embeddings (e.g.
Devlin et al., 2019) have set a new state of the art on
a wide variety of tasks. For this reason, they have
attracted much research interest. Do they depict
consistent semantic spaces and are they theoreti-
cally valid (Mickus et al., 2020b; Yenicelik et al.,
2020)? What limitations are to be expected in these
models (Bender and Koller, 2020)? Can they scale
up in performance (Brown et al., 2020)?

Word embeddings are dense vector representa-
tions of meaning which are not easily intelligible
to a human observer. Many techniques have been
employed to make embedding spaces more inter-
pretable. A promising approach consists in con-
verting these opaque vectors into human readable
definitions, as one could find in a dictionary: ac-
curately translating a dense, opaque vector repre-
sentation into an equivalent human-readable piece
of text would allow us to peer into the black box

∗Work conducted while at ATILF

Figure 1: Logo for CODWOE shared task

of modern neural network architectures. This av-
enue of research, known as definition modeling,
was pioneered by Noraset et al. (2017). One may
however question whether the task is at all feasible:
there is no guarantee that the information content
of a dictionary definition is similar to that which
is described by real-valued vectors inferred from
word distributions.

The SemEval Shared Task on Comparing Dictio-
naries and Word Embeddings (CODWOE) sets out
to study whether embeddings and dictionaries en-
code similar information. We present the task and
relevant state of the art in Section 2. We describe
the data collected and presented to participants in
Section 3. In Section 4, we discuss the metrics
used to rank participant submissions. Our baseline
model is presented in Section 5. We list results
from participants’ submissions in Section 6 and
provide a more in-depth discussion in Section 7.

2 What we are fishing for

What is in a word embedding? Are word embed-
dings semantic descriptions, in the same sense that
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dictionary definitions are? If so, embeddings and
definitions must be translatable into one another.
The CODWOE shared task was set up to test this.
The shared task participants investigated whether a
word vector—e.g. c⃗od—contains the same infor-
mation as the corresponding dictionary definition—
viz. “any of various bottom-dwelling fishes (family
Gadidae, the cod family) that usually occur in cold
marine waters and often have barbels and three
dorsal fins.”1

We decompose this research problem into two
tracks: the first corresponds to the vector-to-
sequence task of Definition Modeling, the second
to the sequence-to-vector Reverse Dictionary task.
The task of definition modeling consists in using
the vector representation of c⃗od to produce the
associated gloss, “any of various bottom-dwelling
fishes (family Gadidae, the cod family) that usually
occur in cold marine waters and often have bar-
bels and three dorsal fins". The reverse dictionary
task is the mathematical inverse: reconstruct an
embedding c⃗od from the corresponding gloss.

These two tracks display a number of interesting
characteristics. These tasks are obviously useful
for explainable AI, since they involve converting
human-readable data into machine-readable data
and back. They also have a theoretical significance:
both glosses and word embeddings are represen-
tations of meaning, and therefore involve the con-
version of distinct non-formal semantic representa-
tions. From a practical point of view, the ability to
infer word-embeddings from dictionary resources,
or dictionaries from large un-annotated corpora,
would prove a boon for many under-resourced lan-
guages.

2.1 Track 1: Definition Modeling

The first track consists in an application of Defini-
tion Modeling. As training material, participants
have access to a set of data points, each of which
consists of a source word embedding and a cor-
responding target word definition (see Figure 2).
Participants are tasked with generating new defini-
tions for an unseen test set of embeddings.

Definition Modeling is a recent addition in NLG

tasks (Noraset et al., 2017) which seeks to do just
that. It has since then gained traction (Gadetsky
et al., 2018; Mickus et al., 2019; Li et al., 2020;
Zhang et al., 2020a, a.o.). Other languages than
English have also been studied, including Chi-

1From Merriam-Webster.

nese (Yang et al., 2019), French (Mickus et al.,
2020a), Wolastoqey (Bear and Cook, 2021), and
more (Kabiri and Cook, 2020). At its very in-
ception, Definition Modeling was suggested as a
means of evaluating the content of distributional
semantic models (Noraset et al., 2017). In practice
however, different researchers rarely use compa-
rable sets of embeddings (Mickus et al., 2020a),
effectively making proper comparisons across sys-
tems impossible as they use distinct inputs. To
fill this gap, we created a dataset of comparable
embeddings from different languages and neural ar-
chitectures, trained as homogeneously as possible
on comparable data; see 3.2 below.

2.2 Track 2: Reverse Dictionary

Reverse dictionaries (a.k.a. retrograde dictionaries)
are lexical resources that flip the usual structure of
dictionaries, allowing users to query words based
on the definitions they would expect them to have.
One of the major challenges of such resources con-
sists in providing definition glosses that match with
users’ expectations. As a consequence, a trend of
research in NLP has focused on producing dynamic
reverse dictionaries, that would interpret input def-
initions and map them back to the corresponding
word. We refer the reader to the comprehensive
review of Siddique and Sufyan Beg (2019), and
provide here mainly highlights.

An early strand of research focused on augment-
ing definitions using synonyms or other seman-
tically related words, such as hypernyms or hy-
ponyms. This approach has been applied to mul-
tiple languages, from Turkish to English and to
Japanese (Shaw et al., 2013; Bila et al., 2004;
El Khalout and Oflazer, 2004). Building on this
query-augmentation approach, we find works fo-
cused on integrating richer lexical resources, such
as WordNet, the Oxford dictionary, The Integral
Dictionary, or LDA vector spaces (Dutoit and
Nugues, 2002; Thorat and Choudhari, 2016; Mén-
dez et al., 2013; Calvo et al., 2016).

A related trend of research is that of Zanzotto
et al. (2010) and Hill et al. (2016), who use dictio-
naries as benchmarks for compositional semantics.
Zanzotto et al. (2010) used a shallow neural net-
work to implement a compositional distributional
semantics model and use dictionaries as their train-
ing data. Hill et al. (2016) instead employ a LSTM
to parse the full definition gloss and use the hidden
state at the last time-step to predict the word be-
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ing defined. In both cases, replacing the definition
gloss with a user’s query would lead to a reverse
dictionary system. Since then, a number of works
have attempted to implement reverse dictionaries
using neural language models. The WantWords
system (Zhang et al., 2020b; Qi et al., 2020) is
based on a BiLSTM architecture, and incorporates
auxiliary tasks such as part-of-speech prediction
to boost the performance. Yan et al. (2020) seeks
to replace the learned neural language models in
Hill et al. (2016) or WantWords with a pre-trained
model such as BERT (Devlin et al., 2019) and its
multilingual variants, which allows them to use
their system in a cross-lingual setting—querying
in a language to obtain an answer in another. Most
recently, Malekzadeh et al. (2021) used a neural
language model based approach to implement a
Persian reverse dictionary.

With respect to the CODWOE shared task, our
interest lies in reconstructing the word embed-
ding of the word being defined, rather than find-
ing the corresponding word—an approach more
closely related to that of Zanzotto et al. (2010) and
Hill et al. (2016). Under this slight reformulation,
the sequence-to-vector Reverse Dictionary task is
strictly the inverse of the vector-to-sequence task of
Definition Modeling. Hence we define the Reverse
Dictionary task as computing the components of a
target word vector using as input a human-readable
definition. To solve this task, participants have ac-
cess to a set of data points, each of which consists
of a source word definition and a corresponding
target word embedding, as training materials.

3 What’s in the nets: Data used

The definition modeling and reverse dictionary
tasks both require a parallel dataset, where dic-
tionary definitions are aligned with corresponding
word embeddings. The task is held in a multilin-
gual setting. We provide data in English, French,
Russian, Italian and Spanish. We selected these
languages to facilitate the collection of compara-
ble data: all these languages possess comparable
large scale resources, including online dictionaries
as well as corpora that can be used to train compa-
rable embeddings. Our datasets are made available
online at https://codwoe.atilf.fr/.

The aim of both tracks of CODWOE is to com-
pare the semantic contents of definitions and em-
beddings. As a consequence, we ask participants to
refrain from using external data such as pretrained

with examples without

en 0 806297
es 0 132583
fr 431793 573313
it 16127 86959
ru 122282 485208

Table 1: DBnary: number of items per language

N. Sents. N. Tokens N. Bytes

it 78761031 955474050 5001829910
es 78973969 975762257 5001999992
fr 82082118 1004767254 5001999368
en 97622760 1035154295 5001999755
ru 79526583 1035661601 10036395727

Table 2: Embeddings: corpus statistics

models and lexical resources: including such exter-
nal data would introduce another source of seman-
tic information, and obfuscate the results from this
shared task.

3.1 Dictionary data

As a source of dictionary definitions, we primar-
ily use the DBnary dataset (Sérasset, 2012),2 an
RDF-formatted version of some of the existing Wik-
tionary projects.3 DBnary includes data for all of
our selected languages. One sub-dataset per lan-
guage is constructed. Definitions are selected ac-
cording to corpus frequency and part-of-speech of
the word being defined. We solely select nouns,
adjectives, verbs and adverbs.

Table 1 presents the number of usable items in
DBnary. Not all languages contain examples of
usage. A brief regular expression lookup suggests
that around 20K examples of usage can be found in
the Spanish version of Wiktionary, while English
yields at least 200K. We therefore discard the En-
glish version of DBnary and replace it by a manual
parse, from which we also retrieve examples of
usage.

3.2 Embeddings data

We have collected similar amounts of data for
each language (Table 2) to use as training corpora.
The sources we use to constitute these corpora
are selected to be generally comparable: each cor-

2http://kaiko.getalp.org/about-dbnary/
3See https://www.wiktionary.org/
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pus contains 2.5G data parsed and cleaned from
Wikipedia,4 2.2G from the OpenSubtitles OPUS
corpus (Lison and Tiedemann, 2016),5 as well as
0.3G in books from various genres, drawn from
LiberLiber6 for Italian, Wikisource for Spanish and
Russian, and Gutenberg7 for English and French.

We focus on three embedding architectures:
word2vec models (Mikolov et al., 2013) trained
with gensim (Řehůřek and Sojka, 2010), the ELEC-
TRA model of Clark et al. (2020), and character-
based embeddings. The word2vec and ELECTRA
models were selected so as to provide some com-
parison between static and contextual embeddings;
both are trained with default hyperparameters aside
from output vector size, which we set to 256. As
for the ELECTRA models, given that we need con-
texts to derive token representations, we train the
models only in English, French and Russian. The
Spanish and Italian Wiktionary projects contain
too few examples of usage. For French and Rus-
sian, we derive contextualized embeddings of a
word to be defined from usage examples in DBnary
datasets. Since the English DBnary dataset does
not contain examples of usage, we extracted them
from the original Wiktionary dumps.

The character-based embeddings are included
to provide baseline expectations for non-semantic
representations—as we can expect spelling to be
more or less arbitrary with respect to word mean-
ing (Saussure, 1916).8 In practice, these embed-
dings are computed through a simple LSTM-based
auto-encoder: the word is passed into an LSTM
encoder as a sequence of characters, we sum all
output hidden states, and use these summed hid-
den states to initialize an LSTM decoder, whose
objective is to reconstruct the input word. As a
character-based representation, we can therefore
use the summed output hidden states, as they are
tailored to contain all the information necessary
to reconstruct the spelling of the corresponding
word.9 The datasets used to trained the models

4See here: https://dumps.wikimedia.org/
5See https://opus.nlpl.eu/
6Cf. https://www.liberliber.it/online/
7See here: https://www.gutenberg.org/
8Nonetheless, see Gutiérrez et al. (2016), Kutuzov (2017),

Dautriche et al. (2017) or Pimentel et al. (2019), all of which
question this assumption.

9Given that we implement this module ourselves, we use a
Bayesian Optimization algorithm (Snoek et al., 2012) to select
hyperparameters for our five character auto-encoder. We use
this process to decide learning rate, weight decay, dropout,
β1 and β2 parameters of the AdamW optimizer, batch size,
number of epochs over the full dataset, as well as whether to

word POS gloss

sminuire V far figurare qualcosa o qualcuno
come meno importante o rile-
vante

(a) Example definition in Italian

{
"id": "it.42",
"word": "sminuire"
"gloss": "far figurare...",
"pos": "v",
"electra": [0.4, 0.2, ...],
"sgns": [0.2, 0.4, ...],
"char": [0.3, 1.4, ...],

}
(b) Corresponding JSON snippet

Figure 2: Toy example data point in the Italian dataset

correspond to the set of all word types attested in
our base corpora described in Table 2. All models
achieve a 99% reconstruction accuracy.

3.3 Datasets

We construct one dataset per language. Each
language-specific dataset is split in five: a trial
split (200 datapoints per language), a training split
(43 608 datapoints), a validation split (6375 data-
points), a definition modeling testing split (6221
datapoints) and a reverse-dictionary testing split
(6208 datapoints). Splits are constructed such that
there are no overlap in the embeddings. Dataset
splits are formatted as JSON files.

Each file consists of a list of JSON dictionary no-
tations. JSON items contain a unique identifier for
the data point, the word being defined, definition,
part of speech, and all word vectors. A depiction of
the sort of items included in our datasets is shown
in Figure 2. Sub-figure 2a summarizes the data
presented as a JSON item in Sub-figure 2b.

Participants had access to the trial, train and vali-
dation splits of all languages. Test splits were made
available at the beginning of the evaluation period.

4 The scales we use

We now turn to the metrics of our shared task.

share a single weight matrix for encoder and decoder character
embeddings.
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4.1 Reverse Dictionary Metrics

The Reverse Dictionary task, as we have re-framed
it here, consists in reconstructing embeddings. To
that end, we consider three measures of vector sim-
ilarity. First is MSE (mean squared error), which
measures the difference between the components
of the reconstructed and target embeddings. Mean-
squared error is however not very easy to interpret
on its own. Second is cosine: the reconstructed and
target embeddings should have a cosine of 1. It is
hard to place specific expectations for what a ran-
dom output would produce, as this essentially dif-
fers from architecture to architecture: for instance,
Transformer outputs are known to be anisotropic,
so we shouldn’t expect two random ELECTRA
embeddings to be orthogonal (Ethayarajh, 2019;
Timkey and van Schijndel, 2021, a.o.).

As neither MSE nor cosine provides us with a
clear diagnosis tool comparable across all targets,
we also include a ranking based measure: we com-
pare the cosine of the reconstructed embedding p⃗i

and the target embedding t⃗i to the cosine of the
reconstruction p⃗i and all other targets t⃗ j in the test
set, and evaluate the proportion of such targets that
would yield a closer association—viz., the num-
ber of cosine values greater than cos(p⃗i , t⃗i ). More
formally, we can describe this ranking metric as:

Ranking(p⃗i ) =

∑
t⃗ j∈Test set

1cos(p⃗i ,⃗t j )>cos(p⃗i ,⃗ti )

#Test set
(1)

4.2 Definition Modeling Metrics

A common trope in NLG is to stress the dearth of
adequate automatic metrics. Most of the metrics
currently existing focus on token overlap, rather
than semantic equivalence. The very popular
BLEU and ROUGE metrics (Papineni et al., 2002;
Lin, 2004) measure the overlap rate in n-grams of
various lengths (usually 1-grams to 4-grams).

To alleviate this, researchers have suggested us-
ing external resources, such as lists of synonyms
and stemmers (Banerjee and Lavie, 2005) or pre-
trained language models (Zhao et al., 2019). The
reliance of these augmented metrics on external
resources is problematic. Different languages will
use different resources with varying degrees of
quality—and this will necessarily impact scores,
introducing a confounding factor for any analysis
down the line. In the extreme case, if these re-
sources are not available for a particular language,
then the metric will have to be discarded. Even as-

suming the availability of the required external re-
sources, none of these improved metrics is entirely
satisfactory. In the case of synonymy-aware met-
rics such as METEOR (Banerjee and Lavie, 2005),
we can stress that syntactically different sentences
can express the same meaning, but would not be
captured by such metrics. Embeddings-based met-
rics such as MoverScore (Zhao et al., 2019) are very
recent, and therefore less well understood; more-
over concerns can be raised about whether using
a method derived from neural networks trained on
text will prove of any help in studying the meaning
of texts generated by other neural networks.

One alternative frequently used by the NLG com-
munity is perplexity, which weighs the probability
that the model would generate the target. This last
alternative is however not suited to a shared task
setup, as it requires us to have access to the ac-
tual neural networks trained by participants so we
can investigate the probability distributions they
model—unlike the other metrics we mentioned
thus far, which only require model outputs.

In short, none of the currently available NLG
metrics are fully satisfactory. Some are not ap-
plicable given the shared task format, some de-
pend on external resources of varying quality, and
some merely measure formal similarity, rather than
semantic equivalence. Our approach is therefore
twofold: on the one hand, we select multiple met-
rics with the expectation that each might shed light
on one specific factor; on the other hand, we encour-
age participants to go beyond automatic scoring for
the evaluation of their model.

As for which metrics we select, we narrow our
choice to three. First is a basic BLEU score (Pa-
pineni et al., 2002) between a production pi and
the associated target ti ; our reasoning here is that
as it is one of the most basic metrics, it is a consis-
tent default choice. Second is the maximum BLEU
score between a production pi and any of the tar-
gets ti , t j . . . tn for which the definiendum is the
same as that of pi . This second metric is designed
to not penalize models that rely solely on SGNS
or char embeddings: as the input would always
be the same, deterministic models would always
produce the same definition pi = p j = . . . = pn .10

To distinguish between our two BLEU variants, we
refer to the former as S-BLEU (or Sense-BLEU),

10One way of bypassing this problem would be to include a
source of noise, as is done in GAN architectures (Goodfellow
et al., 2014). This would still leave open the question of how
to optimally align the outputs to the possible targets.
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and the latter as L-BLEU (or Lemma-BLEU).
Given that some definitions in our dataset can

be very short, we also apply a smoothing to both
BLEU-based metrics. In practice, BLEU computes
an overlap of n-grams of size m and under; by
default, m = 4. This overlap is a geometric mean
across all n-gram sizes 1. . .m. If a definition d
contains less than m tokens, then any associated
production for which d is used as a target will
contain 0 overlapping n-grams of size m. The use
of a geometric mean then entails that the BLEU
score for any production associated to d will be
0. To circumvent this limitation of BLEU, it is
common to use some form of smoothing. Here, for
any n-gram size m̂ that would yield an overlap of
0 (i.e., m̂ such that #d < m̂ ≤ m), we replace the
overlap count with a pseudocount of 1/log#d .

Lastly, we include MoverScore (Zhao et al.,
2019), using a multilingual DistilBERT model as
the external resource. The fact that this model is
multilingual means that we can use it for all five
languages of interest. Embedding-based methods
have the potential to overcome some of the limita-
tions of purely token-based metrics, which is why
we deem them worth including in our setup.

The second part of our approach for evaluating
submissions consists in encouraging participants
to not rely solely on the automatic scoring system
of their outputs. Concretely, we provide partici-
pants with a richly annotated trial dataset, which
contains frequency and hand-annotated semantic
information, and strongly suggest participants to
use it for a manual evaluation of their system. We
include the presence of a manual evaluation as a
criterion to evaluate the quality of a system descrip-
tion paper, and plan to formally recognize the most
enlightening evaluations conducted by participants.

Neither our selection of metrics nor our insis-
tence on manual evaluation solves the evaluation is-
sues of NLG systems. We duly note the importance
of this question, and plan to conduct a follow-up
evaluation campaign on the CoDWoE submissions.

5 Testing the waters: baseline
architectures

We implement simple neural network architec-
ture baselines to lower the barrier to entry to
this shared task. They are based on the Trans-
former architecture of Vaswani et al. (2017) and
designed to be as simple as possible. Our code is
publicly available at https://github.com/

+
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Figure 3: Baseline architectures for the CoDWoE shared
task

TimotheeMickus/codwoe.
We illustrate our Reverse Dictionary baseline

architecture in Figure 3a. It consists in feeding the
input gloss 〈b⃗os, w⃗1, . . . , w⃗n , e⃗os〉 into a simple
Transformer encoder, and then summing all the
hidden representations to produce the prediction pi .
In practice, the summed hidden states are passed
into a small non-linear feed-forward module to
derive the prediction:

pi =Wp

(
ReLU

(∑
t

h⃗t

))
(2)

Our Definition Modeling baseline is presented in
Figure 3b. It consists in a simple Transformer en-
coder, where earlier time-step representations are
prevented from attending to later time-step rep-
resentations. To provide information about the
definiendum to the model, we use the definiendum
embedding d⃗i as the input for the first time-step
instead of a start-of-sequence token. We train the
models with teacher-forcing: i.e., during training
we ignore the definientia p1

i , . . . , pn
i that the model

produces; instead we feed it the target w1, . . . , wm

attested in the training set at each time-step. During
inference, we feed the model with its own predic-
tion. This creates a train-test mismatch, which we
alleviate by using a beam-search. We stop gen-
eration when all beams have produced an end-of-
sequence token.

For both tracks, we train one model for each dis-
tinct pair of language and embedding architecture.
We start by re-tokenizing the datasets using sen-
tence piece with a vocabulary size of 15000. This
is done in order to mitigate the effects of different
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Team en es fr it ru

Mv SB LB Mv SB LB Mv SB LB Mv SB LB Mv SB LB

Bl. SGNS 0.084 0.030 0.040 0.065 0.035 0.052 0.046 0.030 0.041 0.107 0.053 0.076 0.112 0.039 0.054

Bl. char 0.047 0.026 0.033 0.059 0.031 0.043 0.022 0.028 0.037 0.046 0.029 0.038 0.072 0.025 0.037

Bl. Electra 0.065 0.031 0.039 0.043 0.031 0.039 0.101 0.032 0.041

Locchi 0.049 0.022 0.027 0.038 0.020 0.026 0.071 0.008 0.012

LingJing −0.045 0.004 0.005 0.023 0.013 0.020 −0.113 0.003 0.005 −0.012 0.018 0.029 −0.010 0.011 0.014

BLCU-ICALL 0.135 0.031 0.040 0.128 0.039 0.056 0.042 0.027 0.037 0.117 0.066 0.099 0.148 0.048 0.065

IRB-NLP 0.094 0.033 0.042 0.093 0.045 0.064 0.056 0.028 0.033 0.077 0.010 0.015 0.080 0.027 0.036

RIGA 0.093 0.026 0.032 0.107 0.031 0.045 0.075 0.024 0.030 0.093 0.012 0.018 0.094 0.031 0.043

lukechan1231 0.071 0.022 0.027 0.068 0.025 0.036 0.054 0.021 0.026 0.101 0.037 0.054 0.109 0.029 0.040

Edinburgh 0.104 0.031 0.038 0.101 0.035 0.053 0.026 0.029 0.038 0.107 0.060 0.092 0.109 0.049 0.072

talent404 0.128 0.033 0.043

Table 3: Participants’ best scores on the Definition Modeling track. Highest participant scores per metric are
displayed in bold font.

vocabulary sizes when training our Transformer
baselines, and make the models overall easier to
compare across different languages.

We set hyperparameters using a Bayesian Opti-
mization procedure, with 100 hyperparameter con-
figurations tested and 10 initial random samples.
For the Reverse dictionary models, we tune the fol-
lowing hyper-parameters: learning rate, weight de-
cay penalty, the β1 and β2 hyperparameters of the
Adam optimizing algorithm, dropout rate, length
of warmup, batch size,11 number of heads in the
multi-head attention layers, and number of stack
layers. For the Definition Modeling systems, we
also include a label smoothing parameter to tune.
Models are trained over up to 100 epochs; training
is stopped early if no improvement of at least 0.1%
is observed during 5 epochs. In all cases, we decay
the learning rate after the warmup following a half
cosine wave, such that the learning rate reaches 0
at the end of the 100 epochs.

6 How whale did it go? Shared task
results.

Scores attained by participants are shown in Ta-
bles 3 and 4. In Table 3, “Mv”, “SB” and “LB”
refer to Moverscore, Sense-BLEU and Lemma-
BLEU respectively; in Table 4, each sub-table cor-
responds to a different architecure, and “rnk” refers
to the cosine ranking metric (cf. Section 4).

In total, we received 159 valid submissions from
15 different users; out of which 11 teams produced

11In practice, we first manually find the largest batch size
that fits on our GPU, and then let the model select the number
of batches it should accumulate gradient on.

a submission paper. 9 of these teams tackled the
Definition Modeling, and 10 addressed the reverse
dictionary track. Competition rankings are estab-
lished by ranking each submission received, select-
ing for each participant the best performance on all
metrics, and finally taking the average best rank.
Some participants’ submissions were faulty and
could not be processed by the evaluation website
scoring program.

Among the system descriptions we received, two
focused solely on definition modeling. Kong et al.
(2022, BLCU-ICALL) use a multitasking frame-
work for definition modeling, based on a gener-
ation and a reconstruction objectives. Mukans
et al. (2022, RIGA) focus on what are the effects
of model size and duration of training on GRUs
and LSTMs for definition modeling, and whether
MoverScore corroborates human judgment.

Five submissions specifically focus on the re-
verse dictionary task. Bendahman et al. (2022,
BL.research) compare the performances of MLP-
based to LSTM-based networks for reverse dic-
tionary. Li et al. (2022, LingJing) study pretrain-
ing objectives for the reverse dictionary track. Ar-
doiz et al. (2022, MMG) pay specific attention to
how the not-so-satisfactory quality of the Spanish
dataset impacts results on Spanish reverse dictio-
nary. Cerniavski and Stymne (2022, Uppsala) study
whether foreign language entries can improve the
performance of the English reverse dictionary base-
line model. Wang et al. (2022, 1cademy) introduce
multiple technical tweaks for reverse dictionary,
such as a dynamic weight averaging loss, language-
specific tags and residual cutting.
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Team en es fr it ru

MSE cos rnk MSE cos rnk MSE cos rnk MSE cos rnk MSE cos rnk

Baseline 0.911 0.151 0.490 0.930 0.204 0.499 1.141 0.198 0.491 1.125 0.204 0.477 0.577 0.253 0.490

Locchi 0.875 0.204 0.394 1.087 0.274 0.386

BL.research 0.895 0.166 0.312 0.910 0.252 0.253 1.107 0.212 0.314 1.111 0.246 0.247 0.566 0.298 0.290

LingJing 0.862 0.243 0.329 0.858 0.353 0.251 1.030 0.328 0.282 1.039 0.360 0.230 0.528 0.424 0.187

MMG 0.911 0.403 0.167

chlrbgus321 0.854 0.248 0.319

IRB-NLP 0.964 0.260 0.231 0.883 0.367 0.197 1.068 0.342 0.193 1.076 0.380 0.165 0.568 0.421 0.150

Edinburgh 0.864 0.241 0.326 0.860 0.347 0.271 1.026 0.312 0.302 1.031 0.374 0.197 0.538 0.383 0.247

the0ne 0.900 0.185 0.500

JSI 0.909 0.156 0.499 0.913 0.223 0.495 1.122 0.216 0.498 1.196 −0.004 0.499 0.615 0.006 0.499

1cadamy 0.915 0.194 0.374 0.906 0.262 0.375 1.100 0.228 0.439 1.097 0.260 0.384 0.578 0.335 0.291

(a) SGNS Reverse Dictionary track results

Team en es fr it ru

MSE cos rnk MSE cos rnk MSE cos rnk MSE cos rnk MSE cos rnk

Baseline 0.148 0.790 0.502 0.570 0.806 0.498 0.395 0.759 0.499 0.363 0.727 0.497 0.135 0.826 0.495

Locchi 0.141 0.798 0.483 0.355 0.734 0.478

BL.research 0.143 0.795 0.450 0.510 0.824 0.412 0.366 0.770 0.428 0.359 0.728 0.417 0.132 0.830 0.410

LingJing 0.176 0.782 0.486 0.583 0.824 0.500 0.411 0.752 0.502 0.438 0.681 0.496 0.184 0.791 0.472

IRB-NLP 0.162 0.770 0.419 0.526 0.819 0.403 0.390 0.756 0.421 0.366 0.724 0.383 0.140 0.824 0.357

Edinburgh 0.143 0.795 0.500 0.467 0.839 0.424 0.335 0.789 0.428 0.334 0.747 0.428 0.116 0.852 0.389

the0ne 0.143 0.796 0.500

1cadamy 0.168 0.792 0.478 0.557 0.820 0.410 0.391 0.769 0.416 0.364 0.739 0.438 0.156 0.836 0.377

(b) Char Reverse Dictionary track results

Team en fr ru

MSE cos rnk MSE cos rnk MSE cos rnk

Baseline 1.413 0.843 0.498 1.153 0.856 0.498 0.874 0.721 0.491

Locchi 1.301 0.843 0.478

BL.research 1.326 0.844 0.434 1.112 0.858 0.442 0.864 0.721 0.399

LingJing 1.509 0.846 0.478 1.271 0.859 0.478 0.828 0.734 0.420

IRB-NLP 1.685 0.828 0.432 1.339 0.847 0.429 0.911 0.724 0.345

Edinburgh 1.310 0.847 0.490 1.066 0.862 0.476 0.828 0.735 0.417

the0ne 1.340 0.846 0.500

(c) ELECTRA Reverse Dictionary track results

Table 4: Participants’ best scores on the Reverse Dictionary track. Highest participant scores per metric are
displayed in bold font.

The last four submissions addressed both tracks.
Chen and Zhao (2022, Edinburgh) propose to
project embeddings and definitions on a shared
representational space. Korenčić and Grubišić
(2022, IRB-NLP) take inspiration from Noraset
et al. (2017) to address definition modeling, and ex-
periment with pooling strategies over Transformer
embeddings for the reverse dictionary track. Tran
et al. (2022, JSI) focus on comparing the effects
of adding LSTM and BiLSTM layers on top of
a Transformer model, as well as zero-shot cross-

lingual generalization. Srivastava and Harsha Vard-
han (2022, TLDR) propose two Transformer-based
architectures for the two tracks, leveraging con-
trastive learning and unsupervised pretraining.

Looking at Tables 3 and 4, we see that the metrics
we chose in section 4 are not always aligned. On
the Definition Modeling track (Table 3), while the
multitask framework of Kong et al. (2022, BLCU-
ICALL) yields generally the most consistent per-
formance, it is often outmatched in specific setups.
For instance, BLEU-based metrics favor the shared
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projection technique of Chen and Zhao (2022, Ed-
inburgh) in Russian and French, while the pooling
strategies of Korenčić and Grubišić (2022, IRB-
NLP) appear especially effective on the Spanish
dataset. As for the Reverse Dictionary track (Ta-
ble 4), the strongest contender is generally the Ed-
inburgh team, although the IRB-NLP team almost
systematically produces the highest cosine ranking
score. Interestingly, BLCU-ICALL, IRB-NLP and
Edinburgh all rely on multi-task learning. Note
however that the SGNS targets seem to depict a
rather different picture, where the pretraining ob-
jectives of Li et al. (2022, LingJing) bring about
some of the best results.

7 A deeper dive into our results

When looking at the competition results, two trends
emerge. First, the baseline architectures from Sec-
tion 5 remain quite competitive with solutions pro-
posed by participants. Second, scores are generally
unsatisfactory, especially in the definition model-
ing track: we do not see a clear divide between char
embeddings and distributional semantic representa-
tions. The NLG metrics are, in absolute terms, low
compared to modern NLP standards and results
reported elsewhere on other definition modeling
benchmarks. As for the reverse dictionary track,
we see that across all submissions, at least a third
of the test set is closer (in terms of cosine distance)
to the production than the intended target.

Participants have suggested multiple reasons for
these hardships. In particular, Ardoiz et al. (2022,
MMG) highlight that the automated data compi-
lation in DBnary (Sérasset, 2012) is of an unsat-
isfactory quality. Similar remarks can be made
with respect to the embeddings, which are trained
on rather small corpora. Other submissions such
as Mukans et al. (2022, RIGA), Chen and Zhao
(2022, Edinburgh), Korenčić and Grubišić (2022,
IRB-NLP) highlight the limited applicability of
mainstream NLG metrics, as we ourselves have
discussed in Section 4.12 One last remark is the
limited size of our dataset, discussed by the Ed-
inburgh and RIGA teams. All these remarks sug-
gest avenues for future research: in particular, the
release of the full dataset should alleviate some
of the concerns with respect to dataset size. The
MMG team also suggest some concrete preprocess-
ing steps to handle some of the issues they identify
in the proposed definitions.

12See also Mickus et al. (2021) for a discussion.

In terms of solutions explored, we can stress that
teams have adopted a variety of strategies and ar-
chitectures: systems used Transformer, RNN and
CNN components, often leveraging or exploring
multilingualism (Tran et al. 2022, JSI; Cerniavski
and Stymne 2022, Uppsala; Wang et al. 2022,
1cademy; Bendahman et al. 2022, BL.research),
multitasking, or multiple training objectives (Kong
et al. 2022, BLCU-ICALL; 1cadamy; Korenčić
and Grubišić 2022, IRB-NLP; Srivastava and Har-
sha Vardhan 2022, TLDR; Chen and Zhao 2022,
Edinburgh). Multi-task training tends to yield var-
ied yet competitive results for our data. No prepon-
derant architecture emerges from the system de-
scriptions; we note that multiple submissions based
their work on other contextualized embedding ar-
chitectures, trained from scratch on the CODWOE
dataset (Wang et al. 2022, 1cademy; Li et al. 2022,
LingJing). The comprehensive review of architec-
tures by team 1cadamy suggests nonetheless that
Transformers might be less suited to this shared
task than recurrent models.

7.1 Manual analyses

As for manual evaluations, Kong et al. (2022,
BLCU-ICALL) provide a thorough review of the
errors produced by their model. Mukans et al.
(2022, RIGA) provide some example outputs of
their models, while Srivastava and Harsha Vardhan
(2022, TLDR) and Wang et al. (2022, 1cademy) in-
clude ablation studies. The most thorough analysis,
however, is that of Chen and Zhao (2022, Edin-
burgh), who provide both quantitative and quali-
tative (PCA-based) analyses across embedding ar-
chitectures, languages, and trial dataset features.
Korenčić and Grubišić (2022, IRB-NLP) provide
an extremely well documented review of their sys-
tems performances, along multiple analyses of the
embeddings proposed for the shared tasks, ranging
from 2D down-projection visualizations to descrip-
tive statistics of components. We refer the reader
to the respective system papers for a more thor-
ough review and focus here on a few promising
approaches to summarize trends that emerge from
these manual analyses.

Current metrics are not satisfactory. The IRB-
NLP team highlight that the BLEU scores reported
on the shared task are dramatically lower than what
is generally expected in the literature; the Edin-
burgh team even shows that the S-BLEU scores ob-
tained by non-sensical glosses such as “, or .”
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can end up among the highest scores for some lan-
guages. The Reverse Dictionary metrics can also
be sensitive to different aspects of the embeddings,
as shown by the IRB-NLP team: this can lead to
very different rankings of model productions, es-
pecially when comparing the cosine-based ranking
metric to the cosine and MSE metrics. BLEU-
based scores are also often sensitive to the length
of the production, the target, or both, as shown by
both the Edinburgh and the Riga teams.

Erroneous productions abound. Related to the
previous remark, many Definition Modeling sys-
tems produce irrelevant or under-specified glosses,
for which the proposed metrics are not satisfactory.
For instance, the BLCU-ICALL report 52% irrele-
vant glosses and 23.5% under-specified glosses,
from a manual evaluation of 200 productions.
Other participating teams, such as RIGA or IRB-
NLP, also display generated glosses with varying
degress of semantic accuracy.

Embeddings contain more than semantics.
The Edinburgh team highlights how different lin-
guistic features retrieved from the trial dataset can
significantly impact the scores they observe. They
also highlight that char embeddings are separable
by length, and that the Electra embeddings are clus-
tered according to their frequency.

Not all setups are created equal. The Uppsala
team report that Russian seems to be the most ef-
fective data source in their multilingual transfer
experiments. The IRB-NLP team stresses that vec-
tor component distributions across languages and
architectures as well as gloss length across lan-
guages can take very different values, and they also
include 2D visualization suggesting the Electra em-
beddings tend to form neat cluster not observed for
SGNS embeddings. Scores also vary quite a lot
across setups (cf. Tables 3 and 4).

8 Conclusions and future perspectives

The CODWOE shared task was constructed so that
participants’ submissions would be likely to have
linguistic significance. Yet, it is not trivial to tease
apart the various factors that lead to the overall
low results we observed. While the inadequacy of
mainstream NLG metrics and the limitations of the
dataset certainly play a role, they do not resolve
the fundamental issue that we wished to investigate
with CODWOE. Whether word embeddings and

dictionaries contain the same information is not a
solved research problem.

This has two immediate consequences: firstly,
one can question the use of definition modeling as
an evaluation tool for embeddings, as suggested
by the seminal work of Noraset et al. (2017). The
CODWOE shared task results indicate that the met-
rics currently used in the field are rife with caveats;
in the controlled setup we have proposed here, par-
ticipants rarely, if ever, found that character-based
embeddings starkly contrasted with distributional
semantic representations.

Second, one can question whether definition
modeling and reverse dictionary are fit for build-
ing lexical resources for under-tooled languages:
the crosslingual route proposed by Bear and Cook
(2021) seems more practical than training models
from scratch, even with relatively large datasets.
Our embeddings were trained on corpora compa-
rable in size to the 1B Words benchmark (Chelba
et al., 2013): while modern text corpora are now
several orders of magnitude larger, this dataset re-
mained a landmark for several years. Our defini-
tions were selected from DBnary (Sérasset, 2012),
which focuses the largest Wiktionary projects.

Overall, the CODWOE shared task has been a
success: we were able to show that the task at hand
was far from trivial and we drew significant interest
towards the issues addressed in the Definition Mod-
eling and Reverse Dictionary literature. In future
work, we plan to investigate better ways to perform
NLG evaluation for the Definition Modeling task
(in particular relying on human annotations) and
we plan to focus on existing embeddings trained
from very large corpora.
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Abstract

This paper describes our system for the Se-
mEval2022 task of matching dictionary glosses
to word embeddings. We focus on the Reverse
Dictionary Track of the competition, which
maps multilingual glosses to reconstructed vec-
tor representations. More specifically, models
convert the input of sentences to three types of
embeddings: SGNS, Char, and Electra. We pro-
pose several experiments for applying neural
network cells, general multilingual and multi-
task structures, and language-agnostic tricks to
the task. We also provide comparisons over
different types of word embeddings and abla-
tion studies to suggest helpful strategies. Our
initial transformer-based model achieves rel-
atively low performance. However, trials on
different retokenization methodologies indicate
improved performance. Our proposed Elmo-
based monolingual model achieves the highest
outcome, and its multitask, and multilingual
varieties show competitive results as well.

1 Introduction

Reverse dictionary Task is defined as word genera-
tion based on user descriptions (Hill et al., 2016).
Following competition rules, pre-trained models
and external information should be avoided, and
large-scale language models are unsuitable for the
task. Our paper is devoted to the performance com-
parison of different neural network structures, mul-
tilingual and multitask tricks, and elaborating on
language-agnostic or bidirectional structure help-
fulness. The competition (Mickus et al., 2022)
has significant potential in contributing pretraining
process acceleration, low-resource language model
development, and commonsense using. Further-
more, the task is of high importance for explain-
able AI and natural language processing since it
models direct mapping from human-readable data
to machine-readable data.

∗ The two authors contributed equally to this work.

Known word representation methods using dic-
tionaries, knowledge databases, or glosses have
been a common approach for years. Related mod-
els can be divided into two major groups. In the
former, category methods highly rely on large-scale
model construction. Levine et al. (2019) develop
SenseBert, introducing super-senses from Word-
net (Miller, 1995) into general Bert model. Ernie
(Sun et al., 2019) combines node embeddings from
knowledge graph and matched entities to enhance
word representations. KnowBert (Peters et al.,
2019) subsumes the entity connection and Bert
models, which are trained together. There are simi-
lar research works relevant to the topic (Wang et al.,
2021, 2020; Yin et al., 2020). Still, their mod-
els’ performances are dependent on the basic large-
scale language model trained by sentence samples.
In the latter group, traditional dependency-based
language models learn directly from word depen-
dency and glosses. They have two major disadvan-
tages: incompatibility with modern language mod-
els and relatively low performance (Tissier et al.,
2017; Levy and Goldberg, 2014; Wieting et al.,
2015). There is ambiguity about whether recent
embeddings and dictionary glosses are mappable
from each other.

The paper specifically focuses on progressing
utilization of the glosses, different word represen-
tations, and languages. First, we discuss ablation
studies for language-agnostic trick, bidirectional,
multilingual, and multitask models and explain the
experimental results. Second, we apply and ana-
lyze different re-tokenization methods. Finally, we
give instructive conclusions about encoder struc-
tures, distinctive word representation relations, and
cross-lingual dictionary performance based on our
experiment results. We find that (1) transformer-
based model performance is inferior to other mod-
els for its high complexity, (2) bidirectional models
with similar parameter size outperform the unidirec-
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tional model because of their better understanding
of context-environments even in the low-resource
condition, and (3) different word embeddings have
a potential relations and can be collaboratively
learnt from glosses using a multitask learning struc-
ture. We make our codes and results publicly avail-
able1.

2 Task Description

The competition, comparing dictionaries and word
embeddings, proposes definition modeling (No-
raset et al., 2017) and reverse dictionary sub-tracks
(Hill et al., 2016). These sub-tracks are designed
to test the equivalency of dictionary glosses and
word embedding representations. This paper fo-
cuses on the reverse dictionary direction. The task
refers to word recalling using gloss input and pro-
vides word representations that are separately gen-
erated by word2vec (SGNS) (Mikolov et al., 2013),
character (Wieting et al., 2016), and Electra (Clark
et al., 2020) embeddings as training data. External
data and large-scale language models are strictly
restricted from this competition since the models
might learn the word embeddings majorly from the
sentence samples instead of the dictionary glosses.
The words matched with the dictionary glosses are
hidden in the datasets, implying that dependency-
based word representation algorithms cannot be
applied directly.

3 Methodology

To clarify, we affirm that we only refer to the model
structures instead of the trained models when we
mention Elmo and MBert in the section and use no
external data.

3.1 Language Model Structure
Baseline monolingual models with five distinctive
structures were trained: RNN, LSTM, Bi-RNN,
Elmo, and Transformer.

We experiment how bidirectional and different
feature generator cell structures help.

RNN is the classical deep learning model deal-
ing with ordinal or sequential data (Zaremba et al.,
2014). Its major disadvantage is the vanishing and
exploding gradient issue. Nevertheless, the model
is fast to converge and works well on smaller sen-
tences. Our experiments show that RNN, having
similar results to the LSTM-based model, performs
slightly better than the transformer-based one.

1https://github.com/ravenouse/Revdict_1Cademy

LSTM is another classical and widely-used fea-
ture generator structure in natural language process-
ing. The comparison of LSTM-based and RNN-
based models can suggest whether vector represen-
tation of glosses suffers from the long-term depen-
dencies problem. Earlier works (Jozefowicz et al.,
2015) demonstrate that variants of LSTM achieve
similar performances in the majority of natural lan-
guage processing tasks. We select the classical
LSTM structure for the experiments.

Transformer (Vaswani et al., 2017) is a mile-
stone feature extractor allowing deeper neural net-
work design for natural language processing tasks.
However, given the much smaller size of the com-
petition data, it performs relatively worse compared
to the expectation.

3.2 Multitask Structure
Although character embedding generation has a
similar algorithm to general word embedding meth-
ods, it focuses on character representation and
is mightier to better tackle the Out Of Vocabu-
lary (OOV) problem. We applied Mean Squared
Loss (MSE Loss) and Dynamic Weight Averag-
ing (DWA) (Liu et al., 2019) as a basic multitask
structure for predicting word2vec, Char, and Elec-
tra embedding together. It achieves competitive
performance in both tasks.

DWA (Liu et al., 2019) is designed for keeping
different tasks converging at the same pace. 𝑁
denotes the number of tasks, 𝑇 adjusts the weight-
changing sensitivity according to loss difference of
the tasks, 𝐿𝑛 (𝑡 − 1) and 𝑟𝑛 (𝑡 − 1) represent the loss
and the training speed of task 𝑛 at (𝑡 − 1)th step.
𝑤𝑖 (𝑡) is the loss weight of task 𝑖 at 𝑡th step. The
key update equations can be expressed as follows:

𝑤𝑖 (𝑡) = 𝑁 𝑒𝑥𝑝(𝑟𝑖 (𝑡 − 1)/𝑇)∑
𝑛 𝑒𝑥𝑝(𝑟𝑖 (𝑡 − 1)/𝑇) (1)

𝑟𝑛 (𝑡 − 1) = 𝐿𝑛 (𝑡 − 1)
𝐿𝑛 (𝑡 − 2) (2)

3.3 Retokenize Algorithm
We tried 3 widely-used retokenization algorithms
for vocabulary generation including Byte Pair En-
coding (BPE) (Sennrich et al., 2015), WordPiece
Model (Schuster and Nakajima, 2012), and Uni-
gram Language Model (ULM) (Kudo, 2018). BPE
is a greedy algorithm that can not model word rela-
tion probability successfully. WordPiece considers
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Figure 1: Sketch Map of the multilingual and multitask Elmo-based model structure.

word co-occurrence probability and is influenced
by the source data. ULM assumes that all subwords
are independent and the probability of a subword
sequence is the multiple of its element subwords’
probability.

3.4 Multilingual Structure

We applied two basic multilingual structures for
the task: mBert (Pires et al., 2019) and adding
the language tag. MBert has a shared vocabu-
lary for all source languages. The results show
that mBert can successfully model similar gram-
mar structure, and sentences with similar meanings
have akin representations using mBert. By apply-
ing mBert structure, we can estimate how these
important conclusions would work for the reverse
vocabularies task. We add the language tag as the
first token to improve models’ ability to separate
different languages’ representations.

We speculate that language-agnostic representa-
tions might aid multilingual models in achieving
better performance. Residual connection cutting
trick proposed by (Liu et al., 2020) was tried, to
test how the research findings would work for our
specific task.

3.5 Selected Model Design

Following experiment results and ablation studies,
our best model is the monolingual Elmo with Word-
Piece tokenizer. The Multitask and multilingual

tricks have proved to achieve competitive results
with the Elmo language model. Adding language
tokens achieves a better performance than the plain
mBert structure while the Residual Cutting trick
does not. It implies that the language-specific infor-
mation is beneficial for the multilingual word repre-
sentations of the reverse dictionaries task. Adding
language tokens has demonstrated to help the Elmo-
based multilingual model as well. The most promis-
ing multilingual and multitask Elmo-based model
structure is shown in Figure 1.

4 Results and Discussion

4.1 Implementation Details

We apply Bidirectional RNN and Elmo (Peters
et al., 2018) models with the same parameter size
to find whether bidirectional structure helps. We
selected AdamW (Loshchilov and Hutter, 2017)
as optimizer. All monolingual models share the
same hyper-parameters: the number of layers - 4,
the hidden/input size - 256, and the dropout rate -
0.3. WordPiece tokenization was used as the best
model design. We follow Devlin et al. (2019) to set
the [CLS] token as the first token for monolingual
models. We keep the [CLS] token when adding
language tokens but set the language token as the
first token instead.
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Word Representations SGNS Char Electra

Monolingual Models MSE COS RANK MSE COS RANK MSE COS RANK

RNN+WordPiece 1.000 0.249 0.310 0.158 0.778 0.442 1.454 0.832 0.433
LSTM+WordPiece 0.990 0.228 0.375 0.148 0.791 0.458 1.491 0.831 0.449
Transformer+WordPiece 1.042 0.214 0.367 0.194 0.780 0.453 1.796 0.827 0.486
BiRNN+WordPiece 0.989 0.221 0.395 0.150 0.791 0.454 1.483 0.832 0.449
Elmo+WordPiece 1.041 0.252 0.282 0.161 0.772 0.430 1.512 0.829 0.434
Elmo+BPE 1.037 0.250 0.250 0.162 0.774 0.443 1.537 0.822 0.436
Elmo+ULM 1.022 0.265 0.259 0.157 0.781 0.430 1.525 0.829 0.432
Elmo+WordPiece+DWA 0.985 0.246 0.298 0.142 0.799 0.447 1.514 0.827 0.428

Table 1: Experiment results on English resource test data using the monolingual models. Check section 2 for word
algorithm representations’ abbreviation. Check section 3 for details of monolingual models.

4.2 Main Results

Reverse dictionary results are evaluated using three
metrics: mean squared error (MSE) between the
reconstructed and reference embeddings, cosine
similarity (COS) between the reconstructed embed-
ding and the reference embedding, and the cosine-
based ranking (RANK) between the reconstructed
and reference embeddings, measuring the number
of other test items having higher cosine with the
reconstructed embedding than with the reference
embedding(Mickus et al., 2022).

4.2.1 Monolingual Model Performance
We show monolingual models’ results in Table 1.
As depicted, our proposed model demonstrates
competitive if not the best results across the metrics.
English, for having the most detailed dictionary
data, is selected to present monolingual models’
performance2.

We notice that the transformer-based model has
inferior performance on the task. The competition
provides a low-resource data set that can explain
poorer outcomes for models with high complex-
ity. We tried unidirectional and bidirectional mod-
els with similar feature extractors and parameter
sizes. The results confirm that bidirectional mod-
els perform better and benefit from grasping the
context-environment more accurately.

4.2.2 Multilingual Model Performance
We show two ablation experiment results to ex-
plain the influence of adding language tags and
residual connection removal. First, experiment re-
sults of the Transformer-based multilingual model
on SGNS embedding can suggest the benefits of

2check Table 5

language tags and curbing residual connection sep-
arately or jointly. Second, we propose experimen-
tal results of the original and adjusted Elmo-based
multilingual models. The latter subsumes added
language tokens. Such a comparison would clarify
whether adding language tokens lead to a general
improvement across different languages and word
representations.

Electra word representations of Spanish and Ital-
ian are not available, implying no related exper-
imental results. The outcomes demonstrate that
multilingual models benefit from language-specific
information but not from language-agnostic struc-
ture. Adding language tags has proved a positive
influence on various language models.

4.3 Ablation Study

4.3.1 Tokenizer

We tried three widely-used tokenizers for our pro-
posed model: BPE, ULM, and WordPiece. Both
ULM and WordPiece show competitive perfor-
mance in transformer- and Elmo-based structures.
BPE has relatively low performance since the data
resource is insufficient and has higher resource re-
quests.

4.3.2 Multitask Model

According to the performance comparison in Ta-
ble 1, DWA helps the Elmo model achieve better
performance and reconstructs three-word represen-
tations simultaneously. It demonstrates that differ-
ently learned word representations have an internal
relation and can be learned together using a shared
bottom structure.
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Languages EN ES FR IT RU

Multilingual Models MSE COS RANK MSE COS RANK MSE COS RANK MSE COS RANK MSE COS RANK

Transformer 1.023 0.201 0.400 0.977 0.300 0.310 1.051 0.278 0.338 1.143 0.280 0.340 0.564 0.318 0.363
Transformer+RC 1.029 0.199 0.417 1.005 0.298 0.329 1.069 0.253 0.374 1.189 0.267 0.364 0.601 0.279 0.409
Transformer+ALT 1.043 0.215 0.397 1.014 0.308 0.310 1.103 0.280 0.350 1.158 0.276 0.341 0.603 0.326 0.337
Transformer+RC+ALT 1.011 0.159 0.500 0.955 0.266 0.422 1.044 0.271 0.360 1.129 0.264 0.376 0.561 0.308 0.371

Table 2: Experiment results on SGNS word representation using the multilingual Transformer-based models. Check
section 3 for details of multilingual models. RC represents the Residual Cutting trick. ALT represents the Adding
Language Token trick.

Word Representations SGNS Char Electra

Multilingual Models MSE COS RANK MSE COS RANK MSE COS RANK

Elmo_EN 1.023 0.238 0.317 0.177 0.759 0.447 1.555 0.818 0.440
Elmo+ALT_EN 1.014 0.246 0.300 0.164 0.762 0.449 1.540 0.825 0.441

Elmo_ES 0.953 0.342 0.234 0.532 0.810 0.405 NA NA NA
Elmo+ALT_ES 0.960 0.351 0.235 0.511 0.822 0.393 NA NA NA

Elmo_IT 1.094 0.343 0.218 0.355 0.720 0.403 NA NA NA
Elmo+ALT_IT 1.106 0.343 0.214 0.354 0.735 0.387 NA NA NA

Elmo_FR 1.001 0.313 0.255 0.388 0.752 0.411 1.298 0.845 0.445
Elmo+ALT_FR 1.004 0.321 0.246 0.387 0.757 0.411 1.228 0.859 0.439

Elmo_RU 0.547 0.357 0.247 0.145 0.816 0.398 0.891 0.729 0.386
ELmo+ALT_RU 0.563 0.368 0.232 0.137 0.828 0.400 0.887 0.728 0.384

Table 3: Experiment results of the multilingual ELmo-based models. ALT represents the Adding Language Token
trick.

4.3.3 Difficulty of Reconstructing Different
Word Representations

Compared with the Char and Electra, we find that
the SGNS is harder to learn from the gloss corpus,
suggesting that the contextualized information of
words in sentences might be missing from the pure
dictionary glosses. Additionally, the result along
with (Kaneko and Bollegala, 2021) indicates dictio-
nary corpus can be a promising way to remove the
unfair biases rooted in large corpus learned word
embeddings.

4.3.4 Difficulty of Learning Different
Languages

Languages Gloss Num Dict.Size Avg.Gloss Len Elmo SGNS COS

English 43608 29042 11.7 0.252
French 43608 40028 14.3 0.333
Italian 43608 40126 13.6 0.352
Spanish 43608 46761 14.8 0.362
Russia 43608 57137 11.3 0.387

Table 4: Language Vocabulary Size Ablation Study.
Dict. Size means the number of non-repeating tokens
shown in the glosses. Avg. Gloss Len means the aver-
age token numbers contained in a gloss.

Our results of experiments show a strong posi-
tive correlation between language’s tokens dictio-
nary size and the models’ achievable performance
Table 4.

There are several possible reasons for the ob-
servation. First, as the language model dictionary
size decreases, the models’ and glosses’ ability to
explain the slight differences between words, es-
pecially the polysemies and synonyms, decreases.
Second, a smaller dictionary size indicates that the
covered tokens in the language model are a rela-
tively incomplete part of words of the language.

Noted that the second explanation above does
not consider the intrinsic differences between lan-
guages. The morphologically rich languages, like
Russian, tend to have larger vocabulary sizes and
bring many unknown words that influence perfor-
mance negatively (Jurafsky and Martin, 2020).

5 Conclusion

The paper proposes a model showing competitive
results in most cases of the reverse dictionaries task.
Several conclusions are provided about the reverse
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dictionaries task by the paper based on the abla-
tion studies. First, the transformer-based model,
for its high complexity, performs worse compared
to RNN- or LSTM-based models. Multilingual
transformer-based model benefits from specifying
languages and including language-related gram-
mar positional information. Second, bidirectional
models with similar parameter sizes outperform the
unidirectional one since they better grasp the con-
text in low-resource conditions. Third, different
word representations are potential connections and
can be collaboratively learned from glosses using
a multitask learning structure. SGNS embedding
is much harder to model compared to Character
embedding and Electra embedding.
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Check Table 5 for experiment results of the mono-
lingual models.

B Appendix: B

Check Table 6 for selected multilingual models’
performance.
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Word Representations SGNS Char Electra

Monolingual Models MSE COS RANK MSE COS RANK MSE COS RANK

Language English

RNN+WordPiece 1.000 0.249 0.310 0.158 0.778 0.442 1.454 0.832 0.433
LSTM+WordPiece 0.990 0.228 0.375 0.148 0.791 0.458 1.491 0.831 0.449
Transformer+WordPiece 1.042 0.214 0.367 0.194 0.780 0.453 1.796 0.827 0.486
BiRNN+WordPiece 0.989 0.221 0.395 0.150 0.791 0.454 1.483 0.832 0.449
Elmo+WordPiece 1.041 0.252 0.282 0.161 0.772 0.430 1.512 0.829 0.434

Language Spanish

RNN+WordPiece 0.936 0.358 0.225 0.512 0.822 0.402 NA NA NA
LSTM+WordPiece 0.928 0.334 0.287 0.497 0.829 0.418 NA NA NA
Transformer+WordPiece 1.011 0.307 0.313 0.577 0.828 0.432 NA NA NA
BiRNN+WordPiece 0.939 0.315 0.329 0.511 0.826 0.423 NA NA NA
Elmo+WordPiece 0.968 0.362 0.207 0.520 0.820 0.396 NA NA NA

Language French

RNN+WordPiece 0.975 0.329 0.254 0.379 0.761 0.408 1.272 0.856 0.444
LSTM+WordPiece 0.971 0.303 0.329 0.361 0.772 0.420 0.191 0.862 0.457
Transformer+WordPiece 1.057 0.273 0.366 0.461 0.771 0.430 1.523 0.856 0.488
BiRNN+WordPiece 0.984 0.290 0.361 0.366 0.770 0.424 1.202 0.863 0.454
Elmo+WordPiece 1.007 0.333 0.239 0.373 0.763 0.402 1.341 0.850 0.437

Language Italian

RNN+WordPiece 1.078 0.353 0.218 0.345 0.741 0.391 NA NA NA
LSTM+WordPiece 1.077 0.324 0.276 0.340 0.744 0.413 NA NA NA
Transformer+WordPiece 1.160 0.256 0.373 0.377 0.731 0.419 NA NA NA
BiRNN+WordPiece 1.086 0.309 0.303 0.338 0.747 0.415 NA NA NA
Elmo+WordPiece 1.106 0.352 0.200 0.354 0.736 0.384 NA NA NA

Language Russian

RNN+WordPiece 0.537 0.388 0.226 0.132 0.832 0.391 0.899 0.727 0.372
LSTM+WordPiece 0.547 0.338 0.346 0.131 0.834 0.401 0.885 0.728 0.400
Transformer+WordPiece 0.565 0.315 0.377 0.156 0.827 0.411 1.071 0.707 0.473
BiRNN+WordPiece 0.551 0.321 0.397 0.135 0.831 0.403 0.919 0.727 0.410
Elmo+WordPiece 0.557 0.387 0.217 0.134 0.831 0.390 0.904 0.723 0.362

Table 5: Appendix A. Experiment results of the monolingual models. Check section 2 for word algorithm
representations’ abbreviation. Check section 3 for details of monolingual models.

Word Representations SGNS Char Electra

Monolingual Models MSE COS RANK MSE COS RANK MSE COS RANK

Language English

Elmo+WordPiece 1.041 0.252 0.282 0.161 0.772 0.430 1.512 0.829 0.434
Elmo + WordPiece + DWA 0.985 0.246 0.298 0.142 0.799 0.447 1.514 0.827 0.428

Language French

Elmo+WordPiece 1.007 0.333 0.239 0.373 0.763 0.402 1.341 0.850 0.437
Elmo + WordPiece + DWA 0.937 0.327 0.243 0.364 0.770 0.406 1.315 0.854 0.428

Language Russian

Elmo+WordPiece 0.557 0.387 0.217 0.134 0.831 0.390 0.904 0.7226 0.362
Elmo + WordPiece + DWA 0.534 0.388 0.189 0.127 0.838 0.376 0.908 0.7235 0.364

Table 6: Appendix B. The table shows the selected multilingual models’ performance. Check section 2 for word
algorithm representations’ abbreviation. Check section 3 for details of monolingual models.
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Abstract

This paper describes the BLCU-ICALL sys-
tem used in the SemEval-2022 Task 1 Com-
paring Dictionaries and Word Embeddings, the
Definition Modeling subtrack, achieving 1st
on Italian, 2nd on Spanish and Russian, and
3rd on English and French. We propose a
transformer-based multitasking framework to
explore the task. The framework integrates
multiple embedding architectures through the
cross-attention mechanism, and captures the
structure of glosses through a masking lan-
guage model objective. Additionally, we also
investigate a simple but effective model ensem-
bling strategy to further improve the robust-
ness. The evaluation results show the effec-
tiveness of our solution. We release our code
at: https://github.com/ blcuicall/SemEval2022-
Task1-DM.

1 Introduction

Word embeddings (Mikolov et al., 2013a; Penning-
ton et al., 2014; Yogatama et al., 2015) are dense
and low dimensional vectors used in many NLP
tasks because they are found to be useful repre-
sentations of words and often lead to better per-
formance in various tasks. In recent years, large
pretrained language models (PLMs), such as BERT
(Devlin et al., 2019) and GPT (Petroni et al., 2019)
families of models, have taken the NLP field by
storm, achieving state-of-the-art performance on
many tasks (Min et al., 2021). The contextual em-
beddings generated by PLMs are proven to capture
syntax and semantic features of words (Jawahar
et al., 2019; Turton et al., 2020). But for human
beings, word embeddings containing these infor-
mation is still a black box and unexplainable.

There have been many efforts devoted to eval-
uating the word embeddings’ lexical information,
such as the word similarity (Landauer and Dumais,
1997; Downey et al., 2007) and analogical relation

⇤Corresponding author: Liner Yang.
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Figure 1: Architecture of the Cross-Attention Multitask-
ing Framework.

(Mikolov et al., 2013c) tasks. However, these tasks
can only serve as indirect evaluation methods. In
light of this, Noraset et al. (2017) proposed the task
of definition modeling to evaluate whether a word
embedding can be employed to generate a dictio-
nary gloss. Since the gloss is a direct and explicit
statement of word meaning, this task provides a
more transparent view.

The SemEval-2022 Task 1 Comparing Dictio-
naries and Word Embeddings (Mickus et al., 2022)
aims at comparing the two types of semantic de-
scriptions: dictionary glosses and word embed-
dings. The subtrack 1 is a definition modeling task,
which requires models to generate glosses from
word embeddings. The task provides data from 5
languages (English, Spanish, French, Italian, Rus-
sian) as well as static, character, and contextual
embeddings.

Our team propose a transformer-based (Vaswani
et al., 2017) Cross-Attention Multitasking Frame-
work to explore the task and apply the framework
to all 5 languages. We integrate the multiple embed-
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Train Dev. Test SGNS
Emb.

Character
Emb.

Electra
Emb.

Gloss
Len.

English 43,608 6,375 6,221 3 3 3 11.73
Spanish 43,608 6,375 6,221 3 3 7 14.84
French 43,608 6,375 6,221 3 3 3 14.31
Italian 43,608 6,375 6,221 3 3 7 13.58
Russian 43,608 6,375 6,221 3 3 3 11.32

Table 1: Detailed statistics of the dataset. The last column lists the average length of glosses in the training set.

ding architectures through a cross-attention mech-
anism, which allows the model to query all the
embeddings at each time step during generation.
To better capture the structure of glosses, we em-
ploy an additional masking language model (MLM)
(Devlin et al., 2019) into the framework. We also
investigate the ensemble strategies to further en-
hance the robustness.

Therefore, the contributions of our system lie in:

• We propose the Cross-Attention Multitasking
Framework as a novel solution to the defini-
tion modeling task.

• The evaluation results show the effectiveness
of our solution. Our system achieves 1st on
Italian, 2nd on Spanish and Russian, and 3rd
on English and French.

2 Background

The definition modeling subtrack provides partic-
ipants with a multilingual dataset in the form of
{E, g}, where E is a set including SGNS (Mikolov
et al., 2013b), character (Kim et al., 2016), and
Electra (Clark et al., 2020) embeddings, and g is
a dictionary gloss. This task takes E as the input,
and requires models to generate g. Note that all the
embeddings have 256 dimensions, and the Electra
embeddings are only available for 3 of the 5 lan-
guages. More detailed statistics of the dataset are
listed in Table 1.

Many previous work used additional data to im-
prove the performance of generation, such as exam-
ple sentences (Gadetsky et al., 2018; Chang et al.,
2018; Ishiwatari et al., 2019; Kong et al., 2020) and
semantic features (Yang et al., 2020). Some studies
also investigated how to employ PLMs for this task
(Reid et al., 2020; Bevilacqua et al., 2020; Huang
et al., 2021; Kong et al., 2022).

Differently, to keep the results linguistically sig-
nificant and easily comparable, the SemEval-2022

Task 1 prohibits the usage of external data and
PLMs. Therefore, our system focuses on effec-
tively integrating all given embeddings and model-
ing the glosses.

3 System Overview

Figure 1 illustrates the entire architecture of our
system, which is a Cross-Attention Multitasking
Framework based on transformer. The framework
consists of two objectives, namely the generation
and reconstruction objectives. This section intro-
duces the system in detail.

3.1 The Generation Objective
The generation objective serves as a standard trans-
former decoder, which generates the gloss as the
following language model:

P (g|E;✓) =
Y

t

P (gt|g<t, E;✓) , (1)

where gt is the t-th token in the gloss, and ✓ is the
set of parameters. The model is then optimized
using the following loss function:

Lgen(✓) = �
X

g2D

log P (g|E;✓), (2)

where D is the training dataset.
In the above operations, a crucial challenge is

to integrate multiple embeddings corresponding to
one word. We assume that the SGNS, character,
and Electra embeddings contain different lexical
features, and better results can be obtained by com-
prehensively considering all the information. To
achieve that, we feed the set E, including all these
embeddings, into the cross-attention mechanism:

Cross-Attn(H, E, E) = softmax(
HET

p
dh

)E (3)

where H is the hidden-states obtained from by self-
attention, and dh is the dimension of the hidden-
states. This operation ensures the given embed-
dings are adaptively integrated at each time-step.
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3.2 The Reconstruction Objective
Our system is a language model specially designed
for dictionary glosses. We further enhance this
model by incorporating a reconstruction objective.

We corrupt each gloss g by randomly substitut-
ing or blanking some words. And then we obtain
a corrupted version g̃. We input g̃ into our system
and obtain g by solving a self-supervised task of:

P (g|g̃;✓) =
Y

t

P (gt|g<t, g̃;✓). (4)

Note that we share exactly the same parameters
✓ as in the generation objective. The model is
optimized by the following loss function:

Lrec(✓) = �
X

g2D

log P (g|g̃;✓), (5)

The goal of the reconstruction objective is to
better model the glosses. Therefore, we don’t use
the given embeddings in this operation. In prac-
tice, we feed a zero vector into the cross-attention
mechanism to mask it out as Cross-Attn(H,0,0).

3.3 Training and Ensembling
We train the entire multitasking framework by
jointly minimizing the weighted sum of both loss
functions:

L = Lgen + �Lrec, (6)

where � is a hyper-parameter.
Model ensembling is proven to be effective to

improve the robustness (Allen-Zhu and Li, 2020).
In our work, we adopt a simple but effective model
ensembling strategy. We train a series of models
initialized by different random seeds, and then vote
with the trained models during inference.

4 Experimental Setup

4.1 Implementation Details
Many neural network-based generation systems
struggle with the OOV (out-of-vocabulary) prob-
lem. To alleviate the problem, we apply the Senten-
cePiece algorithm (Kudo and Richardson, 2018) to
glosses to reduce the vocabulary size. We use the
tokenizers1 toolkit for implementation and set the
size to 10k for all 5 languages.

Our system is a 3-layer, 8-head transformer-
based model implemented by the Pytorch library
(Paszke et al., 2019). We use the Adam optimizer

1tokenizers: https://github.com/huggingface/tokenizers.

(Kingma and Ba, 2015) with �1 = 0.9, �2 = 0.98
and ✏ = 10�9. We adopt the Noam Optimizer
proposed by (Vaswani et al., 2017) with an initial
learning rate of 1e�7, a maximum learning rate
of 1e�3, and a minimum learning rate of 1e�9.
We set the warmup steps to 4000 and batch size
to 128. The maximum epochs is set to 500. And
we set an early stop strategy in the patience of 5
epochs. To avoid gradient exploding, we clipped
the gradient norm within 0.1. We also employ label
smoothing technique (Pereyra et al., 2017) with a
smoothing value of 0.1 during training. For the
gloss corruption in the reconstruction objective, we
follow Devlin et al. (2019) to randomly delete and
blank words with a uniform probability of 0.2. And
the � (in Equation 6) is set to 1. For model ensem-
bling, we train 5 models with different seeds. Due
to the time constraints, our official submission has
a result of ensembling three models on English, and
results of single models on the reset of 4 languages.
We submitted the results of ensembling 5 models
in the post-evaluation phase.

For each language, we use the development set
released by organizers for model selection. We
select the best epoch using the summary of BLEU
(Papineni et al., 2002) and MoverScore (Zhao et al.,
2019) on the development set.

4.2 Evaluation Metrics

The definition modeling subtrack uses three met-
rics, which are MoverScore (Zhao et al., 2019),
BLEU (Papineni et al., 2002) , and lemma-level
BLEU respectively. Readers can refer to the task
paper (Mickus et al., 2022) for more details.

5 Results and Analysis

In this section, we present the evaluation results and
discuss our analysis of the generated definitions.

5.1 Main Results

Table 2 presents the evaluation scores on all 5
languages. Results show that our system signif-
icantly outperforms the baseline models in terms of
the sentence BLEU and lemma-level BLEU. This
indicates the effectiveness of our proposed cross-
attention multitasking framework. However, the
SGNS and Char are strong baselines in terms of the
MoverScore, and our system only outperforms the
baselines on English. We speculate that our results
have more coincide words with references, but are
not fluent enough, which leads to a low score from
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Models S-BLEU L-BLEU MvSc.

EN

SGNS 0.00125 0.00250 0.10339
Char 0.00011 0.00022 0.08852
Electra 0.00165 0.00215 0.08798
CAMF 0.03127 0.03957 0.13475
Ensemble 0.03106 0.03906 0.13273

ES

SGNS 0.01536 0.02667 0.20130
Char 0.01505 0.02471 0.19933
CAMF 0.03914 0.05606 0.12778
Ensemble 0.03925 0.05624 0.13121

FR

SGNS 0.00351 0.00604 0.18478
Char 0.00280 0.00706 0.18579
Electra 0.00219 0.00301 0.17391
CAMF 0.02679 0.03691 0.04193
Ensemble 0.02700 0.03738 0.04455

IT

SGNS 0.02591 0.04081 0.20527
Char 0.00640 0.00919 0.15920
CAMF 0.06646 0.09926 0.11717
Ensemble 0.06812 0.10147 0.12233

RU

SGNS 0.01520 0.02112 0.34716
Char 0.01313 0.01847 0.32307
Electra 0.01189 0.01457 0.33577
CAMF 0.04843 0.06548 0.14820
Ensemble 0.05192 0.07074 0.15702

Table 2: Evaluation results of different models in 5
languages. The SGNS, Char, Electra are baseline mod-
els provided by the organizers. The CAMF (Cross-
Attention Multilingual Framework) is the model of offi-
cial submission. And the Ensemble is an ensemble of
5 models submitted in the post-evaluation. Bold and
underline mark the best and second scores, respectively.

the pretrained model used by MoverScore.
We also observe that model ensembling has

brought the improvement of performance. It can
be seen from the table that the Ensemble model
outperforms the CAMF on 4 of the 5 languages,
except for a slight decline on English. This may be
due to the randomness of the parameter initializa-
tion. We also argue that better performance can be
obtained by applying hyper-parameter searching
algorithms and ensembling more models.

5.2 Error Analysis

In order to qualitatively analyze the definitions gen-
erated by our system, we randomly select several
items from the English test set and manually anno-
tate the error types following Noraset et al. (2017).
In total, we extract 200 items, of which 197 contain
some degree of error. We illustrate the error types
and examples in Table 3. Note that each item may
contain multiple errors, so the sum of the percent-
ages in the table is greater than 100%.

From the table, we observe that the quality of
English definitions generated by our system still

(1) Redundancy and overusing common phrases: 42.00%
word explosion
reference A sudden outburst.
hypothesis A sudden, sudden, or destruction.

(2) Self-reference: 2.00%
word discover
reference To reveal (information); to divulge, make

known.
hypothesis To make a conclusion of; to discover.

(3) Wrong Part-Of-Speech: 5.50%
word genius
reference ingenious, brilliant, very clever, or original.
hypothesis A person or thing that is extraordinary.

(4) Under-specified: 23.50%
word mayor
reference The leader of a city.
hypothesis A person who is a member of authority.

(5) Opposite: 2.00%
word solid
reference Excellent , of high quality , or reliable.
hypothesis Having no size or value.

(6) Close Semantics: 17.00%
word bed
reference The time for going to sleep or resting in bed.
hypothesis The state or quality of being a room.

(7) Incorrect: 52.00%
word smooth
reference Lacking projections or indentations; not

serrated.
hypothesis Having the shape of a tree.

Table 3: Error types and examples.

need to be improved. Error types (1) to (3) are
problems from the system, and types (4) to (6) are
shortcomings in the embeddings. As we can see,
the former accounts for a much larger proportion
than the latter. The 52% incorrectness indicated by
type (7) shows that many glosses generated by our
system are irrelevant to the word. And the dataset
released in this task will support significant future
work on the definition modeling task.

6 Conclusion

In this paper, we present the implementation of the
BLCU-ICALL system submitted to the SemEval-
2022 Task 1, Definition Modeling subtrack. We
propose a Cross-Attention Multitasking Frame-
work that leverages multiple embedding architec-
tures and jointly trains two objectives. We also
investigate a simple but effective ensembling strat-
egy to enhance the robustness. In future efforts, we
plan to further improve our system to better handle
the problems of redundancy and incorrect glosses.
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Abstract

This paper introduces the result of Team
LingJing’s experiments in SemEval-2022 Task
1 Comparing Dictionaries and Word Embed-
dings (CODWOE)1. This task aims at compar-
ing two types of semantic descriptions, includ-
ing the definition modeling and reverse dictio-
nary track. Our team focuses on the reverse
dictionary track and adopts the multi-task self-
supervised pre-training for multilingual reverse
dictionaries. Specifically, the randomly initial-
ized mDeBERTa-base model is used to per-
form multi-task pre-training on the multilin-
gual training datasets. The pre-training step is
divided into two stages, namely the MLM pre-
training stage and the contrastive pre-training
stage. As a result, all the experiments are
performed on the pre-trained language model
during fine-tuning. The experimental results
show that the proposed method has achieved
good performance in the reverse dictionary
track, where we rank the 1-st in the Sgns tar-
gets of the EN and RU languages. All the ex-
perimental codes are open-sourced at https:
//github.com/WENGSYX/Semeval.

1 Introduction

The CODWOE shared task invites the participants
to compare two types of semantic descriptions: dic-
tionary glosses and word embedding representa-
tions. The intuitions come from the questions: “Are
these two types of representation equivalent? Can
we generate one from the other?”. To study this
question, the CODWOE proposes two sub-tracks:
a definition modeling track (Noraset et al., 2017),
where participants have to generate glosses from
vectors, and a reverse dictionary track (Hill et al.,
2016), where participants have to generate vectors
from glosses. These two tracks are fairly challeng-
ing (Hill et al., 2016), where more efficient meth-
ods are required to be designed for implementation.

∗These authors contribute equally to this work.
1https://codwoe.atilf.fr/

word 
Embedding 

sgns: [0.9233651757, -0.526638031, 2.0892603397, … …]256

char: [-0.1214295924, -0.2428643405, 0.2625943422, … …]256

electra: [0.3655579984, -0.1910238415, 0.0170905143,… …]256

" A meal consisting of food normally eaten in the morning , 
which may typically include eggs , sausages , toast , bacon , etc. "

word 
Gloss

Figure 1: An example of the reverse dictionary task.
Given the word gloss, it is required to generate the
vectors of their corresponding Sgns, Char, and Electra,
respectively.

These tasks are also useful for explainable AI, since
they involve converting human-readable data into
machine-readable data and back (Li et al., 2021).
In this paper, we focus on the reverse dictionary
track. As shown in Figure 1, given the gloss “A
meal consisting of food normally eaten in the morn-
ing, which may typically include eggs, sausages,
toast, bacon, etc.”, the reverse dictionary task re-
quires us to generate corresponding three sets of
256-dimensional word vectors. The Sgns (Mikolov
et al., 2013) , char (Vakulenko et al., 2017), and
Electra (González et al., 2020) are skip-gram with
negative sampling embeddings, character-based
embeddings, and Transformer-based contextual-
ized embeddings, respectively.

It is noted that this task comprises datasets in 5
languages: English, Spanish, Italian, French, and
Russian. The reverse dictionary task is difficult
due to the significant inborn differences between
word vectors and glosses and the vast differences
between languages (Bosc and Vincent, 2018).

To solve the above problems, we use a multi-task
self-supervised pre-training approach with Masked
language modeling (MLM) (Taylor, 1953; Devlin
et al., 2019) and contrastive learning (Reimers and
Gurevych, 2019; Su et al., 2021). On the one hand,
MLM can better capture the semantic representa-
tion of the input text (Liu et al., 2019). On the other
hand, contrast learning can further improve the per-
formance of downstream regression tasks (Jaiswal
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et al., 2020). Specifically, we use a randomly ini-
tialized mDeBERTa-base (He et al., 2021) model to
perform MLM pre-training on five text datasets in
different languages. Contrastive pre-training (Gao
et al., 2021) is then performed using vectors with
and without dropout (Srivastava et al., 2014). Af-
terward, the model is fine-tuned using the Reverse
Dictionary dataset. The experimental results show
that the proposed method has achieved good perfor-
mance in the reverse dictionary track. We achieve
the top three results on the Sgns evaluation metrics
in all languages. Specifically, we get first place in
English and Russian, second place in Spanish and
French, and third place in Italian.

2 Main method

In this section, we will elaborate on the main
methods for the reverse dictionary track. As the
pre-training method can enhance the performance
of semantic representation (Qiu et al., 2020), we
adopt masked language modeling (MLM) task (De-
vlin et al., 2019) and contrastive pre-training task
(Jaiswal et al., 2020) for implementing this regres-
sion task.

2.1 Masked language modeling task
Masked language modeling (MLM) task consists
of giving the model a random masked sentence and
optimizing the weights inside the model to output
the unmasked sentence on the other side. We im-
plement the MLM pre-training method with the
same original setting as BERT (Devlin et al., 2019).
What’s more, we adopt the standard implementa-
tions of the MLM from the website2.

2.2 Contrastive pre-training task
Our method follows the SimCSE (Gao et al.,
2021) method, where the self-supervised model
is adopted for the contrastive pre-training task. For
the self-supervised part, we use dropout to add
noise to the text twice, thus constructing a pair of
positive samples, and pairs of negative samples are
sentences processed with the dropout in the batch.
The above processes can be formulated as the equa-
tion (1)

LCL = − log
exp

(
sim

(
h̃i, hi

)
/τ
)

∑n
j=1 exp

(
sim

(
h̃i, hj

)
/τ
) , (1)

where the hi represents the hidden feature of the
positive sample, while the hj is the hidden feature

2https://github.com/lucidrains/mlm-pytorch

of the negative drop-out sample. The τ is a temper-
ature hyper-parameter and sim(, ) means the cosine
similarity function.

2.3 Multi-task pre-training
Multi-task learning is known to fully enhance the
performance of the single task with multiple related
tasks to be designed and optimized (Sanh et al.,
2021). We combine the above two pre-training task
to the multi-task objectives, where the final loss
function can be represented as follows

L = LMLM + LCL. (2)

2.4 Downstream fine-tuning

Regression
Task

t[CLS] t1 t2 tN-1 T[SEP]

E[CLS] x1 x2 xN E[SEP]

[CLS] x1 x2 xN [SEP]

Encoder Context
（Pre-trained Through

Self-supervised Multi-task）

A meal consisting of food normally eaten in the morning

mDeBERTa

… …

… …

… …

Input

Pooling Layer 2 Averaged Pooling (Dim = 1)

Averaged Pooling (Kernel_Size = 3)Pooling Layer 1

[0.9233, …, 2.4412, 1.4825, 1.8073]

[Batch_Size, 256]

[0.9233, …, 2.4412, 1.4825, 1.8073]

…

[Batch_Size, 768]

Figure 2: Main structure of the proposed method.

Concretely, given the input sentence, the seman-
tic representation can be obtained through the con-
text encoder with pre-training. As shown in the
Figure 2, we use the pre-trained language model
through self-supervised multi-task pre-training as
the backbone for the regression task. Once obtain-
ing the final representation of the pre-trained lan-
guage model, two pooling layers (Lin et al., 2013)
are designed to get the useful features with the prob-
able size. The mean pooling layer is added on top
of the pre-trained model for squeezing the features.
Another pooling layer (with the kernel_size=3) is
added before the final regression task.

3 Experimental setup

3.1 Data Description
The CODWOE shared task provides datasets in five
different languages (EN, ES, FR, IT, RU). For these
datasets of five languages, each dataset has 43,608
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training sets, 6375 dev sets and 4208 test sets. Each
language contains multiple embeddings contain-
ing “Char” and “Sgns”, while English, French and
Russian have the embedding “Electra”. We will
introduce these datasets as follows.
Char corresponds to character-based embeddings,
computed with an auto-encoder on the spelling
of a word. In addition, the “gloss” key in each
dataset is the source in the reverse dictionary track.
We need to use “gloss” to generate the associated
embeddings.
Sgns corresponds to skip-gram with negative sam-
pling embeddings (aka. word2vec (Mikolov et al.,
2013)).
Electra corresponds to the Transformer-based
(Vaswani et al., 2017) contextualized embeddings.

Moreover, the organizers want the shared task to
be as linguistically relevant as possible and hope
to provide a fair competition environment for all
participants. The organizer forbids the use of exter-
nal resources and pre-trained language models in
CODWOE.

3.2 Evaluation metrics

In this task, the performance of the system is eval-
uated through three evaluation indicators (Mickus
et al., 2022).
Mean squared error (MSE) between the submis-
sion’s reconstructed embedding and the reference
embedding.
Cosine similarity (Cossim) between the submis-
sion’s reconstructed embedding and the reference
embedding.

MSE =
1

n
Σn
i=1

(Ai −Bi

σi

)2

Cossim =

∑n
i=1Ai ×Bi√∑n

i=1(Ai)2 ×
√∑n

i=1(Bi)2

where the A and B refer to two matrices that need
to be calculated.
Cosine-based ranking3 between the submission’s
reconstructed embedding and the reference embed-
ding; i.e., how many other test items have a cosine
similarity with the reconstructed embedding higher
than that with the reference embedding.

3Specific implementations can refer to https://
github.com/WENGSYX/Semeval.

3.3 Method introduction

The Baseline provided by the organizer4 uses
the encoder structure of the Transformer (Vaswani
et al., 2017; Wolf et al., 2020) framework. After
each token passes through the embedding layer,
positional encoding will be added to indicate the
location structure of the token. Then it will be input
to the encoder based on the transformer and finally
output to the linear layer to make the dimension of
the matrix consistent with the label.

In addition, the organizer has made some im-
provements to the baseline.

1. The principled way of selecting hyper-
parameters (using Bayesian Optimization
(Snoek et al., 2012; Frazier, 2018)).

2. A sentence-piece re-tokenization, to ensure
the vocabulary is of the same size for all lan-
guages.

3. The beam-search (Wiseman and Rush, 2016;
Freitag and Al-Onaizan, 2017) decoding for
the definition modeling pipeline.

Our method uses the randomly initialized mDe-
BERTa (He et al., 2021) model. The mDeBERTa
improves the BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) models using disen-
tangled attention and enhanced mask decoder. It
shares the base model with 12 layers and 768 hid-
den size, which is pre-trained on the multilingual
corpus. It has 86M backbone parameters with a vo-
cabulary containing 250K tokens which introduce
190M parameters in the Embedding layer. It sup-
ports most languages around the world, since it is
believed that there should be some shared semantic
features between different languages5.

3.4 Implementation details

We use the hugging-face6 (Wolf et al., 2020) frame-
work and train the model based on the Pytorch
(Paszke et al., 2019). During training, we em-
ploy the AdamW optimizer (Loshchilov and Hutter,
2017). The default learning rate is set to 1e-5 with
the warm-up (He et al., 2016). Four 3090 GPUs
are used for all experiments.

4Specific implementation can refer to https:
//github.com/TimotheeMickus/codwoe/tree/
main/baseline_archs

5Please refer: https://ai.glossika.com/blog/a-map-to-the-
syntax-of-all-spoken-languages

6https://github.com/huggingface/transformers
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Experimental Items Baseline Ours
Language MSE Cosine Ranking MSE Cosine Ranking
English 0.91092 0.15132 0.49030 0.86239 0.24310 0.32907
Espana 0.92996 0.20406 0.49912 0.85770 0.35275 0.25101
French 1.14050 0.19774 0.49052 1.02968 0.32799 0.28213
Italian 1.12536 0.20430 0.47692 1.03945 0.35955 0.22995

Russian 0.57683 0.25316 0.49008 0.52827 0.42440 0.18711

Table 1: Results of the Sgns track.

Experimental Items Baseline Ours
Language MSE Cosine Ranking MSE Cosine Ranking
English 0.14776 0.79006 0.50218 0.47103 0.00331 0.48599
Espana 0.56952 0.80634 0.49778 0.50121 0.85770 0.35275
French 0.39480 0.75852 0.49945 0.96678 0.00809 0.51862
Italian 0.36309 0.72732 0.49663 0.88129 -0.02992 0.49603

Russian 0.13498 0.82624 0.49451 0.47905 0.00479 0.47228

Table 2: Results of the Char track.

On the MLM pre-training task, we alternately
carry out the pre-training tasks of long text and
short text. After mixing the data sets of five dif-
ferent languages, we train them for 40 epochs. In
detail, we classify all data sets with a text length of
30. In each epoch, firstly, samples with text length
less than or equal to 30 are trained with a maximum
length of 32 tokens (including <CLS> and <SEP>)
and the batch size is set to 70. Then we change the
maximum length to 160 tokens and set the batch
size to 18 for training the remaining samples.

Referring to the settings of WWM (Cui et al.,
2021; Joshi et al., 2020), we use the text mask rate
with a probability of 20%, and adopt that the 1, 2,
3, 4 n-gram masking length with a probability of
85%, 5%, 5%, and 5%.

In contrastive pre-training, we repeatedly inte-
grate a sample into the model twice. During this
period, because our model has dropout, it will
add noise to the input, so that the output of the
two times is distinct. As a result, our method can
be improved in the sentence representation ability
through self-supervised.

Based on the pre-trained language model, we
fine-tune with the maximum length of all samples
to 100 tokens, the batch size to 50 (there will be 2
* 50 samples for each step to be calculated by the
model at the same time). The number of training
epochs is 40.

4 Results and discussions

In this section, we introduce the experimental re-
sults of the Sgns, the Char and the Electra tracks.

The online results and further discussions are also
presented.

4.1 Experimental results

The experimental results of the Sgns, Char and
Electra can be found in the Table 1, 2 and 3. Specif-
ically, for the Sgns track, we outperform the experi-
ments of each baseline according to all the metrics.
The reason may be that the pre-training method
with MLM and contrastive learning can well pro-
vide well-formed vector space representations be-
tween samples. As for the Char and Electra track,
the baseline is better than ours. It may be because
the word and contextual character features are hard
to be captured due to the smaller corpus. In the
future, we will explore more efficient methods to
perform well definition modeling in these tracks.

4.2 Official online results

As shown in Table 4, we achieve the top three
results on the Sgns evaluation metrics in all lan-
guages. Specifically, we get first place in English
and Russian, second place in Spanish and French,
and third place in Italian. Our method is effective
on the Electra evaluation metrics, but not the best.
Our team ranks the second place, fourth and fourth
place in Russian, English, and French, respectively.
Our approach does not achieve good results on the
char metric, which represents the character level.
This result may be that it is difficult for the model to
capture semantics while maintaining high precision
letter-level fine-grained word vector learning.
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Experimental Items Baseline Ours
Language MSE Cosine Ranking MSE Cosine Ranking
English 1.41287 0.84283 0.49849 1.50876 0.84592 0.47773
French 1.15348 0.85629 0.49784 1.27066 0.85859 0.47762
Russian 0.87358 0.72086 0.49120 0.82773 0.73397 0.42020

Table 3: Results of the Electra track.

Online Sgns Char Electra
TEAM EN ES FR IT RU EN ES FR IT RU EN FR RU

LingJing(ours) 1 2 2 3 1 7 5 5 6 5 4 4 2
pzchen 2 4 3 2 3 3 1 1 1 1 1 1 1

IRB-NLP 3 1 1 1 2 4 3 4 2 2 5 3 3
Locchi 4 / / 4 / 1 / / 4 / 3 / /

Nihed_Bendahman_ 5 5 4 6 4 2 2 2 3 4 2 2 4
zhwa3087 6 6 5 5 5 6 4 3 5 3 / / /

the0ne 7 / / / / 5 / / / / 6 / /
tthhanh 8 7 6 7 6 / / / / / / / /

Table 4: Results of the online official Rank.

5 Conclusion

In this paper, it is mainly introduced that in order
to solve the reverse dictionary track in Semeval-22
CODWOE, the LingJing team makes the model
have the ability of semantic understanding through
the MLM task with contrastive learning in the ran-
domly initialized mDeBERTa model. After that,
we report the performance of our model in COD-
WOE, and obtain the best performance in English
and Russian tasks of Sgns dataset, which proves
that our method is effective. In the future, we will
further study how to make full use of the character-
istics of different languages and make the model
embed the text into a more accurate vector space.
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Abstract

What is the relation between a word and its de-
scription, or a word and its embedding? Both
descriptions and embeddings are semantic rep-
resentations of words. But, what information
from the original word remains in these repre-
sentations? Or more importantly, which infor-
mation about a word do these two representa-
tions share? Definition Modeling and Reverse
Dictionary are two opposite learning tasks that
address these questions. The goal of the Defini-
tion Modeling task is to investigate the power
of information laying inside a word embedding
to express the meaning of the word in a hu-
manly understandable way – as a dictionary
definition. Conversely, the Reverse Dictionary
task explores the ability to predict word embed-
dings directly from its definition. In this paper,
by tackling these two tasks, we are exploring
the relationship between words and their se-
mantic representations. We present our find-
ings based on the descriptive, exploratory, and
predictive data analysis conducted on the COD-
WOE dataset. We give a detailed overview
of the systems that we designed for Defini-
tion Modeling and Reverse Dictionary tasks,
and that achieved top scores on SemEval-2022
CODWOE challenge in several subtasks. We
hope that our experimental results concerning
the predictive models and the data analyses we
provide will prove useful in future explorations
of word representations and their relationships.

1 Introduction

The COmparing Dictionaries and WOrd Em-
beddings (CODWOE) task (Mickus et al., 2022) is
aimed at explaining two different types of seman-
tic descriptions of words: dictionary glosses and
word embeddings. A dictionary gloss is a brief tex-
tual explanation of a word and a word embedding
is a vector representation that captures the word’s
semantic and syntactic properties (Smith, 2020).

⇤Equal contribution.

In order to investigate the relationship between
these two types of descriptions, two complemen-
tary subtracks were put together: 1. Definition
Modeling (DEFMOD) track, where correct glosses
need to be generated from word embedding vectors
(Noraset et al., 2017); and 2. Reverse Dictionary
(REVDICT) track, where correct embedding vec-
tors should be generated from dictionary glosses
(Hill et al., 2016). The datasets for both tracks
cover five different languages: English (EN), Span-
ish (ES), French (FR), Italian (IT), and Russian
(RU).

The key challenge of the CODWOE task is that it
needs to be performed without external data, which
precludes the use of pretrained models and vectors.
Additionally, the training dataset is relatively small
in comparison to the datasets on which models are
typically trained.

Our strategy was to adapt an RNN-based de-
coder model (Noraset et al., 2017) for the DEFMOD
track, and to use a transformer-based encoder (De-
vlin et al., 2019) for the REVDICT track. With the
limited amount of available data in mind, we hy-
pothesized that models should not be large. There-
fore we aimed to limit the model complexity by
reducing the number of parameters, for example
by using a subword tokenizer (Kudo and Richard-
son, 2018), which yields a smaller dictionary of
optimized subword fragments. All of the models
we used were built for a single language, and their
structure and parameters were optimized either it-
eratively or by way of Bayesian hyperparameter
optimization (BHO) (Snoek et al., 2012).

We conducted data analyses of the CODWOE
datasets and analyses of the developed machine
learning models. We performed a statistical and
visual analysis of the pretrained CODWOE embed-
dings, i.e., of their distributions and relationships.
DEFMOD analyses include an analysis of model per-
formance factors and a qualitative analysis of gener-
ated glosses. In the REVDICT predictive analysis,
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Table 1: Aggregated language-level ranks of our team
for the DEFMOD (DM) and REVDICT (RD) tracks (and
the number of teams competing in a subtask).

TASK EN ES FR IT RU
DM-all 2 (9) 1 (7) 1 (6) 5 (7) 5 (6)
RD-sgns 3 (9) 1 (7) 1 (6) 1 (7) 2 (6)
RD-char 4 (7) 3 (5) 4 (5) 2 (6) 2 (5)
RD-electra 5 (6) 3 (4) 3 (4)

we investigate the impact of many different settings
on models’ performance defined in terms of dis-
tance and similarity scores between predicted and
target vectors.

We show that our adaptation of the DEFMOD ar-
chitecture (Noraset et al., 2017) can perform com-
petitively and that the use of multiple word embed-
dings can clearly improve the generation of word
glosses. For REVDICT, we demonstrate that our
approaches achieve top performance in terms of
ranking, which makes them suitable for informa-
tion retrieval applications. Our models perform
competitively and our results on the CODWOE chal-
lenge can be found in Table 1. We make the code of
our models and data analyses publicly available1.

2 Background

2.1 Related Work

Definition Modeling The Definition Modeling
(DEFMOD) task, first introduced in Noraset et al.,
2017, is focused on the prediction of dictionary
word glosses from word embeddings. Noraset et al.
(2017) experimented on two English dictionaries
and proposed a successful architecture based on
RNN.

Subsequent work on Definition Modeling fo-
cused on variations of the problem of prediction
of a word gloss from the word sense. These ap-
proaches consider gloss prediction based on sense-
specific word embeddings (Gadetsky et al., 2018;
Kabiri and Cook, 2020; Zhu et al., 2019), and on
a word-based context indicating the word sense
(Bevilacqua et al., 2020; Gadetsky et al., 2018;
Mickus et al., 2019; Yang et al., 2020; Zhang et al.,
2020). The proposed approaches are based ei-
ther on RNNs (Gadetsky et al., 2018; Kabiri and
Cook, 2020; Zhang et al., 2020; Zhu et al., 2019)
or Transformers (Bevilacqua et al., 2020; Mickus
et al., 2019). All of the previous approaches rely
on word embeddings pre-trained on large corpora,
most commonly word2vec (Mikolov et al., 2013).

1https://github.com/dkorenci/
codwoe-irb-nlp/

Sense-aware approaches that take embeddings as
input make use of either sense-aware word em-
beddings (Gadetsky et al., 2018; Kabiri and Cook,
2020) or of decomposition of word embeddings
into sense-specific vectors (Zhu et al., 2019).

The initially proposed architecture of Noraset
et al. (2017) is often used as a baseline solution.
The most commonly used measure of model perfor-
mance is the BLEU (Papineni et al., 2002) metric.
Although there is some overlap in used datasets,
most experiments rely on a specific dataset. The
reported model performances vary greatly. Noraset
et al. (2017) report BLEU of 31 and 23, depending
on the dictionary. Subsequent experiments report,
for the same approach, BLEU scores that range
from as little as 11 (Gadetsky et al., 2018) to as
much as 60 (Kabiri and Cook, 2020). The varia-
tion can be great even for the same language and
experimental setup (Kabiri and Cook, 2020). The
original approach of Noraset et al. (2017) remains
competitive in the sense-aware setting, with the
sense-aware approaches achieving BLEU increases
that range between 1 � 2 (Gadetsky et al., 2018;
Kabiri and Cook, 2020; Zhang et al., 2020) and
5 � 6 (Kabiri and Cook, 2020; Yang et al., 2020;
Zhang et al., 2020), depending on the setting.

While we view the Definition Modeling pri-
marily as a theoretically interesting task, poten-
tial applications include explainability of word em-
beddings and automatic generation of dictionaries,
which might be of interest in low-resource settings.

Reverse Dictionary The Reverse Dictionary
(REVDICT) is a task of finding the right word when
a word description is given (Bilac et al., 2004; Du-
toit and Nugues, 2002; Zock and Bilac, 2004). It
is the formulation of the tip-of-the-tongue prob-
lem (TOT) (Brown and McNeill, 1966) that occurs
during text synthesis. It is a condition in which a
person knows a lot about the word, such as its mean-
ing and origin, but is unable to recall it. REVDICT
is a complex task. There are countless variations of
input definitions that should lead to the same one-
word concept. This complexity comes in part from
the representation of the one-word concepts in the
human mind. People tend to relate concepts on
the conceptual and lexical level and form a highly
connected network of abstractions (Zock and Bilac,
2004).

Therefore, a natural approach to solving
REVDICT is to form a semantic network with
nodes (one-word concepts) and edges (associ-
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ations) to search for the target word (Thorat
and Choudhari, 2016; Zock and Bilac, 2004).
REVDICT can be realized directly by compar-
ing the input definitions with all the definitions
in the dictionary and returning the most similar
ones, without taking into account any semantic or
grammatical information (El-Kahlout and Oflazer,
2004). However, REVDICT systems that include
semantics give better results, such as in Méndez
et al., 2013 and Calvo et al., 2016 where words are
represented as vectors in a semantic space.

Recent REVDICT approaches utilize deep learn-
ing (DL) to map arbitrary-length definition phrases
to the vector representation of the target word (Hill
et al., 2016; Malekzadeh et al., 2021; Qi et al., 2020;
Yan et al., 2020). The success of DL approaches in-
dicates that REVDICT can be solved implicitly, i.e.
by directly learning from given data, and doesn’t
require an explicit injection of domain knowledge.
According to this observation, the DL approach is
a good choice for solving the REVDICT task.

2.2 Dataset

The CODWOE datasets (Mickus et al., 2022) cover
five languages (EN, ES, FR, IT, RU) and are de-
rived from the Dbnary lexical data2. Each data
point corresponds to a single word and contains
word embedding vectors and the word gloss. Three
types of embedding are used, labeled as sgns
(pretrained word2vec), electra (contextual pre-
trained embeddings) and char (character-based
embeddings). Pretrained embeddings are based on
large corpora containing approximately 1B tokens.

Each dataset is divided into three sections: train-
ing, validation (development), and test. Datasets
for training and validation have 43.608 and 6.375
samples, respectively. Each track also has a sep-
arate set of test data. The DEFMOD test dataset
has 6.221 samples while the REVDICT has 6.208
samples.

More detailed statistics and analyses of the
dataset can be found in the Appendices, including
the gloss statistics (Table 5) and embedding vector
statistics (Table 11). Descriptive analysis of the em-
bedding vectors shows large variation in values that
depend on a language and an embedding type (Fig-
ures 3 and 4). Additionally, an exploratory analysis
showed that the embeddings for different languages
are easily separable (Figures 6 and 5). Interestingly,
patterns of vector-based word similarity seem to

2http://kaiko.getalp.org/about-dbnary/

differ significantly across embedding types, and in
this regard there are no visible relations between
different embeddings (Figure 7).

3 System overview

Both the DEFMOD and the REVDICT models rely
on unigram subword tokenizers (Kudo, 2018)
trained on glosses from the train datasets.

3.1 Definition Modeling

Our approach to the challenging task of Definition
Modeling on a limited dataset consists of prepro-
cessing the input data, extracting the semantic infor-
mation from the dataset, and controlling the model
size and complexity.

The inspection of the learning data revealed that
the gloss texts are often long since they consist of
several alternative definitions. We opted to include
only one definition per learning example. Our in-
tuition is that this approach, also taken in (Noraset
et al., 2017), alleviates the learning problem by
inducing the model to learn shorter and atomic def-
initions. The approach should also reduce noise
(since the number of alternative definitions in a
gloss is arbitrary).

The inspection of glosses also revealed the pres-
ence of lexicographic labels that precede the gloss
definitions. These labels, present for all languages
except English, convey data about, for example,
word semantics (ex. geography, history) or tem-
poral category (ex. archaic). We chose to remove
these labels since they introduce noise (the pres-
ence and the amount of labels appears arbitrary),
increase the dictionary size, and thus make the
learning problem harder.

To construct the dictionary we use the unigram
subword tokenizer (Kudo, 2018) implemented as
part of the SentencePiece tool (Kudo and Richard-
son, 2018). The reasons for using the subword
tokenization were the expected improvement in per-
formance for low-resource tasks (Kudo, 2018) and
the reduction in the number of model parameters
corresponding to token embeddings.

Since we opted for a deep learning model de-
pending on token embeddings, we initialized the
token embeddings with GloVe vectors (Pennington
et al., 2014) trained on the dataset of normalized
and cleaned atomic glosses. To demonstrate that
the GloVe vectors capture a degree of word seman-
tics, we aggregated the vectors on a gloss level
using tf-idf weighting. Then we inspected, for each
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“target” gloss from a sample of English glosses,
other dataset glosses ordered by cosine similarity
to the target. This revealed that GloVe similarity
corresponds to the similarity in gloss meaning. Ad-
ditionally, we found that the models initialized with
GloVe vectors achieve a lower final loss.

Machine learning model We decided to use an
adaptation of the RNN-based model of (Noraset
et al., 2017), that proved competitive in a num-
ber of experimental settings. In the context of the
DEFMOD task, the model takes as input one or more
word embeddings (sgns, electra or char) and
produces a gloss (a sequence of tokens) that should
correspond to the word’s correct gloss.

From the input embeddings, we form two vec-
tors, the seed vector s that is used to initialize the
RNN, and the context vector c. For both the seed
and the context vectors we consider using a single
embedding, concatenation of embeddings, and a
nonlinear transformation of the concatenation. At
each position in the sequence the context vector is
passed as input, together with the RNN’s output,
to the special GRU-like gated cell (Noraset et al.,
2017). The output of the gated cell is then trans-
formed (via linear transformation and softmax ac-
tivation) to produce token-level probabilities. The
gated cell can learn to effectively combine the se-
mantic context with the RNN-level features in guid-
ing the generation process (Noraset et al., 2017).
The network architecture we use is labeled as S+G
in Noraset et al. (2017).

The described model performs conditional gen-
eration of tokens in a sequence, which is a standard
approach in RNN-based language modeling. The
probability of a gloss g is factorized under the as-
sumption that each token gi depends on the previ-
ous tokens, the seed embbedding s, and the context
c :

p(g|s, c) =

|g|Y

i=1

p(gi|g0:i�1, s, c)

In (Noraset et al., 2017), the context is equal to
the seed, i.e., the input word embedding. In our
case, both the seed and the context can either be
a single embedding or a function of multiple em-
beddings. This approach enables us to leverage the
information from several word embeddings in a
flexible way. For example, sgns embeddings can
be used as a seed while the context can be formed
by passing all the embeddings through a multilayer
perceptron. Another important difference is that

we use the unigram subword tokenization (Kudo,
2018). Finally, we experiment with using both
LSTM and GRU as the network’s RNN compo-
nents.

3.2 Reverse Dictionary

We approach REVDICT as a supervised vector re-
gression task and employ an end-to-end deep learn-
ing solution. Our model is based on a transformer
architecture (Vaswani et al., 2017) used as a def-
inition sentence encoder, and a fully connected
feed-forward network used as an output regression
module.

The transformer is used to produce useful rep-
resentations from given inputs, where the inputs
are tokenized definition sentences. For each sub-
word token in the input sequence, the transformer
gives a representation in the form of a vector. Our
REVDICT systems implement three different ap-
proaches for aggregating the output vectors pro-
duced by the transformer: 1. sum, where we sum
the representations given for each token in the in-
put sequence; 2. average, where we average the
representations given for each token in the input
sequence; and 3. eos, where we use only the repre-
sentation of the last token in the input sequence, i.e.
end-of-sequence (eos) token. The output module
further transforms these representations into word
embedding vectors.

Additionally, we utilize a multi-task learning
(Caruana, 1997; Ruder, 2017) approach. To sup-
port multi-task learning, we implemented multiple
output regression modules that simultaneously pre-
dict different types of embedding vectors from the
same representations produced by a single encoder.
Multi-task learning is used during the model train-
ing phase and only output from one output module
makes final predictions. The motivation for using a
multi-task learning approach is to benefit from in-
ductive transfer between tasks that could improve
the results of predicting a single task (Caruana,
1997).

4 Model Selection and Experimental
Setup

In this section we describe the technical details of
data preprocessing and model selection that com-
prise our methods of constructing the DEFMOD and
REVDICT models. The conceptual description of
the methods is given in Section 3.
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4.1 Definition Modeling
Our choices regarding the technical details of data
preprocessing and model construction were guided
by what we will call development experiments.
These experiments consisted of training the model
on the train set, and observing both the final de-
velopment set loss and the quality of the produced
glosses.

Output gloss quality was assessed using a sep-
arate “trial” dataset - a small dataset of 200 items
provided by the organizers, containing gloss in-
formation consisting of the embedding vector, the
original word, and the gloss text. The assessment
was performed for English glosses only and aimed
to assess the quality of the generated text, and the
similarity of the output and the original glosses.
A choice was deemed an improvement if it led
to the improvement of development loss and ei-
ther improved the generated glosses or caused no
degradation in gloss quality. The development of
the final algorithm was performed iteratively and
heuristically. However, the overall improvement
over the iterations is confirmed by the results of the
test set evaluations.

Dataset transformation The transformation of
the original dataset is performed by creating un-
ambiguous training examples and removing the
uninformative data that makes the problem harder.

In the original dataset a gloss definition of-
ten consists of several equivalent but differently
phrased definitions. We divided the dictionary
glosses into atomic definitions by splitting the text
strings around the “;” character. This heuristic was
motivated by gloss sample analysis and the inspec-
tion of a sample of atomic glosses revealed that it
works in the majority of cases. Each atomic gloss
in the new dataset was paired with all the embed-
ding vectors of the original gloss.

In order to remove lexicographical labels from
the beginning of the glosses’ text, simple language-
specific regular expressions and removal rules were
formed based on gloss sample analysis. This ap-
proach proved to be effective for a large majority
of glosses.

To perform further normalization we addition-
ally lowercased all the glosses and removed the
punctuation from the end of texts. The code used
to preprocess the original dataset, the new dataset,
and the transformation log can be found in the code
repository. We note that both the SentencePiece dic-
tionary and the GloVe vectors used for DEFMOD are

derived from the transformed dataset. The statistics
of the transformed glosses are presented in Table 6

Dictionary We used the unigram subword tok-
enizer (Kudo, 2018) available as part of the Sen-
tencePiece tool (Kudo and Richardson, 2018). and
trained it using the default parameters. Experi-
ments in Gowda and May (2020) suggest that a vo-
cabulary of 8000 subwords is a good default choice
for several languages in the case of machine trans-
lation. Additionally, our development experiments
showed that English models using a vocabulary
of 8000 subwords are superior to 10000 subword
models. Therefore we decided to set the number
of unigram tokens to 8000 in case of English, and
to 8500 in case of other, highly inflected languages
expected to have a higher number of distinct suf-
fixes.

Pretrained token embeddings GloVe embed-
dings (Pennington et al., 2014) of the subword
tokens, introduced to initialize the tokens with
corpus-level semantic information, were con-
structed as follows. The model was trained on
the set of transformed glosses, and the embedding
size was fixed to 256 (the size of the gloss embed-
dings). The number of training iterations was set
to 50, the “cutoff” parameter xmax was set to 10,
while all the other parameters retained their default
values. No frequency-based vocabulary pruning
was performed.

Machine learning model We fixed the maxi-
mum sequence length of the RNN models to 64
subword tokens. Our intuition is that this allevi-
ates the learning problem and could lead to mod-
els focused on generating shorter but more correct
glosses.

The models were optimized using the AdamW
algorithm (Loshchilov and Hutter, 2017) and the
standard categorical cross-entropy loss. The train-
ing process was stopped after a fixed number of
epochs, or if the best solution did not improve by
more than 0.1% over 10 epochs. During inference,
the optimal solution was constructed using the
beam search algorithm implementation provided
by the competition organizers3.

We iteratively improved the models using the
described development experiments, i.e., relying
on the development set loss and analysis of model

3https://github.com/TimotheeMickus/
codwoe/
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Table 2: Characteristics of our REVDICT (RD) ap-
proaches (BS = batch size; ME = max epochs; HP =
hyperparameter optimization points; S = scheduler; L =
loss; MT = multi-task learning).

RD BS ME HP S L MT
1 1024 20 30 CS MSE no
2 2048 20 30 CS MSE no
3 4096 20 30 CS MSE no
4 8192 20 30 CS MSE no
5 2048 150 10 PS MSE no
6 2048 150 10 PS MSE yes

glosses produced for the trial dataset. We experi-
mented with several architectural elements and hy-
perparameters: the formulation of the seed (RNN
init. value) and context (gate input) of the network,
RNN cell type, dropout, learning rate (LR) and LR
scheduler, and the number of training epochs.

The most successful variant is constructed by
using the concatenation of all the gloss embeddings
as the context and the sgns embedding as the seed.
This variant uses input dropout of 0.1 and network
dropout of 0.3. The input dropout is applied to the
seed and context vectors, as well as to the word
embeddings. The network dropout is applied to the
output of the RNN (final layer) and to the output
of the gate cell. The chosen learning rate is 0.001,
and the “plateau” LR scheduler is used – LR is
multiplied by 0.1 if there is no improvement over
5 epochs.

For the context vector, we tried single embed-
dings and the combined embeddings merged via a
multilayer perceptron. Both variants proved infe-
rior to the concatenation of all vectors. The merged
seed vector proved no different from the single em-
bedding seed, so we opted for the simpler solution.
Both the development experiments and the results
showed no difference between the LSTM and the
GRU cell.

Analysis of errors revealed that models some-
times produce a deformed output (very short or non-
alphabetic string), and that this almost never occurs
simultaneously for two distinct models. Therefore
a way of heuristic model improvement is to com-
bine it with another fallback model to be used in
case of deformed outputs. We combined a model
with a concatenated context and a model with a
single-embedding context, or two models with dis-
tinct RNN cell types. A more detailed analysis of
the model variants can be found in Appendix A.2.

4.2 Reverse Dictionary

We conducted various development experiments
before deciding on the final configuration of our
REVDICT solutions. In all of the experiments, we
used the entire set of train data to train the model,
and the entire set of validation (development) data
for scoring. We used Mean Squared Error (MSE)
as a loss function during training. We tested the
effect of cosine loss if added to MSE with differ-
ent coefficients, but we obtained the best results
without cosine loss. We also used MSE for scoring
models during Bayesian hyperparameter optimiza-
tion (BHO).

To determine the optimal model size, we
searched the space of two transformer hyperpa-
rameters: the number of heads and the number of
layers. We used a grid search approach with these
values v 2 {1, 2, 4, 8} for both hyperparameters.
Additionally, we used BHO (Snoek et al., 2012) to
find the optimal model for each grid point. How-
ever, the increase in model size did not increase the
performance of the model. These results were in
line with the expectations we had due to the small
size of the datasets. Accordingly, we decided to
use a transformer with two heads and two layers.
Additionally, we experimented with the maximum
length of the input sequence and achieved better
validation performance with 256 tokens than 512
with tokens.

We compared performance with and without to-
ken embeddings initialization with GloVe vectors.
Contrary to our expectations, there was no signifi-
cant difference in validation performance between
these two options, so we skipped the GloVe ini-
tialization in the REVDICT system settings. An-
other development experiment we conducted was
to find the optimal method for aggregating the out-
put vectors produced by the transformer, described
in Section 3.2. We found that the average method
gives the best results in all cases. Furthermore, we
examined the influence of the number of layers in
the output module on the final prediction. Accord-
ing to the results, there is no benefit in increasing
the number of layers in the output module, so we
chose a single-layer fully connected network. We
also chose Rectified Linear Unit (ReLU) activation
function for the output regression module, because
it yielded better performance than hyperbolic tan-
gent (Tanh) activation.

Finally, we made six different solutions for
REVDICT task. All of these solutions used a two-
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Table 3: Results for the IRB-NLP team systems on the DEFMOD task. MoverScore, BLEU, and lemma-BLEU
results are given for each of the five languages. Best result across all teams and models is given, followed by the
results of our two best systems. Overall best results of our team are bolded and the rankings can be found in Table 1.

EN ES FR IT RU

MVR BLEU lBLEU MVR BLEU lBLEU MVR BLEU lBLEU MVR BLEU lBLEU MVR BLEU lBLEU

BEST 0.135 0.033 0.043 0.128 0.045 0.064 0.075 0.029 0.038 0.117 0.066 0.099 0.148 0.049 0.072
IRBv3 0.089 0.032 0.040 0.093 0.045 0.064 0.055 0.026 0.032 0.074 0.009 0.014 0.080 0.027 0.035
IRBv4 0.094 0.033 0.042 0.092 0.044 0.062 0.056 0.028 0.033 0.077 0.010 0.015 0.078 0.027 0.036

head transformer architecture, where each head
consists of two layers. We used a vocabulary size
of 8000 tokens and a maximum sequence length of
256 tokens. The unigram SentencePiece tokenizers
used were trained on lowercased but otherwise un-
modified glosses contained in a train set. We used
the average method for combining an encoder’s
output representations and fed them to the output
module, which is a single fully-connected layer
with RELU activation functions. We varied five hy-
perparameters between solutions (Table 2): batch
size, max. epochs, number of BHO points, sched-
uler type, and learning approach. We used the Co-
sine Annealing with Linear Warmup scheduler (CS)
for the first four solutions, and the Plato scheduler
(PS) for the final two solutions. We utilized BHO
(Snoek et al., 2012) to automatically search for op-
timal hyperparameters and submitted for testing
only models with the best MSE validation scores.

5 Results

Definition Modeling On the DEFMOD task, the
models were evaluated using three metrics: BLEU
score (Papineni et al., 2002), lemma-level BLEU
score, and MoverScore (Zhao et al., 2019). While
the BLEU score is based on matching token
n-grams between the reference and the model-
produced text, MoverScore calculates a measure
of distance between texts embedded in a semantic
space, i.e., between two sets of contextual word
embeddings computed using a transformer model.

Table 3 contains scores for two of our best model
configurations, “version 3” and “version 4”. Both
model configurations are described in detail at the
end of Section 4.1. While version 3 models are
based on GRU RNN and trained using 300 training
epochs, version 4 models are built with either GRU
or LSTM and 450 epochs. The fallback strategy,
which yields slight performance gains, is also used.
These results are presented and analyzed in a more
detailed manner in Appendix A.2.

Results in Table 3 show that our models are com-
petitive with other teams’ models on English, Span-

ish and French, especially in terms of the BLEU
scores. MoverScore results are weaker than those
produced by the top models, but rank among the
upper half of the systems except for Italian and Rus-
sian, languages for which our models’ performance
is below average. Rankings aggregated across all
the scores, displayed in Table 1, reflect the above
observations and show that the models we produced
can perform quite competitively.

Our approach shows inter-language variation,
both in relative (ranks) and absolute (score values)
terms. The full results provided by the organizers4

show that this is also true for other teams – for ex-
ample, few of the high-performing models perform
markedly better for Italian and Russian than for
other languages. However, some approaches yield
more stable results across all languages.

All of the models yielded by the CODWOE shared
task perform weakly in terms of BLEU. Namely,
the BLEU scores of the existing DEFMOD ap-
proaches commonly achieve BLEU scores in the
range of 20 to 30 (Kabiri and Cook, 2020; Noraset
et al., 2017), with some settings yielding BLEU
as high as 60 (Kabiri and Cook, 2020). The ex-
periments with the weakest reported BLEU scores
(Gadetsky et al., 2018; Kabiri and Cook, 2020) re-
ports BLEU scores of approx. 12, while the best
CODWOE scores are below BLEU 10.
CODWOE DEFMOD models perform better in

terms of MoverScore, a metric designed for ma-
chine summarization (Zhao et al., 2019). An analy-
sis of a number of summarization systems showed
that MoverScore values range between 15 and 24,
with an absolute minimum of 10 and an average
slightly below 20 (Fabbri et al., 2021). In compar-
ison, top CODWOE systems reach scores between
12 and 15, except in the case of French, which puts
them on the lower end of the summarization scale.

We hypothesize that the main reason for the de-
scribed weak performance is comparatively small
amount of CODWOE training data (for each indi-

4https://github.com/TimotheeMickus/
codwoe/
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Table 4: Results for the IRB-NLP team systems on the REVDICT task. The best result over all teams and models is
given (BEST), followed by the best results of our team (IRB-all) and results of our two specific approaches, IRB-v1
and IRB-v6. Finally, the ranks of our team are given (and the number of teams competing in a subtask).

EN ES FR IT RU

MSE COS RNK MSE COS RNK MSE COS RNK MSE COS RNK MSE COS RNK

sgns

BEST 0.854 0.260 0.231 0.858 0.403 0.167 1.026 0.342 0.193 1.031 0.380 0.165 0.528 0.424 0.150
IRB-all 0.964 0.260 0.231 0.883 0.367 0.197 1.068 0.342 0.193 1.076 0.380 0.165 0.568 0.421 0.150
IRB-v1 1.024 0.250 0.247 0.941 0.362 0.197 1.068 0.342 0.214 1.076 0.380 0.165 0.568 0.412 0.161
IRB-v6 1.119 0.214 0.262 1.020 0.354 0.201 1.319 0.255 0.262 1.318 0.339 0.187 0.653 0.381 0.150
IRB-rnk 9 (9) 1 (9) 1 (9) 3 (7) 2 (7) 2 (7) 3 (6) 1 (6) 1 (6) 3 (7) 1 (7) 1 (7) 4 (6) 2 (6) 1 (6)

char

BEST 0.141 0.798 0.419 0.467 0.839 0.403 0.335 0.789 0.416 0.334 0.747 0.383 0.116 0.852 0.357
IRB-all 0.162 0.770 0.419 0.526 0.819 0.403 0.390 0.756 0.421 0.366 0.724 0.383 0.140 0.824 0.357
IRB-v1 0.169 0.761 0.438 0.526 0.819 0.407 0.409 0.744 0.425 0.366 0.724 0.397 0.145 0.818 0.361
IRB-v6 0.172 0.765 0.444 0.635 0.784 0.420 0.434 0.734 0.421 0.399 0.711 0.383 0.144 0.821 0.357
IRB-rnk 5 (7) 7 (7) 1 (7) 3 (5) 5 (5) 1 (5) 3 (5) 4 (5) 2 (5) 5 (6) 5 (6) 1 (6) 3 (5) 4 (5) 1 (5)

electra

BEST 1.301 0.847 0.432 1.066 0.862 0.429 0.828 0.735 0.345
IRB-all 1.685 0.828 0.432 1.339 0.847 0.429 0.911 0.724 0.345
IRB-v1 1.723 0.821 0.438 1.339 0.847 0.447 0.911 0.724 0.350
IRB-v6 1.988 0.792 0.432 1.566 0.825 0.429 1.049 0.702 0.345
IRB-rnk 6 (6) 6 (6) 1 (6) 4 (4) 4 (4) 1 (4) 4 (4) 3 (4) 1 (4)

vidual language), as well as the lack of word em-
beddings pre-trained on a large outside corpus.
Namely, most of the other DEFMOD approaches
use at least 2–3 times more training data, both in
terms of the number of (embedding, text) examples,
and the overall number of tokens (Bevilacqua et al.,
2020; Gadetsky et al., 2018; Mickus et al., 2019;
Noraset et al., 2017; Yang et al., 2020; Zhang et al.,
2020; Zhu et al., 2019). Additionally, these ap-
proaches make use of the pre-trained word embed-
dings that carry the semantic information extracted
from a huge corpus.

As for the representativeness of the test data, the
visual analysis performed in A.1 shows that the
distribution of test gloss embeddings matches the
train distribution well. Another factor that poten-
tially influences performance is word rarity. We
observed that the English test examples contain a
significant amount of rare words (such as “pelta”,
“akimbo”, “gothy”, or “dungarees”), while some
DEFMOD experiments explicitly focus on the most
frequent words (Noraset et al., 2017).

The greatest performance gains for the models
we used come from using all three vector embed-
dings to form a context vector. This suggests that
future approaches can benefit from leveraging sev-
eral distinct embeddings types as input for gloss
generation.

We believe that the question of the influence
of various factors on the performance of DEFMOD
systems is important and under-explored. These
factors include model structure and parameters, per-
formance metric, dataset size (both for training and

pre-training), and the semantic relation between
training and test data. Closely related is the ques-
tion of the nature of semantic generalization that
DEFMOD systems are capable of – what kind of ex-
amples (and relations contained within them) can
inform a successful inference of glosses for unseen
embeddings.

Further performance-related analyses can be
found in Appendix A.2. Appendix A.3 contains a
qualitative analysis of glosses that shows that gener-
ated glosses can capture varying levels of semantic
properties of the correct glosses. We hypothesize
that these variations in similarity are hard to capture
with metrics such as MoverScore and BLEU.

Reverse Dictionary We used the following met-
rics for internal validation of our REVDICT solu-
tions (described in Section 4.2): Mean Squared
Error (MSE), Cosine Similarity (COS), and Cen-
tral Kernel Alignment (CKA) (Cortes et al., 2012;
Kornblith et al., 2019). COS measure has noted
drawbacks (Heidarian and Dinneen, 2016). There-
fore, we use the linear CKA similarity measure
to gain another perspective on model performance.
Validation scores can be found in Appendix B.2, Ta-
ble 12. It is evident that each subsequent approach
gives better validation results than the previous
ones.

Test predictions were scored by the following
metrics: MSE, COS, and Cosine-Based Ranking
(RNK). The RNK measure is defined as the propor-
tion of test samples with cosine similarity to the
model output embedding higher than the ground
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Figure 1: Example of two different predictions for
ground truth vector VGT , where predicted vector V1

has better MSE and COS scores than V2, and V2 has bet-
ter RNK score than V1. The rest of the points represent
vectors of other test samples.

truth embedding. The final results of our solutions
can be found in Table 13 (see Appendix B.2). Here,
each subsequent approach has lower scores than the
previous ones, which is the complete opposite of
the validation results. This suggests potential over-
fitting to the dev dataset that could be the result of
BHO. However, this is contrary to expectations as
the last two solutions have three times fewer BHO
points and should not overfit to the dev dataset. The
reason for this phenomenon is unclear and needs
further investigation. Finally, the best REVDICT
results for each team can be found in Appendix B.2
(Table 14 for MSE, Table 15 for COS, and Table
16 for RNK). The test results and overall rankings
of our solutions are summarized in Table 4.

Compared to other solutions, our systems have
average or below-average performance in terms of
MSE and COS test scores. However, they perform
significantly better than the other approaches in
terms of RNK test scores, from which we conclude
that our solutions are better suited for the retrieval
task. This is an interesting situation which we elab-
orate with the following example, shown in Figure
1. It depicts two different predictions, V1 and V2,
the first with better MSE and COS scores, and the
second with a better RNK score. The second solu-
tion prefers a vector subspace with a lower density
of test samples even if the absolute distance from
the correct vector is greater. With a smaller set of
possible surrounding solutions, retrieving the vec-
tor VGT from the vector V2 is more precise than
retrieving it from the vector V1.

6 Conclusion

Definition Modeling and Reverse Dictionary are
two opposite learning tasks for exploring the rela-
tionship between different semantic representations
of words. CODWOE SemEval task (Mickus et al.,
2022) is designed to investigate these tasks on five
different languages using three different types of
word embeddings.

We propose an adaptation of an existing
DEFMOD model and analyze its performance and
the glosses generated by the model. We believe
that DEFMOD is a theoretically interesting problem
and that further investigations should focus on dis-
covering which types of semantic generalization
the models are able to perform, and how this gen-
eralization ability is influenced by both the data
and the models’ structure. The existing DEFMOD
experiments are largely incomparable since they
are based on different data and setups. We believe
that a contribution of the CODWOE task is the cre-
ation of a multilingual evaluation setting, as well as
the use of the flexible MoverScore as an evaluation
metric.

Our REVDICT systems are based on deep re-
gression models based on transformer architecture
that achieved top scores for the difficult-to-predict
sgns (word2vec) embeddings. In most cases our
REVDICT solutions perform significantly better
then the other systems in terms of the RNK score.
These results imply that our solutions could be the
appropriate approach for retrieving the right word
from its description, a problem crucial for solving
the TOT problem (Brown and McNeill, 1966) in
machine-assisted text synthesis.

In summary, the models that we produced for
the CODWOE task perform competitively when com-
pared to other participants’ models, and can there-
fore serve as a reasonable starting point for future
tackling of DEFMOD and REVDICT problems. We
believe that the promising directions for future op-
timizations include the construction of multilingual
and multi-task models, as well as investigations of
the influence of the external data, primarily in the
form of huge pre-training corpora.
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Cann, Caiming Xiong, Richard Socher, and Dragomir
Radev. 2021. SummEval: Re-evaluating Summariza-
tion Evaluation. Transactions of the Association for
Computational Linguistics, 9:391–409.

Artyom Gadetsky, Ilya Yakubovskiy, and Dmitry Vetrov.
2018. Conditional generators of words definitions.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 266–271, Melbourne, Australia.
Association for Computational Linguistics.

Thamme Gowda and Jonathan May. 2020. Finding the
Optimal Vocabulary Size for Neural Machine Trans-
lation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 3955–3964,
Online. Association for Computational Linguistics.

Arash Heidarian and Michael J Dinneen. 2016. A
hybrid geometric approach for measuring similar-
ity level among documents and document clustering.
In 2016 IEEE Second International Conference on
Big Data Computing Service and Applications (Big-
DataService), pages 142–151. IEEE.

Felix Hill, Kyunghyun Cho, Anna Korhonen, and
Yoshua Bengio. 2016. Learning to understand
phrases by embedding the dictionary. Transactions
of the Association for Computational Linguistics,
4:17–30.

Arman Kabiri and Paul Cook. 2020. Evaluating a multi-
sense definition generation model for multiple lan-
guages. In International Conference on Text, Speech,
and Dialogue, pages 153–161. Springer.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International
Conference on Machine Learning, pages 3519–3529.
PMLR.

Taku Kudo. 2018. Subword Regularization: Improving
Neural Network Translation Models with Multiple
Subword Candidates. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66–75,
Melbourne, Australia. Association for Computational
Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2017. Decoupled
weight decay regularization.

Arman Malekzadeh, Amin Gheibi, and Ali Mohades.
2021. Predict: Persian reverse dictionary. arXiv
preprint arXiv:2105.00309.

Oscar Méndez, Hiram Calvo, and Marco A Moreno-
Armendáriz. 2013. A reverse dictionary based on
semantic analysis using wordnet. In Mexican Inter-
national Conference on Artificial Intelligence, pages
275–285. Springer.

Timothee Mickus, Denis Paperno, Mathieu Constant,
and Kees van Deemter. 2022. SemEval-2022 Task
1: Codwoe – comparing dictionaries and word em-
beddings. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Timothee Mickus, Denis Paperno, and Matthieu Con-
stant. 2019. Mark my Word: A Sequence-to-
Sequence Approach to Definition Modeling. In
Proceedings of the First NLPL Workshop on Deep
Learning for Natural Language Processing, pages 1–
11, Turku, Finland. Linköping University Electronic
Press.

45



Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
Advances in neural information processing systems,
26.

Thanapon Noraset, Chen Liang, Larry Birnbaum, and
Doug Downey. 2017. Definition modeling: Learning
to define word embeddings in natural language. In
Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, AAAI’17, page 3259–3266.
AAAI Press.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global Vectors for Word
Representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Fanchao Qi, Lei Zhang, Yanhui Yang, Zhiyuan Liu, and
Maosong Sun. 2020. Wantwords: An open-source
online reverse dictionary system. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 175–181.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Noah A. Smith. 2020. Contextual word representa-
tions: Putting words into computers. Commun. ACM,
63(6):66–74.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams.
2012. Practical bayesian optimization of machine
learning algorithms. Advances in neural information
processing systems, 25.

Sushrut Thorat and Varad Choudhari. 2016. Implement-
ing a reverse dictionary, based on word definitions,
using a node-graph architecture. In Proceedings of
COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
2797–2806, Osaka, Japan. The COLING 2016 Orga-
nizing Committee.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Yingfan Wang, Haiyang Huang, Cynthia Rudin, and
Yaron Shaposhnik. 2020. Understanding how dimen-
sion reduction tools work: an empirical approach to
deciphering t-sne, umap, trimap, and pacmap for data
visualization. arXiv preprint arXiv:2012.04456.

Hang Yan, Xiaonan Li, Xipeng Qiu, and Bocao Deng.
2020. BERT for monolingual and cross-lingual re-
verse dictionary. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
4329–4338, Online. Association for Computational
Linguistics.

Liner Yang, Cunliang Kong, Yun Chen, Yang Liu, Qinan
Fan, and Erhong Yang. 2020. Incorporating sememes
into chinese definition modeling. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
28:1669–1677.

Haitong Zhang, Yongping Du, Jiaxin Sun, and Qingxiao
Li. 2020. Improving interpretability of word embed-
dings by generating definition and usage. Expert
Systems with Applications, 160:113633.

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Chris-
tian M. Meyer, and Steffen Eger. 2019. MoverScore:
Text generation evaluating with contextualized em-
beddings and earth mover distance. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 563–578, Hong
Kong, China. Association for Computational Lin-
guistics.

Ruimin Zhu, Thanapon Noraset, Alisa Liu, Wenxin
Jiang, and Doug Downey. 2019. Multi-sense Defini-
tion Modeling using Word Sense Decompositions.

Michael Zock and Slaven Bilac. 2004. Word lookup on
the basis of associations : from an idea to a roadmap.
In Proceedings of the Workshop on Enhancing and
Using Electronic Dictionaries, pages 29–35, Geneva,
Switzerland. COLING.

46



A Appendix - Analysis of DEFMOD Data and Models

A.1 Train and Test Data

Motivated by the weak performance of DEFMOD models (see Section 5), we examined whether the
distributions of train and test data are comparable. To this end we created 2D projections of sgns and
electra embedding for all five languages using the t-SNE method (Van der Maaten and Hinton, 2008).

The projections, depicted in Figure 2, show that the train and test distributions of the embeddings match
well. It is therefore reasonable to expect that the distributions of the gloss texts are similar as well, as the
gloss semantics expectedly matches the semantics of the corresponding words. However, this conjecture
should be confirmed experimentally, for example by per-gloss aggregation of pretrained word embeddings
extracted from huge corpora.

Figure also shows that the electra vectors are more separable than the sgns vectors. The separability
of the embedding vectors varies across languages, probably influenced by the corpora used for pre-training
of the embeddings. We note that the observations about the train and test embedding distributions are also
applicable to the REVDICT problem aimed at the prediction of the embeddings from gloss texts.

Basic gloss statistics can be found in Table 5. There exists a large variation in gloss size between
languages, e.g., the longest gloss from the ES dataset is almost twice the size of the longest EN gloss. In
addition, the longest glosses in the validation (development) datasets are significantly smaller then those
in the train datasets, on average 42.55% smaller. The ’dictionary size’ column in the table is the number
of distinct tokens in each dataset. Dictionary sizes vary, for example, EN dictionary is approximately
half the size of the RU dictionary. Differences between the gloss and dictionary sizes suggest that it is
reasonable to use a separate model for each language.

Basic statistics of the transformed dataset can be found in Table 6. As expected, the transformed glosses
are significantly smaller then the glosses in the original dataset. For example, the median transformed
gloss size is on average 29.25% smaller.

Lang. Split Dict. size #Tokens #Glosses Gloss size
mean st.dev min q25 median q75 max

EN train 29.046 511.531 43.608 11.73 7.98 1 6.0 10.0 15.0 129
EN dev 9.478 76.073 6.375 11.93 7.98 1 6.0 10.0 15.0 70
ES train 46.765 647.093 43.608 14.84 13.07 1 7.0 11.0 18.0 257
ES dev 15.464 91.943 6.375 14.42 12.22 1 7.0 11.0 17.0 159
FR train 40.032 623.978 43.608 14.31 9.74 1 8.0 12.0 18.0 159
FR dev 12.760 91.475 6.375 14.35 9.91 1 8.0 12.0 18.0 113
IT train 40.130 592.409 43.608 13.58 11.01 1 6.0 11.0 18.0 202
IT dev 14.069 87.531 6.375 13.73 11.61 1 6.0 11.0 18.0 130
RU train 57.141 492.978 43.608 11.30 7.78 1 6.0 9.0 14.0 169
RU dev 15.498 70.392 6.375 11.04 7.22 1 6.0 9.0 14.0 74

Table 5: Statistics of the gloss and dictionary sizes for the original train and validation (development) datasets. Sizes
are calculated by counting the number of whitespace-delimited tokens.

A.2 DEFMOD Models’ Performance

Here we append Section 5 with a more fine-grained analysis of the DEFMOD models. Table 8 contains
the models’ performances. As can be seen, the largest gains are achieved by using all of the embedding
vectors as input for gloss generation (context=allvec). There exists a negligible difference between the
LSTM and GRU RNNs, with GRU performing slightly better. Using a fallback model always slightly
improves the MoverScore of a model. In Table 8 the architecture of the fallback model is the architecture
of the main model with the corresponding parameter replaced with the value in the ’fallback’ column.
Interestingly, using contextual electra vectors does not help, i.e., the sgns (word2vec) vectors which
are not context-aware perform comparably. This is true even when only a single embedding is used, i.e.,
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Lang. Split Dict. size #Tokens #Glosses Gloss size
mean st.dev min q25 median q75 max

EN train 25.921 456.673 58.792 7.77 6.97 1 3.0 6.0 10.0 128
EN dev 8.892 68.145 8.403 8.11 7.06 1 3.0 6.0 11.0 69
ES train 40.024 595.879 44.543 13.38 12.01 1 6.0 10.0 16.0 168
ES dev 13.723 84.303 6.493 12.98 11.32 1 6.0 10.0 16.0 158
FR train 33.963 487.013 46.537 10.47 9.18 1 4.0 8.0 14.0 155
FR dev 11.216 71.021 6.786 10.47 9.22 1 4.0 8.0 14.0 101
IT train 39.124 452.028 45.080 10.03 9.03 1 4.0 7.0 13.0 195
IT dev 13.805 67.211 6.621 10.15 9.40 1 4.0 7.0 13.0 109
RU train 56.467 428.787 50.843 8.43 6.99 1 4.0 7.0 11.0 142
RU dev 15.241 61.074 7.509 8.13 6.44 1 4.0 6.0 11.0 72

Table 6: Statistics of the gloss and dictionary sizes for the transformed train and validation (development) datasets.
Sizes are calculated by counting the number of whitespace-delimited tokens.

when context equals electra. The equality of sgns and electra is unexpected since both the train
and test datasets contain polysemous electra vectors and words with multiple senses.

It is also interesting to consider the influence of the training data on the model’s performance. We
hypothesize that a DEFMOD model’s score on a single test example is positively correlated with the
semantic closeness of the example to the examples in the train set. To test this hypothesis we calculate
Spearman correlation between test MoverScore and BLEU on one, and the cosine similarity of the test
embedding and most similar train embeddings. This is done for the best-performing submitted model
from Table 8. We also calculate the average scores on two sets of 10% test examples that are least similar
and most similar to the train examples. Since the embeddings (sgns and electra) were built on large
outside corpora, it is reasonable to believe that they capture semantic similarity of the associated words
and glosses. Surprisingly, the results show a lack of consistent and strong correlation and the correlations
range from weakly negative to weakly positive, depending on both the language and the embedding type.
This lack of correlation could be caused by many factors, including the nature of the model, the nature of
the pretrained embeddings, and the semantics of the cosine similarity measure.

The future extensions and improvements of the proposed analysis could reveal the nature of the train
data necessary for the DEFMOD models to successfully generalize, and perhaps point to a similarity
measure that reveals more fine-grained properties of such a generalization.

Table 7: Correlation between the best DEFMOD model’s scores on one, and the closeness of the test examples to the
train set on the other side. The unit of correlation is an example from the test set, and its similarity to the train set is
calculated as the average cosine similarity with the 10 most similar train embeddings. The last two columns contain
average model scores on 10% of the least and most train-similar test examples.

Correlation of Score and Similarity Avg. Score for Similarity Percentile

MVR BLEU MVR BLEU

LANG-EMB spearman ⇢ p-value spearman ⇢ p-value bottom 10% top 10% bottom 10% top 10%

EN-SGNS 0.0458 0.0003 0.0019 0.8831 0.0852 0.1004 0.0328 0.0297
EN-ELKT 0.0096 0.4508 0.0186 0.1414 0.0889 0.1182 0.0293 0.0503
FR-SGNS -0.0625 0.0000 -0.1270 0.0000 0.0801 0.0427 0.0363 0.0222
FR-ELKT 0.0433 0.0006 0.0838 0.0000 0.0387 0.0760 0.0214 0.0322
RU-SGNS 0.0758 0.0000 0.0353 0.0054 0.0754 0.0947 0.0310 0.0279
RU-ELKT 0.0000 0.9979 -0.0063 0.6217 0.0748 0.0677 0.0279 0.0244
ES-SGNS 0.0458 0.0003 0.0019 0.8831 0.1084 0.1052 0.0523 0.0552
IT-SGNS -0.0528 0.0000 0.0047 0.7084 0.1082 0.0783 0.0111 0.0128
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Figure 2: t-SNE projections of the sgns and electra vectors from the train (green) and test (red) datasets. Color
intensity is proportional to data density.

EN-SGNS EN-ELECTRA

FR-SGNS FR-ELECTRA

RU-SGNS RU-ELECTRA

ES-SGNS IT-SGNS
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A.3 Qualitative Analysis of Generated Glosses

The DEFMOD models achieve weak results in comparison to the previous state-of-art approaches, which is
probably due to the comparably small amount of training and pretraining data. Here we demonstrate that
the generated glosses can nevertheless capture a degree of the semantics of the correct glosses.

Table 9 shows four categories of semantic similarity between the correct and model-generated glosses,
in descending order (highest similarity first). These categories include hits or near hits (correct glosses),
“near misses” (glosses that capture a significant amount of the original meaning), somewhat similar
glosses, and complete misses. Several examples demonstrate that the subword-based models can produce
syntactically incorrect glosses.

Table 10 contains generated glosses for different senses of the word “consider”, which demonstrate that
the model was able to approximate, to a degree, the semantics of the senses.

A principled analysis of the generated and correct glosses, based on a well defined semantic annotation
scheme, might prove revealing but it would be time-consuming and impractical. Therefore it would be
of interest to automatize such efforts. It would be interesting to explore if this can be done using large
pretrained transformers able to measure fine-grained semantic similarity.

Table 9: Glosses generated by the top submitted DEFMOD model, alongside the correct glosses. The examples are
ordered by descending semantic similarity between the correct and the generated gloss.

Word True Gloss / Generated Gloss

lamebrain A fool
A fool , idiot

sentiment A general thought , feeling , or sense
A feeling or feeling of thinking

available Capable of being used for the accomplishment of a purpose
Able to be used

model A representation of a physical object , usually in miniature
An act of designing

supernumerary Of an organ or structure : additional to what is normally present
Having four wings

navy Belonging to the navy ; typical of the navy
To be armed

fuzzy Vague or imprecise
lacking

co-opt To absorb or assimilate into an established group
To conceal

misinformation Information that is incorrect
prejudice

cutthroat Ruthlessly competitive , dog-eat-dog
Very large

discretional discretionary
Of or pertaining to

abundantly In an abundant manner ; in a sufficient degree ; in large measure
In a very manner
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Glosses generated by the top submitted DEFMOD model, alongside the correct glosses, for the multiple
senses of the word “consider”.

Table 10

Word True Gloss (describing the sense) / Generated Gloss

consider To assign some quality to
To hold the opinion

consider To look at attentively
To make something certain

consider To have regard to ; to take into view or account ; to pay due attention to ; to respect
To hold into

consider To think of doing
To permit

consider To debate ( or dispose of ) a motion
To make something certain

B Appendix - Analysis of REVDICT Data and Models

B.1 Data Analysis

Here we analyze the properties of the pretrained embedding vectors assigned to the words defined by
the glosses. We start by analyzing the numeric values contained in the vectors. Basic statistics of vector
elements can be found in Table 11. It is noticeable that there are large variations in value depending on
the language and the embedding type. For example, there is a significant difference between maximum
values, especially between electra and sgns. To further investigate the vector elements, we visualize
the shapes of their distributions for train datasets (Figure 3 and 4). Distribution shapes look similar for
dev datasets.

Next, we explore the vector data by reducing dimensionality to the 2D space using the Pairwise
Controlled Manifold Approximation Projection (PaCMAP) algorithm (Wang et al., 2020). Figure 5 shows
the distributions of all three types of embeddings in the train and validation (development) datasets for
English, French, and Russian. We also visualize distributions of sgns (word2vec) and char embeddings
for all languages, in Figure 6. As can be seen, the vector distributions vary greatly between the embedding
types. Additionally, for all the embedding types, the vectors of different languages occupy a distinct area
and are easily separable.

We further investigate the relationships between different embeddings in the following way. We first
cluster the values of the electra vectors with k-means algorithm. We set the number of clusters to five
and assign a different color to each cluster. We retain the electra cluster-based color of the samples
(glosses) while visualizing the vectors of other embedding types, as shown in Figure 7. It can be clearly
seen that the electra-based clusters are not preserved for other embedding types.

B.2 Model Performance

Here we present validation and test scores for our six REVDICT solutions described in Section 4.2. We
use the following metrics for internal validation of our REVDICT solutions: Mean Squared Error (MSE),
Cosine Similarity (COS) and Central Kernel Alignment (CKA) (Cortes et al., 2012; Kornblith et al., 2019).
Validation scores for each REVDICT approach can be found in Table 12. The last three rows contain the
total scores for each metric and each of our REVDICT solutions. A total score is the sum of the values of
all datasets and we use it for a simple comparison of solutions. It is evident that each subsequent approach
gives better validation results than the previous ones.

Test predictions are scored by these metrics: MSE, COS, and Cosine-Based Ranking (RNK). The RNK
measure is defined as the proportion of test samples with cosine similarity to the model output embedding
higher than the ground truth embedding. The final results for all our solutions can be found in Table 13.
Here, each subsequent approach has lower scores than the previous ones, which is the complete opposite

52



lang split vector min mean max abs-min abs-mean abs-max
en train sgns -8.66 0.012 8.33 2.40-08 0.641 8.66
en train char -5.48 0.081 31.10 6.60-09 0.341 31.10
en train electra -126.26 0.033 85.62 1.00-10 0.598 126.26
en dev sgns -7.02 0.013 7.30 9.51-08 0.657 7.30
en dev char -5.48 0.083 7.31 8.75-08 0.341 7.31
en dev electra -48.24 0.028 52.19 1.00-09 0.587 52.19
it train sgns -9.41 -0.014 9.72 6.60-09 0.700 9.72
it train char -13.37 0.013 20.02 1.62-07 0.553 20.02
it dev sgns -8.22 -0.013 7.82 1.02-07 0.706 8.22
it dev char -9.95 0.008 16.23 3.96-07 0.551 16.23
fr train sgns -10.38 -0.013 9.39 1.59-08 0.682 10.38
fr train char -23.42 0.306 11.07 1.12-08 0.574 23.42
fr train electra -46.24 0.045 89.07 3.00-10 0.644 89.07
fr dev sgns -7.57 -0.017 7.81 3.51-07 0.666 7.81
fr dev char -14.60 0.307 7.80 2.62-07 0.574 14.60
fr dev electra -42.73 0.045 51.29 9.00-10 0.655 51.29
es train sgns -9.79 -0.018 9.72 2.15-08 0.653 9.79
es train char -15.03 0.577 13.37 2.27-07 0.822 15.03
es dev sgns -9.32 -0.021 7.22 8.86-08 0.658 9.32
es dev char -13.19 0.577 11.40 2.28-06 0.820 13.19
ru train sgns -7.82 0.002 8.08 1.17-07 0.446 8.08
ru train char -16.87 0.139 8.04 8.00-10 0.311 16.87
ru train electra -30.24 -0.017 22.56 1.75-08 0.788 30.24
ru dev sgns -8.06 0.002 7.91 7.94-08 0.439 8.06
ru dev char -11.86 0.140 8.01 3.05-07 0.310 11.86
ru dev electra -22.53 -0.017 21.70 4.75-08 0.789 22.53

Table 11: Statistics of the elements of the embedding vectors from the train and validation (development) datasets.

of the validation results. This suggests potential overfitting to the dev dataset that could be the result of
Bayesian hyperparameter optimization (BHO). However, this is contrary to expectations as the last two
solutions have three times fewer BHO points and should not overfit to the dev dataset. The reason for this
phenomenon is unclear and needs further investigation.

The best REVDICT results for each team can be found in Table 14 for MSE score, Table 15 for
COS score, and Table 16 for RNK score. When compared to other solutions, our systems have low to
average performance according to the MSE scores. For the COS scores, our systems have very good
performance on sgns (word2vec) vectors, and low performance on other embedding types. In terms of
the RNK (ranking) our systems almost always yield the top performance, and this result is consistent
across languages and embedding types.
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Figure 3: Distributions of vector elements in train datasets.

Figure 4: Distributions of vector elements in train datasets within the interval [-3,3].
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METRICS RD 1 RD 2 RD 3 RD 4 RD 5 RD 6 BEST
mse-en-sgns 0.521 0.632 0.521 0.428 0.348 0.343 0.343
mse-en-char 0.088 0.091 0.051 0.098 0.058 0.090 0.051
mse-en-electra 0.611 0.683 0.612 0.560 0.439 0.295 0.295
mse-it-sgns 0.846 0.700 0.783 0.650 0.670 0.485 0.485
mse-it-char 0.264 0.235 0.253 0.258 0.224 0.222 0.222
mse-fr-sgns 0.773 0.671 0.629 0.585 0.514 0.443 0.443
mse-fr-char 0.210 0.205 0.211 0.246 0.180 0.178 0.178
mse-fr-electra 0.634 0.616 0.518 0.651 0.400 0.360 0.360
mse-es-sgns 0.627 0.764 0.675 0.560 0.543 0.562 0.543
mse-es-char 0.341 0.338 0.323 0.353 0.291 0.265 0.265
mse-ru-sgns 0.363 0.236 0.268 0.207 0.162 0.109 0.109
mse-ru-char 0.053 0.060 0.062 0.060 0.038 0.051 0.038
mse-ru-electra 0.544 0.481 0.519 0.497 0.313 0.421 0.313
cos-en-sgns 0.483 0.453 0.492 0.537 0.571 0.549 0.571
cos-en-char 0.875 0.871 0.927 0.860 0.918 0.873 0.927
cos-en-electra 0.895 0.887 0.896 0.900 0.915 0.938 0.938
cos-it-sgns 0.470 0.510 0.482 0.527 0.521 0.580 0.580
cos-it-char 0.801 0.824 0.810 0.807 0.834 0.836 0.836
cos-fr-sgns 0.457 0.490 0.508 0.522 0.544 0.556 0.556
cos-fr-char 0.866 0.870 0.866 0.843 0.886 0.887 0.887
cos-fr-electra 0.894 0.894 0.904 0.892 0.921 0.929 0.929
cos-es-sgns 0.501 0.450 0.486 0.531 0.539 0.538 0.539
cos-es-char 0.881 0.883 0.887 0.878 0.899 0.908 0.908
cos-ru-sgns 0.525 0.599 0.582 0.618 0.662 0.674 0.674
cos-ru-char 0.933 0.925 0.922 0.925 0.952 0.935 0.952
cos-ru-electra 0.807 0.821 0.811 0.817 0.872 0.841 0.872
cka-en-sgns 0.755 0.776 0.879 0.939 0.889 0.895 0.939
cka-en-char 0.991 0.994 0.998 0.996 0.996 0.994 0.998
cka-en-electra 0.993 0.995 0.997 0.998 0.997 0.998 0.998
cka-it-sgns 0.608 0.773 0.811 0.905 0.780 0.857 0.905
cka-it-char 0.979 0.989 0.992 0.993 0.989 0.990 0.993
cka-fr-sgns 0.647 0.779 0.860 0.916 0.838 0.866 0.916
cka-fr-char 0.981 0.989 0.993 0.991 0.990 0.991 0.993
cka-fr-electra 0.991 0.995 0.997 0.996 0.997 0.997 0.997
cka-es-sgns 0.685 0.698 0.826 0.909 0.802 0.795 0.909
cka-es-char 0.982 0.989 0.993 0.992 0.991 0.992 0.993
cka-ru-sgns 0.611 0.821 0.850 0.927 0.880 0.927 0.927
cka-ru-char 0.995 0.997 0.998 0.998 0.997 0.997 0.998
cka-ru-electra 0.978 0.989 0.992 0.994 0.994 0.991 0.994
TOTAL mse 5.875 5.712 5.425 5.153 4.180 3.824 3.824
TOTAL cos 9.388 9.477 9.573 9.657 10.034 10.044 10.044
TOTAL cka 11.196 11.784 12.186 12.554 12.140 12.290 12.554

Table 12: Validation scores for all our REVDICT (RD) approaches. For each score, comparative results are shown
in color. Green is used for the best and red for the worst-performing solution per row (a metric defines whether
higher or lower values are better). The total score is the sum of the values over all datasets and embeddings.
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METRICS RD 1 RD 2 RD 3 RD 4 RD 5 RD 6 BEST
mse-en-sgns 1.024 0.964 1.021 1.085 1.170 1.119 0.964
mse-en-char 0.169 0.169 0.186 0.162 0.195 0.172 0.162
mse-en-electra 1.723 1.685 1.690 1.768 1.863 1.988 1.685
mse-it-sgns 1.076 1.160 1.100 1.156 1.211 1.318 1.076
mse-it-char 0.366 0.383 0.376 0.370 0.399 0.399 0.366
mse-fr-sgns 1.068 1.119 1.134 1.147 1.250 1.319 1.068
mse-fr-char 0.409 0.419 0.418 0.390 0.447 0.434 0.390
mse-fr-electra 1.339 1.347 1.414 1.358 1.554 1.566 1.339
mse-es-sgns 0.941 0.883 0.924 0.965 1.031 1.020 0.883
mse-es-char 0.526 0.545 0.546 0.532 0.582 0.635 0.526
mse-ru-sgns 0.568 0.604 0.596 0.601 0.667 0.653 0.568
mse-ru-char 0.145 0.141 0.142 0.140 0.170 0.144 0.140
mse-ru-electra 0.911 0.944 0.956 0.961 1.105 1.049 0.911
cos-en-sgns 0.250 0.260 0.250 0.245 0.231 0.214 0.260
cos-en-char 0.761 0.761 0.743 0.770 0.734 0.765 0.770
cos-en-electra 0.821 0.828 0.824 0.818 0.812 0.792 0.828
cos-it-sgns 0.380 0.358 0.370 0.361 0.361 0.339 0.380
cos-it-char 0.724 0.713 0.717 0.721 0.709 0.711 0.724
cos-fr-sgns 0.342 0.336 0.333 0.330 0.319 0.255 0.342
cos-fr-char 0.744 0.738 0.739 0.756 0.725 0.734 0.756
cos-fr-electra 0.847 0.842 0.837 0.844 0.828 0.825 0.847
cos-es-sgns 0.362 0.367 0.361 0.349 0.350 0.354 0.367
cos-es-char 0.819 0.812 0.812 0.816 0.803 0.784 0.819
cos-ru-sgns 0.412 0.421 0.411 0.406 0.399 0.381 0.421
cos-ru-char 0.818 0.822 0.820 0.824 0.788 0.821 0.824
cos-ru-electra 0.724 0.712 0.715 0.712 0.683 0.702 0.724
rnk-en-sgns 0.247 0.234 0.246 0.231 0.252 0.262 0.231
rnk-en-char 0.438 0.439 0.419 0.448 0.438 0.444 0.419
rnk-en-electra 0.438 0.446 0.437 0.444 0.438 0.432 0.432
rnk-it-sgns 0.165 0.177 0.178 0.169 0.188 0.187 0.165
rnk-it-char 0.397 0.390 0.400 0.402 0.397 0.383 0.383
rnk-fr-sgns 0.214 0.203 0.212 0.193 0.229 0.262 0.193
rnk-fr-char 0.425 0.429 0.427 0.435 0.431 0.421 0.421
rnk-fr-electra 0.447 0.463 0.448 0.450 0.444 0.429 0.429
rnk-es-sgns 0.197 0.214 0.203 0.199 0.217 0.201 0.197
rnk-es-char 0.407 0.409 0.403 0.412 0.407 0.420 0.403
rnk-ru-sgns 0.161 0.153 0.175 0.154 0.166 0.150 0.150
rnk-ru-char 0.361 0.365 0.376 0.372 0.378 0.357 0.357
rnk-ru-electra 0.350 0.355 0.351 0.359 0.351 0.345 0.345
TOTAL mse 10.266 10.363 10.504 10.634 11.645 11.817 10.266
TOTAL cos 8.004 7.971 7.931 7.951 7.742 7.677 8.004
TOTAL rnk 4.248 4.276 4.275 4.268 4.337 4.293 4.248

Table 13: Test results for all our REVDICT (RD) approaches. For each score, comparative results are shown in
color. Green is used for the best and red for the worst-performing solution per row (a metric defines whether higher
or lower values are better). The total score is the sum of the values over all datasets and embeddings.
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Figure 5: Distributions of all three embedding types in train (2nd row) and validation (development, 1st row) datasets
after dimensionality reduction to 2D space. sgns (word2vec, 1st column), char (2nd column), and electra
(3rd column) embeddings are depicted for English (orange), French (green), and Russian (blue).

TEAM EN ES FR IT RU
sgns char electra sgns char sgns char electra sgns char sgns char electra

0 0.909 0.913 1.122 1.196 0.615
1 0.964 0.162 1.685 0.883 0.526 1.068 0.390 1.339 1.076 0.366 0.568 0.140 0.911
2 0.911
3 0.854
5 0.864 0.143 1.310 0.860 0.467 1.026 0.335 1.066 1.031 0.334 0.538 0.116 0.828
6 0.900 0.143 1.340
7 0.915 0.168 0.906 0.557 1.100 0.391 1.097 0.364 0.578 0.156
10 0.875 0.141 1.301 1.087 0.355
12 0.895 0.143 1.326 0.910 0.510 1.107 0.366 1.112 1.111 0.359 0.566 0.132 0.864
13 0.862 0.176 1.509 0.858 0.583 1.030 0.411 1.271 1.039 0.438 0.528 0.184 0.828

Table 14: MSE test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst-performing solution
per column.

TEAM EN ES FR IT RU
sgns char electra sgns char sgns char electra sgns char sgns char electra

0 0.156 0.223 0.216 -0.004 0.006
1 0.260 0.770 0.828 0.367 0.819 0.342 0.756 0.847 0.380 0.724 0.421 0.824 0.724
2 0.403
3 0.248
5 0.241 0.795 0.847 0.347 0.839 0.312 0.789 0.862 0.374 0.747 0.383 0.852 0.735
6 0.185 0.796 0.846
7 0.194 0.792 0.262 0.820 0.228 0.769 0.260 0.739 0.335 0.836
10 0.204 0.798 0.843 0.274 0.734
12 0.166 0.795 0.844 0.252 0.824 0.212 0.770 0.858 0.246 0.728 0.298 0.830 0.721
13 0.243 0.782 0.846 0.353 0.824 0.328 0.752 0.859 0.360 0.681 0.424 0.791 0.734

Table 15: COS test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst-performing solution
per column.
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Figure 6: Distributions of sgns (1st column) and char (2nd column) embeddings in train (2nd row) and validation
(development, 1st row) datasets after dimensionality reduction to 2D space. The embeddings are depicted for
English (blue), Spanish (orange), French (green), Italian (red), and Russian (violet).

TEAM EN ES FR IT RU
sgns char electra sgns char sgns char electra sgns char sgns char electra

0 0.499 0.495 0.498 0.499 0.499
1 0.231 0.419 0.432 0.197 0.403 0.193 0.421 0.429 0.165 0.383 0.150 0.357 0.345
2 0.167
3 0.319
5 0.326 0.500 0.490 0.271 0.424 0.302 0.428 0.476 0.197 0.428 0.247 0.389 0.417
6 0.500 0.500 0.500
7 0.374 0.478 0.375 0.410 0.439 0.416 0.384 0.438 0.291 0.377
10 0.394 0.483 0.478 0.386 0.478
12 0.312 0.450 0.434 0.253 0.412 0.314 0.428 0.442 0.247 0.417 0.290 0.410 0.399
13 0.329 0.486 0.478 0.251 0.500 0.282 0.502 0.478 0.230 0.496 0.187 0.472 0.420

Table 16: RNK test scores for each team in REVDICT task. The results of our team are bold (team 1). For each
task, comparative results are shown in color. Green is used for the best and red for the worst performing solution per
column.
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Figure 7: Projection of the clusters in the electra embedding space (3rd column) to the spaces of the other
two embedding types sgns (1st column) and char (2nd column). The analysis if performed for English (rows
1–2), French (rows 3–4), and Russian (rows 5–6) train and validation (development) datasets, after dimensionality
reduction to 2D space.
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Abstract

We propose a pair of deep learning models,
which employ unsupervised pretraining, atten-
tion mechanisms and contrastive learning for
representation learning from dictionary defini-
tions, and definition modeling from such rep-
resentations. Our systems, the Transformers
for Learning Dictionaries and Representations
(TLDR), were submitted to the SemEval 2022
Task 1: Comparing Dictionaries and Word Em-
beddings (CODWOE), where they officially
ranked first on the definition modeling sub-
task, and achieved competitive performance on
the reverse dictionary subtask. In this paper
we describe our methodology and analyse our
system design hypotheses.

1 Introduction

Dictionaries are some of the linguistically richest
resources available for a language, in addition to
being extremely clean and unbiased in comparison
to most naturally occurring language data, which
is noisy and shows domain specific bias based on
its source. Thus, there has been considerable in-
terest towards using NLP models to harness this
knowledge, especially for low-resource languages.
Broadly there are two sets of approaches towards
the same - the first is to use dictionaries for repre-
sentation learning and using these representations
for transfer learning in other tasks, such as in the
work by Bosc and Vincent (2018) where they use
an LSTM based auto-encoder to learn rich rep-
resentations from dictionary definitions such that
the definitions can also be generated back from
the representations. Tissier et al. (2017) also used
dictionary definitions to build sets of ‘strong’ and
‘weak’ pairs of words to get improved word repre-
sentations with greater interpretability by moving
words which show a stronger semantic-relatedness
closer together in the embedding space.

† Authors contribute equally to this work.

The second approach has been to move in the op-
posite direction, such as in the work by Chang and
Chen (2019) where the authors try to map contextu-
alized word representations to their dictionary defi-
nitions in an effort towards word-sense disambigua-
tion. This has been further explored by Noraset
et al. (2016), where they use an RNN based lan-
guage model to generate definitions for representa-
tions. Recent work by Bevilacqua et al. (2020) im-
proves upon this by leveraging pre-trained encoder-
decoder models like BART (Lewis et al., 2019) in
order to generate the definitions of words. These
pre-trained language models, significantly outper-
form the RNN based models. The ability to gen-
erate definitions for representations makes these
contextual representations of words explainable.

NLP has advanced leaps and bounds within the
past decade, with a major push coming from the
advent and utilization of transfer learning via rep-
resentation learning techniques such as Word2Vec
(Mikolov et al., 2013a) and ELMO (Peters et al.,
2018). The more recent methods to employ trans-
fer learning use large pretrained language models,
such as BERT (Devlin et al., 2019) and XLM (Con-
neau et al., 2020). These models are jointly used
with unsupervised training objectives such as MLM
and Causal-LM, to transform natural language into
information rich meaning representations which
are then used for many different downstream tasks.
We aim to replicate the same in our experiments to
give a better prior for the model, before it learns to
generate desired representations.

One of the characteristics common to all the lan-
guage models mentioned above is that they are all
based on transformers. Transformers use the multi-
headed attention and self-attention mechanisms to
learn extremely effective language representations.
Transformers also scale well since unlike their pre-
decessors, the RNNs, they process information in
parallel and thus are much faster.

For SemEval 2022’s Task 1, Comparing Dictio-
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naries and Word Embeddings (Mickus et al., 2022),
the participants were asked to design systems for
the following two subtasks;

1. Subtask 1: Reconstruct SGNS (Mikolov
et al., 2013b), character and ELECTRA (Clark
et al., 2020) embeddings from their dictionary
glosses.

2. Subtask 2: Reconstruct the dictionary glosses
from their SGNS, character and ELECTRA
embeddings.

The subtasks are called the Reverse Dictionary
and Definition Modeling subtasks respectively. The
first subtask is evaluated on the Mean Squared Er-
ror (MSE), Cosine Similarity and Cosine Ranking
between the generated representations and the gold
representations. The second subtask is evaluated on
Mover score, Sense level BLEU score (S-BLEU)
and Lemma level BLEU score (L-BLEU).

In this system description paper we detail our
model architectures, training, evaluation and test-
ing methodologies, and try to analyse our hypothe-
ses and their impact on the final scores. For the
reverse dictionary subtask we designed a simple
BERT-like model, pretrained it on the MLM ob-
jective, and finetuned it for the subtask on a com-
bination of cosine embedding loss and MSE loss,
alongside negative sampling of the dataset to add
a contrastive loss to the overall objective function.
For the definition modeling subtask we designed a
model based on transformer decoders for natural
language generation, with masked self-attention
over the inputs in addition to multi-head attention
over the representations from the three embeddings
spaces. We submitted our systems for evaluation
over English data and our systems demonstrated
very good performance in the contest itself, with
the definition model system outperforming all other
submissions and taking first place, and the the re-
verse dictionary system achieving the fifth, sixth
and seventh place on the character, ELECTRA and
SGNS targets respectively. Lastly, we also show
some post-contest improvements on the reverse dic-
tionary system. The code for our experiments has
been open sourced and is available on GitHub.1

2 Subtask 1: Reverse Dictionary

2.1 Data Preprocessing
We maintain the data splits provided by the task
organizers (43608 training samples, 6375 dev sam-

1https://www.github.com/IamAdiSri/tldr-semeval22

ples and 6221 test samples) with each sample con-
taining the dictionary gloss and its SGNS, character
and ELECTRA representations. All models were
trained on the training split, with the best model
picked from evaluation over the dev split.

The dictionary glosses were lower-cased and
stripped of all whitespace characters except those
essential to maintaining word boundaries for to-
kenization. We also padded and truncated all se-
quences to a maximum sequence length of 256
tokens.

For contrastive learning we performed negative
sampling to augment each gloss-embedding pair
with three other embeddings from the same seman-
tic space and the same data split.

2.2 System Overview

We designed our system around three hypotheses
- firstly, using pretraining would work better than
starting from scratch since it would give the model
a good prior for the downstream tasks (transfer
learning). Secondly, training individual models for
each representation would outperform training a
single multitask model, as the representations do
not reside in a common semantic space. Thirdly,
optimizing over a combination of losses for each
of the metrics that we’re being evaluated upon, i.e.
MSE loss for MSE, Cosine Embedding (CE) loss
for cosine similarity, contrastive loss for cosine-
rank, would work better than using any of them
individually.

Multi-Head Attention Layer

Feed Forward Layer

Gloss Sequence

Linear Layer

Output Vector

6x

Tr
an

sf
or

m
er
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er

CE + MSE Loss Contrastive Loss

Negative Samples

Figure 1: System architecture for the Reverse Dictionary
subtask.

The foundation of our representation learner is
based on the DistilBert (Sanh et al., 2019) archi-
tecture and comprises of a stack of 6 transformer
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encoders, with 12 attention heads each, hidden di-
mension of 3072 and embedding dimension of 768.

We start by pretraining the model via unsuper-
vised masked-language-modeling (Devlin et al.,
2018) over only the texts from the dictionary
glosses in the task dataset. Individual instances
of this pretrained model are then appended with a
linear layer of dimension 256 to project outputs in
the required dimensions, and fine-tuned for each
semantic space, optimized over the following loss
function;

L = e− log(p0) ∗MSE(ϕ(g), vp) +

e− log(p1) ∗ CE(ϕ(g), vp) +

e− log(p2) ∗ CL(ϕ(g), vn0, vn1, vn2)

(1)

where, ϕ(g) is the sentence embedding for a
gloss g, vp is the true (or positive) embedding, vn0,
vn1 and vn2 are the negative samples and p0, p1 and
p2 are trainable parameters for weighting the dif-
ferent loss functions. MSE and CE are the Mean
Squared Error and Cosine Embedding Loss re-
spectively, which function as the reconstruction
loss between the generated representation and true
representation. Lastly, CL is the Contrastive Loss
between the generated representations and the false
representations from negative sampling. The equa-
tions for the three are given below;

MSE(a, b) =
1

d

d∑

i=0

(ai − bi)2 (2)

CE(a, b) = 1− a.b

|a||b| (3)

CL(p, n0, n1, n2) =
2∑

i=0

1− CE(p, ni) (4)

where a, b, p and n are all vectors of size d.

2.3 Experimental Setup
We used Pytorch (Paszke et al., 2019) and the Hug-
gingFace (Wolf et al., 2019) library to write our ex-
periments in Python. Though the HuggingFace li-
brary does provide ready-to-go pretrained language
models, they were not used in our experiments or
submissions. We did however use a ready-made
pretrained tokenizer from the library to tokenize
our texts.2 This was permitted by the organizers

2https://huggingface.co/distilbert-base-uncased

and we believed would be a significant advantage
over training a new tokenizer from scratch, consid-
ering that the dataset is rather small and homoge-
neous in its linguistic variation. All models were
trained on Nvidia’s GTX-1080 Ti and RTX-2080
Ti GPUs.

We pretrained our model on the unsupervised
MLM objective, with a learning rate (LR) of 5e−5,
masking probability of 0.15, and an effective batch
size of 64 samples. For fine-tuning we use an LR of
5e− 3 with a linear LR scheduler and an effective
batch size of 64 samples per batch. Any remaining
hyperparameters were left as their default values.
We selected the language model that attained the
lowest perplexity score (55.25) over the dev split.

For models that were multitask trained, instead
of a single output layer (as shown in figure 1) we
have three output layers (one for projecting into
each semantic space), all receiving the same output
vector from the transformer encoders below them.

While finetuning we train all models for 50
epochs in total, and select a model for each se-
mantic space and metric based on the epoch that
attains the best score over the dev split. The same
model is used for producing results over the test
split.

2.4 Results and Analysis
The experiments here were designed with the intent
to evaluate the three modeling hypotheses outlined
at the beginning of section 2.2, with tests on pre-
training, mutitasking and the objective function.
The results for these experiments are given in ta-
bles 1, 3 and 4.

Repr. Metric Pretrained RndInit.

sgns mse 0.8990793 0.8987827
sgns cos 0.1805207 0.1799421
sgns rnk 0.5004269 0.5004292

char mse 0.1465276 0.1454727
char cos 0.7897581 0.7916019
char rnk 0.5004282 0.5004290

electra mse 1.5150244 1.3510013
electra cos 0.8452746 0.8455241
electra rnk 0.5000801 0.5000807

Table 1: Comparison between using pretraining versus
starting from a randomly initialized model.

As we can see from table 1, there is no signif-
icant difference (mostly under 1e − 4) between
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Repr. MSE CSim. Rank PreTr. MltTsk. Objs.

sgns 558.96838 0.18531 0.50043 CE
sgns 0.89953 0.17866 0.50043 ✓ ✓ MSE, CE, CL

char. 125.12206 0.79565 0.50043 CE
char. 0.14337 0.79560 0.50043 ✓ ✓ MSE, CE, CL

electra 49.98565 0.84564 0.50008 CE
electra 1.34014 0.84563 0.50008 ✓ ✓ MSE, CE, CL

Table 2: Best submissions on the Reverse Dictionary leaderboard.

finetuning a pretrained model versus training the
model from scratch. We did however notice that
our pretrained models seemed to converge in fewer
epochs than when the models were trained from
scratch, indicating that the pretraining did have
some positive effect.

Repr. Metric Individual Multitask

sgns mse 0.8984921 0.8990793
sgns cos 0.1786035 0.1805207
sgns rnk 0.5004290 0.5004269

char mse 0.1431219 0.1465276
char cos 0.7955332 0.7897581
char rnk 0.5004292 0.5004282

electra mse 1.3292400 1.5150244
electra cos 0.8451633 0.8452746
electra rnk 0.5000672 0.5000801

Table 3: Comparison between individual models for
each semantic space versus a single multitask model.

Table 3 displays the results of our tests compar-
ing a single multitask model for all three semantic
spaces versus training individual models for each.
Again the results are quite inconclusive whether
one reliably outperforms the other, however con-
sidering differences of over 1e− 3 to be significant
(as they affect the leaderboard rankings) we can
see that individual models outperform multitask
models on a greater number of metrics.

Finally, from the ablation tests in table 4 we can
clearly see that while optimizing over the combi-
nation of losses or MSE alone gives comparable
scores, optimizing over CE loss alone causes the
MSE score to worsen manyfold. This seems to
imply that MSE contributes significantly more than
CE and CL losses to the performance of the models.
The scores also demonstrate that tuning over MSE
tends to improve the MSE metric, while tuning

over CE improves the cosine similarity, agreeing
with our hypothesis about the same. Contrary to
our expectations however, we can also observe that
adding contrastive learning by negative sampling
does not improve the cosine-ranking by much.

3 Subtask 2: Definition Modeling

SGNS Character ELECTRA

Linear Layer Masked Self-Attention Layer

Multi-Head Attention Layer

Feed Forward Layer

K V Q

Output Tokens  
(shifted right)
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Figure 2: System architecture for the definition model-
ing subtask.

3.1 Data Preprocessing

The dictionary glosses were first normalized for
punctuation and then tokenized using the Moses
scripts (Koehn et al., 2007). We then learn a sub-
word tokenizer on the training data, in order to cre-
ate a fixed vocabulary of subwords. The Moses to-
kenized sentences were used to learn Byte Pair En-
codings (BPE) with a vocabulary size of 10,000 us-
ing the subword-nmt library (Sennrich et al., 2016).
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Repr. Metric All Losses Only MSE Only CE

sgns mse 0.8991734 0.8956623 694685.50
sgns cos 0.1787637 0.1547712 0.1852663
sgns rnk 0.5004290 0.5004290 0.5004290

char mse 0.1430358 0.6462155 169896.47
char cos 0.7955229 0.3045915 0.7955511
char rnk 0.5004290 0.5004294 0.5004290

electra mse 1.3285819 3.5256984 82728.45
electra cos 0.8451307 0.0650083 0.8453690
electra rnk 0.5000807 0.5000807 0.5000808

Table 4: Ablation tests on the reverse dictionary objective function.

3.2 System Overview
The definition modeling problem is posed as one
of text generation, generating the definition D∗
of a word w∗ autoregressively, given the seman-
tic representation of the word in the form a vector
v∗. Therefore, we maximise the likelihood of the
definition D∗ = {w0, w1, .., wn}, where wi corre-
sponds to the ith word of the definition, given the
vector v∗.

P (D∗/v∗) =
n∏

i=0

P (wi/w0, ..wi−1, v∗) (5)

The definition modeling architecture that has
been used in this system is a transformer de-
coder, whose output softmax layer approximates
the above likelihood.

In a vanilla transformer-seq2seq architecture
(Vaswani et al., 2017), the decoder in the self-
attention layer projects the decoder states into three
matrices called Query (Q), Key (K) and Value (V )
and using the below equation, attention values are
computed.

Attn.(Q,K, V ) = Softmax
(
Q ·KT

√
d

)
· V (6)

This is followed by a cross-attention layer where
the decoder attends to the encoder states by pro-
jecting the encoder states as the Keys, Values and
using the decoder states as the Queries.

In our model, since the input vectors are not in
the same space as the decoder embeddings, a linear
layer is used to learn a projection between them.
The output of this layer is then projected into the
Key (K) and Value (V ) matrices which are used

along with the decoder self-attention outputs to
compute the cross attention values.

f = linear(vsgns ⊕ vchar ⊕ velectra) (7)

where vsgns, vchar, velectra represent the SGNS,
character, ELECTRA vectors respectively and ⊕
denotes concatenation.

K = f ·WK

V = f ·W V

Q = o ·WQ

(8)

where WK , W V are the matrices learnt to
project the output of linear layer (f ) to Key, Value
matrices andWQ is the matrix to project the output
of the decoder self-attention layer o to the Query
matrix.

3.3 Experimental Setup

The experiments for the defmod subtask were car-
ried out using the Fairseq framework (Ott et al.,
2019) in Python. All the models were trained on
Nvidia GTX 1080 Ti GPUs.

The transformer decoder model consists of 3
decoder layers, with each layers consisting of 8
attention heads and an embedding dimension of
512 with the input and the output embeddings of the
decoder being tied. The model is trained using label
smoothed cross entropy loss with label smoothing
of 0.2. A learning rate of 5e-4 using an inverse
square root scheduler with a weight decay of 0.0001
was used to optimize over a batch size of 4096
tokens.

The model was trained for over 50 epochs and
the checkpoint with the least validation perplexity
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Word Gloss Predicted Gloss

farming
A farming operation ; a farm , or
instance of farming on a piece of land .

The act or process of producing food

hazard
The chance of suffering harm ; danger , peril ,
risk of loss .

Something that causes trouble or
destruction

hardware Equipment . Of or relating to a computer system

transition
The process of change from one form , state ,
style or place to another .

The act or process of converting

hastily In a hasty manner ; quickly or hurriedly In a hurried manner

chesty Not dry ; involving the coughing of phlegm .
Of, pertaining to, or characteristic of a
dove

Solarian Of or relating to the Solar System . Of or pertaining to the planet Mars.

valid Well grounded or justifiable , pertinent . Not able to be true.

alt-left The extreme or radical left of the political spectrum .
A member of the United States of the
United States of the United States of the
United States of the United States.

Table 5: Examples of generated glosses.

was selected to generate definitions for the test set
using beam search with a beam size of 10.

3.4 Results and Analysis

The ablation study results in table 6 shows the im-
pact of each vector, namely SGNS, char and ELEC-
TRA, against the best performing model where
features were extracted using a concatenation of all
three.

Repr. Mover Score S-BLEU L-BLEU

All 0.12847 0.03278 0.04250
Electra 0.11008 0.02957 0.03629
Char 0.10403 0.02884 0.03643
SGNS 0.03622 0.01743 0.02114

Table 6: DefMod scores using all vs individual repre-
sentations

We can clearly see that the ELECTRA repre-
sentations outperform char and SGNS, with the
SGNS vectors falling significantly behind on all
three metrics. It can also be observed that by con-
catenating all three representations and extracting
useful features using attention significantly boosts
performance. This allows one to infer that char and
SGNS vectors do contain semantic information that
ELECTRA does not.

The submission utilizing all representations out-

performed all other submissions in the defmod sub-
task and ranked first for English.

3.4.1 Observations Post Dataset Release

After the passing of the task deadline, the orga-
nizers released the full dataset, complete with all
annotations. With this data we were able to make
further observations about our model by comparing
the generated glosses to the actual glosses in the
dataset. A few examples are shown in table 5. Ex-
amples marked in red indicate wrong or irrelevant
definitions, and the ones marked in green describe
the relevant ones.

From the generated glosses in green, we can
see that the model shows a remarkably good map-
ping between the words and their representations,
and makes close approximations of their meanings
when generating glosses. In the example of farm-
ing, we can see that the model is able to correctly
associate the act of farming with that of producing
food. The words hazard and transition are also
correctly associated with trouble (danger) and con-
version (change) respectively, demonstrating that
the model is able to recall similar concepts. The
model shows good language proficiency as well,
with syntactically correct utterances.

In case of words like hardware, which have mul-
tiple meanings, we can see that the model outputs
one of the secondary definitions that it has learnt
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from the dataset. From this, we can infer that in
the absence of appropriate context (i.e. how the
word is being used in a sentence), the model has
difficulty in disambiguating the word’s meaning,
although it still recognizes the word and picks one
of the correct definitions.

Finally, the model tends to learn definition tem-
plates from the training data, such as “Of, pertain-
ing to" or “Of or relating", that it reuses during
generation. As a result of being a sequence to se-
quence model, it also occasionally exhibits degen-
erate repetition, as seen in the “alt-left" example.

4 Conclusion

In this paper, we explored a variety of approaches
towards dictionary definitions and embeddings gen-
eration, especially under the constraint of being
unable to use external monolingual data. We have
analyzed the effectiveness of each of these methods,
performing ablation studies showing the impact
that various objective functions like MSE, cosine
embedding loss and contrastive loss have in recon-
structing representations from text, and coming
up with an attention mechanism utilizing all the
provided representations to generate definitions to
produce exceptional results.

As part of future work, we plan to explore the
performance of our models in multilingual settings.
We would also use test the performance of these
models against pre-trained language models like
BART, BERT etc. to gauge the impact language
model pre-trainig since we did not have enough
monolingual data in the tasks to train them. Finally,
we plan to experiment with a joint training mech-
anism where instead of training on each subtask
independently, the models can inform and improve
each other by collaboratively learning both the sub-
tasks.

References
Michele Bevilacqua, Marco Maru, and Roberto Navigli.

2020. Generationary or “how we went beyond word
sense inventories and learned to gloss”. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
7207–7221, Online. Association for Computational
Linguistics.

Tom Bosc and Pascal Vincent. 2018. Auto-encoding
dictionary definitions into consistent word embed-
dings. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,

pages 1522–1532, Brussels, Belgium. Association
for Computational Linguistics.

Ting-Yun Chang and Yun-Nung Chen. 2019. What does
this word mean? explaining contextualized embed-
dings with natural language definition. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 6064–6070, Hong
Kong, China. Association for Computational Linguis-
tics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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Abstract

This paper presents a novel and linguistic-driven
system for the Spanish Reverse Dictionary task of
SemEval-2022 Task 1. The aim of this task is the
automatic generation of a word using its gloss. The
conclusion is that this task results could improve if
the quality of the dataset did as well by incorporat-
ing high-quality lexicographic data. Therefore, in
this paper we analyze the main gaps in the proposed
dataset and describe how these limitations could be
tackled.

1 Introduction

The CODWOE (Comparison of Word Glosses and
Word Embeddings) task at SemEval-2022 (Mickus
et al., 2022) encouraged participants to analyze the
relation between two types of semantic descrip-
tions, word embeddings and dictionary glosses, by
proposing two sub-tasks: Reverse Dictionary (RD)
(Hill et al., 2016), in which participants must gener-
ate vectors from glosses, and Definition Modeling
(DM) (Noraset et al., 2017), in which participants
must generate glosses from vectors. These sub-
tasks aim to be useful for explainable Artificial In-
telligence (AI) by including human-readable and
machine-readable data.

Given the didactic nature of these tasks, the out-
put generated by these models should be as accurate
as the most prestigious dictionaries. Hence, the pro-
cess of selecting a quality dataset is a critical phase,
as Garg et al. (2020) state: “a small number of
data examples prevents an effective convergence to
the task, while noisy data leads to incorrect conver-
gence”. In this case, tasks require that the glosses
used in the training represent the exact meaning of
the word being defined in the context that the em-
beddings were extracted. However, as per our un-
derstanding, coherence, rigour and lexicographical
prestige of the provided dataset should be improved;
although accessing a prestigious dictionary is not
an easy task.

A Reverse Dictionary takes a description in nat-
ural language and generates a list of words satis-
fying it (Siddique and Sufyan Beg, 2018). First
RD were Information Retrieval systems for Turkish
(El-Kahlout and Oflazer, 2004) and Japanese (Bilac
et al., 2004). Other approaches used lexical graphs
(Thorat and Choudhari, 2016; Ortega-Martı́n, 2021)
that capture the relationships between the words of
the definition itself and between these and others
similar to them at different levels (synonymy, hyper-
onymy, etc.). Other systems create a vector space
from these lexical resources, such as Wordnet (Du-
toit and Nugues, 2002; Calvo et al., 2016; Méndez
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ID: Definition
es.train.212: “Biologı́a.— Se dice de los microorganismos que no aceptan los colorantes habituales.”
es.train.250: “Zoologı́a.— Cualquiera de los colibrı́es del género Chlorostilbon .”
es.train.119: “Servirse , darse ayuda mutuamente .”
es.train.120: “Trabajar ( uso pronominal de ... )”

Table 1: Examples of glosses

et al., 2013). As in many other NLP fields, more
recently have appeared approaches based on Neural
Networks (NNs) such as Long Short-Term Memory
(LSTMs) (Malekzadeh et al., 2021; Zhang et al.,
2020b) or Transformers (Qi et al., 2020; Yan et al.,
2020). Language Models (LMs) based on Recurrent
Neural Networks (RNNs) (Hill et al., 2016) have
also been used. Finally, from a linguistic point of
view, Shaw et al. (2011) add syntactic knowledge,
Zock and Schwab (2008) try to replicate the model
of the mental dictionary and Zhang et al. (2020b)
use morphological knowledge in their system.

Definition Modeling is a relatively new task
based on using distributed word representations to
generate its definition. Noraset et al. (2017) use an
RNN to compute the probability of a word being
part of the definition. Different approaches have
been proposed to this Natural Language Generation
(NLG) task. Usually these new methods are heav-
ily focused on the importance of the context of the
word being defined, like fine-tuning a BART model
to define groups of words (Bevilacqua et al., 2020),
using attention and a Skip-gram model to smooth
the problems of word selection in the generation
step (Gadetsky et al., 2018), or exploring new ways
to understand the embeddings and their capabilities,
resulting these in a new task named “usage mod-
eling” (Zhang et al., 2020a). There have been few
attempts to use pure linguistics traits to improve
definition generation, like accounting polysemy as
a generative target using multi-sense word embed-
dings (Kabiri and Cook, 2020) or using sememes to
condense the semantic core of generated sentences
(Yang et al., 2020).

This paper has the following structure. Chapter 2
contains a review of the data along with some lin-
guistic knowledge we consider relevant. In chapter
3 the RD approach and results are presented. Fi-
nally, chapter 4 contains the conclusions and future
work. Our contributions are the following:

• We point out the main problem of this task, the
lack of high-quality lexicographic data.

• We present the third best model for the Spanish

“sgns” embeddings Reverse Dictionary task,
which due to the use of external resources is
not valid for the challenge.

• We compare various approaches for the pre-
vious task, analysing different preprocessing
strategies, model architectures, loss functions
and embedding initialization tactics.

2 Data analysis

This section contains a review of the Spanish dataset
structure, an introduction about relevant lexicogra-
phy concepts and the RD task preprocessing tech-
niques.

2.1 The data

The dataset can be used for both subtasks. It is
stored in a JSON file where each element contains
four or five keys: its ”ID”, its ”gloss” or defini-
tion, the character-based embeddings (”char”), the
Word2Vec Skip-gram Negative Sampling embed-
dings (”sgns”) and, just for some languages, the
”ELECTRA” (Clark et al., 2020) embeddings. All
of these embeddings have a dimensionality of 256.
For the development of the Spanish RD model
“sgns” embeddings were used, since it was con-
sidered that using a more static approach such as
“char” would lower the performance of the model
and ”ELECTRA” embeddings were not available.
However, as it will be explained later, the model
was found out to be scalable to other embedding
types and languages. Table 11 contains some words
from the Spanish dataset that will be useful in the
subsequent analysis.

2.2 Linguistic analysis

Even though this is not a linguistic paper, there are
lexicographic concepts that should be explained in
order to reach a deeper understanding of the dataset
flaws. One of the most common approaches to

1Appendix A contains the translation of these examples
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classify lexical dictionaries distinguishes between
general dictionaries (also known as usage dictio-
naries) and specific dictionaries (this classification
includes, to name a few, encyclopedic, synonym
and scientific dictionaries). Therefore, given the
significant number of different possible uses of the
CODWOE tasks, the dataset should only include
generic term definitions found in usage dictionaries,
not specific ones.

In second place, there is no consensual standard
structure for definitions. However, two principles
must be followed (del Teso Martı́n, 1987).

1. The definitions must specify the hyperonym of
the word being defined.

2. The definition should explain the main distinc-
tion between the class and its instance.

In other words, the definition has to include a hy-
peronym which clusters the word being defined into
a category (for instance, “person who...”, “a block
of rock that...”) and the definition should specify
the specific traits of its meaning (following the last
examples, “...plays badminton”, “...shines even at
night”).

Lastly, a given definition is not the only way that
a word could be defined, but just a context related
meaning. This is why, from our perception, static
embeddings should be avoided in modern Natural
Language Processsing (NLP) tasks. For that reason,
”ELECTRA” embeddings, used in other languages
but not available for Spanish, could be more repre-
sentative than “sgns” or “char” embeddings. Fur-
thermore, these contextual embeddings should have
been extracted from solid examples of use which
represent the exact meaning of the gloss.

2.3 Dataset review

Dataset review revealed that glosses did not only go
against the previously explained notions, but also
lack coherence and exactitude. As seen in table 1,
many definitions include the category which they
belong (for instance, “Zoology”), or some gram-
matical information (“pronominal use”). Although
dictionaries usually include this kind of informa-
tion, it should not be in the definition (Garcı́a and
José, 2017).

Another drawback is that the dataset combines
generic and specific definitions. Generic defini-
tions usually can be found in usage dictionaries like

“DLE” for Spanish or “Oxford Dictionary” for En-
glish, meanwhile specific definitions include terms
from a certain domain, like zoology or linguistics.
In our opinion, using specific definitions in this
phase of the task just add noise to the training and
evaluation.

It should also be noted that the terms glosses
have not global coherence, and most of them do not
follow the hyperonym and main distinction princi-
ples. There are plenty of synonym definitions (not
optimal for these tasks as the definition length is
too low) and encyclopedic definitions (which add a
lot of noise as they have to fully describe the word
being defined). Data could be improved if basic
lexicographic notions were applied, but it is under-
stood that being a multilingual dataset and given
the available resources, CODWOE team has done a
great work.

2.4 Data preprocessing

Data was preprocessed by deleting stopwords and
category words (a term at the beginning of the defi-
nition that indicates its semantic category). In the
second RD approach, the lexical graph, which is
explained in section 3, words from the definitions
were also lemmatized using the Spacy Spanish mod-
els lemmatizer 2. Evaluation showed that the defini-
tions preprocessing has been the most useful factor
in the RD task, which indicates that the quality of
the original definitions is what has penalized the
model the most.

3 Our approach

Figure 1: Model architecture

For the RD task, model was trained trying to
make the definition embeddings as similar as possi-
ble as the defined word ones, focusing just on Span-
ish “sgns” (Word2Vec Skip-gram Negative Sam-
pling embeddings of 256 dims) embeddings, al-

2https://spacy.io/api/lemmatizer
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Figure 2: Full Reverse Dictionary pipeline

though system architecture was found scalable to
other languages and embedding types. After test
phase the model was applied also to Spanish “char”
and to English “sgns” embeddings, achieving pro-
portionally similar results which will be mentioned
later.

Different tactics to initialize definition embed-
dings were also used. In our first approach we
use Sentence-Transformers (Reimers and Gurevych,
2019). The “distiluse-base-multilingual-cased-v2”3

was found to be the most appropriate model for
Spanish tasks. Secondly, a lexical graph was built
with the training dataset, in such a way that each
defined word is related to the words in its defini-
tion. Then a SAGE Graph Neural Network (GNN)
(Hamilton et al., 2017) with 2 SAGE layers with
dimensions of sizes 256, 512 and 512 was used to
perform message passing from every defined word
to the words in its definition. To train this GNN
we used 1 negative example for every positive edge,
and trained the model for 50 epochs. Adam with
0.001 as learning rate was used as optimizer.

More than one model architecture were com-
pared. As seen in figure 1, the final model was
built with a Transformer encoder and an additional
Multi-Layer Perceptron (MLP) with two linear lay-
ers with dimensions of sizes 512, 256, 256 and a
ReLU layer between them, which during evalua-
tion in the development set achieved better results
than models based just on Transformer encoders
or MLPs. Adam was used as optimizer. During
training two loss functions from PyTorch were com-
pared: Cosine Embedding Loss and Mean Square
Error (MSE) Loss, which correspond to two of the
task evaluation metrics. Regarding the hyperparam-
eters, the following optimized the evaluation on the
development set: 8 attention heads, 6 encoder lay-

3https://huggingface.
co/sentence-transformers/
distiluse-base-multilingual-cased

ers, batch size=2048, learning rate=0.001. Model
converges after around 10 epochs. Models were
trained using 4 Nvidia Tesla v100 32GB.

As seen in figure 2, during training and predic-
tion the process was the following. For a given
sentence, stopwords and category tokens were re-
moved. In the lexical graph model every remaining
word was also lemmatized. After that the sentence
embeddings are initialized, either with the Sentence-
Transformers model, either by the mean of the lex-
ical graph embeddings of every word in the defi-
nition. These initial embeddings are fed into the
model along with some negative examples for the
Cosine Embedding Loss model, receiving these a
target label of 0. In the case of MSE Loss, negative
sampling was not performed.

As stated in the CODWOE task guidelines, Re-
verse Dictionary submissions were evaluated using
three metrics:

• mean squared error between the predicted em-
bedding and the word embedding.

• cosine similarity between the predicted embed-
ding and the word embedding.

• cosine-based ranking between the predicted
embedding and the word embedding, which
means how many other predicted embeddings
have a higher cosine similarity with the target
word than the right predicted one.

Since the Sentence-Transformer model was faster
at generating the initial definition embeddings, it
was used to initialize the definition embeddings in
the final training and predictions. We understand
that because of this our results in the task are not
valid. However, the lexical graph approach can
achieve almost similar results without the use of
external data.

As seen in table 2, two different loss functions
were used separately during training. Therefore,
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MSE Cosine Similarity Cosine-based ranking
Cosine Embedding Loss 2.0157 0.4029 0.1665
Mean Square Error Loss 0.9106 0.2274 0.5003

Table 2: Reverse Dictionary results

two models were eventually presented. During eval-
uation, the first model trained with Cosine Embed-
ding Loss reached more than 0.4 in cosine score
and 0.16 in cosine ranking, which we consider re-
markable and, according to the rankings4, better
than the top result for these particular Spanish em-
beddings. However, this model reached more than
2 in MSE, which considerably worsens the baseline
(0.92) and the top results (0.85). On the other hand,
the MSE Loss trained model slightly improves the
baseline test MSE (0.91) and cosine score (0.22) but
worsens the cosine ranking score. Other attempts
to combine both loss functions did not success and
achieved worse results in each of the evaluation
metrics.

In the end, these results were found to be scalable
to another languages and embedding types by using
this same model architecture, and encountering in
the way the same issues as for the Spanish “sgns”
embeddings, that is, trouble combining MSE and
cosine metrics. A Cosine Embedding Loss model
for English ”sgns” embeddings achieves 0.34 cosine
and 1.58 MSE, and using Spanish ”char” embed-
dings it reached 0.84 cosine and 1.66 MSE. As for
the case of Spanish ”sgns”, compared to the top-
ranked participants, a better cosine was achieved in
exchange of a worse MSE. This leads to the opin-
ion that the system architecture is easily scalable
to other inputs, but it suffers from the same issues
that with other languages and embeddings: a higher
cosine similarity score can be achieved by using Co-
sine Embedding Loss, but in exchange of a worse
MSE score.

4 Conclusions

For these tasks a combination of Machine Learning
techniques and linguistic knowledge was proposed,
in order to achieve good results and to understand
the problems and the future challenges of these
tasks.

In this paper, the main gaps in the dataset from a

4https://competitions.codalab.org/
competitions/34022#results

lexicographic perspective and its lack of coherence
and exactitude were explained, and then a prepro-
cessing solution was proposed, which was finally
used in the RD system to avoid the problems that
the dataset could carry in the model. Eventually,
MMG team has presented a novel approach with
an architecture that is easily scalable to other lan-
guages and embedding types. We understand that
due to the use of external resources our results in
the task are not valid for the challenge. However,
we would like to remark that the lexical graph ap-
proach, which in the end we did not submit due to
speed issues, achieved almost similar results.

These tasks are considered to represent an excel-
lent starting point for research on the relationships
between dictionaries and word embeddings. Both
subtasks in general and our research on them in
particular open up many options for further inves-
tigation. In our case, our intention is to use more
linguistic knowledge at different levels, further ex-
ploring the power of linguistic graphs and putting
into practice what we have learned in the Reverse
Dictionary task to create quality Definition Model-
ing systems.
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Appendix A Translation of Table 1

es.train.212: “Biology.— Said of microorganisms
that do not accept the usual dyes .”
es.train.250: “Zoology.— Any of the hummingbirds
of the genus Chlorostilbon .”
es.train.119: “To serve, to help each other.”
es.train.120: “Work ( pronominal use of ... )”
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Abstract

This paper presents a winning submission to the
SemEval 2022 Task 1 on two sub-tasks: reverse
dictionary and definition modelling. We lever-
age a recently proposed unified model with
multi-task training. It utilizes data symmet-
rically and learns to tackle both tracks concur-
rently. Analysis shows that our system per-
forms consistently on diverse languages, and
works the best with sgns embeddings. Yet, char
and electra carry intriguing properties. The two
tracks’ best results are always in differing sub-
sets grouped by linguistic annotations. In this
task, the quality of definition generation lags
behind, and BLEU scores might be misleading.

1 Introduction

We describe the University of Edinburgh’s partici-
pation in SemEval 2022 Task 1 on comparing dic-
tionaries and word embeddings (CODWOE), orga-
nized by Mickus et al. (2022).1 The task features
two directions: reverse dictionary and definition
modelling. The former is to construct the embed-
ding of a word given its definition gloss, and the
latter is to generate the definition from a word em-
bedding. The organizers provide datasets of word
embedding-definition pairs across three types of
embeddings and five languages. The training data
has a size of 43.6k for each language, which is
smaller than the data released in prior research (Hill
et al., 2016; Chang et al., 2018). However, it pro-
vides a precious chance for a comprehensive study
of lower-resourced reverse dictionary and defini-
tion modelling on languages other than English, as
well as on different embedding architectures.

As our system architecture, we use a recently
proposed unified model, which deals with both
tracks concurrently and achieves superior results
(Chen and Zhao, 2022). The model enables multi-
task training by using word embeddings and defi-
nitions symmetrically. We also create ensembles

1https://competitions.codalab.org/competitions/34022

and handcrafted phrases. Our code implementation
builds on the organizers’ and is publicly available.2

We submit to both reverse dictionary and def-
inition modelling tracks, and cover all language
and embedding combinations. Furthermore, we
examine model generations and scores from three
aspects: embedding architectures, languages, and
linguistic annotations, aiming to figure out how
these affect performance, subject to the models we
have adopted. We finally show the information cap-
tured by different word embeddings and discuss
the limitations in task evaluation and ranking.

Regarding the shared task outcome, we are the
team with the most “gold medals”: out of 18 sub-
tracks, we attain first place in 8, second place in
4 and third place in 4. Our final ranks in the sub-
tracks are detailed in Table 1.

Langauge en es fr it ru

Reverse
dictionary

sgns 2 4 3 2 3
char 3 1 1 1 1

electra 1 n/a 1 n/a 1
Definition modelling 4 3 2 2 1

Table 1: Our ranks in each sub-track.

2 Background

2.1 Datasets

The organizers provide datasets for five languages:
English (en), Spanish (es), French (fr), Italian (it),
and Russian (ru). Also, they supply 256d word
embeddings from three architectures:

• sgns: static (non-contextualized) embeddings
learned using skip-gram with negative sam-
pling (Mikolov et al., 2013);

• char: character-based embeddings from an
autoencoder trained on the spelling of a word;

• electra: contextualized embeddings produced
by a generator-discriminator model (Clark
et al., 2020).

2https://github.com/PinzhenChen/UnifiedRevdicDefmod
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Despite that electra is not available for es and it, the
data still covers 13 combination. All embedding
architectures are trained on comparable corpora for
all languages. Participants are not allowed to use
any external resources, and words are provided as
embeddings rather than actual words.

For each language, data is split into train, valida-
tion, test, and trial sets, at sizes 43.6k, 6,4k, 6.2k,
and 0.2k. Human annotations are included in the
trial split for analysis, but only word embeddings
and definition glosses can be used for training. The
snippet below exemplifies a single data instance
with all possible fields. Training, validation, and
test sets consist of only the bolded key-value pairs;
all fields are found in the tiny trial set.

{"id":"en.trial.2",
"sgns": [2.08729, 0.26177, ...],
"char": [0.38789, 0.19716, ...],
"electra": [-1.47715, -0.47424, ...],
"gloss": "A mixture of other substances or things .",
"word": "cocktail",
"pos": "noun",
"example": "a cocktail of illegal drugs",
"type": "hypernym-based",
"counts": 4187,
"f_rnk": 13245,
"concrete": 1,
"polysemous": 0}

2.2 Evaluation metrics and ranking
Reverse dictionary is evaluated by three metrics:

• MSE: mean squared error between references
and generated embeddings;

• cosine: cosine similarity between references
and generated embeddings;

• ranking score: a percentage score measuring
how many other test instances have a higher
cosine similarity with a generated embedding
than its reference does.

The definition modelling performance is measured
by three too:

• sense-BLEU: sentence-BLEU implemented
in NLTK with smoothing method 4 (Papineni
et al., 2002; Chen and Cherry, 2014);

• lemma-BLEU: the maximum sense-BLEU be-
tween a generated gloss and all possible refer-
ences of the same word and part of speech;

• MoverScore: a neural distance measure based
on multilingual BERT (Zhao et al., 2019).

Finally, participants are ranked by rank scores
instead of scalar numbers from the above metrics.
A rank score is simply the rank of a particular sub-
mission among all submissions. For each sub-track,

the average rank score of all three metrics is used
to rank each team.

3 System Overview

3.1 Model Architecture
We select Chen and Zhao (2022)’s model as our
system architecture because it has demonstrated
great success on previous datasets for reverse dic-
tionary and definition modelling. It is a “unified”
model as it learns both tasks simultaneously, based
on the intuition that a word and its corresponding
definition share the same meaning, thus can be cast
into the same neural semantic space.

We attach a diagram of this architecture as Fig-
ure 1. Technically, the model encodes glosses
or word embeddings as the input, maps it into a
shared representation, then generates embeddings
or glosses accordingly. The shared representation
serves as an autoencoding of both a word and its
definition. Specifically, Linear layers (L) trans-
form embeddings, and Transformer (Vaswani et al.,
2017) blocks (T ) encode or decode definitions.

Shared Linear Layer
Lshare

Linear Layer 
Lin

Transformer Block 
Tin

Linear Layer 
Lout

Transformer Block
Tout

Embedding, Embin Definition, Defin

Definition, DefoutEmbedding, Embout

Definition 
Modelling

Reverse 
Dictionary

Embedding 
Reconstruction

Definition 
Reconstruction

Figure 1: Chen and Zhao’s illustration of the unified model.

3.2 Multi-task training
At the bottom of Figure 1, four trainable objec-
tives are depicted: definition modelling, reverse
dictionary, along with word embedding and defi-
nition reconstruction. The first two are CODWOE
tasks, and the rest are auxiliary autoencoding tasks.
Besides, another objective is to bring the vector
representations of a word and its definition close
in the shared layer. Our overall objective function
combines the five objectives with equal weights.
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3.3 Ensembling for reverse dictionary

Ensembling is a commonly employed technique
to enhance machine learning performance. Specif-
ically for reverse dictionary, we perform average
ensembling: for each test instance, its final predic-
tion is obtained by averaging all the corresponding
predictions from different models. We ludicrously
ensemble up to 21 models, of the same unified
architecture, trained with various random seeds.

3.4 Handcrafting for definition modelling

Upon our initial inspection of definition modelling
on the trial set, the generated definitions are mostly
meaningless hallucinations, scoring a very low
sense-BLEU of about 3. To understand how in-
dicative BLEU is in this case, we handcraft a non-
sensical n-gram submission. The rule is that for
each test instance, we simply concatenate the most
frequent bigram with the most frequent unigram,
computed on all definitions in the training data.
The phrases we prepare for each language are:

en es fr it ru

, or . de la . ) ( . ) ( . в . ,

4 Experiments and Results

4.1 Experimental setup

We tokenize glosses by whitespaces, add tokens
into an open vocabulary, and embed them using
one-hot. Word embeddings are used as provided.
Loss functions are cross-entropy for tokens and
MSE for embeddings. We also try cosine similarity

for embeddings, but the model fails to converge.
For definition modelling, we do not combine vari-
ous embeddings as the input; this might put us at
disadvantage in the team ranking.

While Transformer components are connected
to form a unified model, most hyperparameters re-
main the same as in the provided baseline, which
we specify in Appendix A. Following the original
work, we tie Transformer embeddings and add a
residual connection. We follow the same configu-
rations for all language-embedding combinations.
Training a unified model on an Nvidia GeForce
RTX 2080 Ti takes roughly three hours.

4.2 Results

During the evaluation, we submit the provided base-
line and our unified model. Also, we add ensem-
bles of 17 and 21 models, as well the handcrafted
n-grams. The submission scores, computed by
the task organizers, are reported in Table 2 and 3.
In the direction of reverse dictionary, the unified
model steadily beats the baseline; ensembling adds
a cherry on top for some languages but not all.

In definition modelling, our n-grams surpass
genuine models on en BLEU scores, and even rank
first in fr sense-BLEU among all participants’ en-
tries. This implies that either BLEU scores are not
informative, or the model outputs are as embarrass-
ing as the n-grams. On contrary, MoverScore is ef-
fective in downing the n-grams, probably by penal-
izing disfluency or semantic mismatch. Sadly, our
manual review suggests that most model-generated

en es fr it ru
MSE cosine rank MSE cosine rank MSE cosine rank MSE cosine rank MSE cosine rank

baseline 0.884 0.189 0.439 0.905 0.241 0.462 1.06 0.275 0.360 1.10 0.245 0.451 0.561 0.295 0.432
unified 0.871 0.241 0.326 0.868 0.339 0.271 1.03 0.312 0.302 1.05 0.371 0.197 0.553 0.327 0.340
ensemble 17 0.864 0.225 0.374 0.860 0.347 0.271 1.03 0.305 0.334 1.03 0.373 0.206 0.538 0.381 0.251
ensemble 21 0.865 0.225 0.374 0.860 0.347 0.271 1.03 0.306 0.330 1.03 0.374 0.205 0.538 0.383 0.247

(a) sgns as target embeddings

en es fr it ru
MSE cosine rank MSE cosine rank MSE cosine rank MSE cosine rank MSE cosine rank

baseline 0.161 0.795 0.500 0.551 0.820 0.499 0.404 0.764 0.495 0.400 0.720 0.499 0.144 0.829 0.496
unified 0.143 0.795 0.500 0.480 0.834 0.431 0.347 0.782 0.448 0.337 0.745 0.428 0.119 0.849 0.395
ensemble 17 0.142 0.795 0.500 0.467 0.839 0.424 0.336 0.788 0.429 0.334 0.747 0.429 0.116 0.851 0.390
ensemble 21 0.142 0.795 0.500 0.467 0.839 0.425 0.335 0.789 0.428 0.334 0.747 0.429 0.116 0.852 0.389

(b) char as target embeddings

en fr ru
MSE cosine rank MSE cosine rank MSE cosine rank

baseline 1.34 0.842 0.497 1.18 0.853 0.497 0.898 0.718 0.498
unified 1.32 0.844 0.495 1.08 0.861 0.476 0.846 0.731 0.421
ensemble 17 1.31 0.847 0.490 1.07 0.862 0.479 0.829 0.735 0.417
ensemble 21 1.31 0.847 0.491 1.07 0.861 0.480 0.829 0.734 0.419

(c) electra as target embeddings

Table 2: Reverse dictionary test performance, measured by MSE (↓), cosine similarity (↑), and ranking score (↓).

77



source
embed.

en es fr it ru
MvSc s-B l-B MvSc s-B l-B MvSc s-B l-B MvSc s-B l-B MvSc s-B l-B

n-grams n/a -0.004 3.06 3.81 -0.032 2.73 3.67 -0.176 2.95 3.56 -0.164 1.89 2.74 -0.006 2.65 3.31
baseline sgns 0.100 2.91 3.67 0.088 3.47 5.28 -0.019 2.34 3.38 0.046 4.62 6.97 0.109 4.91 7.14
unified 0.098 3.01 3.80 0.101 3.42 5.14 -0.064 1.59 2.38 0.107 6.01 9.17 0.095 4.59 6.82
baseline char 0.101 2.47 3.02 0.064 2.06 2.88 -0.186 0.11 0.11 0.019 2.09 2.99 0.092 4.01 5.87
unified 0.104 2.83 3.40 0.065 2.14 2.96 0.026 2.42 3.82 0.044 2.93 4.29 0.085 4.80 7.24
baseline electra 0.070 2.53 3.26 n/a -0.075 1.38 1.93 n/a 0.090 3.78 5.45
unified 0.094 2.75 3.43 -0.045 1.60 2.29 0.088 4.08 5.86

Table 3: Definition modelling test results, in MoverScore (↑), sense-BLEU (↑), and lemma-BLEU (↑).

(a) en, sgns (b) en, char (c) en, electra

(d) fr, sgns

gold
baseline
unified

(e) fr, char (f) fr, electra

(g) ru, sgns (h) ru, char (i) ru, electra

Figure 2: Visualization of gold and output embedding distributions across languages and embedding architectures.

glosses are inaccurate. The dissatisfying results
might be due to the modest training data size.

5 Performances across embeddings

Reverse dictionary MSE and cosine are incom-
parable across different embedding types, whereas
ranking scores can tell which embedding archi-
tecture is preferred for indexing and retrieving a
word. A random baseline ranking score is 0.5, and
most char and electra figures, unfortunately, fall
between 0.4 and 0.5. On the other hand, sgns is
more useful as its baseline scores start at around
0.45, and our models can improve these up to 0.25.

We employ principal component analysis (PCA)
to reduce the gold and output embeddings to 2 di-
mensions. Then in Figure 2 we visualize en, fr, and

ru, which come with all embeddings. The unified
model usually outputs to a larger space than the
baseline, hinting at a positive correlation between
output spread and performance. Gold electra has
the most isotropic space, but neither model could
imitate the distribution. Char has a crescent shape
with several clusters inside, which is unlikely to be
cosine-friendly. These problems are alleviated on
sgns, which witnesses the best ranking scores.

Definition modelling Sgns is again the winner,
as models trained with it reach the top in many
metrics. Char is also favourable. This is counter-
intuitive as electra should be fitter, for it retains
more sense-specific knowledge. A possible reason
is that electra needs to go through more training
data than sgns and char to reach perfection.
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6 Performances across languages

As seen in the result and rank tables, our system’s
behaviour is relatively consistent on various lan-
guages, except that English is more challenging.
Assuming that the datasets are of similar quality,
it is questionable to conclude that our model suits
other languages more than English. Moreover, Fig-
ure 2 confirms that the English embeddings are not
more peculiar than those of other languages.

We guess that other teams have focused on En-
glish (e.g. only submitted English), as it is a centred
language in the research community. Instead, our
hyperparameter search is based on the average loss
from all languages, neglecting that the losses are
not directly comparable.

7 Performances across linguistic features

We look into the unified model’s trial set predic-
tions, to interpret how scores vary across diverse
linguistic annotations: polysemy, part of speech
(POS), word length in characters, definition length
in words, and word frequency. For categorical fea-
tures, we group data by annotations; for numerical
features, we divide the data into three subsets, by
percentile ranges: 0-33, 33-67, and 67-100. Statis-
tics of the subsets are in Table 4. We list cosine
similarity for reverse dictionary, and lemma-BLEU
for definition modelling. A generic discovery is
that, the best scores of the two tracks emerge in
differing subsets, regardless of what the feature is.

Linguistic feature Category / Range No. of instances

Polysemy Yes 65
No 135

Part-of-speech

Adj 56
Adv 11
Verb 37
Noun 96

Word frequency
(frequency rank in
the whole corpus)

67 – 11145 67
11146 – 44416 66

44417 – 905726 67

Word length
3 – 5 85
6 – 7 60
8 – 17 55

Definition length
1 – 6 71
7 – 10 65

11 – 39 64

Table 4: Statistics of the different subsets grouped by features.

Polysemy Table 5 exhibits the results for the
words with either one or multiple definitions. It
is slightly easier to achieve better cosine similarity
for unambiguous words. Polysemous words have
better BLEU, and electra has worse BLEU than
sgns. This is illogical, as defining a polysemous

word is harder, especially without context. We hy-
pothesize that BLEU is not reflective, and electra
embeddings might be of sub-optimal quality.

Polysemy sgns char electra
cosine l-B cosine l-B cosine l-B

Yes 0.232 4.34 0.804 3.20 0.836 3.61
No 0.360 2.82 0.813 2.53 0.845 3.09

Table 5: Performances across polysemy annotations for en.

Part of speech Next, numbers for the four POS
tags that exist in en trial, are laid out in Table 6.
Strong cosine similarity is associated with verbs,
although cosine numbers are close, except for ad-
verbs. Adverbs, which have a small sample size,
dominate high lemma-BLEU, perhaps because they
are the least ambiguous.

POS sgns char electra
cosine l-B cosine l-B cosine l-B

Adj 0.319 3.36 0.801 2.76 0.811 2.81
Adv 0.134 6.56 0.798 5.45 0.815 5.93
Verb 0.383 3.20 0.839 2.50 0.853 3.83
Noun 0.314 2.97 0.806 2.53 0.860 2.99

Table 6: Performance across POS tags for en.

Word length We then make three partitions ac-
cording to different word length ranges. Results
in Table 7 suggest that shorter words have higher
cosine, while longer words have higher lemma-
BLEU. Numbers are closer for sgns and electra;
we further investigate on char in Section 8.1.

Word
length

sgns char electra
cosine l-B cosine l-B cosine l-B

short 0.332 3.19 0.845 2.58 0.817 3.10
medium 0.314 3.19 0.842 2.74 0.867 3.41

long 0.327 3.66 0.694 3.00 0.854 3.33

Table 7: Performances across word lengths for en.

Definition length Likewise in Table 8, we sep-
arate the trial data by the gold definition length.
Much higher BLEU is seen when the model defines
words linked with a shorter gold gloss, as generat-
ing a shorter sequence is easier. As we anticipate,
when the model produces word embeddings for
longer glosses, results are better too, potentially
because more information can be encoded.

Definition
length

sgns char electra
cosine l-B cosine l-B cosine l-B

short 0.280 4.51 0.796 3.60 0.824 4.89
medium 0.318 3.48 0.814 2.73 0.848 2.76

long 0.361 1.83 0.822 1.80 0.856 1.93

Table 8: Performances across definition lengths for en.
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Word frequency Finally, Table 9 summarizes
the results of the low, medium, and high frequency
word groups. From the results, we cannot establish
an explicit trend across different task directions,
embeddings, or word frequencies. This implies
that the embedding quality and model performance
might be word frequency-agnostic.

Frequency sgns char electra
cosine l-B cosine l-B cosine l-B

low 0.250 3.53 0.805 2.82 0.850 3.30
medium 0.348 3.54 0.786 2.76 0.864 3.38

high 0.357 2.89 0.839 2.66 0.814 3.10

Table 9: Performances across word frequencies for en.

8 Qualitative Analysis and Discussions

8.1 Observing the crescent with a telescope
After PCA retains the most distinguishing com-
ponents, Figure 2 shows interesting patterns, es-
pecially for char. We randomly label 25 English
words and present them in Figure 3 and Figure 4,
respectively for char and electra. The sub-clusters
in char’s crescent are perfectly in tune with word
lengths; for electra, more frequent words are closer
to the origin. We do not notice a clear trend for
sgns, for which a plot is attached as Figure 5.

We attribute the distinct patterns to the train-
ing paradigms: character-level word autoencoding
for char, and contextualized modelling for electra.
This accounts for the largest cosine gap on char be-
tween long and short words, seen earlier in Table 7.
Intuitively, it is more difficult to train char autoen-
codings for longer words, so, in turn, embeddings
for longer words possess inferior quality.

Within char embeddings, words are grouped by
lengths, so we may utilize this for word retrieval
in future work. Nonetheless, we are unsure of how
length or frequency information aids sense-based
tasks, like definition generation in our context.
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Figure 3: Gold English char embeddings with word labels.
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Figure 4: Gold English electra embeddings with word labels.
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Figure 5: Gold English sgns embeddings with word labels.

8.2 Sense-BLEU with no sense

We design a sanity check on the representative-
ness of BLEU. On the English trial set, we remove
punctuation marks and NLTK-defined stop words
from both references, and our unified model’s def-
initions generated from sgns. Sense-BLEU drops
from 3.31 to 0.39, and surprisingly, it worsens to 0
with smoothing disabled. Evidently, sense-BLEU
and thereby lemma-BLEU are hugely inflated by
functional tokens as well as smoothing.

8.3 Evaluating task evaluation and ranking

We point out the limitations associated with the
evaluation and ranking process, which can bene-
fit from a rethink. First, as shown above, the two
BLEU metrics may not be practical. Second, some
metrics are correlated, i.e., cosine with the ranking
score, and sense-BLEU with lemma-BLEU. These
problems are amplified by the team ranking pro-
tocol, which averages a team’s ranks in individual
metrics to produce a final standing. It might not be
meaningful to compare the individual metric ranks,
not to mention averaging them since metrics are
not equally weighted.

Nonetheless, we are not in a knowledgeable posi-
tion to propose a better approach, other than clum-
sily displaying ranks in individual metrics.
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A Hyperparameters

Hyperparameter Value
learning rate 1e-4
optimizer Adam
beta1, beta2 0.9, 0.999
weight decay 1e-6
batch size 256
decoding beam size 6
early stopping 5 non-improving validations
embedding loss mean squared error
token loss cross-entropy
Transformer depth 4
Transformer head 4
Transformer dropout 0.3
linear dropout 0.2
shared layer dim. 256
word embed. sgns, char, electra
word embed. dim. 256
definition embed. one-hot
definition embed. dim. 256
vocabulary size open, all training tokens

Table 10: Model hyperparameters.
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Abstract

Described are our two entries "emukans" and
"guntis" for the definition modeling track of
CODWOE SemEval-2022 Task 1. Our ap-
proach is based on careful scaling of a GRU re-
current neural network, which exhibits double
descent of errors, corresponding to significant
improvements also per human judgement. Our
results are in the middle of the ranking table
per official automatic metrics.

1 Introduction

The definition modeling track of SemEval-2022
Task 1: CODWOE - COmparing Dictionaries
and WOrd Embeddings (Mickus et al., 2022)
challenged participants to generate dictionary
glosses from individual word embedding vectors.
This paper describes two CODWOE submissions,
"emukans" and "guntis", where the first focuses
on the automatic CODWOE scores, but the second
attempts to gauge the relationships between scaling
laws, the automated metrics, and human evaluation.
Our submissions achieved competitive results (see
Figure 3) on the MoverScore official metric - scor-
ing 1st for French, 2nd for Spanish, and 3rd for
Russian.

Our approach was to apply classical recur-
rent networks, such as Long Short-term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent Units (GRU) (Cho et al., 2014),
to definition modeling and investigate how model
scaling impacts performance. The scaling effect
is well investigated for transformers, but not so
much for RNNs. Recently, the main focus in deep
learning has skewed from searching for new model
architectures to investigating how various factors
impact the training process and overall system per-
formance (Nakkiran et al., 2019; Kaplan et al.,
2020; Gordon et al., 2021). The main factors are:
the amount of data, the amount of compute, and
the size of the model (parameter count). In the

competition the data amount is fixed and no use of
external data is permitted, thus we investigate how
scaling model size and training time impacts train-
ing progress and model performance for recurrent
models.

In our experiments we did observe deep double
descent effects: epoch-wise double descent with
respect to both cross-entropy loss and prediction
accuracy on a validation data set, more pronounced
with increasing model size.

We also investigated the automatic metrics used
for evaluating submissions and their correlation
with human evaluation, focusing primarily on the
MoverScore metric (Wei Zhao, 2019). MoverScore
does correlate with human evaluation, but not nec-
essarily very strong, at least for this dataset. We
find that the double descent effect seen with re-
spect to prediction accuracy can also be observed
for MoverScore.

2 Background

The CODWOE shared task invites participants to
compare two types of semantic descriptions: dictio-
nary glosses and word embedding representations.
The task consists of 2 subtracks: definition model-
ing and reverse dictionary. In definition modeling
participants have to generate glosses from word
embedding representations. The reverse dictionary
task is the inverse: reconstruct a word embedding
from the corresponding gloss. Considering results
achieved by the baseline models provided by the
organisers, we decided to participate only in the
definition modeling track, as it seems the more
challenging task, with more room for potential im-
provement.

For the definition modeling track, inputs are 256-
dimensional embedding vectors and outputs are
plain text. Data is provided for 5 languages: En-
glish, French, Spanish, Italian and Russian. Every
language is scored separately. We submitted for all
5 languages. The provided word embedding vec-
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tors are of 3 types: CHAR, SGNS, and ELECTRA.

3 System overview

For the definition modeling task, we used classi-
cal recurrent networks, experimenting with both
LSTM and GRU architectures. We added an initial
fully connected input layer to scale a given word
embedding vector to higher dimensions. We used
the ADAM optimizer (Kingma and Ba, 2014) in
the training process. The learning rate was set in
the range ∈ [1e-5, 3e-5, 1e-4]. A linear learning
rate decay schedule with warm-up over 0.01 was
used. No preprocessing was applied to training
data. The code is available on GitHub 1

The very first step is creating a tokenizer and
building its vocabulary. We use SentencePiece to-
kenization (Kudo and Richardson, 2018), trained
on the training dataset only. We carried out experi-
ments across a range of vocabulary sizes.

We used a classical approach and a decoder only
part of standard seq2seq (sequence to sequence)
recurrent neural network models without attention.
The GRU/LSTM state vector is initialized from
the given defmod embedding vector. In our case,
we use a single word embedding vector type. For
the first time step we pass a single <seq> token
to model as input. The model outputs a single
predicted token and a new state vector. To avoid
exploding gradients, the outputs of the model are
normalized. The token selected by the model is
appended to the generated gloss, and is also used
as input to the model for the next time step. This
process is repeated until reaching the iteration limit.

At every time step, the model can make mis-
takes. If the initial part of the input sequence fed to
a seq2seq model is bad, most likely the subsequent
output sequence will also be wrong. To mitigate
this accumulation of errors and speed up the train-
ing process, we use the teacher forcing technique
(Williams and Zipser, 1989). With teacher forcing,
the model is trained by supplying input tokens from
the target sequence of the dataset and using the net-
work’s one-step-ahead predictions to do multi-step
sampling. We also tried a more advanced teacher
forcing technique: scheduled sampling (Duckworth
et al., 2020), where input sequence tokens are given
ground-truth values only with some probability.
Unfortunately, scheduled sampling did not give
good results - the loss plot was very noisy. It is
likely that the CODWOE definition modeling task

1https://github.com/emukans/codwoe

itself is a very hard task with too much variability
relative to the amount of provided training data;
scheduled sampling might be better suited for lan-
guage model fine-tuning when the model weights
are pretrained on a large corpus and already corre-
late fairly well with natural language syntax and
semantics.

After each training epoch, the model is evaluated
on a validation dataset using the same cross-entropy
loss function as used for training. We also use an ac-
curacy metric for evaluating model performance, as
it correlates with perplexity and human judgement
for large language models. The accuracy is calcu-
lated by dividing the count of correctly predicted
tokens (under teacher-forcing) by the number of
total tokens.

For "emukans" submissions, model training is
stopped using early stopping (Prechelt, 2012) based
on the accuracy score for the validation data, while
"guntis" submissions were intentionally trained
long past the overfitting point to observe scaling
and double descent effects.

4 Experimental setup

For our experiments, we have 5 Tesla v100 16GB
GPUs provided by our institute. During the compe-
tition, our focus was on exploring different training
effects and model tuning. Most of the experiments
were focused on primary factors of "scaling laws":
model size and the amount of compute (training
epochs).

For simplicity and consistency of presentation,
in most of the following tables and figures (all ex-
cept for Figure 3) we report experimental perfor-
mance evaluated against a trial dataset provided by
the CODWOE organizers, which consists of only
200 glosses. Apart from the automatic metrics,
our focus was on (informal) manual evaluation of
generated glosses.

4.1 Vocabulary size

The vocabulary of distinct tokens available for use
by an NLP model is generally built during a data
preparation stage, and the size of this vocabulary is
a key factor in model performance. Therefore we
started our experiments by tuning the size of the
vocabulary.

We build our token vocabulary from the train-
ing dataset only. Taking into account the relatively
small training dataset - only 43k glosses and 18k
unique words, we reasoned that the token vocabu-
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Vocab
size MoverScore S-BLEU L-BLEU

250 0.09702 0.02504 0.02508
500 0.10662 0.02452 0.02455
800 0.11754 0.02469 0.02470
1500 0.13045 0.02726 0.02726
3000 0.13379 0.02679 0.02681
5000 0.13625 0.02593 0.02596
15000 0.09638 0.02053 0.02056

Table 1: Influence of vocabulary size on the automatic
metrics

lary size should be fairly small. Therefore we set
our hypothesis as the following:

Hypothesis 1 (H1): Optimal vocabulary size is
around 10% of the unique word tokens.

During initial training experiments, we noticed a
tendency of the model to repeat the same gloss for
many different word embeddings. We speculate
that repeating such ’most popular’ glosses might
give the model higher chances of matching fre-
quently occurring words or phrases in the dataset.

In the vocabulary size optimization experiment,
we used the GRU model with 2 layers, hidden di-
mension 768, and 30 tokens limit during training.
Table 1 summarizes our results on the trial set. We
selected vocabulary size 1500 as it has the highest
BLEU scores, relatively good MoverScore and the
most promising glosses during manual evaluation.
1500 tokens are 8.3%, the result is close to 10%,
confirming hypothesis 1 experimentally.

4.2 Model size scaling
Recent trends in deep learning suggest that bigger
models increase performance on most tasks (Brown
et al., 2020; Rae et al., 2021). However, the focus in
these cited papers is given to Transformer (Vaswani
et al., 2017), Convolutional (ConvNets) or Resid-
ual networks (ResNets). Classical recurrent neural
networks (RNN) such as GRU or LSTM have been
left out of the mainstream investigation of scaling
effects. In the following experiments, we show that
scaling RNNs also gives similar positive effects
as for other network architectures. Our approach
could be formulated with the following hypothesis:

Hypothesis 2 (H2): Scaling RNNs in depth or
width improves their performance.

We summarize our experiments in tables 2, 3
and 4. The results tentatively confirm hypothesis

Layers MoverScore S-BLEU L-BLEU

1 0.11458 0.02564 0.02561
2 0.11312 0.02427 0.02426
4 0.12454 0.02548 0.02548

Table 2: Scaling GRU model layers with fixed hidden
size: 3072 dim.

Hidden MoverScore S-BLEU L-BLEU

512 0.10851 0.02439 0.02437
1024 0.10880 0.02342 0.02341
3072 0.11312 0.02427 0.02426
4096 0.11071 0.02453 0.02450

Table 3: Scaling hidden dimensions for 2 layer GRU
model.

2. We observe that no matter how one scales the
model, in width (higher hidden dimension) or depth
(more layers), the performance does increase in
both cases. Of course, these results are only for
relatively small models fitting into our compute
capacity (trained using a single Nvidia V100 GPU).

4.3 Double descent

Classical machine learning theory says that increas-
ing the model size or training time beyond some
optimum, while keeping the amount of data con-
stant, will eventually lead to the model overfitting.
(i.e., bigger models would give worse performance
than optimally sized smaller models). Recently, a
new effect was discovered (Nakkiran et al., 2019)
which contradicts, or amends, this traditional wis-
dom. The double descent effect states that increas-
ing the model size (i.e., model-wise double de-
scent) or compute resources invested into training
(i.e., epoch-wise double descent) indeed leads to
overfitting at first, but further increasing the size of
the model or the training time can, at some critical
point, reverse the trend, so that performance starts
increasing again.

During our model scaling experiments we aimed

Hidden MoverScore S-BLEU L-BLEU

1024 0.07284 0.02018 0.02014
2048 0.11915 0.02430 0.02427
3072 0.12454 0.02548 0.02548

Table 4: Scaling hidden dimensions for 4 layer GRU
model.
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Figure 1: Accuracy: Correctly predicted word tokens, assuming that all previous word tokens were correct. The
scores are calculated on the development (validation) dataset. In all cases, the hidden layer size is 3072 dim.

Figure 2: Automatic metric change during the 4-layer
model training. The scores are calculated on the trial
dataset.

to replicate the double descent effect and bring the
model quality to a new level after initial overfit-
ting. Since our compute resources were limited
and we could not scale our model size endlessly,
we investigate the following hypothesis:

Hypothesis 3 (H3): Training the GRU model
longer leads to an epoch-wise double descent ef-
fect.

For our experiments, besides automatic evalua-
tion metrics for the defmod task we introduced also
an accuracy score.

Definition 1 (Accuracy): Percent of correctly pre-
dicted tokens when all previous input tokens are
correct.

In figure 1 are 3 plots for 1-, 2- and 4-layer GRU

models. The 4-layer model shows a clear epoch-
wise double descent effect. We can also observe
that, as previously demonstrated for other kinds of
models, the effect occurs only when the model size
is big enough relative to the training set. The 1-
and 2-layer models are apparently too small for this
training set and the task complexity.

Figure 2 is for the same 4-layer model, but in
this case plotting scores on the metrics used for
the CODWOE defmod task. We can see some
correlation with the accuracy plot in figure 1, but
these metrics seem to be less sensitive overall.

In the table 5 we illustrate the continuing gloss
quality improvement according to human judge-
ment after the first accuracy spike in the automatic
metrics (epoch 5). Glosses become semantically
closer to the original word. Hence, we conclude
that hypothesis 3 is empirically confirmed.

5 Results

Our team "emukans" and "guntis" placed in the
middle of the final ranking table. However, if we in-
spect the scores in figure 3, we see that our solution
(a green line) does outperform others in some met-
rics for some languages (i.e., top score for French,
2nd for Spanish, 3rd for Russian).

Analysing our submission results, we noticed
that MoverScore can give even negative scores and
is quite variable from one example to another. The
score is generally very low if the generated gloss
length differs substantially (either too long or too
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Word Ground-truth Epoch Predicted MoverScore

scraggy Lean or thin, scrawny. 5 A slightly used to slightly. 0.11885
193 Adorned with one or more

gauntlets
0.06659

315 Ase, slender, thin . 0.12597
coal A glowing or charred piece of

coal, wood, or other solid fuel.
5 slightly; to slightly. 0.00863

193 A blust or furnished vehicle . 0.17182
315 supply with energy, especially of

a person’s size.
0.10929

beautiful Pleasant; clear. 5 having been (a person); to sug-
gest or despons.

0.11287

193 sufficient attention or thought,
especially concerning the avoid-
ance of harm.

0.03470

315 suitable or proper; extraordinary;
epic.

0.19444

thirsty Craving something. 5 having been used to suggest or
slightly.

0.04727

193 Causing by a sensation of alco-
hol or narcotics.

-0.02330

315 Causing by anger or excitement. 0.05691

Table 5: The evolution of gloss prediction during training. N.B. The word in column one is informational only, it
was not available in the train/dev datasets and was not used during training nor prediction.

Figure 3: Best MoverScore results for all participants in
all languages.

short) from the length of the ground-truth gloss,
irrespective of whether a human can perceive some
semantic alignment between the two.

Analysing the available data, we see that many of
the glosses are relatively short: up to 20 tokens (but
there are also very long examples). We conjecture
that one strategy for increasing MoverScore might

be to simply limit all generated glosses to 20 tokens
or less.

6 Conclusion

In this competition, we tried a classical recurrent
neural network approach for the CODWOE defini-
tion modeling task, and obtained positive results.

Several topics require deeper investigation. A
good metric for automatically measuring how se-
mantically close are two sentences is still an un-
solved problem. MoverScore is still too far from
human judgement. Taking into account even the
best scores for the definition modeling task, the
task is still in very early stages, and models that are
trained only on the provided data cannot generate
any practically useful outputs. This could possibly
be addressed with much larger training datasets, or
by allowing the use of external data (or of large
pretrained language models). In general, it seems
that a word semantic could not be represented us-
ing a single vector. The task requires more context
to capture the semantics. Maybe the task could be
changed to generating a gloss for a set of synonyms
or semantically close words.
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Abstract

We present the Uppsala University system for
SemEval-2022 Task 1: Comparing Dictionar-
ies and Word Embeddings (CODWOE). We ex-
plore the performance of multilingual reverse
dictionaries as well as the possibility of utiliz-
ing annotated data in other languages to im-
prove the quality of a reverse dictionary in the
target language. We mainly focus on character-
based embeddings. In our main experiment,
we train multilingual models by combining the
training data from multiple languages. In an ad-
ditional experiment, using resources beyond the
shared task, we use the training data in Russian
and French to improve the English reverse dic-
tionary using unsupervised embeddings align-
ment and machine translation. The results show
that multilingual models occasionally but not
consistently can outperform the monolingual
baselines. In addition, we demonstrate an im-
provement of an English reverse dictionary us-
ing translated entries from the Russian training
data set.

1 Introduction

In a reverse dictionary, one can look up a gloss, an
explanation of a word’s meaning, to find the most
relevant word or word form. The applications of
reverse dictionaries are numerous, as they can help
language learners in expanding their vocabulary,
authors and writers in looking for the most suitable
word, and avid cruciverbalists in taking on some of
the most challenging crosswords.

Reverse dictionary modelling has seen ap-
proaches ranging from traditional information re-
trieval using relevance scores (Zock and Bilac,
2004) to ones involving node-graph architectures
(Zhang et al., 2020). As a general rule, the quality
of a reverse dictionary appears to largely depend
on the availability of annotated data. However, an-
notated data are scarcely available and expensive to
produce for low-resource languages. We therefore

explore the viability of multilingual approaches to
improve the quality of a reverse dictionary.

This work is performed in the context of the
reversed dictionary subtask of the SemEval 2022
task 1, COmparing Dictionaries and WOrd Em-
beddings (Mickus et al., 2022). Unlike standard
reverse dictionaries, the target is to predict a word
embedding vector for each gloss, rather than a word
form. Three types of word embeddings are avail-
able: character-based embeddings (char), Skip-
grams (sgns), and contextual embeddings (electra).
No additional resources are allowed in the shared
task. In this paper, we do present additional ex-
periments, though, where we also used an external
machine translation engine. While five languages
were made available in the shared task, we mainly
focus on English, but also give some results for
Russian and French.

The main research question of this study is thus
whether the performance of a monolingual reverse
dictionary can be improved using data in other lan-
guage(s) in a low supervision setup. We first ex-
plore what are the most suitable type of embed-
dings for a Transformer-based reverse dictionary.
Having found the best-performing embeddings, we
use them to train a joint model for multilingual re-
verse dictionary, which can map glosses to words
in multiple languages. Finally, we use the training
data in French and Russian to improve the qual-
ity of an English reverse dictionary by means of
unsupervised embeddings alignment and machine
translation.

We did not submit our results in the evaluation
period since in one of the experiments we used
a pre-trained neural machine translation model,
which is prohibited in the shared task. Nevertheless,
we report the performance of our jointly trained
multilingual models on the test sets, as no addi-
tional data or pre-trained models were involved
in training. For character-level embeddings, our
best multilingual models, when tested on English,
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would rank 25th in terms of mean squared error
(MSE), 20th in terms of cosine similarity (COS),
and 9th in terms of cosine-based ranking (CRK);
on French: 22nd (MSE), 10th (COS), 3rd (CRK);
on Russian: 7th (MSE), 7th (COS), 13th (CRK).

2 Related Work

Recent research has explored bilingual and cross-
lingual reverse dictionaries, the task of which is to
map a gloss in a source language to a word in target
language. An implementation by Qi et al. (2020) in-
volved a machine translation API and bilingual dic-
tionaries to re-direct a query in the source language
through the target language pipeline. Yan et al.
(2020) implemented the first cross-lingual reverse
dictionary based on mBERT (Devlin et al., 2019),
a Transformer-based language model trained on
Wikipedia articles in 104 languages. Their study
revealed that unaligned cross-lingual reverse dic-
tionary achieves best performance when mBERT
is tuned on unaligned multilingual data; its quality
is substantially worse than that of a monolingual
model. Yan et al. (2020) thus concluded that it
remains unclear how multilingual data is to be uti-
lized to improve the quality of unaligned reverse
dictionary, which is to be explored in this project.

Joint multilingual models, which are trained on
multiple languages at once, offer a solution for low-
resource languages that often have little to none
annotated data. This has for example been explored
for dependency parsing, with positive results (Kon-
dratyuk and Straka, 2019; Smith et al., 2018).

Cross-lingual embeddings are of central impor-
tance in word meaning similarity across languages
(Jimenez et al., 2017), and are thus a crucial com-
ponent of cross-lingual reverse dictionaries. As
noted by Ruder et al. (2019), the applicability of
cross-lingual embeddings relies on their quality,
which, in turn, depends on the availability of bilin-
gual corpora and dictionaries. Nevertheless, an
unsupervised cross-lingual embeddings alignment
method proposed by Lample et al. (2018) enables
high quality cross-lingual embeddings with no or
little supervision, further allowing for unsupervised
machine translation. Unsupervised cross-lingual
embeddings alignment thus offers a solution for
both mapping the word embeddings and its glosses
from one language to another.

3 System Description

We focus on the strategies of utilizing the data in
foreign languages to improve reverse dictionary
rather than the choosing of most suitable model.
Therefore, we use the SemEval 2022 task 1 base-
line system, a Transformer-based architecture with
all parameters unchanged for all of our models.

3.1 Methodology

The methodology adopted can be divided into a
preparatory step and two main experiments. The
initial step sought to learn the most suitable type
of embeddings for a Transformer-based English
reverse dictionary. A baseline model was trained
and tested three times on each type of embedding
to learn whether there were notable deviations be-
tween the runs and the official baseline scores of
the shared task. This was done to select the best
performing type of embedding to be used in further
experiments, thus avoiding spending the computa-
tional resources on numerous models with different
embeddings.

The two main experiments build on the research
of He et al. (2017), as they investigate joint train-
ing of multilingual models as well as cross-lingual
embedding alignment. In the first experiment, the
French and Russian training sets are concatenated
to the English training set, one or both at a time.
The joint models are then trained with a joint de-
velopment set containing entries in all languages
used in training. We choose the source languages,
namely French and Russian, so as to investigate
whether the similarities between the source and tar-
get language, such as shared words, similar script,
and typological proximity can affect the perfor-
mance of a multilingual reverse dictionary.

In the second experiment, the embeddings of
source entries (in French and Russian) are firstly
aligned to the target embedding space (English)
with no supervision using the MUSE library (Lam-
ple et al., 2018). To ensure a fully unsupervised
setup, the refinement and evaluation steps involv-
ing bilingual corpora are disabled. The alignment
is conducted in five epochs using all standard pa-
rameters. In the process, the target embeddings are
anchored. Their values are not updated in order
to preserve the quality of the pre-trained embed-
dings. Secondly, the glosses of the first 4,5001 en-
tries from the now-aligned source training set are

1A relatively small number of glosses were translated due
to the limited access to the tool used for machine translation.
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Embeddings MSE σ COS σ CRK σ

sgns 1.193 0.009 0.259 0.007 0.405 0.012
char 0.156 0.014 0.810 0.003 0.469 0.003

electra 1.846 0.172 0.840 0.001 0.483 0.002

Table 1: The baseline performance of a Transformer-based English reverse dictionary trained on different types of
pre-trained embeddings, averaged over 3 runs. The standard deviation (σ) shows the fluctuation of the scores over
the three runs.

translated and attached to the target (English) train-
ing set. Since the word forms are masked in the
training data, we were unable to train an unsuper-
vised machine translation model. The glosses are
thus translated using a pre-trained neural machine
translation model, namely Watson API2. Lastly, the
translated glosses are tokenized using the spaCy
tokenizer to mirror the tokenization in the original
data sets provided by the organizers of the shared
task.

3.2 Evaluation
All models are primarily evaluated on the trial data
set. This is due to the fact that Experiment 2 used a
pre-trained machine translation model, which goes
against the rules of the contest. We, however, ad-
ditionally evaluate our jointly trained multilingual
models on the test set, as the model does not use
any additional resources.

The models were evaluated based on the three
official metrics of the shared task: mean squared
error (MSE), cosine similarity (COS), and cosine-
based ranking (CRK) (Mickus et al., 2022).

4 Results and Discussion

4.1 Choice of Embeddings
The performance of the baseline models trained
on the English training data set with different em-
beddings can be seen in Table 1. The scores are
highly similar to the baselines published by Mickus
et al. (2022) and are primarily included to estimate
the stability of the performance of a Transformer
architecture on each type of embeddings.

Individually, each type of embedding achieves
the highest score on one of the parameters, with
char achieving lowest MSE, electra securing high-
est cosine similarity, and sgns having best cosine-
based ranking. Overall, char embeddings demon-
strate the most stable and good performance across
all three parameters. The char embeddings also

2https://developer.ibm.com/components/watson-apis/

had a relatively low standard deviation between
runs for all metrics, as opposed to electra on MSE.

The results seem to have several implications.
Firstly, the three evaluation parameters favour diver-
gent information encoded by the three types of em-
beddings. Most notably, character-level informa-
tion stored in char embeddings substantially mini-
mizes MSE of the predicted embeddings of a word.
This might be because character-level embeddings
are effective in addressing out-of-vocabulary words
(Polatbilek, 2020). In other words, they seem to
enable the Transformer model to learn the map-
ping between glosses and characters that add up to
words denoting the glosses. However, such map-
ping suffers from a major limitation, as character-
level embeddings do not differentiate between the
senses of a word. Most effective in handling this
task are the contextualized embeddings (electra),
for they encode a word depending on the surround-
ing context. Depending on the context, the sense
might differ, thus leading to completely different
values in the embeddings space. It can thus be
argued that both character-level and contextual-
ized features are important for a reverse dictionary
model; an ideal solution could perhaps utilize using
both types of embeddings for fine-grained retrieval
of words.

Seeing as char embeddings had a good and sta-
ble performance overall, we further explore them
in the following experiments.

4.2 Multilingual Model

The performance of multilingual models jointly
trained for two or three languages at a time is re-
ported in Tables 2 and 3.

The multilingual models perform similarly to the
monolingual baselines. As can be seen from com-
paring the models’ performance across trial and
test sets, some differences are likely due to chance
and fall within the range of a standard deviation
reported in 1. Nevertheless, it is rather surprising
that the English reverse dictionary seems to bene-
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English (E) French (F) Russian (R)

Metric E (Base) E+F E+R E+F+R F (Base) F+E F+E+R R (Base) R+E R+E+F

MSE 0.17893 0.18897 0.14708 0.19417 0.39491 0.43406 0.51295 0.13858 0.15327 0.25199
COS 0.79591 0.78978 0.80659 0.79472 0.78361 0.77169 0.77499 0.84409 0.83503 0.83073
CRK 0.45771 0.46748 0.49775 0.48978 0.47125 0.45235 0.45225 0.42565 0.41385 0.40665

Table 2: The performance of a multilingual reverse dictionary jointly trained on char embeddings in the source and
target language evaluated on the trial set. The performance of multilingual model (joint) is reported alongside its
monolingual baseline.

English (E) French (F) Russian (R)

Metric E (Base) E+F E+R E+F+R F (Base) F+E F+E+R R (Base) R+E R+E+F

MSE 0.17893 0.22773 0.17821 0.21932 0.45808 0.50001 0.53045 0.16775 0.16075 0.24864
COS 0.79591 0.76452 0.78445 0.77336 0.77978 0.75831 0.76917 0.84044 0.83220 0.83349
CRK 0.45771 0.45639 0.46198 0.46480 0.45006 0.42284 0.43047 0.42073 0.40115 0.40776

Table 3: The performance of a multilingual reverse dictionary jointly trained on char embeddings in the source and
target language evaluated on the test set. The performance of multilingual model (joint) is reported alongside its
monolingual baseline.

fit from the Russian data more than it does from
the French data. In addition, when trained on both
English and Russian, the model performs better on
Russian.

In the case of multilingual models, it might be
productive to focus on the lack of losses rather
than the lack of gains. The results indicate that the
performance of Transformer-based English reverse
dictionary remains unaffected by both a relatively
close language (French), and a distant language
(Russian). This might be due to the fact that the
high-quality pre-trained embeddings exist in differ-
ent vector spaces. Despite the fact that the data are
concatenated, the Transformer architecture learns
to differentiate between the two and only retrieve
words from the relevant vector space.

The shared space of models like mBERT is ar-
guably the main reason why the joint tuning of
models on data in multiple languages at once leads
to best performance of a cross-lingual reverse dic-
tionary for Yan et al. (2020). Overall, it is debatable
whether there is reason to train a multilingual re-
verse dictionary on several unaligned languages.
Such a model takes longer to train and tune, oc-
cupies more space, and does not offer much apart
from the convenience of not having to switch be-
tween multiple models.

4.3 Embeddings Alignment and Machine
Translation

The last experiment involved unsupervised embed-
dings alignment and machine translation of the
glosses from source language (French and/or Rus-
sian) to target language (English). During align-
ment, the target embeddings were anchored to re-
tain the values of the pre-trained embeddings. How-
ever, due to system constraints, the target embed-
ding values changed from ten decimal points to five.
To address this and to see whether this could affect
the results in a negative way, an additional model
was trained with the restored original values (with
ten decimal points) of the embeddings in English,
while the source (French and Russian) embeddings
were kept at five decimal points. The results are
presented in Table 4 alongside the baseline results.

Alignment without translation of glosses in most
cases affected the model in a negative way, as it
only introduced noisy foreign data. However, the
machine translated glosses attached to the aligned
values from source language seemed to have a pos-
itive effect on the English reverse dictionary when
the source language was Russian. In the case of
French, the approach failed completely. The reten-
tion of the original embedding values as opposed
to the last five digits being lost led to mixed results.
Though in most cases the difference is small and
might have occurred by chance, the results could
also indicate that it is crucial for the source and tar-
get embeddings to be similar in terms of the quality
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English + French English + Russian

Metric Baseline Al Al+T Al+TR Al Al+T Al+TR

MSE 0.156 0.184 0.171 0.184 0.162 0.135 0.171
COS 0.810 0.799 0.810 0.801 0.807 0.811 0.810
CRK 0.469 0.474 0.500 0.483 0.477 0.501 0.463

Table 4: The performance of a Transformer-based English reverse dictionary trained on aligned and joined data (Al),
aligned with target embeddings cut off past five digits and machine translated glosses (Al+T), as well as aligned
with recovered target embeddings and machine translated glosses (Al+TR).

in a cross-lingual space.
A rather surprising finding of the experiment

was the improvement of an English reverse dictio-
nary using the data in Russian. Contrary to the
findings of Yan et al. (2020), a more substantial im-
provement for English was observed with a distant
source language, which uses a completely differ-
ent script. The Russian language has been previ-
ously proposed as a generally good source language
across several tasks and target languages, though
(Turc et al., 2021). As for this experiment, perhaps
the alignment produced with no supervision was of
higher quality with Russian, allowing to correctly
project the foreign source entries in the target space.
It is also possible, though unlikely, that the trans-
lations of glosses from Russian to English were of
higher quality than those of French to English.

5 Conclusions

This project has investigated whether an English
reverse dictionary can be improved using data in
foreign languages. This research question was ad-
dressed by firstly determining the most suitable
type of embeddings for a Transformer-based re-
verse dictionary. Secondly, multilingual joint mod-
els were trained to see the affects on the perfor-
mance of English as target language and two source
languages, namely French and Russian. Lastly, the
embeddings from source language were aligned to
the target embedding space, followed by machine
translation of the respective glosses.

Three key findings emerged. Firstly, character-
level features lead to best performance of an En-
glish Transformer-based reverse dictionary. Sec-
ondly, multilingual reverse dictionaries perform
comparably with monolingual ones, as no substan-
tial improvement or decline was observed. Thirdly,
an English reverse dictionary can be improved us-
ing the available data in foreign languages, such
as French and Russian, though the improvement

is rather small. In the reported experimental setup,
Russian was found to be a more suitable source lan-
guage in enhancing an English reverse dictionary.

There are numerous possible extensions of the
present study. One could, for instance, recreate the
study in a fully supervised or fully unsupervised set-
up so as to see to what extent the lack of supervision
affected the results. It would also be interesting to
investigate whether combinations of embeddings,
e.g. contextual and character-level, would lead to
better performance of reverse dictionary models.
Overall, the improvements recorded in this study
were, arguably, hardly significant. It may therefore
be productive to search for more successful ways
of using data in foreign languages in creating or
improving reverse dictionaries.
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Abstract 

This paper describes our two deep learning 

systems that competed at SemEval-2022 

Task 1 “CODWOE: Comparing 

Dictionaries and WOrd Embeddings”. We 

participated in the subtask for the reverse 

dictionary which consists in generating 

vectors from glosses. We use sequential 

models that integrate several neural 

networks, starting from Embeddings 

networks until the use of Dense networks, 

Bidirectional Long Short-Term Memory 

(BiLSTM) networks and LSTM networks. 

All glosses have been preprocessed in order 

to consider the best representation form of 

the meanings for all words that appears. We 

achieved very competitive results in reverse 

dictionary with a second position in English 

and French languages when using 

contextualized embeddings, and the same 

position for English, French and Spanish 

languages when using char embeddings. 

Our source code can be found at GitHub1. 

1 Introduction 

Distributed representations of words (or word 

embeddings)  (Bengio et al., 2003; Mikolov et al., 

2013; Pennington, Socher and Manning, 2014) 

have shown to provide useful features for various 

tasks in natural language processing (NLP) and 

computer vision. While there seems to be a 

consensus concerning the usefulness of word 

embeddings and how to learn them, this is not yet 

clear with regard to representations that carry the 

meaning of a full sentence. That is, how to capture 

 
1 https://github.com/jln-brtn/BL.Research-at-

SemEval-2022-Task-1  

the relationships among multiple words and 

phrases in a single vector remains a question to be 

solved. 

Much recent research in computational 

semantics has focused on learning representations 

of arbitrary-length phrases and sentences. The 

reverse dictionary represents one of the most 

common cases to solve this problem of learning 

sequence representations. That said, the reverse 

dictionary is the task to find the proper target word 

given the word description (Hill et al., 2016; 

Hedderich et al., 2019; Zhang et al., 2019; Yan, Li 

and Qiu, 2020). For example, the composed 

meaning of the words in a dictionary definition (A 

mixture of other substances or things) should 

correspond to the meaning of the word that define 

it (cocktail). As mentioned by Hill et al. (2016), this 

bridge between lexical and phrasal semantics is 

useful because high quality vector representations 

of single words can be used as a target when 

learning to combine the words into a coherent 

phrasal representation. 

In this paper, we present our contributions to 

solve the reverse dictionary problem using very 

specific neural architectures and applying 

supervised learning. For more information on task 

1 of SemEval-2022 as described by its organizers, 

we invite the reader to consult the paper of Mickus, 

Timothee et al. (2022). 

Our approaches require a model able of learning 

to map between arbitrary-length phrases and fixed-

length continuous-valued word vectors. For this 

purpose, we experiment with two broad classes of 

neural language models (NLMs): Recurrent Neural 

Networks (RNNs) with (Bidirectional) Long-Short 

BL.Research at SemEval-2022 Task 1: Deep networks for  

Reverse Dictionary using embeddings and LSTM autoencoders 
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Term Memory (BiLSTM and LSTM), which 

naturally encode the order of input words (or 

characters), and simpler (feedforward) lexical units 

embedding models. These lexical units can be bag-

of-words (BOW) or a sequence of characters. 

After having described in section 2 in more 

detail the problem to be solved in the SemEval-

2022 evaluation campaign and the data provided, 

we present in section 3 the previous works of 

reverse dictionary. Then, in section 4, we present 

our neural architectures with all data preprocessing 

having been performed. Thereafter, in section 5, we 

describe the experimental setup implemented 

before presenting the results in section 6 and 

concluding in section 7. 

2 Background 

2.1 Problem Description 

    The CODWOE shared task2 consists of compare 

two types of semantic descriptions: dictionary 

glosses and word embedding representations. The 

problem can be defined as follows: given a 

definition, can we generate the embedding vector 

of the target word? That said, there are several 

questions to be solved: (1) How should we 

compare two very different types of semantic 

representation? (2) Will contextualized 

embeddings help better define polysemous 

(ambiguous) words that have multiple senses? and 

(3) Can we have the same evaluation performances 

of the same neural architecture for different natural 

languages? In other words, five natural languages 

are studied in this task, namely: English, French, 

Spanish, Italian and Russian language. Our goal is 

to answer the following question: can the same 

model or the same neural network architecture be 

beneficial for all languages? 

2.2 Data Description 

The organizing members of the reverse 

dictionary task proposed different JSON files that 

contain definitions and their vector representations. 

Each JSON file describes information about a one 

natural language for a list of five languages, 

namely: French, English, Spanish, Italian and 

Russian language. The corpus is therefore 

multilingual. Before having the test corpus, the 

data have been split in different sets: trial, train, and 

development corpus. All the models we will 

 
2 https://competitions.codalab.org/competitions/34022 

present have been trained and validated on train 

and development corpus.  

Before describing the data, we can do a quick 

focus on the size of these data. As we mentioned, 

the data are split into 3 groups. For each language, 

the trial dataset contains 200 elements pairs 

(definitions and their embedding vectors), the train 

dataset contains 43,608 elements pairs, and the 

development dataset contains 6,375 elements pairs. 

Regarding the test corpus, we have 6,208 

definitions for each language. The organizers have 

provided different vector representations for the 

definitions. All these representations are 

continuous vectors (embedding vectors). They 

have 256 dimensions and are built with well-

known three techniques: 

• "char" corresponds to character-based 

embeddings, computed using an auto-

encoder on the spelling of a word. 

• "sgns" corresponds to Skip-Gram with 

negative sampling embeddings, aka. 

Word2Vec (Mikolov et al., 2013). 

• "electra" corresponds to Transformer-based 

contextualized embeddings. 

As mentioned above, all datasets of SemEval-

2022 task 1 are multilingual. This is an important 

point because we can imagine and create a system 

that manages these multilingual datasets, or several 

systems specialized in one language. We will 

explore this option in the “Experimental Setup”. 

3 Related Work  

In the field of natural language processing, word 

embeddings have been the subject of several 

research problems for many years. Indeed, a text 

contains various information, and the idea is to 

resorb the target information in a continuous vector 

representation. Embedding’s methods improve 

significatively the results against standard 

statistical approaches and justified the interest 

these last years. In order to create embeddings, the 

scientific research community is experimenting 

with two approach types: unsupervised and 

supervised learning of embeddings. 

The unsupervised approaches are the most 

common and consist in using a pretrained language 

model on a large corpus such as Word2Vec 

(Mikolov et al., 2013) or Glove (Pennington, 

Socher and Manning, 2014). From the word 
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embeddings we can obtained, we must then choose 

a technique in order to find the right combination 

of words that will best convey the desired 

information. For example, it’s possible to apply 

combinations such as: average, sum, or centroid to 

obtain a vector that reflect the representation for a 

sequence of words. We can find an example of 

centroid usage with Lwin and Nwet (2019) for 

news summarization extraction or a centroid vector 

weighted by IDF (Inverse Document Frequency) 

(Arora, Liang and Ma, 2017). 

For the supervised approaches to produce 

sequence text vector representation, the idea is 

consisting of modeling the link between a content 

and an embedding representation. The reverse 

dictionary is a common case of sequence or short 

content representation. Some state-of-the-art 

models are used to perform this task, for example 

neural networks LSTM (Sherstinsky, 2018) and 

Bert (Pre-training of Deep Bidirectional 

Transformers for Language Understanding) 

(Devlin et al., 2018). Notably in the paper of Yan, 

Li and Qiu (2020), they experiment with word 

generation from a definition using Bert 

multilingual architecture. As it’s mentioned in their 

paper, the use of a Bert model is a great idea and 

can, at least, achieves state-of-the-art performances 

for both monolingual and cross-lingual reverse 

dictionary task. Even better, the proposed 

framework here can perform cross-lingual reverse 

dictionary task without aligned data. 

We can also talk about the work of Morinaga and 

Yamaguchi (2020), Malekzadeh, Gheibi and 

Mohades (2021) which are based on a Long Short-

Term Memory (LSTM) architecture. With always 

our objective to produce a vector of a 

contextualized text, the LSTM offers great 

prospect in this field of research. Indeed, the 

recurrent neural network architecture of the LSTM 

allow models to perform on sequential data which 

is exactly our case study in this task. 

4 System Overview  

In this section, we describe the models we 

proposed in the CODWOE – Reverse dictionary 

shared task. In order to keep comparable and 

linguistically significant the results submitted by 

the different participants, the organizers of 

 
3 https://www.tensorflow.org/ 
4 https://keras.io/ 
5 https://stanfordnlp.github.io/stanza/ 

CODWOE disallowed any use of external 

resources, including standard datasets as well as 

pretrained models that could be used for this task 

(such as Word2Vec models or contextual pretrained 

models based on Transformer’s architectures like 

Bert). Given this condition, we decided to explore 

the sequential models, and particularly the LSTM 

and BiLSTM models. All the following models’ 

architecture we created are based on TensorFlow3 

and Keras4 (Chollet and others, 2015) libraries. 

4.1 Data preprocessing 

Before introducing our models, we want to 

mention that we have performed preprocessing on 

the content data. By using Stanza5 (Qi et al., 2020), 

we lemmatized all definitions and removed all 

punctuations. We decided to do this to minimize 

alternative words for the same concept and help our 

models to correctly process the vocabulary. 

To optimize our workflow, we worked on the 

data before and independently from the neural 

network architectures. In this way, we built new 

files based on the lemmatization of the main 

corpus. This process is possible because all 

languages are covered by Stanza6. 

4.2 Baseline Model  

In this section, we will introduce our first model, 

called: Baseline Model. This model is intentionally 

simple in order to create baseline scores and 

introduce manipulation on the datasets. The figure 

1 presents our first architecture. 

 

 

6https://stanfordnlp.github.io/stanza/available_models.

html  

Figure 1 : Baseline Model Architecture. 
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   As you can see on the figure 1, our model created 

with Keras contains four different layers and starts 

with the text vectorization. This first layer will 

transform the input text in a vector to be process by 

the next layers. To perform this operation, we must 

give an identifier to each different word in our 

corpus. After that, each sentence will be 

represented as a vector of identifiers. To be 

processed, the vector of a sentence must have the 

same size for all sentences. That said, we take the 

maximum sentence size (Ms in figure 1) and 

normalize all the vectors by adding zero values in 

the end. 

Now, each vector’s sentence is ready to be 

processed by the embedding layer. This layer turns 

positive integers (indexes) into dense vectors of 

fixed size. After this operation, the flatten layer will 

change the dimensionality of the data from two 

dimensions to one dimension without losing any 

value. The shape of this layer will be the 

multiplication of the two dimensions of the 

previous layer. Finally, we model the output data 

by using a fully connected layer (Dense layer) with 

256 dimensions to match with the gloss 

embeddings gave by the organizers. 

4.3 Advanced Model 

LSTMs are a Recurrent Neural Networks 

(RNN)  (Medsker and Jain, 2001) which have an 

internal memory that allows them to store the 

information learned during training. LSTMs are 

frequently used in the reverse dictionary task 

(Sherstinsky, 2018) and in word and sentence 

embeddings tasks in general (Augustyniak, 

Kajdanowicz and Kazienko, 2019; Liu et al., 

2020), as they can learn long-term dependencies 

between existing words in the sentence and thus 

compute context representation vectors for each 

word. BiLSTM for its part, is a variant of LSTMs, 

it allows a bidirectional representation of words 

(Augustyniak, Kajdanowicz and Kazienko, 2019). 

Our second model, named Advanced Model, is 

therefore a BiLSTM-LSTM network. As for the 

baseline model, we use a sequential model which 

can be provided by Keras. The figure 2 presents our 

second architecture. This last one starts with a text 

vectorization layer, followed by an Embedding 

layer and a dense layer producing vectors of the 

words passed as an input, the vectors have (length 

of the longest sentence, 128) dimensions. Then we 

added a BiLSTM layer, which takes a recurrent 

layer (the first LSTM of our network) which in turn 

takes the “merge mode” as an argument. This mode 

specifies how the forward and reverse outputs 

should be combined; in our case the average of the 

outputs is taken. 

 

 

To these three layers, we added another fully 

connected Dense layer and a LSTM layer of 256 

dimensions corresponding to the dimensions of the 

output vectors and a final Dense layer with the 

same dimensions as illustrated in figure 2. We use 

the Softmax as an activation function. For the 

hyper-parameters to train the model, we use the 

following: epochs = 10; batch size = 192; learning 

rate = 1e-3 and AdamW as an optimizer.  

5 Experimental Setup 

In this section, we describe different variants we 

tested. Since there were 3 types of vector 

representations proposed to us in this shared task, 

we used the same architectures to produce the 3 

types of vectors. However, the data format given as 

input to the model is not the same for the 3 types. 

For the ‘electra’ and ‘sgns’ representation types, we 

prepare a vocabulary containing the words of the 

glosses of the ‘training dataset’, the words of this 

vocabulary were obtained by following the 

preprocessing described in section 4.1. 

For the ‘char’ vector type, we construct a 

vocabulary of all the characters used in the glosses 

without preprocessing the data. The idea being that, 

Figure 2 : Advanced Model Architecture. 
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for the ‘char’ type representation, the model 

encodes the characters of the glosses into vectors 

and then produce the vectors encoding the glosses 

based on the vectors of the characters constituting 

the glosses. 

The model that we propose is a monolingual 

model, i.e., we trained it separately on the training 

dataset of each language provided. However, in 

order to evaluate the impact of using a multilingual 

model, we trained the same neural networks on five 

languages (with character vector) at the same time 

and compared the results obtained with those 

obtained by the monolingual models.  

For the ‘sgns’ and ‘electra’ representation types, 

we built a vocabulary containing the words of all 

glosses on the five languages, which contains in 

total 121,147 words. We did the same with the 

‘char’ vectors but with preparing a vocabulary of 

characters instead containing 405 characters, in 

total. The table 1 describes the vocabulary size for 

each monolingual model and for multilingual 

model. 

 

Model Type Language 
Vocab Type 

Words Chars 

Monolingual 

Model 

English 21,001 139 

French 24,089 170 

Spanish 29,383 229 

Italian 25,414 162 

Russian 29,289 212 

Multilingual 

Model 

All 

languages 
121,147 405 

 

Table 1: Vocabulary size of models. 

    We can see that there are common words 

between the different languages since the 

multilingual model has a vocabulary of 121,147 

words instead of 129,176. That said, there are 8,029 

common words between at least two language 

vocabularies. Moreover, we find that the 

vocabulary of the Spanish language is the best 

represented in the train dataset. 

6 Results and Analysis 

In this section, we present the performance 

results on using architectures that we described in 

section 4 and try to give clue to understand them. 

Our main goal was to outperform the organizers’ 

baseline model and results (Mickus, Timothee et 

al., 2022). 

For our first model (our baseline), the model is 

not better than the state-of-the-art models for this 

task. However, we can analyze an interesting point: 

this simple model surprisingly produces better 

results on the rank cosine (Rank) measure. To 

illustrate this remark, we can look the model results 

in table 2. On results for the MSE measure, only 3 

cases outperform the organizers’ baseline model. 

Moreover, every rank cosine measure is better. At 

this point, we can reach our first analyze, it’s hard 

to perform in the MSE and Cosine (Cos) with, at 

the same time, trying to obtain good results in Rank 

(and vice-versa). This analyze is supported by the 

following table 3 based on advanced model. 

 

Language Emb-type MSE Cos Rank 

EN 

char 0.216 0.709 0.449 

electra 1.638 0.805 0.433 

sgns 1.217 0.165 0.311 

FR 

char 0.501 0.690 0.428 

electra 1.394 0.813 0.441 

sgns 1.867 0.166 0.314 

ES 
char 0.632 0.787 0.411 

sgns 1.089 0.251 0.253 

IT 
char 0.691 0.572 0.417 

sgns 1.329 0.245 0.246 

RU 

char 0.165 0.787 0.409 

electra 0.946 0.694 0.398 

sgns 0.690 0.219 0.289 

 

Language Emb-type MSE Cos Rank 

EN 

char 0.143 0.795 0.500 

electra 1.326 0.843 0.500 

sgns 0.895 0.153 0.500 

FR 

char 0.365 0.769 0.500 

electra 1.112 0.857 0.500 

sgns 1.106 0.211 0.500 

ES 
char 0.510 0.824 0.500 

sgns 0.910 0.227 0.500 

IT 
char 0.358 0.728 0.500 

sgns 1.111 0.227 0.500 

RU 

char 0.132 0.829 0.500 

electra 0.864 0.719 0.500 

sgns 0.566 0.298 0.425 

 

With our second model, the results are 

completely opposite. We performed in MSE and 

Cosine measure. With these two measures, we’re 

Table 2: Our Baseline model results. 

Table 3: Advanced model results. 
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doing better than the organizers’ baseline model. 

On the other hand, the Rank cosine seems to be 

stuck on 0.5. We can also compare our results with 

the other participants. Our BiLSTM-LSTM 

architecture is efficient on ‘char’ and ‘electra’ 

embeddings. For example, in ‘char’ with English, 

French and Spanish languages, we obtain the 

second-best score over the seven participants in 

SemEval-2022 campaign at task 1. We can 

conclude this analyze for the advanced architecture 

with this open-ended question: Why our 

architecture performs on English, French and 

Spanish but seam to give worse results on the 

Italian and Russian languages? 

As we mentioned earlier, we tried to create a 

multilingual model. Unfortunately, after trained 

this model on all five languages and test on French 

Character embeddings, the model gave us poor 

results: 0.67 for MSE and 0.48 for Cosine measure. 

These are the worst results we’ve had in this 

competition, so we decided to drop this architecture 

and focus on the models presented in the system 

overview section. 

Given the set of results obtained, we find that the 

best cosine score was obtained by using electra 

(contextualized) vector embeddings and the best 

MSE score was obtained by using character vector 

embeddings. More generally, the use of BiLSTM-

LSTM architecture neural network has been 

beneficial in having results that surpass baselines 

when cosine and MSE are used as evaluation 

measures. 

7 Conclusion 

    In this paper, we have presented our 

contributions to solve the task 1 problem of the 

semeval-2022 evaluation campaign. We studied the 

effects of training sentence embeddings with 

supervised data by testing on five different 

languages, namely: English, French, Spanish, 

Italian and Russian language. We showed that 

models learned with char embeddings or 

contextualized embeddings can perform better than 

models learned with Skip-Gram word embeddings. 

By exploring various architectures, we showed that 

the combination of Embedding/Dense/BiLSTM/ 

Dense/LSTM layers can be beneficial than the 

simple use of Embedding layer. 

We believe that the neural architecture of our 

advanced model can be used to solve other tasks 

such as Definition Modeling (Noraset et al., 2017), 

where the objective would be to reverse the 

inputs/outputs of the model, or other natural 

language processing tasks where the objective is to 

add a specific output layer to adopt the specific 

problem like sequence classification, for example. 
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Abstract
The reverse dictionary is a sequence-to-vector
task in which a gloss is provided as input,
and the model is trained to output a seman-
tically matching word vector. The reverse
dictionary is useful in practical applications
such as solving the tip-of-the-tongue prob-
lem, helping new language learners, etc. In
this paper, we evaluate the Transformer-based
model with the added LSTM layer for the task
at hand in a monolingual, multilingual, and
cross-lingual zero-shot setting. Experiments
are conducted in five languages in the COD-
WOE dataset, namely English, French, Italian,
Spanish, and Russian. Our work partially im-
proves the current baseline of the CODWOE
competition and offers insight into the feasi-
bility of the cross-lingual methodology for the
reverse dictionary task. The code is available
at https://github.com/honghanhh/codwoe2021.

1 Introduction

The CODWOE 2021 shared task on dictionary
glosses and word embedding representations, orga-
nized as part of the SemEval workshop, presented
one of the first opportunities to systematically study
and compare these semantic descriptions by two
sub-tracks: model definition and reverse dictionary.

While definition modeling consists in using the
vector representation of e.g. “giraffe” to produce
the associated gloss, e.g. “a tall, long-necked, spot-
ted ruminant of Africa”, the reverse dictionary is
the mathematical inverse: reconstruct an embed-
ding for the word “giraffe” from the corresponding
gloss. In this paper, we dive into the reverse dic-
tionary task modelling to learn the ability to infer
word embeddings from dictionary resources.

A reverse dictionary is useful in real-world ap-
plications. First of all, it can effectively solve the
tip-of-the-tongue problem (Brown and McNeill,
1966): the inability to retrieve a word from memory.
People who suffer from this problem such as copy-
writers, novelists, researchers, students, etc. can

quickly and easily find the words they need thanks
to reverse dictionary. Furthermore, new language
learners who grasp a limited number of words can
also take advantage of the reverse dictionary to
express correctly. Besides, it plays an important
role in word selection for anomia patients (Benson,
1979), who can recognize and describe an object
but fail to name it due to neurological disorder.

The contributions of this paper are as follows:

1. We evaluate the performance of the
Transformer-based model with an additional
LSTM, BiLSTM, and the combination of
both additional layers on separate languages
as well as the performance of a multilingual
model trained on the concatenated corpus
containing text for all five given languages.

2. We analyze the effectiveness of zero-shot
learning by training the model on a partic-
ular language and apply it for prediction on
the rest.

This paper is organised as follows: Section 2
presents the related works in reverse dictionary.
Next, we introduce our methodology in Section 3,
and the experimental details in Section 4. The re-
sults are discussed in Section 5, before we conclude
and present future works in Section 6.

2 Related Work

The reverse dictionary systems tend to employ two
distinct approaches. The first approach takes ad-
vantage of sentence matching (Bilac et al., 2004;
Zock and Bilac, 2004; Méndez et al., 2013; Shaw
et al., 2011) to return the words whose dictionary
definitions are most similar to the corresponding
gloss.

The second approach focuses on neural language
models to encode the glosses into a vector repre-
sentation and returns the words with the closest
embeddings to the vector of the glosses (Hill et al.,
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Figure 1: The overall model architecture.

2016; Kartsaklis et al., 2018; Morinaga and Ya-
maguchi, 2018; Hedderich et al., 2019; Pilehvar,
2019). As a result, the performance depends largely
on the word representation’s quality. However,
many words are low-frequency and usually have
poor embeddings regarding Zipf’s law.

To tackle the above issue, a multi-channel re-
verse dictionary model has been proposed (Zheng
et al., 2020; Qi et al., 2020). The system includes a
sentence encoder (e.g. a BiLSTM (Hochreiter and
Schmidhuber, 1997), BERT (Devlin et al., 2018))
with attention (Bahdanau et al., 2014), and diverse
characteristic predictors that are useful to find the
target words with poor representations and exclude
wrong words with similar embeddings to the target
words, for example, antonyms.

In terms of production, OneLook1 and Reverse-
Dictionary2 are two successful commercial En-
glish reverse dictionary systems. However, their
architectures are undisclosed and their performance
is far from perfect. Meanwhile, open-sourced
WantWords3 (Qi et al., 2020) is a rising star with
state-of-the-art (SOTA) performance in English and
even competitive results in a cross-lingual Chinese-
English and English-Chinese setting.

3 Methodology

As the competition does not allow the use of ex-
ternal data or pretrained language models in order

1https://onelook.com/thesaurus/
2https://reversedictionary.org/
3https://wantwords.thunlp.org/

to make approaches easily comparable, we start
by experimenting with the simplest form of Trans-
former, a deep learning model that adopts the self-
attention mechanism, differentially weighting the
significance of each part of the input data. This is
also the baseline shared by CODWOE’s organiz-
ers. Then we experiment by adding an additional
LSTM layer (Model 1), BiLSTM layer (Model 2),
and combining the prediction from these two men-
tioned layers (Model 3). The overall architecture is
presented in Figure 1.

The objective of the model is to map the glosses
to the vector representation of the word that the
gloss defines. The target embeddings are learned
by a skip-gram with negative sampling (sgns) ap-
proach (word2vec). During training, the input is
the gloss, which is tokenized using the Byte Pair
Encoding (BPE) algorithm4 and then converted
into word embeddings. The positional encoding
is applied to each embedding to inject meaning-
ful information about the position of the tokens in
the sequence. After that, they are fed into a Trans-
former Encoder, which is a stack of four identical
encoder blocks. As illustrated in Figure 2, each
block includes the following layers in the same or-
der: a multi-head self-attention layer that explores
the word correlations followed by a normalization
layer (both of them are surrounded by a residual
connection), and then a linear layer followed by a
second normalization layer (both of them are also

4We employ the SentencePiece library: https://
github.com/google/sentencepiece
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surrounded by a residual connection). A dropout
layer is then added to avoid overfitting. In the
baseline model suggested by the CODWOE’s orga-
nizers, the results from the above architecture are
then passed into a linear layer to achieve the final
model.

Figure 2: Transformer encoder (Vaswani et al., 2017).

We propose three settings regarding three differ-
ent models constructed from the baseline architec-
ture. We hypothesize that with an additional LSTM
or BiLSTM layer, we can improve the modeling
of the word-level sequential context, same as in
(Wang et al., 2019), and therefore improve the per-
formance of the model. In Model 1, we add one
additional LSTM layer after the linear one. We
take advantage of the BiLSTM layer in Model 2 to
capture the information bidirectionally. We com-
bine the result from the two mentioned layers by
averaging their weights in Model 3. In the final
step, we fed the LSTM or BiLSTM outputs into a
linear layer to obtain the final vector representation.
During the prediction phase, for each new data ex-
ample, we feed the gloss into the trained model to
obtain the vector presentation similar to the sgns.

The proposed three models are first tested in
a monolingual setting, to determine which archi-
tecture achieves the best performance. Next, we
explore if the target sgns embedding spaces may al-
ready be aligned to some degree across languages,
even though the CODWOE organizers did not ex-
plicitly mention any cross-lingual alignment in the
shared task description. We first attempt a multi-
lingual experiment to examine the degree to which
training in multiple languages affects performance.
Finally, the best performing monolingual models
are tested in a zero-shot cross-lingual setting, where
we train the model in a specific language and eval-
uate it in different languages that the model has
never seen before. The implementation details are
in Section 4.2.

4 Experimental Setup

4.1 Dataset
The experiments were conducted on the dataset
from the CODWOE 2021 competition. The data
consists of glosses for five languages (English -
en, Spanish - es, French - fr, Italian - it, and Rus-
sian - ru and three different word embedding rep-
resentations for each gloss. In this paper, we focus
only on skip-gram with negative sampling (sgns)
embeddings trained on around 1 billion sentences
in total with 50% of the sentences coming from
Wikipedia, 40% coming from open subtitles, and
the rest drawn from the corpora (e.g. Wikisource,
gutenberg.org). All sentences were tokenized with
the default NLTK’s5 tokenizer.

Each language contains 3 different sets, includ-
ing the training set with 43,608 samples, the de-
velopment set with 6,375 samples, and a test set
containing 6,208 samples. Although the number of
samples for each set is distributed equally among
languages, a word can have a different number of
glosses (polysemy), and vice versa, a gloss can
belong to more than one word (synonymy).

Note that the training and development data hide
the exact words matching each gloss and only
release their sngs, char, and electra embeddings.
However, on the full test set, the words are pro-
vided.

4.2 Experimental Settings
Due to time limitations, we have not conducted
any hyperparameter search on the development
sets over the space of possible model configura-
tions, such as embedding dimension, learning rate,
weight decay, size of hidden layers, etc. Alterna-
tively, we decided to use a standard configuration
based on previous research as well as suggested by
the competition organizers for all the experiments.
The configuration is presented in Table 1.

All models were implemented with Pytorch and
trained on GPUs from Google Colab6. Further
tuning and optimization will be left for future work.

4.3 Evaluation Metrics
The performance of the reverse dictionary system
is evaluated by Mean squared error (MSE), Co-
sine similarity, and Cosine-based ranking (Dinu
and Ionescu, 2012). These are the evaluation met-
rics suggested in the CODWOE 2021 competition,

5https://www.nltk.org/
6https://colab.research.google.com/
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Table 1: Model configuration.

Settings Values

Number of heads 4
Number of encoder layers 4

Number of epoches 20
Learning rate 1e-4
Weight decay 1e-6

Drop out 0.3
Optimizer AdamW

Max length 512
Patience 5

which hereby facilitates the comparison between
our approaches and the baseline. Further details
about each evaluation metric can be found on the
CODWOE 2021 website. Here, in this research,
we aim to minimize the MSE and the cosine-based
ranking, and maximize the cosine similarity.

5 Results

The test set results of our approach on the reverse
dictionary task are presented in Table 2. We com-
pare our three different models (LSTM, BiLSTM,
and combined) with the baseline as well as with the
winning approach on this shared task. In addition,
we also present the results for a multilingual LSTM
trained in all available languages.

In terms of MSE, the performance of the
Transformer-based model with an additional LSTM
layer is the most competitive for all languages
except English when compared to our other ap-
proaches, namely BiLSTM and combined LSTM
and BiLSTM. This model surpasses the baseline
in Spanish and French according to most criteria.
Meanwhile, the combination of the LSTM and BiL-
STM layers after the Transformer encoder layer
offers the best results on the English dataset, out-
performing the baseline in terms of MSE. We also
investigate a multilingual configuration where we
train in all languages and employ the model on
each language’s test set. The results for the mul-
tilingual model are substantially lower compared
to all other monolingual settings according to the
MSE score. Compared to the best solution in the
CODWOE competition proposed by WENGSYX
team7, the gap between our solution and theirs is
on average 0.1 in terms of the MSE score.

In terms of Cosine similarity, the model with an
additional LSTM layer proves to have better perfor-
mance in English, Spanish, and French compared

7https://competitions.codalab.org/
competitions/34022#results

Table 2: The evaluation results on the test dataset. We
compare our models with additional LSTM, BiLSTM
and combined LSTM and BiLSTM with the shared task
baseline and the winning approach. We also test our
multilingual approach trained on all languages of the
train set. All the results above the baseline are in bold.

Language Model MSE Cosine Ranking

en LSTM 0.913 0.156 0.499
en BiLSTM 0.938 0.125 0.517
en combined 0.909 0.139 0.513
en multilingual LSTM 1.184 0.003 0.501
en Baseline 0.911 0.151 0.490
en #1 solution 0.862 0.243 0.329
es LSTM 0.914 0.223 0.499
es BiLSTM 1.031 0.005 0.498
es combined 0.947 0.138 0.495
es multilingual LSTM 0.978 0.207 0.452
es Baseline 0.930 0.204 0.499
es #1 solution 0.858 0.353 0.251
fr LSTM 1.123 0.216 0.498
fr BiLSTM 1.283 0.010 0.502
fr combined 1.169 0.093 0.498
fr multilingual LSTM 1.404 -0.005 0.524
fr Baseline 1.140 0.198 0.491
fr #1 solution 1.030 0.328 0.282
it LSTM 1.201 -0.010 0.500
it BiLSTM 1.287 -0.004 0.501
it combined 1.208 -0.008 0.500
it multilingual LSTM 1.305 -0.008 0.494
it Baseline 1.125 0.204 0.477
it #1 solution 1.040 0.360 0.230
ru LSTM 0.616 0.006 0.500
ru BiLSTM 0.795 -0.020 0.499
ru combined 0.650 -0.016 0.499
ru multilingual LSTM 0.934 -0.004 0.522
ru Baseline 0.577 0.253 0.490
ru #1 solution 0.528 0.424 0.187

to other tested models. This model also surpasses
the baseline model on Spanish and French test sets.
In addition, the multilingual model also achieves a
slightly better Cosine similarity than the baseline
on the Spanish test set.

In terms of Cosine ranking, all models demon-
strate a slightly higher ranking in comparison to
the baseline on the Spanish test set, with the multi-
lingual model achieving the best ranking. In other
languages, the baseline model performs the best.

Overall, training the additional LSTM layer on a
multilingual training set does not seem to improve
the results compared to the monolingual settings,
the only exception being the performance of the
multilingual model on the Spanish test set in terms
of Cosine ranking.

Given the fact that the Transformer-based model
with an additional LSTM performs the best in a
monolingual setting, we use this model for the
zero-shot cross-lingual experiments. The results
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Table 3: Cross-lingual zero-shot evaluation on test set.

Train set Metrics en es fr it ru

en
MSE 0.913 0.914 1.208 1.201 0.616

Cosine 0.156 0.223 -0.020 -0.010 0.006
Ranking 0.499 0.499 0.500 0.500 0.500

es
MSE 0.963 0.914 1.208 1.201 0.616

Cosine -0.004 0.223 -0.020 -0.010 0.006
Ranking 0.501 0.499 0.500 0.500 0.500

fr
MSE 0.962 0.916 1.123 1.198 0.615

Cosine -0.004 0.215 0.216 -0.005 0.002
Ranking 0.500 0.499 0.498 0.499 0.501

it
MSE 0.962 0.916 1.208 1.201 0.615

Cosine -0.004 0.215 -0.024 -0.010 0.002
Ranking 0.501 0.499 0.501 0.500 0.501

ru
MSE 0.964 0.913 1.204 1.196 0.616

Cosine -0.004 0.222 -0.021 -0.010 0.006
Ranking 0.501 0.500 0.500 0.500 0.500

for these experiments are displayed in Table 3. The
first column indicates the language used for train-
ing and development, the second column displays
the evaluation metrics including MSE, Cosine sim-
ilarity, and Cosine ranking. The rest demonstrate
the evaluation results of each metric on a specific
test dataset per language. For example, in the first
row where the training set is en, we train on the
English training and development set and predict
each of the five language’s test sets.

In general, if the model is trained on a language
matching the language of the test data, it performs
better except in the French corpus. However, the in-
teresting exception is that, for example, the Spanish
test set, on which all models, no matter on which
language they were trained, offer very consistent
performance according to all measures. It is also
interesting that the models trained in English and
Spanish have exactly the same results on French,
Italian, and Russian test sets. This might suggest
that these models were not able to make sense of
the examples in the test set and that their perfor-
mance is on par with a random baseline. Further
analysis of this behavior will be left for the future.

6 Conclusion

In this paper, we have investigated the performance
of monolingual and multilingual Transformer-
based models on the reverse dictionary problem, a
sequence-to-vector task where a word representa-
tion needs to be constructed from the correspond-
ing gloss. We have experimented with two addi-
tions to the original architecture, namely adding
either an additional LSTM or a BiLSTM layer on
top of the original architecture. We have also ex-

plored whether combining these two architectures
improves the performance. Besides that, we ex-
plored the cross-lingual performance of the mono-
lingual models and compared them to monolingual
and multilingual classifiers.

On the task of reconstructing sgns embeddings,
the monolingual Transformer-based model with an
additional LSTM layer in most cases offers the best
performance for English, Spanish, and French ac-
cording to MSE and Cosine similarity. The model
also offers competitive performance in terms of
MSE for Italian and Russian compared to the base-
line. Therefore, the results to some extent confirm
the initial hypothesis that with an additional LSTM
layer, we can improve the modeling of the word-
level sequential context. Nevertheless, the improve-
ments are worse than expected and the multilingual
and zero-shot experiments yield unexpected results
that require further analysis. We can therefore sum-
marize our findings by saying that the reverse dic-
tionary task of restoring sgns embeddings seems to
be very challenging, and none of our models (and
also other models in the competition) were able
to successfully solve it, at least according to the
scores achieved during the competition.

This means that there remains a lot of room for
improvement. In the future, we would like to in-
vestigate the effect of different text representations
on the performance of the model, e.g., by feeding
the model graph representations. Combinations of
several text representations will also be explored.
Furthermore, the effectiveness of multilingual mod-
els compared to monolingual ones should be addi-
tionally explored. Despite zero-shot learning not
working well in our studies, it is worth evaluating
the performance of one-shot learning and few-shot
learning with the hypothesis that the models can
understand new concepts from only one or a few ex-
amples. Further experiments on the topic of adapt-
ing the Transformer architecture for the specific
task at hand will also be conducted.
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Abstract
This paper presents the shared task on Mul-
tilingual Idiomaticity Detection and Sentence
Embedding, which consists of two Subtasks:
(a) a binary classification task aimed at identi-
fying whether a sentence contains an idiomatic
expression, and (b) a task based on semantic
text similarity which requires the model to ade-
quately represent potentially idiomatic expres-
sions in context. Each Subtask includes differ-
ent settings regarding the amount of training
data. Besides the task description, this paper
introduces the datasets in English, Portuguese,
and Galician and their annotation procedure,
the evaluation metrics, and a summary of the
participant systems and their results. The task
had close to 100 registered participants organ-
ised into twenty five teams making over 650
and 150 submissions in the practice and evalu-
ation phases respectively.

1 Introduction

Multiword Expressions (MWEs) are a challenge
for natural language processing (NLP), as their
linguistic behaviour (e.g., syntactic, semantic) dif-
fers from that of generic word combinations (Bald-
win and Kim, 2010; Ramisch and Villavicencio,
2018). Moreover, MWEs are pervasive in all do-
mains (Biber et al., 1999), and it has been estimated
that their size in a speaker’s lexicon of any language
is of the same order of magnitude as the number of
single words (Jackendoff, 1997; Erman and Warren,
2000), thus being of crucial interest for language
modelling and for the computational representation
of linguistic expressions in general.

One distinctive aspect of MWEs is that they fall
on a continuum of idiomaticity (Sag et al., 2002;
Fazly et al., 2009; King and Cook, 2017), as their
meaning may or may not be inferred from one of
their constituents (e.g., research project being a
type of ‘project’, vs. brass ring meaning a ‘prize’).

In this regard, obtaining a semantic representation
of a sentence which contains potentially idiomatic
expressions involves both the correct identification
of the MWE itself, and an adequate representation
of the meaning of that expression in that particular
context. As an example, it is expected that the
representation of the expression big fish will be
similar to that of important person in an idiomatic
context, but closer to the representation of large
fish when conveying its literal meaning.

Classic approaches to representing MWEs ob-
tain a compositional vector by combining the rep-
resentations of their constituent words, but these
operations tend to perform worse for the idiomatic
cases. In fact, it has been shown that the degree of
idiomaticity of a MWE can be estimated by mea-
suring the distance between a compositional vector
(obtained from the vectors of its components) and a
single representation learnt from the distribution of
the MWE in a large corpus (Cordeiro et al., 2019).

Recent approaches to identify and classify
MWEs take advantage of the contextualised repre-
sentations provided by neural language models. On
the one hand, some studies suggest that pre-training
based on masked language modeling does not prop-
erly encode idiomaticity in word representations
(Nandakumar et al., 2019; Garcia et al., 2021b,a).
However, as these embeddings encode contextual
information, supervised approaches using these rep-
resentations tend to obtain better results in different
tasks dealing with (non-)compositional semantics
(Shwartz and Dagan, 2019; Fakharian and Cook,
2021; Zeng and Bhat, 2021).

As such, this shared task1,2 presents two Sub-
tasks: i) Subtask A, to test a language model’s

1Task website: https://sites.google.com/view/semeval
2022task2idiomaticity

2GitHub:https://github.com/H-
TayyarMadabushi/SemEval_2022_Task2-idiomaticity
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ability to detect idiom usage, and ii) Subtask B, to
test the effectiveness of a model in generating rep-
resentations of sentences containing idioms. Each
of these Subtasks are further presented in two set-
tings: Subtask A in the Zero Shot and One Shot
settings so as to evaluate models on their ability to
detect previously unseen MWEs, and Subtask B in
the Pre Train and the Fine Tune settings to evalu-
ate models on their ability to capture idiomaticity
both in the absence and presence of training data.
Additionally, we provide strong baselines based
on pre-trained transformer-based language models
and release our codetr which participants can build
upon.

2 Related Tasks

The computational treatment of MWEs has been
of particular interest for the NLP community, and
several shared tasks with different objectives and
resources have been carried out.

The SIGLEX-MWE Section3 has organised var-
ious shared tasks, starting with the exploratory
Ranking MWE Candidates competition at the
MWE 2008 Workshop, aimed at ranking MWE
candidates in English, German and Czech.4 More
recently, together with the PARSEME community,
they have conducted three editions of a shared task
on the automatic identification of verbal MWEs
(Savary et al., 2017; Ramisch et al., 2018, 2020).
In these cases, the objective is to identify both
known and unseen verb-based MWEs in running
text and to classify them under a set of predefined
categories. Interestingly, these PARSEME shared
tasks provide annotation guidelines and corpora
for 14 languages, and include 6 categories (with
additional subclasses) of verbal MWEs.

The Detecting Minimal Semantic Units and their
Meanings (DiMSUM 2016) shared task (Schneider
et al., 2016) consisted of the identification of mini-
mal semantic units (including MWEs) in English,
and labelling some of them according to a set of
semantic classes (supersenses).

Focused on the interpretation of noun com-
pounds, the Free Paraphrases of Noun Compounds
shared task of SemEval 2013 (Hendrickx et al.,
2013) proposed to generate a set of free paraphrases
of English compounds. The paraphrases should be
ranked by the participants, and the evaluation is

3https://multiword.org/
4http://multiword.sourceforge.net/

mwe2008

performed comparing these ranks against a list of
paraphrases provided by human annotators.

Similarly, the objective of the SemEval 2010
shared task on The Interpretation of Noun Com-
pounds Using Paraphrasing Verbs and Preposi-
tions (Butnariu et al., 2010) was to rank verbs and
prepositions which may paraphrase a noun com-
pound adequately in English (e.g., olive oil as ‘oil
extracted from olive’, or flu shot as ‘shot to prevent
flu’).

Apart from these competitions, various studies
have addressed different tasks on MWEs and their
compositionality, such as: classifying verb-particle
constructions (Cook and Stevenson, 2006), iden-
tifying light verb constructions and determining
the literality of noun compounds (Shwartz and Da-
gan, 2019), identifying and classifying idioms in
running text (Zeng and Bhat, 2021), as well as
predicting the compositionality of several types of
MWEs (Lin, 1999; McCarthy et al., 2003; Reddy
et al., 2011; Schulte im Walde et al., 2013; Salehi
et al., 2015).

3 Dataset Creation

The dataset used in this task extends that introduced
by Tayyar Madabushi et al. (2021), also including
Galician data along with Portuguese and English.
Here we describe the four step process used in
creating this dataset.

The first step was to compile a list of 50 MWEs
across the three languages. We sourced the MWEs
in English and Portuguese from the Noun Com-
pound Senses dataset (consisting of adjective-noun
or noun-noun compounds) (Garcia et al., 2021b),
which extends the dataset by Reddy et al. (2011)
and provides human-judgements for compositional-
ity on a Likert scale from 0 (non-literal/idiomatic)
to 5 (literal/compositional). To ensure that the test
set is representative of different levels composition-
ality, we pick approximately 10 idioms at each level
of compositionality (0-1, 1-2, . . . ). For Galician,
we extracted noun-adjective compounds from the
Wikipedia and the CC-100 corpora (Wenzek et al.,
2020) using the following procedure: First, we
identified those candidates with at least 50 occur-
rences in the corpus. They were randomly sorted,
and a native speaker and language expert of Gali-
cian selected 50 compounds from the list. The lan-
guage expert was asked to take into account both
the compositionality of the compounds (including
idiomatic, partly idiomatic, and literal expressions),
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and their ambiguity (trying to select potentially id-
iomatic examples, i.e. compounds which can be
literal or idiomatic depending on the context).

In the second step of the dataset creation pro-
cess, in English and Portuguese, annotators were
instructed to obtain between 7 and 10 examples for
each possible meaning of each MWE from news
stories available on the web, thus giving between
20 and 30 total examples for each MWE. Each
example consisted of three sentences: the target
sentence containing the MWE and the two adjacent
sentences. Annotators where explicitly instructed
to select high quality examples, where neither of
the two adjacent sentences were empty and, prefer-
ably, from the same paragraph. They were addi-
tionally required to flag examples containing novel
meanings, so such new meanings of MWEs could
be incorporated into the dataset. Sentences contain-
ing MWEs in Galician were directly obtained from
the Wikipedia and the CC-100 corpora due to the
sparsity of Galician data on the web. During this
annotation step, we follow the method introduced
by Tayyar Madabushi et al. (2021), and add two
additional labels: ‘Proper Noun’ and ‘Meta Usage’.
‘Meta Usage’ represents cases wherein a MWE is
used literally, but within a metaphor (e.g. life vest
in “Let the Word of God be our life vest to keep us
afloat, so as not to drown.”).

In the third phase, across all three languages,
each possible meaning of each MWE was assigned
a paraphrase by a language expert. For example,
the compositional MWE mailing list had the as-
sociated paraphrase ‘address list’ added, whereas
the idiomatic MWE elbow room had the associated
paraphrases ‘joint room’, ‘freedom’ and ‘space’
added to correspond to each of its possible mean-
ings. Language experts focused on ensuring that
these paraphrases were as short as possible, so the
resultant adversarial paraphrases could be used to
evaluate the extent to which models capture nu-
anced differences in each of the meanings.

The final phase of the process involved the anno-
tation of each example with the correct paraphrase
of the relevant MWE. This was carried out by two
annotators, and any disagreements were discussed
(in the case of Galician, in the presence of a lan-
guage expert) and cases where annotators were not
able to agree were discarded.

3.1 The Competition Dataset

We use the training and development splits from
Tayyar Madabushi et al. (2021) with the addition
of Galician data, and use the test split released
by them as the evaluation split during the initial
practice phase of the competition. We create an
independent test set consisting of examples with
new MWEs, and this set was used to determine the
teams’ final rankings. The labels for the evaluation
and test sets are not released. We note that the
competition is still active (in the ‘post-evaluation’
phase), and open for submissions from anyone5.

Since one of the goals of this task is to measure
the ability of models to perform on previously un-
seen MWEs (Zero Shot) and on those for which
they have very little training data (One Shot), we
extract, where available, exactly one idiomatic and
one compositional example associated with each
MWE in the test data, which is released as associ-
ated One Shot training data.

The final dataset consisted of 8,683 entries and
the breakdown of the dataset is shown in Table 1.
For further details on the training, development and
practice evaluation splits, we direct readers to the
work by Tayyar Madabushi et al. (2021). It should
be noted that this original dataset does not contain
data from Galician and so the only training data
available in Galician was the One Shot training
data. This was to evaluate the ability of models to
transfer their learning across languages, especially
to one that is low resourced.

Language
Split English Portuguese Galician All
train 3487 1290 63 4840
dev 466 273 0 739
eval 483 279 0 762
test 916 713 713 2342
All 5352 2555 776 8683

Table 1: Breakdown of the full dataset by language and
data split.

4 Task Description and Evaluation
Metrics

SemEval-2022 Task 2 aims to stimulate research
into a difficult area of NLP, that of handling non-
compositional, or idiomatic, expressions. Since
this is an area of difficulty for existing language

5https://competitions.codalab.org/
competitions/34710

109



models, we introduce two Subtasks; the first Sub-
task relates to idiomaticity detection, whilst the sec-
ond relates to idiomaticity representation, success
in which will require models to correctly encode id-
iomaticity. It is hoped that these tasks will motivate
the development of language models better able
to handle idiomaticity. Since we wish to promote
multilingual models, we require all participants to
submit results across all three languages. Both Sub-
tasks are available in two settings, and participants
are given the flexibility to choose which settings
they wish to take part in.

4.1 Subtask A: Idiomaticity Detection
The first Subtask is a binary classification task,
where sentences must be correctly classified into
‘idiomatic’ (including ‘Meta Usage’) or ‘non-
idiomatic’ / literal (including ‘Proper Noun’). Each
example consists of the target sentence and two con-
text sentences (sourced from either side of the tar-
get sentence) along with the relevant MWE. Some
examples from this Subtask are shown in Table 2.

This Subtask is available in two settings: Zero
Shot and One Shot. In the Zero Shot setting, the
MWEs in the training set are disjoint from those
in the development and test sets. Success in this
setting will require models to generalise to unseen
MWEs at inference time. In the One Shot setting,
we include in the training set one idiomatic and one
non-idiomatic example for each MWE in the devel-
opment and test sets. This breakdown is shown in
Table 3.

We use macro F1 score between the gold labels
and predictions as the evaluation metric for this
Subtask, due to the imbalanced datasets.

4.2 Subtask B: Idiomaticity Representation
The second Subtask is a novel idiomatic semantic
textual similarity (STS) task, introduced by Tay-
yar Madabushi et al. (2021), where, given two in-
put sentences, models must return an STS score
between 0 (least similar) and 1 (most similar), indi-
cating the similarity of the sentences. This requires
models to correctly encode the meaning of non-
compositional MWEs (idioms) such that the encod-
ing of a sentence containing an idiomatic phrase
(e.g. “I initially feared that taking it would make
me a guinea pig.”) and the same sentence with the
idiomatic phrase replaced by a (literal) paraphrase
(e.g. “I initially feared that taking it would make me
a test subject.”) are semantically similar to each
other. Notice also that these two sentences, which

mean the same thing, must necessarily be equally
similar to any other third sentence. We choose this
third sentence to be the sentence with the idiomatic
phrase replaced by an incorrect literal paraphrase
(e.g. “I initially feared that taking it would make
me a pig.”). Such a sentence is the ideal adversarial
example, and ensures that we test if models are
making use of an incorrect meaning of the MWE
in constructing a sentence representation.

Data for this Subtask is generated in the fol-
lowing manner: MWEs in sentences are replaced
by the literal paraphrase of one of its associated
meanings. For example, the MWE ‘guinea pig’ in
the sentence “I initially feared that taking it would
make me a guinea pig.” is replaced by one of the
literal paraphrases ‘test subject’ or ‘pig’ (see Ta-
ble 4). Crucially, these replacements can either be
with the correct paraphrase, or one that is incorrect.
As such, there are two cases:

• The MWE has been replaced by its correct
paraphrase. In this case, the similarity should
be 1.
sim(E,E→c) = 1

• The MWE has been replaced by its incorrect
paraphrase. In this case, we require the model
to give equivalent semantic similarities be-
tween this and the sentence where the MWE
has been replaced by its correct paraphrase,
and this and the original sentence.
sim(E,E→i) = sim(E→c, E→i)

Importantly, the task requires models to be con-
sistent. Concretely, the STS score for the similarity
between a sentence containing an idiomatic MWE
and that same sentence with the MWE replaced
by the correct paraphrase must be equal to one as
this would imply that the model has correctly in-
terpreted the meaning of the MWE. In the case
where we consider the incorrect paraphrase, we
check for consistency by requiring that the STS
between the sentence containing the MWE and a
sentence where the MWE is replaced by the incor-
rect paraphrase is equal to the STS between the
sentence where the MWE is replaced by the correct
paraphrase and one where it is replaced by the in-
correct one. Notice, that all this does, is to require
the model to, once again, interpret the meaning of
the MWE to be the same (or very similar) to the
correct literal paraphrase of that MWE. More for-
mally, we require models to output STS scores for
each example E such that:
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Language MWE Sentence Label
English old hat Serve our favorite bourbon whiskeys in an old hat and we’d still probably take a sip

or two.
1

English old hat But not all of the accouterments of power are old hat for the president. 0
Portuguese força bruta Força Bruta vai reunir alguns dos homens mais fortes do mundo. 1
Portuguese força bruta Gardner é conhecido por ser impulsivo e usar os poderes com grande impacto, de

forma instintiva, com força bruta.
0

Galician porta grande Á esquerda da porta grande, en terra, observamos a tumba de “Don Manuel López
Vizcaíno.

1

Galician porta grande Os dous dominadores da Copa Galicia 2017 regresaron pola porta grande ao certame
autonómico na súa quinta xornada.

0

Table 2: Examples for Subtask A. Note that the label 1 is assigned to non-idiomatic usage, which includes proper
nouns, as in the Portuguese example.

Language
Train Split MWEs English Portuguese Galician All
Zero Shot 236 3327 1164 0 4491
One Shot 250 160 126 63 349
Total 486 3487 1290 63 4840

Table 3: Breakdown of the training data into zero shot
and one shot. Note that the MWEs in the zero shot and
one shot data are disjoint.

∀i∈I
(
sim(E,E→c) = 1;

sim(E,E→i) = sim(E→c, E→i)
) (1)

In Equation 1 above, E→c represents an example
containing the MWE E, wherein that MWE is re-
placed by its correct contextual paraphrase. E→i
on the other hand, represents the example wherein
the MWE E is replaced by one of its incorrect con-
textual paraphrases. Examples for this Subtask are
shown in Table 4.

Since this task relies on models’ ability to cor-
rectly assign STS scores for sentences with do not
contain idiomatic MWEs, we additionally include
standard STS data in our test data. This has the
added benefit of preventing models from overfit-
ting on the MWE dataset. We include this STS
evaluation data from the STS Benchmark dataset
(Cer et al., 2017) in English and the ASSIN2 STS
dataset (Real et al., 2020) in Portuguese. There
is no available STS data for Galician, so none is
included. We use the Spearman’s rank correlation
coefficient between the two sets of STS scores gen-
erated by models as the evaluation metric in this
Subtask. We do not use Pearson correlation as it
has been shown to be a poor indicator of perfor-
mance on STS tasks (Reimers et al., 2016).

This Subtask is also available in two settings: the
Pre Train setting and the Fine Tune setting. In the

Pre Train setting, we require that models are not
trained on idiomatic STS data. However, models
can be trained (including “fine-tuned”) on any other
training objective (such as during the pre-training
of language models). The Fine Tune setting, on the
other hand, allows all training regimes, including
the fine-tuning on any idiomatic STS dataset.

4.3 Baselines

In order to generate baseline results, we used pre-
trained transformer-based (Vaswani et al., 2017)
language models. We use multilingual BERT (De-
vlin et al., 2019) to benefit from cross-lingual trans-
fer. For both settings in Subtask A, we simply Fine
Tune the pre-trained model on the training data
provided. For the Zero Shot setting, we include
the context sentences, whereas in the One Shot set-
ting, we exclude the context sentences but add the
MWE as a second sentence. This is based on the
best-performing approaches found by Tayyar Mad-
abushi et al. (2021).

For Subtask B Pre Train, we introduce single
tokens for each MWE in the data. This is moti-
vated by the ‘idiom principle’ (Sinclair and Sinclair,
1991), which hypothesises that humans process id-
ioms by treating them as a single unit. Since BERT
embeddings cannot be directly used for STS, we
create a sentence transformer model (Reimers and
Gurevych, 2019) using multilingual BERT with
these added tokens, and train it on the English and
Portuguese STS data. Importantly, the new tokens
introduced for MWEs are randomly initialised and
no continued pre-training is performed. As such,
they serve to ‘break compositionality’ rather than
to create more effective representations of MWEs.
This breaking of compositionality has been shown
to be effective by Tayyar Madabushi et al. (2021).

For the Fine Tune setting, the same approach
is taken, although no training is done on the STS
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Sentence (E) Correct Replacement (EMWE→c) Wrong Replacement (EMWE→i) Expected
And finally, the snow falls
again, this time in a thick, wet
blanket that encapsulates ev-
erything.

And finally, the snow falls
again, this time in a thick,
damp blanket that encapsu-
lates everything.

And finally, the snow falls
again, this time in a thick,
killjoy that encapsulates every-
thing.

sim(E,E→c) = 1
sim(E,E→i) = sim(E→c, E→i)

I initially feared that taking it
would make me a guinea pig.

I initially feared that taking it
would make me a test subject.

I initially feared that taking it
would make me a pig.

sim(E,E→c) = 1
sim(E,E→i) = sim(E→c, E→i)

Table 4: Examples for Subtask B. For brevity we only include examples in English.

data, and instead we Fine Tune on the training
data provided. This lack of training on the STS
data is intentional as we intend to establish the
effectiveness of the MWE based training data, and
are reflected by the comparatively lower scores on
the STS subsection of the test data (Table 8).

It should be noted that these baseline methods
that make use of multilingual BERT are particu-
larly strong when compared to typical ‘baselines’.
This is intentional as we aim to promote the de-
velopment of models that are comparable to the
current state-of-the-art.

5 Participating Systems and Results

Twenty five teams in total participated, with the
most participants to Subtask A Zero Shot (20). The
results for the individual Subtasks are given in Ta-
ble 5, Table 6, Table 7 and Table 8. Here we discuss
the methods used by the best-performing teams as
well as some interesting approaches. Full details
of methods used by participants is given in Ap-
pendix A.

5.1 Subtask A Zero-Shot

Of the twenty teams that submitted to this setting,
12 reported using transformer-based approaches.
The best-performing team (clay) used different
masking strategies during pretraining, and per-
formed finetuning with data augmentation (includ-
ing back-translation, Edunov et al., 2018) as well
as using soft-label finetuning (a knowledge distil-
lation approach). The team in second (yxb) used a
multilingual T5 model (Xue et al., 2021) with vari-
ous data augmentation techniques including: back-
translation; synonym replacement; random inser-
tion, swap, and deletion. They also used an alterna-
tive loss function for unbalanced data, called focal
loss (Lin et al., 2017). The third team (NER4ID;
Tedeschi and Navigli, 2022) used a dual-encoder ar-
chitecture to encode the MWE and its context, then
predicted idiomaticity by looking at the similarity
score. This approach has a precedent in previous

work that hypothesises the semantic similarity be-
tween a MWE and its context to be a good indicator
of idiomaticity (Liu and Hwa, 2018). They also im-
plemented named entity recognition as an interme-
diate step which they found provided great improve-
ments. Interestingly, two teams (UAlberta; Hauer
et al., 2022, and Unimelb_AIP) used unsupervised
approaches, i.e. not using any of the provided train-
ing data. UAlberta were able to beat the baseline
using translation information from resources such
as Open Multilingual Wordnet (Bond and Foster,
2013) and BabelNet (Navigli and Ponzetto, 2010).
They hypothesised that for idiomatic MWEs, the in-
dividual words are less likely to share mult-synsets
with their translations. They also used a POS tagger
for identifying proper nouns.

5.2 Subtask A One Shot

The best-performing team (HIT; Chu et al., 2022)
used XLM-R (Conneau et al., 2020), and added
‘[SEP]’ tokens around the relevant MWE in the
target sentence, unless it was capitalised, in which
case they excluded these tokens. This is an alter-
native approach to that of Tayyar Madabushi et al.
(2021), where the MWEs were added as a second
sentence. They also used R-Drop (Wu et al., 2021)
as a regularisation method. The second best team
(kpfriends; Sik Oh, 2022) used an ensemble of
checkpoints with soft-voting. They also started
with XLM-RoBERTa (large) trained on CoNLL.
Interestingly, this team had the largest difference
in performance across the two settings of Subtask
A (coming in 16th in the Zero Shot setting). The
third best team (UAlberta; Hauer et al., 2022) used
a transformer-based classifier with additional fea-
tures of glosses for the individual words of the rele-
vant MWE. They hypothesised that this would help
for determining compositionality, since the mean-
ing of compositional MWEs could be deduced from
the glosses of the individual words. An interesting
approach was taken by MaChAmp (van der Goot,
2022), who used multi-task learning across multi-
ple SemEval tasks (2, 3, 4, 6, 10, 11, 12), pretrain-
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Language
Ranking Team English Portuguese Galician All

1 clay 0.9016 0.8277 0.9278 0.8895
2 yxb 0.8948 0.8395 0.7524 0.8498
3 NER4ID (Tedeschi and Navigli, 2022) 0.8680 0.7039 0.6550 0.7740
4 HIT (Chu et al., 2022) 0.8242 0.7591 0.6866 0.7715
5 Hitachi (Yamaguchi et al., 2022) 0.7827 0.7607 0.6631 0.7466
6 OCHADAI (Pereira and Kobayashi, 2022) 0.7865 0.7700 0.6518 0.7457
7 yjs 0.8253 0.7424 0.6020 0.7409
8 CardiffNLP-metaphors (Boisson et al., 2022) 0.7637 0.7619 0.6591 0.7378
9 Mirs 0.7663 0.7617 0.6429 0.7338

10 Amobee 0.7597 0.7147 0.6768 0.7250
11 HYU (Joung and Kim, 2022) 0.7642 0.7282 0.6293 0.7227
12 Zhichun Road (Cui et al., 2022) 0.7489 0.6901 0.5104 0.6831
13 海鲛NLP 0.7564 0.6933 0.5108 0.6776
14 UAlberta (Hauer et al., 2022) 0.7099 0.6558 0.5646 0.6647
15 Helsinki-NLP (Itkonen et al., 2022) 0.7523 0.6939 0.4987 0.6625
16 daminglu123 (Lu, 2022) 0.7070 0.6803 0.5065 0.6540

baseline (Tayyar Madabushi et al., 2021) 0.7070 0.6803 0.5065 0.6540
17 kpfriends (Sik Oh, 2022) 0.7256 0.6739 0.4918 0.6488
18 Unimelb_AIP 0.7614 0.6251 0.5020 0.6436
19 YNU-HPCC (Liu et al., 2022) 0.7063 0.6509 0.4805 0.6369
20 Ryan Wang 0.5972 0.4943 0.4608 0.5331

N/A JARVix (Jakhotiya et al., 2022)6 0.7869 0.7201 0.5588 0.7235

Table 5: Results for Subtask A Zero Shot. The evaluation metric is macro F1 score, and the ranking is based on the
‘All’ column.

ing a Rebalanced mBERT (RemBERT) (Chung
et al., 2020) model across all of the tasks, then re-
training a model for each specific task. Since for
this task we do not allow the use of additional data,
we do not include this team in the ranking, but their
score is reported for reference.

5.3 Subtask B Pre Train

No teams reported using non-transformer-based
approaches for this setting. The best-performing
team (drsphelps; Phelps, 2022) used a modifica-
tion of the baseline with BERT for Attentive Mim-
icking (BERTRAM) (Schick and Schütze, 2020)
to generate embeddings as replacements for the
randomly-initialised one token embeddings used
by the baseline. This method takes both form and
context into account, thus not assuming total non-
compositionality as the one-token method does. It
should be noted that every team in this setting im-
proved upon the baseline result.

5.4 Subtask B Fine Tune

No teams reported using non-transformer-based
approaches for this setting. The best-performing
team (YNU-HPCC; Liu et al., 2022) used a pre-
trained Sentence-BERT (Reimers and Gurevych,

6Not ranked due to only submitting to the ‘post-evaluation’
phase.

2019) model, then finetuned using multiple neg-
atives ranking loss (Henderson et al., 2017) and
triplet loss. The second best team (drsphelps;
Phelps, 2022) used an identical approach to that
in Subtask B Pre Train, using BERTRAM (Schick
and Schütze, 2020), with additional finetuning on
the training data provided. The third best team (Eat
Fish) used a multilingual model pretrained with
knowledge distillation, as well as data augmenta-
tion.

5.5 Overview of Submissions

In Figure 1 we show the models that were men-
tioned in the submissions.

The majority of participants used transformer-
based approaches, although in both settings for
Subtask A there were three teams using other ap-
proaches. In Subtask B, as mentioned previously,
no non-transformer approaches were mentioned,
which is expected since this task was designed for
the pretrain-finetune paradigm.

In Figure 2 we show the methods mentioned
in more than one submission. Data augmenta-
tion approaches were popular, the most frequently-
mentioned being back-translation (Edunov et al.,
2018). Equally as popular were approaches using
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Language
Ranking Team English Portuguese Galician All

1 HIT (Chu et al., 2022) 0.9639 0.8944 0.9369 0.9385
2 kpfriends (Sik Oh, 2022) 0.9606 0.8993 0.9215 0.9346
3 UAlberta (Hauer et al., 2022) 0.9453 0.8918 0.9120 0.9243
4 Zhichun Road (Cui et al., 2022) 0.9344 0.8559 0.8927 0.9033
5 clay 0.9181 0.8423 0.9313 0.9022
6 YNU-HPCC (Liu et al., 2022) 0.9179 0.8633 0.8781 0.8948
7 CardiffNLP-metaphors (Boisson et al., 2022) 0.9464 0.8385 0.8545 0.8934
8 yxb 0.8995 0.8266 0.8781 0.8779
9 NER4ID (Tedeschi and Navigli, 2022) 0.9079 0.8179 0.8695 0.8771

10 HYU (Joung and Kim, 2022) 0.9159 0.8457 0.8287 0.8750
11 yjs 0.9199 0.8365 0.8294 0.8747

baseline (Tayyar Madabushi et al., 2021) 0.8862 0.8637 0.8162 0.8646
12 Mirs 0.7570 0.7549 0.6712 0.7367
13 daminglu123 (Lu, 2022) 0.7486 0.7085 0.6004 0.7040
14 海鲛NLP 0.7649 0.7156 0.5134 0.6851
15 OCHADAI (Pereira and Kobayashi, 2022) 0.7069 0.6445 0.5235 0.6573
16 Ryan Wang 0.3314 0.4058 0.3779 0.4044

N/A MaChAmp (van der Goot, 2022)7 0.7204 0.6247 0.5532 0.6607
N/A JARVix (Jakhotiya et al., 2022)8 0.8410 0.8162 0.7918 0.8243

Table 6: Results for Subtask A One Shot. The evaluation metric is macro F1 score, and the ranking is based on the
‘All’ column.

Subset
Ranking Team Idiom Only STS Only All

1 drsphelps (Phelps, 2022) 0.4030 0.8641 0.6402
2 colorful 0.4290 0.8880 0.6262
3 Mirs 0.3750 0.8623 0.6038
4 Zhichun Road (Cui et al., 2022) 0.2826 0.8359 0.5632
5 YNU-HPCC (Liu et al., 2022) 0.2872 0.7125 0.5577
6 ALTA 0.2154 0.8608 0.5379

baseline (Tayyar Madabushi et al., 2021) 0.2263 0.8311 0.4810

Table 7: Results for Subtask B Pre Train. The evaluation metric is Spearman correlation, and the ranking is based
on the ‘All’ column.

Figure 1: Models mentioned in the submissions. In
blue are models that use transformers either wholly or
partially, whilst in red are alternative models.

alternative loss functions.

6 Methods

The primary goal of this shared task was to provide
a platform for the evaluation of a variety of methods
for the identification and represention of MWEs.
This section gives an overview of the methods that
have been successful in each of the Subtasks. In
particular, we attempt to identify the combination
of methods across submissions that have significant
potential for future development.

6.1 Subtask A
Subtask A, the identification of MWEs, comprised
two settings: Zero Shot and One Shot. Crucially,
the results from the task show that methods that
are successful in the Zero Shot setting, fail to be

7Not ranked due to using a multi-task learning approach.
8Not ranked due to only submitting to the ‘post-evaluation’

phase.
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Subset
Ranking Team Idiom Only STS Only All

1 YNU-HPCC (Liu et al., 2022) 0.4277 0.6637 0.6648
2 drsphelps (Phelps, 2022) 0.4124 0.8188 0.6504
3 Eat Fish 0.3688 0.8660 0.6475
4 Zhichun Road (Cui et al., 2022) 0.3956 0.5615 0.6401

baseline (Tayyar Madabushi et al., 2021) 0.3990 0.5961 0.5951
5 ALTA 0.2566 0.6156 0.5755

Table 8: Results for Subtask B Fine Tune. The evaluation metric is Spearman correlation, and the ranking is based
on the ‘All’ column.

Figure 2: Methods mentioned in more than one submis-
sion.

successful in the One Shot setting and vice versa.
The two problems seem to require capabilities that
are quite distinct. This seems intuitive when trans-
lated into the kind of thinking that one might use
in identifying idioms: When one hears an idiom
for the first time, we are likely to recognise that
it sounds ‘idiom-like’ based on our prior under-
standing of idioms, whereas when we come across
an idiom that we are familiar with, we link our
existing knowledge of that idiom with the current
instance of it.

This seems to play out in the successful mod-
els in this Subtask, as the general trend amongst
the methods that were successful in the Zero Shot
setting, with one exception, is the generalisation
of models using regularisation, data augmentation
or dropout. While regularisation did feature in the
top performing model in the One Shot setting, it
seems to have been less important to generalise
models when they had access to as little as one
training example associated with each model. The
best performing linguistically motivated method –

which compares the semantic similarity between
the MWE span and that of the surrounding context
– ranked third in the Zero Shot setting, although
it performed 11 points below the best performing
method. This is of particular interest as this method
has previously been shown to be extremely pow-
erful in detecting idiomaticity in non-contextual
models.

Models successful in the One Shot setting, again
with one exception, seem to be those which are
more powerful at extracting cues from the minimal
training examples and tended to be larger, ensem-
bled or trained to a larger extent using adversarial
training. The best performing method which incor-
porated elements based on linguistic theory also
ranked third in this setting and incorporated the
gloss of each individual word in the target MWE
to aid in models’ ability to detect compositionality.

Interestingly, the use of the idiom principle in
creating single token representations for MWEs
is absent amongst the methods used for this Sub-
task. While such a comparison would have been
interesting, it is hardly surprising that this method
is not amongst those used, given that the cost of
pre-training with new MWE tokens is rather high.

6.2 Subtask B

Subtask B, the novel task of creating contextual rep-
resentations of MWEs which are consistent with
the paraphrased version of that MWE as measured
by Spearman’s rank correlation, coefficient also
had two settings: the first without associated train-
ing examples (Pre Train) and the second with (Fine
Tune). Since the sentence embeddings generated
by pre-trained language models cannot be directly
compared for similarity, such models must be al-
tered so as to be used for this Subtask. Addition-
ally, as pointed out by Tayyar Madabushi et al.
(2021), the MWEs contained within sentences can
be represented using single tokens even without
pre-training, as the ‘breaking’ of compositionality
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itself produces more accurate representations of
sentences containing MWEs.

As such, models that perform the best on the
Pre Train setting focus on the creation of more
accurate single token representations of MWEs,
while the top performing models on the Fine Tune
setting, in general, focus on optimising sentence
similarity. This seems to be consistent with the
observation by Tayyar Madabushi et al. (2021) that
fine-tuning is indeed a reasonable way of learning
the representation of MWEs. It should be noted that
these trends are less certain since there are fewer
participants on this Subtask, some of whom do not
share their methods, and the one team that we know
used a method of learning new representations of
MWEs is ranked first in the Pre Train setting but
ranked second in the Fine Tune setting.

7 Conclusions and Future work

We present, in this paper, ‘SemEval 2022 Task2:
Multilingual Idiomaticity Detection and Sentence
Embedding’, consisting of two Subtasks: i) Sub-
task A, to test a language model’s ability to detect
idiom usage, and ii) Subtask B, to test a model’s
ability to generate representations of sentences
containing idioms. This task, aimed at boosting
research into the detection and representation of
idiomatic expressions, had submissions from 25
teams consisting of close to 100 participants.

We additionally provide an overview and analy-
sis of the methods used by participants, which we
believe will help future research in this field. In par-
ticular, we highlight the need for distinct methods
when detecting MWEs that have been previously
seen and when detecting ones that have not. In rep-
resenting idiomatic expressions, we show, through
the novel idiomatic STS task presented here, that
models are rather effective when they have train-
ing data available, but, as demonstrated in the Pre
Train setting, more methods of encoding MWEs
are required when training data is not available.

While the top performing methods across this
task have been driven by deep neural models inde-
pendent of linguistic features, we highlight that this
does not imply that the addition of linguistically
motivated features does not lead to improvements
on the task. Instead, it points to the possibility of
integrating these methods into the more powerful
neural models in future work where an ablation
study might shed more light on the impact of each
feature.
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A Full Breakdown of Methods

All participants were invited to submit a short description of their methods, as well as to submit a paper.
In Table 9, Table 10, Table 11, and Table 12 we give all the method descriptions that were submitted.

Ranking Team Method
1 clay "domain pretraining with different masking strategies finetuning with data augmentation such as back-translation finetuning with soft label from former

checkpoint"
2 yxb "use mT5-Base use Easy Data Augmentation techniques include back-translation, synonym replacement, random insertion, random swap, random deletion

include label unbalanced loss function：focal loss use model ensemble"
3 NER4ID "Dual-encoder (Transformer-based) architecture that encodes both the potentially idiomatic expression and its context, and predicts idiomaticity by

looking at their similarity score: high similarity -> compositional, low similarity -> idiomatic. Another core contribution of our method is the use of
Named Entity Recognition as an intermediate step to pre-identify some non-idiomatic expressions; this provides great improvements."

4 HIT "1. we use the big pre-trained model, XLM-R-large. Compared with multilingual-BERT and XLM-R-base, XLM-R-large is obviously improved. 2.
Separate the exact same phrases as MWE in the target sentence with the sep token. If the phrase in the sentence is capitalized, It is more likely to be
named entities that the model can distinguish, so the sep tokens are not added around the capitalized phrases. 3. Using Regularized Dropout(r-drop) as
regularization."

5 Hitachi "Our approach is built on top of multilingual pre-trained language models, which include InfoXLM and XLM-R. We solve the task of multilingual
idiomaticity detection as a binary classification task and follow the standard fine-tuning method except not using a special [CLS] representation for
classification. Instead, we first take an average over MWE’s span representations and subsequently feed the averaged representation into a linear layer for
classification."

6 OCHADAI "our model relies on pre-trained contextual representations from different multilingual state-of-the-art transformer-based language models (i.e., multilingual
BERT and XLM-RoBERTa), and on adversarial training, a training method for further enhancing model generalization and robustness."

7 yjs "For each input sentence in the training set, if the MWE is idiomatic then its corresponding tokens are labeled as "idiomatic" and the remaining tokens are
labeled as "literal"; if the MWE is literal then all the tokens in the sequence are labeled as "literal". Method 1: We apply a Bi-Directional Attention Flow
(BiDAF) network (Seo et al., 2017), while we use mBERT as the contextualised embedding, and we use pos tag embedding as its query input."

8 CardiffNLP-m "CardiffNLP-metaphors submitted the results of two methods in total, applied both for Task A Zero Shot and one-shot. The first method uses
xlm-roberta-large and the second uses several monolingual bert language models for English, Portuguese and Galician. For the Zero Shot settings,
bert-multilingual-base is used to label the Galician sentences, because no Galician examples were included in the training set. The embedding of the
three sentences and the embeddings of the isolated target are input of the models. We optimized the models over different training parameters on the
development set."

9 Mirs -
10 Amobee -
11 HYU "We devise four features ((i), (ii), (iii), and (iv) in the following) as input for a simple yet effective idiomaticity classifier that is a multi-layer perceptron

with one hidden layer.
First, to consider the contextualized semantics of a target sentence when influenced by its surrounding context, we concatenate the target sentence with its
(i) previous and (ii) next sentences respectively and inject the two chunks into our feature extractor (XLM-R; a bidirectional multilingual language model)
independently to generate two distinct ((i) and (ii)) features.
While constructing the aforementioned features, we also introduce two techniques to clarify the presence of a MWE in the sequence: the first highlights
the location of the MWE with a new, dedicated positional encoding, and the second appends the MWE once again at the end of the sequence.
In addition, we focus on the way of better utilizing the information existing solely in the target sentence, regarding a MWE and its context (i.e., phrases in
the target sentence except for the MWE) as separate ones.
Specifically, we derive (iii) the “context-only” representation of the target sentence by using a variant of the target sentence where the MWE is masked,
while we compute (iv) the “MWE-only” representation, which corresponds to the intrinsic meaning of the MWE irrespective of context, by inserting only
the MWE into the feature extractor."

12 Zhichun Road "1. We use InfoXLM-Base as text encoder. (performance: infoxlm > XLM-R > Mbert) 2.We use exponential moving average (EMA) method. 3.We use
adversarial attack strategy(performance: Smart > freeLb > PGD = FGM). Finally，our approach ranked 12th."

13 海鲛NLP -
14 UAlberta "Our unsupervised translation-based approach leverages translation information in multilingual resources such as OMW and BabelNet. The hypothesis is

that the translations of idiomatic MWEs tend to be non-compositional, and therefore the individual words of an MWE are less likely to share mult-synsets
with their translations. In addition, since MWEs that are named entities are usually literal, we use a part-of-speech tagger to identify proper nouns."

15 Helsinki-NLP "The system utilizes linguistically motivated features that typically characterize idiomatic expressions: non-substitutability, non-compositionality and
affectiveness. This feature model is based on pre-trained models and classification pipelines that have been integrated into the transformers library
provided by HuggingFace. The final classification combines the feature model with either sentence-transformers or a base BERT model. The system also
adds a back-translation feature and applies simple post-correction rules based on boolean features."

16 daminglu123 "We used the same model as baseline but added one more LSTM layer at last."
17 kpfriends "We experimented with various inductive training methods only using Zero Shot data provided. We are still experimenting various schemes, including

novel MWE ideas. We will share the findings in our paper."
18 Unimelb_AIP "We tackled this task in an unsupervised way (i.e. without using any portion of the training data). First, we trained a standard CBOW word2vec model on

unlabelled data and used it to predict the top-500 words that would fit into the surrounding context of the target MWE (as performed during the training of
the CBOW model). Then, we calculated the maximum cosine similarities between the predicted words and each MWE component word, and regarded the
MWE as “literal” (“non-idiomatic”) if they are higher than the mean cosine similarity between the component words and their 500 closest words. Finally,
we ensembled five CBOW models trained with different window sizes (5, 10, 15, 20, and 30) to incorporate different levels of contextual information.
One limitation of this approach is that it often classifies proper-noun and idiomatic usages into the same class (“non-literal”; as their surrounding contexts
differ a lot from the literal usage ones), and to mitigate this problem, we always regarded MWEs as “non-idiomatic” if they contained any capital letter."

19 YNU-HPCC "As for methods of the best submission results, we added a linear layer so as to choose effective information from all of output layer that were extracted
by pre-trained model, XLM-RoBERTa, and then fine-tuned it to classify."

20 Ryan Wang "CNN-bidirectional LSTM classifier with jointly trained word embeddings trained on full passages (target and context) from Zero Shot data"
N/A JARVix "we fine-tune a pretrained XLNet on the task dataset (after evaluating multiple large language models and their majority-voting ensemble)."

Table 9: Methods used in Subtask A Zero Shot. Note: CardiffNLP-m is short for CardiffNLP-metaphors.
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Ranking Team Method
1 HIT "Mostly the same as the zero-shot. We train the One Shot model initialized from the best Zero Shot checkpoint. We additionally post-processed the

predictions based on the distribution of the labels in the One Shot train file."
2 kpfriends "More than 10 checkpoints were created per “English” and “Spanish / Galician” and inferred separately, later ensembled using soft-voting. To stabilize

training of xlm-roberta-large, we started with pre-trained models provided by Huggingface which were xlm-roberta-large trained on CoNLL. We also had
some good results with xlm-roberta-base. We will deep dive into methodology and interesting observations / error analysis in our paper."

3 UAlberta "Our method uses a transformer-based sequence classifier that takes as an input the context sentence and the glosses of each individual word in the
target multi-word expression. The intuition is that the addition of the glosses to the input might help the classifier to detect if the meaning of the target
multi-word expression can be deduced from the definitions of the individual words, i.e., if it is compositional. Note that this method is applicable to both
settings."

4 Zhichun Road "1. We use InfoXLM-Base as text encoder. (performance: infoxlm > XLM-R > Mbert) 2.We use exponential moving average (EMA) method. 3.We use
adversarial attack strategy(performance: freeLB > Smart > PGD = FGM). Finally，our approach ranked 4th."

5 clay "same as Zero Shot setting, but with more data include Zero Shot data and One Shot data"
6 YNU-HPCC "As for methods of the best submission results, we simply concated sentence and MWE and input into pre-trained model, XLM-RoBERTa. CLS from last

layer was extracted to classify."
7 CardiffNLP-m "CardiffNLP-metaphors submitted the results of two methods in total, applied both for Task A Zero Shot and one-shot. The first method uses

xlm-roberta-large and the second uses several monolingual bert language models for English, Portuguese and Galician. For the Zero Shot settings,
bert-multilingual-base is used to label the Galician sentences, because no Galician examples were included in the training set. The embedding of the
three sentences and the embeddings of the isolated target are input of the models. We optimized the models over different training parameters on the
development set. xlm-roberta-large significantly ouperforms the monolingual experimental settings on the one shot track. "

8 yxb "use mT5-Base use Easy Data Augmentation techniques include back-translation, synonym replacement, random insertion, random swap, random deletion
include label unbalanced loss function：focal loss use model ensemble"

9 NER4ID "Same as zero-shot"
10 HYU "In One Shot setting, we used the same method as in a Zero Shot setting."
11 yjs "Method 2: We used the BiDAF-based DISC architecture by (Zeng and Bhat, 2021). DISC firstly combine GLOVE embeddings and POS embeddings

with a BiDAF layer, which is then infused with mBERT by another BiDAF layer. We use both methods in the two settings, Method 1 performs better than
Method 2. In the submissions, the different results is caused by different random seeds, with/without previous and next sentences, and with/without
MWE."

12 Mirs -
13 daminglu123 "We used the same model as baseline but added one more LSTM layer at last."
14 海鲛NLP -
15 OCHADAI "our model relies on pre-trained contextual representations from different multilingual state-of-the-art transformer-based language models (i.e., multilingual

BERT and XLM-RoBERTa), and on adversarial training, a training method for further enhancing model generalization and robustness."
16 Ryan Wang "CNN-bidirectional LSTM classifier with jointly trained word embeddings trained on full passages (target and context) from zero- and One Shot data"

N/A MaChAmp "Multi-task learning across SemEval tasks (2, 3, 4, 6, 10, 11, and 12). First we Pre Train a RemBERT multi-task model across all the tasks. Then we
re-train a model for each task specifically. We used the default hyperparameters of MaChAmp v0.3 for all settings, which were finetuned on the GLUE
benchmark and UD_English-EWT."

N/A JARVix "we use a relation network (Sung, et. al 2018) to find a similarity (or a dissimilarity) score between a query and it’s same MWE support set, and assign a
label accordingly. For this, we also evaluate a siamese network with a similar inference methodology."

Table 10: Methods for Subtask A One Shot. Note: CardiffNLP-m is short for CardiffNLP-metaphors.

Ranking Team Method
1 drsphelps "Our model is a modification of the baseline system with the randomly initialised word embeddings for the one token MWEs replaced with embeddings

created using Schick and Schutze’s BERT for Attentive Mimicking (BERTRAM). BERTRAM models are trained for Portuguese and Galician alongside
the provided English model, and examples use to create the MWE emebddings are taken from the common crawl corpora for English, Portuguese, and
Galician. Further pretraining (up to 45 epochs) is done on the sentence transformers."

2 colorful -
3 Mirs -
4 Zhichun Road "1.We add CrossAttention-Module at the top of the Sentence-Bert. ( Including train and evaluate). 2.We add an extra Contrastive Loss. Finally, our

approach ranked 4th."
5 YNU-HPCC "As for methods of the best submission results, we extracted first-last-average vector and used an optimized method called CoSENT to train model. In

comparison to SBERT, it could solve the problem of difference in process of training and prediction and get a better results."
6 ALTA -

Table 11: Methods for Subtask B Pre Train.

Ranking Team Method
1 YNU-HPCC "As for methods of the best submission results, both multiple-negatives-ranking-loss and triplet-loss function combined with pre-trained model, distiluse-

base-multilingual-cased-v1, were used to fine-tune. "
2 drsphelps "Using the models trained for the Pre Train setting, fine-tuning is performed using the provided training data, just as in the baseline system. The best

overall performance is found after fine tuning for one epoch, however training for up to 50 epochs can drastically increase Spearman Rank scores for the
idiom only data, while causing much less performance drop on the general STS data."

3 Eat Fish "Multilingual model which was pretrained by using knowledge distillation Data augmentation Extract multiword from exist multiword package Two state
training trick"

4 Zhichun Road "1.We add CrossAttention-Module at the top of the Sentence-Bert. ( Including train and evaluate). 2.We add an extra Contrastive Loss. Finally, our
approach ranked 4th."

5 ALTA -

Table 12: Methods for Subtask B Fine Tune.
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Abstract

This paper describes the University of Helsinki
submission to the SemEval 2022 task on mul-
tilingual idiomaticity detection. Our system
utilizes several models made available by Hug-
gingFace, along with the baseline BERT model
for the task. We focus on feature engineering
based on properties that characterize idiomatic
expressions. The additional features lead to
improvements over the baseline and the final
submission achieves 15th place out of 20 sub-
missions. The paper provides an error analysis
of our model including visualisations of the
contributions of individual features.

1 Introduction

We participated in the SemEval 2022 Task 2 (Tay-
yar Madabushi et al., 2022) Subtask A, zero-shot1

setting: classification of a sentence containing a
potentially idiomatic two-word multiword expres-
sion (MWE) as idiomatic or literal. The task pro-
vided four data sets2 for English, Portuguese and
Galician. Each MWE was represented by multi-
ple example sentences, accompanied by the context
(previous and next sentences). Each MWE could be
always idiomatic, always literal or anything in be-
tween. Table 1 shows examples for both idiomatic
(0) and literal (1) cases. Expanded examples (with
context) are shown in Table 6 in the Appendix.

1The MWEs in the test data do not appear in the training
data.

2Training, development, evaluation and test sets, with Gali-
cian only appearing in the final test set.

The motivation for our approach is testing lin-
guistically motivated features that reflect important
properties of idioms, such as non-compositionality,
non-substitutability, non-literal-translatability and
affectiveness (see chapter 2) and to see whether
pre-trained models can be helpful for capturing
these features. Our system uses a combination
of models: BERT fine-tuning (Tayyar Madabushi
et al., 2021), sentence embeddings (Reimers and
Gurevych, 2019) and a feature model based on the
above idiomatic properties.

2 Background and Related Work

The detection and analysis of idiomaticity has a
rich history in the literature. An important prop-
erty of idioms is non-compositionality (that is, the
meaning of the expression does not correspond to
the combination of the meaning of its components).
(Peng et al., 2014; Constant et al., 2017; Gantar
et al., 2018) Related to it are non-substitutability
(components cannot be substituted with their syn-
onyms) (Farahmand and Henderson, 2016; Senaldi
et al., 2016; Constant et al., 2017) and non-literal-
translatability (Constant et al., 2017).

Idioms tend to be semantic outliers (Feldman
and Peng, 2013; Peng et al., 2014; Salton et al.,
2016) in the sense that they violate the lexical co-
hesion of the surrounding discourse. They are also
known to be more affective (either positive or neg-
ative) (Peng et al., 2014) than literal expressions.

In addition to being relatively fixed lexically
(non-substitutability), idioms often exhibit lack of

Label Target
0 He was not a blue blood jurist issuing judicial decisions that nobody understood affecting people and corporations

that nobody knew.
1 The blue blood of the fossil-like creature is the only natural source of limulus amoebocyte lysate, a clotting agent

that is used to test batches of injectable drugs for bacterial contamination that could cause fever, organ damage
and even death.

Table 1: Idiomatic (0) and literal (1) examples from the zero_shot setting of training set for English MWE blue
blood, which can be interpreted as either idiomatic or literal.
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syntactic and/or morphological variability (Peng
et al., 2014; Constant et al., 2017). In general, quan-
tifying any variability has traditionally required
obtaining frequencies of the variants from a full
corpus, as done by Inurrieta et al. (2020). However,
as we only have a small number of examples for
each idiom, these properties are not modeled in our
approach.

Compositionality and substitutability are often
tested with techniques like backtranslation and
mask filling tasks. Backtranslation involves trans-
lating text to another (i.e. pivot) language and trans-
lating it back (Sennrich et al., 2016; Edunov et al.,
2018), and it has often been used for paraphras-
ing and data augmentation. Backtranslations have
also been used for idioms in related work, see, e.g.,
Moirón and Tiedemann (2006); Bahar Salehi and
Baldwin (2018).

Mask filling (Zhu et al., 2019; Donahue et al.,
2020) is closely related to the cloze task (Taylor,
1953), where the objective is to predict a word
missing from an expression. Mask filling has lately
been made easier as modern languages models such
as BERT (Devlin et al., 2019) and its derivatives
are themselves so-called Masked Language Mod-
els (MLM). Mask filling can be useful for testing
substitutability in context (Karidi et al., 2021; Zhu
and Bhat, 2021).

3 System Description

Our submission3 considers three models: the base-
line BERT model provided by the task authors
(Tayyar Madabushi et al., 2021), sentence embed-
dings with sentence-transformers (Reimers and
Gurevych, 2019) and a feature model based on
idiomaticity features. All our components rely on
existing models and tools that have been integrated
into the transformers library provided by Hugging-
Face (Wolf et al., 2020).

The final classification combines information
from two components (either fine-tuned BERT +
feature model or sentence embeddings + feature
model). The result will be taken from the model
which has the higher label probability4. See Figure
1 for an overview.

We compare different variants of the system with
the performance of individual features and various

3Implementation and details are available at https://
github.com/dustedmtl/semeval2022.

4While both logistic regression and BERT models produce
probabilities, the values aren’t necessarily consummerate as
BERT seems a lot more confident about the results.

Sentences

Fine-tuned BERT

Mask filling

Sentiment

Backtranslation

...

Feature model

Classify

Label, probability

Label, probability

Figure 1: Basic classification procedure for the fine-
tuned BERT + feature model combination. The feature
model combines information from a number of Hug-
gingFace models. Each model independently produces
a label and associated probability. The label is by de-
fault taken from the model that has a higher probability.
See Chapter 3.4 for the detailed classification procedure.

baselines.

3.1 Fine-tuned BERT
The baseline model provided by the task organisers
(Tayyar Madabushi et al., 2021) is based on BERT
(Devlin et al., 2019). We build three variants: a)
multilingual model (bert-base-multilingual-cased)
for all languages (equivalent to the provided base-
line), b) English model (bert-base-cased) for En-
glish data and multilingual model for non-English
(trained with all data, including English) and c)
same as case b, but multilingual model trained only
with non-English data. The BERT model was fine-
tuned with the training data, with the development
set used for validation.

3.2 Sentence Embeddings (sbert)
Sentence embeddings can be used as an alternative
baseline. We apply the distiluse-base-multilingual-
cased-v15 model provided by HuggingFace and use
the sentence-transformers python module6. The
training procedure adopts the approach used by
Tayyar Madabushi et al. (2021) by appending the
MWE to the target sentence before training, as
they found it to improve performance7. Logistic
regression is used to train a classifier on top of
the sentence embedding that we obtain from sbert.

5https://huggingface.
co/sentence-transformers/
distiluse-base-multilingual-cased-v1

6https://www.sbert.net
7This is not, however, equivalent to their methodology

where the MWE is treated as a single token according to the
"idiomatic principle" (i.e. stored as a single token in the mental
lexicon) (Hashempour and Villavicencio, 2020).
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Target Label Top terms Top
score

Hassub Short Found
Idx

Found
Score

There are several theories behind the origin of the
term “Double Dutch.”

0 ., -, ..., s, man 0.008 False 3 10 -1.000

Além de ter sido um fracasso de bilheteria e crítica,
o filme acabou marcado pelos seus efeitos especiais,
principalmente ao antropomorfizar os gatos, que,
bem, ficam um pouco bisonhos.

0 erros, person-
agens, efeitos,
problemas,
animais

0.540 True 0 3 0.092

Table 2: Training set substitution examples. In the first row, most of the suggestions are too short and no valid
lexical substitute is found. The second example finds a component of efeito especial in plural form. The Top terms
column shows the entry corresponding to Top score in italics and the one for FoundIdx/Score (if found) in bold. The
above-zero scores represent the output from the mask-filling pipeline.

Note that we do not use the context sentences in
this approach in any way.

3.3 Idiomaticity Features
Idiomaticity features are extracted using a number
of HuggingFace pipelines and pre-trained models
(see details below) for lexical substitution, senti-
ment analysis and backtranslation. Additionally,
semantic outliers and surface-form-based boolean
features are calculated. The training and classifi-
cation with the feature model is done with logistic
regression again, with boolean values converted to
integers (True = 1 / literal, False = 0 / idiomatic).

3.3.1 Lexical Substitution
Because of the limited lexical variability and non-
compositional nature of idiomatic expressions, it
should be more difficult to find lexical substitutes
for them, or their parts, than for literal expressions.

Our lexical substitution model utilizes the hug-
gingface fill-mask8 pipeline with the xlm-roberta-
base9 model. The pipeline will output a ranked
list of top substitutions along with their scores10.
Three different masks are used: one for masking
the whole MWE (e.g. the expression panda car
is replaced with <mask>)11), another for masking
the first term (<mask> car) and a third one for
masking the second term (panda <mask>)12.

We obtain the top five candidates (individual
words) from the pipeline. We are interested in two
things: 1) how difficult it is to get a substitute in
general, and 2) how difficult it is to get the correct
substitute. The former reflects non-substitutability
and the latter non-compositionality. A valid general
substitute must only contain word characters and
be at least three characters long. No other checks
are made (such as whether the word class is cor-
rect or that the candidate is a synonym). A valid
lexical substitute will additionally need to (case-
insensitively) match either component of the MWE

as it appears in the Target sentence. Inflected forms
of the components are found by progressively stem-

8https://huggingface.co/tasks/
fill-mask

9https://huggingface.co/
xlm-roberta-base

10The mask-filling pipeline documentation doesn’t explic-
itly state what the scores represent, but it’s likely to be proba-
bility.

11The mask token is taken from the underlying model,
which in this case is <mask>.

12The pipeline (by default) does not support using multiple
mask tokens, so replacing the MWE with <mask> <mask> is
not possible.

ming the component(s) with a regular expression-
Additional tweaks are required for Portuguese be-
cause of orthographic variation (see Table 7 in the
Appendix for examples).

The features that are generated are described be-
low. Substitutions from masking individual terms
are only used for the Top score 1/2 and FS/SS fea-
tures; all other features are derived from replacing
the whole expression. Table 2 shows two examples
for the features, with more examples in Table 8 in
the Appendix.

Hassub Boolean feature: True when a valid lexi-
cal substitute is found, False otherwise.

Top score, Top score 1, Top score 2 The score of
the top candidate, from replacing the whole
expression, first term and second term, respec-
tively. These features are a proxy for general
(non-)substitutability.

Short, FS, SS The number of candidates that are
too short (less than three characters) from
masking the whole expression, first term and
second term. The reasoning is that a lack of
good suggestions is another proxy for non-
substitutability.

FoundScore The score of the first valid lexical
substitute [0-1], -1 otherwise. This one re-
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flects non-compositionality: replacement of
the MWE with one of its components.

FoundIdx The index [1-5] of the first valid lexical
substitute, 10 otherwise.

Note that the FoundScore and FoundIdx features
essentially mix categorical and numeric values,
which may reduce their usefulness. Additionally,
Top terms, Top terms 1 and Top terms 2 are recorded
from the mask filling process.

3.3.2 Sentiment Analysis
The affection feature is based on sentiment clas-
sification using the cardiffnlp/twitter-xlm-roberta-
base-sentiment13 model for predicting positive,
negative or neutral sentiment. The neutral prob-
ability [0-1] is used as the value for the feature
Sentiment.

3.3.3 Backtranslation
The target sentence is translated to another lan-
guage (Portuguese for English, English for Por-
tuguese and Galician) and then back-translated to
the original language with the OPUS-MT (Tiede-
mann and Thottingal, 2020) models opus-mt-en-
roa and opus-mt-roa-en14. The rationale is that
idiomatic expressions exhibit non-compositionality
and as such are less likely to be backtranslated cor-
rectly. The logic for locating the expression is the
same that was used for lexical substitution: the
exact form is required, with allowances for varia-
tions in Portuguese orthography. The value for the
feature Trans is True if it is found and False other-
wise. Table 7 in the Appendix shows a number of
backtranslated examples.

3.3.4 Semantic Outliers
To measure semantic coherence, sentence embed-
dings are retrieved from sentence-transformers for
the sentences/expressions. The value of the feature
is the cosine similarity between the two.

Prevdiff Cosine similarity between the Previous
and Target sentences.

Nextdiff Cosine similarity between the Next and
Target sentences.

13https://huggingface.co/cardiffnlp/
twitter-xlm-roberta-base-sentiment

14https://huggingface.co/Helsinki-NLP/
opus-mt-en-roa and https://huggingface.co/
Helsinki-NLP/opus-mt-roa-en. The models were
chosen out of convenience, as only two models are required
for translating between the languages to either direction.

MWEdiff Cosine similarity between the MWE
and the Target sentence.

3.3.5 Surface-form features
Based on data exploration, two additional surface
features are used:

Quotes True if the MWE is enclosed in quotes, in
which case it is more likely to be idiomatic.

Caps True if the MWE is capitalized (Camel
Case). This is more likely to be a Proper
Noun.

Table 9 in the Appendix shows examples for
these features.

3.4 Final Classification
With the exception of simple baselines and major-
ity voting classifier, the final classification is done
by combining two components. For each predic-
tion, the result will be taken from the model which
has the higher probability. A number of ablation
tests were run for the feature model with the de-
velopment set to select the best set of features. In
the end, all features except Top score 1, FS and
MWEdiff were retained (where features means the
bolded items in Chapters 3.3.1 through 3.3.5).

We also added a final post-correction step based
on the results observed during development: the
boolean features may (potentially) override the la-
bel. There are two modes for this: the first one will
force the label unconditionally, the second one will
force it only if the models disagree (agree).

The potential idiomatic features are Quotes and
!Trans (Trans == False, that is, a mistranslation).
Potential literal features are Hassub and Caps. Lit-
eral features take precedence, so if an expression is
both quoted and capitalized, it is considered literal.

4 Results

4.1 Experimental Setup
Four data sets were released by the task adminis-
trators: training and developments sets, for which
gold labels were provided; an evaluation set with-
out gold labels (for which classification results
could be obtained from the competition website)
and a blind test set. The training set had more id-
iomatic (56%) and the development set more literal
(54%) sentences.

The label is overwhelmingly likely to be 1 (lit-
eral) when the surface feature Caps == True (see
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Configuration F1 EN PT
Hassub 0.551 0.535 0.547
Trans 0.597 0.549 0.615
Sentiment 0.542 0.571 0.486
Majority class 0.545 0.609 0.564
Sentence transformers 0.614 0.635 0.536
+ features 0.713 0.735 0.629
BERT baseline 0.694 0.705 0.612
+ ml1: PT from full model 0.721 0.760 0.612
+ ml2: PT from separate model 0.725 0.760 0.590
+ features 0.715 0.716 0.656
+ ml1 + features 0.733 0.751 0.666
+ ml1 + features, agree 0.731 0.754 0.656
+ ml1 + features + trans 0.751 0.762 0.694
+ ml1 + features + trans, agree 0.750 0.767 0.683
+ ml2 + features + trans, agree 0.742 0.767 0.642
Majority voting + trans 0.724 0.743 0.645
Majority voting + trans, agree 0.723 0.746 0.633

Table 3: Results for the development set. Sections in or-
der: baselines; combinations with sentence embeddings;
BERT fine tuning models; majority voting classifiers.
For BERT models, ml1 uses English model for English
and and multilingual model for Portuguese (trained on
all data), while ml2 is only trained with Portuguese data.
Best/second best results are bolded/underlined, while
the best result for each section is in italics.

Configuration F1 EN PT
Sentence transformers 0.558 0.579 0.500
+ features 0.646 0.655 0.615
BERT baseline 0.702 0.760 0.566
+ ml1 0.723 0.791 0.578
+ features 0.714 0.779 0.577
+ features + trans 0.671 0.695 0.591
+ features, agree 0.723 0.791 0.578
+ ml1 + features 0.720 0.794 0.577
+ ml1 + features, agree 0.725 0.800 0.578

Table 4: Results for the evaluation set. The feature
model provides less improvement over the baseline. For
Portuguese, the sbert+feature model combination out-
performs all BERT-based variants. Best/second best
results are bolded/underlined.

Language F1
English 0.752
Portuguese 0.694
Galician 0.499
Total 0.663

Table 5: Official results for the test set.

Figure 3 in the Appendix). We also found the fea-
tures Hassub and Quotes to be useful, so they are
used in all cases involving the feature model.

4.2 Development and Evaluation Sets
Results for the development set are shown in Ta-
ble 3 for various baselines, sentence-transformers-
based models and BERT-based models. Baselines
for the boolean Hassub and Trans are taken directly
from the feature: True=1, False=0, while for Sen-
timent above-mean scores are considered literal.
Majority class assigns the majority label (literal)
for all sentences.

The sentence embeddings + feature model yields
better results than the base BERT model, but in
general fine-tuning BERT is much better than us-
ing sentence embeddings as a fixed feature. For
the BERT-based models15, using an English-only
model for English improves results, as does using
the !Trans boolean feature. Using the boolean fea-
tures only when the models disagree (agree) does
not seem to have much impact. As Figure 4 in
the Appendix shows, the BERT-based models are
more likely to label a sentence as literal. Finally,
the majority voting classifier (using the majority
label from all three classifiers) fares worse than
BERT+feature models.

15The baseline, multilingual 1 and 2 (ml1 and ml2) config-
urations refer to variants a-c in section 3.1.

The results for the evaluation set (in Table 4
are largely similar to those for the development
set, except for two things: 1) the !Trans feature
is detrimental to English and somewhat helpful
for Portuguese and 2) boolean features should be
used only when the underlying models disagree. In
the end, using the feature model with BERT only
slightly improves the result (0.725 > 0.723). Ad-
ditionally, sentence embeddings + feature model
approach outperforms BERT-based models for Por-
tuguese.

4.3 Test Set

The test predictions were generated with the setup
that produced the best overall results for the evalu-
ation set: different BERT models for English and
non-English combined with the feature model with
boolean features Hassub, Quotes and Caps (only
when the models disagree about the label). The
official test results in Table 5 show that the results
for Galician are not great - roughly on the level
of random chance16. The official baseline isn’t
much better17, likely due Galician being a low-
resource language and lacking training data for the
pre-trained models that were used. For English

16Without knowing the true labels, we assume a 50/50 split.
17https://sites.google.com/view/

semeval2022task2-idiomaticity/baselines

126



and Portuguese, the results are similar to the best
results for the development set.

Regarding specific features, the results lend sup-
port to the idea that idioms are more affective, thus
sentiment analysis can be useful for detecting id-
iomaticity (see Figure 2 and Figure 6 in the Ap-
pendix). The exception here seems to be Galician,
which is probably because the sentiment model
is based on tweets. However, it is easier to get a
lexical replacement for Galician (see Figure 5a in
the Appendix). It may be possible that the Gali-
cian test sentences use simpler language - relatively
speaking.

Figure 2: Violin plot for sentiment per language for the
training set. The skewed sentiment distribution shows
that the label is more likely to be literal (on average) for
both English and Portuguese, if the sentiment score is
higher (neutral sentiment). However, this feature alone
is not sufficient for good performance.

Using the boolean features on top of the classifier
models can be a bit of a hit-and-miss: what works
with one dataset may be detrimental with another.
Specifically, the !Trans feature worked well on the
development set, but not on the evaluation set, and
the Hassub feature worked on both of these sets,
but not on the test set. In other words, the boolean
features may make the model less robust.

Ablation studies performed after the official end
of the competition confirm that using the Hassub
feature for the test set was not a good strategy. Fur-
thermore, a feature-only model (without sentence
embeddings or BERT) outperformed the combined
model, with the best results achieved by using
the combined model for English and feature-only
model for Portuguese and Galician. Nevertheless,
even these results do not come close to the best
models of the competition.

For detecting semantic outliers, the approach
used in this paper (similarity based on sentence-
transformers embeddings) appears to be too simple.
More refined methods, such as those measuring
lexical cohesion (Sporleder and Li, 2009) would be
required.

5 Conclusions

Our system combines a feature model based on a
number of idiomaticity features with a BERT trans-
former classifier. The feature model achieves com-
petitive results compared to the reportedly strong
baseline (Tayyar Madabushi et al., 2022), although
it does not fare nearly as well as the best systems
that competed in the subtask. Unsurprisingly, most
of the features work best for English, whether or
not the underlying BERT model is multilingual or
not.

The work shows that a classification sys-
tem utilizing idiomatic properties such as non-
compositionality, non-substitutability and affective-
ness can be implemented with readily available
transformer APIs.

Another idea for future work is to improve the
back-translation test by combining a "good" for-
ward translation model (i.e. one that tends to prop-
erly treat idiomatic expressions) with a "bad" back-
translation model (i.e. one that tends to produce
literal translations). The latter could also be done
by forcing component-wise translations in the back-
translation step to reveal non-compositionality of
the expression.
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A Appendix

A number of tables and figures are presented here.
Table 6 shows samples from the training data.

Tables 7, 8 and 9 list feature examples for substi-
tution, backtranslation and Quotes/Caps surface
features.

Figure 3 plots the boolean features Hassub,
Quotes, Caps and Trans against the literal and id-
iomatic labels for the training set. Figure 4 demon-
strates the differences in the labeling done by fine-
tuned BERT and the feature model.

Figure 5 shows counts for boolean features for
each language and data set. Illustrations for sen-
timent scores for all languages and datasets are
shown in Figure 6.

Label Previous Target Next
0 Heading outside (even just for a

couple of minutes) or doing mun-
dane things like brushing your
teeth and making the bed can
help your mind accept the fact
that yes, alas, you are awake now.

Whether you’re a night owl or
early bird, though, try to make
sure you’re not diving right onto
your phone.

Your morning will start
calmer if you don’t
dive right into work
emails and scrolling.

1 LCG asks that Monday cus-
tomers put garbage and recycling
carts at the curb for collection
Tuesday morning.

In addition, the Lafayette Tran-
sit System office will be closed
Monday, and there will be no
Daytime, Night Owl or Para-
transit bus service Monday.

Bus and paratransit ser-
vices will resume regu-
lar schedules Tuesday.

0 I practiced before him in court
and stood beside him on Canal
Street during Endymion.

He was not a blue blood jurist
issuing judicial decisions that no-
body understood affecting peo-
ple and corporations that nobody
knew.

His blood was red
with a little Irish green
thrown in.

1 The American horseshoe crab
has outlived the dinosaurs and
survived four mass extinction
events, but its population has
been devastated in recent years,
partly due to harvesting for
biomedical production.

The blue blood of the fossil-like
creature is the only natural source
of limulus amoebocyte lysate,
a clotting agent that is used to
test batches of injectable drugs
for bacterial contamination that
could cause fever, organ damage
and even death.

The crabs are fished
from the oceans, taken
to a lab to have about
30% of their blood har-
vested, then released
back into the wild.

Table 6: Idiomatic (0) and literal (1) examples from the training set for English MWEs night owl and blue blood in
the zero_shot setting. For night owl, the second example is considered literal as the MWE refers to a company name
(Proper Noun).
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MWE Target Label BT Trans
double dutch Since settlers from other areas

of the world could not under-
stand the songs, they labeled the
activity “Double Dutch.”

1 As settlers from other parts of
the world could not understand
the songs, they labeled the ac-
tivity "Double Dutch".

True

double dutch At 6,400gns, Auldhouseburn
sold another by the same sire,
and again in lamb to Double
Dutch, to Northern Irish buyer,
J. Cubbitt of Ballymena.

1 At 6,400gns, Auldhouseburn
sold another by the same sire,
and again in lamb to Duplo
Dutch, to the Northern Irish
buyer, J. Cubbitt of Ballymena.

False

círculo virtuoso Com a segurança da imuniza-
ção em massa e os números
traduzindo sua eficácia, fica
mais fácil para o americano
médio sentir-se confiante em
marcar sua próxima viagem,
gerando um circulo virtuoso
para o setor nos próximos
meses.

0 Com a segurança da imuniza-
ção em massa e os números
traduzindo sua eficácia, torna-
se mais fácil para o ameri-
cano médio sentir-se confiante
em marcar sua próxima vi-
agem, gerando um círculo virtu-
oso para o setor nos próximos
meses.

True

círculo virtuoso Apesar de dizer que o Brasil
está no caminho de um "círculo
virtuoso na economia", o exec-
utivo do banco enxerga riscos
internos e externos no horizonte
da renda variável e, por isso,
evita projeções de curto prazo.

0 Apesar de dizer que o Brasil
está no caminho de um "círculo
virtuoso na economia", o exec-
utivo do banco vê riscos inter-
nos e externos no horizonte da
renda variável e, portanto, evita
projeções a curto prazo.

True

amor-próprio No novo livro, sobre amor-
próprio e também validação so-
cial, Paula Cordeiro relata como
sobreviver à era digital.

1 No novo livro, sobre o amor
próprio e também a validação
social, Paula Cordeiro relata
como sobreviver à era digital.

True

Table 7: Backtranslation examples for the training set; Target is the original sentence, BT is the backtranslated one.
The matching process occasionally requires some tweaks for Portuguese. In the third row, the Target contains the
expression círculo virtuoso without an accent, while the last row shows the translation of amor-próprio separated
with a space instead of a dash.
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Target Label Top terms Top
score

Hassub Short Found
Idx

Found
Score

There are several theories be-
hind the origin of the term
“Double Dutch.”

0 ., -, ..., s, man 0.008 False 3 10 -1.000

Double Dutch also derives
from the same era, Dutch
seeming a strange and convo-
luted language hence Double
Dutch meaning indescernible,
mad and generally all round
not on foreign speak.

0 It, English,
This, Dutch,
German

0.385 True 1 4 0.062

No vídeo divulgado nas redes
sociais, é possível perceber
que um som faz o casal olhar
para o prédio da frente e ver o
efeito especial da fumaça.

0 som, efeito,
tamanho,
aumento, ar

0.214 True 1 2 0.120

Os efeitos especiais são
necessários em cenas de
batalha, porém, a DC cos-
tuma abusar da técnica.

0 efeitos,
equipamentos,
personagens,
dados, filmes

0.158 True 0 1 0.158

Table 8: Abbreviated substitution examples for the training set. The first two examples are for the English MWE
double dutch, the last two for the Portuguese MWE efeito especial. In the first row, a substitution is not found
and most of the suggested substitutions are too short, leading to a Short value of 3. In the second row, the fourth
suggestion matches the MWE. For Portuguese, the expression efeito especial is found in singular form in the first
example and in plural form in the second; the substitute suggestions must match the expression. The Top terms
column shows the entry corresponding to Top score in italics and the one for FoundIdx and FoundScore (if found) in
bold. The scores represent the output from the mask-filling pipeline.

MWE Target Label Quotes Caps
double dutch Double Dutch also derives from the same era, Dutch seem-

ing a strange and convoluted language hence Double Dutch
meaning indescernible, mad and generally all round not on
foreign speak.

0 False True

double dutch Since 1977 we have had a plethora of Foreign Ministers, to
whom the subject of foreign affairs was double Dutch.

0 False False

double dutch At 6,400gns, Auldhouseburn sold another by the same sire,
and again in lamb to Double Dutch, to Northern Irish buyer,
J. Cubbitt of Ballymena.

1 False True

night owl The researchers said experience shows "night owl" patients
with depression are less likely to recover and are more likely
to commit suicide.

0 True False

Table 9: Quotes/Caps examples for the training set. In the second row, Caps == False as both components of double
dutch are not capitalized.
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(a) All

(b) English

(c) Portuguese

Figure 3: Boolean features vs label for the training set. The label is overwhelmingly likely to be literal if the MWE
is Capitalized (Caps == True), while idiomatic label is more likely if the MWE is mistranslated (Trans == False). It
is generally difficult to get a valid lexical substitute (Hassub == True).

(a) Confusion matrix for the sbert+feature model. (b) Confusion matrix for the BERT+feature model.

Figure 4: Confusion matrices for the development set. The fine-tuned BERT model is more likely to classify the
sentence as literal than the feature model.
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(a) Hassub

(b) Trans

Figure 5: Counts per feature, set and language. It is relatively easier to get a valid lexical substitute for Galician.
Getting a correct backtranslation is harder for Portuguese than English, and harder still for Galician.

(a) Box plot

(b) Violin plot

Figure 6: Sentiment scores per set and language. The distributions are skewed for English and Portuguese, while
the sentiment scores seem uninformative for Galician. Portuguese scores are generally higher - it is more difficult
for the sentiment classifier to classify sentences as affective (either positive or negative).
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Abstract
In this paper, we describe our system for
SemEval-2022 Task 2: Multilingual Idiomatic-
ity Detection and Sentence Embedding. The
task aims at detecting idiomaticity in an input
sequence (Subtask A) and modeling represen-
tation of sentences that contain potential id-
iomatic multiword expressions (MWEs) (Sub-
task B) in three languages. We focus on the
zero-shot setting of Subtask A and propose two
span-based idiomaticity classification methods:
MWE span-based classification and idiomatic
MWE span prediction-based classification. We
use several cross-lingual pre-trained language
models (InfoXLM, XLM-R, and others) as our
backbone network. Our best-performing sys-
tem, fine-tuned with the span-based idiomatic-
ity classification, ranked fifth in the zero-shot
setting of Subtask A and exhibited a macro F1
score of 0.7466.

1 Introduction

SemEval-2022 Task 2 (Tayyar Madabushi et al.,
2022) involves detecting idiomaticity in a given
sentence (Subtask A) and learning effective repre-
sentations of sentences that may contain idiomatic
multiword expressions (MWEs) (Subtask B) in
three languages: English, Portuguese, and Galician.
Processing idiomaticity in a sequence correctly is
an essential task in natural language processing
(NLP), as idiomatic expressions are a key compo-
nent of natural languages. Its high performance
will contribute to various downstream tasks, such
as sentiment analysis, information retrieval, and
machine translation (Hashempour and Villavicen-
cio, 2020; Tayyar Madabushi et al., 2021).

In this work, we propose two different ap-
proaches for multilingual idiomaticity detection
(Subtask A) that take advantage of MWE span-
based features. We use several cross-lingual pre-
trained language models (InfoXLM (Chi et al.,
2021a), XLM-R (Conneau et al., 2020), and others)
and exploit their MWE span representations for

classification, instead of using a special classifica-
tion token ([CLS]), which typically corresponds
to the first input token. Our concept is that these
models should be able to focus more on the id-
iomaticity of an MWE in a given sequence by using
its span representation rather than using the [CLS]
token for classification, potentially resulting in a
better detection performance.

Our main findings in the shared task are in three-
fold.

1. The span-based idiomaticity classification
method is highly effective compared to the
standard [CLS]-based sequence classifica-
tion approach adopted in various BERT (De-
vlin et al., 2019)-like models (Liu et al., 2019;
Lan et al., 2020; Clark et al., 2020).

2. Detecting idiomaticity in Galician with no
training data available is challenging even
with state-of-the-art cross-lingual pre-trained
language models.

3. Utilizing adjacent contexts with a target sen-
tence is not always the best option for id-
iomaticity detection, even though it improves
the baseline performance.

Consequently, our best-performing system, using
the span-based classification, ranked fifth among
20 systems in the zero-shot setting of Subtask A
and showed a macro F1 score of 0.7466 on the test
set.

2 Background

Idiomaticity Detection While the task of id-
iomaticity detection with respect to MWEs is not
new, it is still considered challenging because state-
of-the-art language representation models heavily
depend on the principle of compositionality (Pel-
letier, 1994), which idioms do not follow, due to
their tokenization methods (Kudo, 2018; Sennrich
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Transformer-based model

Input sentence:

Linear layer + Sigmoid

This product has become a gold mine for the company.

MWE (given)

Element-wise average Model:

Target: idiomatic

Transformer-based model

Input sentence:

Linear layer + Softmax

This product has become a gold mine for the company.

Model:

Target:

Idiomatic MWE span probability

Start
End

(a) Span-based idiomaticity classification (b) Span prediction-based idiomaticity classification

Figure 1: Overview of two proposed approaches for detecting idiomaticity.

et al., 2016). To overcome this problem, some stud-
ies (Hashempour and Villavicencio, 2020; Garcia
et al., 2021) have regarded an MWE as a single
token motivated by the assumption that people rec-
ognize an idiom as a single token (Sinclair et al.,
1991). Alternatively, others have tried to utilize
the adjacent contexts of MWEs as inputs and have
demonstrated the effectiveness of this against tasks
targeting verb-noun constructions (Sporleder and
Li, 2009; Salton et al., 2016; King and Cook, 2018)
and noun compounds (Tayyar Madabushi et al.,
2021). This paper also utilizes adjacent contexts
for classification but proposes new idiomaticity de-
tection approaches in which the span information
of an MWE plays an important role.

Cross-lingual Pre-trained Language Models
Cross-lingual pre-trained language models have
shown promising results in multilingual NLP
tasks since the emergence of multilingual BERT
(mBERT) (Devlin et al., 2019). In general, they
are pre-trained with either multilingual masked
language modeling (Devlin et al., 2019; Conneau
and Lample, 2019; Conneau et al., 2020; Chung
et al., 2021) or translation language modeling (Con-
neau and Lample, 2019). The difference between
the two is that the former uses monolingual sen-
tences while the latter utilizes concatenated par-
allel sentences for inputs. The state-of-the-art In-
foXLM (Chi et al., 2021a) further utilized con-
trastive learning, where a model needs to distin-
guish a correct translated sample from negative
ones. Our approach uses several cross-lingual
pre-trained language models, including InfoXLM,
XLM-R, XLM-Align (Chi et al., 2021b), and Rem-
BERT (Chung et al., 2021), to utilize multilingual
idiomaticity data efficiently.

3 Task Description

We briefly describe a multilingual idiomaticity de-
tection task (Subtask A). Given a sentence com-
posed of n words Starget = [w1, . . . , wn] that con-
tains an m-word MWEW = [wMWE

1 , . . . , wMWE
m ],

S’s preceding sentence Sprev, and succeeding sen-
tence Snext, the task is to classify ifW is idiomatic
(0) or not (1). The task dataset is based on Tay-
yar Madabushi et al. (2021) and contains Galician
in addition to English and Portuguese. Each sam-
ple consists of S = [Sprev;Starget;Snext],W , a lan-
guage type lang ∈ {“EN”, “PT”, “GL”}, and an
idiomaticity label yMWE ∈ {0, 1}. In the zero-shot
setting, participants do not have any training sam-
ples for Galician and are only allowed to use the
officially provided training and development sets
for training. They must also use the same approach
for all samples except language and can submit up
to five systems for evaluation.

4 System Overview

Our system relies on cross-lingual pre-trained lan-
guage models (InfoXLM and XLM-R and others)
and classifies samples using either span-based clas-
sification or span prediction-based classification.
We fine-tune several pre-trained language models
and obtain final predictions by using an ensemble
method. Figure 1 visualizes our approach for mul-
tilingual idiomaticity detection.1

4.1 Span-based Classification

There have been several attempts to utilize span hid-
den representations from a Transformer (Vaswani
et al., 2017)-based pre-trained language model in
various NLP tasks that can be formulated as span
classification, including named entity recognition

1Appendix A describes our approaches in detail using
equations.
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(Yamada et al., 2020; Eberts and Ulges, 2020), rela-
tion classification (Baldini Soares et al., 2019) and
propaganda technique classification (Da San Mar-
tino et al., 2020; Dimov et al., 2020; Jurkiewicz
et al., 2020). These studies have all demonstrated
the effectiveness of the span representations.

Here, we utilize this approach to solve the task
of idiomaticity detection. We first pick up the
span hidden representations of an MWE from the
Transformer-based model, take their average, and
feed the resulting vector into a linear layer for final
classification (Figure 1 (a)).

Our concept with this approach is that the model
should be able to focus more on the usage of an
MWE in terms of idiomaticity in context rather
than using a special [CLS] token for classification.
Although we do not regard an MWE as a single
token to encode, it is true that our approach is in-
spired by the idiom principle (Sinclair et al., 1991)
in the sense that our model classifies a single av-
eraged MWE span hidden representation for final
classification.

4.2 Span Prediction-based Classification

For the second approach, we propose span
prediction-based idiomaticity classification, in-
spired by BERT (Devlin et al., 2019)’s fine-tuning
approach against the SQuAD v2.0 dataset (Ra-
jpurkar et al., 2016, 2018), which contains some
unanswerable questions. In BERT’s approach, the
answer text span in a given text for answerable
questions is predicted, and the position of a [CLS]
token for questions that do not have an answer is
output. In our case, the task is to predict the MWE
span in a given sequence for idiomatic MWEs and
to output the position of a [CLS] token for non-
idiomatic MWEs. This approach is illustrated in
Figure 1 (b).

Our concept with this approach lies in the gen-
eralizability over unseen data. Predicting an id-
iomatic MWE span requires a model to differen-
tiate non-idiomatic MWEs from idiomatic ones.
This should force the model to learn semantic
knowledge on MWEs in terms of idiomaticity and
subsequently help the model to deliver a better per-
formance on the test data.

5 Experimental Setup

Models We mainly utilized InfoXLM and XLM-
R for our system submission, but we also tested
several other cross-lingual pre-trained language

Model Identifier

InfoXLM (Chi et al., 2021a) microsoft/infoxlm-large
XLM-R (Conneau et al., 2020) xlm-roberta-large
XLM-Align (Chi et al., 2021b) microsoft/xlm-align-base
RemBERT (Chung et al., 2021) google/rembert
mBERT (Devlin et al., 2019) bert-base-multilingual-cased

Table 1: List of cross-lingual pre-trained language mod-
els tested in this paper. Each identifier corresponds to
the model name in the transformers library.

models. Table 1 shows the list of models tested
in this paper.2 We selected these models because
they are easy-to-use thanks to their availability on
the HuggingFace Hub.3

Data and Preprocessing We utilized the offi-
cial training and development sets4 for training,
and no additional data was used, as stipulated
by the competition rules. We tokenized sam-
ples using pre-trained tokenizers provided by the
transformers library (Wolf et al., 2020) and
set the sequence length to 256. When using an
MWE as an additional input feature, we added it to
the second sentence following Tayyar Madabushi
et al. (2021).

Evaluation Metrics The evaluation metric for
Subtask A is a macro F1 score with respect to id-
iomaticity labels.

Fine-tuning We implemented our approaches
using PyTorch (Paszke et al., 2019) and the
transformers library. We fine-tuned all mod-
els for ten epochs each using one NVIDIA Tesla
V100 (SXM2 - 32GB) with a batch size of 16 and
automatic mixed precision applied. We used an
Adam optimizer (Kingma and Ba, 2014) and saved
a checkpoint of each model every ten steps. To
minimize the effect of random seeds, we trained
all models for ten times each with different ran-
dom seeds. We then selected the best-performing
models on the basis of the macro F1 scores on the
development set.5

Ensemble We fused the outputs of the fine-tuned
pre-trained language models to further boost perfor-

2We provide a brief explanation of the five cross-lingual
pre-trained language models in Appendix B and the perfor-
mance comparison in Appendix E.

3https://huggingface.co/models
4https://github.com/H-TayyarMadabushi/

SemEval_2022_Task2-idiomaticity
5For more details on hyperparameters, please refer to Ap-

pendix C.
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System Ensemble Method Models Used

System 1 No Ensemble InfoXLM for EN, XLM-R for PT & GL
System 2 Stacking InfoXLM × 4, XLM-R × 1
System 3 Majority Vote InfoXLM × 5, XLM-R × 1
System 4 Stacking InfoXLM × 5, XLM-R × 1
System 5 Majority Vote InfoXLM × 5, XLM-R × 1

Table 2: Configurations of our submitted systems. For ensemble methods, we used predicted labels from pre-trained
language models as an input feature. For systems with stacked generalization, we trained a logistic regression model
as a meta estimator.

mance on unseen data. For submission, we use ei-
ther stacked generalization (Wolpert, 1992), where
we train a machine learning model using predic-
tions from pre-trained language models and cor-
responding idiomaticity labels and then make a
final decision with it, or naïve majority voting on
predicted labels. We implemented stacked general-
ization using scikit-learn (Pedregosa et al., 2011).
Prediction labels on the development set were used
as training data for a meta estimator. To train
the estimator, we first divided the training data
into 90% for training and 10% for hold-out. We
then trained the estimator using three-fold cross-
validation (CV). We tested both a ridge classi-
fier and a logistic regression and chose the best-
performing model based on the average CV score
over the three validation folds. We subsequently
picked up the best estimator from the resulting
three models using the hold-out set. Finally, the
best estimator predicted labels for the test set using
the predictions of the pre-trained language models.

Submitted Systems We submitted the five mod-
els listed in Table 2 to the evaluation phase.6 Note
that all models were fine-tuned with the span-based
classification approach following our preliminary
experiments on the development and evaluation
sets.

6 Results

Table 3 shows the official test set results for
the zero-shot setting of Subtask A. Our best-
performing model (System 2), using four InfoXLM
models and one XLM-R model with stacked gener-
alization, achieved a macro F1 score of 0.7466 and
was ranked fifth among 20 teams.

Ensemble We utilized ensemble methods in four
out of five submissions, of which two use stacked

6For the detailed configurations of each model, please see
Appendix D.

Rank Team Macro F1

1 clay 0.8895
2 yxb 0.8498
3 NER4ID 0.7740
4 HIT 0.7715
5 Hitachi (Ours) 0.7466

Baseline 0.6540

Table 3: Top five macro F1 scores on test set in zero-shot
setting of Subtask A. Baseline uses mBERT following
Tayyar Madabushi et al. (2021).

Approach Macro F1

No Ensemble System 1 0.7354

Majority Vote System 3 0.7354
System 5 0.7448

Stacking System 2 0.7466
System 4 0.7452

Table 4: Macro F1 test scores for our five submitted
systems. All models were trained with the span-based
classification approach. Bold indicates the best result.

generalization and the others adopt a naïve majority
voting approach. Table 4 lists the results of our five
submissions on the test set. The results indicate the
effectiveness of the ensemble methods, which out-
perform the model with no ensemble methods by
0.0112 for the best-performing model using stacked
generalization. Even for the naïve majority voting
approach, the performance improved or did not fall
below the result without ensembling.

Classification Approaches We verified the
efficacy of three idiomaticity classification
approaches—span-based classification, span
prediction-based classification, and conventional
[CLS]-based classification—using the same
pre-trained model (InfoXLM). We can see in
Table 5 that the span-based classification approach
exhibited by far the best average macro F1 score
of 0.7303 on the test set, compared to average
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Approach Macro F1
Development Test

Span-based 0.7898 (.0138) 0.7303 (.0211)
Span prediction-based 0.7514 (.0086) 0.6245 (.0255)
[CLS]-based 0.7166 (.0675) 0.6333 (.0371)

Table 5: Average macro F1 development and test scores
of three classification approaches with standard devi-
ations over ten runs in parentheses. We fine-tuned In-
foXLM and used the same hyperparameter settings and
input features for all models.

EN PT GL
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Figure 2: Average macro F1 scores of three idiomaticity
classification approaches on the test set grouped by lan-
guage. Error bars denote 95% confidence interval.

macro F1 scores of 0.6245 and 0.6333 for the
span prediction-based and the [CLS]-based
approaches, respectively. This huge difference
stems partly from the Galician classification
performance, since we have no associated training
or development sets for Galician.

Figure 2 shows the average macro F1 scores on
the test set grouped by language. The span-based
classification approach produced the highest perfor-
mance across the three languages, and the perfor-
mance variations among languages were relatively
small, with the maximum difference of 0.1245 be-
tween English and Galician. In contrast, the span
prediction-based and [CLS]-based approaches did
not perform well on Galician samples, exhibiting
average macro F1 scores of 0.4499 and 0.4858, re-
spectively. We assume that because idioms are gen-
erally language- and culture-specific7 (Aldahesh,
2013; Al-kadi, 2015), it is difficult for models fine-
tuned on English and Portuguese data to detect

7Although Portuguese and Galician have strong historical
ties, they are categorized as two different languages (Ramallo
and Rei-Doval, 2015; Garcia, 2021).

Feature Macro F1
Development Test

Plain 0.7859 (.0131) 0.7131 (.0196)
Plain + MWE 0.7835 (.0078) 0.7315 (.0179)
Plain + Context 0.7898 (.0138) 0.7303 (.0211)
Plain + MWE + Context 0.7918 (.0141) 0.7280 (.0212)

Table 6: Average macro F1 development and test scores
with standard deviations over ten runs in parentheses.
“Plain” denotes a target sentence, while “Context” rep-
resents the previous and next sentences. We fine-tuned
InfoXLM using the span-based classification approach
and used the same hyperparameter settings for all mod-
els.

idiomaticity in unseen Galician samples without
letting them know where they should be mainly
looking, as in the span-based approach.

Input Features Tayyar Madabushi et al. (2021)
reported that encoding a target sentence along with
its adjacent contexts showed the best classification
performance in the zero-shot setting among the
four possible input feature combinations: (i) a tar-
get sentence, (ii) a target sentence with its MWE
as a second sentence, (iii) a target sentence with
its adjacent contexts, and (iv) a target sentence, its
MWE and adjacent contexts. Here, we also inves-
tigated these combinations using the span-based
classification approach (Table 6). The results in-
dicate that considering a target sentence and its
adjacent contexts is not always the best option. In
our experiments, utilizing a target sentence and its
target MWE as inputs (Plain + MWE) achieved the
best average macro F1 score of 0.7315, followed by
Plain + Context with a macro F1 score of 0.7303.
While using only a target sentence showed compa-
rable performance to the other approaches on the
development set, it ended up producing the worst
result on the test set. These results suggest that
using an additional feature along with a target sen-
tence is likely to boost detection performance, but
it is not clear which combination of input features
yields the best performance given the standard de-
viations.

7 Conclusion

In this paper, we have proposed two approaches for
detecting idiomaticity in a given sequence: span-
based classification and span prediction-based clas-
sification. While the performance of the latter was
almost on par with that of the well-known standard
sequence classification approach using a [CLS]
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hidden representation, the former outperformed it
and showed the best macro F1 score of 0.7466,
which ranked fifth in the zero-shot setting of Sub-
task A. We also found that it is essential to guide
a model on which tokens to look at when no train-
ing data is available for a particular language. In
future work, we will investigate a more effective
idiomaticity detection approach against unseen lan-
guage data.

Acknowledgements

We would like to thank anonymous reviewers for
their valuable feedback and Dr. Masaaki Shimizu
for maintenance and management of large compu-
tational resources.

References
Abdu Mohammad Talib Al-kadi. 2015. Towards

idiomatic competence of yemeni efl undergradu-
ates. Journal of Language Teaching and Research,
6(3):513.

Ali Yunis Aldahesh. 2013. On idiomaticity in english
and arabic: A cross-linguistic study. Journal of Lan-
guages and Culture, 4(2):23–29.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey Ling,
and Tom Kwiatkowski. 2019. Matching the blanks:
Distributional similarity for relation learning. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2895–
2905, Florence, Italy. Association for Computational
Linguistics.

Andrea Cascallar-Fuentes, Alejandro Ramos-Soto, and
Alberto Bugarín Diz. 2018. Adapting SimpleNLG
to Galician language. In Proceedings of the 11th
International Conference on Natural Language Gen-
eration, pages 67–72, Tilburg University, The Nether-
lands. Association for Computational Linguistics.

Zewen Chi, Li Dong, Furu Wei, Nan Yang, Saksham
Singhal, Wenhui Wang, Xia Song, Xian-Ling Mao,
Heyan Huang, and Ming Zhou. 2021a. InfoXLM:
An information-theoretic framework for cross-lingual
language model pre-training. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3576–3588, On-
line. Association for Computational Linguistics.

Zewen Chi, Li Dong, Bo Zheng, Shaohan Huang, Xian-
Ling Mao, Heyan Huang, and Furu Wei. 2021b. Im-
proving pretrained cross-lingual language models via
self-labeled word alignment. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3418–3430, Online. As-
sociation for Computational Linguistics.

Hyung Won Chung, Thibault Fevry, Henry Tsai, Melvin
Johnson, and Sebastian Ruder. 2021. Rethinking em-
bedding coupling in pre-trained language models. In
International Conference on Learning Representa-
tions.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
Lingual Language Model Pretraining. Curran Asso-
ciates Inc., Red Hook, NY, USA.

Giovanni Da San Martino, Alberto Barrón-Cedeño,
Henning Wachsmuth, Rostislav Petrov, and Preslav
Nakov. 2020. SemEval-2020 task 11: Detection of
propaganda techniques in news articles. In Proceed-
ings of the Fourteenth Workshop on Semantic Evalu-
ation, pages 1377–1414, Barcelona (online). Interna-
tional Committee for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ilya Dimov, Vladislav Korzun, and Ivan Smurov. 2020.
NoPropaganda at SemEval-2020 task 11: A bor-
rowed approach to sequence tagging and text clas-
sification. In Proceedings of the Fourteenth Work-
shop on Semantic Evaluation, pages 1488–1494,
Barcelona (online). International Committee for
Computational Linguistics.

Markus Eberts and Adrian Ulges. 2020. Span-based
joint entity and relation extraction with transformer
pre-training. ArXiv, abs/1909.07755.

Marcos Garcia. 2021. Exploring the representation
of word meanings in context: A case study on
homonymy and synonymy. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 3625–3640, Online. As-
sociation for Computational Linguistics.

140



Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton,
Marco Idiart, and Aline Villavicencio. 2021. As-
sessing the representations of idiomaticity in vector
models with a noun compound dataset labeled at type
and token levels. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2730–2741, Online. Association for
Computational Linguistics.

Reyhaneh Hashempour and Aline Villavicencio. 2020.
Leveraging contextual embeddings and idiom princi-
ple for detecting idiomaticity in potentially idiomatic
expressions. In Proceedings of the Workshop on the
Cognitive Aspects of the Lexicon, pages 72–80, On-
line. Association for Computational Linguistics.

Dawid Jurkiewicz, Łukasz Borchmann, Izabela Kos-
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Appendices

A Approaches

Here, we describe our two approaches in detail
using mathematical notations.

A.1 Span-based Classification

Given S, W , and yMWE, we first tokenize S
and WMWE using a pre-trained tokenizer and
obtain their token-level representations: S ′ =
[t1, . . . , tn′∈N] andW ′ =

[
tMWE
1 , . . . , tMWE

m′∈N
]
. We

then feed S ′ into a Transformer-based pre-trained
language model and obtain the output hidden rep-
resentation H = [h1, . . . ,h

′
n]. We pick up only

the hidden representation ofW ′ and compute their
average as hMWE = 1

|W ′|
(
hMWE
1 + · · ·+ hMWE

m′
)
.

Finally, we put hMWE into an output linear layer
and obtain the prediction. The training objective in
this task is the binary cross-entropy loss.

A.2 Span Prediction-based Classification
Given S ′, a start position of W ′ and an end po-
sition of W ′, we first feed S into a Transformer-
based model and then put the output representation
H to a linear classifier for classification, yielding
O ∈ Rn′×2 = [ostart;oend]. We finally apply the
softmax function to ostart and oend in order to ob-
tain the idiomatic MWE span probabilities. For
prediction, we first calculate the maximum scoring
span and obtain its score as s = ostart

i + oend
j , where

j must be greater than i, and ostart
i and oend

j are
the i-th and j-th values of ostart and oend, respec-
tively. We also calculate the non-idiomatic score
as s = ostart

1 + oend
1 , where index 1 refers to the

index of the [CLS] token. If s ≥ s,W is regarded
as idiomatic. Otherwise,W is predicted as a non-
idiomatic MWE. This task is trained with an aver-
age of the log-likelihoods of the correct start Lstart
and end Lend positions: Lspan = 1

2 (Lstart + Lend).

B Cross-lingual Pre-trained Language
Models

We briefly explain the five cross-lingual pre-trained
language models tested in this paper.

• mBERT (Devlin et al., 2019): Pre-trained with
multilingual masked language modeling using
Wikipedia. Its architecture follows that of
BERT-BASE.

• XLM-R (Conneau et al., 2020): Pre-trained
with multilingual masked language modeling
using CommomCrawl, which is much larger
than Wikipedia. The architecture generally
follows that of BERT-LARGE.

• InfoXLM (Chi et al., 2021a): Pre-trained
with multilingual masked language modeling,
translation language modeling, and the newly
proposed cross-lingual contrastive learning,
using CommonCrawl. The architecture fol-
lows that of XLM-R.

• XLM-Align (Chi et al., 2021b): Pre-trained
with multilingual masked language modeling,
translation language modeling and denoising
word alignment, using CommonCrawl and
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Wikipedia. The architecture generally follows
that of BERT-BASE.

• RemBERT (Chung et al., 2021): Pre-trained
with multilingual masked language model-
ing using both CommonCrawl and Wikipedia.
The architecture is completely different from
that of XLM-R, though it has the same number
of parameters (559M). It consists of 32 hidden
layers, 18 attention heads and Dimhidden =
1152.

Note that all models can accommodate the three
target languages (English, Portuguese, and Gali-
cian).

C Hyperparameter Settings

Table 8 shows the hyperparameter settings. We ex-
plored various hyperparameter combinations with
respect to a pre-trained language model, a peak
learning rate, and an input feature and selected the
models with a macro F1 score of 0.795 or above on
the development set. Note that we also tested XLM-
Align, RemBERT, and mBERT in our preliminary
experiments, but these did not perform well on the
development set (see Appendix E); therefore, we
did not use them in our submissions.

D Model Configurations

Table 9 lists the models used for our submissions,
while Table 10 shows the configurations of our five
submitted systems. For System 1, we used the
two different best-performing models for English
and Portuguese.8 For Galician, because we did not
have any training samples provided in the zero-shot
setting, we used the same model as Portuguese, as
both Galician and Portuguese have grammatical
and lexical similarities due to their shared histor-
ical background (Ramallo and Rei-Doval, 2015;
Cascallar-Fuentes et al., 2018; Garcia, 2021).

E Performance Comparison of Five
Cross-lingual Pre-trained Language
Models

Table 7 compares average macro F1 scores of five
cross-lingual pre-trained language models on the
development and test sets. Interestingly, RemBERT
produced the best result on the test set with an av-
erage macro F1 score of 0.7452, though it ranked

8We selected the best-performing models based on macro
F1 scores on the evaluation set.

Model Macro F1
Development Test

InfoXLM 0.7898 (.0139) 0.7304 (.0211)
XLM-R 0.7959 (.0110) 0.7116 (.0125)
XLM-Align 0.7600 (.0096) 0.7015 (.0119)
RemBERT 0.7833 (.0090) 0.7452 (.0192)
mBERT 0.7440 (.0125) 0.7014 (.0125)

Table 7: Average macro F1 development and test scores
of five cross-lingual pre-trained language models with
standard deviations over ten runs in parentheses. We
use the same hyperparameter settings for all models.
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Figure 3: Average macro F1 scores of five cross-lingual
pre-trained language models on the test set grouped by
language. Error bars denote 95% confidence interval.

third for the development set. This is presumably
because the Galician and English classification per-
formances of RemBERT are better than any other
cross-lingual pre-trained language models that we
tested (Figure 3).
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Hyperparameter Candidate

Batch size 16
Epochs 10
Model (InfoXLM, XLM-R)
Peak learning rate (0.5e-5, 1e-5, 1.5e-5, 2e-5, 2.5e-5, 3e-5)
Input feature (Plain + MWE, Plain + Context, Plain + MWE + Context)
Warmup steps 5% of steps
Weight decay 0.01
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 256
Attention Dropout 0.1
Dropout 0.1

Table 8: Hyperparameters in our experiments. We explored various hyperparameter combinations with respect to
pre-trained language model, peak learning rate, and input feature. If not specifically mentioned in the paper, we
used hyperparameters denoted with an underline.

Model Type Hyperparameter Macro F1
Development Evaluation

LR Input Feature Seed EN PT All EN PT All

M1 InfoXLM 2e-5 Plain + Context 25 .800 .814 .814 .862 .678 .801
M2 InfoXLM 1e-5 Plain + MWE 25 .787 .796 .799 .858 .667 .797
M3 XLM-R 1e-5 Plain + Context 42 .814 .746 .797 .850 .743 .817
M4 InfoXLM 1e-5 Plain + Context 42 .799 .770 .797 .844 .679 .792
M5 InfoXLM 1e-5 Plain + MWE + Context 22 .788 .784 .796 .854 .696 .803
M6 InfoXLM 1.5e-5 Plain + Context 42 .837 .742 .810 .800 .665 .762
M7 InfoXLM 2e-5 Plain + MWE + Context 29 .808 .806 .818 .854 .708 .812

Table 9: List of models used in our submissions and their macro F1 scores on the development and evaluation sets.
Bold indicates the best result in each category, while underline indicates the second-best result.

System Approach Models Used Macro F1
EN PT GL All

System 1 No Ensemble M1 for EN,M3 for PT & GL .820 .733 .614 .735
System 2 Stacking M1,M2,M3,M4,M5 .783 .761 .663 .747
System 3 Majority Vote M1,M2,M3,M4,M5,M6 .785 .739 .647 .735
System 4 Stacking M1,M2,M3,M4,M5,M7 .785 .757 .660 .745
System 5 Majority Vote M1,M2,M3,M4,M5,M7 .769 .753 .685 .745

Table 10: Configurations of our submitted systems and their macro F1 scores on the test set. Bold indicates the best
result in each category, while underline indicates the second-best result.
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Abstract

We describe the University of Alberta systems
for the SemEval-2022 Task 2 on multilingual
idiomaticity detection. Working under the as-
sumption that idiomatic expressions are non-
compositional, our first method integrates in-
formation on the meanings of the individual
words of an expression into a binary classi-
fier. Further hypothesizing that literal and id-
iomatic expressions translate differently, our
second method translates an expression in con-
text, and uses a lexical knowledge base to de-
termine if the translation is literal. Our ap-
proaches are grounded in linguistic phenom-
ena, and leverage existing sources of lexical
knowledge. Our results offer support for both
approaches, particularly the former.

1 Introduction

In this paper, we describe the University of Alberta
systems for the task of classifying multi-word ex-
pressions (MWEs) in context as either idiomatic
or literal (Tayyar Madabushi et al., 2022). Each
instance in the data includes a MWE (e.g., closed
book), its language, and its context, composed of
the three surrounding sentences. We participate in
both the zero-shot and one-shot settings.

While the exact definitions of the two key terms
are not stated explicitly in the task description1,
it is suggested that idiomatic is synonymous with
non-compositional. The Pocket Oxford Dictionary
defines idiomatic as “not immediately comprehen-
sible from the words used,” and literal as “taking
words in their basic sense.” Therefore, we adopt
the following MWE compositionality criterion

literal ≡ compositional ≡ ¬ idiomatic

where the three terms are considered to be Boolean
variables. In addition, the shared task considers all
proper noun MWEs (e.g., Eager Beaver) as literal.

1https://sites.google.com/view/
semeval2022task2-idiomaticity

Figure 1: An example of defBERT input.

Our goal is to explore the idea that glosses and
translations of word senses can help decide whether
the meaning of a given MWE occurrence is compo-
sitional. Based on the above-stated compositional-
ity criterion, this in turn could facilitate idiomatic-
ity detection. In particular, we hypothesize that at
least one of the words in any idiomatic expression
is used in a non-standard sense. Following the intu-
ition that a traditional word sense disambiguation
(WSD) system can only identify senses that are
included in a given sense inventory, we propose
two methods that indirectly detect non-standard
senses by leveraging either glosses or translations
of senses from such an inventory.

Our gloss-based method follows from the intu-
ition that the meaning of a given MWE occurrence
is related to any of the existing sense glosses of its
component words only if the expression is composi-
tional. Therefore, the addition of the glosses to the
context of the expression should help the classifier
in deciding whether the MWE is used in a literal
or idiomatic sense. We implement this method by
adding the glosses of each sense of each individ-
ual word, retrieved from a lexical knowledge base,
to the input to a neural classifier which fine-tunes
multilingual BERT (mBERT; Devlin et al., 2019)
for the idiomaticity detection task. We refer to this
method as defBERT (Figure 1).

Our translation-based method follows from the
observation that compositional expressions are typ-
ically translated word-for-word (“literally”), which
implies that each content word and its translation
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should have the same meaning. Therefore, each
such multilingual word pair should share a multi-
synset in a multi-wordnet (Hauer and Kondrak,
2020b). The procedure is as follows: (1) trans-
late the MWE in context; (2) word-align the source
and target sentences; (3) lemmatize and POS-tag
the source MWE; and (4) for each lemma in the
MWE, search for a multi-synset that contains both
the lemma and its translation. This method is unsu-
pervised, and we refer to it as MT.

Our results provide evidence that leveraging lex-
ical resources is beneficial for idiomaticity detec-
tion. In particular, our gloss-based method, when
combined with a type-based UNATT heuristic, is
among the top-scoring submissions in the one-shot
setting. The heuristic is based on the observation
that some MWEs are inherently idiomatic or literal,
regardless of their context, which is confirmed by
our analysis of the development set annotations.

2 Related Work

Early attempts to represent idiomatic MWEs in-
volve treating idiomatic phrases as individual to-
kens and learning corresponding static embeddings
(Mikolov et al., 2013). However, Cordeiro et al.
(2016) show that the effectiveness of this method
is limited by data sparsity for longer idiomatic ex-
pressions. Furthermore, Shwartz and Dagan (2019)
and Garcia et al. (2021) conclude that idiomaticity
is not yet accurately represented even by contextual
embedding models. Tayyar Madabushi et al. (2021)
create a new manually labeled dataset containing
idiomatic and literal MWEs, and propose a method
based on a pre-trained neural language model.

Regarding using lexical translations for id-
iomaticity detection, Moirón and Tiedemann
(2006) measure semantic entropy in bitext align-
ment statistics, while Salehi et al. (2014) predict
compositionality by presenting an unsupervised
method that uses Wiktionary translation, synonyms,
and definition information. We extend these ideas
by applying machine translation, and consulting a
multilingual lexical knowledge base.

Our prior work has already demonstrated the
utility of lexical translations for various semantic
tasks, including prior SemEval tasks on predict-
ing cross-lingual entailment (Hauer et al., 2020)
and contextual synonymy detection (Hauer et al.,
2021), as well as word sense disambiguation (Luan
et al., 2020), and homonymy detection (Hauer and
Kondrak, 2020a; Habibi et al., 2021).

3 Methods

In this section, we describe our methods for id-
iomaticity detection.

3.1 Baseline mBERT

We re-implemented the mBERT classifier baseline
(Devlin et al., 2019) following the methodology of
Tayyar Madabushi et al. (2021). The model takes
the context sentence and the relevant MWE as an
input, and outputs a binary label indicating the id-
iomaticity of the target MWE. The input sequence
is constructed by concatenating the MWE to the
end of the context sentence after the special [SEP]
token.

It is important to note the differences between
our re-implementation and the official baseline pro-
vided by the task organizers. In the official baseline,
the organizers add the target MWE as an additional
feature in the one-shot setting but not in the zero-
shot setting. Furthermore, the organizers include
the sentences preceding and succeeding the tar-
get sentence only in the zero-shot setting. In our
re-implementation, we add the target MWE and
exclude the preceding and succeeding sentences in
both zero-shot and one-shot settings.

3.2 Gloss-based Method

Our first method, defBERT, extends the baseline
model by adding the glosses of all possible senses
of each individual word in the target MWE to the
classifier’s input. The intuition is that the addition
of the glosses to the input should help the classifier
decide if the meaning of the target MWE can be de-
duced from the definitions of the individual words,
i.e., if it is compositional. In the example in Fig-
ure 1, the disparity between the context in which
fish story appears, and the glosses of the various
senses of the words fish and story indicates that the
MWE is idiomatic in this context.

The intuition for this method is that non-native
speakers can identify idiomatic expressions, pro-
vided they understand the standard meanings of the
words which comprise them. Suppose that the vo-
cabulary of a non-native speaker covers most of the
essential words necessary to understand a language,
but not idiomatic expressions. Even if the speaker
cannot deduce the meaning of an idiomatic expres-
sion in context, they can guess that the expression
was used in an idiomatic sense because individual
words of this expression do not make sense in the
given context.
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3.3 Translation-based Method

Our MT method is based on translating the target
MWE in context, and leverages multilingual se-
mantic resources. The intuition behind this method
is that idioms are generally specific to a particu-
lar language, and, being non-compositional, their
meanings cannot be conveyed simply by translating
the individual words.

Under this hypothesis, to classify an MWE as lit-
eral or idiomatic, we need only determine whether
the words in the MWE are translated literally. We
do this by first identifying the translation of each
word via alignment. We then consult a multilingual
wordnet, or multi-wordnet, a lexical knowledge-
base which organizes words in two or more lan-
guages into multilingual synonym sets, or multi-
synsets. Each multi-synset corresponds to a unique
concept, and contains the words which express that
concept. Given a word in context, and a transla-
tion of that word in that context, we consider the
word to be literally translated if it shares at least
one multi-synset with its translation.

For example, consider an instance in which the
MWE wedding anniversary is translated into Ital-
ian as anniversario di matrimonio. Our method
checks if either of the translation pairs (wedding,
matrimonio) and (anniversary, anniversario) share
a multi-synset in a multi-wordnet. We test two
versions of this method: in MT(all), this condition
must be satisfied for all content words in the MWE;
in MT(one), detecting a literal translation for one
word is sufficient to classify the MWE as literal. In
addition, multiple languages of translation may be
considered.

3.4 Additional Heuristics

The annotation methodology for this shared task
includes proper nouns in the literal class. We there-
fore use a part-of-speech tagger to detect proper
nouns; if any word in the MWE is tagged as a
proper noun, MT automatically classifies it as lit-
eral without further consideration.

In the one-shot setting, we also use a type-based
heuristic which we refer to as UNATT. The intu-
ition behind this heuristic is that certain MWEs
are inherently idiomatic or literal, regardless of the
context that they appear in. If the training data
has no example of an MWE in a particular class,
the heuristic exploits this fact as evidence that the
MWE should always be classified as the opposite,
attested class. For example, this heuristic always

classifies life vest as idiomatic and economic aid
as literal, as these are the only classes in which
these MWEs appear in the training data. In prac-
tice, since UNATT returns no classification if the
training set contains instances that belong to either
class, this heuristic must be used in combination
with another method.

3.5 Combination
Our defBERT and MT methods take different views
of the data, with the former using a neural language
model and gloss information, and the latter using
translation and a lexical knowledge base. We there-
fore consider combining the two methods. In this
approach, we independently apply defBERT and
MT to a given instance. If the two methods agree,
we return the agreed-upon classification; if they
disagree, we return a default class, which is a tun-
able parameter. As with the other methods, we can
combine this method with the UNATT heuristic in
the one-shot setting.

4 Experiments

We now describe our experiments, including the
tools and resources, the experimental setup, the
results, and a discussion of our findings.

4.1 Lexical Resources
As lexical resources for sense translations and
glosses, we use two different multi-wordnets: Ba-
belNet (BN; Navigli and Ponzetto, 2010, 2012),
and Open Multilingual WordNet (OMW; Bond and
Foster, 2013). The defBERT method and the align-
ment tool access BN 4.0 via the provided Java API2.
For the MT method, we access the BN 5.0 via the
HTTP API. We access OMW via the NLTK inter-
face (Bird et al., 2009). For the MT method, we
consider the translation of a word to be literal if it
shares a multi-synset with the word in either BN
or OMW. For lemmatization and POS tagging, we
use TreeTagger3 (Schmid, 2013).

Both BN and OMW contain English glosses for
most concepts, but the availability of glosses in
other languages varies. In particular, OMW con-
tains no Portuguese or Galician glosses. With Ba-
belNet, we experimented with two techniques: us-
ing English glosses for all languages, and using
glosses from the language of the instance, i.e. the

2https://babelnet.org/guide
3We use the pre-trained models for English, Portuguese,

and Galician from https://cis.uni-muenchen.de/
~schmid/tools/TreeTagger.
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source language, when available. We refer to these
variants as defBERT-BN-en and defBERT-BN-src,
respectively. Since defBERT uses a multilingual
pre-trained language model, it can seamlessly han-
dle input from multiple languages. Furthermore,
because of the relatively poor coverage of Galician
in the lexical resources (only 54% of glosses are
available in this language), we attempt to leverage
its close relationship to Portuguese by processing
Galician as if it was Portuguese.

4.2 Translation and Word Alignment

We translate the context sentence of each MWE
with Google Translate API4. We translated English
instances into Italian, and Portuguese/Galician in-
stances into English, because of the good cover-
age of these languages in our resources. We also
conducted development experiments with transla-
tion into less related languages, as well as with
combining translation information from multiple
languages, but we observed no consistent improve-
ments.

We align each input sentence with its translation
using BabAlign (Luan et al., 2020), which consults
BabelNet to refine the alignments generated by a
base aligner, FastAlign (Dyer et al., 2013). To
further improve the alignment quality, we augment
the set of sentence-translation pairs with additional
parallel data from the OpenSubtitles parallel corpus
(Lison and Tiedemann, 2016). We note that the
English-Galician bitext is less than 1% of the size
of the other two bitexts.

4.3 mBERT and defBERT

We fine-tune the mBERT-based models using the
binary classification objective on the labeled train-
ing dataset. In the zero-shot setting, the MWEs in
the training data are disjoint from those in the devel-
opment and test splits, while in the one-shot setting,
all MWEs in the development and test splits have
at least one example in the training data. In the
zero-shot setting, we trained the models only on
the zero-shot training set, while in the one-shot set-
ting, we trained the models on both training sets. In
particular, we fine-tuned the models for 20 epochs
with a maximum sequence length of 256, a learn-
ing rate of 2e-5, and a per device batch size of 16,
using the HuggingFace Transformers library.5

4https://cloud.google.com/translate
5https://huggingface.co

4.4 Development experiments

Table 1 contains the results of the following mod-
els: the official mBERT-based baseline (row 0)
as reported by the shared task organizers, our re-
implementation of the official baseline (row 1),
three variants of defBERT method which is based
on mBERT (rows 2-4), defBERT combined with
the UNATT heuristic (row 5), and the MT method
combined with defBERT (rows 6-7)6. For rows 1-5
we average the macro F1 score obtained over five
runs with random initializations.

Our experiments with defBERT explored the
impact of adding glosses to the mBERT model,
including the source and language of the glosses.
With English glosses retrieved from BabelNet, def-
BERT improves the total score over the mBERT
model in the zero-shot setting, especially on Por-
tuguese. The results also suggest that the English
glosses may be preferable to glosses in the source
language, a finding which could simplify work on
lower-resourced languages, where glosses may not
be available.

Combining the predictions of the mBERT-based
models with the UNATT heuristic improves the
one-shot F1 scores in all cases (row 5 vs. row 4).

The MT methods achieve the best results when
combined with defBERT on the development set in
the zero-shot setting: MT(one) for English (row 6),
and MT(all) for Portuguese (row 7). This demon-
strates the utility of using lexical translation infor-
mation for idiomaticity detection when annotated
training data is not available.

4.5 Error Analysis

We found that the defBERT method performs
slightly better, by about 1% F1, on literal instances
as compared to idiomatic instances in the one-shot
setting. In other words, the method is less likely
to make an error when given a literal instance. We
speculate that this is explained by the model’s con-
sistent classification of proper nouns as literal ex-
pressions. Indeed, a proper noun is identified in-
correctly in only one instance. The fraction of
idiomatic vs. literal instances is 39% in English
and 56% in Portuguese.

For the MT method, a large number of of errors
were caused by a literal translation of an idiomatic
expression by Google Translate, even though the

6After the test output submission deadline, we discovered
errors in our implementation of the MT methods. We report
our original results for consistency with the official results.
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Development results Test results
Zero-Shot One-Shot Zero-Shot One-Shot
EN PT EN PT EN PT GL ALL EN PT GL ALL

0 Baseline 66.2 63.9 87.0 86.7 70.7 68.0 50.7 65.4 88.6 86.4 81.6 86.5
1 mBERT 74.6 62.5 85.7 85.9 75.1 63.3 61.1 68.2 90.0 83.6 86.6 87.7
2 defBERT-BN-src 75.5 64.8 85.4 86.7 72.0 66.4 57.8 67.2 95.7 88.5 88.9 92.2
3 defBERT-BN-en 75.3 66.4 87.6 86.6 73.4 68.4 59.7 69.5 95.0 89.3 87.9 91.8
4 defBERT-OMW-en 74.8 64.5 87.1 84.5 71.0 65.6 56.5 66.5 92.4 86.7 88.5 90.1
5 UNATT + defBERT - - 92.0 87.7 - - - - 94.5 89.2 91.2 92.4
6 MT(one) + defBERT 77.3 64.9 84.5 78.0 68.2 54.6 56.3 62.7 85.9 70.6 78.2 80.6
7 MT(all) + defBERT 66.4 69.2 73.7 78.0 65.4 62.5 54.3 62.1 80.3 73.8 73.9 77.3

Table 1: The macro F1 scores on the development and test datasets. Our official submissions are in rows 4-7.
Where not otherwise specified, defBERT is in the OMW-en configuration.

corresponding expression is not meaningful in the
target language. For example, “she was different,
like a closed book” is translated into Italian as “era
diversa, come un libro chiuso” even though the Ital-
ian translation does not carry the meaning of a per-
son being secretive. In a few cases, the translation
would simply copy the source language expression,
yielding output which is not fully translated. In
addition, some correct lexical translations are not
in our lexical resources. Finally, a number of incor-
rect idiomatic predictions could be traced to word
alignment errors, especially in cases of many-to-
one alignments (e.g., bow tie correctly translated
as papillon).

Manual analysis performed on the development
set corroborates our hypothesis that most multi-
word expressions are inherently idiomatic (e.g.,
home run) or literal (e.g., insurance company).
Only about one-third of the expressions are am-
biguous in the sense that they can be classified as
either class depending on the context (e.g. closed
book). Our judgements are generally corroborated
by the gold labels, with the exception of proper
nouns, which are consistently marked as literal.
The UNATT heuristic (Section 3.4), which is based
on this observation, obtains a remarkable 98.3%
precision and 55.8% recall on the set of 739 in-
stances in the development set.

4.6 Test set results

The results on the test set are shown in Table 1.
Our best results are produced by defBERT-BN-en
in the zero-shot setting, and the combination of
defBERT with the UNATT heuristic in the one-
shot setting. The latter also obtains the best result
on Galician, which demonstrates its applicability
to low-resource languages, as this method only
requires English glosses.

The results of combining defBERT with MT are

well below the baseline, which may be due to a
different balance of classes in the test set, omis-
sions in lexical resources, and/or errors in our ini-
tial implementation. Another possible reason is
that modern idiomatic expressions are often trans-
lated word-for-word (“calqued”), especially from
English into other European languages. Examples
from the development set include flower child, ba-
nana republic, and sex bomb.

5 Conclusion

Our top result ranks third overall in the one-shot
setting. The corresponding method is applicable
to a wide variety of languages. It takes advan-
tage of the ability of neural language models to
seamlessly incorporate textual information such as
glosses, even if it is expressed in a different lan-
guage. These results strongly support our hypothe-
sis that the gloss information of individual words
can improve idiomaticity detection. Moreover, our
development results support the hypothesis that
non-compositional expressions can be identified
through their translations. These findings conform
with our prior work on leveraging translation for
various semantic tasks (Section 2). We hope that
this work will motivate further investigation into
the role of multilinguality in semantics.
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Abstract

We propose a unified framework that enables
us to consider various aspects of contextualiza-
tion at different levels to better identify the id-
iomaticity of multi-word expressions. Through
extensive experiments, we demonstrate that our
approach based on the inter- and inner-sentence
context of a target MWE is effective in improv-
ing the performance of related models. We also
share our experience in detail on the task of
SemEval-2022 Task 2 such that future work on
the same task can be benefited from this.

1 Introduction

Multi-word expressions (MWEs) are a group of lin-
guistic components containing two or more words
with outstanding collocation (Baldwin and Kim,
2010; Constant et al., 2017). MWEs are valuable
in that they contribute to enriching the expressive-
ness of a language, allowing diverse interpretations
of their meaning according to the context in which
they are located. That is, the semantics of an MWE
can be originated from either (i) the direct composi-
tion of the literal definitions of its constituents (i.e.,
compositional meaning) or (ii) its conventional us-
age in the language (i.e., idiomatic meaning). For
instance, given an expression called wet blanket, its
compositional meaning is ‘a piece of cloth soaked
in liquid’, whereas its idiomatic meaning is ‘a per-
son who spoils the mood’ (see Table 1).

While MWEs function as an effective means
of improving the abundance of a language, they
are also one of the main obstacles that compli-
cate natural language processing (NLP), from the
perspective that an NLP model should be able to
precisely identify their mode. In addition, the cur-
rent trend where the goal of most NLP models
is chiefly focused on capturing compositionality
raises the question of how properly to deal with

*Work done while Youngju was an intern at HYU.
*∗Corresponding author.

Category Meaning Example

Compositional
(Non-idiomatic)

A piece of cloth
soaked in liquid.

And finally, the snow falls again,
this time in a thick, wet blanket
that encapsulates everything.

Idiomatic
A person who
spoils the mood.

When Marie brings him down to
earth, it’s not clear if she’s being
a passive-aggressive wet blanket
or if she might have a point.

Table 1: Comparison between the compositional and
idiomatic meanings of the expression wet blanket.

idiomatic aspects of linguistic expressions (Garcia
et al., 2021a,b; Zeng and Bhat, 2021).

An intuitive solution for mitigating the afore-
mentioned problem is an introduction of a sophisti-
cated method designed to estimate the idiomaticity
of a given expression, which enables the separate
processing of the expression according to its cat-
egory. In a similar vein, we propose a series of
techniques for better detecting the idiomaticity of a
target MWE by actively exploiting its surrounding
context in addition to considering the relationship
between metaphors and the notion of idiomaticity.

Participating in SemEval-2022 Task 2, we focus
on classifying two-noun compounds into idiomatic
and non-idiomatic. The task provides two config-
urations. In the zero-shot setting, a model’s per-
formance is evaluated on the set of sequences that
include MWEs never appeared in the training phase.
Meanwhile, in the one-shot setting, our model is
exposed to a pair of instances per each MWE dur-
ing training, one of which shows the idiomatic use
of the MWE while the other is an example for the
non-idiomatic case.1 We present a unified frame-
work that can be used in both kinds, paying slightly
more attention to the one-shot setting. In extensive
experiments, we show that most of our consider-
ations lead to improvement in performance. We
also present discourse on the task specification to
promote a fair comparison between related models.

1For more details on the task’s specification, refer to the
task description paper (Tayyar Madabushi et al., 2022).
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Figure 1: Proposed framework. Two features on the left ( 1⃝ and 2⃝) are based on the surrounding context (Section
3.1), while the remaining two ( 3⃝ and 4⃝) are originated from considering the inner-sentence context (Section 3.2).

2 Related Work

Idiomaticity detection has been widely studied in
the literature (Reddy et al., 2011; Liu and Hwa,
2019; Garcia et al., 2021a,b; Zeng and Bhat, 2021).
Above all, Tayyar Madabushi et al. (2021) present a
dataset that is the foundation of SemEval 2022 Task
2. This dataset consists of sentences that contain po-
tential idiomatic MWEs with two surrounding sen-
tences and annotations about the fine-grained set of
meanings. The authors also evaluate a model’s abil-
ity to detect idiomatic usage depending on whether
context and MWE are included. They report that
reflecting the context in the way of simply con-
catenating surrounding sentences is not generally
helpful, and that adding the corresponding MWE
at the end of the input sequence improves perfor-
mance. In the following sections, we re-examine
their findings and present our own revision.

On the other hand, we investigate the viability of
applying techniques for metaphor detection (Gao
et al., 2018; Mao et al., 2019; Lin et al., 2021) into
idiomaticity classification, inspired by the resem-
blance of the two tasks. A metaphor is a form of
figurative expression used to implicitly compare
two things seemingly unrelated on the surface at
the attribute level (Baldwin and Kim, 2010). Not
all metaphors have the property of idiomaticity, but
some idioms rely on metaphorical composition.

In practice, Choi et al. (2021) introduce two
metaphor identification theories (Metaphor Iden-
tification Procedure (MIP; Group (2007), Steen
(2010)) and Selectional Preference Violation (SPV;
Wilks (1975)) into their model to better capture

metaphors, which we expect also might be helpful
for the procedure of identifying idiomatic expres-
sions. The basic ideas of MIP and SPV are that
a metaphor can be identified when we discover
the difference between its literal and contextual
meaning, and that it can also be detected when its
semantics is distinguishable from that of its context.
To realize the concepts, for MIP, Choi et al. (2021)
employ a target word’s contextualized and isolated
representations, while for SPV, they utilize the con-
textualized representations of the target word and
the sentence including the word. We adopt some
of their ideas and customize them for our purpose,
i.e., modeling features for idiomaticity detection.

3 Proposed Method

As a participant of SemEval-2022 Task 2, we pro-
pose a framework powered on four features devised
to facilitate the detection of idiomatic expressions.
These features are computed by the same founda-
tion model,2 but distinguished from each other by
what is inserted into the model as input to compute
the features. A simple linear classifier is introduced
on top of the concatenation of the four features to
finally gauge the idiomaticity of an MWE in an in-
put sequence. Figure 1 presents the overall picture
of our method.

3.1 Features Based on Surrounding Context
We first focus on the fact reported by Tayyar Mad-
abushi et al. (2021) that the surrounding context

2In this work, a ‘foundation model’ refers to a Transformer
encoder pre-trained on large corpora, e.g., BERT and XLM-R.
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(a.k.a. inter-sentence context), which we define as
sentences located right before and after a target sen-
tence, is uninformative in predicting idiomaticity.
We hypothesize that this disappointing outcome is
partly due to the way such context was exploited.

To be specific, given a sentence containing an
MWE and its previous and following sentences,
Tayyar Madabushi et al. (2021) propose simply
putting all the three together in order. Despite its
simplicity, this approach has an explicit drawback
that a model should automatically learn how to dis-
tinguish the target sentence from its surrounding
context. Moreover, when combined with context
without caution, the input sequence becomes much
(approximately 3×) longer than its original form,
which might cause a negative effect on performance
by merely intensifying the complexity of the prob-
lem rather than providing additional information.

To alleviate the aforementioned problems, we
suggest a new approach of combining a target sen-
tence with its context. Concretely, we first concate-
nate the target sentence with its 1⃝ previous and
2⃝ next sentences respectively (i.e., previous-target

& target-next), and then inject each chunk into our
encoder to derive v[CLS] and vMWE. By doing so,
we expect that the target sentence can be relatively
more emphasized than its context, as the target sen-
tence naturally appears twice while its context is
exposed only once. Plus, by dividing the whole
sequence into two parts, it is anticipated that the
encoder struggles less to extract useful information
from the input. Note that v[CLS] is the represen-
tation for the entire chunk, which is obtained by
taking the [CLS] embedding from the last layer
of the encoder, and that vMWE is the average of
the representations of the subwords that constitute
the target MWE. Lastly, the final context-sensitive
feature is computed by conducting a linear transfor-
mation of the concatenation of v[CLS] and vMWE.

On the other hand, we propose two extra tech-
niques in order to provide a clue on the location
of MWEs. While constructing token-level repre-
sentations for our encoder, we employ trainable
segment embeddings that draw the line between to-
kens for the target MWE and others. Moreover, the
target MWE is repeated at the end of each chunk,
following Tayyar Madabushi et al. (2021).

3.2 Features Based on Inner-Sentence Context

Second, we consider adding features dedicated to
more effectively leveraging the information em-

bedded in the target sentence, regarding the MWE
and its neighboring words as separate objects. We
import some ideas from prior work for metaphor de-
tection (Mao et al., 2019; Choi et al., 2021), exploit-
ing the conceptual relationship between metaphors
and idiomatic expressions.

Initially, we assume that similar to Metaphor
Identification Procedure (MIP), whose core idea is
that a metaphoric word’s semantics become distinct
from its lexical meaning when it is contextualized,
we consider an MWE as idiomatic when its static
and contextualized embeddings are heterogeneous.
While the contextualized representation of the tar-
get MWE is already available from the features pro-
vided in Section 3.1, we have not yet introduced the
MWE’s static representations. To implement this,
we again make use of the same encoder, however,
only the MWE itself (removed from its context) is
presented as input to the model. We call the output
of this procedure the 4⃝MWE-exclusive representa-
tion, which becomes an ingredient for realizing the
‘idiomatic’ version of MIP. Note also that according
to Garcia et al. (2021b), static models have been
considered as competitive or even better to/than
contextualized models for idiomaticity detection.
Therefore, we aim to reinforce our framework by
employing both the options.

Meanwhile, Choi et al. (2021) use Selectional
Preference Violation (SPV) for metaphor detection,
assuming that the semantics of a metaphoric word
should be distinctive from that of its context.3 We
basically adopt their idea, but revise its implemen-
tation, arguing that their implementation might be
somewhat defective. In detail, Choi et al. (2021)
compute the embeddings of a target and its con-
text exactly as we do when computing v[CLS] and
vMWE in Section 3.1. However, it is highly proba-
ble that v[CLS] and vMWE contain similar informa-
tion as they are intertwined with each other by the
attention mechanism, which is undesirable when
estimating separate semantics of the target and con-
text. We thus introduce the 3⃝ context-exclusive
representation of the target sentence by providing
our encoder with a variant of the sentence where
the target MWE is masked. When combined with
the features from the previous section, we expect
that the inner-sentence context independent from
the target MWE at all can be useful for applying
the concept of SPV into idiomaticity detection.

3This time, we limit the scope of the context as the sen-
tence emcompassing a target expression (i.e., inner-sentence
context), following Choi et al. (2021).

153



Model / Lang. English Portuguese Galician Overall

Zero-shot setting
Baseline (BERT) 70.70 68.03 50.65 65.40
Baseline (XLM-R) 72.29 65.68 46.16 63.21
Ours (submitted) 76.42 72.82 62.92 72.27

One-shot setting
Baseline (BERT) 88.62 86.37 81.62 86.46
Baseline (XLM-R) 88.45 85.03 84.02 86.56
Ours (submitted) 91.59 84.57 82.87 87.50
Ours (post-eval) 92.29 88.05 87.10 89.96

Table 2: Main results on the test set. Numbers are from
the best configuration (random seed) of each model.

4 Experiments

4.1 Experimental Setup

For all experiments, we present five instances per
each model with the corresponding random seeds
(42, 360, 2578, 5925, 9463). Each instance is
trained for 10 epochs, and its best checkpoint which
shows the top performance on the development
set in terms of the macro F1-score is chosen for
the inference of the test set. We use a max se-
quence length of 300, a learning rate of 3e-5 for the
AdamW (Loshchilov and Hutter, 2019) optimizer,
and a batch size of 16 for the training set and 8 for
the validation and test sets. The vectors of each rep-
resentation (v[CLS] and vMWE) have 768 dimensions
respectively and the learning rate is scheduled to
linearly decrease after the second epoch. We lever-
age XLM-R(-base) (Conneau et al., 2020) as our
foundation model.

4.2 Main Results

We compare the results of our method (submit-
ted) against those of the baseline offered by the
task organizers (Tayyar Madabushi et al., 2022).
Although the original baseline is powered on Mul-
tilingual BERT(-base), for a comparison, we also
report the performance of the baseline equipped
with XLM-R(-base). Evaluation is conducted on
the test set, and each model’s performance is re-
ported according to the language on which it is
tested (English, Portuguese, and Galician) and the
setting it is trained (zero- and one-shot).

From Table 2, we can see that both in the zero-
and one-shot settings, our model largely outper-
forms baselines. Notice that in the zero-shot set-
ting, our model outperforms the baseline powered
on the same foundation model (XLM-R) by more
than 16% in Galician. Considering that Galician
was not included in the training data, this result con-
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Figure 2: Ablation study.

firms that our model is more generalizable than the
baselines from the perspective of input language.

4.3 Ablation Study

We perform an ablation study to confirm whether
the elements of our framework are significant. Note
that all the results used for comparison are the av-
erage of the scores of different instances with five
random seeds. Overall, when tested on the valida-
tion set, the final version of our approach succeed
in outperforming most of the variations, especially
in the one-shot setting where our decisions for se-
lecting the final model were made. We present
more detailed analysis in the following.

First, we compare our method with the varia-
tion (A) which uses only target sentences without
surrounding context and the variation (B) which re-
flects the context by concatenating three sentences.
Tayyar Madabushi et al. (2021), where the authors
employ the variation (B), previously reported that it
is not helpful for idiomaticity detection to consider
the surrounding context of a target MWE. How-
ever, as shown in Figure 2, we find that taking the
context into account following our approach (i.e.,
separating the context into two chunks) is in fact
advantageous in all experimental settings. Further-
more, we observe that the deviation of the scores
of our method is much smaller and more stable
than that of not considering context. This implies
that if there exists a data instance not having much
information available from its target sentence, the
surrounding context of the target sentence can com-
plements the lack of information.

Contrary to our expectation, it is shown that our
method is not always better than the three varia-
tions (C), (D) and (E). The variation (C) removes
segment embeddings, the variation (D) stops the
repetition of MWEs at the tails of 1⃝ and 2⃝, and in
the variation (E) the target MWE is recovered (not
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masked) in the computation of ‘context-exclusive’
representation ( 3⃝). We leave a detailed examina-
tion regarding these as a follow-up study.

Lastly, it turns out that the variation (F) which
removes the ‘MWE-exclusive’ representation ( 4⃝),
is more favored in the zero-shot setting. Unlike
the one-shot setting, where a pair of positive and
negative examples for a particular MWEs can be
provided, the zero-shot setting requires the evalu-
ation of MWEs not presented in the training set,
which is a more harsher condition for idiomaticity
detection models. Therefore, we conjecture that
static representations for the MWEs unseen during
training become a little bit noisy in the zero-shot
setting, failing to function following our intention.

5 Discussion

5.1 Issue on Validation Set in One-shot Setting

In the one-shot setting, we expect that a pair of data
instances (one for idiomatic and the other for non-
idiomatic) per every MWE in the test set should
be provided to the model we train. Likewise, if
one wants to confirm that the validation set is rig-
orous enough to be a substitute for the test set in
the procedure of selecting hyperparameters, every
MWE in the validation set should have two corre-
sponding instances in the training set. During the
competition for SemEval 2022 Task 2, we have dis-
covered that the necessary condition holds for the
validation set in the practice phase, while it does
not hold in the evaluation phase. In other words,
the training set provided in the practice phase incor-
porated data instances that correspond to MWEs in
the validation set. However, as the training set has
been substituted with a new version, a problem has
arisen where MWEs in the newly released training
set do not match with those in the validation set.
We conjecture that this discrepancy prevents one’s
optimal actions in choosing the best models.

To prove our hypothesis, we test a variant whose
performance on the validation set is not optimal,
but has the potential of working well when eval-
uated on the test set. Specifically, we replicate
our experiments, but do not choose the best in-
stance based on validation performance. Instead,
we simply choose the model instance trained until
9 epochs and compare it to baselines. As shown in
Table 2, we find that the instance chosen based on
the validation set (i.e., ours (submitted)) is worse
than the randomly selected one (i.e., ours (post-
eval)), implying that the inappropriateness of the

Form of MWEs Validation Test

Zero-shot setting
Original form 76.34 71.72
Inflectional form 76.36 70.01

One-shot setting
Original form 88.14 89.80
Inflectional form 89.33 88.95

Table 3: Performance gap with form changes in MWEs.

validation set in the evaluation phase might hinder
correct comparisons between submitted models.

5.2 Impact of Form Changes in MWEs
When MWEs are repeated at the end of input se-
quences in 1⃝ and 2⃝ and embedded solely in 4⃝
in our implementation, we copy them from target
sentences so that we can preserve their inflectional
form appearing in the sentences, rather than adopt-
ing their original form. To confirm the effectiveness
of this approach, we conduct an experiment where
we replace the MWEs with their original form.

From Table 3, we observe that unlike the case on
the validation set where applying inflectional form
is always helpful, it turns out that when evaluated
on the test set, employing inflectional form is not
beneficial for performance improvement, contrary
to our expectation. The idea of having utilized
the inflectional form of MWEs is from our conjec-
ture that compositional and static representations
of MWEs should be computed from the same form
for a fair comparison between them. However, it
seems that it is more effective to provide a model
with a MWE’s original form in addition to its inflec-
tional form such that the model can extract more
information from the both sides. We leave thorough
analysis on this phenomenon as future work.

6 Conclusion

In this work, we investigate the method of imple-
menting better idiomaticity detection models by
considering different levels of contextualization.
We propose four features grounded on the surround-
ing and inner-sentence context of a target MWE,
showing that these features are effective in improv-
ing performance. Moreover, we present a discus-
sion on the issue related to the validation set in
the one-shot setting and the impact of the form
of MWEs. As future work, we plan to develop
a method of designing the interaction between re-
lated features in a more sophisticated fashion, in-
stead of simply concatenating them.
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Abstract

This paper describes our system for SemEval-
2022 Task 2 Multilingual Idiomaticity Detec-
tion and Sentence Embedding sub-task B. We
modify a standard BERT sentence transformer
by adding embeddings for each idioms, which
are created using BERTRAM and a small num-
ber of contexts. We show that this technique
increases the quality of idiom representations
and leads to better performance on the task. We
also perform analysis on our final results and
show that the quality of the produced idiom
embeddings is highly sensitive to the quality of
the input contexts.

1 Introduction

Idiomatic expressions present a challenge to Large
Language Models (LLMs) as their meaning can-
not necessarily be derived from the composition
of their component tokens, a trait that LLMs of-
ten exploit to create representations of multi-word
expressions. The lack of compositionality leads
to poor representations for idiomatic expressions
and in turn poor performance in downstream tasks
whose data includes them.

SemEval-2022 task 2b (Tayyar Madabushi et al.,
2022) encourages the creation of better represen-
tations of idiomatic expressions across multiple
languages by presenting a Semantic Text Simi-
larity (STS) task in which correct STS scores are
required whether or not either sentence contains
an idiomatic expression. The sub-task requires the
creation of a self-consistent model in which a sen-
tence including an idiomatic expression and one
containing its literal meaning (’swan song’ and ’fi-
nal performance’) are exactly similar to each other
and equally similar to any other sentence.

To achieve this goal, we investigate whether due
to the similarity between idioms and rare-words
Schick and Schütze’s BERT for Attentive Mim-
icking (Schick and Schütze, 2020) (BERTRAM)
model, which was designed for use with rare-words,

can be used to explicitly learn high-quality embed-
dings for idiomatic expressions. We also inves-
tigate how many examples of each idiom are re-
quired to create embeddings that perform well on
the task, as well as how the quality of contexts fed
to the BERTRAM model effects the representations
and performance on the task.

Evaluating our model on the task shows that
externally trained idiom embeddings significantly
increase the performance on STS data containing
idioms while maintaining high performance on gen-
eral STS data. This improved performance gained
an overall spearman rank score of 0.6402 and first
place (of six entries) on the pre-train setting, and an
overall spearman rank score of 0.6504 and second
place (of five entries) on the fine-tune setting.1

2 Background

Adopting the idiom principle (Sinclair, 1991) to
produce a single token representation for MWEs
has been used widely within static embedding dis-
tributional semantic models (Mikolov et al., 2013;
Cordeiro et al., 2019). Within contextualised repre-
sentation models, Hashempour and Villavicencio,
2020 show that the contextualised representations
produced by context2vec (Melamud et al., 2016)
and BERT (Devlin et al., 2019) models can be used
to differentiate between idiomatic and literal uses
of MWEs. However, the MWEs are only repre-
sented by one token in the input, before being bro-
ken into many tokens using BERTs word piece
tokenizer. Tayyar Madabushi et al., 2021 add a
token to the BERT embedding matrix and shows
that this method improves representations through
increased performance on their proposed STS task.
The embeddings they add to BERT are randomly
initialised, however, and only trained during the
fine-tun step on limited data.

1The code for creating the embeddings and the mod-
ified baseline system code can be found on GitHub:
https://github.com/drsphelps/semeval-task-2.
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Usage Example in Sentence
Idiomatic Blockchains, fundamentally, are banking because what they’re doing is allowing the

transaction of value across networks . . . they’re doing it in an orthogonally different way,"
he said Wednesday in what may be his swan song in public office.

Literal Blockchains, fundamentally, are banking because what they’re doing is allowing the
transaction of value across networks . . . they’re doing it in an orthogonally different way,"
he said Wednesday in what may be his bird song in public office.

Semantically Similar Blockchains, fundamentally, are banking because what they’re doing is allowing the
transaction of value across networks . . . they’re doing it in an orthogonally different way,"
he said Wednesday in what may be his final performance in public office.

Table 1: Example sentences for the Idiomatic STS data. Idiomatic and Semantically similar should be given an
STS score of 1, and be given the same score when compared to the literal use.

2.1 BERTRAM

BERT for Attentive Mimicking (BERTRAM)
(Schick and Schütze, 2020), originally developed to
improve representations of rare words, builds upon
attentive mimicking (Schick and Schütze, 2019)
to create embeddings, within existing embedding
spaces, for tokens that incorporate both form and
context information from a small number of exam-
ple contexts. During training the model attempt
to recreate embeddings for common words with
the existing embedding in the model treated as the
‘gold embedding’, a process known as mimicking.
Form embeddings are then learnt using trained n-
gram character embeddings, before being passed
with a context into a BERT model. The output
of the BERT model forms the embedding for that
specific context. To incorporate knowledge from
many contexts an attention layer is applied over
the outputs for each context to get the final embed-
ding. There exist other models to produce effec-
tive embeddings from a small number of contexts
(Zhao et al., 2018; Pinter et al., 2017), however,
BERTRAM is the only model that is non-bag-of-
words and incorporates both form and context in-
formation when creating the embedding.

Rare words are unsurprisingly defined by how
uncommon they are within datasets. This leads
to problems when using LLMs on tasks involving
rare words as the word pieces they are broken down
into have not been influenced enough during pre-
training to accurately represent them. Similarly,
idiomatic phrases represent a small proportion of
the usage of their constituent words, the idioms in
the development set for this task represent an aver-
age of 4.9% of the usage of their constituent words.
Therefore, the embeddings for constituent words
are not significantly effected by the usage of idioms
in the training data, leading to the model failing to
understand the idiomatic expressions. Further simi-

larities between idioms and rare-words include the
variance in compositionality, for example, unicycle
can be partially understood from its word pieces,
whereas kumquat cannot.

3 Methodology

3.1 Embedding Creation

Due to the similarities between rare words and id-
ioms, we use BERTRAM to create representations
for idiomatic expressions. A separate BERTRAM
model is used for each nof the tasks languages. For
English, we use the pre-trained model provided
with the original paper. For Portuguese and Gali-
cian we train BERTRAM models with BERTim-
bau Base (Souza et al., 2020) and Bertinho-Base
(Vilares et al., 2021) respectively used as the
base transformers. The Portuguese and Galician
BERTRAM models that we train are trained using
almost the same training regime outlined for the
English model in the original paper, 3 epochs of
context only training, 10 epochs of form only train-
ing and 3 epochs of combined training. Due to time
and compute restrictions, we do not use One-Token
Approximation to expand the number of gold stan-
dard representations that can be used for attentive
mimicking. The Portuguese and Galician splits of
the cc100 dataset (Conneau et al., 2020; Wenzek
et al., 2020) are used to train the models, with the
entire split being used for Galician, and a 10GB
subset used for Portuguese.

Contexts for each of the idioms found in the
task data can then be created using these models.
Examples are retrieved from the relevant split in
the cc100 dataset using a grep command 2 that re-
trieves the entire line that the instance of the idiom
is found on. We investigate how changing the num-
ber of contexts used to create each embeddings

2grep -i " $val" -m250 en.txt > $val.data, where $val is
the idiom of interest
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Figure 1: Overall Spearman Rank performance on the
development set for the English and Portuguese models
at different epochs during pretraining

changes our performance on the task by creating
embeddings for each idiom with between 1-250
examples in intervals.

3.2 Model Architecture
For predicting the similarity scores, a separate
model is used for each of the languages BERT-
Base (Devlin et al., 2019) for English, BERTimbau
for Portuguese, and Bertinho-Base for Galician.
The created BERTRAM embeddings for each of
the idioms found within the task are added into the
embedding matrix of the relevant model. These
models are used within a Sentence BERT (Reimers
and Gurevych, 2019) setup, implemented using the
SentenceTransformers library, which consists of a
siamese network structure that uses mean squared
error over the cosine similarities of the input sen-
tences as it’s loss function. This allows us to use
the contextualised embedding outputs of our BERT
networks to find cosine similarity between a given
pair of sentences.

3.3 Data
This sub-task uses data in English, Portuguese and
Galician. Data is also split into general STS data
which does not necessarily contain idioms and id-
iom STS data which specifically contains idioms
and phrases which are semantically similar or liter-
ally similar. An example of idiom STS data taken
from the task description can be seen in Table 1.

English and Portuguese are the primary lan-
guages and general STS data, from STSBenchmark

Figure 2: Overall and Idiom STS Only Spearman Rank
on the development set whilst training on the Idiom STS
data

(Cer et al., 2017) and ASSIN2 (Real et al., 2020)
for English and Portuguese respectively, and idiom
STS data for both languages are included in the
train, dev, eval and test sets. A very small amount
(50 examples) of Galician data, comprised of idiom
STS data, is also included in the test set.

The task is split into two settings, pre-train and
fine-tune. The pre-train setting does not allow for
the use of STS score annotated data which includes
idioms, whereas any data can be used in the fine-
tune setting.

The evaluation metric used in this task is the cor-
relation between the predicted similarities and the
gold standard ones, calculated using Spearman’s
Rank Correlation Coefficient. The Spearman’s
Rank is calculated for the general STS data and
the idiom STS data separately, however, the Spear-
man’s Rank for the entire dataset is used in the final
evaluation.

3.4 Pre-train Setting

For the pre-train setting, we use the general STS
data in English and Portuguese to train the respec-
tive models. Due to a lack of available STS data
for Galician, it is trained on the Portuguese data, as
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Figure 3: Overall Spearman Rank corellation score on
the development set with different numbers of examples
used to create the idiom embeddings.

there is a high level of similarity between the two
languages.

Evaluating the models on the dev split, we in-
vestigate the optimal number of epochs for the En-
glish and Portuguese models. The results (shown
in figure 1) show that 45 epochs are optimal for
Portuguese and 35 for English. Due to a lack of
dev split data for Galician we use the result from
the Portuguese model as they are trained on the
same data.

3.5 Fine-tune Setting

For the fine-tune setting we start with the models
from the pre-train setting, and further train them on
the Idiom STS data provided as part of the task.

Again we investigate the optimal number of
epochs of training on this data (results shown in
figure 2). We find that the overall spearman rank is
highest after just a single epoch of training, with
further training considerably reducing the perfor-
mance on the general STS data, and thus on the
overall STS score. However, further training, up to
50 epochs, continues to increase the performance
of the model on Idiom STS data. Therefore, de-
pending on the application and required trade-off,
the model can be tuned to either perform better on
general STS data or idiom STS data.

3.6 Number of Examples

We also tune the number of examples given for each
idiom on the development data. Using BERTRAM
we train embeddings for each of the idioms using
a range of different numbers of examples from 1-
250. The performance of each set of embeddings
is evaluated by training the whole system for 10

epochs followed by evaluation on the dev set. Fig-
ure 3 shows the results of this experiment. The
performance increases quickly from 1-15 examples
before flattening out. The absolute highest perfor-
mance is achieved at 150 examples, and so this is
the value we use going forward.

4 Results

The final results for our system on the test data
can be seen in Table 2. These scores show signifi-
cant improvement over the baseline system and led
to our system being placed first for the pre-train
setting, and second for the fine-tune setting.

Fine-tuning has a much lower effect on the per-
formance of the system when evaluated on the test
set than compared with the dev and evaluation sets,
with only a small, but significant, rise in overall
correlation. Performance rises by only 0.0198 and
0.022 for English and Portuguese respectively, and
unlike on dev data we do not see a uniform increase
on the SR Idiom score.

4.1 Galician Performance

The performance we achieve on the Galician idiom
data is much lower than what is seen on the English
and Portuguese data. As we didn’t have access to
any development data for Galician further investi-
gation will be needed to identify the causes of this
discrepancy. Due to the smaller amount of Gali-
cian data in the cc100 corpus, some idioms did not
have the full 150 examples that were used to cre-
ate the embeddings for the English and Portuguese
idioms. Additionally, there was no Galician STS
data to train the final model on, and even though
Portuguese and Galician are very similar, the small
difference may lead to differences in the perfor-
mance.

4.2 Error Analysis and Data Issues

To perform analysis on the quality of the created
representations we calculate the Spearman’s Rank
Correlation for each of the idioms in the develop-
ment set individually. Any idioms with less than 5
occurrences in the development data are removed,
as significant correlation scores cannot be achieved
with such a low sample size.

When evaluating the performance of the idioms
individually, we can see that some of the idiomatic
expressions perform much worse than average. For
example the spearman rank for score for ‘fish story’
is just 0.190 when the embedding is trained on 10
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Setting Language(s) SR ALL SR Idiom SR STS
Pre-Train EN 0.7445 0.4422 0.8709
Pre-Train PT 0.7087 0.4806 0.8010
Pre-Train GL 0.2924 0.2924 -
Pre-Train All 0.6402 0.4030 0.8641
Pre-Train EN 0.5958 0.2488 0.8300
Pre-Train PT 0.5584 0.2761 0.7745
Pre-Train GL 0.1976 0.1976 -
Pre-Train All 0.4810 0.2263 0.8311
Fine-Tune EN 0.7643 0.4861 0.8344
Fine-Tune PT 0.7307 0.4643 0.7908
Fine-Tune GL 0.2859 0.2859 -
Fine-Tune All 0.6504 0.4124 0.8188
Fine-Tune EN 0.6684 0.4109 0.6210
Fine-Tune PT 0.6026 0.4090 0.5523
Fine-Tune GL 0.3842 0.3842 -
Fine-Tune All 0.5951 0.3990 0.5961

Table 2: Final Spearman Rank (SR) scores of the system on the test set, split into idiom Semantic Text Similarity
(STS), general STS, and all datasets. Aggregated results for all languages in bold. Results for the baseline system,
also broken down into languages, are in italics.

random examples.

Analysis of these errors shows that the lower
performance can, at least in part, be attributed to
different phrase senses in the automatically col-
lected examples. Taking our above example ‘fish
story’, 3 different phrase senses can be observed in
the original randomly selected examples: a tall tale,
a literal story about fish, and as a proper noun in
the title of the film ‘A Fish Story’. This leads to a
divergence in the contexts in the examples, and the
contexts for the idiomatic uses, leading to worse
embeddings for the idiomatic phrases.

We can explore this further by producing a man-
ually collected gold standard example set, for the
English language subset of the MWEs. Taking the
original 250 examples for each idiom, we select
10 gold standard examples. To avoid overfitting
our embeddings to this task, we only manually re-
move examples where the MWE is being used as a
proper noun (e.g. the film ’A Fish Story’), or the
idiom is being misused, leaving in correct literal
and idiomatic uses of the phrase. After removing
the proper noun and misused cases, 10 random
examples are selected to form our ’gold standard’
example set.

We then compare the spearman scores achieved
when the embeddings are trained with the gold stan-
dard examples, to scores when the representations
are produced using 10 random examples when both

models are evaluated on the English split of devel-
opment set. The results for selected MWEs with
the randomly selected (auto) and manually chosen
(manual) contexts can be seen in table 3.

The manually selected examples lead to an in-
crease in performance on the Idiom STS data split
from 0.406 to 0.450. A small increase from 0.841
to 0.848 overall on the English split can also be
observed, however this performance is limited by
the general STS score which is unaffected by our
manual selection. Particularly large improvements
in spearman rank coefficient can be seen on MWEs
with multiple meanings (panda car, banana repub-
lic, fish story, etc.). Surprisingly, we actually see
the performance on some MWEs fall, however this
can likely be attributed to the random selection of
examples, and variance in the contexts used for
each idiom, especially on the MWEs which did not
have many usages removed as they are only used
in the idiomatic form (eager beaver, chain reaction,
etc.).

5 Conclusion

We build our system by augmenting BERT mod-
els for each language with single token embed-
dings learnt using BERTRAM. BERTRAM is used
due to its high performance on rare words, which
share many properties with idioms such as non-
compositionality and being rare examples of com-
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MWE Auto Manual Change
panda car 0.399 0.851 0.452

banana republic 0.391 0.753 0.362
... ... ... ...

fish story 0.190 0.304 0.114
... ... ... ...

chain reaction 0.356 0.240 -0.116
eager beaver 0.491 0.352 -0.159

Table 3: Improvement in correlation, measured using
Spearman’s Rank Coefficient, when trained on manually
chosen examples vs. automatically collected ones.

ponent pieces. Our results, and subsequent rank-
ing at first place (of six entries) in the pre-train
setting and second place (of five entries) in the
fine-tune setting, show that BERTRAM can learn
high-quality word embeddings for idioms and that
this leads to better performance on downstream
tasks. Our error analysis shows that BERTRAM is
sensitive to the quality of examples it is shown, and
that performance can be improved even further by
manually selecting a gold set of contexts for each
idiom. Future work could look at the differences in
performance between the Portuguese and Galician
models with the goal of increasing performance
on Galician, and perform more analysis to explore
the discrepancy in performance between individual
idioms further.
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Abstract

Large Language Models have been successful
in a wide variety of Natural Language Process-
ing tasks by capturing the compositionality
of the text representations. In spite of their
great success, these vector representations fail
to capture meaning of idiomatic multi-word
expressions (MWEs). In this paper, we focus
on the detection of idiomatic expressions by
using binary classification, based on Subtask
A of SemEval-2022 Task 2 (Tayyar Mad-
abushi et al., 2022). Thereafter, we perform
the classification in two different settings:
zero-shot and one-shot, to determine if a
given sentence contains an idiom or not. N
shot classification for this task is defined by
N number of common idioms between the
training and testing sets. In this paper, we train
multiple Large Language Models in both the
settings and achieve an F1 score (macro) of
0.73 for the zero-shot setting and an F1 score
(macro) of 0.85 for the one-shot setting. An
implementation of our work can be found at
https://github.com/ashwinpathak20/

Idiomaticity_Detection_Using_Few_

Shot_Learning.

1 Introduction

Transformer-based Large Language Models
(LLMs)(Kant et al., 2018) like BERT, DistilBERT,
RoBERTa and their variants show state of art
performance on a large number of NLP tasks, yet,
they fail to capture multi-word expressions such as
idioms. This is because contextualized pre-trained
models learn compositional representations of
text at sub-word and word level to reduce the
vocabulary size.

Therefore, we evaluate how well do LLMs
identify idiomaticty by formulating the problem as
a classification task.

∗Equal contribution
†Corresponding author

In this paper, we propose an approach for
Subtask A of SemEval-2022 Task 2 (Tayyar Mad-
abushi et al., 2022). We treat the development
data as held-out development data, and report
our performance on the test data. To evaluate
how well LLMs identify idiomaticity, we use two
different settings to determine the generalizability
of the LLMs: zero-shot and one-shot setting. The
zero-shot setting is defined such that the MWEs in
the train set are mutually exclusive of the MWEs
found in the test set. For the one-shot setting, there
is only one Idiomatic and/or one Literal training
example for one MWE in the development set.
This is different from traditional definitions of
zero-shot and one-shot classification.

The rest of the paper describes the related works
in section II and the dataset used in Section III. Sec-
tion IV gives the methodology used in zero-shot
and one-shot learning. Section V describes the per-
formed experiments and Section VI discusses the
results. Section VII concludes the paper with a dis-
cussion on future research prospects and directions.

2 Related Work

Idiomaticity identification for MWEs has been
widely studied for single token representation us-
ing statistical and semantic methods (Lin, 1999;
Baldwin and Villavicencio, 2002).

Recent works use contextual representations
without any token representation for idiomaticity
identification for MWEs (Hashempour and Villav-
icencio, 2020). (Tayyar Madabushi et al., 2021)
introduces new tokens for MWEs into a contextual
pre-trained language model. However, they do not
explore the relationship of potential MWEs in a
sentence.

To this end, we present a contextual and com-
positional network incorporating latent semantic
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significance of MWEs in a sentence. Using word
embeddings for semantic similarity have been ex-
plored before (Katz and Giesbrecht, 2006). How-
ever, the challenge for the semantic usage identifca-
tion of MWEs lies in the ambiguity in meanings of
MWEs. Additionally, low frequency occurrences
of MWEs inhibit the models to effectively learn the
contextual representations as well.

Siamese Networks have been widely used for
similarity detection and difference tracking. We
propose to carry forward this idea for identification
of idioms in MWEs by comparing the literal usage
of MWEs from their idiomatic usage. This enables
our approach to learn a contextual and composi-
tional structure within a sentence.

3 Method

SemEval 2022 task 2 Subtask A (Tayyar Mad-
abushi et al., 2021, 2022) is a task to evaluate the
extent to which models can identify idiomaticity
in text through a coarse-grained classification into
an “Idiomatic” or “Non-idiomatic” class. To better
evaluate a model’s ability to generalise and learn in
a sample efficient fashion, the scores are reported
in the zero-shot and one-shot setups.

Data
The dataset used in this report is the one pro-
vided by (Tayyar Madabushi et al., 2021). Each
of the train and development splits of this dataset
consists of samples containing a target sentence,
it’s language information, a multiword expression
(MWE), two contextual sentences that occur before
and after the target sentence, and a label associated
with the target. The label represents whether the
multiword expression was used in an idiomatic
sense or not.

The train split is further divided into zero-shot
and one-shot data, containing 4491 and 140 sam-
ples each, consisting of 236 and 100 distinct MWEs
respectively. Similarly, the development data con-
tains 739 samples made from 50 different MWEs.
One-shot MWEs have no overlap with zero-shot
ones. However, development data MWEs are a
proper subset, as can be expected in a one-shot
classification scenario.

Zero-shot learning
For the zero-shot learning task, we use the train
data to build a classifier using large language mod-
els like BERT-multilingual-uncased, DistilBERT-
multilingual-uncased, XLM-RoBERTa-large and

XLM-net. This task is “zero-shot” in nature as the
idioms used in the train set and the development set
are distinct. Therefore, we capture the discrepancy
in the contextual meaning for idiomaticity, that is,
we aim that our classifier distinguishes on the basis
of lack of semantic correctness of literal meaning
in the presence of an idiom in a sentence.
To make sure that idioms are not used explicitly
while pre-training in large language models, we run
a natural language inference task on BART-Large-
MNLI and RoBERTa-Large-MNLI with the hy-
pothesis as “idiom”. The macro F1 score for both
approaches is 0.51 and 0.50 respectively, which
proves that there is no semantically learnt concept
of “idiomaticity” by the model. No training data
was used for this step.

We therefore use multilingual LLMs to build
classifiers for this setting. We need multilingual
classifiers as the data consists of idioms in three
languages: English, Portuguese and Galician. We
further analyse the majority voting approach on the
predictions of trained classifiers (inference based
ensembling).

Figure 1: One-shot learning framework

One-shot learning
In the one-shot setting, we use the only positive
and/or the only negative training example, as avail-
able for each MWE in the development set. Note
that the actual examples in the training data are
different from those in the development set in both
settings.

As shown in Fig 1, our model relies on finding
similarity or relation scores between two input sen-
tences. We first train this model on the pretext task
of predicting whether two sentences with the same
MWE belong to the same class. To achieve this
goal, we employ contextual word embeddings to
encode two sentences into feature vectors via an
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embedding function fθ. The feature vectors are
then combined with an operator O(., .) to output
O(fθ(xi), fθ(xj)) on two inputs xi and xj . This is
finally passed to a similarity/relation function gφ to
give score si,j as,

si,j = gφ(O(fθ(xi), fθ(xj)))

We test this framework with two underlying
models - a Siamese Neural Network (Koch et al.,
2015) and a Relation Network (Sung et al., 2018).
With the Siamese Network, the operator O(., .) is
the element-wise difference between the two in-
put feature vectors. The function gφ is a fully
connected layer followed by sigmoid activation.
The loss in this case can be defined as, L(si,j) =
Σi,j1yi=yj log(si,j) + (1 − 1yi=yj ) log(1 − si,j),
where yi and yj are the labels associated with
xi and xj . Similarly, for the Relation Network,
O(., .) becomes the concatenation operator, gφ be-
comes three fully connected layers with non lin-
ear activations followed by a sigmoid activation
function. The loss in this case is the MSE loss,
L(si,j) = 1

nΣi,j(si,j − 1(yi == yj))
2. In both of

the models, xi, xj pairs are samples with matching
MWEs.

We propose a novel inference methodology for
our binary classification problem, where we also
consider a dissimilarity score 1− si,j , with xi, xj
belonging to support and query sets respectively.
Support set is defined to be all samples with the
same MWE as the query. We find the maximum of
similarity and dissimilarity scores for all examples
in the support set, and assign the same label or the
opposite depending on whether the maximum was
the similarity or the dissimilarity score. This helps
us with (Tayyar Madabushi et al., 2021) dataset
where one-shot training data doesn’t have samples
for both the classes (idiomatic and non-idiomatic)
for all MWEs.

4 Experiments

Zero-shot learning
We run our experiments on pre-trained mod-
els for zero-shot classification. We use Multi-
lingual BERT, Multilingual DistilBERT, BERT-
Portuguese, XL-Net and XLM-RoBERTa for ex-
haustive comparison and evaluation. We ensemble
XL-NET, XLM-RoBERTa, and Multilingual Distil-
BERT in a majority vote based setting. As per the
SemEval task, our baseline is Multilingual BERT
for classification.

One-shot learning
For the contextual embeddings, we run our ex-
periments on pre-trained compositional multi-
lingual base models BERT, DistilBERT and XLM-
RoBERTa for exhaustive comparison and evalua-
tion. We run Siamese networks with cross entropy
loss and Relation Networks with an MSE loss.

Our hyperparameter search pointed towards a
dropout rate of 0.5, a learning rate of 2e-5 and we
found AdamW to be the best performing optimizer.

5 Results

LN Model Dev F1
EN BERT 0.65
EN DistilBERT 0.70
EN XLM-RoBERTa 0.73
EN XL-NET 0.73
EN Ensemble 0.71
PT BERT 0.64
PT DistilBERT 0.58
PT XLM-RoBERTa 0.63
PT XL-NET 0.62
PT Ensemble 0.53

EN-PT BERT 0.67
EN-PT DistilBERT 0.70
EN-PT XLM-RoBERTa 0.71
EN-PT XL-NET 0.73
EN-PT Ensemble 0.68

Table 1: Zero-shot evaluation results

LN Emb Model Siamese F1 Relation F1
EN BERT 0.79 0.85
EN DistilBERT 0.79 0.83
EN XLM-RoBERTa 0.83 0.85
PT BERT 0.81 0.84
PT DistilBERT 0.80 0.85
PT XLM-RoBERTa 0.85 0.85

EN-PT BERT 0.80 0.85
EN-PT DistilBERT 0.79 0.84
EN-PT XLM-RoBERTa 0.84 0.85

Table 2: One-shot evaluation results

Zero-shot learning
Table 1 shows F1-scores for different configura-
tions, both ensemble and individual language mod-
els, with the baseline model being Multilingual
BERT. We observe that the ensemble model per-
forms better than the baseline in case of EN (0.71
F1 score) and EN-PT (0.68 F1 score) as compared
to PT (0.53 F1 score) data. We further observe that

167



Setting Language Test F1
Zero-shot EN 0.7869
Zero-shot PT 0.7201
Zero-shot GL 0.5588
Zero-shot EN,PT,GL 0.7235
One-shot EN 0.8410
One-shot PT 0.8162
One-shot GL 0.7918
One-shot EN,PT,GL 0.8243

Table 3: Test evaluation results

XL-NET outperforms other models in case of En-
glish and Portuguese inputs. Our best performing
zero-shot setting results in a 0.72 F1 score on the
test split of the dataset,, which is a significant boost
from the 0.65 F1 score in the baseline provided by
(Tayyar Madabushi et al., 2021).

One-shot learning
Table 2 reports F-1 scores for one-shot learning.
We found the best results of our Siamese and Rela-
tion network with XLM-RoBERTa (0.85 F1-score).
We also observed a better score for Portuguese
dataset as compared to English dataset on all of our
models. Our best performing relation networks get
0.82 F1 score on the test split, which is competitive
with (Tayyar Madabushi et al., 2021).

Table 3 breaks down our test set evaluation re-
sults by language. GL in the table stands for Gali-
cian, which had data only in the test split.

6 Analysis and Conclusion

In this paper we analyzed the effectiveness of large
Language Models towards identifying idiomatic-
ity in a given phrase using zero-shot and one-shot
classification tasks.

In zero-shot classification, we use inference-
level ensembling of different language models and
observe that it outperforms BERT baseline in cases
where the input language consists of English. This
highlights a high degree of disagreement amongst
the language models w.r.t Portuguese input, high-
lighting their brittleness.

For one-shot classification, through Siamese and
Relation Networks, we are able to represent the
latent semantic relationship among MWEs leading
to a much better F1 score than zero-shot classifica-
tion and competitive with prior work. We believe
that the improvement in performance of the rela-
tion network comes due to the learn-able nature
of the distance function used between query and

support data sample, as well as our novel infer-
ence methodology which also takes into account
the dissimilarity score. Future work for one-shot
classification could aim at breaking the barrier of
0.85 F1 score we seem to have hit on the dev set
with all embedding base models.
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Abstract

This paper describes the experiments ran for
SemEval-2022 Task 2, subtask A, zero-shot
and one-shot settings for idiomaticity detec-
tion. Our main approach is based on fine-tuning
transformer-based language models as a base-
line to perform binary classification. Our sys-
tem, CardiffNLP-Metaphor, ranked 8th and 7th
(respectively on zero- and one-shot settings on
this task. Our main contribution lies in the
extensive evaluation of transformer-based lan-
guage models and various configurations, show-
ing, among others, the potential of large multi-
lingual models over base monolingual models.
Moreover, we analyse the impact of various in-
put parameters, which offer interesting insights
on how language models work in practice.

1 Introduction

Idiomatic language identification is an important
task for language understanding. Recent language
models are surprisingly accurate at distinguishing
literal and figurative use of language, but very little
work has been done on measuring their ability to
generalize across languages. Even for mainstream
languages such as English, there is still little un-
derstanding on the way language models process
idiomatic expressions (IE’s). This SemEval task
(Tayyar Madabushi et al., 2022) focuses, in partic-
ular, on multi-word expressions (MWE), adding
the challenge of representing such expressions in
models.

The Subtask A of SemEval Task 2 invited partic-
ipants to extend the range of existing experiments
for multilingual idiomatic language detection. Data
were provided in English, Portuguese, and Gali-
cian. The task is framed as a binary classification
of MWE between an idiomatic and a literal us-
age. In the zero-shot setting, no Galician example
is provided in the training and development set.
The MWE of the development, evaluation and test
sets are unseen in the training set. In the one-shot

setting, exactly one example of the MWE encoun-
tered respectively in the practicing and test phase
is added to the training data. Therefore, these set-
tings provide a challenging framework in which
language models have to learn from few or no ex-
amples.

As part of the CardiffNLP-Metaphor team, we
used a simple strategy similar to the method em-
ployed in the original paper releasing the dataset
Tayyar Madabushi et al. (2021). In particular, we
assessed the performance of monolingual and mul-
tilingual language models on the task. To this end,
we compared the performance of these models us-
ing different input formats and training parame-
ters. The best results are obtained with a XLM-
RoBERTa large (Lample and Conneau, 2019) with
7 epochs, 8 instances per batch, a maximum se-
quence length of 350, the longest three-sentence
context, and including target information (i.e., the
embedding and the position of the target in the sen-
tence). Our submitted model was based on the best
performance in the development set across both
tasks, using a wide range of different inputs and
parameters.

Our system ranked 8th with a best f1-macro
score of 0.7378 for the zero-shot competition and
7th with a score of 0.8934 for the one-shot com-
petition.1 The main contributions of this paper are
the following:

• We show that the multilingual large RoBERTa
model (Liu et al., 2019) performs better than
monolingual and base models on the one-shot
track, which differs from what was found in
the original paper (Tayyar Madabushi et al.,
2021).

• We found that XLM-RoBERTa base and large
can be unstable, also in comparison with simi-

1The script written for our experiments is available in a
GitHub repository: https://github.com/Mionies/
CardiffNLP-SemEval-2022-Task2
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Data Total EN PT GL %Id.
tr. 0-shot 4491 3327 1164 0 56
tr. 1-shot2 140 87 53 0 43
dev. 739 466 273 0 45
eval. 762 483 279 0 ?
test 2342 916 713 713 ?

Table 1: Dataset description. Number of example for
each language and percentage of idiomatic MWE ex-
pressions. The labels of the evaluation and test sets are
unknown.

lar models. This could also explain the differ-
ence in our conclusion and that of Tayyar Mad-
abushi et al. (2021) after exploratory runs with
large models.

• We confirm the importance of providing the
embeddings of the MWE separately to the
model, and running a relatively large amount
of epochs (up to 9 leads to improvements).
Our best model is obtained with seven epochs.

• We test various input formats, including maxi-
mum sequence length and context length, and
the impact of shuffling the training data on
the results, allowing us to discuss the results
obtained in previous experiments with this
dataset.

2 Related Work

In this task, idiomatic expressions are either frozen
(well-known) metaphors, or frozen noun com-
pounds involved in longer metaphors. This dataset
relates to other datasets labelled for metaphorical
usage of words such as the VU Amsterdam corpus
(VUAC) (Steen, 2010) used in a SemEval 2020 task
(Leong et al., 2020). However, such datasets are not
restricted to idioms or compounds. All the words
occurring in texts are labeled. This could ultimately
lead to a design of NLP tasks focusing on idioms,
but has in the main been used for the predictions
of metaphors at the word level. Other metaphor
datasets built for NLP such as the LCC corpus
(Mohler et al., 2016) may contain some MWE but
are not focusing on the specific issues posed by id-
ioms, and also include creative metaphors in their
scope.

To the best of our knowledge, there are other five
datasets particularly designed for the study of the

2One-shot addition designed for the development and the
evaluation sets

compositionality of MWE in context in English.
The idioms in context (IDIX) corpus (Sporleder
et al., 2010) includes idiomatic constructions with
non consecutive words (e.g. raise one’s eyebrows)
and the phrasal verb corpus (Tu and Roth, 2012) is
restricted to V+PRP constructions. The SemEval
2013 Task 5b on phrasal semantics is very simi-
lar to the task addressed this year, with a division
between known phrases and unknown phrases set-
tings within the binary classification task, but re-
stricted to English. More recently, the MAGPIE
corpus (Haagsma et al., 2020), a large repository
of 56,622 sentences containing potential idiomatic
expressions has been shared with the NLP commu-
nity. The selection of its initial list of idioms differ
from our dataset: after a semi automatic selection
of idiomatic expressions, a crowdsourced annota-
tion approach is adopted to determine whether the
expression is used metaphorically or literally. In
a similar design than the dataset used for Subtask
B, Zhou et al. (2021) constructed a curated dataset
of sentences pairs: one element containing an id-
iomatic expression and the second element being
the same sentences with the IEs replaced by its
literal paraphrase.

As for its connection with language models, Gar-
cia et al. (2021) compared various language models
for probing idiomaticity in vector space models. In
this work, we go beyond the capabilities of vec-
tor space models and test the capabilities of fine-
tuning multilingual language models on the task.
The most related work to our analysis is perhaps
that done by Zeng and Bhat (2021). They proposed
a neural architecture that uses attention flow, de-
signed for the task of detecting whether a sentence
has an idiomatic expression and localizing it when
it occurs in a figurative sense.

3 Data

Our team participated in Subtask A (zero and
one-shot tracks) of the SemEval-2022, Task 2 on
Idiomaticity Detection (Tayyar Madabushi et al.,
2022). The tasks tackles binary classifiation of
MWE in three languages, with variable amount
and type of data seen in the training set by the
model. Table 1 summarizes the distribution of the
instances per language and label. The MWE are all
noun compounds, sourced from the Noun Coum-
pound Senses dataset (Cordeiro et al., 2019).The
examples consists of excerpts of text of the Web.

As shown in Table 2, literal instances in our task
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Example label Orig. label
To avoid a blood bath, prison officials ordered the gate to be opened. 0 idio.
Remind me to shed a crocodile tear or two over’t. 0 meta usage
Marketing consultant Katy Williams saw the potential of social media. 1 non-idio.
Deborah Loomis is [...] known for [...] Foreplay (1975) and Blood Bath (1976). 1 prop. n.

Table 2: Examples of labelled instances with their original four labels in Tayyar Madabushi et al. (2021) and
grouping to two labels idiomatic/non-idiomatic for the SemEval binary classifiation Subtask A.

include non-idiomatic use of MWE and proper
nouns. Idiomatic instances gathers idiomatic use
and literal use within a longer metaphor.

The experiments are organized along six splits of
the data (c.f. Table 1) : training zero-shot, training
one shot for evaluation phase, training one shot for
test phase, development, evaluation and test sets.
Labels were provided to the participants for the
training and development sets. The practice and
test phase were run on Codalab.

4 System overview and experiments

4.1 System configurations

We test two different configurations to address this
binary classification task: one multilingual classi-
fier trained on all the training data at once, and one
monolingual classifier per language. For the zero-
shot setting in the monolingual classification con-
figuration, we do not have any training examples of
Galician. Therefore, we replace the Galician model
by a multilingual model trained on the English and
Portuguese examples.

We use well-known transformer-based language
models: English, Portuguese BERT and Multilin-
gual BERT (Devlin et al., 2019), XLM-RoBERTa
base and large (Conneau et al., 2020). For the
monolingual models of Galician, we use Bertinho
Vilares et al. (2021) model3, trained on Wikipedia.
The cased version of the language models is used in
all our experiments, following Tayyar Madabushi
et al. (2021) and because the target MWE contain
proper nouns.

4.2 Preprocessing

The data are preprocessed to find all the occur-
rences of the expressions and record their positions
in the three sentences provided for each instance of
the datasets.

We search for lower case and upper case oc-
currences, with words separated by a space or a

3Huggingface ID: dvilares/bertinho-gl-base-cased

hyphen. Only in the cases where an exact match
cannot be found, we also rely on their lemmata to
identify MWEs in plural form. For this, we relied
on Stanza4, which covers the three languages of
the experiments including Galician.

We find 80% instances with only one occurrence,
and 20% with multiple occurrences in the training
and development sets. We considered contexts of
one or three sentences (the previous and following
sentence in the latter case). The positions of the
target are recorded for both contexts length. We
then generate two versions of tagged sentences,
one where only the first occurrence of the target in
the core sentence is marked and one with all the
occurrences are marked, using special tokens.

4.3 Experiments

All the experiments are done using the Simple
Transformers library5 with a Quadro RTX 8000
GPU. In order to analyse the effect of several vari-
ables in the performance, we performed the follow-
ing experiments on the development set.

Experiment 1: Shuffling the training set. We
study the variation of the performances for three
seeds (1,2,3), after three shuffles of the training set
(A, B, C), for different batch sizes (8, 16, 32, 64).
Our goal is to distinguish the variations in the per-
formances due to various parameters modifications
from the variation induced by the order in which
instances are fed into the model during training.

Experiment 2: Context and input format. A
context limited to the core sentence provided for
each example (noted core-sent in Table 4) is com-
pared to the concatenation of this core sentence
with its previous and following sentence (noted 3-
sent). Different maximum sequence lengths (128,
300, 350, 400, 512) are also tested.

We further test the various ways to encode in-
formation about the target and its position in the

4https://stanfordnlp.github.io/stanza/
5Version 0.62.0, https://simpletransformers.

ai/
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sentence: tagging only the first occurrence of the
target in the core sentence (first) is compared to
tagging all the occurrences of the target within the
input text (multiple); one option allows the embed-
ding of the target expression to be passed to the
model independently from the sentence (pair).6

When the tagged and the pair parameters are
both set to False, the sentence is provided to the
model without any indication concerning the target.
This baseline configuration is very interesting in
order to evaluate the impact of the topic of the text
on idiom detection. For example, in the training
data, all the occurrences of blood bath are idiomatic
except for one occurrence of a proper noun (c.f.
Table 2). Blood bath is more likely to be used
idiomatically than literately in many corpora, as
long as they are not rare domain-specific archives
on vampires relaxing habits. On the contrary, all
21 occurrences of marketing consultant are literal.

Experiment 3: Monolingual and multilingual
models. Monolingual and multilingual language
models are compared with the two configurations
introduced in Section 4.1. In this experiment, we
measure the ability of the multilingual models to
transfer knowledge across English and Portuguese
with a comparison between two additional training
methods, bringing the experiment to a comparison
between three configurations:

1. Fine-tuning monolingual BERT models for
English and Portuguese, and Galician for the
one-shot setting. Data are split by language,
three classifiers are trained.

2. Fine-tuning three multilingual models using
the same settings as in 1.

3. Fine-tuning one single monolingual model,
with all the data in the two languages for the
zero-shot track and three languages for the
one-shot track

Experiment 4: Language models size. Pre-
vious initial experiments from Tayyar Madabushi
et al. (2021) concluded that large models were not
performing better than base models, after a few
attempts. We explore further the performance of
large models in comparison with base ones under
various classifier parameters and for different shuf-
fles of the training set.

6Table 7 in the Appendix includes more details about the
input formats.

Zero-shot
train set seed Batch size

8 16 32 64

A
1 0,70 0,75 0,74 0,69
2 0,70 0,73 0,73 0,38
3 0,31 0,73 0,71 0,73

B
1 0,31 0,73 0,74 0,71
2 0,72 0,74 0,72 0,72
3 0,74 0,72 0,73 0,75

C
1 0,73 0,73 0,72 0,71
2 0,72 0,75 0,71 0,68
3 0,74 0,74 0,68 0,71

One-shot
train set seed Batch size

8 16 32 64

A
1 0,73 0,80 0,73 0,70
2 0,75 0,74 0,73 0,70
3 0,31 0,75 0,74 0,73

B
1 0,31 0,75 0,76 0,73
2 0,71 0,75 0,76 0,72
3 0,73 0,78 0,71 0,71

C
1 0,61 0,71 0,72 0,72
2 0,71 0,73 0,71 0,69
3 0,70 0,76 0,75 0,71

Table 3: Experiment 1. Results of XLM-RoBERTa base
with 1 epoch, max-seq-length=128, for 3 data shuffles
and 3 random seeds. A context of 1 sentence is used,
with multiple occurrences of the target tagged, and the
MWE embedding provided separately to the classifier
(pair). Displayed scores are F1-macro for the develop-
ment set, aggregated for both English and Portuguese.

5 Results

During the exploratory phase, we tested 111 dif-
ferent parameter configurations, shuffling the data
before each run. The twenty best models (sorted
according to their performances in the one-shot set-
ting) are shown in Table 8 in the Appendix7. These
results are used in complement to the following
experiments for drawing our conclusions.

Experiment 1: Shuffling the training set. With
XLM-RoBERTa-base, Table 3 shows that the classi-
fier is very sensitive to the order in which the input
data are passed to the model. When the model
does not attribute the same label to all instances of
the development set, it may vary by 2 points for a
given random seed. The model fails to converge for

7The complete results are available in the GitHub repos-
itory of this paper https://github.com/Mionies/
CardiffNLP-SemEval-2022-Task2/blob/main/
param_optimization_shuffe/data.csv.
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Input parameters Zero-shot One-shot
Context Occ. Tagged Pair EN PT EN,PT EN PT EN,PT
3-sent first True True 0.758 0.646 0.737 0.851 0.818 0.846
3-sent multiple True True 0.743 0.627 0.722 0.661 0.361 0.644
3-sent - False True 0.749 0.624 0.723 0.806 0.789 0.810
core-sent first True True 0.735 0.650 0.718 0.855 0.832 0.850
core-sent multiple True True 0.744 0.603 0.708 0.866 0.841 0.863
core-sent - False True 0.769 0.564 0.724 0.826 0.853 0.841
3-sent first True False 0.740 0.688 0.741 0.872 0.773 0.845
3-sent multiple True False 0.281 0.361 0.313 0.788 0.686 0.768
core-sent first True False 0.764 0.513 0.706 0.716 0.541 0.69
core-sent multiple True False 0.774 0.58 0.724 0.777 0.799 0.794
Below, the target not indicated to the model : Zero-shot One-shot
3-sent - False False 0.695 0.652 0.699 0.649 0.361 0.611
core-sent - False False 0.753 0.588 0.711 0.688 0.579 0.667

Table 4: Experiment 2. Contextual and input format parameters. This experiment is run with XLM-RoBERTa-base,
3 epochs, a batch size=8, max-seq-length=512, a lr=4e-05, on 3 seeds with training set shuffle A (c.f. Experiment 1).
The results obtained with the best seed is displayed. An average over the three seeds was impossible because the
model often does not converge. The metric used is F1 macro, computed on the development set.

Languages Zero-shot
Pre-train Fine-tune EN PT EN,PT
mono mono 0.786 0.645 0.747
multi mono 0.793 0.664 0.764
multi multi 0.76 0.686 0.748
Languages One-shot
Pre-train Fine-tune EN EN EN,PT
mono mono 0.897 0.873 0.892
multi mono 0.835 0.783 0.829
multi multi 0.851 0.809 0.843

Table 5: Experiment 3. Mono and multilingual train-
ing data configurations for pretrained models and fine-
tuning. XLM-RoBERTa base is used. The experiment
ran with 4 epochs, a batch size=8, a lr=2e-05 using one
seed [3] and training set shuffle A. The metric used is
F1 macro, computed on the development set.

some seeds and shuffle combinations. The problem
arises more often with a small batch size of 8, but
it also fails to converge once with batch sizes as
large as 64 in our experiment. The issue does not
disappear for a larger number of epochs. In the ex-
ploratory phase, we tried a broad range of training
hyper-parameters, and encountered this issue for
models trained with 6, 7 and 8 epochs, both with
XLM-RoBERTa base and XLM-RoBERTa large.

The multilingual BERT language model shows
more stability. With the same datasets and param-
eters as those used in Table 3, it always obtains
a f-score >0.70 in the zero-shot track, and >0.72

in the one shot track. BERT and XLM-RoBERTa
perform comparably in the zero-shot experiment
but XLM-RoBERTa obtains the best performance
in the one-shot setting.

Experiment 2: Context and input format. The
results are presented in Table 4. With the ex-
perimental settings chosen, it is difficult to draw
any conclusion on which context window (core-
sentence or 3-sentences) or tagging scheme (first
or multiple) is better for the task. Both Table 8
in the Appendix and the results obtained by Tay-
yar Madabushi et al. (2021) suggest that providing
the embedding of the target MWE separately to the
model (pair) improves the performance.

Among the two configurations which input the
sentences (core-sentence or three-sentences con-
texts) to the model without giving any informa-
tion about the target, one performs consistently
better than random for English examples in the de-
velopment set zero-shot, with F1-scores of 75.3.
It suggests that performances of the model may
not mainly be due to the discrimination between
compositional and non compositional interaction
between the target and the context. The topic of
the sentence may also have an important influence,
which we did not fully analyze in this work.

Experiment 3: Monolingual and multilingual
models. The base monolingual and multilingual
settings show similar performance, in preliminary
experiments (Table 8) and Experiment 3 (Table
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Training parameters Zero-shot One-shot
shuffle length batch size model size EN PT EN/PT EN PT EN/PT

A 350 8 base 0.8 0,677 0,77 0,877 0,867 0,879
A 350 8 large 0.785 0.673 0.761 0.902 0.902 0.905
B 350 8 base 0.795 0.677 0.768 0.888 0.882 0.89
B 350 8 large 0.776 0.698 0.762 0.892 0.903 0.9
C 350 8 base 0.774 0.667 0.749 0.868 0.825 0.859
C 350 8 large 0.782 0.677 0.756 0.863 0.825 0.857
A 350 16 base 0.794 0.673 0.764 0.868 0.885 0.879
A 350 16 large 0.807 0.689 0.778 0.891 0.893 0.896
A 350 32 base 0.797 0.683 0.771 0.871 0.857 0.871
A 350 32 large 0.775 0.723 0.768 0.89 0.882 0.891
A 256 8 base 0.768 0.641 0.737 0.898 0.768 0.895
A 256 8 large 0.777 0.719 0.768 0.884 0.886 0.888
A 128 8 base 0.787 0.675 0.761 0.866 0.897 0.882
A 128 8 large 0.784 0.685 0.764 0.867 0.839 0.862

Table 6: Experiment 4. Base and Large XLM-RoBERTa models comparison. The results are averaged over
three seeds. All the models are trained with 7 epochs. The input parameters are set to pair=True, multiple=True,
context=paragraph, lr.=2e-05. The metric used is F1 macro, computed on the development set.

5). Experiment 3 is a comparison of the mod-
els, for one fixed set of parameters and one fixed
shuffle of the training set. In this case, monolin-
gual pre-training or fine-tuning with BERT outper-
forms the exclusive usage of the multilingual XLM-
RoBERTa configuration. Overall, XLM-RoBERTa
large obtains higher scores than monolingual BERT
models, base and large8, for the two settings and
languages. In conclusion, XLM-RoBERTa base is
outperformed by monolingual BERT models for
some parameters and shuffles, but XLM-RoBERTa
large attains 7 of the 10 best overall scores in the
one-shot settings, and of 5 of the 10 best results in
the zero-shot settings.

Experiment 4: Language Model Size. Table
6 and Table 8 in Appendix A both show that the
best performances reached are obtained by XLM-
RoBERTa large. The gap between the models is
clear with the one-shot track, and unclear for the
zero-shot. The pairwise comparison of the base
and large models for the zero-shot track shows that
the base model often outperforms the large one.

In the one-shot setting, a closest look at the re-
sults per seed reveals base and large models show
similar results only when a large standard deviation
between seeds affect the overall performance of the
large model 9.

8Large and base models are both tested for the English
classifier during the preliminary experiments (c.f. Table 8).

9The F1-macro for EN and PT and seed [1,2,3] in shuffle

Tracks and optimal number of epochs. The
evolution of the scores between Table 3 and Table 6
shows that the one-shot setting needs more epochs
to reach its highest performances than than the zero-
shot setting. The F1-macro score increases by 2
points in the Zero-shot between 1 and 7 epochs
when it gains 10 points in the one-shot training
configuration.

6 Conclusion

In this system description paper, we explained our
method to fine-tune transformer-based language
models for the task of idiomaticity detection. Be-
yond the implementation, we also attempted to an-
swer a few practical questions on how these models
learn the task, and particularly their optimal param-
eters and input settings.

As future work, we would like to explore un-
supervised approaches (e.g. sentence embeddings
especially tuned on in-domain data such as news
corpora of English, Portuguese and Galician). We
are also planning to explore various methods to in-
put the three contextual sentences, beyond simple
concatenation as explored in this paper. Another
interesting topic for further research would be to
explore the complex compositionality relations oc-
curring also withing the idiomatic expression, as
exemplified sometimes in the examples labelled
meta-usage in this dataset.
C are 0.907, 0.764 and 0.9, the standard deviation is 0.081.
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Abstract

We present NEAMER - Named Entity
Augmented Multi-word Expression Recog-
nizer. This system is inspired by non-
compositionality characteristics shared be-
tween Named Entity and Idiomatic Expressions.
We utilize transfer learning and locality fea-
tures to enhance idiom classification task. This
system is our submission for SemEval Task 2:
Multilingual Idiomaticity Detection and Sen-
tence Embedding Subtask A OneShot shared
task. We achieve SOTA with F1 0.9395 dur-
ing post-evaluation phase. We also observe
improvement in training stability. Lastly, we
experiment with non-compositionality knowl-
edge transfer, cross-lingual fine-tuning and lo-
cality features, which we also introduce in this
paper.

1 Introduction

Multi-Word Expressions (MWEs) are defined
as "idiosyncratic interpretations that cross word
boundaries (or spaces)" (Sag et al., 2002). Recent
advances in pre-trained language models such as
BERT (Devlin et al., 2019) have enhanced perfor-
mance of Sentence Classification task, however
tasks that specifically identify Multi-Word Expres-
sions (MWE) remain unsolved due to its specific
idiomatic properties (Garcia et al., 2021; Yu and
Ettinger, 2020). This SemEval shared task (Tay-
yar Madabushi et al., 2022) aims to understand
Multi-Word Expressions better by novel classifica-
tion and sentence similarity tasks.

Named Entity Recognition (NER) is a task to
identify Named Entities (People, Organizations
etc.) in a sentence. Multiple datasets exist that
specifically perform this task, including CoNLL-
02/03 Shared Tasks for English, German, Span-
ish and Dutch (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003). Multi-Word
Expressions and Named Entities are similar in a

∗Research unrelated to work

MWE Target Label
gold mine This means that search

data is a gold mine for
marketing strategy.

0
(Idio-
matic)

gold mine The hashtag “Qixia gold
mine incident” has been
viewed many million of
times on the social media
site Weibo.

1
(Non-
idiom-
atic)

gold mine The Gold Mine’s plain
frontage & sparse, white-
walled dining room sug-
gest that it’s a quick-fix
refuelling stop rather than
a place to linger.

1
(Non-
idiom-
atic)

Table 1: Dataset samples, table from (Tayyar Madabushi
et al., 2021). Note that 3rd example is a named entity
(The Gold Mine referring to a restaurant).

way that they consist of more than one word but
they form a single semantic unit. Thus, Named
Entities could be seen as a specific type of Multi-
Word Expressions (Jackendoff, 1997; Vincze et al.,
2011). However they are different from idiomatic
expressions.

We propose NEAMER - Named Entity Aug-
mented Multi-word Expression Recognizer that
aim to utilize non-compositionality shared between
two streams of NLP research. We explore trans-
fer learning between NER and idiom classification
tasks. We also experiment with "locality features"
to augment representations of text.

We have participated in Subtask A which is a
multilingual classification task to determine if a
given sentence has correct idiomatic usage or not.
We have focused our efforts on the OneShot setting,
where the goal is to classify the target sentence uti-
lizing the ZeroShot dataset consisting of idioms not
found in test set and the OneShot dataset consist-
ing of 1 idiom-label pair for all idioms in test set.
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The dataset has been provided by task organizers
(Tayyar Madabushi et al., 2021).

Contributions of this paper are :

• NEAMER system which utilizes transfer
learning, NER and other locality features to
improve performance and stability of MWE
classification task.

• Investigation into transfer learning between
NER and idiom classification task.

• Performance and error analysis to understand
capabilities of transfer learning, cross-lingual
fine-tuning and locality features.

2 Methodology

2.1 Idiom and Named Entity
Idioms and named entities are similar in the way
that when they are comprised of multiple words,
collocated words encode extra semantics while in-
dividual words lose their semantics partially or
completely. This property is referred as non-
compositionality (Baldwin and Kim, 2010). "In
a nutshell" means "very briefly, giving only the
main points" (Cambridge, 2022) as an idiom; in-
dividual words lose their concrete semantics and
only the combination specifies intended meaning.
Similarly, "Papa John’s" refers to "an American
pizza restaurant chain" (Wikipedia, 2022) when
used as a named entity; in this case, even gram-
matical functions of individual words are mostly
ignored. This similarity is the basis for the transfer
learning experiments we performed.

We have discussed similarities, but what about
differences? Idioms and named entities refer to
completely different usage of MWEs. Idioms are
utilized to improve fluency and understandability,
or make language more colloquial (Baldwin and
Kim, 2010). Named entities are utilized to spec-
ify name of persons, organizations and locations
(Tjong Kim Sang and De Meulder, 2003) and do
not have such social purpose. Correspondingly we
can expect certain knowledge to be easily transfer-
able between two tasks, while it may take more
epochs to obtain best final performance due to fun-
damental difference between tasks leading to neces-
sity for "unlearning" the previous fine-tuned task.
We explore the ideas in the experiments.

2.2 Transfer Learning and Stability
As discussed in Section 2.1, idioms and named en-
tities show similar non-compositionality. Thus this

is the basis for our transfer-learning experiments,
where large language models finetuned on NER
task are further trained on idiomatic expression
classification task. We investigate following ideas
in the experiments:

1. We hypothesize that disparity between task
types can bring instability. Large language models
are known to be unstable during training (McCoy
et al., 2019; Zhou et al., 2020). Language mod-
els are trained using Masked LM pre-training task.
The aim of the Masked LM task is to classify ev-
ery masked word to original word, which results
in classification of each tokens to 30,000 possible
labels. In contrast, the task at hand is much simpler,
with the aim being to classify whole sentence into
2 labels according to usage of relevant MWE. NER
task can bridge this task complexity gap since the
aim is to classify each tokens to 9 labels.

2. We hypothesize that non-compositionality
understanding of the model can be shared be-
tween tasks. NER systems need to understand
non-compositionality to correctly predict B-XXX
tags. It also predicts multiple named entities
per sentence. Thus we assert that enough non-
compositionality understanding is learnt during the
NER fine-tuning process compared to Masked LM
task where each token is predicted independently.

We additionally hypothesize that language-
specific knowledge could be improved for the
model through fine-tuning with similar language
data, which we perform experiments on.

2.3 Locality Features

We design 5 features that are closely related to
MWE usage types. Those are the following:

1. Entity - Whether an MWE contains an NER
output span, or an NER output span contains an
MWE.

2. Capitalization - Whether any word in the
MWE is intentionally capitalized (excluding the
first word in a sentence and the case where MWE
itself is explicitly capitalized in the dataset).

3. "Be a *" - Whether the MWE starts with a
be-verb and the article ’a/an’. Same for Portuguese.

4. "The *" - Whether the MWE starts with "the".
5. Quotation - Whether the MWE is surrounded

by quotation marks (" or ’).
We name them "locality features" because they

expand upon specific position of an MWE by look-
ing at adjacent characters. We encode locality fea-
tures using a deep neural network to give enough
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Feature Total 0 (Id-
iomatic)

1 (Not-
idiomatic)

All 4491 2535 1956
"The *" 720 366 354
Entity 650 94 556
Capitalized 634 50 584
Quotation 165 124 41
"Be a *" 80 68 12
Parenthesis 6 5 1

Table 2: Label statistics in ZeroShot data

Model ENG F1
mBERT-base (baseline) 70.7

xlm-roberta-base 75.5
xlm-roberta-large 79.0

Table 3: English ZeroShot F1 on validation data

significance to the features during training / infer-
ence while enabling them to learn complex rela-
tionships between the text. This is further informed
by label imbalance (excluding "The *" label, which
is balanced) shown in Table 2. We perform experi-
ments on whether or not locality features improve
the performance on the idiom classification task.

3 Experiment Setup

3.1 Model Selection

Experimental results on English ZeroShot (shown
in Table 3) were used to determine pre-trained
checkpoints with best performance. We thus se-
lected XLM-Roberta-Large (Conneau et al., 2020)
as a starting point for training OneShot models.

The list of checkpoints is: xlm-roberta-base,
xlm-roberta-large, xlm-roberta-large-finetuned-
conll03-english, xlm-roberta-large-finetuned-
conll02-spanish, xlm-roberta-large-finetune-
conll03-german, Davlan/xlm-roberta-base-ner-hrl,
Davlan/xlm-roberta-large-ner-hrl.

3.2 Model Architecture

Our model training scheme and architecture is pre-
sented in Figure 1. We fine-tune the model on NER
task with selected language. For the experiments,
we utilize NER fine-tuned checkpoints as described
in Section 3.1 instead of actually performing NER
fine-tuning. Then, we train the NER fine-tuned
model with text and idiom (MWE) data for the
idiom classification task along with selected local-
ity features. We use two layers of fully connected

Figure 1: NER augmented model, see Section 3.2 for
details.

network to encode locality features that are concate-
nated to the text representation. Locality features
used are described in Section 4.5 and implemented
in Python to obtain one-hot vectors which are fed
into the fully connected network. The feature en-
coding and hidden layers of FCN are of size 200. In
comparision, LM text encoding is 768 as originally
used by XLMRobertaForSequenceClassification
class in HuggingFace. The size of encoder feature
representation is selected to enhance importance
of locality features in comparison to LM represen-
tation. We use the classification head provided by
the same XLMRobertaForSequenceClassification
class.

3.3 Training Procedure

We mostly focus on OneShot setting, using both
ZeroShot and OneShot data provided. We used a
learning rate of 2× 10−5 and a batch size of 16 for
training our models. Models were trained for 24
epochs and the best checkpoints on the evaluation
data were selected. Random seeds of 0, 1, 3, 5, 42
are used for initial experiments. If any of the seeds
exhibit training failures due to instability (F1 < 0.5),
we perform additional experiments with random
seeds 49, 81, 100, 121. This resulted in at least
5 checkpoints for our experiments. All provided
training data was used for training the models. We
picked checkpoints that perform best on respective
languages (EN / PT) for evaluation and submission.
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Model Success
XLM-R 55.6%

XLM-R-EngNER 100%
XLM-R-GermanNER 88.9%

XLM-R-EngNER, Augmented 100%

Table 4: Model training success percentage.

Phase ALL EN PT GL
Baseline 87.7 88.1 87.0 85.4

Evaluation 93.5 96.1 89.9 92.1
Post-Evaluation3 94.0 96.1 91.1 92.8

Table 5: Best submissions.

1 We implemented our models in HuggingFace
(Wolf et al., 2019) and Pytorch (Paszke et al., 2019).
We utilize Tesla V100 NVIDIA GPU for training.

4 Results

4.1 Model Stability
We present observed training success rate for each
of the models in Table 4. We define training fail-
ure as an observance where F1 of the checkpoint
is smaller than 0.5. We observe a very high train-
ing failure rate for the XLM-Rlarge model (44.4%).
We assert that this is due to discrepancy between
the pre-training task of MaskedLM and the idiom
classification task (more discussion in Section 2.2.)

4.2 Best Submissions
We show our best submissions in Table 5. Our
best official submission during evaluation phase is
ensemble of 3 checkpoints per language consist-
ing of XLM-Rlarge-EngNER & SpaNER, with ex-
ception of one XLM-Rbase-EngNER checkpoint2.
Best post-evaluation submission is ensemble of
5 checkpoints per language consisting of XLM-
Rlarge-EngNER & SpaNER, selected via process
described in Section 3.3. We achieved top 2
during the competition (Section 7). We are cur-
rently first place in the post-competition leader-
board (4/15/2022).

4.3 Ensemble Model Performance
We submit our models based on the ensemble
model performance shown in Table 6. Checkpoints

1Galician test data was inferred by Portuguese model for
submission.

2The checkpoints were selected according to best perfor-
mance on validation set.

3Experiment performed after end of competition.

Model ALL EN PT GL
XLM-R 92.7 94.5 89.5 92.3

XLM-RNERHRL, 36 92.5 96.1 88.4 90.3
XLM-RNERENG, SPA 94.0 96.1 91.1 92.8

XLM-RNER
Aug 92.8 95.6 89.4 90.8

Table 6: Test data F1 performance for ensemble models.
All XLM-R models are large variant.

Figure 2: ROC curve of XLM-RNER on validation data
for all tasks. We observe very strong prediction rank-
ing capability for both EN and PT (AUC > 0.950) for
OneShot task.

for ensemble were selected via the process de-
scribed in Section 3.3. XLM-Rlarge + NER models
(xlm-roberta-large-finetuned-conll03-english, xlm-
roberta-large-finetuned-conll02-spanish) that repre-
sent transfer learning characteristics perform best,
with high F1 score across all languages. Interest-
ingly, locality feature augmentation does not seem
to enhance the final output compared to the transfer
learning only method. This could be due to model
checkpoints not having enough variance between
them caused by over-reliance on label imbalance.
(More discussion in Section 4.5)

4.4 Average Model Performance

The average F1 scores are presented in Table 7. We
observe that additional finetuning on English NER
data results in higher performance compared to
the baseline XLM-Rlarge model. Augmentation of
the model using locality features results in a slight
performance increase. Results suggest that NER
fine-tuning assists in the idiom classification task,
while locality features help relatively less. NER
fine-tuning is helpful due to the language model
adapting to the non-compositionality expressed in
both tasks (more discussion in Section 2.2.)
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Model Average Ensemble
XLM-Rlarge 93.0 94.5

XLM-Rlarge-Eng 94.0 96.1
XLM-Rlarge-Eng, Aug 94.2 95.6

XLM-Rbase-HRL 91.1 -
XLM-Rlarge-HRL 92.9 -

XLM-Rlarge-HRL, 36 94.2 96.1

Table 7: English test data F1

Model ALL EN PT GL
XLM-RNER 62.3 70.8 67.7 44.4

XLM-RNER
Aug 64.9 72.6 67.4 49.2

Table 8: ZeroShot ensemble test data F1 performance.
We note comparatively higher performance for locality
feature augmented model on English and Galician data.

4.5 Locality Features

Effect of locality features seem to be marginal,
since average F1 (Table 7) only slightly improves
in comparison with transfer-learning only model.
We also observe lower ensemble performance (Ta-
ble 6). An enhanced architecture (attention layer in
which features explicitly interact with each other)
with layer-wise learning rate tuning (to lessen the
adverse impact of a cold-start of the feature en-
coding layers) and dropout (to randomize model
training for ensemble enhancement) might be ben-
eficial. We leave it to future work.

We hypothesize that while locality features may
be a promising feature to utilize for enhanced ar-
chitectures, using it by itself may be a relatively
too simple indicator. Locality features only re-
quire looking at 1~2 specific tokens4, thus non-
compositionality expressed between the tokens
themselves is very simple compared to complexity
of MWE. An explicit NER feature may also be
already encoded in the model via NER fine-tuning
step such that no new information is provided dur-
ing training.

Lastly, we note that we achieve the best Ze-
roShot setting performance in our experiments with
XLMNER

Aug model which is an ensemble of 3
checkpoints (Table 8). Thus, the locality features
could be more promising in the ZeroShot setting
where there is less information regarding specific
MWE usage. We leave a thorough evaluation to
future work.

4i.e. Capitalization - first letter of words in MWE, Quota-
tion - ’ or " before and after MWE. Parenthesis - ( or ) before
and after MWE.

Model EN PT GL
XLM-Rlarge-Eng, Spa 94.0 87.5 88.5
XLM-Rlarge-German 93.6 87.2 84.2

XLM-Rbase-HRL 91.1 83.6 83.2
XLM-Rlarge-HRL 92.9 84.0 83.7

XLM-Rlarge-HRL, 36 94.2 85.9 87.2

Table 9: Test data average F1 performance for HRL
model variants and English, Spanish and German NER
fine-tuned model.

4.6 Crosslingual NER Transfer Learning

XLM-Rlarge-HRL is an XLM-Rlarge model trained
on NER tasks for 10 languages (Arabic, German,
English, Spanish, French, Italian, Latvian, Dutch,
Portuguese and Chinese). Rationale for fine-tuning
this model is to observe the following :

1. Impact of fine-tuning on a model from a pre-
trained model trained on NER data from multi-
ple languages. This model has been trained on
all CONLL02 / 03 datasets for English, Spanish,
Dutch and German, as well as 8 language specific
datasets.

2. Impact of fine-tuning on a model which has
been pre-trained with capability to perform Por-
tuguese NER task. This model has been trained
on Paramopama and Second Harem (Freitas et al.,
2010) Portuguese NER datasets.

We show the results in Table 9. We observe that
while XLM-Rlarge-HRL performs worse on EN F1
than the similarly fine-tuned XLM-Rlarge-English
and German, training for 36 epochs (50% epoch
increase) yields comparable performance. This
aligns with our hypothesis that task-to-task training
requires "unlearning" partial aspects of the previ-
ous task and thus may take longer to train (more
discussion in Section 2.1). XLM-Rlarge-English
was only trained on CoNLL03 English NER task,
while HRL models were trained on NER datasets
corresponding to 10 languages - this may result in
a higher amount of NER task and language specific
knowledge that needs to be removed for the model
to train properly.

Similarly, we observe worse performance on
Portuguese and Galician results for HRL mod-
els compared to Spanish fine-tuned model. Por-
tuguese and Galician seem to require more training
epochs than English to achieve comparable per-
formance. This may be due to the difference in
dataset size per language in both the ZeroShot and
OneShot training data for idiom classification task
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Feature LM NER Aug
Capitalized (137) 94.2 94.2 91.2
Entity (131) 93.1 93.1 90.8
"The *" (52) 86.5 92.3 92.3
"Be a *" (13) 100.0 100.0 100.0
Quoted (12) 90.5 90.5 90.5

Table 10: Micro F1 Metrics (validation data) for each
locality feature tagged samples corresponding to XLM-
R, XLM-RNER and XLM-RNER

Aug. We observe that
transfer learning has improved the performance for "The
*" feature. More discussion in Section 5.1.

(English:Portuguese = 2.9:1). We leave training the
models on more Portuguese idiom classification
datasets and longer epochs to future work.

We also experiment with a model fine-tuned on
CoNLL 03 German NER task. We note slightly
worse performance for German fine-tuned model
compared to models fine-tuned on highly similar
languages (English and Spanish NER fine-tuned
models). This result seems to suggest that fine-
tuning the model on same language for both NER
task and Idiom Classification task achieves best per-
formance. More experiments with many languages
from other parts of the world could be performed.

5 Error Analysis

5.1 Categorical Performance

We show the F1 metrics for the validation data per
each feature in Table 10. We find that the F1 score
of "The *" locality feature has increased by 5.8
points after transfer learning is introduced. This lo-
cality feature does not directly correspond to NER,
and is the only sample-balanced locality feature
as shown in Table 2. Thus, we argue that this is
further proof of NER transfer learning teaching
general non-compositionality to LM that is trans-
ferred to MWE classification task.

We also find that Capitalized and Entity F1
scores have stayed the same after the introduction
of NER transfer learning, and it has actually de-
creased by 2~3 points after locality feature aug-
mentation. We also observe a recall decrease of
0.214 (0.357 -> 0.143) as shown in Table 11. As
discussed in Section 4.5, this is due to over-reliance
on training data label imbalance.

5.2 Sample Analysis

We list the prediction improvements between
base XLM-Rlarge model and NER transfer-learning

Pred 0 Pred 1
Label 0 (Idiomatic) 5 9

Label 1 (Non-idiomatic) 0 117

Pred 0 Pred 1
Label 0 (Idiomatic) 2 12

Label 1 (Non-idiomatic) 0 117

Table 11: Confusion matrix for Entity in non-augmented
models(XLM-R, XLM-RNER) vs augmented model
(XLM-RNER

Aug).

based models in Appendix A. Interestingly, we
observe that 6 out of 9 sample prediction improve-
ments for English model are also observed with
HRL, German5 models. This strongly suggests that
shared characteristics are present between NER
transfer-learning based models. We also observe
that the model output changes are not associated
with named entities, strengthening our hypothesis
of general non-compositionality knowledge trans-
fer between tasks.

6 Conclusion

We present NEAMER - Named Entity Augmented
Multi-word Expression Recognizer. This system
explores how we can utilize non-compositionality
shared between Named Entity and Idiomatic Ex-
pressions. We find that the NER transfer learn-
ing variant achieves the best MWE classification
OneShot performance. We also observe high train-
ing stability. We investigate non-compositionality
knowledge transfer between tasks and obtain
promising results across experiments.

7 Rank Information

During the official evaluation phase, we were top 2
in Subtask A (One-Shot) leaderboard with F1 score
of 0.9346 (Table 5). We trained 50 checkpoints
and measured F1 on English and Portuguese sep-
arately. Checkpoints were generated via process
described in 3.3. Best English performing check-
points inferred on English test submission data,
while best Portuguese performing checkpoints in-
ferred on Galician as well as Portuguese test sub-
mission data. Finally, we ensembled best perform-
ing models on each language using different strate-
gies (including top 3, top 5, top 10) to optimize
generalization performance.

5German model is not trained on CoNLL03 English data,
making the result more interesting.
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A Prediction Improvements

We list the classification improvements6 in valida-
tion dataset observed across NER transfer learning
models in comparison to base XLM-Rlarge model.
The NER transfer learning models we compare are
English, German, and HRL (10 languages). We
find 6 samples that prediction have improved con-
sistently across all 3 models, which is 66.7% of
prediction improvements in English model.

MWE Sentence Feature
high life "This is the story of “Memo Fantasma” or “Will the Ghost,” who

started life in the Medellín Cartel, funded the bloody rise of a paramil-
itary army, and today lives the high life in Madrid."

"The *"

home run He is the only player to hit at least 30 home runs in 15 seasons and is
one of only four players to produce at least 17 seasons with 150 or
more hits.

-

health check Big Tech Show · Why your DNA may be your next health check -
pillow slip By morning most of it is on the pillow slip, and soap and water will

clean up the rest."
"The *"

pillow slip "Her pillow slip by now was very much askew; one ear pointed
northward, the other southeast, and she could only see out of one
eye."

-

dry land And God called the dry land Earth; and the gathering together of the
waters called he Seas: and God saw that it was good.

"The *"

Table 12: Improved samples due to NER fine-tuning.

6Wrong prediction in XLM-Rlarge model, but correct pre-
diction in NER transfer learning models.

185



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 186 - 189
July 14-15, 2022 ©2022 Association for Computational Linguistics

daminglu123 at SemEval-2022 Task 2: Using BERT and LSTM to Do Text
Classification

Daming Lu
ByteDance

daming.lu@bytedance.com

Abstract

Multiword expressions (MWEs) or idiomatic-
ity are a common phenomenon in natural lan-
guages. Current pre-trained language models
cannot effectively capture the meaning of these
MWEs. The reason is that two single words,
after combined together, could have an abruptly
different meaning than the compositionality
of the meanings of each word, whereas pre-
trained language models reply on words’ com-
positionality. We propose an improved method
of adding an LSTM layer to the mBERT model
to get better results on a text classification task
(Subtask A). Our result is slightly better than
the baseline. We also tried adding TextCNN to
mBERT and adding both LSTM and TextCNN
to mBERT. We participate in SubTask A and
find that adding only LSTM gives the best per-
formance.

1 Introduction

Machine learning has made deep impacts on var-
ious areas, such as computer vision (He et al.,
2015, 2017; Lu, 2018), computational biology
(Jumper et al., 2021; Huang et al., 2019; Lu, 2010,
2009), and natural language processing (Yang et al.,
2019b; Lewis et al., 2019; Madabushi et al., 2020)
. In natural language processing, large pre-trained
models are prevailing and have achieved great suc-
cesses. Models such as BERT (Devlin et al., 2018),
RoBERTA (Liu et al., 2019), XLNet (Yang et al.,
2019a), ALBERT (Lan et al., 2020), Ernie (Sun
et al., 2019), etc. performed pretty well in tasks
such as sentiment analysis, commonsense reason-
ing (Lin et al., 2019; Lu, 2020), QA system (Chen
and Yih, 2020; Yu et al., 2015) and many other
tasks. However, these models are not good at cer-
tain tasks such as assessing humor and capturing
idiomaticity. This shortcoming is largely due to
natural languages’ flexibility.

In this paper, we focus on how to use large pre-
trained language models to determine whether a

multiword expression (MWE) has a trivial meaning
(Tayyar Madabushi et al., 2022), a.k.a, the com-
positionality of each word’s meaning, or it is an
idiomatic usage. We use the dataset provided in
(Tayyar Madabushi et al., 2021). In the training set,
the target MWE is given. The previous sentence,
the target sentence and the next sentence are also
given. We need to decide if the MWE has an id-
iomatic meaning or its meaning is trivial. This task
then can be treated as a text classification problem.

The rest part of this paper is organized as fol-
lows:

• We first introduce the dataset and the task with
details.

• Then we describe how we built up our pipeline
with BERT, LSTM and TextCNN.

• We give our results in section 4.

• Lastly, we provide our discussion in section
5.

2 Dataset and Task

As mentioned in (Tayyar Madabushi et al., 2021),
the dataset for Subtask A consists of naturally oc-
curring (target) sentences, previous sentences and
next sentences. The target sentence contains po-
tentially idiomatic MWEs annotated with a fine-
grained set of meanings: compositional meaning
and idiomatic meaning(s). Table 1 shows two sam-
ples from the training data. One has an idiomatic
expression, and the other not.

3 Methods

Our core pre-trained language model is mBERT
(Wolf et al., 2020). We chose mBERT over BERT
hoping that it could better fit the task’s multi-
language specification. In traditional methods, n-
gram was used to detect and group the MWEs. In
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Table 1: Sample data for Subtask A.

previous sentence target sentence next sentence target
MWE

label (0
means
idiomatic)

"The job has tradi-
tionally been non-
political, but Mrs.
Trump’s decision to
hire a Trump Or-
ganization employee
added partisanship to
the role, even though
Mr. Harleth tried to
frame his work there
as one stop in a long
career in the hospital-
ity industry."

"The White House
job was well compen-
sated — former chief
ushers say salaries
run in the $200,000
range — but the days
are long, particularly
if the president is an
early riser or a night
owl; Mr. Trump was
both."

Mr. Biden is not a
morning person, peo-
ple familiar with his
schedule say.)

night owl 0

Demography expert
Piotr Szukalski told
Dziennik Gazeta
Prawna he thinks
that deep concerns
about the spread of
the coronavirus are
to blame.

Minister of Family
and Social Policy
Marlena Malag as-
cribed the high death
rate to the pandemic
and said it would
take a long time
for the current gov-
ernment program of
family benefits in-
tended to boost the
birth rate to reverse
the negative trend.

"Commenting on
data the state agency
Statistics Poland
released in Decem-
ber for 11 months
of 2020, economist
Rafal Mundry said
the number of deaths
was the highest since
World War II, and
the number of births
the lowest in 15
years."

birth rate 1

our methods, we tried to use either LSTM (Hochre-
iter and Schmidhuber, 1997) or TextCNN (Kim,
2014) to capture the MWEs. We concatenate
LSTM or TextCNN to mBERT in order to increase
the performance.

3.1 LSTM

Unlike RNN (Jordan, 1997), LSTM is good at re-
membering only the important parts of a sentence.
We hope it can help us group up the MWEs and
improve the performance. We add a bidirectional
LSTM layer at the output of the sequential trans-
formers. The bidirectional LSTM layer was initial-
ized as 1-layer and bidirectional, with a dropout of
0.1.

3.2 TextCNN

Similar to traditional CNN (Schmidhuber, 2015)
in computer vision, TextCNN (Kim, 2014) extracts

features from a small area of text. We suppose this
layer can help us detect the span of the MWEs so
that performance can be improved.

4 Results

We use the mBERT with 12 hidden layers. We did
experiments on dropouts with 0.1 and 0.2. As men-
tioned in Section 3, we explored of adding either a
LSTM or a CNN to the final fully connected layer
of the transformer from mBERT. Table 2 provides
our experiments and results. We were expecting
that mBERT + TextCNN could give us the best
results. But it turned out that mBERT + LSTM
performs best for Subtask A among our experi-
ments. The author has put the code for this paper
on GitHub1.

1https://github.com/daming-lu/semeval_
2022_task2_sub_a
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Table 2: Subtask A Experiment Results

Method Zero-Shot One-Shot
mBERT 0.6448 0.6987

+LSTM, dp=0.1 0.6546 0.6998
+LSTM, dp=0.2 0.6333 0.6613

+TextCNN, dp=0.1 0.6501 0.6827
+TextCNN, dp=0.2 0.6254 0.6309
+TextCNN+LSTM 0.6502 0.6977

+LSTM, dp=0.1(test) 0.654 0.704

5 Discussion

One reason that our method does not boost the per-
formance a lot might be that we add the LSTM or
TextCNN to the end, whose effect is limited to the
whole pipeline. Another new method, according
to (Gao et al., 2021), is that we can turn this classi-
fication problem into a masked word problem. In
PROMPT, it claims the integration is more genuine,
but choosing the prompt could be technical.

Another important reason is overfitting. We tried
to increase dropout from 0.1 to 0.2 in order to get
rid of overfitting. But the effect was opposite. Ac-
cording to (Tan et al., 2015), adding LSTM could
boost question answering tasks, whereas our task
is in fact a text classification. This might be the
reason of the tiny improvement.
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Abstract

This paper describes an approach to detect id-
iomaticity only from the contextualized rep-
resentation of a MWE over multilingual pre-
trained language models. Our experiments find
that larger models are usually more effective
in idiomaticity detection. However, using a
higher layer of the model may not guarantee a
better performance. In multilingual scenarios,
the convergence of different languages are not
consistent and rich-resource languages have big
advantages over other languages.

1 Introduction

In the past several years, there have been break-
throughs in a variety of natural language process-
ing tasks with the power of pretrained language
models. These include but are not limit to question
answering (Devlin et al., 2019), language gener-
ation (Radford et al., 2018, 2019) and machine
translation (Liu et al., 2020). However, it’s still
not clear whether pretrained language models have
the ability in capturing the meanings of multiword
expressions (MWEs), especially idioms. Given the
prevalent usage of idioms in different languages,
identifying the correct meaning of a phrase in a cer-
tain context is crucial for many downstream tasks
including sentiment analysis (Williams et al., 2015),
automatic spelling correction (Horbach et al., 2016)
and machine translation (Isabelle et al., 2017).

In literature, idiomaticity detection has been a re-
search topic drawing much attention from the NLP
community. MWEs which have both an idiomatic
interpretation and a literal interpretation are also re-
ferred as Potentially Idiomatic Expressions (PIEs),
for example, spill the beans. There has been both
supervised (Sporleder and Li, 2009) and unsuper-
vised (Haagsma et al., 2018; Kurfalı and Östling,
2020) approaches to solve this problem. For exam-
ple, Feldman and Peng (2013) treated idiom recog-
nition as outlier detection, which does not rely on
costly annotated training data. Peng et al. (2014)

incorporated the affective hypothesis of idioms to
facilitate the identification of idiomatic operations.

Due to the limited understanding of how pre-
trained language models may handle representation
of phrases, a series of works are proposed to investi-
gate phrase composition from their contextualized
representations. Yu and Ettinger (2020) conduct
analysis of phrasal representations in state-of-the-
art pre-trained transformers and find that phrase
representation in these models still relies heavily on
word content, showing little evidence of nuanced
composition. Shwartz and Dagan (2019) confirm
that contextualized word representations perform
better than static word embeddings, more so on
detecting meaning shift than in recovering implicit
information. Therefore, it remains a challenging
problem to resolve the idiomaticity of phrases.

Specifically on idiomaticity, recent approaches
are trying to further diagnose pretrained language
models using new metrics and datasets. Garcia et al.
(2021a) analyse different levels of contextualisation
to check to what extent models are able to detect
idiomaticity at type and token level. Garcia et al.
(2021b) propose probing measures to assess Noun
Compound (NC) idiomaticity and conclude that
idiomaticity is not yet accurately represented by
contextualised models. AStitchInLanguageMod-
els (Tayyar Madabushi et al., 2021) design two
tasks to first test a language model’s ability to de-
tect idiom usage, and the effectiveness of a lan-
guage model in generating representations of sen-
tences containing idioms. Tan and Jiang (2021)
conduct two probing tasks, PIE usage classification
and idiom paraphrase identification, suggesting that
BERT indeed is able to separate the literal and id-
iomatic usages of a PIE with high accuracy and is
also able to encode the idiomatic meaning of a PIE
to some extent. However, there’s still much more
to explore in idiomaticity.

Based upon AStitchInLanguageModels (Tay-
yar Madabushi et al., 2021), SemEval-2022
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Task2 (Tayyar Madabushi et al., 2022) is proposed
with a focus on multilingual idiomaticity. The task
is arranged consisting the two subtasks:

1. Subtask A: A binary classification task aimed
at determining whether a sentence contains an
idiomatic expression.

2. Subtask B: Pretrain or finetune a model which
is expected to output the correct Semantic
Text Similarity (STS) scores between sentence
pairs, whether or not either sentence contains
an idiomatic expression.

In this paper, we focus on Subtask A and in-
vestigate how the span representation of a MWE
can tell about its idiomaticity. We extend one of
the monolingual idiomaticity probing method (Tan
and Jiang, 2021) to multilingual scenario and
compare multiple settings using multi-lingual
BERT (mBERT) (Devlin et al., 2019) and XLM-
R (Conneau et al., 2020). Following Yu and Et-
tinger (2020), we also consider variations of phrase
representations across models, layers, and repre-
sentation types. Different from them, we use more
representation types to conduct the experiments.

Our main conclusion from these experiments are
two folds:

1. Larger models are usually more effective in id-
iomaticity detection. However, a higher layer
may not contribute more to the idiomaticity
detection task, or more contextualization does
not guarantee a better performance.

2. For multilingual scenario, the convergence of
different languages are not consistent. Rich
resource languages have initiative advantages
over other languages.

2 System Overview

2.1 Subtask A
For Subtask A, to test models’ ability to generalise,
both zero-shot and one-shot settings are considered.

1. zero-shot: PIEs in the training set are com-
pletely disjoint from those in the test and de-
velopment sets.

2. one-shot: one positive and one negative train-
ing examples for each MWE in the test and
development sets

Note that the actual examples in the training data
are different from those in the test and development
sets in both settings.

Data Each row of the data of Subtask A has at-
tributes like language and the potentially idiomatic
MWE. The "Target" is the sentence that contains
this MWE. The previous and next sentences for
context are also provided. The label provides the
annotation of that row, and a label of 0 indicates "Id-
iomatic" and a label of 1 indicates "non-idiomatic",
including proper nouns.

Baseline The baseline model (Tayyar Madabushi
et al., 2022) is based on mBERT. In the zero-shot
setting, the model uses the context (the sentences
preceding and succeeding the one containing the
idioms) and does not add the idiom as an additional
feature (in the “second input sentence”). In the one
shot setting, the model is trained on both the zero-
shot and one-shot data, but exclude the context
(the sentences preceding and succeeding the one
containing the idioms) and add the idiom as an
additional feature in the “second sentence”.

2.2 Span-based Model

While the common practice for classification tasks
using pretrained language models usually needs
concatenation of text sequences, this does not
tell us enough information how representations of
MWEs may lead to the change of performance.
Therefore, in this work, we focus on the contex-
tualized representations of MWEs to predict its
idiomaticity.

Problem Formulation Consisting with the defi-
nition in (Tan and Jiang, 2021) , given a sentence
denoted as (w1, w2, . . . , wn), which contains a
MWE withmwords denoted as (wi, . . . , wi+m−1),
The task is to decide whether the MWE is used with
its literal meaning or its idiomatic meaning, or if
a sentence contains an idiomatic expression as de-
scribe in the task.

Span Identification In this work, our method re-
quires a pair of span indices of the target MWE
to extract their hidden representation from the en-
coded sequence. However, in this task, no such
indices is offered explicitly from the dataset. We
empirically find these indices by using editing dis-
tances in characters between the MWE and the
sentence. This method works for most of the cases.

Span Representation For each MWE, we have a
pair of span offsets in the original context. We use
an L-layer BERT to process the tokenized context
by prepending [CLS] to the beginning and append-
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Figure 1: Mismatched transformer-based span representation.

ing [SEP] to the end. Let hk
i ∈ Rd denote the hid-

den vector produced by the kth layer of BERT rep-
resenting wi. We extract the hidden representations
of the span to get its contextualized representations.
For each MWE, we get a sequence of hidden vec-
tors at the k-th layer for the m tokens inside this
MWE as follows: pk = (hk

i ,h
k
i+1, . . . ,h

k
i+m−1).

In transformer-based models, a word might be
tokenized into several pieces. We adopt the mis-
matched tokenization trick offered by Allennlp 1

to reconstruct its hidden vector. The hidden vec-
tor will be the average embeddings of constituent
pieces. The mismatched encoding is illustrated in
Figure 1.

We represent the target MWE using the span by
six different kinds of combinations of the span’s
words. The first four of them are only using their
endpoints. We use x = hk

i to denote the start of
the span and y = hk

i+m−1 to denote the end of the
span.

1. x,y The span is represented by a direct con-
catenation of two endpoints.

2. x,y,x-y The span is represented by a direct con-
catenation of two endpoints and the difference
of them.

3. x,y,x*y The span is represented by a direct
concatenation of two endpoints and the ele-
mentwise product of them.

4. x,y,x*y,x-y The span is represented by a direct
concatenation of two endpoints, the element-
wise product and the difference of them.

1https://github.com/allenai/allennlp

5. SelfAttentive We firstly compute an unnor-
malized attention score for each word in the
document. Then we compute spans represen-
tations with respect to these scores by normal-
ising the attention scores for words inside the
span.

6. MaxPooling A span is represented through
a dimension-wise max-pooling operation.
Given a span, the resulting value of a dimen-
sion is using the maximum value of this di-
mension across all the span tokens.

Span Classification We use a binary linear clas-
sifier upon the span representation.

3 Experiments

In this paper, we want to test how the pretrained
model, the transformer layer and the representation
type, affect performance of idiomaticity detection.

3.1 Settings
This subtask is evaluated using the Macro F1 score
between the gold labels and model predictions (see
the details in the evaluation script).

All the multilingual pretrained langauge mod-
els are hold by Huggingface, including mBERT2,
XLM-R3 and XLM-R-L4.

Since we are focusing on comparison of span
representation across different layers and represen-
tation types, we conduct experiments with the 4-th,

2BERT multilingual base (cased) : https://huggin
gface.co/bert-base-multilingual-cased

3XLM-RoBERTa (base-sized model): https://hugg
ingface.co/xlm-roberta-base

4XLM-RoBERTa (large-sized model) : https://hugg
ingface.co/xlm-roberta-large
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Model Type Layer EN PT GL Avg

mBERT (Tayyar Madabushi et al., 2022) - 12 70.70 68.03 50.65 65.40

mBERT x,y,x-y 12 76.24 72.27 64.27 72.85
XLM-R x,y 8 77.62 71.61 64.88 72.68
XLM-R-L x,y,x-y 24 75.22 75.80 69.01 74.66

Table 1: Experiment results of zero-shot setting for different multilingual pretrained models, in macro F1 score.

Model Type Layer EN PT GL Avg

mBERT (Tayyar Madabushi et al., 2022) - 12 88.62 86.37 81.62 86.46

mBERT MaxPooling 8 86.59 85.82 85.77 86.63
XLM-R MaxPooling 8 89.49 83.71 82.19 86.17
XLM-R-L x,y,x*y,x-y 24 91.26 86.96 89.06 89.79

Table 2: Experiment results of one-shot setting for different multilingual pretrained models, in macro F1 score.

8-th and 12-th layer of mBERT and XLM-R and
the 8-th, 12-th and 24-th layer of XLM-R-L. All
six representation types are considered for each
layer-based models.

We run most of our experiments with an
NVIDIA 1080ti GPU with 11GB memory, and use
a NVIDIA A100 for XLM-R-L-based experiments.
We finetune each experiment for 10 epochs with
the learning rate set to 5e-5. We notice that the
training process converges with training accuracy 1
in a short period. To reduce the effect of overfitting,
we use a dropout probability of 0.5 before the clas-
sification layer. Our code is built over Allennlp2
and will be released on Github5.

3.2 Results and Analyses for Subtask A

We list the overall experiment results in Table 3
in the Appendix. The table contains three main
parts with each part showing the detailed experi-
ment results for a multilingual pretrained language
model. In each part, we test all six combinations
of span representations using encoded sequences
from different layers. To better illustrate our major
conclusions, we select the best settings for each
multilingual model from Table 3, and rearrange the
zero-shot results to Table 1 and one-shot results to
Table 2.

Table 1 shows us that using only endpoints of the
span can be effective in predicting its idiomaticity
and representation type x,y,x-y is a good choice
for the zero-shot setting. We think representation
using only endpoints is working well might due to

5https://github.com/VisualJoyce/CiYi

most of the MWEs in current dataset consist of two
words.

Table 2 shows us that representation type Max-
Pooling is a good choice for the one-shot setting
and the best performance may be achieved using
middle layers.

Combining both zero-shot setting and one-shot
setting, we find that larger models are usually more
effective in idiomaticity detection. For a specific
pretrained model, using contextualized representa-
tion from a higher layer may not guarantee a better
performance. For example, from the perspective of
overall score for the One Shot scenario, the highest
scores are all reached at the 8-th layer. However,
we didn’t observe a consistent advantage of using a
specific representation type across different models
and layers.

From the perspective of language, span-based
models are achieving relative larger gains in both
settings for GL. On one hand, the corpus used for
training pretrained language models is not balanced
across different languages. For example, in XLM-
R, data from EN is several times than that of PT
and hundrands times than that of GL. The data for
GL may just surpass a minimal size for learning
a BERT model and restricts performance in both
settings for GL compared with PT and EN. On the
other hand, this tells us that better span representa-
tion still help in detection of idiomaticity.

3.3 Endpoints-based Representation

This work focuses on the contextualized representa-
tion of the span of a target MWE. As pointed out by
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others, phrase representations, especially idioms,
are not always compositional and rely more than
the constituent words in the span. Not to mention, it
is a much easier case which only uses the endpoints
of the span. However, in both zero-shot setting and
one-shot setting, we notice that endpoints-based
methods works almost as well. We suspect this
may due to the following reasons: (1) Endpoints
of MWEs are highly correlated with these MWEs
and can be very indicative about their representa-
tion. (2) Most of the MWEs covered in this dataset
contain two words.

4 Conclusion

In conclusion, our experiments find that larger mod-
els are usually more effective in idiomaticity de-
tection. And for a specific pretrained model, using
contetualized representation from a higher layer
may not guarantee a better performance. As the
data used for multilingual pretrained language mod-
els is not well-balanced, rich resource languages
have significant advantages over other languages.
In the future, with the community contributing
stronger language models with more balanced lan-
guage distribution and more multilingual idiom-
annotated datasets, idiomaticity detection still has
large potentials to be explored from more angles.
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XLM-R-L x,y 12 76.92 70.40 60.11 70.17 90.26 85.19 82.76 87.10
XLM-R-L x,y,x-y 12 77.48 67.52 60.25 69.85 92.24 81.30 81.00 86.30
XLM-R-L x,y,x*y 12 80.54 65.49 55.46 68.72 91.43 83.91 78.78 86.00
XLM-R-L x,y,x*y,x-y 12 79.77 69.66 60.84 71.54 90.28 84.42 83.46 87.14
XLM-R-L SelfAttentive 12 78.13 74.44 61.92 72.63 90.48 86.23 78.90 86.43
XLM-R-L MaxPooling 12 80.68 71.01 62.90 73.06 92.46 86.03 77.26 86.62

XLM-R-L x,y 24 78.55 74.83 65.72 74.46 90.15 85.58 85.98 88.10
XLM-R-L x,y,x-y 24 75.22 75.80 69.01 74.66 90.27 85.40 85.50 87.94
XLM-R-L x,y,x*y 24 80.55 67.54 63.38 73.08 87.66 81.48 79.72 84.08
XLM-R-L x,y,x*y,x-y 24 76.63 73.76 64.52 72.65 91.26 86.96 89.06 89.79
XLM-R-L SelfAttentive 24 73.17 71.93 62.14 69.99 88.64 87.81 80.86 86.73
XLM-R-L MaxPooling 24 75.39 72.33 66.15 72.26 89.30 85.47 85.39 87.55

Table 3: Experiment results for different multilingual pretrained models, in macro F1 score. We use bold font to
highlight the maximum score across all settings and underline to highlight the maximum score in each part.
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Abstract

This paper presents our contribution to the
SemEval-2022 Task 2: Multilingual Idiomatic-
ity Detection and Sentence Embedding. We
explore the impact of three different pre-trained
multilingual language models in the SubTaskA.
By enhancing the model generalization and ro-
bustness, we use the exponential moving aver-
age (EMA) method and the adversarial attack
strategy. In SubTaskB, we add an effective
cross-attention module for modeling the rela-
tionships of two sentences. We jointly train
the model with a contrastive learning objective
and employ a momentum contrast to enlarge
the number of negative pairs. Additionally, we
use the alignment and uniformity properties to
measure the quality of sentence embeddings.
Our approach obtained competitive results in
both subtasks.

1 Introduction

In recent years, the pre-trained models have been
widely used and play a vital role in the natural lan-
guage processing tasks. The success of language
models relies on huge amounts of unlabeled data
and the useful representation layers that are de-
signed to draw on information from the surround-
ing context (Devlin et al., 2018;Nedumpozhimana
and Kelleher, 2021). However, more recent studies
show that even state-of-the-art pre-trained contex-
tual models (e.g. BERT) can’t accurately represent
idiomatic expressions (Yu and Ettinger, 2020;Gar-
cia et al., 2021). One reason for this is that many
expressions can be used both literally and idiomati-
cally.

Specifically, the size of vocabulary can’t in-
crease indefinitely, which makes representing id-
iomatic phrases particularly challenging (Shwartz,
2021;Tayyar Madabushi et al., 2021). Idioms occur
in almost all languages, to distinguish whether an
expression has an idiomatic sense would leverage
both cross-lingual models and multiword expres-

SubTask Train Dev Test Desc

zero-shot 4492 740 763 binary
one-shot 4492 740 763 classification

pre-train 24498 2000 3827 semantic
fine-tune 6573 2182 2263 similarity

Table 1: The statistics of datasets.

sions (MWEs). The SemEval 2022 Task 2(Tay-
yar Madabushi et al., 2022) is aimed at detecting
and representing MWEs and presents a novel mul-
tilingual dataset across English, Portuguese and
Galician. And this task consists of two different
subtasks to evaluate the model’s ability to identify
and capture idiomaticity.

Our contributions can be summarized as fol-
lows: 1) We choose three transformer-based lan-
guage models from the XTREME LeaderBoard
(Hu et al., 2020), and compare the effective-
ness of mBERTbase (Devlin et al., 2018), XLM-
Rbase(Conneau et al., 2020), and InfoXLMbase(Chi
et al., 2021). 2) We adopt the exponential moving
average method (EMA) and adversarial training
strategy to improve the model’s generalization and
robustness. We achieved considerably performance
gain of 2.91%, 3.87% over the baseline solution,
and ranked 12th in the zero-shot settings and 4th
in the one-shot settings. 3) With finetuning on the
supervised target datasets, we use cross-attention
module and jointly train the model with an extra
contrastive loss layer on top of the BERT encoder.
Our approach achieved an 8.22%, 4.5% improve-
ment compared to the baseline solution, and ranked
top-4 in the pre-train and fine-tune settings. We
release the source code and pre-trained models as-
sociated with this work. 1

Moreover, we find that adversarial training can

1https://github.com/cuixuage/
SemEval2022-Task2
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achieve good performance by setting the appro-
priate batch size. In the SubTaskB, we show that
joint training regularizes the sentence embeddings’
anisotropic space to be more uniform but also suf-
fers a degeneration in alignment slightly. The trade-
off between the alignment and uniformity (Wang
and Isola, 2020) indicates that perfect alignment
and perfect uniformity are likely hard to simultane-
ously achieve in practice.

2 Background

SemEval-2022 Task 2(Tayyar Madabushi et al.,
2022) provides two subtasks. Subtask A consists
of a binary classification task aimed at determin-
ing whether a sentence contains an idiomatic ex-
pression. The sample of the dataset consists of
the previous sentence, target sentence, next sen-
tence, and MWE. The target sentence contains the
potentially idiomatic MWE, and the label of 0 in-
dicates "Idiomatic" and the label of 1 indicates
"non-idiomatic". Our model receives the context
sentences as input in the zero-shot setting, and re-
ceives the target sentence by adding the MWE as
an additional feature in the one-shot setting. This is
based on the results presented in the dataset paper
(Tayyar Madabushi et al., 2021).

SubtaskB consists of a novel task which requires
the model to output the correct Semantic Text Sim-
ilarity (STS) scores. The task is designed to test a
model’s ability to generate sentence embeddings
that accurately represent sentences regardless of
whether or not they contain idiomatic expressions.
When evaluating the trained model, we first ob-
tain the sentence embeddings, then we calculate
the Spearman correlation between the cosine simi-
larity scores of sentence embeddings and the gold
labels. The statistics of the corpus are shown in
Table 1. Our team participated in both subtasks,
and the next section will introduce an overview of
our system.

3 System Overview

We focus on comparing the impact of different
training techniques adopted in our system. In this
section, we first present the BERT-like text encoder,
then we introduce several strategies for improving
models’ robustness. Finally, we talk about the de-
sign of the cross-attention module and the jointly
training way of incorporating supervised signals
and unsupervised signals.

3.1 Transformer-based Models
In the zero-shot and one-shot settings, we compare
several pre-trained multilingual language models
from the XTREME Leaderboard2 as the text en-
coder . The models shown below are also available
on the hugging-face website3.

mBertbase,the bert-base-multilingual-cased
model is pre-trained on the top 104 languages with
the Wikipedia dataset, and consists of 12-layer,
768-hidden, 12-heads, 109M parameters and a
shared vocabulary size of 110000 (Devlin et al.,
2018).

XLM-Rbase,the xlm-roberta-base model con-
sists of 100 languages and pre-trained with fil-
tered CommonCrawl dataset, and consists of 12-
layer, 768-hidden, 12-heads, 2̃70M parameters and
a shared vocabulary size of 250002 (Conneau et al.,
2020).

InfoXLMbase,we use the "microsoft/infoxlm-
base" model containing 94 languages and pre-
trained with CCNet dataset, and has the same con-
figurations of XLM-R and a shared vocabulary size
of 250002 (Chi et al., 2021).

Figure 1: Incorporating supervised and unsupervised
signals. MSE Loss: the mean squared error, InfoNCE
Loss: the contrastive objective.

3.2 Training Procedures
There are two ways of enhancing the model gener-
alization and robustness.

Exponential Moving Average Our model uses
EMA to smooth the trained parameters. Evalu-
ations that use averaged parameters sometimes
produce significantly better results than the final
trained values. Formally, we define the smoothed

2https://sites.research.google/xtreme
3https://huggingface.co/models
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SubTaskB Model ALL Data Idiom Data STS Data

pre-train
mBertbase 53.90 21.87 80.82
mBert♦base 55.58 27.18 82.09
mBert♣base 56.32 28.26 83.59

fine-tune
mBertbase 62.29 34.59 52.29
mBert♦base 63.16 36.95 53.49
mBert♣base 64.01 39.56 56.15

Table 2: Performance of Our Approach on the Sentence Representation Task. We report the Spearman correlation ×
100 on the test sets, ♦: jointly train the model with the contrastive objective, ♣: jointly train the model with the
cross-attention module and the contrastive objective.

variables and trained variables as θs and θt, EMA
decay weight as: η. After each training step, we
update θs by:

θs ← ηθs + (1− η)θt (1)

Adversarial Training Recently, adversarial at-
tack has been widely applied in computer vision
and natural language processing (Yan et al., 2021).
Many works use it during fine-tuning, because com-
puting adversarial perturbations relies on super-
vised signals. We explore the influence of adver-
sarial training strategies with different batch size,
and compare the FGSM (Goodfellow et al., 2015),
PGD (Madry et al., 2019), FREELB (Zhu et al.,
2020) and SMART (Jiang et al., 2020) methods in
the zero-shot and one-shot settings. It works by
augmenting the input with a small perturbation that
maximizes the adversarial loss:

min
θ

E(x,y)∼D

[
max
∆x∈Ω

L(x+ ∆x, y; θ)

]
(2)

where the D is dataset, x is input, y is the gold
label, θ is the model parameters, L(x, y; θ) is the
loss function and ∆x is the perturbation. In our ex-
periments, we adopt SMART method in zero-shot
setting, and FREELB method in one-shot setting.
These choices are based on actual performance.

3.3 Sentence Representation
Reimers and Gurevych (2019) propose a siamese ar-
chitecture with a shared BERT encoder to compute
the sentence representations for each input text. By
making use of unlabeled texts, SimCSE (Gao et al.,
2021) proposes an unsupervised contrastive learn-
ing method to alleviate the collapse issue of BERT.
Compared to unsupervised SimCSE, we use extra
supervised signals during training. Our approach is
mainly inspired by ConSERT (Yan et al., 2021) and

EsimCSE (Wu et al., 2021). As shown in Figure 1,
there are two major objectives and an extra cross-
attention module to exchange information with the
token-wise embeddings.

Ljoint = Lmse + λLcon (3)

the λ is a hyperparameter to balance two objectives.
Lmse is Mean Squared Error, Lcon is Contrastive
Loss.

During training, each data point is trained to
find out its counterpart among (N − 1) from in-
batch negative samples and the queue of data sam-
ples. The samples in the queue are progressively
replaced (He et al., 2020).

− log
esim(hi,h

+
i )/τ

∑N
j=1 e

sim(hi,h
+
j )/τ +

∑Q
q=1 e

sim(hi,h
+
q )/τ

(4)
The h∗ is the sentence representation, where

hi and h+
i are semantically related. The h+

q is
denotes a sentence embedding in the momentum-
updated queue. And the Q is the size of the queue,
sim(h1, h2) is the cosine similarity scores of sen-
tence representations, τ is a temperature hyperpa-
rameter. In the end, we average the all N Li losses
to calculate the contrastive loss Ccon .

4 Experiments

4.1 Settings
We use InfoXLMbase (Chi et al., 2021) as the text
encoder, the EMA decay weight is set to 0.999,
the learning rate is set to 2e-5 with warmup ra-
tio over 10% in the SubTaskA. We compare the
impact of batch size ∈ 16, 32, 64 with different
adversarial training strategies. By default, We
set ε to 1.0 in FGM, set K steps to 3 in PGD,
FREELB and SMART. That means calculate 3
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steps in the adversarial attack. We adopt λ as 0.5
and µ as 0.2 to smooth the logits and embeddings
in the SMART method (Jiang et al., 2020). We use
SMART method and batches of size 16 in zero-shot
setting, FREELB method and batches of size 32 in
one-shot setting.

SubTask Model Practice Post-Eval

zero-shot
mBertbase 68.71 -

infoxlm♦base 76.21 68.31

one-shot
mBertbase 84.77 -

infoxlm♣base 94.07 90.33

Table 3: Performance of Our Approach on the Idiomatic-
ity Detection Task. We report the F1 Score× 100 on the
dev and test sets, ♦: set bath size to 16 and use SMART,
♣: set bath size to 32 and use FREELB.

Method Practice Post-Eval

mBertbase 68.71 -
InfoXLMbase 73.10 65.2
+EMA 75.75 67.85
+EMA+SMART 76.21 68.31

Table 4: The effect of different strategies and keep ac-
cumulating from top to bottom. We report the dev-F1
Score × 100 in zero-shot setting.

In the SubTaskB, we use mBERTbase (Devlin
et al., 2018) as the text encoder, set batch size to
32 and set warmup ratio to 10%. During the jointly
training, λ is set to 0.15 and τ is set to 0.05 that
used in the Lcon . We use the dev set of STS-B and
ASSIN2 to tune the hyperparameter and evaluate
the model every 250 steps during training. The best
checkpoint is saved for testing, we further discuss
the results of our experiments in the subsequent
section.

4.2 Main Results

Our submitted results were evaluated on F1 Score
in SubTaskA, and Spearman correlation in Sub-
TaskB. We jointly train the model with contrastive
objective and the supervised signals on the Seman-
tic Text Similarity dataset, including STSBench-
mark and ASSIN2 datasets. We compare several
models as the text encoder and different training
methods, as described in Section 3. The main re-
sults shown in Table 2 and Table 3. As shown in
Table 3, we achieve a performance gain of 2.91%,

3.87% over the baseline solution by finetuning the
InfoXLMbase model with using EMA method and
adversarial training. In the Table 2, our approach
achieves a 8.22%, 4.5% improvement compared to
the baseline solution that indicates the usefulness
of the cross-attention module and jointly training
way. In the next section, we study the effect of
different strategies.

5 Ablation Studies

5.1 Effect of Pre-trained Models

We investigate the impact of adopting different
multi-lingual models in the zero-shot setting. In
Figure 2, we show the results of different language
models fine-tuning in 50 epochs. We find that the
best f1 score on validation dataset is provided by
InfoXLMbase (Chi et al., 2021).

Figure 2: The fine-tuning of multi-lingual language
models. We report the dev-F1 Score in zero-shot setting.

5.2 Effect of Training Techniques

As shown in Figure 3, we set bath size to 16 and use
0.999 as the EMA decay weight to obtain the best
score. In the zero-shot and one-shot settings, we
find that the performance is extremely sensitive to
the batch size. And with the benefit of smoothing
performance, using the EMA method can improve
the model robustness when evaluating the trained
model.

Figure 3: The batch size with EMA method. We report
the dev-F1 Score in zero-shot setting.
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The experimental results of adversarial training
are presented in Figure 4. We set the size of mini-
batch to 16 and use SMART in the zero-shot setting,
and the batch size is set to 32 and use FREELB
as adversarial attack in one-shot setting. We ob-
serve that the SMART and FREELB strategies have
better performance than FGM and PGD strategies.

Figure 4: The performance of different adversarial at-
tack strategies. We report the dev-F1 Score in zero-shot
setting.

As presented in Table 5, we explore the impact
of InfoXLMbase model, smaller batch size, EMA
method and adversarial training. These strategies
can effectively improve the performance of our
approach.

5.3 Effect of Contrastive Learning
In this section, we investigate the contrastive learn-
ing how to further improve the performance of sen-
tence representations. As shown in Table 5, we use
contrastive learning as unsupervised signals which
yields a substantial improvement on the STS-Test
dataset. We also use an extra cross-attention layer
to achieve a 0.8%, 1.2% improvement in the pre-
train and fine-tune settings. The cross attention
idea is inspired by Reimers and Gurevych (2019),
the paper shows that the Cross-Encoder achieves
better performances than Bi-Encoders.

Method Practice Post-Eval

mBertbase 70.33 -
+CrossAttention 70.96 55.94
+ + InfoNCE 71.11 56.09
+ + + MoCo 71.34 56.32

Table 5: The effect of different strategies on the STSTest
dataset. We report the Spearman correlation × 100 in
pre-train setting.

In general, models which have both better align-
ment and uniformity obtain better sentence repre-
sentations, confirming the findings in Wang and

Isola (2020). We also evaluate these metrics to
measure the quality of learned embeddings, includ-
ing alignment of the positive pairs and uniformity
of the whole representation space. We calculate
uniformity on the STS-B and ASSIN2 datasets, and
alignment from the positive pairs that have the gold
label more than or equal to the number 4.

As shown in Figure 5, we also find that: 1)
Though pre-trained embeddings have good align-
ment, their uniformity is poor, e.g. mBertbase. 2)
Unsupervised SimCSEbase (Gao et al., 2021) has
better uniformity of pre-trained embeddings than
mBertbase. 3) Jointly training regularizes the sen-
tence embeddings’ anisotropic space to be more
uniform than others, but also suffers a degenera-
tion in alignment slightly. 4) The trade off between
the alignment and uniformity indicates that perfect
alignment and perfect uniformity are likely hard to
simultaneously achieve in practice.

Figure 5: The alignment and uniformity of different
pre-trained models. The closer to the origin of the coor-
dinate axis, the better sentence representations.

6 Conclusion and Future Work

In this work, we provide an overview of the com-
bined approach to detect and represent multiword
expressions. We use InfoXLMbase model as the
text encoder and enhance the model generalization
and robustness with exponential moving average
(EMA) method and the adversarial attack strategy
in the SubTaskA. In the SubTaskB, experimental
results show that the cross-attention module and the
contrastive learning task can considerably improve
the performance. Finally, we analyze the alignment
and uniformity properties to measure the quality
of sentence embeddings. Future work of our sys-
tem includes: 1) Using the larger pre-trained lan-
guage models, such as mBertlarge, InfoXLMlarge.
2) Adopting other data augmentation, including
Token-Shuffle, Token-Cutoff and Mix-Up.
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Abstract

Idioms are lexically-complex phrases whose
meaning cannot be derived by compositionally
interpreting their components. Although the
automatic identification and understanding of
idioms is essential for a wide range of Nat-
ural Language Understanding tasks, they are
still largely under-investigated. This motivated
the organization of the SemEval-2022 Task 2,
which is divided into two multilingual sub-
tasks: one about idiomaticity detection, and
the other about sentence embeddings. In this
work, we focus on the first subtask and propose
a Transformer-based dual-encoder architecture
to compute the semantic similarity between a
potentially-idiomatic expression and its con-
text and, based on this, predict idiomaticity.
Then, we show how and to what extent Named
Entity Recognition can be exploited to reduce
the degree of confusion of idiom identification
systems and, therefore, improve performance.
Our model achieves 92.1 F1 in the one-shot
setting and shows strong robustness towards
unseen idioms achieving 77.4 F1 in the zero-
shot setting. We release our code at https:
//github.com/Babelscape/ner4id.

1 Introduction

One of the main challenges in Natural Language
Processing (NLP) is to embed the meaning of a
piece of raw text (e.g. a word or a sentence) in
a low-dimensional dense vector. With the advent
of pretrained language models, which exploit con-
textual information and assume compositionality
of word representations, significant improvements
have been made in this direction (Peters et al., 2018;
Devlin et al., 2019). On the other hand, very little
attention has been paid to idiomatic expressions,
i.e. multi-word expressions (MWEs) with an es-
tablished meaning unrelated to the meanings of the
individual constituents. However, since idiomatic-
ity is a frequent phenomenon that can be observed
in all languages, idiomatic expressions should play

an important role in NLP. Indeed, their identifica-
tion and understanding is crucial not only for Nat-
ural Language Understanding tasks such as Word
Sense Disambiguation (Bevilacqua et al., 2021b),
Semantic Role Labeling (Conia et al., 2021) and Se-
mantic Parsing (Bevilacqua et al., 2021a), but also
for Machine Translation (Edunov et al., 2018; Liu
et al., 2020), Question Answering (Mishra and Jain,
2016) and Text Summarization (Chu and Wang,
2018), inter alia.

In the SemEval-2022 Task 2: Multilingual Id-
iomaticity Detection and Sentence Embedding
(Tayyar Madabushi et al., 2022), research on id-
ioms has been promoted by adapting datasets and
tasks from the work carried out by Tayyar Mad-
abushi et al. (2021). Specifically, the organizers
propose two subtasks:

• Subtask A: a binary classification task
in which potentially-idiomatic expressions
(PIEs) must be labeled as either "Idiomatic"
or "Literal", based on the context they appear
in. To better test models’ generalization ca-
pabilities, two different settings are provided:
zero-shot and one-shot;

• Subtask B: requires models to output the cor-
rect Semantic Text Similarity (STS) scores
between sentence pairs based on whether or
not each sentence contains an idiomatic ex-
pression. Subtask B is also available in two
settings: pre-train and fine-tune.

Both subtasks cover three languages: English, Por-
tuguese and Galician1. In addition, the organizers
provide strong baseline systems to compare with.

In this paper, we present the NER4ID submis-
sion to the SemEval-2022 Task 2 which focuses
on Subtask A. Specifically, we successfully tackle

1Galician is included only in the test sets to test transfer-
learning abilities of the models.
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the idiom identification task by introducing a two-
step system that: i) uses Named Entity Recogni-
tion (NER) to pre-identify non-idiomatic expres-
sions, and ii) exploits a novel Transformer-based
dual-encoder architecture to compute the seman-
tic similarities between the remaining potentially-
idiomatic expressions and their contexts and, based
on these, predict idiomaticity. Finally, we exten-
sively evaluate our system on both one-shot and
zero-shot settings. We release our code at https:
//github.com/Babelscape/ner4id.

2 Related Work

Approaches to idiom identification were initially
built on the notion that idiomatic expressions, like
other MWEs, are less syntactically and lexically
flexible than non-idiomatic and compositional ones.
Indeed, initial studies focused on specific syntac-
tic constructions. Fazly and Stevenson (2006) fo-
cused on verb/noun idioms, e.g. shoot the breeze,
and used the Pointwise Mutual Information (PMI,
Church et al., 1991) measure to quantify the de-
gree of lexical, syntactic, and overall fixedness
of a given verb+noun combination. Cook et al.
(2007) and Diab and Bhutada (2009) also focused
on verb/noun idioms using similar strategies. Other
studies, instead, focused on verb/particle idioms,
e.g. call off (Ramisch et al., 2008), or on idioms
satisfying specific restrictions, i.e. subject/verb,
such as tension mounted, and verb/direct-object,
e.g. break the ice (Shutova et al., 2010).

The following generation of approaches ex-
ploited semantic idiosyncrasy, i.e. the linguistic
property in which the meaning of an idiomatic ex-
pression cannot be completely derived from the
meaning of its individual constituents. This prop-
erty causes idioms to appear in contexts typically
unrelated to the meaning of their individual compo-
nents, hence it provides a key aspect to be exploited
in an automatic approach. In particular, Muzny
and Zettlemoyer (2013) introduced new lexical and
graph-based features that use WordNet2 and Wik-
tionary3, and proposed a simple yet efficient binary
Perceptron classifier to distinguish idiomatic and
literal expressions by exploiting their components
and dictionary definitions. A similar, but unsuper-
vised approach that relied on the dictionary defi-
nitions of each component of a given idiom was
adopted by Verma and Vuppuluri (2015).

2https://wordnet.princeton.edu/
3https://www.wiktionary.org/

Finally, these latter methods have been super-
seded by approaches making use of distributional
similarity in the form of both static and con-
textualized word embeddings (Gharbieh et al.,
2016; Ehren, 2017; Senaldi et al., 2019; Liu and
Hwa, 2019; Hashempour and Villavicencio, 2020;
Kurfalı and Östling, 2020; Fakharian, 2021; Gar-
cia et al., 2021; Nedumpozhimana and Kelleher,
2021), while keeping the underlying assumption
unchanged, that is, the vector representation of the
component words should be distant from the vector
representation of the context, or of the expression
as a whole.

Although efforts have been made in this direc-
tion, most of the studies to date have focused on
the English language. Additionally, the low per-
formance of current idiomaticity detection systems
makes them not very reliable, and therefore such
systems tend not to be included in downstream ap-
plications. In this work, instead, we propose a high-
performance multilingual system for idiomaticity
identification.

3 NER4ID

We first describe our architecture for idiomaticity
detection (Section 3.1), and then we show how
Named Entity Recognition can be included to ob-
tain a more robust idiom identification system (Sec-
tion 3.2). Figure 1 provides a graphical representa-
tion of the overall idiom identification system.

3.1 Dual-Encoder Architecture

In order to distinguish between compositional and
idiomatic phrases, we exploit the semantic idiosyn-
crasy property of idiomatic expressions. This prop-
erty often implies that when a MWE occurs with
its idiomatic meaning, then the meaning of its indi-
vidual components is unrelated to the surrounding
context. On the other hand, when the expression
has a compositional meaning, individual words are
related to the context. To better explain, consider
the following two alternatives in which the poten-
tially idiomatic expression piece of cake occurs:

a) Decryption is a piece of cake if you know the
override codes;

b) Tom ate the last piece of cake, but if you want,
I’m making another dessert.

In the first case, where piece of cake has an id-
iomatic meaning (i.e. it means straightforward),
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Figure 1: Graphical representation of our architecture for idiomaticity detection. “E" stands for Embedding. A
potentially idiomatic expression e is labeled as idiomatic when: i) e is not an entity, and ii) the cosine similarity
score between the representations Ω(c) and Ψ(e), where c is the surrounding context, is lower than the threshold δ.

the word cake has nothing to do with the surround-
ing context. In the second case, instead, we find
multiple words whose meaning is related to the
meaning of cake, i.e. ate and dessert.

Following the above described intuition, and tak-
ing inspiration from recent advances in the main
disambiguation tasks (Blevins and Zettlemoyer,
2020; Botha et al., 2020; Tedeschi et al., 2021a),
we design a dual-encoder architecture to produce a
vector representation for both the expression and
its context, and then, based on their cosine similar-
ity, we label the expression as either idiomatic or
literal. More formally, let us define an expression
encoder Ψ and a context encoder Ω. Then, given
an expression-context pair ⟨e, c⟩, the output of the
dual-encoder architecture Φ is defined as follows:

Φ(e, c) =




0, if

Ψ(e)TΩ(c)

∥Ψ(e)∥∥Ω(c)∥ ≤ δ

1, otherwise
(1)

where Φ(e, c) = 0 means that e is idiomatic in c,
while Φ(e, c) = 1 if e has a literal meaning in c.
δ is a manually-tuned threshold. Both encoders
are BERT-based architectures that take as input the

tokenized versions of expressions and their con-
texts, respectively, surrounded by the special to-
kens [CLS] and [SEP]. To encode an expression,
we take the sum of the individual representations
of all its subwords. Instead, for the context we take
the representation of the [CLS] token.

3.2 Entity or Idiom?

As we discussed in the previous Section, semantic
idiosyncrasy is essential for discriminating between
idiomatic and literal expressions. However, there
are cases in which the individual constituents of
a potentially idiomatic expression are unrelated to
the context, but the expression as used in that partic-
ular context is not idiomatic. Many of these cases
correspond to named entities. Table 1 provides a
selection of examples – extracted from the Sub-
task A datasets – in which PIEs are named entities.
For instance, in the first example, Blood Bath is a
movie and, therefore, it does not have an idiomatic
meaning. Nevertheless, its constituents (i.e. blood
and bath) are unrelated to the context, hence mis-
leading our dual-encoder architecture (Section 3.1)
to classify it as idiomatic.
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PIE Context

blood bath
Deborah Loomis is an actress, known for Hercules in New York (1970), Foreplay (1975)
and Blood Bath (1976).

fine line
Fine Line received generally positive reviews from music critics, particularly towards its
production and stylistic influences.

monkey business Monkey Business is an Action, Adventure, Comedy, Crime movie that was released in
1998 and has a run time of 1 hr 29 min.

rocket science After finishing "Confrontation", the band shifted to "Rocket Science".

night owl
Andrew Gonzalez, owner, Night Owl Cookies: "Nobody believed in me except for Deco
Drive.","They got me on air very quickly!"

silver spoon
Not only is it endorsed by the UK’s biggest food brands – Weetabix, Shredded Wheat,
Silver Spoon, Carling lager, Marriage’s flour – but being Red Tractor also means you can
supply different retailers without lots of different requirements.

Table 1: Examples of sentences where potentially idiomatic expressions (PIEs) are named entities.

In order to cope with this issue, we exploit
Named Entity Recognition, i.e. the task of iden-
tifying specific words as belonging to predefined
semantic types, such as Person, Location and Orga-
nization (Nadeau and Sekine, 2007). Specifically,
we introduce an auxiliary NER module in our clas-
sification pipeline that, given as input a raw text
sequence of n tokensX = x1, . . . , xn containing a
potentially idiomatic expression p, predicts all the
entities E = e1, . . . , em in X. Then, if p ∈ E, p
is labeled as literal, otherwise p is provided to the
dual encoder, together with its context. To detect
further entities, we also exploit capitalization.

4 Experiments

In this Section, we describe our experimental setup
(Section 4.1), the datasets we use to train and eval-
uate our idiom identification system (Section 4.2),
and the obtained results (Section 4.3).

4.1 Experimental Setup

We implement our dual-encoder architecture (Sec-
tion 3.1) with PyTorch (Paszke et al., 2019), using
the Transformers library (Wolf et al., 2019) to load
the weights of BERT-base-cased for English
and of BERT-base-portuguese-cased for
Portuguese and Galician. We fine-tune our idiom
identification system for 100 epochs with a Mean-
Squared Error loss criterion, adopting an early stop-
ping strategy with a patience value of 20, Adam

(Kingma and Ba, 2015) optimizer, and a learn-
ing rate of 10−5. Additionally, we set δ = 04,
and use 32 as batch size, with 4 steps of gradi-
ent accumulation. To identify entities, instead, we
employ wikineural-multilingual-ner5,
a Multilingual BERT (mBERT) model fine-tuned
on the WikiNEuRal dataset (Tedeschi et al., 2021b).
We compare systems by means of their Macro F1

scores, as specified by the competition rules. Our
final scores are obtained by ensembling the predic-
tions of N = 9 model checkpoints6 and taking the
class with the highest number of votes.

Model training was carried out on a NVIDIA
GeForce RTX 3090. Each training (i.e. for each
model configuration) required ∼1min/epoch on av-
erage, for a mean of ∼30 epochs.

4.2 Training, Validation and Test Data

The training, validation and test sets we use in our
experiments are those provided for SubTask A7.
Data statistics are provided in Table 2.

4We train our system to produce a cosine similarity score
s between a MWE e and its context c, which is s = −1 when
e is idiomatic in c, or s = 1 otherwise. Therefore, in Eq. 1,
δ = 0 means that negative similarity scores are mapped to 0
(Idiomatic), while positive scores are mapped to 1 (Literal).

5https://huggingface.co/Babelscape/
wikineural-multilingual-ner

6We use the dev set to search for the optimal value of N
by choosing from N = {1, 3, 5, 7, 9, 11, 13}.

7https://github.com/H-TayyarMadabushi/
SemEval_2022_Task2-idiomaticity
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Split EN PT GL Total
train-one-shot 73 73 63 209
train-zero-shot 3327 1164 0 4491
dev 466 273 0 739
test 916 713 713 2342

Table 2: Number of examples in the training, validation
and test sets for each of the covered languages: English
(EN), Portuguese (PT) and Galician (GL).

System EN PT GL ALL

ze
ro

-s
ho

t Baseline 70.1 68.0 50.7 65.4
Our System w/o NER 76.4 63.5 59.7 69.9
Our System 86.8 70.4 65.5 77.4

on
e-

sh
ot Baseline 88.6 86.4 81.6 86.5

Our System w/o NER 91.0 86.8 83.9 88.8
Our System 95.8 88.9 87.4 92.1

Table 3: Results of our system with and without the in-
clusion of the NER module on English (EN), Portuguese
(PT) and Galician (GL) languages using the Macro-F1

score metric. The ALL column reports the overall re-
sults. The baselines are provided by task organizers.

In the zero-shot setting, potentially idiomatic ex-
pressions in the training set are completely disjoint
from those in the validation and test sets. In the
one-shot setting, instead, one positive and one nega-
tive example are included for each MWE in the test
and validation sets. Finally, note that the zero-shot
training set and the validation set cover only En-
glish and Portuguese languages, while the test set
also contains the Galician language, hence further
increasing the difficulty of the zero-shot setting.

4.3 Results
In preliminary experiments, we measure the impact
that context inclusion (i.e., the sentences preceding
and following the one containing the PIEs) has on
our system’s performance. Similar to Tayyar Mad-
abushi et al. (2021), we observe a slight drop in
performance (i.e., -0.3 F1 points, on average on the
zero-shot and one-shot settings) and longer train-
ing times, hence we do not include context in our
experiments. Then, in order to show the effective-
ness of our dual-encoder architecture (Section 3.1)
and of our entire idiomaticity detection system that
includes the NER module (Section 3.2), we com-
pare them with the strong mBERT-based baselines
provided by the task organizers (Tayyar Madabushi
et al., 2022): for the zero-shot setting, their model
takes as input the context, while for the one-shot
setting, they exclude the context and provide as

input only the sentence containing the PIE, where
the latter is separated from the rest of the input by
using the “[SEP]” special token.

In both zero-shot and one-shot settings, our sys-
tem far exceeds the performance of the competi-
tive baselines. Specifically, in the zero-shot set-
ting we observe an average improvement of 12 F1

points for the complete system (Figure 1), and of
4.5 F1 points using only the dual-encoder architec-
ture (Section 3.1). Likewise, in the one-shot setting
we point out an average improvement of 5.6 F1

points for the overall architecture, and of 2.3 F1

points for the dual encoder. Therefore, the findings
are twofold: i) dual encoders that exploit semantic
idiosyncrasy discriminate well between idiomatic
and literal expressions, and ii) an idiomaticity de-
tection system can greatly benefit from the inclu-
sion of a NER module in the classification pipeline
to manage such ambiguous cases (cf. the examples
in Table 1, extracted by using our NER classifier).

5 Conclusions

In this paper, we presented our NER4ID submis-
sion to SemEval-2022 Task 2 focusing on the Multi-
lingual Idiomaticity Detection subtask. We started
by exploiting the semantic idiosyncrasy property
of idiomatic expressions and introduced a novel
dual-encoder Transformer-based architecture that
encodes both the potentially idiomatic expression
(PIE) and its context, and based on their similarity
predicts idiomaticity. Further, by manually inspect-
ing our system’s errors we discovered critical cases
in which, although the individual constituents of
a PIE were unrelated to the context, the expres-
sions were not idiomatic in that particular context
in which they were used. In most of these cases, the
PIEs were part of a named entity. Hence, our sec-
ond main contribution was devoted to the inclusion
of an auxiliary NER module in the idiomaticity de-
tection pipeline in order to avoid these errors. Our
experiments showed that: i) our dual-encoder ar-
chitecture was able to successfully solve the idiom
identification task by consistently outperforming
the strong baselines provided by the task organizers,
and ii) the inclusion of NER in the pipeline pro-
vided further improvements of up to 7.5 F1 points.

As future work, we plan to follow the research
line proposed by Tedeschi et al. (2022), and explore
the identification of idioms directly on raw texts,
i.e., without pre-identified potentially idiomatic ex-
pressions, and study a broader set of languages.
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Abstract

This paper will present the methods1 we use
as the YNU-HPCC team in the SemEval-2022
Task 2, Multilingual Idiomaticity Detection and
Sentence Embedding. We are involved in two
subtasks, including four settings. In subtask
B of sentence representation, we used novel
approaches with ideas of contrastive learning
to optimize model, where method of CoSENT
was used in the pre-train setting, and triplet
loss and multiple negatives ranking loss func-
tions in fine-tune setting. We had achieved very
competitive results on the final released test
datasets. However, for subtask A of idiomatic-
ity detection, we simply did a few explorations
and experiments based on the xlm-RoBERTa
model. Sentence concatenated with additional
MWE as inputs did well in a one-shot setting.
Sentences containing context had a poor perfor-
mance on final released test data in zero-shot
setting even if we attempted to extract effective
information from CLS tokens of hidden layers.

1 Introduction

Meaning of sentence could be captured by com-
positionality of word representations. However,
there widely exists potentially idiomatic phrases in
different languages, which are multiword expres-
sions (MWEs) with idiomatic and literal meanings.
Therefore, representation of idiomatic phrases is
not directly compositional. A previous study has
shown that the representation of idiomatic phrases
by contextual models, such as ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019) and some of
its variants, are not accurate(Garcia et al., 2021).
It will be challenging to represent the MWEs cor-
rectly in the downstream tasks (Tayyar Madabushi
et al., 2021). SemEval-2022 Task 2, Multilingual
Idiomaticity Detection and Sentence Embedding
(Tayyar Madabushi et al., 2022), involves English

1The code of this paper is available at: https:
//github.com/lkh-meredith/SemEval2022_
Task2_YNU-HPCC

(EN), Portuguese (PT), and Galician (GL). This
task includes two subtasks and each subtask con-
tains two settings:

• Subtask A: Determining whether a sentence
contains an idiomatic expression. This is a
binary classification task with two settings
of zero-shot and one-shot. Zero-shot setting
means that idiomatic phrases (MWEs) in train-
ing examples are completely disjoint to those
in development, evaluation, and test sets. In
a one-shot setting, MWEs appearing in devel-
opment and test sets include in the training
sentences.

• Subtask B: Outputing the correct Semantic
Text Similarity (STS) scores between sen-
tence pairs whether or not either sentence con-
tains an idiomatic expression. The STS scores
represent semantical similarity between two
sentences ranging from 0 (least similar) to 1
(most similar). This is a regressive task with
two setting of pre-train and fine-tune. In the
pre-train setting, models require to be trained
on any semantic text similarity dataset with-
out idiom. The fine-tune setting should use
provided training sets included MWEs.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe the structures of
model and system. The details about data and im-
plementation and comparative results are presented
in Section 3. Finally, a conclusion is drawn in
Section 4.

2 System Overview

2.1 Subtask A: Idiomaticity Detection
This is a binary classification task that requires
classifying sentences into either Idiomatic or Non-
idiomatic. mBERT (BERT multilingual base
model) was used as a pre-trained model in the base-
line method. It is a masked language models pre-
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Figure 1: Model architecture of zero-shot setting

trained on the top 104 languages with Wikipedia,
which is able to map multilingual representation
to the same semantic space, but unable to master
cross-lingual information. XLM-RoBERTa (Con-
neau et al., 2020) was a cross-lingual language
model used for our experiment in this subtask,
which combined XLM (CONNEAU and Lample,
2019) and RoBERTa (Liu et al., 2019) pre-trained
on the 2.5TB of filtered CommonCrawl data con-
taining 100 languages. It is good for the scarce
language corpus that could use information learned
from larger corpus of other languages. Figure 1 is
process of zero-shot setting. Linear 1 layer ex-
tracted effective information from concatenated
CLS tokens from 1-12 hidden layer of model’s out-
put. In the one-shot setting, we simply extracted
CLS from the last hidden layer of model’s output
to classify.

2.2 Subtask B: Sentence Representation
In the pre-train setting , the methodology of base-
line was that a sentence transformer model was
created by mBERT model adding MWE tokens
and training it. As shown in Figure 2 (a), it based
SBERT (Reimers and Gurevych, 2019) architec-
ture with the regression objective function, which

is a good way of breaking compositionality of id-
iomatic phrase (Tayyar Madabushi et al., 2021).
Figure 2 (b) illustrated one of the methods that we
took, which was a siamese network structure of
SBERT with classification objective function. Vec-
tors u, v, ∥ u− v ∥ was concatenated as a feature,
and ∥ u− v ∥ could play a crucial role in deter-
mining if two sentences were similar. Figure 2
(c) illustrates a new method of optimizing cosine
similarity, CoSENT (Cosine Sentence), which was
proposed by Jianlin Su in his blog post2. In the
method (c), sentences in a batch are composed of
sentences pairs, where two sentences that belong
to one sentence pair are adjacent, so they can not
be shuffled. The most important part of it was that
a loss function based on contrastive learning was
designed to maintain training and prediction con-
sistency. CoSENT loss function defined as follows,

log


1 +

∑

sim(i,j)>sim(m,n)

eλ(cos(um,un)−cos(ui,uj))


 (1)

where (i, j) and (m,n) are sentence pairs,
ui, uj , um, un are sentence embeddings. λ is
a hyper-parameter of 20 in our experiment.
eλ(cos(um,un)−cos(ui,uj)) is added when label of
(i, j) is greater than (m,n), so cos(ui, uj) >
cos(um, un) is expected in the loss function.

The methodology of baseline used for the fine-
tune setting is similar to the pre-train setting: create
a sentence transformer model with mBERT adding
MWE tokens. This sentence transformer firstly
output scores for some of fine-tune data that had
no scores (details about data in section 3.1) and
trained on them. The questions about the method is
that: 1) It is not good to calculate similarity directly
between sentence vectors generated by pre-trained
model without fine-tuing, which generate static la-
bels and may not accurate. 2) mBERT are not
trained on the parallel data, so their vector space
across languages are not aligned, which may result
in poor results on other languanges. We chose a sen-
tence transformer, distiluse-base-mutilingual-cased
(Reimers and Gurevych, 2019), provided in Hug-
ging Face models hub3, which had been demon-
strated to generate good sentence embeddings in

2https://kexue.fm/archives/8847
3distiluse-base-mutilingual-cased-v1: https:

//huggingface.co/sentence-transformers/
distiluse-base-multilingual-cased-v1
distiluse-base-mutilingual-cased-v2: https://
huggingface.co/sentence-transformers/
distiluse-base-multilingual-cased-v2
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Figure 2: The methods of subtask B pre-train setting
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Figure 3: The method of making monolingual sentence
embeddings multilingual using knowledge distillation

multilingual language and been evaluated in task of
multilingual sematic textual similarity. The the dif-
ference of its two version, v1 and v2, is that mUSE
sentence encoder supports 15 languages and v2
supports 50 including GL respectively. The train-
ing approach was achieved by using knowledge
distillation. It is able to extend sentence embed-
ding from source language to target ones by sen-
tence pairs of translation (Reimers and Gurevych,
2020). The training procedure of this pre-trained
model is shown in Figure 3 using mUSE (Yang
et al., 2020) as teacher model and distilmBERT (a
distilled version of the mBERT) as student model.
Mean pooling of outputs are as sentence vector and
minimize the mean-squared loss. Therefore, this
model applies to semantic similarity task, and it
will be removed last dense layer was as extractor
of feature in our experiment.

Triplet loss and multiple negatives ranking loss
functions were used to fine-tune. Triplet loss func-
tion was used to fine-tune model so that the distance
of correct sentence pairs should be closer than in-

correct sentence pairs. It computed as follows:
max(∥ anchor − pos ∥ − ∥ anchor − neg ∥
+margin, 0)

(2)

The multiple negatives ranking loss (Henderson
et al., 2017) was used to implement and opti-
mize, as shown in Figure 4. (S1, S′

1) . . . (Sn, S
′
n)

were positive pairs. The matrix X represented co-
sine similarity between sentence pairs in a batch.
For a batch of size n, there would be n targets
(y = (0, 1, . . . , n− 1)) treated as labels to repre-
sent position of positive pairs in the matrix. With
increasing batch sizes, the performance usually is
better. The approximated mean negative log prob-
ability of data was realized to calculated by cross
entropy loss in Pytorch:

− 1
n

n−1∑
i=0

log e
Xi,yi

n−1∑
j=0

e
Xi,yj

= − 1
n

n−1∑
i=0

[
Xi,yi − log

(
n−1∑
j=0

eXi,yj

)] (3)

3 Experiments

3.1 Dataset

There includes EN, PT, and GL in datasets. GL
is only provided in test dataset and one-shot train-
ing data, aiming to test models’ ability to transfer
learning across languages. Besides, Modern Gali-
cian (GL) is part of the West Iberian languages
group, which belongs to a family of Romance lan-
guages including the Portuguese. A brief intro-
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Figure 4: Multiple negatives ranking loss used for posi-
tive pairs

duction about datasets describes as follows, and
more details are in the task description paper (Tay-
yar Madabushi et al., 2022).

In the subtask A, training data provided includes
zero-shot and one-shot data. A label of 0 indicates
Idiomatic and a label of 1 indicates Non-idiomatic.
Zero-shot training data combined with the context,
sentences preceding and succeeding the one con-
taining the idioms, are used as training sentences in
the zero-shot setting. In the one-shot setting, both
the zero-shot and one-shot data are used to train,
which exclude the context but add the MWEs as an
additional feature. Sentence was concatenated to
MWE and separated them by SEP.

Train split of STSBenchmark datasets in English
and ASSIN2 datasets in Portuguese are as training
dataset in the subtask B pre-train setting. Devel-
opment and test datasets consist of sentence pairs,
some of whom contains idiomaticity and other has
no idiomaticity, which replaced by non-idiomatic
paraphrases. They will be computed a score (cosine
similarity) after model’s outputing.

In the subtask B fine-tune setting, development
and test datasets are the same as the pre-train set-
ting. Train datasets provided contain EN and PT
training examples with type of one-shot and zero-
shot totally, and also contain some GL training
one-shot examples. For integrity of idiom tokens,
MWEs in datasets were added into the tokenizer
of model. Training data have positive and negative
types. The positive examples mean that sentence
with an idiom (SMWE) is the same as the sentence
in which the idiom has been replaced by a phrase
that correctly represents the meaning of the idiom
in context (Sc). So their STS score are equal to
1 (sim(SMWE , Sc) = 1). For the negative exam-
ples, a sentence with an idiom and the same sen-
tence in which the idiom has been replaced by a
phrase that incorrectly represents the meaning of
the idiom in context (Si) should have a low STS

score. The score is approximately equal to the STS
score between a sentence where the idiom has been
replaced by a phrase that correctly represents its
meaning and one wherein it incorrectly represents
the meaning (sim(SMWE , Si) = sim(Sc, Si)).

3.2 Evaluation Metrics
Subtask A is evaluated by the Macro F1 score be-
tween the gold labels and predictions. F1 score is
defined as follows:

F1 score = 2× precision× recall
precision+ recall

(4)

Macro F1 score will calculate average of the preci-
sion and recall for all classes firstly, and does not
take label imbalance into account.

The metric of subtask B is the Spearman Rank
correlation to evaluate outputing STS scores, which
is defined as follows:

ρs = 1− 6
∑
d2i

n(n2 − 1)
(5)

di = rank(Xi)− rank(Yi) (6)

where n and di denote amount of data and differ-
ence between position of variate X and Y after
sort, respectively. It computes Pearson correlation
coefficient using rank of data sets. This metric uses
to evaluate correlation between STS of model’s
output and gold label.

3.3 Implementation Details
Herein all experiments, we set seed of 4 and
AdamW optimizer (Loshchilov and Hutter, 2019)
with learning rate 2e-5. Besides, batch-size was
set as 32, 4, 16 in zero-shot , one-shot setting and
subtask B respectively. A linear learning rate warm-
up was 5% and 10% in subtask A and subtask B
respectively. A max sequence length of 128 was
in subtask A and pre-train setting, 512 in fine-tune
setting. Each model was fine-tuned for 10 epochs,
where the model exhibiting the best performance
on the dev set was used to predict the test set in the
competition.

For subtask A of binary classification, cross-
entropy loss function was used. The methods of
Figure 2 were experimented in the pre-train setting.
We set our default pooling strategy was mean, and
method (c) used mean pooling of last hidden layer
and first-last hidden layer respectively.

In the fine-tune setting, a sentence transformer
based on the pre-training model was created. The
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Methods Macro F1 score
dev test

zero-shot setting
baseline 0.6482 0.6540

mBERT(CLS of last layer) 0.6820 0.6209
mBERT(CLS of 12 layer) 0.6838 0.6030
xlm-R(CLS of last layer) 0.7129 0.6074
xlm-R(CLS of 12 layer) 0.7293 0.6369

one-shot setting
baseline 0.8691 0.8646

mBERT(CLS) 0.8062 0.7429
xlm-R(CLS) 0.9002 0.8948

Table 1: Results of subtask A

Methods
Spearman’s R

(All)
Spearman’s R
(Idiom only)

Spearman’s R
(STS only)

dev test dev test dev test
pre-train setting

baseline 0.6790 0.4810 0.2187 0.2263 0.8182 0.8311
method(a) 0.6736 0.5117 0.1762 0.2582 0.8936 0.8006
method(b) 0.6484 0.5170 0.1905 0.2616 0.6991 0.6195

method(c) first-last-avg 0.7321 0.5602* 0.2111 0.2628* 0.8519 0.7990*

method(c) last-avg 0.7464 0.5650 0.2152 0.2586 0.8574 0.8044
fine-tune setting

baseline 0.6629 0.5951 0.3459 0.3990 0.5429 0.5961
distiluse-v1 0.7514 0.5523 0.1881 0.2251 0.7939 0.7574

distiluse-v1+2losses 0.8127 0.6648 0.5097 0.4277 0.7248 0.6627
distiluse-v2+2losses 0.7882 0.6391 0.4022 0.3898 0.7154 0.6472

* 0.5602, 0.2628, and 0.7990 are the revised results, which are different from the results
had been submitted on the evaluation. Because we found out later that there existed
something wrong in our former data processing. It had be trained after correcting and
used the same method and parameters as before.

Table 2: Results of subtask B

sentence transformer we chose, distiluse-base-
multilingual-cased, was extended the vocabulary
of MWEs and removed last dense layer was as ex-
tractor of feature. Then, mean pooling was applied
to output, which generated sentence representation
of 768 dimension. Besides, training data were di-
vided into two datasets and used two loss function
to fine-tune model. According to negative train-
ing data, SMWE , Sc, and Si constituted a triplet
of (anchor, pos, neg). Triplet loss function was
used, and we set margin as 0.1 in our experiment.
The positive training data only had SMWE and
Sc, which composed positive pairs (anchori, posi).
Similar to the training process of unsupervised Sim-
CSE (Gao et al., 2021), (anchori, posj)for(i ̸= j)
were as negative pairs. So multiple negatives rank-
ing loss function were used in this part.

3.4 Comparative Results

All of Experimental results are listed in Tables 1
and 2. The reason for results of development and
test set difference may be the inconsistent data dis-
tribution of them that GL was added in test data.

However, the difference of them in zero-shot set-
ting appeared that the sentences including of con-
tiguous context did not make the model learn strong
ability of generalization so that all the results on
the test set were below the baseline. The results of
one-shot setting indicated that classify the sentence
and MWE by splicing them together as one texts
could be integrated and obtained a better results
and xlm-RoBERTa performed better.

In the results of pre-train setting, in comparative
to method (a), while method (b) grasped better se-
mantic information of idiom, it could not output
good semantic similarity on STS dataset because
of training method. It could be found that method
(c) could ease their problem and achieved a better
result compared with method (a) and (b). The re-
sults of fine-tune setting show that these two loss
functions play a important role, and the model’s
understanding of idioms can be improved to some
extent by contrastive learning. The distiluse-base-
multilingual-cased also used baseline method based
on sim(SMWE , Si) = sim(Sc, Si). Besides, al-
though v2 supported more languages including GL
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than v1, it performed a bit poorer instead, which
explains further that the model training on more
languages appear loss of performance for the infor-
mation that has been learned.

4 Conclusions

Herein, we discuss and experiment the methods we
used in SemEval-2022 Task 2. We participated in
two subtasks, idiomaticity detection and represen-
tation of idiomaticity. Each of subtasks including
two settings, achieved the 19th, 6th, 5th, and 1th
places in the final test sets, respectively. Our re-
sults showed that the idea introduced contrastive
learning in representation of idiomaticity achieved
good results, but methods of zero-shot setting in
idiomaticity detection did not well and were lack
of ability of generalization. We intended to ex-
plore and improve the performance of zero-shot
and few-shot learning further in future work.
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Abstract

We propose a multilingual adversarial training
model for determining whether a sentence con-
tains an idiomatic expression. Given that a key
challenge with this task is the limited size of
annotated data, our model relies on pre-trained
contextual representations from different multi-
lingual state-of-the-art transformer-based lan-
guage models (i.e., multilingual BERT and
XLM-RoBERTa), and on adversarial training,
a training method for further enhancing model
generalization and robustness. Without rely-
ing on any human-crafted features, knowledge
bases, or additional datasets other than the tar-
get datasets, our model achieved competitive
results and ranked 6th place in SubTask A (zero-
shot) setting and 15th place in SubTask A (one-
shot) setting.

1 Introduction

Large-scale pre-trained language models such as
BERT (Devlin et al., 2019) have achieved great
success in a wide range of natural language pro-
cessing (NLP) tasks. However, more recent studies
show that even such contextual models have a lim-
ited ability to capture idiomaticity (Garcia et al.,
2021). Idiomatic expressions denote a group of
words that behave as single words to some extent.
Their linguistic behavior cannot be inferred from
the characteristics of their components, and still
pose a challenge to natural language processing
(NLP) systems.

This paper describes the system developed by
the OCHADAI team for SemEval-2022 Task 2 -
Multilingual Idiomaticity Detection and Sentence
Embedding (Tayyar Madabushi et al., 2022). Given
that a key challenge in this task is the limited size
of annotated data, we follow best practices from
recent work on enhancing model generalization
and robustness and propose a model ensemble that
leverages multilingual pre-trained representations
and adversarial training. Our model ranked 6th

Setting Language Train Dev Eval Test

zero-shot
English 3,327 - - -
Portuguese 1,164 - - -
Galician 0 - - -

one-shot

English 87 466 483 916
Portuguese 53 273 279 713
Galician 0 0 0 713

Table 1: Summary of the SemEval 2022 Task 2 Subtask
A dataset. Note that the dev, eval and test sets are used
in both settings.

on SubTask A (zero-shot), and 15th on SubTask A
(one-shot).

2 Task Description

SemEval-2021 Task 2 SubTask A consists of a bi-
nary classification task that requires classifying sen-
tences with a target multiword expression (MWE)
into either "Idiomatic" or "Literal" across English,
Portuguese and Galician (Tayyar Madabushi et al.,
2021). Further, it is subdivided into two settings to
better test models’ ability to generalize: zero-shot
and one-shot. In the zero-shot" setting, multiword
expressions (potentially idiomatic phrases), in the
training set are completely disjoint from those in
the test and development sets. In the "one-shot"
setting, one positive and one negative training ex-
amples are included for each MWE in the test and
development sets. Note that the actual examples in
the training data are different from those in the test
and development sets in both settings. Only the
datasets provided by the organizers are allowed to
train the models. Participants can use only the data
provided for the zero-shot setting to train the zero-
shot model. However, participants were allowed to
use data provided for both settings to train models
in the one-shot setting. The statistics of the corpus
are presented in Table 1. Our team submitted re-
sults for both settings, and the next section outlines
the overview of our model.
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Setting Language Sentence Target MWE Label
zero-shot English This song is about unconditionally supporting someone you love. This is a love

song. Let’s be there for each other.
love song 1

one-shot Portuguese Estamos honrando o teto e construindo as paredes”, afirmou. Em outro momento,
voltando ao tema do impasse do Orçamento, ele reforçou que a busca é por uma
solução, que a briga tem “mérito” e que “sempre, em grande rebanho, tem uma
ovelha negra”."Mas não é o Congresso nem o grosso do ministério”, completou.

ovelha negra 0

one-shot Galician Non podemos abandonalos á súa sorte, porque sen mozos e mozas no campo
e sen a súa actividade agraria suporía, entre outras cousas, a deslocalización
da produción e a dependencia alimentaria Máis alá das políticas comunitarias,
¿cres que poden desenvolverse alternativas para a xente nova a partir de medidas
municipais, autonómicas ou estatais? Estase a facer?

xente nova 0

Table 2: Example sentences and labels for Subtask A. Note that "Idiomatic" is assigned the label 0 in the dataset
and "non-idiomatic" (including proper nouns) are assigned the label 1.

3 System Overview

We focus on exploring different training techniques
using BERT and RoBERTa, given their superior
performance on a wide range of NLP tasks. Each
text encoder and training method used in our model
are detailed below.

3.1 Text Encoders

M-BERT (Devlin et al., 2019): We use the M-
BERTBASE model released by the authors. It is
pre-trained on the top 104 languages with the
largest Wikipedia using a masked language model-
ing (MLM) objective. This model is case sensitive:
it makes a difference between english and English.
XLM-R (Conneau et al., 2019): XLM-RoBERTa
(XLM-R) is a multilingual version of RoBERTa. It
is pre-trained on 2.5TB of filtered CommonCrawl
data containing 100 languages. XLM-R has been
shown to perform particularly well on low-resource
languages, such as Swahili and Urdu. We use the
XLM-RLARGE model released by the authors.

3.2 Training Procedures

Standard fine-tuning: This is the standard fine-
tuning procedure where we fine-tune BERT and
RoBERTa on each training setting-specific data.
Adversarial training (ADV): Adversarial training
has proven effective in improving model general-
ization and robustness in computer vision (Madry
et al., 2017; Goodfellow et al., 2014) and more re-
cently in NLP (Zhu et al., 2019; Jiang et al., 2019;
Cheng et al., 2019; Liu et al., 2020a; Pereira et al.,
2020). It works by augmenting the input with a
small perturbation that maximizes the adversarial
loss:

min
θ

E(x,y)∼D[max
δ
l(f(x+ δ; θ), y)] (1)

where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017).
Recently, adversarial training has been successfully
applied to NLP as well (Zhu et al., 2019; Jiang et al.,
2019; Pereira et al., 2020). In our experiments, we
use SMART (Jiang et al., 2019), which instead
regularizes the standard training objective using
virtual adversarial training (Miyato et al., 2018):

min
θ

E(x,y)∼D[l(f(x; θ), y)+

αmax
δ
l(f(x+ δ; θ), f(x; θ))]

(2)

Effectively, the adversarial term encourages
smoothness in the input neighborhood, and α is a
hyperparameter that controls the trade-off between
standard errors and adversarial errors.

4 Experiments

4.1 Implementation Details
Our model implementation is based on the MT-
DNN framework (Liu et al., 2019a, 2020b). We
use BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2019) as the text encoders. We used
ADAM (Kingma and Ba, 2015) as our optimizer
with a learning rate in the range ∈ {8× 10−6, 9×
10−6, 1 × 10−5} and a batch size ∈ {8, 16, 32}.
The maximum number of epochs was set to 10.
A linear learning rate decay schedule with warm-
up over 0.1 was used, unless stated otherwise. To
avoid gradient exploding, we clipped the gradient
norm within 1. All the texts were tokenized using
wordpieces and were chopped to spans no longer
than 512 tokens. During adversarial training, we
follow (Jiang et al., 2019) and set the perturbation
size to 1× 10−5, the step size to 1× 10−3, and to
1× 10−5 the variance for initializing the perturba-
tion. The number of projected gradient steps and
the α parameter (Equation 2) were both set to 1.
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We follow (Devlin et al., 2019) and (Liu et al.,
2019b), and set the first token as the [CLS] token
and the <s> token, respectively, when encoding
the input on BERT and RoBERTa, respectively.
We separate the input sentence and the target ex-
pression with the special token [SEP] and </s> for
BERT and RoBERTa, respectively. e.g. [CLS] Ben
Salmon is a committed night owl with an undying
devotion to discovering new music.,"He lives in the
great state of Oregon, where he hosts a killerradio
show and obsesses about Kentucky basketball from
afar. [SEP] night owl [SEP].

For both settings (zero-shot and one-shot), we
used the dev dataset released by organizers to fine-
tune the model’s hyperparameters.

4.2 Main Results
Submitted systems were evaluated in terms of F1-
score. The systems were ranked from highest F1-
score score to lowest. We built several models that
use different text encoders and different training
methods, as described in Section 3. See Table 3 for
the results.

First, we observe that models that use adversarial
training obtained better performance overall, with-
out using any additional knowledge source, and
without using any additional dataset other than the
target task datasets. These results suggest that ad-
versarial training leads to a more robust model and
helps generalize better on unseen data. For the
zero-shot setting, the model that uses XLM-R as
the text encoder and adversarial training performed
better than M-BERT on the development set. Thus,
we decided to submit this model’s results on the
test set. It obtained a test set F1-score of 0.7457,
and ranked 6th among all participating systems. On
the other hand, on the one-shot setting, M-BERT
performed better than XLM-R on the development
set. Again, M-BERT with adversarial training per-
formed better than vanilla fine-tuning. This model
obtained an F1-score of 0.6573 on the test set, and
ranked 15th among all participating systems.

5 Conclusion
We proposed a simple and efficient model for mul-
tilingual idiomaticity detection. Our experiments
demonstrated that it achieves competitive results
on both zero-shot and one-shot settings, without
relying on any additional resource other than the
target task dataset. Although in this paper we fo-
cused on the multilingual idiomaticity detection
task, our model can be generalized to solve other

Method zero-shot one-shot
F1 F1

Dev
StandardXLM-RLARGE 0.7076 0.7769
SMARTXLM-RLARGE 0.7378 0.7958
StandardM-BERTBASE 0.5540 0.8462
SMARTM-BERTBASE 0.6200 0.8568

Test
SMARTXLM-RLARGE 0.7457 -
SMARTM-BERTBASE - 0.6573

Table 3: Comparison of standard and adversarial train-
ing in zero-shot evaluation on various natural language
inference datasets, where the standard BERTBASE model
is fine-tuned on the MNLI training data.

downstream tasks as well, and we will explore this
direction as future work.
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Abstract

The same multi-word expressions may have
different meanings in different sentences. They
can be mainly divided into two categories,
which are literal meaning and idiomatic mean-
ing. Non-contextual-based methods perform
poorly on this problem, and we need contextual
embedding to understand the idiomatic mean-
ing of multi-word expressions correctly. We
use a pre-trained language model, which can
provide a context-aware sentence embedding,
to detect whether multi-word expression in the
sentence is idiomatic usage.

1 Introduction

The goal of the SemEval-2022 Task2 (Tayyar Mad-
abushi et al., 2022) SubtaskA is to detect whether
a multi-word expression in a sentence is idiomatic
in usage. It is a multilingual task and consists of
three languages: English, Portuguese and Galician.

Multi-word expressions (MWEs) are expres-
sions that consist of at least two words and are
syntactically or semantically specific. The seman-
tics of MWEs are usually divided into two types, (i)
the combination of literal meanings of each word
in the phrase or (ii) inherent usages (e.g., idiomatic
meaning). Understanding the semantic meaning of
a sentence requires the correct identification of the
MWE in the sentence. Table 1 contains one case
for each of the two usages.

Traditional non-contextual word embedding
models, such as word2vec (Mikolov et al., 2013),
perform poorly at this task. Simple superposition
of non-contextually word embeddings does not cor-
rectly express the semantics of idiomatic phrases.
Therefore, contextual embedding models (Conneau
et al., 2020; Devlin et al., 2019) are required to
correctly understand the meaning of multi-word
expressions in idiomatic usage.

We used large-scale cross-lingual pre-trained lan-
guage models, multilingual BERT (Devlin et al.,
2019) and XLM-RoBERTa (Conneau et al., 2020),

Literal
When removing a big fish from a net,
it should be held in a manner that
suports the girth.

Idiomatic

It was still a respectable finish for
both Fadol and Nayre, who were ranked
outside the top 500 in the world but
caught some big fish along the way

Table 1: Examples of idiomatic and non-idiomatic usage

with a softmax classifier on top of the pre-trained
LM to train a binary classification model. The
training data are processed before training, and reg-
ularization dropout (Liang et al., 2021), adversarial
training (Miyato et al., 2017; Madry et al., 2018)
are used in the training process. In addition, we
observed the training data and found an interest-
ing phenomenon that we can get better results by
post-processing after the training using heuristic
rule.

2 Background

2.1 Task Description

Task 2 contains two subtasks, SubtaskA is idiom
detection, and SubtaskB is similarity scoring of
texts containing idioms. This article focus on Sub-
taskA. SubtaskA contains two settings, zero-shot
and one-shot.

• Zero-shot: Multi-word expressions that ap-
pear in test data do not appear in training data.

• One-shot: Every multi-word expressions that
appeared in the test data appeared in training
data at least once.

• Data Restriction: Under zero-shot setting, we
can only use zero-shot training data, and we
can use both zero-shot and one-shot training
data under one-shot setting. Test data is same
for both settings.
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2.2 Data Details

In this section, we will describe the characteris-
tics of the training data and test data. The official
data includes eight columns, which are DataID,
Language, MWE, Setting, Previous, Target, Next,
Label.

2.2.1 Language
The test data includes 916, 713, 713 entries in En-
glish, Portuguese and Galician, respectively.

There are only English and Portuguese exam-
ples in the training data of zero-shot setting, which
means that in the testing phase, the model requires
zero-shot transfer of Galician with the learned
knowledge on other two languages. Any MWE
in zero-shot training data will not appear in the test
data.

In one-shot training data, there are 73 entries
in each of the three languages, which is relatively
small compared to zero-shot training data. Any
MWE in the one-shot training data will appear in
the test data.

2.2.2 Data Length
We counted the average length of the data to facili-
tate appropriate truncation when using a pre-trained
model.

The average, median, max length of target sen-
tences after tokenizer corresponding to the pre-train
model are 42.6, 195, 40, respectively. Over 90% of
sentences are 64 or less in length.

The average, median, max position that MWE
occurs in sentences after tokenizer is 18.9, 89, 15,
respectively, and over 90% of sentences are 37 or
less in position.

2.3 Related Work

So far, there has been extensive research about id-
ioms detection. (Zeng and Bhat, 2021) propose a
multi-stage neural architecture with attention flow.
(Garcia et al., 2021a,b) probs idiomaticity in vector
space and propose NCTTI dataset. (Do Dinh et al.,
2018) propose a multi-task learning method. (Tay-
yar Madabushi et al., 2021) present a multilingual
idiom detection dataset, which will be used as this
SemEval-2022 idioms detection track.

Pre-trained word embedding can capture syntac-
tic and semantic information from large amounts
of unlabeled data, which has been a standard part
of natural language processing task (Mikolov et al.,
2013; Pennington et al., 2014). However, each

of these methods can only obtain a fixed, non-
contextual vector representation for each word
which makes it difficult to convey the correct mean-
ing of polysemous words. Due to the disadvan-
tages of non-contextual embedding, recent work
has begun to focus on contextual embedding, typi-
cal cases are context2vec (Melamud et al., 2016),
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019).

The most commonly used in contextual embed-
ding is the pre-trained language model (Devlin
et al., 2019; Conneau et al., 2020). These mod-
els perform self-supervised training through mask
language modeling, next sentence predicting, and
other objectives in hundreds of millions of unla-
beled datas. Benefiting from multilingual training
data, these models have cross-language capabili-
ties. Pre-trained models are gradually taking the
place of pre-trained word embeddings as the new
paradigm for natural language processing.

3 System Overview

Figure 1 depicts the flow chart of the whole system.
We first preprocess the data, tokenizing and then
feed into a pre-trained model to get hidden states.
Apply some pooling method to get fixed length
sentence representation to train a softmax binary
classifier. After that, the prediction results of the
model are post-processed. In the training process,
contrastive learning, adversarial training, regular-
ized dropout, etc. are used. Table 2 is then used
as an example to introduce the data preprocessing
process of the system.

3.1 Baseline
The baseline method below refers to the method in
paper (Tayyar Madabushi et al., 2021).

• In the zero-shot setting, Multilingual BERT
is trained on zero-shot data, using the context
without idiom as an additional feature.

• In the one-shot setting, Multilingual BERT
is trained on combination of the zero-shot
and one-shot data, excluding the context and
adding the idiom as an additional feature.

3.2 Data Preprocessing
3.2.1 Truncation
The data provides the context of the target sentence.
We only use target sentences for training because
we found that if we concatenate previous, target,
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Figure 1: System flow diagram

and next together, the sentence length will be too
long, which slows down training and harms perfor-
mance. We guess that to distinguish whether the
MWE is an idiomatic usage, we only need to focus
on words near the MWE, too long sentences will
introduce unnecessary distractions.

According to the length statistics in the previous
chapter, 128 is used as the maximum truncation
length of the pre-trained model, which can ensure
that most sentences will not be truncated and keep
the sentence length as small as possible.

3.2.2 MWE Marking
Following the baseline method, we use the tok-
enizer’s [SEP] token to mark the MWE in the sen-
tence. Unlike the baseline method, we only mark
MWEs without deformation. Proper nouns are usu-
ally non-idiomatic usage, and are often deformed.
Pre-trained models can recognize proper nouns
well, so we do not mark the deformed MWEs. The
results also show that this gives better performance.

Example in Table 2, MWE ‘milk tooth’ in sen-
tence "Her latest pamphlet Milk Tooth, published
by Rough Trade Books, is a collection of thwarted
escape plans for a too-heavy world" is capitalized,
according to our rules, the MWE in this sentence
is not marked. If the MWE in the sentence is not
deformed, the [SEP] token will be used to mark the
MWE, just like [SEP]milk tooth[SEP].

3.3 Model

3.3.1 Pre-trained Model
We tried different multilingual pre-trained models,
including mBERT and XLM-RoBERTa, and XLM-
RoBERTa consistently outperforms mBERT. In ad-
dition, we also try to use different size models, in-
cluding mBERT-base-cased, XLM-RoBERTa-base,
XLM-RoBERTa-large, and bigger models lead to
better performance.

3.3.2 Classifier
Different pooling methods are used for hidden
states of different layers, including mean pooling,
max pooling, [CLS], and token-level pooling. The
results show that different pooling methods have
little effect on the results. For simplicity, [CLS] is
used as the sentence representation.

For token-level pooling, we pool the vectors of
MWE positions in hidden states to obtain the final
sentence representation, which harms the perfor-
mance.

After pooling on the pre-trained model, fixed-
length sentence representation is obtained. This is
followed by a full connection layer with dropout
(Srivastava et al., 2014) and a softmax classifier.

3.3.3 Regularized Dropout

Figure 2: Regularized Dropout

Deep neural networks usually use dropout (Sri-
vastava et al., 2014), but the use of dropout intro-
duces inconsistency between train and inference.
R-drop (Liang et al., 2021) is a means of regu-
larization in the training process to mitigate this
inconsistency.

A sample output through the pre-trained model,
MLP and softmax can be regarded as a probabil-
ity distribution. R-drop performs two independent
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MWE milk tooth

Previous A ritual sacrifice from the 19th
century is vividly relieved.

Target

Her latest pamphlet Milk Tooth,
published by Rough Trade Books,
is a collection of thwarted
escape plans for a too-heavy world.

Next
In these poems of trauma and
transformation, the present throbs
with unfinished histories.

Label 1

Table 2: Training data example (useless columns have
been removed)

forward calculations for each sample, obtaining
two outputs probability distribution. Due to the
dropout, these two outputs will be slightly differ-
ent, introducing inconsistency. To mitigate this,
the bi-directional KL-divergence is calculated as
a penalty between these two outputs probability
distributions. In the following equation, yi rep-
resents the label, xi represents the input, and the
superscript represents two independent forward op-
erations. p1i , p

2
i represent probability distribution

obtained from two independent forwards.

Li
CE = CE(x1

i , yi) + CE(x2
i , yi) (1)

Li
KL =

1

2
(DKL(p

1
i ||p2i ) +DKL(p

2
i ||p1i )) (2)

Li = Li
CE + α · Li

KL (3)

3.3.4 Post Processing
We found an interesting phenomenon in the training
data. Some MWEs in one-shot training data have
only one category label, and most of these MWEs
corresponding to entries in the dev data have the
same label as in the training data. Some proper
nouns are labeled with idiomatic meanings, how-
ever some with literal meanings. These labeling
inconsistencies may cause problems in the learning
of the model, so we design a heuristic rule. On top
of the model prediction results, if there is only one
label for a certain MWE in the training set, then
replace all the predictions for that MWE in the test
set with whichever label appears in the training set.

4 Experiment

4.1 Hyperparameters

We use the Huggingface Transformers (Wolf
et al., 2019) implementation of mBERT and XLM-
RoBERTa. During the training, the learning rate

Model Zero-shot One-shot

mBERTbase w/ C w/ I 74.90 84.78
mBERTbase w/ C w/o I 70.59 76.98
mBERTbase w/o C w/ I 75.31 85.76
mBERTbase w/o C w/o I 70.76 82.59

Table 3: Context and idiom effects on the development
set results. C: context. I: Idiom. (Macro F1 × 100)

Model Max Len Zero-shot One-shot

mBERTbase 128 76.31 87.97
mBERTbase 192 75.62 87.96
mBERTbase 256 75.64 86.24

Table 4: Effect of different maximum sentence lengths
on the development set results. (Macro F1 × 100)

schedule strategy is warmup of first 10% steps with
cosine learning rate decay in rest steps. For zero-
shot and one-shot, we use learning rates of 1e-5 and
3e-5, respectively, and one-shot is continued train-
ing on the well-performing zero-shot model. The
mini-batch size is 32. The coefficient of R-drop
is chosen from 0, 1, 2, 4. We train a total of 20
epochs and save the best-performing checkpoints
on the development set. All models are trained on
one single NVIDIA Tesla V100 GPU.

4.2 Evaluation Metrics

SubtaskA is evaluated using the Macro F1 score
between the gold labels and model predictions.

Macro F1 = 2 · precision× recall
precision+ recall

(4)

4.3 Hyperparameters Selection

We compare different pre-trained models, max
length, and whether to use MWE and contexts.

4.3.1 Context and Idiom

We compare the performance of the model with and
without context in Table 3, the effect of marking
idioms on the results. Moreover we conduct exper-
iments on BERTbase, using [CLS] as pooling, with
the max sentence length set to 128. The method of
marking MWEs here follows the baseline.

Experiments show that ignoring context and
mark idioms gives better results, and this setting
will be continued for future experiments.
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Model Zero-shot One-shot

mBERTbase 75.31 87.97
XLM-Rbase 76.99 89.15
XLM-Rlarge 78.17 91.84

Table 5: Effect of different pre-trained models on the
development set. (Macro F1 × 100)

4.3.2 Max Sentence Length

In this section, a comparison is made between the
cases with different maximum sentence lengths.
The model follows the previous setting, with id-
ioms marked and context ignored, using first-last-
avg as pooling for training.

Our original hypothesis is that performance and
speed are a trade-off as the maximum sentence
length increases. In contrast, Table 4 shows that
a maximum sentence length of 128 is sufficient in
terms of speed and performance. We do not test a
smaller maximum sentence length because further
reduction might cause parts of the sentence to be
truncated, harming the performance.

4.3.3 Pre-trained Model

We compared mBERTbase, XLM-RoBERTabase,
and XLM-RoBERTalarge, and results in Table 5
demonstrated that XLM-RoBERTa outperformed
mBERT, and the large model performed better than
base model. In addition, our final submission re-
sults were obtained using XLM-Rlarge.

From the results, we found that the performance
improvement is evident as the model size grows,
and there is no bottleneck yet. Therefore, increas-
ing the model size may be a simple and effective
way.

5 Results

5.1 System Performance

Our final results use model fusion on thirteen mod-
els. The zero-shot model finished fourth with an
F1 of 77.15, and the one-shot model finished first
with an F1 of 93.85.

5.2 Ablation Study

Table 6 provides the results of the ablation study.
The baseline of the ablation experiment follows the
hyperparameters of the experiment chapter, except
that the model is replaced with XLM-Rlarge.

Model Zero-shot One-shot

XLM-Rlarge 78.05 91.02
+mark MWE 78.17 91.84

+contrastive pre-train - 89.95
+contrastive auxiliary 76.30 88.05
+AEDA 79.09 89.76
+AT 79.78 92.47
+R-drop 80.34 92.91
+post-processing - 93.73

Table 6: Ablation experiments on the development set.
(Macro F1 × 100)

5.2.1 Mark MWE

First, we change the method of marking MWE
in the baseline. We use [SEP] token for tagging
only if the MWE in the sentence is the same as
the MWE provided in the data. The reason for
this is that the organizer’s rule is to label proper
nouns as literal meaning, and proper nouns are
usually deformed with initial capitalization. The
pre-trained model can distinguish proper nouns
well under the training of a large amount of corpus.

5.2.2 Adversarial Training

Adversarial training (Miyato et al., 2017; Madry
et al., 2018) is a way to enhance the robustness
of neural networks by adding small perturbations
to the samples to interfere with the predictions of
the model. In our experiments, the results in Ta-
ble 6 show that adversarial training significantly
improves performance.

5.2.3 R-drop

R-drop is a regularization tool that aims to maintain
the consistency of model prediction and training
while using dropout by adding bi-directional KL-
divergence as a penalty term. After adding R-drop,
the performance is significantly improved, exceed-
ing the adversarial training. In Table 6, under zero-
shot setting, the relative improvement is 2.17 and
0.56 compared to baseline and adversarial training,
respectively, and this improvement is 1.07 and 0.44
under one-shot setting, respectively.

5.2.4 Heuristic Rule

We used the heuristic rule mentioned in 3.3.4 for re-
placement under the one-shot setting, and as shown
in the Table 6, the relative improvement is 0.82
percentage points.
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5.2.5 Negative Results
Contrastive Learning: Recently, contrastive learn-
ing has been a hot topic in NLP, especially in sen-
tence representation learning. Inspired by SimCSE
(Gao et al., 2021), we use contrastive learning be-
fore and during training classification, using the
data from subtaskA for contrastive pre-train and ap-
ply contrastive loss during training as an auxiliary
training objectives, respectively. Unfortunately, as
shown in Table 6, both of these methods make the
results much worse.
Data Augmentation: Due to lack of training data,
we use data augmentation for expansion. We used
AEDA (Karimi et al., 2021) as a means of data
augmentation, which is a straightforward data aug-
mentation, by adding punctuation marks to the sen-
tences. The results showed that a particular im-
provement was achieved under zero-shot setting,
but a decrease was achieved under one-shot setting.

6 Conclusion

We continuously improve the model performance
by improving the MWE marking method, using
larger pre-trained models, adding regularization
terms and heuristic rules. Inspired by pre-trained
models, we can find that future work needs to fo-
cus more on external data besides training data,
especially data with specific idioms, such as idiom
dictionaries, because the size of the external data is
much larger than the training data, which has not
been fully exploited.
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Abstract
We report the results of the SemEval 2022 Task
3, PreTENS, on evaluation the acceptability
of simple sentences containing constructions
whose two arguments are presupposed to be
or not to be in an ordered taxonomic relation.
The task featured two sub-tasks articulated as:
(i) binary prediction task and (ii) regression
task, predicting the acceptability in a continu-
ous scale. The sentences were artificially gen-
erated in three languages (English, Italian and
French). 21 systems, with 8 system papers
were submitted for the task, all based on var-
ious types of fine-tuned transformer systems,
often with ensemble methods and various data
augmentation techniques. The best systems
reached an F1-macro score of 94.49 (sub-task1)
and a Spearman correlation coefficient of 0.80
(sub-task2), with interesting variations in spe-
cific constructions and/or languages.

1 Introduction

A growing body of literature on the cognitive side
of computational linguistics has tried to probe the
ability of language models to recognize deviant
linguistic structures. Recognizing linguistic ill-
formedness requires some degree of metalinguis-
tic awareness in adult humans (i.e. the ability to
say not just that there is ‘something wrong’ in a
sentence, but also where the problem lies or how
the sentence could be improved), and it is not
clear whether and to what extent artificial systems
can induce this type of knowledge purely from
exposure to raw linguistic data (Linzen and Ba-
roni, 2020). Most of the previous investigations
on this topic have focused on phenomena that are
purely syntactic (agreement, Gulordava et al. 2018;
dislocated arguments with island effects, Wilcox
et al. (2018); Warstadt et al. (2019); Chowdhury
and Zamparelli (2018), clause embedding, Futrell
et al. 2019, etc.) or at the syntax/semantics inter-
face (negative-polarity items, Jumelet and Hupkes
2018; argument structure, quantifier restrictions,

Warstadt et al. 2019), mostly using LSTM archi-
tectures (but see Tran et al. 2018; Ettinger 2020).
The fact that many purely semantic effects result in
the (non) availability of certain readings (e.g. the
scope of a quantifier over a higher negation, in “I
didn’t see some people”) makes it of course harder
to translated them into computationally testable
paradigms.

The task we describe in this paper focuses on
an area of purely semantic competence that, to the
best of our knowledge, is unexplored in the com-
putational literature, and one which gives rise to a
robust intuition of deviance, triggered by the failure
of a type of presupposition: the requirement for
two nominal arguments to be (or not be) in an (or-
dered) taxonomic relation. These presuppositions
are introduced by a wide variety of constructions,
such as comparatives (1a), coordinations, verbs like
prefer, modifiers headed by type or except (1b) etc.
(see Table 1 for the full list).

(1) a. I hate guns more than {*weapons / social
media}.

b. I like dogs, except {*birds / greyhounds}
Distinguishing the deviant from the acceptable

cases requires the ability to (i) detect taxonomic re-
lations and (ii) recognize those constructions which
place restrictions on them. The first point is of
course crucial for most tasks in Natural Language
Inference (NLI) — an active and fast-growing field
in the NLP community, with various datasets and
benchmarks (e.g. GLUE Wang et al. 2018, Super-
GLUE Wang et al. 2019). NLI datasets, however,
normally assume that felicity conditions are satis-
fied. The present dataset, which we call PreTENS,
takes a step back and aims to verify if a computa-
tional model can detect when this presupposition
fails.

The task requires world knowledge, common-
sense knowledge (in the sense discussed in Storks
et al. 2019), but also linguistic knowledge, to catch
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Construction Example Presup.(Variants)
EXCEPT (2) I like [A1 dogs ] except [A2 {*cats / pugs / *animals}] A1>A2
PARTICULAR (2) I like [A1 dogs ], and in particular [A2 {*animals / *cats / pugs}]. A1>A2
IN GENERAL I like [A1 dogs ], and [A2 {animals / *cats / *pugs}] in general. A1<A2
GENERALLY I like [A1 dogs ], and more generally [A2 {animals / *cats / *pugs}]. A1<A2
TYPE (2) I like [A1 dogs ], an interesting type of [A2 {animal / *cat / *pug}]. A1<A2
AND-TOO I like [A1 dogs ], and [A2 {cats / *pugs / *animals}] too. A1 ̸><A2
COMPAR. (3) I like [A1 dogs ] more than [A2 {cats / *pugs / *animals}] A1 ̸><A2
DRATHER I would rather have [A1 dogs ] than [A2 {cats / *pugs / *animals}] A1 ̸><A2
PREFER I don’t like [A1 dogs], I prefer [A2 {cats / *pugs / *animals}] A1 ̸><A2
UNLIKE Unlike [A1 dogs ], [A2 {*animals / cats / *pugs}] are often mentioned in this text . A1 ̸><A2
BUT-NOT I like [A1 dogs ], but not [A2 {*animals / cats / pugs}] A1 ̸></>A2

Table 1: Distribution of taxonomic constructions and their presuppositions. ̸>< indicates no overlap; (n) indicates n
variants on the construction (e.g. COMPAR. contains samples of majority, minority and equality comparatives). The
BUT-NOT case is probably ambiguous, with one meaning close to EXCEPT; the same applies to GENERALLY, which
draw uncertain results in the human evaluation and was excluded from sub-task 2 in favour of IN GENERAL.

the requirement of the specific presupposition-
inducing constructions. In this respect, the present
task is closer in spirit to SemEval-2020 task 4, sub-
task A, on the validation of sentences for common-
sense (Wang et al., 2020), than to SemEval 2016
task 3, where participants had to extract and iden-
tify the taxonomic relationships between two terms
(Bordea et al., 2016).

Besides NLI practitioners, the task could be
relevant for researchers interested in the poten-
tial of NNs as cognitive/linguistic models (see e.g.
Warstadt et al. 2019). We believe that it is also a
potentially useful addition to the toolbox of probes
used to understand the inner working of current
language models.

2 Dataset and Task description

2.1 Composition

The PreTENS contains 21,765 artificial sentences
with 2-argument relations filled by nominals (the
argument nouns). The sentences were designed
to follow or flout the presuppositions that (i) the
argument nouns should or should not be in a taxo-
nomic relation (i.e. one a subset of the other: dogs
< animals) and (ii) when a taxonomic relation was
required, the order should be a specific one. (ii)
differentiates I like dogs, and in particular pitbulls
from *I like pitbulls, and in particular dogs). The
list of constructions used is in Table 1.

The data for this task was programmatically gen-
erated from a human-verified template, yielding
sets of sentences that are extremely similar across
constructions. The argument nouns (A1 and A2
in Table 1) are taken from the following semantic
categories: dogs, birds, animals, cars, motorcycles,

cutlery, clothes, trees, plastics, furniture, wine, ani-
mals, sports, music, vegetables, fruits, pork-based
food, desserts, seafood, apartments, movies, jew-
elry, pets, rain, nature, senses, emotions, books,
workers and scientists, and repeat across construc-
tions. The elements not in taxonomic relations
were chosen to maximize the plausibility of com-
parison (e.g. dogs if the semantic category was
birds) and the verbs were chosen to be as semanti-
cally neutral as possible (often like or have, but e.g.
trust in the semantic category of senses). The En-
glish template file was created and revised (using
dictionaries and Wordnet) by the task proponents,
all expert linguists, and double-checked by a native
speaker.

PreTENS is a simplified, no-repetiton subset of
a larger dataset, DuckRabbit, which also contains
5 semantic categories (countries, cities, painters,
politicians, actors) examplified by well-known
proper names (e.g. Paris, Picasso, Obama), which
we decided not to use for the PreTENS task. The
full DuckRabbit dataset (55,296 items) is arranged
in a way that systematically tests all the possible or-
ders of pairs of argument nouns taken from a super-
category, a subcategory in the same taxonomic do-
main and a distractor (non taxonomically ordered
with either, e.g. <birds, parrots, dogs>). This
arrangement, however, creates a large number of
repeated entries.

The fixed nature of the patterns used allowed us
to propose the dataset in three languages (English,
Italian and French), where the French and Italian
versions are slightly adapted translations of the
English dataset.1 Adding more languages would

1A key difference was that the English bare plurals used in
generic sentences were replaced by NPs introduced by definite
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be relatively straightforward. The template and
the scripts used to generate the data are publicly
available under a CC BY 3.0 “Attribution” license.2

As far as we can tell, the contents do not raise any
issue w.r.t. ethics or privacy.

2.2 Definition of the Task

The task was articulated into the two sub-tasks:

• a binary classification task (hereafter re-
ferred to as sub-task1), which consisted in
predicting the acceptability label assigned to
each sentence of the test set on the basis of a
theoretical linguistic model;

• a regression task (hereafter sub-task2), which
consisted in predicting the average score on a
7 point Likert-scale assigned by human anno-
tators to a subset of data evaluated via crowd-
sourcing (see Section 2.3).

For each task and each language, the dataset was
split into training and test sets. The classification
task was composed of 5,838 training samples and
14,560 testing samples; the regression task, of 524
sentences in training and 1,009 in test. Table 2
reports the internal composition of the training and
test dataset of each sub-task. As it can be seen, not
all the constructions contained in the test were pro-
vided in the training set. This choice was deliberate,
to test the generalization abilities of the systems
across unseen constructions. The sentences in train-
ing data were independently randomly ordered in
the three languages, to discourage mapping the re-
sults obtained in one language to sentences with
the same ID in the other languages.

2.3 Annotation with human judgments

The dataset released for Sub-task2 is composed by
a subset of 1,533 sentences taken from the whole
dataset, corresponding to about 5% of the total and
representative of the patterns considered, which
were judged by human annotators via a crowdsourc-
ing campaign.

The purpose of this evaluation was two-fold: (i)
to provide a bottom-up assessment of the quality of

determiners in Italian and French. This makes the latter sub-
datasets systematically longer. In addition, certain English
nouns required compounds or N+PPs to be rendered in the
other languages.

2Github Repository: https://github.com/
shammur/SemEval2022Task3
Task Website: https://sites.google.com/view/
semeval2022-pretens/

Constructions sub-task1 sub-task2
Training Test Training Test

and-too 835 525 131 88
but-not 831 526 131 88
comparatives 835 3,245 131 88
drather – 1,360 – –
except 831 1,887 – –
in general – – – 219
generally – 1,360 – –
particular 835 1,885 – 219
prefer 835 525 – –
type 835 1,887 131 88
unlike – 1,360 – 219
TOTAL 5,838 14,560 524 1,009

Table 2: Distribution of taxonomic constructions in
terms of number of sentences in the dataset.

the linguistic categories that informed the creation
of the dataset templates; (ii) to obtain more fine-
grained judgments of semantic acceptability in the
form of gradual, rather than categorical, scores.

The annotation was performed through the Pro-
lific3 platform. Specifically, for each language the
annotation process was split into different tasks,
each one consisting in the annotation of about 150
randomly mixed sentences for the typologies re-
ported in Table 1. For all tasks, we recruited 12
native speakers, who were asked to read each sen-
tence and answer the following question:

How acceptable is this sentence from
1 (completely unacceptable) to 7 (com-
pletely acceptable)?’

As an example, we report below two sentences
(with corresponding average score) from the En-
glish portion of the annotated dataset, which were
rated as very poorly and very highly acceptable:

I like politicians, an interesting type of
farmer (1.42)

I like governors, an interesting type of
politician (6.16)

Table 3 provides the average value (µ) and stan-
dard deviation (σ) of acceptability labels for the
whole dataset (first row) and for sentences clas-
sified according to the various constructions. As
it can be noted, French sentences were evaluated
on average as more acceptable than Italian and
English ones but with a slightly higher standard
deviation. While for all languages the maximum
average score on the Likert scale was obtained by
very few sentences (i.e. only one sentence for En-
glish and French and four for Italian), the number

3www.prolific.co
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ENG ITA FRE
µ σ µ σ µ σ

All sents 3.89 1.61 3.75 1.73 4.05 1.85
and-too 4.83 0.92 4.98 0.97 5.29 0.95
but-not 4.59 1.08 3.94 1.06 5.07 0.94
comparatives 4.91 1.93 5.05 1.42 5.18 1.41
in general 3.64 1.17 3.28 1.29 3.78 1.06
particular 2.54 1.48 2.36 1.46 2.28 1.50
type 2.13 1.45 1.89 1.44 1.80 1.40
unlike 4.56 0.84 4.74 1.15 4.93 1.93

Table 3: Statistics about the distribution of human judg-
ments in the dataset collected for sub-task2. µ = average
judgment; σ = standard deviation.

of sentences rated with the lowest score is higher
for Italian and French (i.e. 42 and 45 respectively)
than for English (i.e. 7). If we focus on the distribu-
tion of judgments across the distinct constructions,
we observe that examples containing the TYPE con-
struction were perceived on average as the less
acceptable ones for all languages. Conversely, sen-
tences belonging to the AND TOO and COMPARA-
TIVES categories obtained the highest acceptability
scores.

In order to see how consistent was the human per-
ception of semantic acceptability across languages,
we computed the Pearson’s r between the average
scores assigned to the whole set of sentences for
each pair of languages. The correlation scores were
very high, with the highest scores obtained between
sentences in French and Italian (i.e. 0.86), followed
by English and French (i.e. 0.80), and, lastly, by
English and Italian (i.e. 0.77)4.

Finally, an additional outcome that we want to
highlight here is the strong connection between
the theoretically-driven and the human-based se-
mantic acceptability label, which was assessed by
calculating the Spearman’s rank correlation coef-
ficient between the average human scores and the
binary acceptability labels attributed to the same
set of sentences, for all languages. In this case, too,
we found a very high correlation, although weaker
in English (ρ=.73) than in Italian and, especially,
French (ρ =.78 and .83, respectively).

3 Shared Task Organisation

Shared Task Phases We ran the shared Task 3
in two phases. In the first phase, we released the
baseline pipeline, along with the cross-validation
results on the official training set and introduced the
participants to the aforementioned task evaluation

4All correlations are significant with p value< 0.01.

Figure 1: Statistics of participants’ interest on Tasks
based on initial registration.

Task sub-task1 sub-task2
Team Participated 21 17
Total System Submissions 134 110
Total Accepted Submissions 108 84

Table 4: Statistics on participation

measure.
The second phase – the main Evaluation Phase

– was conducted using codalab platforms for both
sub-task15 and sub-task2.6 During this phase, the
participants were provided with the test sets and
were allowed to submit their predictions to the sys-
tem. The number of submissions of each partici-
pant was limited to three, but the participant could
choose among them which runs/submission they
want to display in the leader-board. During the
evaluation phase, the leader-board was visible to
all the participants.

Baselines For each sub-task a separate baseline
were defined: i) for Sub-task1 – the binary classifi-
cation sub-task, a Linear Support Vector classifier
using n-grams (up to three) as input features was
used, and for the ii) Sub-task2 – the regression
sub-task, a baseline using a Linear Support Vec-
tor regressor with the same n-grams features was
provided.

We provided the starter code to all the partici-
pants, along with different cross-validation config-
urations that we encouraged participants to use to
validate their methodology. Moreover, we provided

5https://codalab.lisn.upsaclay.fr/
competitions/1292

6https://codalab.lisn.upsaclay.fr/
competitions/1290
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information on how the performance in the valida-
tion task translated in the official test split (applying
the baseline methods to the official test-set yielded
results 10-20% lower than with the training set).
We highlighted the importance of achieving maxi-
mal syntactic generality on this task and test differ-
ent cross-validation configurations on the training
set.

Official Evaluation Metrics Given the differ-
ences in the nature of the sub-tasks output, we
defined two different sets of evaluation metrics.
For sub-task1, systems are evaluated with respect
to binary and macro F-measure. These measures
were evaluated per languages, and the final ranking
was based on the global ranking of each partici-
pant, calculated by averaging the macro F-measure
score from all the three languages (this provided
an incentive to give results for all languages). In
addition to the official measure, we also gave the
participants their precision and recall scores, per
language.

As for sub-task2, a Spearman’s rank correlation
coefficient (ρ) between the task participants’ scores
and the test set scores was computed. To be con-
sistent with sub-task1, the global ranking of this
task was calculated by averaging the position of the
participant’s ρ per language.

At the end of the competition, we provided the
participants with packages containing the results
for each of their submissions, and publicly updated
the leader-board with ranks listing all teams who
competed in each sub-task.

Participation The task attracted nearly 83 teams.
Among them, 43 teams actually registered for the
evaluation phase; 21 teams (sub-task1) and 17
teams (sub-task2) submitted their system’s predic-
tions. The detailed statistics are shown in Table
4.

4 Participating Systems

We received six system description papers for both
sub-tasks, plus two papers by teams that partici-
pated only in sub-task1, for a total of eight papers.
As it can be observed in the following summaries of
the approaches proposed, there were several points
of methodological similarity, but also interesting
differences. Many teams experimented data aug-
mentation techniques devised to overcome the lim-
ited amount of training data, in particular for the
solution of sub-task2. These techniques ranged

from the use of external resources to the genera-
tion of new sentences (Zhou et al. (2022), Sarhan
et al. (2022) and van den Berg et al. (2022)), to the
automatic translations across the three languages
considered (Sarhan et al. (2022) and Zhou et al.
(2022)), to mapping the Likert scale results to the
binary values. This was the strategy used by the
first two teams classified (Xia et al. (2022) and Li
et al. (2022)) according to the global scores.

As we can see by the description of the partic-
ipating systems (see Section 4.1), the majority of
teams chose monolingual instead of multilingual
models, especially in the resolution of sub-task1.
The exceptions are represented by Li et al. (2022),
who obtained the second position in the global rank-
ing of both sub-tasks, by Aziz et al. (2022), and by
Sarhan et al. (2022) who (in the resolution of sub-
task 2 only), used the multilingual version of the
Universal Sentence Encoder, since it yielded better
performance than the monolingual one. Interest-
ingly enough, the top-ranked team in both sub-tasks
(Xia et al. (2022)) found that, for all languages, the
monolingual DeBERTa-v3 models always outper-
formed the multilingual version.

A further approach shared by the participating
teams is represented by the adoption of ensemble
methods. Two main ensemble strategies were sug-
gested. In the first one, the training data used to
fine-tune the adopted model was split, obtaining dif-
ferent models, each with its training and validation
sets. This was the case with the second-ranked sys-
tem (Li et al. (2022) and with Vetter et al. (2022),
but only in sub-task2. A second main approach
used the fusion of the acceptability scores predicted
by two different models. As described in the fol-
lowing subsection, Aziz et al. (2022) combined
the scores predicted by XLM-RoBERTa (Conneau
et al., 2019) and mBERT (Devlin et al., 2019),
while Zhou et al. (2022) merged the predictions
made by ERNIE-M and DeBERTa-v3 (only in sub-
task1).

4.1 Individual System Descriptions

Xia et al. (2022) (model LingJing), tackling sub-
task1, experimented with different strategies to fine-
tune DeBERTa-v3 (He et al., 2021), which ended
up outperforming both the PreTENS baseline and
three new baselines introduced by the authors, in-
cluding a multilingual version of DeBERTa, i.e.
mDeBERTa model. These strategies included the
augmentation of the original training set with trans-
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Team/user name Global score Rank ENG Rank FRE Rank ITA Rank
LingJing⋆ 94.49 1 97.17 1 93.24 1 93.05 1
HW-TSC⋆ 92.80 2 93.04 5 93.01 2 92.34 2
UU-TAX⋆ 91.57 3 93.08 4 89.53 4 92.12 3
CSECU-DSG⋆ 91.12 4 91.51 7 90.73 3 91.11 4
piano 90.74 5 97.12 2 86.14 11 88.95 6
SPDB Innovation Lab⋆ 89.58 6 94.55 3 87.28 7 86.90 8
bpc 89.09 7 91.36 8 88.32 6 87.59 7
weijiyao 88.78 8 92.15 6 87.28 8 86.90 9
ddd7788 86.68 9 80.44 13 88.86 5 90.75 5
cnxupupup 86.68 10 86.88 9 86.39 10 86.76 10
MaChAmp 86.42 11 86.58 10 86.52 9 86.17 12
aidenqiu 86.30 12 86.29 11 86.09 12 86.51 11
UoR-NCL⋆ 80.32 13 77.23 16 80.08 14 83.65 13
RUG-1-pegasussers⋆ 79.56 14 80.31 14 79.71 15 78.64 14
KaMiKla⋆ 77.99 15 77.21 17 82.34 13 74.40 15
Huawei-zhangmin 71.80 16 78.54 15 65.77 18 71.08 16
RCLN 70.54 17 73.02 18 75.73 16 62.86 17
BASELINE 67.39 18 70.47 19 72.13 17 59.59 18
Jan/Jasper/Boris 27.26 19 81.76 12 – – – –
folkertleistra 22.64 20 67.92 20 – – – –
RUG-3 19.95 21 59.85 21 – – – –

Table 5: Sub-task 1 results for each team/user ordered by overall F1-Macro along with micro-averages for each
language. Team/user names marked with ⋆ have submitted their system description.

lations from the three languages, adversarial train-
ing and Child-Tuning (Xu et al., 2021). In addition,
the authors performed experiments with different
compositions of the original training, i.e. mixing
the data for the three languages, and fine-tuning in
one language, then expanding to the others. Each
strategy achieved different results for each lan-
guage. Due to the small size of the training set
of sub-task2, the team transferred the knowledge
of the classification model to the regression task,
in terms of the model’s parameters and in the idea
of mapping the Likert scale results to the binary
values.

Li et al. (2022) (HW-TSC), addressing both sub-
tasks1 and 2, developed an ensemble classification
and regression model by fine-tuning the multilin-
gual XLM-RoBERTa model (Conneau et al., 2019)
on different splits of the training data. To this end,
they added a language tag to each training sentence
with the same id across the three languages and
divided the data in different folds to prevent the
model from learning the translation information.
To address the small size of the sub-task2 training
data, they devised a data augmentation strategy to
transform the binary values into the scalar human
judgments.

Sarhan et al. (2022) (UU-TAX), experimented
with different Neural Language Models and diverse
training data compositions to test their generaliza-
tion abilities against the PreTENS tasks. For sub-

task1, their best performing model is represented
by ELECTRA (Clark et al., 2020), which was fine-
tuned using a two-stage strategy to augment the
original training data. Firstly, the authors gener-
ated new sentences by making modifications to the
original sentences using BERT-base (Devlin et al.,
2019) to obtain the embeddings of the modified
words. Secondly, for each language l, the original
sentences of the other two languages were trans-
lated into l using the Google Translate API. For
sub-task2, the best model uses the multilingual ver-
sion of the Universal Sentence Encoder (Yang et al.,
2020) followed by a different type of classifier for
each language.

Aziz et al. (2022) (CSECU-DSG), for both sub-
tasks, exploited an ensemble method of two mul-
tilingual Transformers, i.e. XLM-RoBERTa (Con-
neau et al., 2019) and mBERT (Devlin et al., 2019),
which were fine-tuned with the PreTENS datasets.
To enhance the performance of each individual
model, the authors fused the predicted probabil-
ity scores of the two models by computing their
weighted arithmetic mean.

Vetter et al. (2022) (KaMiKla), for both sub-
tasks, used monolingual versions of the BERT
model (Devlin et al., 2019), i.e. BERT base for En-
glish, AlBERTo (Polignano et al., 2019) for Italian
and CamemBERT (Martin et al., 2020) for French.
For sub-task1, the authors fine-tuned the models on
the distributed training data, while for sub-task2,
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Team/user name Global score Rank ENG Rank FRE Rank ITA Rank
LingJing⋆ 0.802 1 0.758 1 0.841 1 0.807 1
HW-TSC⋆ 0.757 2 0.706 2 0.805 2 0.759 2
Huawei-zhangmin 0.669 3 0.636 3 0.74 3 0.631 3
BASELINE 0.309 4 0.265 6 0.317 4 0.344 4
UU-TAX⋆ 0.221 5 0.478 4 -0.062 15 0.246 5
daydayemo 0.206 6 0.212 8 0.284 5 0.121 9
aidenqiu 0.205 7 0.211 9 0.284 6 0.121 10
CSECU-DSG⋆ 0.16 8 0.191 10 0.081 8 0.207 6
RCLN 0.139 9 0.418 5 -0.005 9 0.006 14
folkertleistra 0.123 10 0.232 7 0.102 7 0.036 13
KaMiKla⋆ 0.078 11 0.059 15 -0.01 10 0.186 7
xxxyyyxxx 0.074 12 0.094 14 -0.013 11 0.14 8
UoR-NCL⋆ 0.056 13 0.122 13 -0.043 13 0.089 12
RUG-3 0.046 14 0.137 12 – – – –
suzuki 0.042 15 0.14 11 -0.018 12 0.003 15
akkhan1871 0.008 16 -0.006 16 -0.06 14 0.09 11
MaChAmp -0.164 17 -0.131 17 -0.195 16 -0.167 16

Table 6: Sub-task 2 results for each team/user ordered by overall ρ along with results for each language. Team/user
names marked with ⋆ have submitted their system description.

they first normalized the scores to be between zero
and one, then performed an inverse transformation
to get the final output. In addition, for this second
task, they trained 10 models per language (each
with its one training split) and used the median
result as their final prediction.

Zhou et al. (2022) (SPDB) participated only in
sub-task1, using a different ensemble system for
each language. For Italian and French, the sys-
tem combines the results of 10 ERNIE-M mod-
els (Ouyang et al., 2021) obtained by applying a
cross-validation process; for English, the authors
combined the predictions made by ERNIE-M and
DeBERTa-v3 (He et al., 2021). They also enlarged
the distributed PreTENS training set using i) two
different translators (Google and Baidu) to translate
the English sentences into French and Italian, thus
increasing the diversity of data, and ii) the English
and French version of the XNLI dataset (Conneau
et al., 2018).

van den Berg et al. (2022) (RUG-1-pegasussers)
participated only in sub-task1 using English BERT
base (Devlin et al., 2019) which they fine-tuned,
experimenting with multiple approaches to expand
the training data. In particular, they augmented
the data by adding new English sentences that con-
tained new category templates, new words instanti-
ating the templates, new words previously used ex-
clusively as hyponyms, inversions of the arguments
involved in the taxonomical relation, paraphrases
automatically generated. The acceptability labels
of Italian and French sentences were predicted by
translating the sentences into English, in order to

process them with the English BERT.
Markchom et al. (2022) (UoR-NCL), for both

sub-tasks, experimented with fine-tuning different
monolingual versions of the BERT-based model
(Devlin et al., 2019), i.e. DistilBERT-Base-
Uncased for English (Sanh et al., 2019), BERT-
Base-Italian-XXL-Uncased for Italian, FlauBERT-
Base-Uncased for French. The authors relied on
the distributed training data to fine-tune the models
using specific loss functions, binary cross-entropy
loss for sub-task1 and mean squared error loss for
sub-task2.

5 Results and Discussion

Almost all teams submitted their runs for the three
languages considered. Tables 5 and 6 show, for
each sub-task, the top submissions received from
each team, along with the baseline scores. Team
names marked with ⋆ represent teams that have
submitted system description papers. The Rank
column reports the position of the team in the rank-
ing for global and language-specific scores.

Task 1 evaluation: To better understand the
performances per construction of the models sub-
mitted, we report the average F1-macro (±std) of
the top-3 submissions per language, in Table 7.

Our results show that English — the most
resource-rich language in terms of computational
models and data — outperforms the Italian and
French models for correctly predicting presuppo-
sitions in these constructions. However, the En-
glish model performed below French in the UN-
LIKE construction (e.g. “Unlike trees, {*oaks /
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CONSTRUCTION EN FR IT Avg lang
DRATHER 94.9 (±0.04) 90.9 (±0.03) 89.3 (±0.03) 91.70
COMPARATIVES 94.2 (±0.05) 87.4 (±0.03) 88.2 (±0.02) 89.93
EXCEPT 88.8 (±0.09) 88.3 (±0.05) 84.1 (±0.05) 87.07
UNLIKE 87.4 (±0.07) 88.4 (±0.05) 84.6 (±0.05) 86.80
BUTNOT 89.3 (±0.07) 78.0 (±0.15) 81.5 (±0.03) 82.93
PREFER 86.5 (±0.1) 83.5 (±0.05) 78.1 (±0.01) 82.70
ANDTOO 84.4 (±0.13) 74.6 (±0.14) 77.5 (±0.0) 78.83
PARTICULAR 94.3 (±0.04) 45.3 (±0.0) 86.7 (±0.04) 75.43
TYPE 75.8 (±0.14) 66.8 (±0.08) 72.2 (±0.12) 71.60
GENERALLY 45.5 (±0.0) 75.2 (±0.12) 46.7 (±0.01) 55.80

Table 7: Average macro F-measure of the top 3 participants per construction in sub-task 1 (binary classification).
The standard deviation between the top 3 submission are in (.). Best results per construction are in bold.

animals} are often mentioned in this text”, presupp.
A1 ̸><A2), and does quite poorly in GENERALLY (“I
like oaks, and more generally {trees / *animals}”,
presupp. A1<A2). Note that neither constructions
were present in the training set. Italian is aligned
with English, while interestingly the French model
seems to be capable of more accurate generaliza-
tions in both cases.

Task 2 evaluation: To gain a better understand-
ing of the models generalization abilities in this
task, we computed the Root Mean Squared Error
(RMSE) between the gold value and the average
predicted value by the first three teams classified.
This data is shown in Figure 2 for each construc-
tion and for each language, along with the average
value across languages. As it can be seen, the re-
sulting picture contrasts substantially with that of
sub-task1. The TYPE and PARTICULAR construc-
tions, among the worst in the first sub-task, have
the lowest error in sub-task2. The second task sees
a substantial drop of ANDTOO (now the worst case)
and COMPARATIVES (one of the best constructions
in sub-task1).

We also observe distinctions between languages
across the two tasks. In particular, while the aver-
age performance for English across constructions
is the highest in sub-task1, the French models ob-
tained on average the best results in sub-task2. The
success at predicting the presuppositional knowl-
edge triggered by the same construction changes in
the two sub-tasks (which are often demanded to dif-
ferent models in the various teams). For example,
the French models are the best at classifying the
acceptability label for the UNLIKE construction but
are the worst in predicting the human score for the
same construction. Conversely, COMPARATIVES

turn out to be among the easiest constructions for
the English models in sub-task1 but are the most
mispredicted English type in sub-task2.

Quite interestingly, the presence of a construc-
tion in training doesn’t always guarantee better
performances. Two notable examples are repre-
sented by DRATHER and PARTICULAR. Despite
being absent in the training set of the correspond-
ing tasks, the first obtains the highest F1 score (for
English and on average) and the second is among
the top-predicted constructions in sub-task2. We
leave a more thorough analysis of the systematicity
of these trends to future work, where we will also
consider the linguistic variants for each construc-
tion and the semantic categories of the nominal
arguments involved.

Figure 2: sub-task2: Root Mean Squared Error (RMSE)
averaged across the top 3 participants per construction
(lower is better). Constructions are ordered per average
RMSE values across languages.

6 Conclusion

The SemEval2022 task3 – PreTENS offered two
sub-tasks aiming to investigate the effectiveness of
computational models to detect a certain type of
presuppositional failures induced by specific con-
structions. The task attracted a total of 21 teams,
from both academia and industry. The findings
showcases the power and ubiquity of large self-
supervised pre-trained models in mono- or multi-
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lingual settings. Despite this apparent uniformity,
the participants chose to use and combine the mod-
els in very different and creative ways, giving rise
to a range of scores from 70.54% to 94.49%.

The outcomes of the task highlights the abil-
ity of these transformer models to generalize to
new/unknown construction in the test sets, but also
the presence of intriguing differences in specific
constructions and languages (e.g. in the binary task
A1 and more generally A2 reaches a 75.2 F-measure
in French but a 46.7 in Italian). Also worth further
investigation is the lower correlation between the
binary judgments and the human ratings in English
— probably reflected in the .05 drop seen in the
sub-task2 global score for this language, compared
to French.

The success of the task indicates a growing inter-
est towards research on prediction models that can
incorporate world knowledge and common sense,
along with an understanding of the linguistic prop-
erties that condition the outcomes. We hope that
this trend will continue and the PreTENS data will
help researchers to probe future models for this
ability. With this spirit, we make the dataset public.
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Abstract

This paper presents the results and main find-
ings of our system on SemEval-2022 Task
3 Presupposed Taxonomies: Evaluating Neu-
ral Network Semantics (PreTENS)1. This task
aims at semantic competence with specific at-
tention on the evaluation of language mod-
els, which is a task with respect to the recog-
nition of appropriate taxonomic relations be-
tween two nominal arguments. Two sub-tasks
including binary classification and regression
are designed for the evaluation. For the clas-
sification sub-task, we adopt the DeBERTa-
v3 pre-trained model for fine-tuning datasets
of different languages. Due to the small size
of the training datasets of the regression sub-
task, we transfer the knowledge of classifica-
tion model (i.e., model parameters) to the re-
gression task. The experimental results show
that the proposed method achieves the best
results on both sub-tasks. Meanwhile, we
also report negative results of multiple training
strategies for further discussion. All the ex-
perimental codes are open-sourced at https:
//github.com/WENGSYX/Semeval.

1 Introduction

In order to dive into the capability of the current
language models (Bengio et al., 2000; Howard
and Ruder, 2018), we take part in and apply the
pre-training language model on the SemEval-2022
Tasks 3: the Presupposed Taxonomies: Evaluating
Neural Network Semantics (PreTENS) (Zamparelli
et al., 2022). To evaluate the model performance
comprehensively, two sub-tasks are designed in
this PreTENS task:

Sub-task 1) Binary classification task2, which
consists in predicting the acceptability label as-
signed to each sentence of the test set. For example,
“I like trees, and in particular birches” is acceptable

∗These authors contribute equally to this work.
1https://sites.google.com/view/semeval2022-pretens/
2https://codalab.lisn.upsaclay.fr/competitions/1292

while “ I like oaks, and in particular trees” is unac-
ceptable, so they are labeled 1 and 0, respectively.

Sub-task 2) Regression sub-task3, which con-
sists in predicting the average score assigned by
human annotators on a seven-point Likert scale
(Joshi et al., 2015) with respect to the subset of
data evaluated via crowdsourcing. For example,“I
like governors, an interesting type of politician” is
more acceptable than “I like politicians, an interest-
ing type of farmer”, so the former will also have a
higher score (6.16) than the latter (1.42).

It is noted that both sub-tasks comprise datasets
in 3 languages: English, Italian, French, where
French and Italian are slightly adapted translations
of the English dataset. For each sub-task, every
sample is formed as the arguments A and B, e.g.,
comparatives (I like A more than B), exemplifica-
tions (I like A, and in particular B), generalizations
(I like A, and B in general), and others, where the
argument nouns are taken from various semantic
categories.

The most similar tasks are the Natural Language
Inference (MacCartney, 2009; Bowman et al.,
2015; Conneau et al., 2017) and Taxonomy Ex-
pansion & Enrichment (Zhang et al., 2018; Shen
et al., 2018; Yu et al., 2020), where the former re-
quires the model to differentiate the relationship
between a premise sentence and a hypothetical sen-
tence, while the latter shall identify the relationship
between different concepts. There are many power-
ful language models for accomplishing these tasks
(Devlin et al., 2018; He et al., 2020), and well-
formed semantic representations can be obtained
for the downstream tasks. However, it is a chal-
lenge for the model to decide the acceptance of the
given sentence, as the semantic meaning is hard
to be distinguished. Moreover, the performance of
downstream tasks when fine-tuning is limited by
the size of the training dataset (Xie et al., 2020).

To solve the above problems, we propose a
3https://codalab.lisn.upsaclay.fr/competitions/1290

239



method that applies DeBERTa to lexical-level pre-
supposed relation taxonomy with knowledge trans-
fer. Specifically, the powerful DeBERTa-v3 pre-
trained model (He et al., 2021) is fine-tuned with
datasets of different languages in the classification
task. For the regression task, due to the limited size
of the training datasets, we fine-tune the trained
model of the classification task in the regression
task. As a result, the proposed method achieves
a global top score of 94.173 in sub-task 1 and a
global top score of 0.802 in sub-task 2. Our method
wins on two sub-tasks. In addition, we present the
negative results of multiple training strategies when
fine-tuning and provide further discussions.

2 Main method

In this section, we will elaborate on the main meth-
ods for the two sub-tasks of the PreTENS task. The
training strategies are included at the end of this
section.

2.1 Sub-task 1 - Binary classification using
DeBERTa

Sub-Task1:
Classification

Category
Label

argmax

Fully Connected
Layer

（With Dropout）

Pooling Layer

t[CLS] t1 t2 tN-1 T[SEP]

E[CLS] x1 x2 xN E[SEP]

[CLS] x1 x2 xN [SEP]

Encoder Context

I like trees, and in particular birches

DeBERTa

… …

… …

… …

… …

1

Input

Averaged Pooling

Figure 1: Main structure of the method in sub-task 1.

Sub-task 1 is a classic classification task, where
two acceptability labels are required to be classified.
We adopt the DeBERTa-v3 (He et al., 2021) model
for processing this binary classification, where the
main method structure is shown in Figure 1. The
given sentence is separated into tokens and then
sent to the pre-trained model as the input. To ob-
tain the complete meaning of the whole sentence,
we take the output embedding of each token to be
averaged by the averaged pooling layer. The binary

classification task is designed by sending the aver-
aged encoding into the fully connected layer with
dropout.

2.2 Sub-task 2 - Regression with knowledge
transferring

Regression
Label

Fully Connected
Layer

（With Dropout）

t[CLS] t1 t2 tN-1 T[SEP]

E[CLS] x1 x2 xN E[SEP]

[CLS] x1 x2 xN [SEP]

Encoder Context
（Transferred Parameters

of Sub-task 1）

I like politicians, an interesting type of farmer

DeBERTa

… …

… …

… …

… …

1.42

Input

Pooling Layer Averaged Pooling

Sub-Task2:
Regression

Figure 2: Main structure of the method in sub-task 2.

Sub-task 2 is a regression task, where a seven-
point Likert-scale which ranges from 1 (not at all
acceptable) to 7 (completely acceptable) is used to
perform the regression. There is a subset of 1,533
sentences of the entire dataset for this regression
task, where the total number is relatively small. It
is a wise choice to transfer the knowledge from the
pre-trained model of sub-task 1 into the regression
task. The reason is that the fine-tuned model of
sub-task 1 learns quite a few patterns of sentence
acceptance that come from the extra knowledge. As
shown in Figure 2, the DeBERTa-v3 model trained
in sub-task 1 is designed to perform the regression
task. The fully connected layer with dropout for
obtaining the output logits is used for the regression
task.

2.3 Multiple training strategies

In this section, we will introduce some training
strategies used in the competition, which includes
data augmentation with translation, adversarial
training and child-tuning training.

2.3.1 Data augmentation with translation
When fine-tuning the English datasets, we translate
the training sample of the Italian and the French to
English one by one based on the M2M-1.2B model
(Ott et al., 2019; Fan et al., 2020). It is a process
that provides more useful datasets from the same
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Example Sample Label
Classification I like trees, and in particular birches 1

I like oaks, and in particular trees 0

Regression I like politicians, an interesting type of farmer 1.42
I like governors, an interesting type of politician 6.16

Table 1: The dataset sample example.

resources. As a result, the DeBERTa model fine-
tuned the datasets in English may achieve better
results.

2.3.2 Adversarial training
The common method in adversarial training is the
Fast Gradient Method (FGM). The idea of the FGM
(Miyato et al., 2016) is straightforward4. The loss
is to increase the gradient so that we can take

∆x = ε∇xL(x, y; θ) (1)

where x represents the input, y represents the label,
θ is the model parameter, L(x, y; θ) is the loss of
a single sample, ∆x is the anti-disturbance. To
prevent ∆x from being too large, it is usually nec-
essary to standardize∇xL(x, y; θ). The more com-
mon way is

∆x = ε
∇xL(x, y; θ)

‖∇xL(x, y; θ)‖ . (2)

2.3.3 Child-tuning training
We use the Child-tuning (Xu et al., 2021) for fine-
tuning the pre-trained model and only update the
parameters of the Child network through gradients
mask. For the two sub-tasks, the task-independent
algorithm is used. In the process of fine-tuning,
the gradients mask is obtained by sampling from
the Bernoulli distribution (Chen and Liu, 1997) in
each step of iterative update, which is equivalent to
randomly dividing a part of the network parameters
when updating. The equation of the above steps is
shown as follows

wt+1 = wt − η
∂L (wt)

∂wt
�Mt

M t ∼ Bernoulli (pF ) .

(3)

3 Experimental setup

3.1 Data description
The PreTENS dataset not only needs to judge
the classification relationship between two nouns

4https://spaces.ac.cn/archives/72

Datasets Classification Task Regression Task
Language Train Test Train Test

English 5837 14560 524 1009
French 5837 14560 524 1009
Italian 5837 14560 524 1009

Table 2: Number statistics of task dataset samples.

(Wang et al., 2017), but also needs to identify
whether the two nouns are in line with the actual
situation in the artificially constructed natural sen-
tences. The argument nouns are taken from 30
semantic categories (e.g., dogs, birds, mammals,
cars, motorcycles...).

Specifically, PreTENS is articulated into the two
following sub-tasks. The classification task re-
quires judging the acceptability of the samples. The
training set and test set contain 5838 and 14556
samples. Regression Sub-task obtains scores from
1 (not at all acceptable) to 7 (completely accept-
able) through human crowdsourcing, which could
be affected by usability considerations, argument
order, and other factors. The data set of the regres-
sion sub-task is a small amount, 524 sentences will
be provided for the training set and 1,009 for the
test set. The example of two sub-task datasets is
shown in Table 1, and the number statistics of each
sub-task is shown in Table 2.

3.2 Evaluation metrics

For classification tasks, the official evaluation in-
dicators include precision, recall, macro F1, and
global score. The global score is the average value
of macro F1.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2PrecisionRecall

Precision+Recall
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MacroF1 =

∑n
i=1 F1i
n

Global =
F1(En) + F1(Fr) + F1(It))

3

where n means that the higher the total number of
categories, accuracy, recall rate, and macro F1. The
higher F1 the method, the better the performance.5

For regression, it is mainly evaluated by MSE,
RMSE and Spearman correlation (rho) (Wissler,
1905).

MSE =
1

n
Σn
i=1

(Ri −Qi

σi

)2

RMSE =
√
MSE

RHO = 1− 6
∑n

i=1(Ri −Qi)
2

n(n2 − 1)

where the paired values of two variables are ranked
from small to large (or from large to small). Ri

represents the rank of xi, Qi represents the rank of
yi, and Ri - Qi is the difference between the ranks
of xi and yi.

3.3 Baselines introduction

3.3.1 Binary classification sub-task
N-gram method The original baseline provided
by the organizers is based on the n-grams (Broder
et al., 1997), where n=3. A Linear Support Vector
(Tang, 2013) classifier using n-grams (set to 3) as
input features is used for the binary classification.
mDeBERTa model The mDeBERTa (He et al.,
2021) is a multilingual version of DeBERTa (He
et al., 2020) which uses the same structure as De-
BERTa and was trained with CC100 multilingual
data (Wenzek et al., 2020; Conneau et al., 2020).
The mDeBERTa model comes with 12 layers and
a hidden size of 768. It has 86M backbone param-
eters with a vocabulary containing 250K tokens
which introduce 190M parameters in the Embed-
ding layer. This model was trained using the 2.5T
CC100 data as XLM-R (Conneau et al., 2019).

3.3.2 Regression sub-task
N-gram method This method is provided by the
organizers, where it uses a Linear Support Vector
regressor with the 3-grams features is provided for
the regression sub-task.

5Below is the specific meaning of the formula. TP: The
prediction is correct and the sample is correct. FP: The predic-
tion is wrong and the sample is correct. FN: The prediction is
correct and the sample is wrong.

mDeBERTa model We adopt the mDeBERTa (He
et al., 2021) for processing the sub-task 2. The
architecture of this method is the same as Figure
2, where the linear layer over in the mDeBERTa
is initialized before fine-tuning. A clamped step
is performed for obtaining the final results of the
regression.

3.4 Implementation details

We train the model based on the PyTorch (Paszke
et al., 2019) and use the hugging-face (Wolf et al.,
2020) framework. During training, we employ the
AdamW optimizer (Loshchilov and Hutter, 2017).
The default learning rate is set to 1e-5 with the
warm-up (He et al., 2016). Four RTX3090 GPUs
are implemented for all experiments. There are
some variants of the DeBERTa-v3 model, i.e., base
and large model. We adopt DeBERTa-v3-large
models as our backbone, where the batch size is
set to 24, and the max length of input is set to 64.
We train our backbone for 6 epochs, and save the
model parameters at the end of each round. We test
the saved checkpoints in the evaluation phase, and
select the highest score as the experimental result.

For the sub-task 1, we will implement the overall
training (by mixing the datasets in different lan-
guages for training), and separate training (to fine-
tune in one language and expand to the others), and
conduct experiments on the training strategies such
as FGM, data augmentation with translation and
Child-tuning.

For the sub-task 2, we map the result of [1,7] in
the label space to the minimum value of [0,1]. The
results of the regression model are clamped so that
the minimum value is 0 and the maximum value is
1. Moreover, we will compare the performance of
models which use knowledge transfer or not.

4 Results and discussions

In this section, we studied the experimental results
of the two sub-tasks and the impact of different
strategies on the results, and further discussed the
comparison with other participants to prove the
effectiveness of the method. Finally, Studies ana-
lyze the deviation of language model and the future
research direction.

4.1 Experimental results

4.1.1 Classification sub-task
Model Selection We first carry out experiments on
three different models when fine-tuning, namely
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Experimental Items English French Italian
Method Global Precision Recall macro F1 Precision Recall macro F1 Precision Recall macro F1
N-gram 72.34 64.19 85.64 73.38 65.07 89.92 75.50 55.71 87.73 68.15

mDeBERTa 88.58 83.33 95.30 88.92 82.72 93.33 87.71 83.38 95.67 89.11
DeBERTa-v3-base 72.88 75.66 69.91 75.03 83.60 75.18 81.16 58.60 69.02 62.45
DeBERTa-v3-large 92.90 88.10 95.83 91.94 92.31 93.89 93.42 93.11 93.48 93.35

DeBERTa-v3-large in English 92.24 96.18 98.57 97.48 84.38 97.14 90.19 82.36 97.11 89.06
DeBERTa-v3-large in French 89.33 85.12 96.35 90.36 85.23 86.79 86.67 88.03 93.58 90.98
DeBERTa-v3-large in Italian 91.78 96.88 89.20 93.50 92.80 82.75 88.72 94.22 91.06 93.12

DeBERTa-v3-large in En. and Fr. 93.21 92.18 96.73 94.59 95.34 92.26 94.21 92.31 87.95 90.82
DeBERTa-v3-large + FGM 88.32 83.72 97.61 89.93 81.11 96.09 87.62 80.85 96.05 87.42

DeBERTa-v3-large + Translation 92.75 92.93 96.66 94.96 88.25 94.06 91.30 89.04 94.67 92.00
DeBERTa-v3-large + Child-tuning 94.41 91.57 97.74 94.70 93.26 94.93 94.37 92.84 94.99 94.18

Ours 95.34 96.18 98.57 97.48 93.26 94.93 94.37 92.84 94.99 94.18

Table 3: Main experimental results of the sub-task1. From top to bottom, the first four lines are the comparison
between different pre-training models, and then the best model DeBERTa-large is selected as the subsequent
fine-tuning model. The four lines in the middle represent the way to use separate or overall datasets for training, not
all data sets. The last three lines are some training strategies used for fine-tuning. We chose the highest score of all
experiments under different data sets as “Ours” “Global Score”.

Experimental Items Original Fine-Tuned
Method Global Score RHO(EN)RHO(FR) RHO(IT) Global Score RHO(EN) RHO(FR) RHO(IT)
N-gram 0.309 0.265 0.317 0.344 / / / /

mDeBERTa 0.430 0.412 0.350 0.529 0.720(+0.290)0.670(+0.258)0.783(+0.433)0.708(+0.179)
DeBERTa-v3-base 0.108 0.216 -0.018 0.124 0.275(+0.167)0.266(+0.050)0.232(+0.250)0.326(+0.202)
DeBERTa-v3-large 0.429 0.426 0.344 0.516 0.815(+0.386)0.759(+0.333)0.849(+0.505)0.837(+0.321)

Table 4: Main experimental results of the sub-task2.

mDeBERTa, DeBERTa-v3-base, DeBERTa-v3-
large. It can be found in the Figure 3 that
the DeBERTa-v3-large model beats the N-gram
method and surpass mDeBERTa in French and Ital-
ian. It shows that the larger model can bring im-
provements in the classification task.
Datasets Choosing We are more curious about the
generalization ability of the DeBERTa model to
fine-tune one language and then transfer to other
languages. As a result, we fine-tune the datasets
of separate and overall training in different lan-
guages. Although the performance by fine-tuning a
single language is not satisfactory, it can be better
than overall training. It is because there will be
large gaps between different languages, and forced
dataset mixing will reduce the final performance.
Training strategies After that, we compare some
commonly used training strategies and the experi-
mental results in this task, including FGM, trans-
lation, and Child-tuning. The performance of the
FGM is not good, which indicates that the task pays
more attention to the semantic features at the lex-
ical level than the semantic features of sentences.
All languages are translated into English, even bet-

ter than using the original language. We believe
that this is because the error accumulation caused
by inaccurate translation will interfere with the se-
mantic representation information. The result of
Child-tuning is positive, which shows that the catas-
trophic forgetting problem of the model can be al-
leviated by eliminating some unimportant weights
in the large model.

4.1.2 Regression sub-task
In our experiments of sub-task 2 shown in the Fig-
ure 4, we select three different methods for the
experiments and compare them with the same ex-
perimental settings. The “Original” is the original
pre-training model, the “Fine-Tuned” represents
the model that is fine-tuned by sub-task1 and re-
initialized the linear layer. The experimental re-
sults of three different methods show that the per-
formance of the model can be greatly improved
through knowledge transfer.

4.2 Official results

As shown in Table 5 and Table 6, our method
achieved first place in subtask 1and subtask 2 and
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Experimental Items English French Italian
System Global Precision Recall macro F1 Precision Recall macro F1 Precision Recall macro F1

Ours(LingJing) 94.173 97.65 96.34 96.988 93.15 92.48 92.817 91.68 93.77 92.714
YingluLi 92.310 93.29 91.89 92.582 93.34 91.77 92.546 92.94 90.69 91.802

injySarhanUU 91.247 90.54 95.26 92.839 85.83 93.14 89.335 92.69 90.47 91.567
piano 90.842 97.72 96.15 96.926 78.85 96.51 86.792 84.86 93.14 88.807

csecudsg 90.714 89.21 93.26 91.189 88.87 91.84 90.334 90.32 90.92 90.620
holdon 89.686 92.66 96.05 94.325 81.25 94.89 87.541 80.81 94.67 87.193

Table 5: System comparison on the three datasets of binary classification sub-task.

System Global Score RHO(EN) RHO(FR) RHO(IT)
Ours(LingJing) 0.802 (1) 0.758 (1) 0.841 (1) 0.807 (1)

qiaoxiaosong 0.757 (2) 0.706 (2) 0.805 (2) 0.759 (2)
huawei_zhangmin 0.669 (3) 0.636 (3) 0.740 (3) 0.631 (3)

injySarhanUU 0.221 (5) 0.478 (4) -0.062 (16) 0.246 (5)
daydayemo 0.206 (6) 0.212 (8) 0.284 (5) 0.121 (9)

aidenqiu 0.205 (7) 0.211 (9) 0.284 (6) 0.121 (9)
Baseline 0.309 (4) 0.265 (6) 0.317 (4) 0.344 (4)

Table 6: System comparison on the three datasets of regression sub-task.
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Distribution of incorrectly predicted data types
in subtask 1

generally type unlike other

Figure 3: Case study in the sub-task1.

was substantially ahead of second place. Specif-
ically, we earned first place in English, French
and Italian in the subtask one classification task,
with macroF1 values of 96.988%, 92.817% and
92.714%, respectively. Our global score of
94.173% was 1.863% above second place. For
the Subtask 2 regression task, we also came first in
English, French and Italian, with RHO scores of
0.758, 0.841 and 0.807, respectively. Our global
rank score of Subtask 2 was 0.802, 0.045 above the
second-place score.

4.3 Case studies
We counted and analyzed the mispredicted sam-
ples, and the distribution of error types is shown
in Figures 3 and 4. For subtask 1, we select all the
predicted error data for statistics. For subtask 2, we
chose the top 100 samples with the most significant
difference from the ground truth as the analysis
object.

21

21

17

14

11

16

Distribution of the top 100 samples types most 
different from the ground truth in subtask 2

comparatives particular ingeneral butnot unlike other

Figure 4: Case study in the sub-task2.

As we can see from Figure 3, the most mispre-
dicted type in the classification task was “gener-
ally", with 57%, followed by“type" with 18% and
“unlike" with 16%. Our analysis suggests that the
reason for the incorrect predictions may be that
“generally" sentences are less frequent in common
usage and that our model did not have a large
enough corpus of similar samples in the previous
pre-training phase, thus leading to incorrect predic-
tions.

From Figure 4, we can see that the top 100 data
types with the greatest difference from the ground
truth on the regression task are more evenly dis-
tributed, which means that the model migration is
effective for subtask 2.

5 Conclusion

In this paper, we introduce the submitted system to
the Semeval-22 task3 PreTENS. Based on the pre-
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training DeBERTa-v3, we carry out a simple and
effective classification method in sub-task 1 and
apply the method of knowledge transferring to sub-
task 2. The proposed systems have won first place
on both sub-tasks. The experimental results show
that our proposed method has better performance
than other methods. In addition, we also conducted
a number of comparative experiments to further
explore the difficulties of the PreTENS task. In
the future, we will try to explore more effective
methods to perform better semantic taxonomies.
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Abstract

This paper describes our system created for
the SemEval 2022 Task 3: Presupposed Tax-
onomies - Evaluating Neural-network Seman-
tics. This task is focused on correctly recog-
nizing taxonomic word relations in English,
French and Italian. We develop various data
generation techniques that expand the orig-
inally provided train set and show that all
methods increase the performance of models
trained on these expanded datasets. Our final
system outperforms the baseline from the task
organizers by achieving an average macro F1
score of 79.6 on all languages, compared to
the baseline’s 67.4.

1 Introduction

In this paper, we describe our system and approach
for the SemEval 2022 PreTENS (Presupposed Tax-
onomies: Evaluating Neural Network Semantics)
shared task (Zamparelli et al., 2022).1 The aim of
this task is to gain a better understanding of the
ability of language models to recognize taxonomic
relations between two words.

We focus on subtask 1, which is a binary clas-
sification task in which a system should predict
whether a sentence is valid or not, depending on
the taxonomic word relation in a given sentence.
We formulate the following research question:

What are effective data generation ap-
proaches in order to improve a language
model’s ability to recognize appropriate
taxonomic word relations?

In our attempt to answer this question, we experi-
ment with multiple approaches: adding new tem-
plates, adding new nouns from similar word lists,
adding additional hyponyms, inverting templates
and using a paraphrasing model to create sentence

∗Contributed equally
1https://sites.google.com/view/

semeval2022-pretens/home-page

variations. We use the expanded training data to
fine-tune a base English BERT (Devlin et al., 2019)
model for the final classification task.

In our approach, we incorporate all three lan-
guages for this task: English, Italian and French.
Instead of generating additional data for each lan-
guage and training separate models, we opt to
train an English model and translate the Italian
and French sentences to English, before predicting
the validity labels. We choose this approach in part
because several of our data generation methods
are not available for French or Italian. We make
use of Google Translate, as this is a widely used
state-of-the-art general-domain translation system.
Our model, trained on the expanded dataset, scores
an average F1 score across all languages of 79.6,
which is an improvement over the 67.4 baseline
score. We find that the best data expansion tech-
nique is to combine multiple approaches, where the
output of one method is the input for the next. Our
ablation experiments show that our paraphrasing
method improves scores the most. All code, data
and other related files can be found in our GitHub
repository.2

2 Task description

For the binary classification subtask, the challenge
was to predict the acceptability label assigned to
each sentence of the test set. The participants were
provided with a training set consisting of 5,838
sample sentences and their validity labels, while
the test set contained 14,556 sentences. The splits
were provided in English, Italian and French, the
latter two being slightly adapted translations of
the English dataset. These sentences exemplify
constructions enforcing presuppositions on the tax-
onomic status of their arguments A and B, as can
be seen in the following examples:

2https://github.com/WPoelman/
shared-task
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I like trees, and in particular birches. 1
I like oaks, and in particular trees. 0

A sentence will only get a validity label of 1 when
the taxonomic relations are compatible with the
sentence construction.

For this task, participants were free to use ex-
ternal resources, with the exception of lexical re-
sources where semantic relationships (including
taxonomic ones) are manually marked, such as
WordNet (Miller, 1995) or BabelNet (Navigli and
Ponzetto, 2012). However, using these lexical re-
sources was allowed for the generation of data,
which is part of our approach.

The task of detecting taxonomic word relations
has been tried via various approaches. From purely
rule-based (Hearst, 1992), to using semantic tree-
like resources (Navigli et al., 2011), to adapting
pre-trained language models (Atzori and Balloccu,
2020; Chen et al., 2021) or creating hybrid systems
(Shwartz et al., 2016; Ravichander et al., 2020).
Since this SemEval task is focused on neural (lan-
guage) models, we opt to use BERT and focus
mainly on different data generation techniques.

3 System overview

Our main research focus is to explore the effects of
different data generation approaches to expand the
English training data. This data is then used to train
an English BERT model. The unseen Italian and
French sentences (to predict) from the test set are
first translated into English before we feed them to
the model to get their final prediction. We describe
these different stages in more detail below.

3.1 Development data split
In order to evaluate our experiments during the de-
velopment of our system, we created a test set from
the original training data. The aim of this set is
to replicate the expected official test data charac-
teristics as well as possible. The original training
data, as published by the task organizers, consists
of seven different templates, distinguished by the
words used to describe the relation between two
nouns (thus disregarding pronouns). We categorize
these in three types of relations:

1. No hypernym relations possible: I do not like pigs, I
prefer animals

2. Word A is a hypernym of word B: I like animals, except
pigs

3. Word B cannot be a hypernym of word A: I like animals,
but not pigs

The first two categories are seen in two templates,
while the last category is only relevant to one tem-
plate. In order to evaluate our techniques, we cre-
ated our own test set which consists of all sentences
with three templates: one for each defined relation.
These templates are not present in the training set.
Additionally, we filtered nouns that were used with
the verbs ‘use’ and ‘met’, i.e. verbs that relate to
the noun categories ‘materials’ and ‘people’. These
nouns were only present in our test set, to ensure
that we also evaluate the system on unseen nouns.
Additionally, adding the sentences with these nouns
means that the test set contains all seven templates,
so that there are four overlapping templates with
the training set, as this also seems similar to the
official test set, where we expected some overlap
with training sentences.

3.2 Data generation methods
3.2.1 New templates
First, new templates were added. As described in
the previous section, our initial training split con-
sists of only four templates. However, since sen-
tences occur in many different variations, we man-
ually wrote templates in the three previously distin-
guished relation categories.3 In total, we added 58
new templates: 22 for the first relation, 23 for the
second and 13 for the third.

3.2.2 New words
Our next step was to add new words to the tem-
plates. In the task description it was mentioned
that the nouns were divided into 30 semantic cat-
egories, such as dogs, mammals, motorcycles etc.
Not all categories were given, so we tried to in-
fer this from the training data. We extracted all
unique nouns from the training data and divided
these into lists of different categories. With these
categories, we tried to approximate and expand
the semantic categories given by the organizers.
Certain changes were made, for example, splitting
the ‘entertainment’ category, consisting of books,
movies, games and music into separate categories,
or combining mammals and dogs into an ‘animals’
category. Words that occurred together but did not
fit into a category, which includes emotions and
buildings among others, got assigned to a ‘mis-
cellaneous’ category. Finally, 14 categories were
identified. These categories were also tied to cer-
tain verbs in the provided training data. The verb

3The full criteria of writing these can be found in our data
split description.
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‘like’ was used in all categories, but ‘use’ was only
paired with materials, for example.

The word lists were then enriched. This was
mainly done manually, with the help of searching
for all hyponyms for a word in WordNet. More
verbs were added as well. All categories and their
verbs can be found in Table 1. Moreover, we added
additional pronouns, with their corresponding pos-
sessive pronouns. In addition to I/my and he/his, we
added she/her and they/their. These lists were used
to fill in the existing and new templates. The sen-
tences were checked on their validity using Word-
Net in order to generate their labels. The generated
data is balanced, meaning that each category gets
an even amount of relation types, which, in turn,
get an even amount of 1’s and 0’s.

Category Verbs

Animals like, love
People and professions like, love, met
Materials like, love, use
Games and sports like, love, enjoy, play
Clothing and jewelry like, love, wear
Drinks like, love, enjoy, drink
Food like, love, enjoy, eat
Transport like, love, enjoy
Movies like, love, enjoy, watch
Music like, love, enjoy, listen to
Books like, love, enjoy, read
Plants like, love
Furniture and household items like, love
Miscellaneous like, love, enjoy, feel, trust

Table 1: Categories and their corresponding verbs. The
bold verbs have been added to the data.

3.2.3 Hyponyms of hyponyms

We noticed that in the valid sentences containing ap-
propriate taxonomic relations, the used arguments
always have the same role throughout the data set.
As an example, in the valid sentence I like seafood,
except salmon the argument ‘seafood’ is a hyper-
nym and the argument ‘salmon’ is a hyponym. In
all other sentences of the training data, the word
‘salmon’ is also exclusively used as a hyponym,
even though it can be a hypernym in a sentence
such as I like salmon, except redfish.

In line with this example, we created additional
sentences where words previously used exclusively
as a hyponym, were now used as a hypernym. To
do so, we extracted all the hyponyms occurring in
the training data and searched WordNet for their
direct hyponyms. We then used the first five re-
turned results to generate both valid and invalid

new sentences. In creating these additional sen-
tences, we aim to challenge the language model
to recognize appropriate taxonomic relations even
when the role of an argument alternated between
being a subcategory and a supercategory.

3.2.4 Inverting
As mentioned before, we categorized the training
data into three possible template relations. For
a sentence with the relation ‘X is a hypernym of
Y’, e.g. I like animals, except pigs, we know that
the sentence is valid because ‘animal’ is a hyper-
nym of ‘pig’. Following this logic, we also know
that swapping the arguments to create I like pigs,
except animals, invalidates the sentence. This pro-
cess of swapping the arguments in a sentence and
(possibly) changing the validity is what we call
‘inverting’. Note that not every sentence’s validity
will change when inverted. When swapping the
arguments in the valid sentence I like jazz more
than jewelry to I like jewelry more than jazz, the
sentence remains valid. Therefore, we carefully
looked at the conditions that make a sentence valid
or invalid.4 We then swapped the two arguments of
each sentence and changed the validity label when
applicable to create additional data. The language
model should learn that the validity also depends
on the order of the arguments.

3.2.5 Paraphrasing
In addition to data generation, we also wanted to
look at synthetic data. This led us to experiment
with a neural paraphrasing model. Specifically we
used a fine-tuned ‘Pegasus’ model from Google
(Zhang et al., 2020), originally trained on the task
of summarizing and fine-tuned on paraphrasing.
We used this model as the final step in our data
generation pipeline in order to generate paraphrases
of all method combinations. The following is an
example the paraphrasing outputs:

I do not like dogs, I prefer blackbirds.

• I prefer blackbirds, I don’t like dogs.
• I don’t like dogs and I like blackbirds.
• I don’t like dogs and I prefer blackbirds.

As the example shows, the differences are not
drastic, but do introduce some variation. In order to
prevent the paraphrasing model from outputting un-
related sentences, we applied some filtering steps
to restrain the output of the model. For instance,

4Valid and invalid relations for each template are described
in our data split description.
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we added length constraints, which ensures that
the newly generated sentences were not too short,
but neither too long. We allowed at most ten para-
phrases per sentence.

3.3 Lemmatization

Since the generated sentences were not all gram-
matically correct (e.g. ‘He like’ instead of ‘He
likes’) and because of the fact that the nouns in
the original data were plural and the nouns ex-
tracted from WordNet were singular, we experi-
mented with lemmatizing the nouns and verbs in
the generated sentences. This might remedy the
incorrect sentences by equally pre-processing all
sentences.

3.4 Translation

By combining the output from our different gen-
eration methods, we created an English training
set. We used this to fine-tune a pre-trained English
language model, namely BERT base provided by
Hugging Face.5 Then, in order to predict the va-
lidity labels for Italian and French sentences, we
translated these into English in order to process
them with the English model. We opted for this
approach since several of the data generation meth-
ods were not available for French or Italian. For
instance, there were no paraphrasing models or
easily accessible WordNet-like resources available.

For the translation system, we use Google Trans-
late, as this general-domain transformer-based sys-
tem is the state-of-the-art. Manual inspection re-
vealed that translation quality seemed sufficient for
our purposes.

3.5 System

We experiment with various combinations of the
previously mentioned data generation techniques.
The detailed results of these experiments are de-
scribed in the Results section. Our final training
dataset was created as follows:

1. Take the existing and new templates (not the
ones included our test set)

2. Fill these in with new words from our word
lists

3. From the resulting sentences, create additional
sentences using the noun hyponyms

5https://huggingface.co/
bert-base-uncased

Figure 1: Overview of system and prediction pipeline.

4. Add paraphrases of all generated sentences

5. Finally, filter out duplicate sentences

This resulted in dataset of 211,354 sentences,
which was used to train our final model. Figure 1
shows an overview of our entire system to get the
final predictions.

4 Experimental setup

To run our experiments, we created various combi-
nations of our data generation techniques. The full
list of experiments can be seen in Table 3. The para-
phrasing model we used comes from the Hugging
Face model hub.6

We trained each system using the Hugging Face
transformers library.7 The exact hyperparameters
and other settings can be found in Appendix A. The
final model we used for generating our submission
can be found in our GitHub repository.

As mentioned, all models were tested using our
custom test set with special challenging character-
istics.

5 Results

In this section, we discuss the results on both our
custom test set and the official test set. We also pro-
vide an error analysis in order to gain insight into

6https://huggingface.co/tuner007/
pegasus_paraphrase

7https://huggingface.co/docs/
transformers
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the contributions of the different data generation
methods.

5.1 Custom test set
The full results of our experiments on our custom
test set can be found in Appendix B. All data gener-
ation methods improve performance over the orig-
inally provided training set, while there are some
notable differences between the methods. For in-
stance, when looking at the individual methods,
we observe that adding the hyponyms has a rather
small effect, especially considering that the size
of the dataset is almost doubled. The size of the
dataset also does not seem be a direct indicator of
increased performance. Inverting applicable tem-
plates, for example, increases the training set by
about 120 sentences, but increases the F1 score
from 53.1 to 61.7.

Another surprising effect can be observed in
the lemmatized and normal versions of the same
datasets. With the individual methods we can see a
clear increase in performance, but this effect is not
visible with the fully combined methods. The same
applies to the inverting method, which resulted in
worse performance in some cases in the fully com-
bined methods, which was not the case when it was
used on its own.

5.2 Official test set
The official evaluation for the first subtask was two-
fold:

1. Ranking per language.

2. Global ranking - the average score across all
three languages.

While the systems were evaluated using the met-
rics of precision, recall, micro F1 and macro F1
scores, the official rankings were based only on
macro F1 scores.

With our submission, we achieve an average
macro F1 score of 79.6, which ranks our system
14th out of 21 participants. We achieve macro
F1 scores of 80.3, 78.6 and 79.7 for English, Ital-
ian and French respectively. Our system improves
over the baseline system, which obtains a macro F1
score of 67.4.

5.3 Error analysis
Once the official test set with labels was available,
we conducted ablation experiments to see what ef-
fects the different data generation methods had on

our submission. Of all methods, the sentences gen-
erated with the Pegasus model seem to contribute
the most to our final model. The full results of
these experiments can be seen in Table 2. To our
surprise, the split of our best dataset without the
new words scores better on the official test set. An
explanation could be that using the extensive word
lists, which contain rare words, can lead to the gen-
eration of vague or uncommon sentences. However,
this effect was not apparent in our custom test set,
both as an individual method as well as combined
with others. Apart from this, the scores are all quite
close and again show that the increase in dataset
size does not directly lead to better performance.

Sentences Acc Pre Rec F1
Templates, new words, hyponyms, 211,354 80.7 86.0 70.4 77.4
pegasus (used for final submission)

- pegasus 33,571 77.2 80.0 68.9 74.0
- new words 108,819 81.9 84.1 75.9 79.8
- hyponyms 116,234 79.0 79.9 74.1 76.9

Table 2: Ablation test with final expanded training
dataset on official test set.

For each ablation test, we analyze incorrectly
predicted examples from a particular model, which
were predicted correctly by the others. We look at
both the templates and words of the official test set.
Additionally, the official set provides information
about the structure that was used by the task orga-
nizers to generate a particular sentence, which we
also include this in the analysis.

Figure 2: The ratio of incorrectly predicted instances
with old and new templates per ablation test.

In Figure 2 we can see the effects of the ablation
methods on the templates in the test set. Not adding
new words results in a lower error rate for new tem-
plates. This is unexpected, as generating sentences
with new words was also done using new manual
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templates, however the test set still contains com-
pletely unseen templates. Another surprise is that
not including paraphrasing did not result in rela-
tively more incorrect predictions on new templates,
since paraphrasing does introduce some variation
in templates to an extent.

Figure 3: The ratio of structure types in the incorrectly
predicted instances per ablation test.

Figure 3 displays the effect of the ablation tests
on the different structures. Without the hyponyms
of hyponyms method, the error rate of the compar-
atives is high. Excluding the paraphrases results
in a higher error rate for the type-structure and a
lower error rate for the particular-structure. This
could be because the type-sentences are mostly
paraphrased correctly which is not the case for par-
ticular-sentences.

Figure 4: The ratio of incorrectly predicted instances
with old and new words per ablation test.

Figure 4 shows the effect of the ablation tests on
old and new words. We expected the error rate for
ablating new words to be higher. However, new
words in the test set were mostly from completely
new categories, as opposed to more words from the
same categories, which our approach was based on.

Figure 5: The ratio of word categories in the incorrectly
predicted instances per ablation test.

Figure 5 shows the effect on the different cate-
gories of words for the ablation tests. These are
categorized in the same manner as described in the
‘new words’ section. There are two new categories
in the official test set: places and weather. Both
did not see an increase in error rate by ablating any
method. The error rate of animals increased by
ablating hyponyms of hyponyms. The extensive
manner in which the taxonomy of animals is rep-
resented in WordNet might be the reason behind
this.

6 Conclusion

We have outlined several data generation methods
and show that all methods improve the performance
of a model trained on the expanded datasets com-
pared to the original training data. Especially new
words, new templates and paraphrasing are effec-
tive, even by themselves. Surprisingly, adding hy-
ponyms is not that effective by itself, but combined
with the previously mentioned methods it scores
quite well. The final system we used to participate
in the task was trained on a dataset created from
those four methods. With this system, we improve
the baseline set by the task organizers, placing us
14th out of 21 participants.

As we have shown, some unexpected effects oc-
cur when looking at how different data generation
techniques perform when combined. In future re-
search, it might be interesting to explore this in a
broader context: what can cause such differences?
Furthermore, since the provided dataset consisted
of short and specific template-based sentences, it
could be interesting to experiment with longer sen-
tences that contain more complex constructions.

252



7 Acknowledgments

We are grateful to Tommaso Caselli and Lukas Ed-
man for their supervision and helpful comments.
We also want to thank the Center for Information
Technology of the University of Groningen for pro-
viding access to the Peregrine high performance
computing cluster.

References
Maurizio Atzori and Simone Balloccu. 2020. Fully-

unsupervised embeddings-based hypernym discov-
ery. Information, 11(5).

Catherine Chen, Kevin Lin, and Dan Klein. 2021. Con-
structing taxonomies from pretrained language mod-
els. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 4687–4700, Online. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In COLING 1992
Volume 2: The 14th International Conference on
Computational Linguistics.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–
41.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belnet: The automatic construction, evaluation and
application of a wide-coverage multilingual seman-
tic network. Artificial intelligence, 193:217–250.

Roberto Navigli, Paola Velardi, and Stefano Faralli.
2011. A graph-based algorithm for inducing lexical
taxonomies from scratch. In Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence.

Abhilasha Ravichander, Eduard Hovy, Kaheer Sule-
man, Adam Trischler, and Jackie Chi Kit Cheung.
2020. On the systematicity of probing contextual-
ized word representations: The case of hypernymy
in BERT. In Proceedings of the Ninth Joint Con-
ference on Lexical and Computational Semantics,
pages 88–102, Barcelona, Spain (Online). Associa-
tion for Computational Linguistics.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method.

Roberto Zamparelli, Shammur A. Chowdhury,
Dominique Brunato, Cristiano Chesi, Felice
Dell’Orletta, Arid Hasan, and Giulia Venturi. 2022.
Semeval-2022 task3 (pretens): Evaluating neural
networks on presuppositional semantic knowledge.
In Proceeding of SEMEVAL 2022.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter J. Liu. 2020. Pegasus: Pre-training with ex-
tracted gap-sentences for abstractive summarization.

253



A Hyperparameters

We used the Trainer class from Hugging Face, which was mostly left at the default settings. The log of the
trainer is included in the folder with our final model, the link to which can be found in the readme of our
repository. We put in a time limit of 6 hours for all models. Parameters:

optimizer: AdamW
learning rate: 5e-05
batch: 8
scheduler: linear
max epochs: 4

B Experiment results on custom test set

Sentences F1
Individual methods
Train 2,737 53.1
Train, hyponyms 4,957 55.5
Train, inverted 2,868 61.7
Train, new words 21,456 65.4
Train, templates (new words) 9,000 71.3
Train, templates (only original train set words) 9,000 73.1
Train, new words lemmatized* 21,456 73.1
Train, pegasus 19,484 77.6

Combined methods
Train, hyponyms, templates 18,831 70.0
Train, new words, templates 21,456 74.7

Full pipeline combinations
Templates, new words, inverted, pegasus 138,572 57.9
Templates, new words, hyponyms, pegasus, lemmatized* 211,354 59.1
Templates, new words, hyponyms, inverted 40,820 62.2
Templates, new words, hyponyms, inverted, pegasus 282,834 81.5
Templates, new words, hyponyms, inverted, pegasus, lemmatized* 282,796 83.6
Templates, hyponyms, inverted, pegasus 147,008 85.6
Templates, new words, hyponyms, pegasus 211,354 88.1

Table 3: Data experiment results on our own test set. ‘Train’ refers to the original train set. *Models trained on
lemmatized input data were also evaluated on a lemmatized test set. The model trained on the best scoring dataset,
in bold, was used for the final submission.
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Abstract

Recognizing lexical relationships between
words is one of the formidable tasks in compu-
tational linguistics. It plays a vital role in the
improvement of various NLP tasks. However,
the diversity of word semantics, sentence struc-
ture as well as word order information make
it challenging to distill the relationship effec-
tively. To address these challenges, SemEval-
2022 Task 3 introduced a shared task PreTENS
focusing on semantic competence to determine
the taxonomic relations between two nominal
arguments. This paper presents our participa-
tion in this task where we proposed an approach
through exploiting an ensemble of multilingual
transformer models. We employed two fine-
tuned multilingual transformer models includ-
ing XLM-RoBERTa and mBERT to train our
model. To enhance the performance of individ-
ual models, we fuse the predicted probability
score of these two models using weighted arith-
metic mean to generate a unified probability
score. The experimental results showed that
our proposed method achieved competitive per-
formance among the participants’ methods.

1 Introduction

Lexical relations are regarded as the most important
semantic relations to infer the meanings of words
effectively (Khoo and Na, 2006). Therefore, iden-
tifying such relations is beneficial to understand
the semantic competence and distill the underlying
context of the textual expression. If we consider
the NLP applications, it has a significant impact on
several tasks including semantic search, automatic
question/answering, story generation, relation ex-
traction, and machine translation (Barkan et al.,
2020). However, most of the prior works focused
mainly on syntactic (Luu et al., 2014) and contex-

**The first two authors have equal contributions.

Sentence Language Label / Score

Sub-task 1

Apprezzo il vino , ma non il Chianti. It 1
J’ aime les chats, sauf les beagles. Fr 0
I like movies, but not comedies. En 1
I like earrings, except socks. En 0

Sub-task 2

Amo i merli piÃ¹ degli uccelli. It 1.9
J’aime les chats, et aussi les canards. Fr 6.17
I like cats, but not sparrows. En 4.77

Table 1: Examples of sub-task 1 and sub-task 2.

tual relation (Maksimov et al., 2018) to infer the
lexical relation in between words.

Considering this PreTENS shared task at Se-
mEval 2022 (Zamparelli et al., 2022) introduce
a new task that focuses mainly on semantic com-
petence with specific attention on the estimating
taxonomic relations between two nominal argu-
ments. The taxonomic relation here means one
argument is a supercategory of the other, or in ex-
tensional terms, one argument is a superset of the
other. The task is divided into two subtasks. The
first one is a binary classification subtask, where a
system needs to predict the acceptability label for
given text considering the taxonomic relation. The
second one is a regression subtask, where a system
needs to predict the percentage of acceptability la-
bel on a seven-point Likert-scale for a given text
considering the same scenario. Besides, the task
addresses the challenges of multilingual expression
and comprises a dataset of three different languages
including Italian (It), French (Fr), and English (En).
To illustrate a clear view of the task definition and
research goal, we articulate a few examples from
different languages and corresponding labels for
each subtask in Table 1.

We articulate the rest of the contents as fol-
lows: Section 2 describes our proposed approach
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whereas, in Section 3, we present our experimental
setup and conduct performance analysis against the
various settings and participants’ methods. Finally,
we conclude our work with some future directions
in Section 4.

2 Proposed Framework

In this section, we describe our proposed approach
for the PreTENS shared task. Our goal is to deter-
mine the semantic competence between two argu-
ments focusing on the taxonomic relations. The
task is articulated into both the binary classification
subtask and the regression subtask. We depict the
overview of our proposed framework in Figure 1.

Text

XLM-RoBERTa Multilingual BERT

Fusion of 

Probability Scores

Acceptability Label

Probability

Scores

Probability

Scores

Figure 1: Overview of our proposed framework.

Given an input sentence containing two nominal
arguments, we employ two transformer models in-
cluding XLM-RoBERTa and multilingual BERT
(mBERT) to extract the diverse contextual features.
Later, a feed-forward linear layer is employed in
each model to estimate the probability score of
each class. In Figure 2, we illustrate an overview
of the setup of mBERT transformer model. Finally,
we fuse these models’ predictions by taking the
weighted arithmetic mean of these scores to deter-
mine the final label.

2.1 XLM-RoBERTa
The Facebook AI launched the XLM-RoBERTa as
an upgrade to their initial XLM-100 model (Con-
neau et al., 2020). It is a scaled cross-lingual sen-
tence encoder. Using self-supervised training ap-
proaches, it offers state-of-the-art performances
in cross-lingual understanding where a model is
taught in one language and then applied to multiple
languages with no additional training data. This
model showed increased performance on numer-
ous NLP applications. XLM-RoBERTa creates the

Multilingual BERT (mBERT)

Feed-forward Linear Layer

Probability Scores

Figure 2: Multilingual BERT (mBERT) model.

possibility for a one-model-for-many-languages ap-
proach rather than a single model per language.

However, XLM-R maps the same sentence in dif-
ferent languages to similar representations which
is crucial for this PreTENS task to learn semantic
competence in cross-lingual form. Here, we use
the HuggingFace’s implementation of the XLM-
RoBERTa-base model (Conneau et al., 2020). It is
composed of 12-layers (i.e. transformer block), the
dimension of hidden size is 768, the number of the
self-attention head is 12, the size of vocabulary is
250K, and containing 270M parameters.

2.2 Multilingual BERT
Multilingual-BERT (mBERT) (Devlin et al., 2019)
is a version of BERT that is gaining popularity for
effective contextual representation of textual con-
tents in various multilingual tasks including natural
language inference in cross-lingual characteristics,
named entity recognition in multilingual corpora,
and dependency parsing (Chi et al., 2020). It is pre-
trained on 104 different languages in Wikipedia. It
provides an effective path to zero-shot cross-lingual
model transfer.

Multilingual-BERT representations are influ-
enced by high-level grammatical features that are
not manifested in any one input sentence which is
critical to learn taxonomic relations in PreTENS
task. In our approach, we employ the huggingface

https://huggingface.co/xlm-roberta-base
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implementation of the bert-base-multilingual-cased
model and perform finetuning the model with the
task-specific data.

2.3 Fusion of Transformer Models
To enhance the performance of individual models,
we fuse the predicted probability score of two mod-
els to generate a unified probability score for each
class. We use the weighted arithmetic mean to av-
erage both model’s probability scores to determine
the each class confidence of the fused model. After
calculate the both class probability score of fused
model, our system predict the best confidence class,
which is our final label. The estimation is computed
as follows:

f(xi, yi) =

{
0, if W0 > W1

1, otherwise

Wi =
xi ∗M + yi ∗R

M +R

xi and yi correspond to the mBERT and XLM-
RoBERTa probability score, where M and R repre-
sents their weight respectively. Wi (i.e. i = {0, 1})
is the unified probability score for each class.

3 Experiment and Evaluation

3.1 Dataset Description
The organizers of the SemEval-2022 PreTENS
shared task 3 (Zamparelli et al., 2022) provided
a benchmark dataset to evaluate the performance of
the participants’ systems. The dataset comprises in
3 languages including English, Italian, and French.
The French and Italian are slightly adapted transla-
tions of the English dataset. The dataset statistics
is summarized in Table 2.

Language
Sub-task 1 Sub-task 2

Train Test Train Test

It 5837 14560 524 1009
Fr 5837 14560 524 1009
En 5837 14560 524 1009

Total 17511 43680 1572 3027

Table 2: The statistics of the datasets used in PreTens
shared task.

Dataset of each languages contained about 20K
artificially generated text samples that enforces pre-

https://huggingface.co/bert-base-multilingual-cased

suppositions on the taxonomic status of their argu-
ments A and B, e.g. comparatives (I like A more
than B ), exemplifications (I like A, and in particu-
lar B), generalizations (I like A, and B in general),
and others. In Subtask 1, all samples are provided
with an acceptability label either 1 or 0 where 1
stands for acceptable (i.e. the taxonomical rela-
tions is compatible with the construction at issue)
and 0 stands for not acceptable (not compatible).
Besides, a subset of 1533 samples of the whole
dataset i.e. 5% of the total and representative of
the patterns considered, was used for the subtask 2.
It was annotated via a crowdsourcing campaign on
a seven point Likert-scale, ranging from 1 (not at
all acceptable) to 7 (completely acceptable). The
average judgment is considered as the final label
for each sample.

3.2 Experimental Settings
We now describe the details of our experiments and
set of parameters that we have used to design our
proposed CSECU-DSG system for each subtask.

Parameter Optimal Value

Subtask 1: Parameters used in both models

Learning rate 3e-5
Max-len 100
Epoch 3
Batch size 16
Manual seed 4

Subtask 2: Parameters of XLM-RoBERTa

Learning rate 3e-5
Max-len 100
Epoch 5
Batch size 8
Manual seed 4

Table 3: Model settings for each subtask.

In Subtask 1, we utilize the Huggingface (Wolf
et al., 2019) implementation of the two state-of-
the-art multilingual transformer models with fine-
tuning, including XLM-RoBERTa and mBERT. We
finetune these models with the provided training
data. To generate the unified prediction, we fuse
the probability score of each model as described
in Section 2.3. Since XLM-R typically perform
better than the mBERT, so we don’t count both
model confidence weight as equal. However, from
some sets of experimental result we choose the
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weight R = 0.6 for XLM-RoBERTa and M = 0.4
for mBERT in equation 2.3. However, in Subtask
2, we only employed the XLM-RoBERTa model
with finetuning strategy. The optimal parameter
settings used in both subtasks are articulated in
Table 3 and we used the default settings for the
other parameters.

3.3 Evaluation Measures
To assess the performance of the participants’ sys-
tems, PreTENS task organizers (Zamparelli et al.,
2022) used different strategies and metrics for sub-
task 1 and subtask 2. Since the evaluation file
contains instances from all three languages, the
average of the F1-macro score from all the three
languages is used as the global ranking score (GRS)
to rank the participants’ systems. We can write this
as follows:

Global Rank Score, GRS =
AS

3

where AS=(F1-macro (English) + F1-macro
(French) + F1-macro (Italian)).

In subtask 2, the average of the Spearman corre-
lation (Rho) scores from all the three languages is
used as the global ranking score (GRS) to rank the
participants’ systems. We can write this as follows:

Global Rank Score, GRS =
AS

3

where AS=(Rho (English) + Rho (French) + Rho
(Italian)).

3.4 Results and Analysis
In this section, we analyze the performance of our
proposed approaches in the PreTENS shared sub-
tasks. The dataset comprises of 3 different lan-
guages including English, Italian, and French and
the overall performance of the system is estimated
considering the average score obtains in each lan-
guages dataset. Considering this, we analyze the
performance of our CSECU-DSG system, based
on each language. The corresponding results for
subtask 1 and subtask 2 are reported in Table 4 and
Table 5, respectively.

Results showed that in Subtask 1 our CSECU-
DSG system achieved a pretty good score in all sets
of datasets considering three languages. It demon-
strates the generalizability of our approach in di-
verse types of languages. However, our method
limited to obtain a good score in Subtask 2 for all
the datasets. One plausible reason behind this is to

use only single transformer models instead of the
fusion approach and failed to address and analyze
the challenges of subtask 2 properly.

Language F1-macro F1

It 91.113 90.620
Fr 90.732 90.334
En 91.506 91.189

All (CSECU-DSG) 91.117 -

Table 4: Results of our proposed CSECU-DSG system
on individual monolingual tracks (subtask 1).

Language Spearman Cor. (Rho)

It 0.207
Fr 0.081
En 0.191

All (CSECU-DSG) 0.160

Table 5: Results of our proposed CSECU-DSG system
on individual monolingual tracks (subtask 2).

Next, the obtained results of our proposed
CSECU-DSG system in the PreTENS shared task
along with other top performing and competitive
participants systems in subtask 1 and subtask 2
are articulated in Table 6 and Table 7, respectively.
Following the benchmark of the PreTENS shared
task, participants’ systems are ranked based on the
primary evaluation measures of each subtask.

Team (Rank)
F1-macro

Global It Fr En

CSECU-DSG (4th) 91.117 91.113 90.732 91.506

Performance of team based on F1-macro score

LingJing (1st) 94.485 93.047 93.236 97.172
injySarhanUU (3rd) 91.574 92.118 89.529 93.076
holdon (6th) 89.579 86.903 87.281 94.551
cnxupupup (10th) 86.676 86.755 86.390 86.883
breaklikeafish (15th) 77.985 74.398 82.345 77.213

Baseline (18th) 67.394 59.588 72.126 70.468

Table 6: Comparative results with other selected partici-
pants (Sub-task 1).

Results showed that our system ranked 4th
among the participants’ systems in subtask 1. This
deduces the efficacy of our approach in addressing
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Team (Rank)
Spearman Correlation (Rho)

Global It Fr En

CSECU-DSG (8th) 0.160 0.207 0.081 0.191

Comparative performance of team based on Rho score

LingJing (1st) 0.802 0.807 0.841 0.758
huawei zhangmin (3rd) 0.669 0.631 0.740 0.636
daydayemo (6th) 0.206 0.121 0.284 0.212
breaklikeafish (11th) 0.078 0.186 -0.010 0.059
thanet.markchom (13th) 0.056 0.089 -0.043 0.122

Baseline (4th) 0.309 0.344 0.317 0.265

Table 7: Comparative results with other selected partici-
pants (Sub-task 2).

the challenges of the PreTENS shared task. How-
ever, in subtask 2, our system obtained a poor score
though we ranked 8th in this task.

To further analyze the effectiveness of the com-
ponents used in our approach, we estimate the
performance of each model used in the fusion ap-
proach in subtask 1. The results are reported in Ta-
ble 8. It shows that our fusion strategy improves the
overall performance of the model compared to the
performance of the mBERT and XLM-RoBERTa.
However, considering the individual model’s per-
formances XLM-RoBERTa performed better com-
pared to the mBERT.

Method
F1-macro

Global It Fr En

CSECU-DSG 91.117 91.113 90.732 91.506

Performance of individual model

XLM-RoBERTa 90.217 90.322 89.853 90.475
mBERT 88.076 86.477 88.288 89.463

Table 8: Performance analysis of individual model using
subtask 1 test dataset.

4 Conclusion and Future Directions

In this paper, we presented our proposed system to
address the challenges of the PreTENS shared task.
We employed the weighted fusion of two state-of-
the-art multilingual transformer models predictions.
Experimental results demonstrate the competency
of our approach in Subtask 1.

In the future, we have a plan to incorporate the
task specific features and technologies to address
the challenges properly. We also have a plan to

explore the causal inference techniques to distill
the taxonomic relation.
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Abstract

In human languages, there are many presuppo-
sitional constructions that impose a constrain
on the taxonomic relations between two nouns
depending on their order. These constructions
create a challenge in validating taxonomic rela-
tions in real-world contexts. In SemEval2022-
Task3 Presupposed Taxonomies: Evaluating
Neural Network Semantics (PreTENS), the or-
ganizers introduced a task regarding validat-
ing the taxonomic relations within a variety
of presuppositional constructions. This task is
divided into two subtasks: classification and re-
gression. Each subtask contains three datasets
in multiple languages, i.e., English, Italian and
French. To tackle this task, this work pro-
poses to fine-tune different BERT-based mod-
els pre-trained on different languages. Accord-
ing to the experimental results, the fine-tuned
BERT-based models are effective compared to
the baselines for classification. For regression,
the fine-tuned models show promising perfor-
mances with the possibility of improvement.

1 Introduction

Taxonomic relations are one of the significant lex-
ical relationships that have been used in many ap-
plications such as question answering (Yih et al.,
2013), sentiment analysis (Araque et al., 2019)
and biomedical ontologies (Bodenreider, 2004). In
natural languages, there are many constructions
that constrain the taxonomic relation between two
nouns based on the order of these two nouns. For
instance, given a sentence “I have a dog, not a pet”.
The construction “I have a ..., not a ...” implies that
the taxonomic relation does not hold between “dog”
and “pet”. This can be seen as a presupposition im-
posed by the construction. However, this is not true
since dogs are pets. Thus, with various presupposi-
tional constructions, validating taxonomic relations
becomes more complicated in the real world.

To address this issue, SemEval2022-Task3 Pre-
supposed Taxonomies: Evaluating Neural Network
Semantics (PreTENS) (Zamparelli et al., 2022) in-
troduces the task where taxonomic relations have to
be validated in different presuppositional construc-
tions. This task proposes novel datasets in multiple
languages (i.e., English, Italian and French) con-
taining sentences with different two-noun construc-
tions. Each sentence is labeled by an acceptability
label for classification and an acceptability score
for regression. Two challenges have been raised
in this task: (1) a taxonomic relation between two
nouns in the sentence must be detected, and (2)
the construction which embeds the two nouns must
also be validated.

To effectively validate taxonomic relations in
such constructions, understanding the contexts or
semantic meanings of these constructions are the
key. Many previous studies have shown that pre-
trained models comprise the prior knowledge of
context comprehension (Yang et al., 2019). Re-
cently, the language mode called BERT has been
widely used in several tasks. The BERT model can
be pre-trained with the self-supervised method to
generate word/token or sentence representations
enriched with prior knowledge. Then, they can be
fine-tuned specifically for many downstream tasks
including validating taxonomic relations. There-
fore, in this work, we adopt the pre-trained BERT-
based models in different languages to utilize the
prior knowledge from the resources that they were
pre-trained with. Then, elaborating on the pre-
training, we fine-tune these pre-trained models to
predict the acceptability of each sentence.

2 Related Work

Pre-trained language models such as GloVe (Pen-
nington et al., 2014) and ELMo (Peters et al., 2018)
have been widely used to generate word/sentence
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representations for many NLP applications. These
representations have been proven to be effective
since they are enriched with knowledge from the
pre-training resources. Recently, the transformer
architecture (Vaswani et al., 2017), a multi-layer
multi-head self-attention, has made the major suc-
cess in NLP. With this architecture as a fundamen-
tal, a language model called BERT (Devlin et al.,
2019) was proposed. Such model can be first pre-
trained with two self-supervising tasks, masked
LM and next sentence prediction. After that, they
can be fine-tuned with additional output layers to
create new models for various downstream tasks.
Due to the huge success of the BERT model, many
language models stemming from it have been pro-
posed. These include RoBERTa (Liu et al., 2019),
the more robust BERT model, and DistilBERT
(Sanh et al., 2020), the modified BERT model using
knowledge distillation methods.

All of these BERT-based models can be pre-
trained on different corpora/resources depending
on various purposes. Previously, there are vari-
ations of the BERT-based models pre-trained in
different languages. MDZ Digital Library team
at the Bavarian State Library introduced the vari-
ations of the BERT-based models pre-trained on
Italian and German corpora1. Le et al. proposed
FlauBERT, pre-trained on a large French corpus
consists of texts in diverse topics and writing styles.
Although they have been used to solve several tasks
in many languages, how to use these models in val-
idating taxonomic relations in real-world contexts
still remains an open issue.

3 System Overview

This task consists of two sub-tasks (1) a binary
classification sub-task and (2) a regression sub-
task. For sub-task 1, each sentence in the datasets
is labeled with 1 if it is acceptable and 0 otherwise.
For sub-task 2, each sentence is labeled with the
average score assigned by human annotators. The
score is on a seven point Likert-scale ranging from
1 that means “not at all acceptable” to 7 that means
“completely acceptable”.

This paper proposes two similar approaches
of fine-tuning the BERT-based models for taxo-
nomic relation classification and regression. For
both sub-tasks, we select three pre-trained BERT-
based models that were pre-trained on three cor-
pora with different languages. For English, we

1https://github.com/dbmdz/berts

choose DistilBERT-Base-Uncased 2, pre-trained on
Toronto Book Corpus and full English Wikipedia.
The model has 6 layers, 12 heads, and 768 em-
bedding dimension and has 66M parameters in to-
tal. For Italian, we select BERT-Base-Italian-XXL-
Uncased 3, the Italian BERT model pre-trained on
texts from a recent Wikipedia dump and the OPUS
corpora collection. This model consists of 12 lay-
ers, 12 attention heads and 768 embedding dimen-
sion. The total number of parameters is 110M pa-
rameters. Lastly, for French, we select FlauBERT-
Base-Uncased 4, pre-trained on text corpus consists
of 24 sub-corpora gathered from different sources
such as Project Gutenberg 5 and Common Crawl 6.
This model has 12 layers, 12 attention heads and
768 embedding dimension. The total number of
parameters is 137M parameters. Based on these
pre-trained models, an additional layer is added in
each model to fine-tune these models. Each sub-
task has different settings for fine-tuning.

Sub-task 1: Binary Classification To fine-tune
the models for sub-task 1, a fully-connected layer is
added on top of the pooled output (the sequence em-
bedding, i.e., the “[CLS]” token embedding from
the pre-trained model). This layer has an output
size 2 and the softmax activation function. It out-
puts the probability of each class (1 and 0). The
loss function for fine-tuning is the binary cross-
entropy loss. The final prediction of each sentence
is made by selecting the class with the maximum
probability.

Sub-task 2: Regression Similarly to sub-task 1,
we add a fully-connected layer on top of the pooled
output for model fine-tuning. This layer has an
output size 1. This output is the predicted score
for a regression task. The mean squared error loss
function is used for fine-tuning this model.

4 Experiments

We conducted experiments on the training and test
sets provided by the task organizers. For each sub-
task, there are three training sets and three test sets
for three different languages. The training set of
each language has 5,837 samples while the test set
has 14,560 samples. Both training and test sets
consist of sentences with different presuppositional

2https://github.com/huggingface/transformers
3https://github.com/dbmdz/berts
4https://github.com/getalp/Flaubert
5https://www.gutenberg.org/
6https://data.statmt.org/ngrams/deduped2017/
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Construction Sentence
andtoo I like forests, and cities too.
butnot I like sports, but not football.
comparatives I like movies less than videogames.
drather I would rather have beagles than rabbits.
except I like pets, with the only exception of hamsters.
generally I like bracelets, and more generally jewelry.
particular I like fruits, and more specifically lemons.
prefer I do not like cauliflower, I prefer apples.
type I can stand rainstorms, an interesting type of rain.
unlike Unlike cats, ducks are often mentioned in this text.
ingeneral I like mountains, and nature in general.

Table 1: Examples of sentences with different constructions

Test set
Sub-task 1 Sub-task 2

Model Precision Recall F1 F1-macro Model MSE RMSE ρ

English
Baseline 0.642 0.866 0.734 0.734 Baseline 4.45 2.11 0.23
En-C 0.900 0.824 0.860 0.873 En-R 2.71 1.65 0.24

Italian
Baseline 0.557 0.877 0.682 0.682 Baseline 4.18 2.05 0.40
It-C 0.820 0.938 0.875 0.874 It-R 3.86 1.97 0.04

French
Baseline 0.651 0.899 0.755 0.755 Baseline 4.66 2.16 0.30
Fr-C 0.763 0.905 0.828 0.823 Fr-R 3.65 1.91 0.23

Table 2: Results of sub-task 1 and 2

constructions. For sub-task 1, there are 10 con-
structions, i.e., “andtoo”, “butnot”, “comparatives”,
“drather”, “except”, “generally”, “particular”, “pre-
fer”, “type” and “unlike”. For sub-task 2, there
are 7 constructions, i.e., “andtoo”, “butnot”, “com-
paratives”, “ingeneral”, “particular”, “type” and
“unlike”. Table 1 shows examples of sentences with
different constructions. All the models were fine-
tuned by using the Adam optimizer for 3 epochs
with the batch size 16 and the learning rate 5e-5.
For sub-task 1, the models were evaluated by Pre-
cision, Recall, F1 and F1-macro. For sub-task 2,
they were evaluated by MSE, RMSE and Spearman
Correlation (ρ). It is worth noting that ρ is used to
measure the rank correlation between actual labels
and predictions. It ranges between -1 to 1 where
the higher value means the labels and predictions
have a similar rank (or identical when it is 1) and
the lower value means they have a dissimilar rank.
(or fully opposed when it is -1) For each sub-task,
a simple classification model using n-grams as fea-
tures was used as a baseline.

4.1 Sub-Task 1 Results and Discussion

For this sub-task, we named the fine-tuned
DistilBERT-Base-Uncased for classification as
En-C, the fine-tuned BERT-Base-Italian-XXL-
Uncased for classification as It-C and the fine-
tuned FlauBERT-Base-Uncased for classification
as Fr-C. Table 2 shows the results of sub-task 1.
From this table, It-C and Fr-C performed better
than the baseline in every evaluation metric. Mean-
while, En-C outperformed the baselines in terms of
Precision, F1 and F1-macro.

We further investigated the performance of our
approaches by comparing the results of En-C, It-
C and Fr-C on each construction. The results are
shown in Figure 1. From this figure, we can see
that En-C, It-C and Fr-C performed particularly
poorly on “generally” construction. To identify the
mistake, we examined the confusion matrices of
their performance on “generally” construction as
shown in Figure 2. This figure shows that all of
them failed in predicting the true positive cases of
this construction. To answer why they failed to
predict the true positive cases, we further exam-
ined the attention weights at the last layer of these
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(a) Precision (b) Recall

(c) F1 (d) F1-macro

Figure 1: Comparison of the proposed approach performance on each construction in sub-task 1

(a) En-C (b) It-C (c) Fr-C

Figure 2: Confusion matrix of the results from (a) En-C, (b) It-C and (c) Fr-C on the construction “generally”

models using bertviz7 library (Vig, 2019). Figure 3
illustrated the attention on the last layer of En-C, It-
C and Fr-C given the acceptable sentence (labeled
with 1) with “generally” construction as an input.
In this figure, the attention is represented with lines
connecting between the word being updated (on the
left) and the word being attended to (on the right).
The thickness of the lines indicates the weight. The
thicker it is, the higher the weight will be. Since we
use the embedding of “[CLS]” as the pooled out-
put for fine-tuning, we only consider this token’s
attention. From Figure 3a, the attention weights of
“and”, “more” and “generally” tokens are relatively
low compared to the other tokens. Similarly, the
attention weights of “e”, “più” “in” and “generale”
in It-C and the attention weights of “et”, “plus” and

7https://github.com/jessevig/bertviz

“généralement” in Fr-C are also low as shown in
Figure 3b and 3c respectively. This suggests that
these models ignored these tokens when they were
fine-tuned. However, these tokens are important,
since they act like keywords indicating the presup-
positional “generally”. Therefore, ignoring them
may result in mistakenly predicting the acceptabil-
ity labels of this construction.

4.2 Sub-Task 2 Results and Discussion

For sub-task 2, we named the fine-tuned
DistilBERT-Base-Uncased for regression as En-R,
the fine-tuned BERT-Base-Italian-XXL-Uncased
for regression as It-R and the fine-tuned FlauBERT-
Base-Uncased for regression as Fr-R. The overall
results are shown in Table 2. From this table, our
approaches outperformed the baselines in terms
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(a) En-C

(b) It-C
(c) Fr-C

Figure 3: Attention weights connecting with “[CLS]” token from the last layer of (a) En-C, (b) It-C and (c) Fr-C
when the sentence with “generally” construction was given as an input

(a) MSE (b) RMSE (c) ρ

Figure 4: Comparison of the proposed approach performance on each construction in sub-task 2

(a) English (b) Italian (c) French

Figure 5: Distributions of the actual acceptability scores and the predicted acceptability scores of our approaches
En-R, It-R and Fr-R on each test set (a) English, (b) Italian and (c) French respectively

of MSE and RMSE. Nonetheless, only En-R pro-
duced the results with the higher ρ than the baseline
while the others failed to compete with their base-
lines. This suggests that the proposed approaches
predicted the acceptability scores close to their ac-
tual scores but their ranks are dissimilar. Figure
5 shows the distributions of the actual acceptabil-
ity scores and the predicted acceptability scores of
our approaches, En-R, It-R and Fr-R on each test
set, English, Italian and French. From this figure,
we can see that all En-R, It-R and Fr-R tended to
predict scores with low variances. This is possibly

caused by using the mean squared error loss for
fine-tuning these models.

As in sub-task 1, we also compared the results
of them on each construction as shown in Figure
4. From Figure 4a and 4b, in terms of MSE and
RMSE, En-R and It-R performed well on most
constructions except “ingerneral” and “particular”.
Fr-R performed also well on almost every construc-
tion except “particular” and “unlike”. On the other
hand, in terms of ρ, the proposed models failed
on most of the constructions as shown in 4c. En-
R produced positive ρ on only “comparative” and
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“unlike”. It-R only produced positive ρ on “type”
and “unlike”. Fr-R produced positive ρ on “butnot”,
“ingeneral”, “particular” and “unlike”. Overall, our
models produced negative ρ in most of the construc-
tions. This indicates that they failed to predict the
acceptability scores with the same tendency as the
actual scores. One possible reason is that the added
regression layers are not suitable for fine-tuning
these models.

5 Conclusion

This work proposes to fine-tune the pre-trained
BERT-based models to validate taxonomic rela-
tions in different presuppositional constructions.
Three different pre-trained BERT-based models
are selected and fine-tuned to perform classifica-
tion and regression on three different languages,
English, Italian and French. According to the re-
sults, the fine-tuned models using the binary cross-
entropy loss for classification are effective com-
pared to the baseline. As for the regression sub-
task, the fine-tuned models using the mean squared
error loss for regression performed less effectively
than the baseline when evaluated with Spearman
Correlation. This might be the result of using the
mean squared error loss for fine-tuning. This leaves
room for improvement in fine-tuning the BERT-
based models for taxonomic relation regression.
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Abstract

Synonyms and antonym practices are the most
common practices in our early childhood. It
correlated our known words to a better place
deep in our intuition. At the beginning of life
for a machine, we would like to treat the ma-
chine as a baby and build a similar training for
it as well to present a qualified performance.
In this paper, we present an ensemble model
for sentence logistics classification, which out-
performs the state-of-art methods. Our ap-
proach essentially builds on two models includ-
ing ERNIE-M and DeBERTaV3. With cross-
validation and random seed tuning, we select
the top performance models for the last soft en-
semble and make them vote for the final answer,
achieving the top 6 performance.

1 Introduction

Synonym, antonym and their relations from un-
structured text are fundamental problems in infor-
mation classification field. These problems can be
decomposed into three subtasks: word extraction
using regrex, relation extraction (Zelenko et al.,
2003), (Bunescu and Mooney, 2005), and classi-
fying the logistics between them. However, an
end-to-end model, i.e. ERNIE-M model (Ouyang
et al., 2020), is proposed to solve the three tasks.

Presupposed Taxonomies - Evaluating Neural-
network Semantics (PreTENS) (Zamparelli et al.,
2022) is a task to predict the acceptability of sim-
ple sentences containing constructions whose two
arguments are presupposed to be or not to be in
an ordered taxonomic relation. In this paper, we
first present a simple approach with the ERNIE-M
model to solve the task. Although the ERNIE-
M model performs unexpectedly impressive, the
model has poor robustness. Hence, the additional
pre-trained model is introduced to solve the ro-
bustness problem. The latest model DeBERTaV3
(He et al., 2021) has outstanding performance on

cross-linguistic tasks, which outperforms BERT
and DeBERTa on many tasks. The proposed model
consists of two parts: the basic ERNIE-M model
and the pre-trained model DeBERTaV3. The De-
BERTaV3 model shares the same pre-trained data
with ERNIE-M called XNLI (Conneau et al., 2018),
which can improve the performance and robustness
as well. The DeBERTaV3 model is trained inde-
pendently, which has significant improvement for
English but somehow brought no improvement for
other languages. Based on the above conclusion,
we employ the DeBERTaV3 model for English-task
only.

To better understand the effectiveness of the pro-
posed model, we started a bunch of analyses. The
first problem is the data-set limitation. Two addi-
tional datasets were imported, i.e., the translated
dataset from Google translation which is trans-
lated from three languages, and the XNLI dataset.
However, larger datasets don’t lead to better per-
formance. We compared the performance of the
ERNIE-M model on four sets of data: the given
data, the given data with translated data, the given
data with XNLI augmentation, and the given data
with both the translated data and XNLI data. We
do the same experiments with the DeBERTaV3
model as well. The results show that the combina-
tion of ERNIE-M with all the three datasets and
DeBERTaV3 with the given English data perform
the best.

2 Related Work

Multilingual model ERNIE-M proposes a new
training method that encourages the model to
align the representation of multiple languages with
monolingual corpora, to overcome the constraint
that the parallel corpus size places on the model
performance. There are two models in ERNIE-M
which are Cross-Attention masked language mod-
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eling (CAMLM) and Back-Translation masked lan-
guage modeling (BTMLM).

Cross-Attention masked language modeling
(CAMLM) is to align cross-language semantic rep-
resentations on parallel corpora. Then, the multilin-
gual representation is enhanced with transferability
learned from parallel corpora.

Back-Translation masked language modeling
(BTMLM) is trained to generate pseudo-parallel
sentences from monolingual sentences. The gener-
ated pairs are then used as the input of the model
to further align the cross-lingual semantics, thus
enhancing the multilingual representation.

DeBERTaV3 presents a new pre-trained lan-
guage model, which improves the original De-
BERTa model by replacing mask language model-
ing (MLM) with replaced token detection (RTD),
a more sample-efficient pre-training task. They all
come from an important field, multilingual models.

Since the related paper was published at the end
of 2021, there are no similar tasks have been done
and published.

3 Our Approach

In this section, we first introduce the methods
to solving the multi-language problem and then
present our work about improving the performance
on uni-language. To extenuate over-fitting for a spe-
cific language, our team uses a multi-language en-
semble learning strategy that includes a pre-trained
language model and a multilingual language model.
Based on the approach above, it makes the learned
representation generalizable across languages and
improves the performance in finding the suitable
taxonomic relations in two nominal arguments.

3.1 Multilingual Language Model Training

Our key idea of solving multilingual language tasks
is to learn the language invariant feature space
shared among multiple languages. We tried mul-
tilingual masked language modeling (MMLM),
translation language modeling (TLM), and cross-
attention masked language modeling (CAMLM)
have been tried. However, the scale of the parallel
corpus is quite limited, which limits the perfor-
mance of the model.

However, we found that using the transferabil-
ity learned from parallel corpora to enhance the
model’s learning of large-scale monolingual cor-
pora to enhance multilingual semantic representa-
tion can achieve a good effect. ERNIE-M does this

by making the predictions of tokens depending on
tokens in another language, but not on other tokens
in this language. Therefore, we choose ERNIE-M
as the baseline model for this task and explore on
this basis to improve the prediction effect.

In the process of using multilingual language
models, we mainly adopt random search to fine-
tune the ERNIE-M model and data augmentation
methods are used for model training. Cross-lingual
natural language inference (XNLI) dataset is used
and the English training set is translated to Ital-
ian (E2I set). Firstly, the English training set is
combined with the French and E2I set. Then, the
model is fine-tuned with the combined training set.
Finally, the augmented task training set in three
languages is adopted for fine-tune process.

3.2 Cross-validation
To improve the robustness of our model, our team
apply cross-validation for training. Firstly, by using
different random seeds, we divided the training
set which included all three languages ten times.
Through this process, we obtained 10 folds of data,
which contain 15768 training samples and 1751
validation samples in each fold. During the fine-
tuning process, we used random search to optimize
hyper-parameters like epochs, learning rate, and
batch size. By using F1-Score as our evaluation
metric, the best model at all the ten-fold of training
is saved. Finally, by making predictions on the test
set, we save the mean of the probability of all ten
best-saved models. This result is our final output
of ERNIE-M. Cross-validation process is shown in
Figure 1.

3.3 Pre-trained Language Model
To enhance the effect in a single language sub-
task, we consider using an enhanced mask decoder
and a disentangled attention mechanism to improve
the effect. DeBERTaV3 meets our needs by using
Electra-style pre-training and gradient unwrapping
embedding sharing. We have tried to use DeBER-
TaV3 for training in each single language subtask
respectively.

3.4 Ensemble
By using the multilingual language model and pre-
trained language model respectively, we have two
groups of validation set results for each language.
We adopt the mean of the best-saved models from
ERNIE-M and DeBERTaV3 after making predic-
tions on the validation set. After comparing the
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Figure 1: The process of 10-fold cross-validation and ensemble. The training set which includes all three languages
is divided randomly 10 times by setting different random seeds. In each division, the training set is divided into 10
parts, of which 9 parts are respectively used as the training set and the remaining 1 part is used as the validation set.
And finally, the average of all saved best models predicted on the test set is the final results.

combination result, we finally used different strate-
gies in different languages. For the English subtask,
we retain the strategy of merging the two types of
models. For French and Italian subtasks, the result
from cross-validation of the multilingual language
model is used directly.

3.5 Data Augmentations

As the total number of labeled data in each lan-
guage is only 5840, it’s liable to overfit the training
data even with pre-trained models. The overfit-
ting phenomenon may be more significant than
expected because the data is generated program-
matically through manually verified templates. To
increase the size of training data, we use the fol-
lowing data augmentation methods: 1) translate
English data into French and Italian by using Baidu
translate 2) translate English data into French and
Italian by using Google translate 3) translate French
and Italian data into English by using Google trans-
late. We find that the augmentation can help delay
the overfitting occurrence slightly, especially for
large models.

4 Experiments

In this section, we first describe the dataset and our
data preprocessing steps, and then we present the
details of the experimental setup for subtask1.

4.1 Dataset

Our dataset comes from two parts.
The first part is the trial dataset released by orga-

nizers, which is composed of English, French and

Italian. Each language contains 5838 sentences.
Because the trail dataset provided by organizers is
only 5838 in each language, to increase the amount
of data and make the model better, we use Google
translator and Baidu translator to translate the En-
glish dataset into French and Italian again. The
use of two different translators also increases the
diversity of data.

The other part is that we use the public dataset
– XNLI. We use XNLI dataset because it is often
used in similar cross-language tasks. The XNLI
dataset contains a total of 15 languages, and each
language contains 7500 pairs of data. We used the
English and French datasets in this competition.
Because the XNLI dataset itself does not contain
Italian datasets, we translated the English dataset
into Italian and then used the three languages in
ERNIE-M model training.

4.2 Experiment Settings

In this task, we mainly use the ERNIE-M model
and DeBERTaV3 model. The ERNIE-M model is
composed of 24 layers, 1024 hidden, and 16 heads.
In terms of parameter selection, we set a set of
parameters, as Table 2 shows.

We set up 10000 times of ERNIE-M model train-
ing, in which the specific values of the above pa-
rameters are randomly selected according to the ta-
ble1 at each training. And in each training process,
the training method of 10 folds cross-validation is
used.

The DeBERTaV3 model is composed of 12 lay-
ers and a hidden size of 768. It has only 86M
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Parameter Value1 Value2 Value3 Value4
batch size 8 16 32
lr decay 0.8 0.85 0.9 0.95
rdrop 1.0 3.0 5.0 7.0
epoch 2 4
learning rate 2e-5 3e-5 4e-5 5e-5
dropout 0.1 0.2

Table 1: Parameter Setting. We set different specific values of different parameters according to some previous
experience. Because the appropriate value is not fixed in different tasks, we choose to use the random combination
of various values of the above parameters for model training, so as to find the most appropriate parameter value and
obtain the optimal model result.

Training Methods Language Precesion Recall F1
ERNIE-M English 0.8240 0.9547 0.8846
ERNIE-M French 0.8185 0.9402 0.8751
ERNIE-M Italian 0.8163 0.9307 0.8698
Ensemble Model English 0.9266 0.9605 0.9432
Ensemble Model French 0.8125 0.9489 0.8754
Ensemble Model Italian 0.8081 0.9467 0.8719

Table 2: Results of different models. We select the best model from a large number of randomly generated parameter
training models and compare it with the final best ensemble result. And we can see that the performance of the three
languages has been improved.

backbone parameters with a vocabulary containing
128K tokens which introduces 98M parameters in
the Embedding layer. And we set batch size to 8,
learning rate to 2e-5, and epoch to 3.

4.3 Main Results

The best single model on the development set is
the ERNIE-M LARGE. And the model that uses
DeBERTaV3 doesn’t perform well in French and
Italian, so we just use the results on English data.
The best ensemble model on the test set is trained
on both the XNLI dataset and the trial dataset. The
ensemble model obtained English test set F1 scores
of 94.325, French test set F1 scores of 86.792, and
Italian test set F1 scores of 88.807. The ensemble
model achieves the F1 score of 94.325 in English
data, the F1 score of 86.792 in French data, and the
F1 score of 88.807 in the Italian data. The results
are shown in Table 2.

For the comparative analysis of the results of
using only ERNIE-M as the baseline model and the
ensemble model, we can see that the improvement
of the ensemble model in English is relatively ob-
vious, but the improvement in Italian and French
is very weak. We think this is due to the follow-
ing reasons: Firstly, Italian is not included in the
original XNLI dataset. In this task, we translate

English into Italian. So to a certain extent, the
understanding of English by the ERNIE-M model
is increased. Secondly, because DeBERTaV3 per-
forms well in English, we only use its results in
English, So the results for Italian and French did
not get a big boost. This also shows that using the
ensemble model can indeed improve the prediction.
In the future, we will explore ensemble models that
can improve predictions in Italian and French.

5 Conclusion

To solve the problem of judging whether the mean-
ing of a sentence is self-consistent in multilingual
language tasks, that is, the problem raised in task
3, we propose an ensemble model using ERNIE-
M and DeBERTaV3, and regard this problem as
a binary classification problem. Furthermore, to
solve the issue of the small dataset, we use various
strategies, such as K-ford cross-validation, trans-
lating the dataset using different translators, and
introducing an external dataset - XNLI, a dataset
commonly used in multilingual problems. In future
efforts, we plan to further improve our model from
these aspects. The first is to enrich the data, espe-
cially Italian and French, to help the model learn
better. The second is that we could train more mod-
els on standard fine-tuning, multi-step fine-tuning,
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multi-task learning, or adversarial training. Then
try to ensemble different models to gain a better
performance.
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Abstract

This paper presents our strategy to address the
SemEval-2022 Task 3 PreTENS: Presupposed
Taxonomies Evaluating Neural Network Se-
mantics. The goal of the task is to identify if a
sentence is deemed acceptable or not, depend-
ing on the taxonomic relationship that holds
between a noun pair contained in the sentence.
For sub-task 1—binary classification—we pro-
pose an effective way to enhance the robust-
ness and the generalizability of language mod-
els for better classification on this downstream
task. We design a two-stage fine-tuning pro-
cedure on the ELECTRA language model us-
ing data augmentation techniques. Rigorous
experiments are carried out using multi-task
learning and data-enriched fine-tuning. Exper-
imental results demonstrate that our proposed
model, UU-Tax, is indeed able to generalize
well for our downstream task. For sub-task 2—
regression—we propose a simple classifier that
trains on features obtained from Universal Sen-
tence Encoder (USE). In addition to describing
the submitted systems, we discuss other experi-
ments that employ pre-trained language models
and data augmentation techniques. For both
sub-tasks, we perform error analysis to further
understand the behaviour of the proposed mod-
els. We achieved a global F1Binary score of
91.25% in sub-task 1 and a rho score of 0.221
in sub-task 2.1

1 Introduction

Predicting the semantic relationship between words
in a sentence is essential for Natural Language
Processing (NLP) tasks. Deep neural language
models accomplish outstanding results in multiple
tasks involving semantics evaluation. The question
posed by the shared task Presupposed Taxonomies:
Evaluating Neural Network Semantics (PreTENS)
is whether neural models can detect the taxonomic
relationship between nouns, especially in scenarios

1Our implementation of UU-Tax is publicly available at
https://github.com/IS5882/UU-TAX.

where the pattern and/or the set of nouns in the
sentence is previously unseen (Zamparelli et al.,
2022). Sub-task 1 is a simpler classification task,
while sub-task 2 is a more complex regression task.
Both sub-tasks involve datasets in English, French
and Italian. For each sub-task, teams are permitted
three submissions. For each submission, the score
is averaged over the three languages. The highest
score from the three submissions is reported.

We propose a series of models based on pre-
trained language models. We enhance the provided
datasets using state-of-the-art data augmentation
tools, and further increase the dataset size by em-
ploying translations. The aim of both steps is to
create slightly modified versions of the sentences,
such that the model can learn alternative forms of
nouns and patterns.

For the classification task (sub-task 1), we ob-
tained the 3rd place, with an F1Binary score of
91.25% averaged over the three languages. For
the regression task (sub-task 2), we obtained the
5th place, with a Spearman’s correlation coeffi-
cient ρ of 0.221 averaged over the three languages.
Sub-task 2 is markedly more difficult than sub-
task 1 due to sentences that can be ambiguous,
such as I like dogs, but not chihuahuas; some hu-
mans will judge this sentence as acceptable, while
some will not. We attempt to solve both tasks by
employing data augmentation techniques in order
to help the models understand variations in text.
Our main contributions are: (i) we devise a special
development-validation split to emulate the real sit-
uation in which the model must face new words
and patterns, and (ii) we combine various data aug-
mentation tools to allow the models to learn from
various versions of the training dataset.

In Section 2 we present the task details and some
of the related work that was done previously. In
Section 3 we motivate our choice of models. The
experiments we performed are in Section 4. Results
and conclusions are presented in Sections 5 and 6.
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2 Background

For the present task, we are provided with a list of
sentences following a set of patterns, all of which
have two slots for noun phrases. One such sentence
might be: I don’t like beer, a special kind of drink.
The pattern corresponding to this sentence would
be: I don’t like [blank], a special kind of [blank].
Sentences are labeled according to whether the
taxonomic relation between the two nouns makes
sense. In sub-task 1, labels are binary; a sen-
tence such as that shown above has a label of
1, while this sentence would have a label of 0:
I like huskies, and dogs too. In sub-task 2, labels
are continuous, ranging from 1 to 7; these scores
are based on a seven-point Likert scale, judged by
humans via crowdsourcing. The same dataset is
presented in English, Italian and French. For sub-
task 1, the training and test sets consist of 5 838
and 14 556 sentences, respectively; for sub-task 2,
the training and test sets consist of 524 and 1 009
sentences, respectively.

There are two challenges to this dataset: (i) The
test dataset is much bigger than the training dataset,
and (ii) There are unseen patterns and noun pairs in
the test set. The combination of these hampers the
ability of machine learning (ML) models trained
on the training set to generalize well to the test set.
Indeed, that is the aim of this task: to evaluate the
ability of language models to generalize to new
data when it comes to inferring taxonomies.

One way to conceptualize the PreTENS task is
to reformulate it as a taxonomy extraction task with
pattern classification and distributed word represen-
tations. For a given sentence, extract the noun pair
and the pattern from the sentence, and then deter-
mine if the taxonomic relation between the nouns
matches the relations allowed by the pattern. This
formulation is motivated by previous work in taxon-
omy construction that relied on various approaches
ranging from pattern-based methods and syntactic
features to word embeddings (Huang et al., 2019;
Luu et al., 2016; Roller et al., 2018). As promising
as this approach sounds for PreTENS, it involves
manual labeling of the noun-pair taxonomic rela-
tions in the training set, as we are not allowed to
use resources such as WordNet (Fellbaum, 1998)
or BabelNet (Navigli and Ponzetto, 2012).

A different approach is to tackle PreTENS as
a cross-over task between extraction of lexico-
semantic relations and commonsense validation.
There have been SemEval tasks to extract and iden-

tify taxonomic relationships between given terms
(SemEval-2016 task 13) (Bordea et al., 2016), and
to validate sentences for commonsense (SemEval-
2020 task 4, sub-task A) (Wang et al., 2020). The
aim of the common-sense validation task is to iden-
tify which of two natural language statements with
similar wordings makes sense.

In the SemEval-2016 task 13, approaches re-
lated to extracting hypernym-hyponym relations
to construct a taxonomy involved both pattern-
based methods and distributional methods. TAXI
relied on extracting Hearst-style lexico-syntactic
patterns by first crawling domain-specific corpora
based on the terminology of the target domain and
later using substring matching to extract candidate
hypernym-hyponym relations (Panchenko et al.,
2016). Another team designed a semi-supervised
model based on the hypothesis that hypernyms may
be induced by adding a vector offset to the corre-
sponding hyponym word embedding (Pocostales,
2016).

Participants in the SemEval 2020 commonsense
validation task had an advantage over PreTENS
participants: they were allowed to integrate taxo-
nomic information from external resources such
as ConceptNet (Wang et al., 2020), which eased
the process of fine-tuning the language models on
the down-stream task. As an example, the CN-
HIT-IT.NLP team (Zhang et al., 2020) and ECNU-
SenseMaker (Zhao et al., 2020) both used a variant
of K-BERT (Liu et al., 2020a) with additional data;
the former injects relevant triples from ConceptNet
to the language model, while the later also uses
ConceptNet’s unstructured text to pre-train the lan-
guage model. Other systems relied on ensemble
models consisting of different language models
such as RoBERTa and XLNet (Liu, 2020; Altiti
et al., 2020).

In Section 3 we outline the architectures cho-
sen to tackle the two sub-tasks of PreTENS. We
draw on previous work, as outlined above, and pro-
vide novel combinations of datasets and algorithms
to improve the performance of out-of-the box lan-
guage models.

3 System Description

The systems we propose for both PreTENS sub-
tasks are based on language models. In sub-task 1
we use the ELECTRA (Efficiently Learning an
Encoder that Classifies Token Replacements Ac-
curately) transformer (Clark et al., 2020), while in
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sub-task 2 we employ USE (Universal Sentence
Encoder) (Yang et al., 2020).

3.1 Sub-task 1: Classification

In the first sub-task—binary classification—we
were required to assign an acceptability label
for each sentence in the three languages English,
French and Italian. Of the 20 394 sentences that
were provided for sub-task 1, only 5 838 sentences
(28.61%) were available for training. This split
causes the model to be likely to encounter un-
known data formats at testing time. This is a piv-
otal challenge in PreTENS, as the robustness and
generalization of language models is an open chal-
lenge and cannot be guaranteed (Tu et al., 2020;
Ramesh Kashyap et al., 2021). In our experi-
ments we found that every language model we used
(BERT, RoBERTa, XLNet, and ELECTRA) failed
to generalize well to unseen datasets, even though
all of them are pre-trained on large amounts of
data. To address this challenge, we built our mod-
els based on data augmentation.

While designing our model, we split the pro-
vided training data into a development set (30%)
and a validation set (70%), to emulate the train-test
split sizes. We deliberately leave several patterns
out of the development set, including, for exam-
ple: I like [blank], and more specifically [blank].
We choose these so-called complex patterns be-
cause, during exploratory experiments, we found
that pre-trained models had trouble with them. For
example, out of the 820 instances of the aforemen-
tioned pattern in the training dataset, 750 instances
were misclassified by one of the early instances of
our model; this includes sentences where the noun
pair was included in other sentences in the training
data. We thus remove complex patterns from the
training data, to simulate a situation in which new
unseen and difficult patterns are found in the test
set.

Transformer language models like BERT (De-
vlin et al., 2019) are pre-trained on two tasks:
Masked Language Modelling (MLM) and Next
Sentence Prediction (NSP). However, in subse-
quent models such as RoBERTa, training on NSP
was proven to be unnecessary; these models are
thus pre-trained solely on MLM. ELECTRA fur-
ther enhanced MLM performance while utiliz-
ing notably less computing resources for the pre-
training stage. The pre-training task in ELECTRA
is built on discovering replaced tokens in the input

sequence; to achieve this, ELECTRA deploys two
transformer models: a generator and a discrimina-
tor, where the generator is trained to substitute in-
put tokens with credible alternatives and a discrim-
inator to predict the presence or absence of substi-
tution. This setting is similar to Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014),
with a key difference that the generator does not
attempt to trick the discriminator, making ELEC-
TRA non-adversarial. In ELECTRA, the gener-
ator parameters are only adjusted during the pre-
training phase. Fine tuning on downstream tasks
only modifies the discriminator parameters (Clark
et al., 2020).

Electra Discriminator

English Dataset

NLP Aug

Augmented Data

Insertion Substitution

Electra Generator

Stage 1

Italian Dataset English Translation

English TranslationFrench Dataset

English Dataset

Stage 2

Unannotated Test
Dataset 

Inference

Output Labels

Training

Figure 1: Sub-task 1: The English version of the pro-
posed two-stage fine-tuning model (UU-Tax). In the
French version, the Italian and English data are trans-
lated to French, and the NLPAug tool is employed on
the provided French training set. Likewise in the Italian
version.

Multi-stage fine-tuning has proven its effective-
ness on the robustness and generalization of mod-
els (Kocijan et al., 2019; Li and Rudzicz, 2021).
We perform a 2-stage fine-tuning; Figure 1 por-
trays our model work-flow. In the first stage, we
use the NLPAug tool (Ma, 2019) to generate new
sentences by making modifications to existing sen-
tences based on contextualized word embeddings.
There are several actions for the NLPAug tool; we
utilize the ‘Insertion’ and ‘Substitution’ operations.
The ‘Insertion’ operation picks a random position
in the sentence, and then inserts at that position the
word that best fits the local context. Meanwhile,
the ‘Substitution’ operation replaces a word in a
given sentence by the most appropriate alternative
for that word. In both operations, the word choice
is given by contextualized word embeddings, as
will be explained in Section 4.1. To avoid drifting
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away from the original sentence, in both operations
we limit the number of insertions and substitutions
to two. Because ‘Substitution’ in NLPAug might
turn an incorrect sentence into a correct one, we
only carry out ‘Substitution’ on sentences labeled 1.
An example of the output of the NLPAug tool is
shown in Figure 4 in Appendix A.

The second stage of fine-tuning also involves
data augmentation, using translation. For each
language l, we translate the datasets of the other
two languages into l. For example, as seen in Fig-
ure 1, when working on the English model, we
translate the Italian and French datasets to English,
and perform the second fine-tuning stage on the
translated data along with the original data. We use
the Google Translate API for all translations 2.

3.2 Sub-task 2: Regression

In sub-task 2—regression—we are required to de-
termine the level of acceptability of sentences on
a seven-point Likert scale. Our initial attempt in
sub-task 2 resembles the efforts made in the first
sub-task by relying on pre-trained language models.
However, our first submission, which relies on fine-
tuning multi-lingual BERT (Devlin et al., 2019)
with translation as data augmentation, did not per-
form well; more elaboration on this in Section 5.2.
As a result, we opt for a simpler yet more effective
model using Universal Sentence Encoder (USE)
(Yang et al., 2020) followed by a regressor. USE
is based on two encoder models and deep aver-
aging networks; both are equipped to generate a
512-dimension sentence embedding from a given
textual input, where embeddings for words and bi-
grams are averaged together and then passed as
input to a deep neural network that processes and
outputs the sentence embeddings.

4 Experimental Set-up

4.1 Sub-task 1: Classification

We implement our submitted models using Simple-
Transformers3. All models are trained for 4 epochs
with a batch size of 8; these values were determined
by validation, as we explain below. The model is
optimized using AdamW (Loshchilov and Hutter,
2019) and a linear decay learning rate schedule.
The learning rate is a key aspect of the performance
of a trained model. A large learning rate results

2Only 15% of the translated sentences using Google Trans-
late API were duplicates of the original sentence.

3https://github.com/ThilinaRajapakse/simpletransformers

in quick model convergence; however, if the learn-
ing rate is too large, it will lead to drastic updates
that will trigger divergent behaviour, while train-
ing a model with a too-small learning rate might
lead to an under-fitted model that gets stuck in
local minima (Bengio, 2012). In our two-stage
model, the first stage has a lower learning rate of
3×10−5 as opposed to the 4×10−5 assigned in the
second stage, which contains the PreTENS train-
ing data; this is because we want the model to
learn more from the real training data than from
the NLPAug-edited data. A summary of the model
hyper-parameters is given in Table 1. All the hyper-
parameters are tuned based on the F1 score on the
validation set. The same hyper-parameters are uti-
lized for all three languages—English, French and
Italian.

For data augmentation with NLPAug, BERTbase

is employed to obtain the contextual word embed-
dings for both ‘Insertion’ and ‘Substitution’ opera-
tions.

Hyper-parameter Value
Epochs 4
Batch Size 8
Stage 1 Learning Rate 3×10−5

Stage 2 Learning Rate 4×10−5

Optimizer AdamW

Table 1: Sub-task 1: Hyper-parameters values for train-
ing the ELECTRA model. The number of epochs and
the batch size were determined by validation.

4.2 Sub-task 2: Regression
For the three languages English, French and Italian
we deploy multi-lingual USELarge as it yields better
performance than mono-lingual USE for the three
languages. USE is employed through its Tensor-
Flow hub module4. We experiment with four dif-
ferent regressors: Linear Regression (LR) (Mont-
gomery et al., 2021), K-Nearest Neighbors Regres-
sor (KNR) (Kramer, 2013), Decision Tree (DT)
(Myles et al., 2004), and Support Vector Regres-
sor (SVR) (Awad and Khanna, 2015). We use the
Scikit-Learn (Pedregosa et al., 2011) library for the
implementation of the regressors. All regressors
are utilized with their default parameters except
for SVR epsilon ε . To define a higher margin of
tolerance where no penalty is given to errors we set
ε to 0.2 rather than the default value of 0.1.

4https://tfhub.dev/google/universal-sentence-encoder-
multilingual-large/3
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4.3 Evaluation measures

Sub-task 1 is evaluated using the Binary-averaged
F1 score (F1Binary) for each language, while the
global rank score is calculated as the average of the
F1Binary for all three languages. Sub-task 2 is eval-
uated using Spearman’s rank correlation coefficient
(ρ) for each language, with the global rank given
by the average of the coefficients for all languages.

5 Results and Evaluation

In this section, we analyze the performance of our
submitted models in both sub-tasks. We further
discuss other notable experiments that were carried
out.

5.1 Sub-task 1: Classification

Language Results
Recall Precision F1Binary

English 95.26 % 90.54 % 92.84 %
French 93.14 % 85.83 % 89.34 %
Italian 90.47 % 92.69 % 91.57 %
Average 91.25%

Table 2: Sub-task 1: UU-Tax submission results using a
two-stage fine-tuned ELECTRA model.

Results of the submitted models for English,
French, and Italian are shown in Table 2. Out of
21 teams, we were officially ranked 3rd in sub-
task 1, achieving a global score of 91.25%, only
1.06, and 2.92 percentage points short of the 2nd

and 1st places, respectively. In the next few sec-
tions, we explain how our experimentation led us to
the model we chose: the two-stage fine-tuning us-
ing ELECTRA with data augmentation (UU-Tax).

5.1.1 Experiments
Baseline. The PreTENS organizers proposed a
baseline algorithm that trains an SVM classifier
with features generated by TF-IDF with n-grams
(n = 3). Results of the baseline model are reported
in Table 3.

Multi-task fine-tuning. We experimented with
several models on the English dataset. We
tried a multi-task approach that involves further
fine-tuning on related data-rich supervised tasks.
In our case, it was the ‘common sense validation’
task, as it is highly correlated to PreTENS as
previously mentioned in Section 2. We used
the dataset from SemEval-2020 Common Sense

Validation sub-task A (Wang et al., 2020) and
modified the sentence label to 1 if it is a valid
sentence and 0 otherwise. We then fine-tuned our
ELECTRA model in the first stage using this data;
the second stage of fine-tuning was carried out
using the augmented data from NLPAug and the
provided training data. Multi-task fine-tuning has
proven its effectiveness across a variety of tasks
(Mahabadi et al., 2021). This model achieved an
F1Binary of 89.09%, which demonstrates the effect
of information sharing between the different tasks,
particularly in cases when the downstream task
is of a limited size. Nevertheless, multi-task fine-
tuning suffers from several shortcomings including
catastrophic forgetting, over-fitting in low-resource
tasks and under-fitting in high-resource tasks
(Mahabadi et al., 2021). For this reason, we did
not move forward with this approach.

Data-enriched fine-tuning. As an alternative,
we developed a data-enriched fine-tuning model
that employed a pre-trained BERT model with
an additional Bidirectional Long Short Term
Memory (Bi-LSTM) layer on top. In addition
to the input sentence, we concatenated the two
nominal arguments to the given input. To extract
the two nouns from the sentences, we leveraged
the fact that nouns in this dataset tend to have very
low document frequencies (DF), and classified
any word with DF less than 5% as a noun.
The final prompt of the input was as follows:
[CLS]Sentence[SEP]Noun 1[SEP]Noun 2[SEP]
Similar to the aforementioned models, we also
input to the model the augmented data generated
from NLPAug. This model was implemented with
PyTorch using the Hugging Face5 Transformers
library (Wolf et al., 2019). Figure 2 depicts the
data-enriched fine-tuning model. The model’s
performance resembles that of the multi-task
fine-tuning model by achieving an F1Binary of
89.04%.

As shown in Table 3, our submitted two-stage
fine-tuning ELECTRA model (UU-Tax) achieved
the highest results amongst all models, by a margin
of 3.63% and 4.62% between both multi-task learn-
ing model and data-enriched fine-tuning model,
respectively. We have almost 20% improvement
compared to the baseline.
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Model Results
Recall Precision F1Binary

Baseline (TF-IDF + SVR) 85.64 % 64.19 % 73.38 %
Multi-task fine-tuning 95.82 % 83.45 % 89.21 %
Data-enriched fine-tuning (BERT + Bi-LSTM ) 86.70 % 89.79 % 88.22 %
UU-Tax (two-stage ELECTRA) 95.26 % 90.54 % 92.84 %

Table 3: Sub-task 1: Comparison of the different experiments carried out on the English Language.

Pre-trained BERT large

[CLS] I like animals, and more specifically cats. [SEP] animals [SEP] cats [SEP] [PAD] [PAD] ..  Prompt

Input Sentence Additional Input

Bi-LSTM

Pad to MAX_LEN

Linear Layer

768

Label 1Label 0 Output Prediction Score

512

NLP Aug
Augmented Data

Italian Dataset English Translation

English TranslationFrench Dataset

English Dataset

Training Data

English Dataset

Figure 2: Sub-task 1: data-enriched fine-tuning model that employs an Bi-LSTM network on the top of pre-trained
BERT. This model was used during the experimentation phase.

5.1.2 Ablation Study and Error Analysis

We conducted ablation experiments to evaluate
the effect of data augmentation and our proposed
two-stage fine-tuned ELECTRA model. The
results of the analysis are presented in Table 4. We
limit the ablation study and error analysis to the
English dataset, as similar trends were observed in
the French and Italian datasets 6.

Data augmentation effect. The need for data
augmentation to generalize the model highly
affects the performance of the pre-trained model.
We perform two ablation analyses. In the first
setting (Ablation #1), we removed the translated
dataset from the second stage, and our model was
fine-tuned on data obtained from the NLPAug tool
in the first stage and on the original training dataset
in the second stage. The precision massively
dropped by 11.42%. Similar behavior is observed
in the second setting (Ablation #2), when the
NLPAug data is eliminated from our two-stage
training, and the first stage is trained on the

5https://huggingface.co/
6Results presented in Tables 3 and 4 may slightly vary

due to fine-tuning instability of pre-trained language models
(Mosbach et al., 2021).

translated data instead, while in the second stage
we fine-tuned using the original training data. This
highlights the importance of our proposed dual
augmentation using both NLPAug and translation
to capture a wider range of perturbations to the
original dataset.

Single-stage models’ performance. To verify our
two-stage fine-tuning approach, we evaluated it
against a single-stage fine-tuning. This experiment
was performed in two different settings; in the
first (Single-stage #1) we trained on the originally
provided data only, while in the second (Single-
stage #2) setting we trained on the same data
that was used in UU-Tax, which is obtained from
NLPAug, translation, and the original training
set. In both settings, we notice a drop in the F1
when comparing against UU-Tax. Nonetheless, we
can observe that amongst the three experiments
(UU-Tax, Single-stage #1 and Single-stage #2)
the highest recall of 96.26% is achieved in the
(Single stage #2) along with the lowest precision
of 71.15%. Our interpretation of this finding is
that in the (Single stage #2) experiment, the model
over-predicted positives, causing the model to
achieve a high recall and a relatively low precision.
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Stage 1 Stage 2 Results
Model Name LM NLPAug Trans OT NLPAug Trans OT R P F1

Ablation #1 ELECTRA 95.30 % 78.73 % 86.22 %
Ablation #2 ELECTRA 95.59 % 95.59 % 86.58 %
Single Stage #1 ELECTRA - - - 90.20 % 79.41 % 84.47 %
Single Stage #2 ELECTRA - - - 96.26 % 71.16 % 81.83 %
Two-Stage #1 BERT 92.36 % 68.97 % 78.97 %
Two-Stage #2 RoBERTa 93.93 % 78.24 % 85.37 %
UU-Tax ELECTRA 95.26 % 90.54 % 92.84 %

Table 4: Sub-task 1: Results of various classification models trained during experimentation and ablation on the
sub-task 1 dataset, using different combinations of input data obtained from NLPAug, translation (Trans) and the
original training set provided (OT). Additional variations are single-stage versus two-stage models, and alternative
pre-trained language models (LM). Recall (R), precision (P), and F1Binary (F1) are used as evaluation metrics.

indicates which data is utilized in each fine-tuning stage, while - indicates that stage 2 is not applicable.

We attribute this behavior to two causes. First,
the unbalanced ratio that NLPAug ‘Substitution’
operation caused as previously explained in
Section 3.17. Second, in UU-Tax a higher learning
rate is deployed in the second fine-tuning stage,
making the model focus more on the original
dataset than on the NLPAug data.

Experimenting with different language models.
Additionally, we experimented with different
pre-trained language models, namely BERT
(Two-stage #1) and RoBERTa (Two-stage #2). As
seen in Table 4, ELECTRA outperforms both
RoBERTa and BERT by 7.47% and 13.92%,
respectively, of the F1 score, which illustrates the
strong generalizability of ELECTRA. Our findings
agree with (Anaby-Tavor et al., 2020; Kumar et al.,
2020), who demonstrate that generative models are
suitable for data augmentation.

Error Analysis. By manually inspecting the wrong
predictions generated by our proposed top three per-
forming models (UU-Tax, multi-task fine-tuning,
and data-enriched fine-tuning) we can observe that
UU-Tax achieves the smallest percentage of incor-
rect predictions on both seen and unseen patterns,
as observed in Figure 3. This shows that the pro-
posed two-stage fine-tuning (UU-Tax) can learn
better and generalize better than multi-task fine-
tuning and data-enriched fine-tuning. In addition,
we also noticed that proper names were the cause of
many misclassifications. One possible mitigation to
overcome this error is to create an improved model

7The NLPAug ‘Substitution’ dataset is composed of 5568
instances all labeled ‘1’, making 67.98% of the NLPAug data
to have a ‘1’ label.
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Figure 3: Sub-task 1: Percentage of incorrect predic-
tions for all patterns in the test dataset, for the top three
preforming models: UU-Tax, Multi-task fine-tuning and
data-enriched fine-tuning.

to envision proper names appearing in a sentence
as hyponyms of the preceding or the subsequent
noun appearing in the same sentence.

5.2 Sub-task 2: Regression

Language Model Rho (ρ)

English USE + SVR 0.478
French USE + DT -0.059
Italian USE + LR 0.246
Average 0.221%

Table 5: Sub-task 2: UU-Tax submission results that
achieved the highest score averaged over the three lan-
guages, out of the three submissions. ρ is Spearman’s
rank correlation coefficient.

As explained in Section 3.2, USE was employed
for all three languages to obtain pre-trained word
embeddings; we used SVR, DT, and LR regressors
for English, French and Italian, respectively. We
came in 5th in sub-task 2 out of 17 teams by achiev-
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Language Model

Baseline BERT BERT + Trans USE + LR USE + KNR USE + DT USE + SVR

English 0.247 -0.068 -0.027 -0.175 0.235 0.118 0.478*
French 0.230 -0.075 -0.027 0.207 0.103 -0.059* 0.030
Italian 0.370 0.047 0.150 0.246* 0.081 0.171 0.137

Table 6: Sub-task 2: Rho (ρ) scores of different regression models that we experimented. Models that were part of
the global score are marked with an * . Baseline is TF-IDF + SVR; BERT is multilingual.

ing a global average of 0.221. It is worth noting that
we had a better performing French-language model
in the first submission than in our top submission.
The experiments we performed for sub-task 2 are
discussed in Section 5.2.1. The ρ coefficients for
the three languages in our best submission are re-
ported in Table 5.

5.2.1 Experiments
Table 6 shows the results of our submitted mod-
els along with other experiments that we carried
out using different regressors as explained in Sec-
tion 4.2. In addition, we also experimented using
multi-lingual BERT in two different settings; once
with only fine-tuning on the provided dataset of the
three languages and in the other setting, we aug-
mented the provided training data with translation
as in the translation process in sub-task 1.

In English our submitted USE + SVR model
achieved the highest ρ score of 0.478 amongst all
other models, surpassing the baseline by 94%. Al-
though in the French version our final submitted
model was, unfortunately, the model with the low-
est score, we were able to achieve the highest score
of 0.207 using LR, less than the baseline approach
by ∆ρ = 0.023. While in Italian, our submitted
model was our highest rho score achieved of 0.246
which is ∆ρ = 0.123 lower than the baseline. We
infer from the fact that our model performed badly
on French and Italian that USE is better optimized
for English language.

5.2.2 Ablation Study and Error Analysis
Pre-trained language models did not perform well.
We attribute this to the very limited training
size of sub-task 2: only four different patterns
made up the training data. The deployment of
data augmentation—translation—to multi-lingual
BERT was able to improve the performance on all
three languages by more than 50%, which confirms
our hypothesis that the limited pattern in the pro-
vided training set highly affected the performance

of the pre-trained language model. This is sup-
ported by a similar trend when experimenting with
different language models. Since this is a regres-
sion task, we were not able to use the NLPAug tool
as the assigned score might be inaccurate after the
substitution and insertion operations.

There is no consistently best performing classi-
cal ML algorithm: unlike for Italian and French,
LR did not perform well on the English dataset,
and SVR outperformed all other regressors on the
English version. Interestingly, we see a consis-
tent pattern across the French and Italian versions,
showing that the LR regressor works best; we at-
tribute this to the lexical and grammatical similarity
between the French and Italian languages.

6 Conclusion

The limited size of the training dataset as com-
pared to the test set made it impossible to train
neural networks directly on the task. As a result,
we took advantage of pre-trained language mod-
els. Nonetheless, the robustness of language mod-
els is highly affected by the size and variance of
the downstream task data available for fine-tuning,
which causes the language model to fail to gener-
alize. Hereby, we relied upon data augmentation
techniques using a two-stage fine-tuning process
on ELECTRA. The first fine-tuning stage was car-
ried out using an augmented version of the dataset,
while in the second stage we used the translated
versions of the provided PreTENS training data in
addition to the original data. We ranked 3rd out of
21 teams in sub-task 1. For the second sub-task
we proposed a simple model by training an SVR
classifier with sentence embeddings obtained from
USE; we ranked 5th out of 17 teams.

As an extension for future work, both sub-tasks
could greatly benefit from adversarial training,
which has proven its success across various NLP
tasks in improving the model robustness and gener-
alization (Liu et al., 2020b; Yoo and Qi, 2021).
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I don't like music, I dislike it. 

I like handbags more than bracelets (1)
I liked handbags better than bracelets. 

Main Sentence (Label)Substitution Insertion

I definitely like handbags more than bracelets. 

He likes sadness more than logic. (1)

I do not like music , I prefer techno. (0)
I don't  like electronic music, I prefer techno.
I don't really like electronic music, I prefer techno.

I like seafood, and more specifically veal. (0)
I certainly like the seafood, and more specifically veal.
I like kinds of seafood, and more specifically veal.

He likes sadness more than anything.

I don't like music, I hate it.

I like seafood, and more specifically fish.
I like seafood, or more specifically fish.

He felt sadness more than anything.

But I do like handbags more than bracelets.

*

They love bags, more than bracelets.

He likes sadness more than just logic.
He probably likes sadness more than just logic.

*

*
*

Figure 4: Sub-task 1: Example of the output generated by both, substitution and insertion operations of the NLPAug
library. As explained in Section 3.1, for sentence with label 0, the substitution operation is not performed, this is
indicated using an * in the figure.
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Abstract
This paper describes our system submitted for
SemEval Task 3: Presupposed Taxonomies:
Evaluating Neural Network Semantics (Zam-
parelli et al., 2022). We participated in both
the binary classification and the regression sub-
task. Target sentences are classified according
to their taxonomical relation in subtask 1 and
according to their acceptability judgment in
subtask 2. Our approach in both subtasks is
based on a neural network BERT model. We
used separate models for the three languages
covered by the task, English, French, and Ital-
ian. For the second subtask, we used median
averaging to construct an ensemble model. We
ranked 15th out of 21 groups for subtask 1 (F1-
score: 77.38%) and 11th out of 17 groups for
subtask 2 (RHO: 0.078).

1 Introduction

The recognition of lexical relationships between
words and the corresponding generalization has
attracted increasing attention in computational lin-
guistics. Today, there already exist resources cover-
ing manually marked semantic relationships, e.g.,
taxonomic relations, such as the lexical database
WordNet (Miller, 1992) or the multilingual dictio-
nary and semantic network BabelNet (Navigli and
Ponzetto, 2010).

Luu et al. (2016) define taxonomic relations be-
tween two terms as an is–a relation. In such a
relation there is a hypernym, i.e., a supertype, and
a hyponym, i.e., a subtype. Both the supertype
and subtype are sets covering, in our task, certain
semantic categories. In a relation such as animal–
dog, the animal is the superordinate category and
the dog is the subordinate term. Furthermore, those
specific sets are included in a relation forming a spe-
cial hierarchy (Kay, 1971). As stated by Nguyen
et al. (2017), in such an is–a relation the supertype
necessarily implies the subtype, but not vice versa.

SemEval 2022 Task 3 is a taxonomy detection
and prediction task consisting of two subtasks: a

binary classification and a regression task, both
covering the languages English, French, and Ital-
ian.

We propose an approach based on the
transformer-based machine learning model BERT.
Since BERT is a bidirectional model producing
state-of-the-art results (Devlin et al., 2019), we
used this pre-trained model for our analysis. For the
three different languages, the corresponding BERT
models were used (Devlin et al., 2019; Polignano
et al., 2019; Martin et al., 2020).1

2 Task Description

In the present shared task (Zamparelli et al., 2022),
the taxonomic sentence structures in the given files
are composed of different artificially generated con-
structions enforcing presuppositions.

Table 1 shows example sentences provided in the
English test set. According to the task description
page, the French and Italian datasets are translated
versions of the English dataset that were slightly
adapted.

The argument nouns in the given files come
from 30 semantic categories including, among oth-
ers, dogs, birds, and mammals. The given word
sets already show broader and narrower categories
(mammals vs. dogs/birds). Nevertheless, as shown
in the examples in table 1, not all pairs of nouns
reflect such a superordinate–subordinate relation
(apple vs. cauliflower) as described by Nguyen
et al. (2017). Therefore, the taxonomies do not
only represent a direct is–a relation such that one
given nominal is the subcategory and the other one
is the supercategory. Thus, it has to be consid-
ered that human language consists of many argu-
ment and sentence structures that restrict such re-
lations. That means the sentence structures also
cover comparisons where both nouns come from

1The source code of our model is available at https:
//github.com/cicl-iscl/SemEval3.
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Construction Example
andtoo I like teaspoons, and mugs

too.
butnot I like cats, but not frogs
comparatives I like apples as much as

cauliflower.
drather I would rather have veal

than salmon.
except I like seafood, with the

only exception of salmon.
generally I like peaches, and more

generally fruits.
particular I like jewelry, and in partic-

ular necklaces.
prefer I do not like tiramisu, I pre-

fer broccoli.
type I like parrots, not other

types of birds.
unlike Unlike glass, PVC is often

mentioned in this text.

Table 1: Example sentences from subtask 1 with a binary
label 1 (i.e., acceptable).

the same broader category. This has also been cov-
ered in the work by Clarke (2012), who refers to
taxonomies as a framework represented in a hier-
archy where lexical counterparts or synonyms are
considered. Therefore, the given shared task comes
with a challenge different from only recognizing
the taxonomic relation—furthermore, the embed-
ding construction allowing or disallowing the given
relation had to be checked.

The participants were provided with two datasets
to work with the individual subtasks. The training
set for subtask 1 was composed of 5,837 sentences
for each language with binary labels representing 1
as an acceptable sentence and 0 as an unacceptable
sentence. This subtask covers the binary prediciton
of acceptability labels of each sentence given in the
test set with 14,560 samples. Subtask 2 consists of
the prediction of an average score on a seven-point
Likert scale for 1,009 sentences in the test set. The
original scores in the training set were annotated
by humans.

Figure 1 shows the scores assigned to the sen-
tences presented in the training set in subtask 2.
This figure only shows the scores averaged over all
annotators since per-annotator information is not
available.
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Figure 1: Distribution of the scores given to the sen-
tences from the training set of subtask 2 by annotators.

3 System Overview

We used pre-trained BERT (Devlin et al., 2019)
networks for subtasks 1 and 2. Separate models
were used for each of the languages, specifically,
the AlBERTo model (Polignano et al., 2019) was
used for Italian, BERT base uncased was used for
English, and the monolingual CamemBERT (Mar-
tin et al., 2020) model was used for French. The
BERT models are powerful and highly versatile
language models that possess the benefit of having
learned good representations of the language they
were trained on. This gives them a decisive edge
over using models that are trained exclusively with
the data provided for training as these pre-trained
models will, for example, have encountered and
learned representations for words that are not in the
training set but are in the test set, whereas a model
trained only on the training set will have trouble
dealing with these unfamiliar words. As such they
offer the opportunity for better generalization.

The bigger challenge of these tasks was not to
produce models that perform well on the limited
training data but to produce models that general-
ize well and do not merely overfit on the provided
data. To this end, standard deep learning regular-
ization techniques such as weight decay, dropout,
and model averaging were used; nonetheless, the
models performed much worse on the test data than
on the validation data. Actually producing mod-
els that perform better at generalizing would likely
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have required data augmentation and/or alternative
training routines.

The models were not shared between subtasks
1 and 2, meaning that while the same pre-trained
models were used for subtasks 1 and 2, the model
used for subtask 2 was not fine-tuned for subtask 1
and vice versa.

3.1 Subtask 1
For subtask 1, the sentences were tokenized us-
ing the tokenizers of the pre-trained BERT mod-
els. The BERT model was extended with one fully
connected hidden layer and an output layer. The
model was trained to perform the classification
task using cross-entropy loss, backpropagated us-
ing the Adamw optimizer (Loshchilov and Hut-
ter, 2017), which combines the Adam optimizer
(Kingma and Ba, 2017) with weight decay regu-
larization. Dropout was used for further regular-
ization. Gradient clipping by-norm was applied to
solve the exploding gradient problem. Thirty per-
cent of the data was used as a validation set, learn-
ing was terminated through early stopping with the
loss function as the stopping criterion.

3.2 Subtask 2
The model for subtask 2 is similar to the model for
task 1, again extending the BERT models with a
hidden layer and one output layer producing a sin-
gle number for the regression task. The output and
targets were normalized to be between zero and
one. The inverse transformation was then applied
to the model output to get the final output on the
original scale. The model was trained on seventy
percent of the training data using mean squared
error as the loss function. Dropout was used and
weight decay was applied through the AdamW op-
timizer. The training was terminated using early
stopping with the remaining thirty percent of the
training data used for validation. For this task, we
trained ten models per language, each with its own
training split of the data. The final prediction for
the test set was the median prediction of these mod-
els. We chose to use the median and not the mean
as it is less affected by outlier predictions.

3.3 Hyperparameters
Hyperparameters were determined using grid
search over a limited selection of plausible can-
didate values, including learning rate (1× 10−5 for
all models), the number of fully connected layers,
neurons per layer, and in the case of subtask 2 a

total It Fr En
Precision 0.75 0.73 0.77 0.74
Recall 0.80 0.73 0.89 0.80
F1 0.78 0.73 0.83 0.77

Table 2: Results for subtask 1. All scores are micro-
averaged over different constructions. The total scores
are also micro-averaged over the languages.

multiclass approach was also tested. For subtask
1 choosing bigger models, in the end, 2 hidden
layers with 512 neurons each were used, which
led to improvements on the validation set but may
have caused overfitting that negatively impacted
performance on the test set. For subtask 2, bigger
models did not perform better than small ones, and
as a result, the final models contained only a sin-
gle hidden layer with 16 neurons. The complete
hyperparameters are listed in appendices A and C.

4 Results

Unless stated otherwise, we analyzed, evaluated,
and visualized the results in R (R Core Team, 2020)
with the help of the packages caret (Kuhn, 2021),
dplyr (Wickham et al., 2021), ggplot2 (Wickham,
2016), plyr (Wickham, 2011), readr (Wickham and
Hester, 2020), stringr (Wickham, 2019), tikzDevice
(Sharpsteen and Bracken, 2020), tm (Feinerer et al.,
2008), and xtable (Dahl et al., 2019).

4.1 Subtask 1

The test data contains 14,560 sentences per lan-
guage. Table 2 shows the results of the evalua-
tion for each language. Out of the 18 participating
teams (and three additional teams who only sub-
mitted results for the English subset), the KaMiKla
models ranked 15th in the overall competition and
the Italian part and 12th and 16th in the French and
English portion, respectively.

The highest overall score in the competition was
0.94, an F1 measure of 0.93 for Italian and French,
and 0.97 for English. The trivial baseline that used
n-grams as features reached a global score of 0.73.
The F1 score for the Italian model is 0.68, 0.76 for
French, and 0.73 for English.

After the evaluation phase ended, the test sets
were published containing an additional label that
denoted the syntactic construction used in the re-
spective sentence. Table 1 illustrates examples of
what the labels mean. Further analysis revealed that
the type of construction had an enormous effect on

284



the performance of the KaMiKla models. Figure 2
gives an overview of this. For the detailed evalua-
tion metrics for each language by construction, see
Appendix B.

The KaMiKla models performed with an F1
score in a range between 0.86 and 0.97 across
all languages for butnot, comparatives,
drather, prefer, and andtoo constructions
which made up approximately 42.3% of the test
dataset. These scores are about what we expected
from performance on the validation set.
except, particular, and unlike con-

structions show stark differences in performance
between languages. In all three cases, the French
model achieves much better results than the En-
glish and Italian ones, which will be discussed in
more detail later. Furthermore, the models per-
formed poorly on type constructions across all
languages, only overshadowed by scores close to 0
for generalizations.

4.1.1 except

Sentences containing except constructions made
up approximately 12.9% of the test data. Especially
the Italian model seemed to have trouble classify-
ing exceptions correctly. For example, it gives the
sentence Adoro le verdure, eccetto le carote.2 the
label “0” even though it is a semantically flawless
Italian sentence. The problem seems to be the re-
call rather than precision. While a score of 0.82
is not much lower than the precision of the pre-
viously mentioned constructions, the recall score
of 0.31 shows that the model could not accurately
predict the taxonomic relations in a sentence con-
taining an exception. This observation extends, if
less prominently, to English and French.

4.1.2 particular

particular sentences, which make up 13% of
the test data, show a striking difference in perfor-
mance between languages. The precision ranges
from 0.39 for the English model to 0.92 for the
French model.

4.1.3 unlike

Sentences containing unlike constructions (9%
of the test data) were still classified correctly rela-
tively often by the French model, despite a recall
score of 0.63. The Italian and English models per-
formed much worse due to low recall. Interestingly,
the English model has an almost-perfect precision

2I love vegetables, except for carrots.

total It Fr En
MSE 3.72 2.88 5.29 2.97
RMSE 1.93 1.70 2.30 1.72
RHO 0.19 0.19 -0.01 0.06

Table 3: Results for subtask 2. All scores are micro-
averaged over different constructions. The total scores
are also micro-averaged over the languages.

of 0.99, while the Italian model only reached 0.49,
which shows the difference between the models
again.

4.1.4 type

About 13% of the test sentences contained type
constructions like I like fruits, an interesting type
of lemon. There is not much to say about them
other than that the models’ performance on them
was terrible. F1 measures range from 0.06 to 0.11
with very low recall (0.25 to 0.47) and even worse
precision (close to 0).

4.1.5 generally

Possibly the most surprising result is the utter con-
fidence with which the models misclassified gener-
alizations. Across languages, all evaluation metrics
are below 0.05 for sentences labeled generally.

4.2 Subtask 2

The top-performing models reached a Spearman
correlation of 0.81, 0.84, and 0.76 in Italian,
French, and English, respectively, yielding an over-
all score of 0.80. The KaMiKla models performed
much worse and ranked in 11th place with a global
rank of 0.08. Table 3 shows an overview of the
evaluation of the second subtask. Surprisingly, the
n-gram-based regression model serving as a base-
line ranked in 4th place with correlations of 0.34,
0.32, 0.27 in Italian, French, and English, respec-
tively, outperforming many submissions, including
the one present in this paper.

Similar to the first subtask, we analyzed these
results grouped by the used construction. Appendix
D contains the detailed analysis. The metrics con-
sidered are the mean squared error (MSE), the
root mean squared error (RMSE), and Spearman
correlation (RHO). The constructions of the sec-
ond subtask are a subset of the ones used for the
first one, with the generally label changed to
ingeneral. Figure 3 visualizes the root mean
squared errors of the second subtask grouped by
construction.
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Figure 2: An overview over the F1 scores the KaMiKla models reached in subtask 1, ordered by score.
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Figure 3: An overview over the root mean squared
error scores the KaMiKla models reached in subtask
2, ordered by score.

The difference in performance between construc-
tions is evident here as well. Interestingly, the
French regression model seemed to have more trou-
ble than its Italian and English counterparts, while
the French classification model outperformed the
other languages.

Another interesting comparison is that of the con-
structions. While the classification models failed
on type sentences, those are some of the most
successful sentences in subtask 2; this indicates
that the bad scores on some constructions are due
to fine-tuning and not some inherent difficulty the
BERT models have with understanding them. On
the other hand, this might be a side effect of the
models not performing very well in general.

5 Discussion

Our models performed considerably worse on the
test dataset than on the validation set, and these dif-
ferences vary across languages and constructions.
While we can’t determine for sure where this sig-
nificant drop in performance comes from, there are
some theories worth investigating.

Of course, one challenge (especially of the sec-
ond part) of the task is the scarcity of data. Subtask
1 contains 5,837 sentences in the training data per
language; and 14,560 sentences in the test set. For
subtask 2, there are 524 training sentences and
1,009 test instances in each language. Possibly, the
regression models performed unsatisfyingly simply
because there wasn’t enough training data avail-
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able.

We also wanted to investigate the inherent dif-
ferences between train and test data. Figure 4 com-
pares the sentence lengths of the train and test set,
grouped by language. There are huge differences
between the languages and, perhaps more impor-
tantly, between the train and test sets of the three
languages. The French training data contained sen-
tences of similar length to those in the test data
(mean of 8.94 for the test and 9.28 for the train-
ing set), and those sentences were generally longer
than those of the other two languages. The data
from the Italian test set seems to contain sentences
of more varied lengths than the training set.

The data of the second subtask show a similar
discrepancy between training and test sentences.
The sentences from the test data are longer on av-
erage than those from the training data in all lan-
guages. The lengths also seem to be more variable
in the test set, possibly due to the higher number
of sentences. The gap between the input sentences
could have led to finetuning not remarkably im-
proving the performance of the models.

We furthermore looked at the distribution of dif-
ferent types of constructions in more detail. There
were no construction labels for the training data,
so we trained a simple Naive Bayes classifier on
the tf-idf-transformed test sentences in Python us-
ing pandas (pandas development team, 2022) and
scikit-learn (Pedregosa et al., 2011). Because of
the simple structure of the input sentences and a
cross-validation score of 100%, we will assume
the construction labels to be accurate in further
discussion.

Figures 5 and 6 compare the distributions of the
construction labels in train and test sets of subtask 1
and 2, respectively. There are once again huge dif-
ferences between training and test set. Notably, the
training data does not contain a single unlike sen-
tence. Despite that, the models did not necessarily
perform worse on this type of construction. In total,
it does not seem like the distribution of construction
types in the training data influenced model perfor-
mance much at all. There are instances of models
performing inadequately on frequent constructions
in the training data, like type constructions in the
first subtask. However, drather constructions
were often classified correctly despite the scarcity
of training sentences.

6 Conclusion

In this work, we discussed an approach to model-
ing taxonomic relationships using pre-trained lan-
guage models, namely AlBERTo (Polignano et al.,
2019), BERT (Devlin et al., 2019), and Camem-
BERT (Martin et al., 2020) in the context of the
SemEval Task 3 of the year 2022. The KaMiKla
group participated in both the classification and
the regression subtask. While the performance of
the models was overall unsatisfying, further anal-
ysis revealed that the type of taxonomic relation
that the words in a given sentence severely affected
how well the models did. While the reason for this
remains unclear, it might be interesting to tailor
the finetuning of the BERT-based model to specific
constructions or combine it with a classifier that
classified the input sentences according to the type
of taxonomic relation.
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A Hyperparameters For Subtask 1

Table 4 shows the hyperparameters used in subtask
1 for the different languages.

B Results For Subtask 1

Tables 5, 6, and 7 show the performance metrics of
the BERT-based models in the classification task.
There are considerable differences between con-
structions as well as between languages.

C Hyperparameters For Subtask 2

Table 8 shows the hyperparameters used in subtask
2 for the different languages.

D Results For Subtask 2

Tables 9, 10, and 11 show the metrics for the re-
gression task.
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Batch Size Learning Rate Max. Len. Sent. Patience Hidden Layers
Number Size

English 32 1× 10−5 15 5 2 512
French 32 1× 10−5 20 5 2 512
Italian 32 1× 10−5 15 5 2 512

Table 4: Hyperparameters used in subtask 1.

total andtoo butnot comp. drather except generally particular prefer type unlike
Precision 0.74 0.86 0.93 0.93 0.94 0.85 0.01 0.39 0.88 0.06 0.99
Recall 0.80 1.00 0.99 0.99 1.00 0.65 0.01 0.62 0.98 0.40 0.09
F1 0.77 0.93 0.96 0.96 0.97 0.74 0.01 0.47 0.93 0.10 0.16

Table 5: Metrics for the English sentences in subtask 1, grouped by construction.

total andtoo butnot comp. drather except generally particular prefer type unlike
Precision 0.77 0.90 0.95 0.94 0.95 0.94 0.01 0.92 0.90 0.06 0.96
Recall 0.89 0.98 1.00 0.99 1.00 0.76 0.01 0.79 0.98 0.47 0.63
F1 0.83 0.94 0.97 0.97 0.97 0.84 0.01 0.85 0.94 0.11 0.76

Table 6: Metrics for the French sentences in subtask 1, grouped by construction.

total andtoo butnot comp. drather except generally particular prefer type unlike
Precision 0.73 0.83 0.92 0.92 0.94 0.82 0.03 0.74 0.85 0.03 0.49
Recall 0.73 0.90 0.97 0.95 0.87 0.31 0.02 0.52 0.89 0.25 0.05
F1 0.73 0.86 0.95 0.93 0.91 0.45 0.02 0.61 0.87 0.06 0.09

Table 7: Metrics for the Italian sentences in subtask 1, grouped by construction.

Batch Size Learning Rate Max. Len. Sent. Patience Hidden Layers
Number Size

English 32 1× 10−5 15 5 1 16
French 32 1× 10−5 20 5 1 16
Italian 32 1× 10−5 15 5 1 16

Table 8: Hyperparameters used in subtask 2.

total andtoo butnot comparatives ingeneral particular type unlike
MSE 2.97 0.96 1.13 1.59 3.57 6.83 1.45 1.24
RMSE 1.72 0.98 1.06 1.26 1.89 2.61 1.20 1.11
RHO 0.06 -0.32 0.04 0.07 -0.28 -0.25 0.26 0.18

Table 9: Metrics for the English sentences in subtask 2, grouped by construction.

total andtoo butnot comparatives ingeneral particular type unlike
MSE 5.29 1.00 0.77 1.39 5.77 14.99 1.24 1.87
RMSE 2.30 1.00 0.88 1.18 2.40 3.87 1.11 1.37
RHO -0.01 0.43 0.19 0.35 -0.03 -0.29 0.25 0.38

Table 10: Metrics for the French sentences in subtask 2, grouped by construction.

total andtoo butnot comparatives ingeneral particular type unlike
MSE 2.88 1.03 1.90 2.32 2.71 6.05 1.79 1.69
RMSE 1.70 1.02 1.38 1.52 1.65 2.46 1.34 1.30
RHO 0.19 -0.21 -0.05 -0.28 -0.07 -0.00 -0.18 0.34

Table 11: Metrics for the French sentences in subtask 2, grouped by construction.
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Abstract

In the paper, we describe a unified system for
task 3 of SemEval-2022. The task aims to rec-
ognize the semantic structures of sentences by
providing two nominal arguments and to eval-
uate the degree of taxonomic relations. We
utilise the strategy that adding language pre-
fix tag in the training set, which is effective
for the model. We split the training set to
avoid the translation information to be learnt
by the model. For the task, we propose a uni-
fied model fine-tuned on the multilingual pre-
trained model, XLM-RoBERTa. The model
performs well in subtask 1 (the binary classi-
fication subtask). In order to verify whether
our model could also perform better in subtask
2 (the regression subtask), the ranking score
is transformed into classification labels by an
up-sampling strategy. With the ensemble strat-
egy, the performance of our model can also be
improved. As a result, the model obtained the
second place for subtask 1 and subtask 2 in the
competition evaluation.

1 Introduction

As we all know, the proposal of BERT(Devlin et al.,
2018; Vaswani et al., 2017), which is based on
masked language modeling, is a huge milestone
in the history of natural language understanding
(Peters et al., 2018; Schuster et al., 2019). Com-
pared with various language representation mod-
els, BERT successfully pushes the GLUE score
at 7.7 points absolute improvement(Devlin et al.,
2018). Soon, different types of language models
such as XLNet(You et al., 2019), RoBERTa(Liu
et al., 2019),mBert (Devlin et al., 2018; Radford
and Narasimhan, 2018) and XLM (Lample and
Conneau, 2019) are also proposed. Compared
with some strong monolingual models introduced
above, XLM-RoBERTa is more competitive on
the GLUE and XNLI benchmarks(Conneau et al.,
2019). There are lots of pretrained models pro-
posed in recent years, which are capable of learning

the implicit knowledge. Some works have proved
that the neural language model has learnt the im-
plicit linguistic knowledge and this knowledge can
significantly affect the predictions through fine-
tuning(Miaschi et al., 2020; Puccetti et al., 2021). It
has been believed that the pretrained models trained
on Wikipedia and other datasets already have some
implicit knowledge. Implicit knowledge could be
classified into two categories: the connection be-
tween two objects, and the implicit logic and syntax
behind the sentence. It means, we need to build a
model which is capable of verifying the rational-
ity and reliability of sentences, testing whether the
latent knowledge can be expressed explicitly.

Presupposed taxonomy is a kind of concept in
computational linguistics. Two arguments could
have several different taxonomy relationships. For
example, the sentence "I like piano, but not the
instrument" is a classic pattern which contains two
arguments. In the transition sentence, "piano" and
"instrument" have a taxonomic relation, so the con-
clusion could be drawn that the sentence is implau-
sible and unacceptable. Similarly, there are a set of
sentences that could have such contradiction in the
competition. The goal of the SemEval-2022 Task
3 (Zamparelli et al., 2022) is to recognize the pre-
supposed taxonomy relation between two nouns,
which could be a complex linguistic problem. In
order to obtain the skill, the model needs to un-
derstand the implicit meaning of the sentences as
well as whether the presupposed taxonomy relation
exists in one pair of entities.

ID Sentence Labels
5155 I like ham, but not fish. 1
2560 I like restaurants, and clerks too. 1
3711 I like jewlry more than skirts. 1
4481 I like scientists more than geneticists. 0
3104 I do not like seafood, I prefer salmon. 0

Table 1: Dataset Samples for subtask 1
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2 Task Description

Along the lines of ideas above, there are several
representative pretained-models in the competition.
To be specific, we tried commonly used pretrained
models including Bert, Roberta-large, and multi-
lingual language models like XLMR. At the same
time, we suspect that the former model can be gen-
eralized to subtask 2. The final ranking result sup-
ports our hypothesis strongly.

Subtask 1 is a binary classification task aiming
at predicting the acceptability of sentences (A(1)
VS UA(0)). There are two parameters that have the
presupposed taxonomy relation, followed by the
label "0"(the semantic relation is not acceptable) or
"1" (the semantic relation is acceptable). Note that
label "0" stands for the contradictory sentences, and
label "1" stands for the plausible sentence. Some
samples are shown in table 1, in which most of
them obey a similar pattern: "I like A, but not B" or
"I do not like A, I prefer B...", etc. The bold portion
shows the key entities in the sentence. It is obvious
that the taxonomies relation between two entities
stands for some implicit information, which should
be learnt by our model.

In this multilingual task, three languages
(French, Italian and English) are included. Ta-
ble 1 only presents the English samples and three
datasets express completely consistent arguments.
The same id indicates the same meaning in a differ-
ent language.

On the contrary, subtask 2 is a regression task
aiming at predicting the degree of Acceptance in
a seven Likert-scale. The only difference between
the dataset of subtask 1 and subtask 2 is the la-
bel. In subtask 2, the label(score) is a float number
between 1 and 7, which indicates the acceptable
degree of the sentence. Some English data samples
are shown in table 2. Note that the sentence with
higher score is more reasonable than the sentence
with lower one. For instance, the sentence "I like
seafood, but not crabs" sounds like a correct sen-
tence in daily life. But the sentence "I like beef, an
interesting type of caviar" is a contradictory sen-
tence without any doubt, because the beef is not a
caviar.

In addition, Table 3 provides the size of the train
and test set. Obviously, the size of dataset for sub-
task 2 is much smaller than that for subtask 1. So
it becomes important to expand the size of dataset
of subtask 2. There are two main subtasks in Pre-
TENS (Presupposed Taxonomies: Evaluating Neu-

ID Sentence Scores
261 I like beef, an interesting type of caviar. 1.09
440 I like trees more than grass. 5.64
207 I like shrubs, an interesting type of fir. 2.67
60 I like trees but not birches. 1.83
436 I like oaks more than grass. 5.83
104 I like seafood, but not crabs. 6.42

Table 2: Dataset Samples for subtask 2

ral Network Semantics).

Task Type Language Train Test
size size

Subtask 1 Classification
En 5840 14560
Fr 5840 14560
It 5840 14560

Subtask 2 Regression
En 526 1009
Fr 526 1009
It 526 1009

Table 3: Task Dataset Description

3 System

3.1 Data Process for subtask 1
Based on a suitable single model and adaptive fine-
tuning models which have learnt enough implicit
information, it becomes possible to express the
explicit knowledge(taxonomies) for a model.

The baseline model provided by competition
reaches accuracy at 0.8, which is an amazing result.
We also find the training set is extremely unbal-
anced in the proportion of positive and negative
samples for some patterns, as we can see in Table 9.
So we tried to adjust the proportion of those unbal-
anced patterns. However, the accuracy decreased a
lot after the adjustment. This result shows that the
model is actually learning the proportion of labels
in the dataset instead of the implicit information.
In order to solve the problem in the competition,
we need to choose some models which are capable
of learning implicit knowledge.

3.1.1 Language Tags
Considering the three languages in our competition,
we apply the prefix tag to indicate which language
the sentence is in. The XLM-RoBERTa is a multi-
lingual model so the input data consists of mixed
sentences in three languages.

As we can see from the figure, angle brackets
and language abbreviation is used as the uniform
prefixes. Specifically, <fr> stands for French, <en>
stands for English and <it> stands for Italian. The
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Figure 1: Ensemble classification models

Raw Sentence Language Tag New Sentence

I like jewelry more than skirts en <en>I like jewelry more than skirts.
J’ aime les bijoux plus que les jupes . fr <fr>J’ aime les bijoux plus que les jupes .
Amo i gioielli più delle gonne . it <it>Amo i gioielli più delle gonne .

Table 4: Adding Language Tags for sentences with the same id

strategy helps to provide some linguistic informa-
tion to the model artificially. Obviously, there are
only linguistic differences between sentences with
the same id, and their essential meanings are con-
sistent. Imagining the situation without artificially
added labels, there might be some difficulties in
identifying sentence pairs with the same id but in
different languages.

3.1.2 Dataset Split

We also apply the three-fold cross-validation in the
competition. After further fine-tuning, the model
has achieved good results on subtask 1. In the
task description chapter, we mentioned that the
same meaning is expressed in different languages
in the dataset, which can be told by ids. In other
words, sentences with same meanings in different
languages share the common id.

We find that sentences with the same meaning
might appear in the training set and the test set re-
spectively in a multilingual language model. So,
the model might learn the meaning of translation
which should be avoided in our tasks. Therefore, in
this section, we divide the data and put sentences

with the same ID into the same set to prevent the
model from learning the translation information.
With such treatment, it can be ensured that the
model learns implicit knowledge instead of cheat-
ing with translation.

3.2 A Unified Model for Subtask 2

The Situation becomes difficult in subtask 2. Con-
sidering the high similarity between datasets used
by subtask 2 and subtask 1, and the size of the
latter is much smaller than the former, it is impor-
tant to use the data augmentation. In order to get
good performance with the model in subtask 1, we
make some efforts to transform the data provided
in subtask 2 by using the method used above.

In other words, our method can be easily trans-
ferred from subtask 1 to subtask 2, which not only
reduces the workload and training time but also
makes the prediction more reliable because of the
extension of datasets.

From table 1 to 3 which describes the sample
and size of datasets, the label in subtask 2 are real
values from 1 to 7. The label is a score used to
assess the reasonableness of the sentence. Com-
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Figure 2: Ensemble regression models

paring tags in two subtasks, it is easy to imagine if
sampling with the principle of score as probability,
the meaning of the original score could be involved
in the new label.

For each sentence from raw dataset, the score
would be transformed to label according to the
sampling possibility.

Sampling Probability(sp) is defined in the Eq
1, which depends on the ub(upper-bound of score)
and lb(lower-bound of score).

sp =
score− 1.0

ub− lb × 100% (1)

The up-sampling strategy is described in figure 2,
which uses the expansion coefficient equalling 3 as
an example. As for the sentence "I like trees, an
interesting type of oak.", the sampling probability
could be calculated according to the formula 1,
which equals 1/3. Consequently, the raw sentence
is duplicated to three same sentences with the label
(1, 0, 0), which comes from the sampling strategy.

In data processing, we choose 10 as the expan-
sion coefficient while converting the original score
into sampling probability. 10 times the size of
datasets, an expansion dataset is obtained in this
way.

We use the new expansion dataset to train the
model from subtask 1. At the same time, since
there are three models obtained from subtask 1, and
we split the new dataset into two copies, obviously
3× 2 = 6 models have been used for the ensemble.

Considering the lack of regression data, we make
some attempts to up-sampling the regression data.
More specifically, the difference between classifi-
cation data and regression data is the label. The
former could be an integer while the latter could be
a float between 1 and 7.

Apart from the label, the sentence have the sim-
ilar pattern and entity. So it might be effective to
reuse the model in subtask 1. Each original sen-
tence is duplicated to ten same sentences with the
label which might be 0 or 1 depending on the possi-
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Model Train Set Dev Set Dev Acc Global Rank

CLS_Model1 CLS_fold1, 2 CLS_fold3 0.9426 88.4185
CLS_Model2 CLS_fold2, 3 CLS_fold1 0.9350 -
CLS_Model3 CLS_fold1, 3 CLS_fold2 0.9140 -

Ensemble - - - 92.7968

Table 5: Ensemble Strategy for subtask 1

Model EN EN FR F1 FR IT F1 IT
Macro F1 Macro F1 Macro F1

CLS_Model1 89.0199 89.0200 89.1187 89.1190 87.1169 87.1170

Ensemble 93.0410 92.5830 93.0116 92.5470 92.3388 91.8020

Table 6: Detailed Results of ensemble models for subtask 1

bility. Obviously, the possibility and the regression
score is linearly and positively correlated. After
obtaining an expanded dataset which has 10 times
the size of original dataset of subtask 2, our model
could learn some new knowledge in training.

3.3 Ensemble

Through the step described in section 3.1.2, we ob-
tained six models for subtask 1. According to the
requirements described in the competition, subtask
2 would be evaluated by the Spearman correlation
coefficient, which is a metric used to express distri-
bution trends. In other words, when a distribution
is appropriately scaled, the magnitude of the Spear-
man correlation coefficient would remain the same.
This inspires us to directly superimpose the results
of the six models for ensemble. To keep the final
result size between 1 and 7, we shift the score of
the result by 1.

For subtask 1, the dataset is split into three folds
for cross-validation and then three models are ob-
tained. Since the target of subtask 1 is to figure out
whether the sentence is plausible or not, we use the
voting strategy for ensemble. Specifically, three
models could have three decisions about the label
of one sentence. Naturally, the voting ensemble
strategy could be applied in the stage. The final
result would be the majority decision.

For subtask 2, the situation is different. It has
been cleared that there are three models in the clas-
sification task. Based on each model, we use the
strategy of up-sampling to expand our dataset and
transform it into the classification one.

4 Results and Analysis

Table 5 and Table 6 illustrate the ensemble strategy
and ensemble results for subtask 1. The accuracy
is the metric to evaluate the result in subtask 1.
The results of subtask 2 are illustrated in table 7
and table 8, and the metric is Spearman. Because
of the relative measurement of the metric, there
are some small shifts in our predictions actually
bring no influence to the value of Spearman. Those
results indicate that our model has an outstanding
improvement compared to baselines.

Except for the experiments introduced above,
there were still a lot of directions we tested, but not
all of them were useful.

1) From the perspective of the pattern, we found
the positive and negative patterns are unbalanced
in the dataset. From the Table 9, there are some
examples that appear in the dataset. The number of
positive samples and negative samples is very un-
balanced. So, we balanced the dataset and trained
the model. However, this strategy was useless for
our model, and it even decreased the accuracy of
the model. We suspect that the test set is also an
unbalanced dataset.

2) We tried to extract the entities of each sample,
and concatenated the embeddings of entities and
embeddings of "<CLS>". Eq 2 shows the change
between origin embedding and the new embedding.

[EA,EB]− > [CLS,EA,EB] (2)

Then, we classified it with a binary classifier (Soft-
max). But there were no improvements in the per-
formance.

295



Model Base Train Dev Dev
Model Set Set Spearman

FT_Model1 CLS_Model1 Reg_fold1 Reg_fold2 0.6871
FT_Model2 CLS_Model1 Reg_fold2 Reg_fold1 0.7429
FT_Model3 CLS_Model2 Reg_fold1 Reg_fold2 0.7038
FT_Model4 CLS_Model2 Reg_fold2 Reg_fold1 0.7382
FT_Model5 CLS_Model3 Reg_fold1 Reg_fold2 0.7242
FT_Model6 CLS_Model3 Reg_fold2 Reg_fold1 0.6993
Ensemble - - - 0.7582

Table 7: Ensemble Strategy for subtask 2

Model Global Rank RHO(IT) RHO(FR) RHO(EN)
FT_Model1 0.6871 0.7376 0.7986 0.6917
Ensemble 0.7572 0.7591 0.8050 0.7060

Table 8: Detailed Results of Ensemble Fine-tuned Model for subtask 2

3) We tried to extract all entities and capture
all the related contents on Wikipedia and trained
our language model based on the dataset. But
it only brought limited improvements. Because
Wikipedia is a very common dataset, the language
model might be trained on the dataset before.

Pattern Label 0/1

He trusts a , except his b. 0 / 12
He does not trust a , he prefers his b. 12 / 0
He likes a , an interesting type of b . 0 / 9

Table 9: Some patterns with unbalanced ratio of positive
samples with negative samples.

5 Conclusion

In the experiment, we propose a solution for two
subtasks of SemEval2022 Task 3. We illustrate
the importance of data preprocessing. The data
split and the use of the language tags both have a
positive influence on the model performance. Con-
sidering the similarity of the dataset and the good
performance of the model in subtask 1, we also
explore the feasibility of a unified model. The uni-
fied model has great performance on both subtask
1 and subtask 2. In the future, there are some other
directions that could be tried in the following explo-
rations. We find that the model trained on a large
dataset performs well, so, exploring large models
might be an interesting direction.
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Abstract
This paper presents an overview of Task 4 at
SemEval-2022, which was focused on detect-
ing Patronizing and Condescending Language
(PCL) towards vulnerable communities. Two
sub-tasks were considered: a binary classifica-
tion task, where participants needed to classify
a given paragraph as containing PCL or not,
and a multi-label classification task, where par-
ticipants needed to identify which types of PCL
are present (if any). The task attracted 77 teams.
We provide an overview of how the task was
organized, discuss the techniques that were em-
ployed by the different participants, and sum-
marize the main resulting insights about PCL
detection and categorization.

1 Introduction

The study of unfair, misleading or offensive lan-
guage has attracted the interest of many scholars
from the NLP research community. Most rele-
vant tasks in this context focus on explicit, aggres-
sive and flagrant phenomena, such as fake news
detection or fact-checking (Conroy et al., 2015;
Nakov et al., 2018; Atanasova et al., 2019; Barrón-
Cedeno et al., 2020); detecting propaganda tech-
niques (Da San Martino et al., 2020); modeling
offensive language (Zampieri et al., 2019, 2020)
identifying hate speech (Basile et al., 2019); and ru-
mour propagation (Derczynski et al., 2017). How-
ever, there also exist subtler but equally harmful
types of language, which have received less atten-
tion by the NLP community, and which, due to
their subtle nature, we can expect to be more diffi-
cult to detect. This is the case, among others, for
Patronizing and Condescending Language (PCL),
which was the focus of Task 4 at SemEval-2022.

An entity engages in patronizing or condescend-
ing communication when its use of language re-
veals a superior attitude towards others. These
attitudes, when normalized, routinize discrimina-
tion and make it less visible (Ng, 2007). Further-
more, the use of PCL is often unconscious and

well-intended, especially when referring to vulner-
able communities (Wilson and Gutierrez, 1985;
Merskin, 2011). This good will can make PCL
especially harmful, as the audience receives this
discriminatory language with low defense and is
often unaware of its effects.

Research in sociolinguistics presents PCL as a
subtle, often unconscious but harmful and discrim-
inative kind of language (Mendelsohn et al., 2020).
It creates and feeds stereotypes (Fiske, 1993),
which result in greater exclusion, rumour spread-
ing and misinformation (Nolan and Mikami, 2013).
PCL also tends to strengthen power-knowledge re-
lationships (Foucault, 1980), calling for charitable
action instead of cooperation and presenting those
who can help as saviours of those in a less privi-
leged position (Bell, 2013; Straubhaar, 2015). Fur-
thermore, PCL tends to conceal who is responsible
for very deep-rooted societal problems, sometimes
by implicitly or explicitly blaming the underprivi-
leged communities or individuals for their situation,
and often involves ephemeral and simple solutions.
(Chouliaraki, 2010). The use of PCL by privileged
communities has also been related to the so-called
pornography of poverty (Nathanson, 2013), a com-
munication style that depicts vulnerable situations
with a pity discourse to move a target audience to
charitable action and/or compassionate attitudes.

While the negative impact of PCL, both in so-
cial interactions and in corporate and political dis-
course, has been extensively studied in the social
sciences, it still remains an under-explored phe-
nomenon in NLP. Nonetheless, we believe that PCL
detection offers a number of important challenges
for NLP research, which warrant more work in
this area, especially given the societal benefits that
would result. For instance, given its subtle and
subjective nature, we can expect PCL detection to
be harder than tasks that are focused on more fla-
grant phenomena. Moreover, PCL detection often
involves the need for an implied understanding of
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human values and ethics, which requires a form
of commonsense reasoning that NLP models are
likely to struggle with. In this context, we have
organized SemEval 2022 Task 4: Patronizing and
Condescending Language (PCL) Detection. This
task has attracted more than 300 participants, orga-
nized in 77 teams, during the official competition.
The competition remains open on CodaLab to en-
courage further research on this topic1.

2 Related Work

As already mentioned in the introduction, PCL has
been extensively studied within the context of so-
ciolinguistics (Margić, 2017; Giles et al., 1993;
Huckin, 2002; Chouliaraki, 2006). Within NLP,
however, modelling of patronizing discourse has
only received limited attention. As a notable excep-
tion, Wang and Potts (2019) compiled a corpus of
Reddit comments, which were annotated as using
a condescending tone or not. Note that in contrast
to our SemEval task, their work did not specif-
ically focus on vulnerable communities. In our
previous work (Perez-Almendros et al., 2020), we
introduced Don’t Patronize Me!, which is, to the
best of our knowledge, the first annotated corpus of
PCL towards vulnerable communities. This corpus
was used as the training data for the SemEval task.
Some other works have studied types of discourse
that are highly related to condescension, including
Sap et al. (2020), who studied how certain uses
of language indicate power relations, Mendelsohn
et al. (2020), who discussed the dehumanization of
minorities through language and Zhou and Jurgens
(2020), who investigated how some expressions of
condolences and empathy interplay with authorita-
tive voices in online communities.

3 Dataset

The seed material for this task is Don’t Patronize
Me! (DPM), an annotated dataset with Patronizing
and Condescending Language towards vulnerable
communities, which was introduced in our previ-
ous work (Perez-Almendros et al., 2020). This
dataset contains 10,469 paragraphs, which were
used as the training set for the SemEval task. To
create the test set for this task, we annotated 3,898
additional paragraphs, following the same process.
All paragraphs were extracted from news stories
from media in 20 English speaking countries, origi-

1https://competitions.codalab.org/competitions/34344

nally provided by the News on Web (NoW) corpus2

(Davies, 2013).
We used a keyword-based strategy to collect

paragraphs, focusing on texts in which vulnera-
ble communities are mentioned (e.g., refugees or
homeless). The data was annotated by three anno-
tators, with backgrounds in communication, media
and data science. For the main dataset, two anno-
tators annotated the instances with the following
labels: 0 (not PCL), 1 (borderline), and 2 (PCL),
achieving an inter-annotator agreement (IAA) of
41% for the raw annotations and 61% when remov-
ing borderline cases. For all the total disagreements
(paragraphs labeled 0 by one annotator and 2 by
the other), the third annotator acted as a referee,
providing a final label. The final dataset uses a
scale from 0 to 4, indicating the level of agreement
between the annotators. Labels 0 and 4 correspond
to clearly not condescending and clearly conde-
scending (i.e. both annotators assigned 0 or both
assigned 2), label 2 means that both annotators
marked that paragraph as a borderline case (1-1),
and labels 1 and 3 correspond to cases where either
one of the annotators assigned the borderline label
(0-1 or 1-2), or there was a disagreement that was
resolved by the third annotator. Each positive ex-
ample from the dataset is furthermore labelled with
one or more PCL categories. We briefly recall the
meaning of these categories.

Unbalanced power relations (UNB): the author
entitles themselves as being in a privileged sit-
uation, considering themselves as saviours of
those in need (Bell, 2013; Straubhaar, 2015).

Shallow solution (SHAL): a charitable, superfi-
cial and short-term action is presented as life
changing.

Presupposition (PRES): stereotypes and clichés
are used to describe a community, relying on
assumptions without having all the informa-
tion.

Authority voice (AUTH): the author stands as
spokesperson and defendant of the commu-
nity or individual and/or allows themselves
to give expert advice about how to overcome
underprivileged situations.

Metaphor (MET): the author describes a diffi-
cult situation in a more poetic way through

2Used with permission from the author.
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Cat. Examples

UNB They deserve another opportunity or You can
make a difference in their lives.

SHAL Raise money to combat homelessness by curling
up in sleeping bags for one night.

PRES Elderly or disabled people who are simply unable
to evacuate due to physical limitations.

AUTH Accepting their situation is the first step to having
a normal life.

MET Poor children might find more obstacles in their
race to a worthy future.

COMP [...] discarded in the streets of Europe [...]

MERR Her mom is disabled and living with her gives her
strength to face everyday’s life or Refugees are
wonderful people.

Table 1: Examples of the different PCL categories.

figures-of-speech such as metaphors and eu-
phemisms.

Compassion (COMP): the message uses flowery
wording to reflect on the vulnerability or
toughness of the situation, raising a feeling
of pity among the audience.

The poorer, the merrier (MERR): the author
praises the vulnerability, granting positive
values to all members of a vulnerable
community and showing their admiration.

Table 1 contains examples for each of these cate-
gories. The average of the IAA among categories
is 57.43%3. It is worth mentioning that the distri-
bution of labels is highly unbalanced in our dataset,
with only around 9.5% of the inputs being labeled
as containing PCL (positive cases). For the cate-
gories, the distribution is as follows: 73% UNB,
19% SHALL, 23.1% PRES, 23.6% AUTH, 48.7%
COMP, 20.1% MET and 4.1% MERR.

4 Task Description

The aim of the proposed task is to identify the pres-
ence of PCL (Subtask 1), and to identify the cate-
gories of PCL that are present in a given paragraph
(Subtask 2).

Training data The 10,469 annotated paragraphs
from the DPM corpus were provided as training
data. To frame Subtask 1 as a binary classifica-
tion problem, paragraphs with labels 0 and 1 were
considered as negative examples, while paragraphs

3See Perez-Almendros et al. (2020) for further details.

with labels 3 and 4 were considered as positive
examples of PCL. The original labels on the scale
from 0 to 4 were also made available. The 993
positive examples in the training data are labelled
with the corresponding PCL categories. Span an-
notations for these categories were also provided.

Test data A total of 3,898 paragraphs were re-
leased as test set, with the same format and meta-
information as the training set, but without labels
and span annotations. Paragraphs initially labelled
as 2 were excluded from the test data, as these
correspond to borderline cases.

External resources We welcomed the use of ex-
ternal resources in this task. Participants were en-
couraged to explore transfer learning or data aug-
mentation techniques with a variety of source cor-
pora and language resources.

Evaluation System submissions were ranked in
the two subtasks as follows: Subtask 1: F1 score
for the positive class. Subtask 2: Macro-averaged
F1 over all categories.

4.1 Participation Framework

The task was hosted on CodaLab4, with partici-
pants needing to register and submit their results
through the platform. The competition involved
the following three phases:

• Practice phase: The 10,469 paragraphs from
the training data were split into 8,376 training
paragraphs and 2,095 validation paragraphs.
This was done to allow participants to com-
pare their systems on a public leader board.
The training-validation split respected the nat-
ural distribution of labels in the data.

• Evaluation phase: This was the official evalu-
ation phase for the SemEval competition. The
test data was released and the leader board for
this phase remained hidden to prevent partic-
ipants from fine-tuning their systems on the
test data. Each participant was allowed two
different submissions for each subtask.

• Post-evaluation phase: The learderboard for
the evaluation phase and the official ranking
for each subtask were published, as the Sem-
Eval competition ended. Participation in the
SemEval task is no longer possible, but the

4https://competitions.codalab.org/competitions/34344
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competition remains open on CodaLab to al-
low participants to re-test and further improve
their systems.

5 Results and Discussion

A total of 77 different teams participated in the
evaluation phase of our task, with 145 valid sub-
missions for Task 1 and 84 for Task 2. For the com-
petition, we allowed a maximum of 2 submissions
per team. A total of 42 out of 77 teams outper-
formed the baseline for Subtask 1, while 37 out of
48 outperformed the baseline for Subtask 2. Ta-
bles 2 and 3 present the rankings for Subtask 1
and 2, respectively, where we have only listed the
best performing system for each team. For Subtask
1, the best-performing systems used the following
strategies:

Team PALI-NLP used an ensemble of pre-trained
RoBERTa models (Liu et al., 2019). While
training, they applied grouped Layer-Wise
Learning Rate Decay, a variant of LLRD
(Howard and Ruder, 2018), based on the idea
that different layers capture different types of
information (Yosinski et al., 2014). By opti-
mizing the learning rate in different layers, the
model captures more diverse and fine-grained
linguistic features of PCL. To tackle the class
imbalance in the dataset, they use weighted
random samples (Hashemi and Karimi, 2018)
to emphasize the positive instances.

Team STCE created adversarial examples to train
an ensemble model of RoBERTa and De-
BERTa (He et al., 2020). They also used
weighted samples to address the class imbal-
ance and explored different loss functions, es-
tablishing Cross Entropy and the contrastive
loss algorithm NT-Xent introduced by Chen
et al. (2020) as first and second loss function,
respectively.

For Subtask 2, the best-performing systems used
the following strategies:

Team BEIKE NLP participated with a system
based on prompt learning (Petroni et al., 2019;
Brown et al., 2020). They first reformulate
PCL detection as a cloze prompt task and then
fine-tune a pre-trained DeBERTa model.

Team PINGAN Omini-Sinitic proposed an en-
semble model which used prompt training and

a label attention mechanism, by adding a new
label-wise attention layer ((Dong et al., 2021;
Vu et al., 2021). Their system over-samples
the positive examples. They also use a form of
transfer learning from Subtask 1 to Subtask 2,
by pre-training on Subtask 1 and using the re-
sulting model as the starting point for training
a model for Subtask 2.

For both sub-tasks, unsurprisingly, most systems
rely on pre-trained language models, although a
few teams have used CNN, LSTM, SVM or Logis-
tic Regression based systems (XU, PC1, I2C, Ryan
Wang, McRock, Amrita_CEN, SATLab and Team
Lego, among others), or an ensemble of some of the
above together with language models (UTSA_NLP,
Taygete). Although the use of language models
usually outperformed other systems in this task,
some LSTM models, such as the one submitted by
team Xu, achieved competitive results.

The ensembling of different models has also
been a popular technique. Other strategies that
proved successful include adversarial training, data
augmentation and multitask learning. In the fol-
lowing, we summarize how these techniques have
been used by the different systems.

Ensemble learning Ensembling different models
has previously been found useful for text classifi-
cation (Nozza et al., 2016; Kanakaraj and Guddeti,
2015; Fattahi and Mejri, 2021). Accordingly, en-
sembling was one of the most common strategies
for improving on baseline PCL detection methods.
Most of the teams combined different language
models (e.g. PALI-NLP, STCE, PINGAN Omini-
Sinitic,PAI_Team, LRL_NC, SSN_NLP_MLRG,
ASRtrans, amsqr, UMass PCL). Considering the
choice of language models, the most successful
systems either used RoBERTa, DeBERTa or an en-
semble which included the former ones and other
models. For instance, these models were used by
the best performing teams for both subtasks, i.e.
PALI-NLP and STCE for Subtask 1 and BEIKE
NLP and PINGAN Omini-Sintic for Subtask 2. To
fine-tune the language models effectively, incorpo-
rating a contrastive loss function, in addition to the
standard cross-entropy loss, has also proved useful.
Finally, it should be noted that the combination
of language models with different types of neural
networks (Taygete, UTSA_NLP) has also proven
useful.
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TEAM UNB SHAL PRES AUTH MET COMP MERR Avg

1 BEIKE NLP 65.6 52.9 36.9 40.7 35.9 49.2 47.1 46.9
2 PINGAN Omini-Sinitic 59.7 53.1 41.7 43.4 42.7 51.3 15.4 43.9
3 PAI_Team 57.6 45.2 35.2 39.4 38.4 44.5 26.7 41.0
4 stce 62.2 54.8 38.1 32.8 33.3 51.0 8.7 40.1
5 PALI-NLP 61.8 54.1 37.7 32.8 32.8 51.2 8.7 39.9
6 Leo_team 57.3 47.0 28.8 36.1 34.8 47.4 27.0 39.8
7 Anonymus 59.9 49.1 38.5 37.1 35.0 48.6 8.3 39.5
8 ymf924 61.6 54.1 36.8 31.3 33.3 50.0 8.7 39.4
9 bigemo 62.5 56.1 38.0 24.3 31.3 49.4 8.7 38.6

10 holdon 62.2 56.1 32.9 23.1 33.3 48.7 8.7 37.9
11 cnxup 60.2 53.3 30.6 24.1 40.0 48.1 8.7 37.8
12 Taygete 59.7 45.8 33.3 21.8 30.4 53.6 18.8 37.6
13 DH-FBK 52.5 36.2 27.0 37.7 31.9 46.0 30.3 37.4
14 abcxyzw 60.7 53.3 34.5 21.8 32.8 50.0 8.3 37.4
15 nowcoder 59.8 50.0 32.2 22.8 39.4 47.8 8.3 37.2
16 GUTS 55.6 47.4 24.0 34.3 25.6 44.4 27.6 37.0
17 BLING 55.1 38.9 23.4 29.0 31.5 50.9 26.7 36.5
18 UMass PCL 53.9 42.4 29.1 30.7 33.3 40.8 23.5 36.3
19 CS-UM6P & ESL 57.0 42.0 25.7 25.2 20.5 46.8 21.4 34.1
20 Fengxing 46.4 46.3 23.0 26.5 33.3 38.7 24.0 34.0
21 Team LRL_NC 52.1 42.7 25.2 30.4 28.8 43.3 14.8 33.9
22 thetundramanagainstpcl 50.5 50.0 18.4 16.5 20.3 41.5 24.0 31.6
23 Xu 55.0 48.4 28.0 24.0 13.6 49.0 0.0 31.1
24 SATLab 42.4 33.1 17.0 23.2 17.5 31.5 14.2 25.6
25 Felix&Julia 36.6 35.1 17.6 22.1 21.1 28.5 16.7 25.4
26 AliEdalat team 53.9 37.7 25.6 26.2 13.5 11.3 9.1 25.3
27 Tesla 43.7 38.3 16.3 19.2 17.9 35.7 0.0 24.5
28 Waad 36.9 33.3 17.5 15.3 16.5 28.7 19.5 24.0
29 ms_pa 32.3 32.9 19.2 20.6 22.2 26.4 7.1 23.0
30 rematchka 37.7 21.4 18.8 21.2 15.5 26.1 13.0 22.0
31 Team Double_A 33.5 31.9 18.4 19.1 23.4 24.5 0.0 21.5
32 SSN_NLP_MLRG 34.6 33.8 20.7 19.3 12.1 27.7 0.0 21.2
33 ASRtrans 18.6 8.8 8.3 19.8 13.2 27.8 35.7 18.9
34 MaChAmp 30.4 21.3 3.6 10.9 30.8 5.0 6.3 15.5
35 Team PiCkLe 10.9 22.5 14.4 21.0 19.2 6.5 11.5 15.2
36 LastResort 15.8 24.8 10.0 9.3 16.0 11.3 14.8 14.6
37 Ablimet 12.6 14.1 6.5 7.2 14.0 17.2 17.1 12.7
38 RoBERTa Baseline 35.4 0.0 16.7 0.0 0.0 20.9 0.0 10.4
39 BWQ 16.0 12.5 7.2 9.7 7.0 11.4 3.9 9.7
40 Stanford ACM 16.0 26.5 4.2 0.0 0.0 8.6 12.1 9.6
41 Team LEGO 11.8 20.6 1.9 6.4 6.5 10.2 0.0 8.2
42 CSECU-DSG 33.4 0.0 0.0 0.0 0.0 21.8 0.0 7.9
43 University of Bucharest Team 14.8 21.7 3.5 0.0 3.9 8.3 0.0 7.4
44 PC1 11.8 12.0 6.1 8.7 2.6 8.9 0.0 7.2
45 Team YNU-HPCC 10.9 0.8 3.5 3.3 0.0 5.8 0.0 3.5
46 NLP-Commonsense Reasoning team 9.7 0.2 0.0 3.2 3.2 4.4 1.1 3.1
47 Jiaaaaaa 2.8 1.9 0.0 2.0 0.0 4.8 6.9 2.6
48 Anonymus 5.9 8.3 0.0 2.4 0.0 1.4 0.0 2.6
49 niksss 0.0 1.0 0.0 0.0 0.0 0.0 1.1 0.3

Table 3: SemEval Task 4: Ranking by teams for Subtask 2: Categories Classification. The table reports F1-Score
(%) for each one of the categories and the macro-averaged F1-score (%) for all categories. The categories stand for:
Unbalanced Power Relations (UNB), Shallow Solution (SHAL), Presupposition (PRES), Authority Voice (AUTH),
Metaphors (MET), Compassion (COMP) and The poorer, the merrier (MERR).
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Balancing class distribution The class imbal-
ance in the dataset has been addressed by partici-
pating teams in different ways. Some teams opted
for downsampling the number of negative exam-
ples (Ryan Wang, LastResort, MS@IW), while
others tried a cost-sensitive learning approach to
address this issue (Amrita_CEN). However, the
most popular approach to balance the class distri-
bution has been through data augmentation (amsqr,
Xu, Utrech Uni, UMass PCL, among others). To
create new positive examples, participants have
used strategies such as the use of large genera-
tive models like GPT3 (Brown et al., 2020) or T5
(Raffel et al., 2020) (MS@IW, PINGAN Omini-
Sinitic and Tesla); back-translation (Taygete); the
addition of synonymous sentences to the original
data (I2C), or the application of the so-called Easy
Data Augmentation methods, a set of simple but
effective techniques such as synonym replacement,
random insertion, random swap, and random dele-
tion (AliEdalat) (Wei and Zou, 2019; Rastogi et al.,
2020).

External resources Various types of external
resources have been used. For example, lexical
databases such as WordNet (Miller, 1995) have
been used to augment, enrich and improve the train-
ing data (Ali Edalat). Datasets from related tasks,
including TalkDown (Wang and Potts, 2019), and
two metaphor detection datasets, namely MOH
(Mohammad et al., 2016) and VUA (Steen et al.,
2010), have been used both for pre-training and / or
for data augmentation by different teams. PAWS,
a dataset with Paraphrase Adversaries from Word
Scambling, (Zhang et al., 2019) and xTREME, a
bechmark for Cross-Lingual Transfer Evaluation
of Multilingual Encoders (Hu et al., 2020), have
also been used to improve several systems (Ali
Edalat, ASRtrans, Tesla, MaChAmp). Other re-
lated NLP challenges have served as auxiliary tasks
for pre-training PCL models (AliEdalat, UMass
PCL), although such strategies have not always
been successful (ULFRI). The MaChAmp team
used 7 SemEval-2022 tasks, including ours, for
training a model based on multi-task learning. The
DH-FBK team also opted for multi-task learning,
but they only used the data from the Don’t Patron-
ize Me dataset itself to create auxiliary tasks. For
instance, they trained their model to predict the
uncertainty of a label in Subtask 1, using the fine-
grained set of labels (0-4); the agreement of the
annotators in Subtask 2; the spans where the cate-

gories were present; or the country of origin of the
news outlets. AliEdalat similarly used the meta-
information from the Don’t Patronize Me dataset
as additional features for training their model.

Prompt learning Using prompts has also proven
useful for PCL detection (BEIKE NLP, PINGAN
Omini-Sintic, Ablimet). Specifically, the teams
used prompts such as “[paragraph] is [label]”, or
“is [paragraph] [label]?” where [paragraph] is the
original input. For Subtask 1, [label] is a natural
language description of the binary class label (e.g.
"is (not) condescending or patronizing"). For Sub-
task 2, [label] is the label of a given PCL category.

6 Conclusions

Patronizing and Condescending Language detec-
tion is a relatively new challenge for the NLP com-
munity. However, the high level of participation in
this task has provided the community with valuable
new insights about how to tackle this problem. A
total of 42 out of 77 teams in Subtask 1 and 37 out
of 48 for Subtask 2 outperformed the RoBERTa
baseline. The performance of the best-performing
systems shows that a judicious usage of state-of-
the-art text classification techniques can bring sig-
nificant benefits to PCL detection, especially when
it comes to addressing the relative scarcity of the
available training data and closely related external
resources. However, there still remains consid-
erable scope for further improvements. It is our
expectation that further improvements may need
to rely on techniques that are specifically targeted
at PCL, e.g. by exploiting insights from linguistics
about the linguistic features of PCL, or by build-
ing explicit models of stereotypes of vulnerable
communities.
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Abstract
Classification of language that favors or con-
dones vulnerable communities (e.g., refugees,
homeless, widows) has been considered a chal-
lenging task and a critical step in NLP appli-
cations. Moreover, the spread of this language
among people and on social media harms soci-
ety and harms the people concerned. Therefore,
the classification of this language is consid-
ered a significant challenge for researchers in
the world. In this paper, we propose JUST-
DEEP architecture to classify a text and deter-
mine if it contains any form of patronizing and
condescending language (Task 4- Subtask 1).
The architecture uses state-of-art pre-trained
models and empowers ensembling techniques
that outperform the baseline (RoBERTa) in the
SemEval-2022 task4 with a 0.502 F1 score.

1 Introduction

The language used when talking about other people
significantly impacts society and individuals. Talk-
ing about others and using caring and sympathetic
language to express them causes them to be con-
cerned, regardless of the author’s intention, which
is often to help others by raising awareness of
their cause. Unfair treatment of vulnerable groups
on social media increases exclusion and inequal-
ity(Kučak et al., 2018).

Several researchers study modeling language
that intentionally undermines others, such as of-
fensive language or hate speech (Zampieri et al.,
2019; Faraj and Abdullah, 2021). PCL modeling is
still a relatively new topic of research in NLP. For il-
lustration, the use of PCL in the media is frequently
unconscious, subtler, and more subjective than the
sorts of discourse that are typically addressed in
NLP. To the best of our knowledge, a particular fo-
cus on PCL for vulnerable communities has not yet
been considered. Through a broader context, some
work on PCL had been studied on communication
between two people, such as in social media inter-
actions, where others patronize an individual. For

example, the authors in (Inui et al., 2019) published
the talk down corpus for detecting condescension
in Reddit comment-reply pairs. Finding or creating
a high-quality dataset that covers all or most cases
of PCL is very difficult and requires significant ef-
fort from specialized researchers. As researchers
in NLP, we use it to investigate PCL in vulnerable
communities(Perez-Almendros et al., 2020).

In this paper, we describe our model on task
4 of Semeval 2022 sub task1 (P’erez-Almendros
et al., 2022) to identify PCL and categorize the
linguistic techniques used to express it. Specifi-
cally when referring to communities identified as
being vulnerable to unfair treatment in the media.
We compare the outcomes of multiple pre-trained
models (BERT, RoBERTa, and ensemble on them).
We furthermore show the effect of tuning their hy-
perparameters values (batch-size and epoch) on
model prediction. Also, we illustrate our proposed
architecture where we feed the data to an ensemble
model with the stacking of 2 BERT models and
-in parallel- to another ensemble model with the
stacking of 2 RoBERTa models. Finally, the results
of the two ensembling models are fed to a max
voting ensemble, which predicts the outcome with
achieving the best F1 score at 0.502.

The rest of the paper is organized as follows;
section 2 presents a Related Work, and section
3 offers Methodology. Results are discussed in
section 4. Finally, section 5 presents conclusion.

2 Related Work

Many researchers applied machine learning mod-
els to classify text (Abdullah and Shaikh, 2018;
Qawasmeh et al., 2019). Lai et al.(Lai et al., 2015)
classified text using a recurrent convolutional neu-
ral network. They captured the key components
in texts using the max-pooling layer from word
representations. Then they grabbed contextual in-
formation from it. To check the efficacy of the pro-
posed method, they conducted several experiments
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on four commonly used data sets. As a result, they
found that their suggested method outperforms the
latest methods in many data sets.

Gunal et al.(Kowsari et al., 2019) studied text
classification algorithms on several sides. Like lim-
itations of each technique and its application in
real-world situations are discussed. They found
some steps useful in decreasing the time complex-
ness and memory complexity of existing text classi-
fication algorithms like central component analysis
and incidental projection, etc.

Using deep neural networks with LSTM mod-
ules, Semberecki et al.(Semberecki and Maciejew-
ski, 2017) classified text documents. They tried to
construct feature vectors, which represent the docu-
ments to be categorized: each feature vector repre-
sents the sequence of words that are included in the
documents. First, they convert the terms into vector
representations and then use the sequences of these
vector representations as features of the documents.
They evaluated the feasibility of this approach to
text categorization utilizing a set of Wikipedia ar-
ticles. They show that the LSTM network-based
approach with documents represented as vectors
achieves an accuracy of 86%.

3 Methodology

Our approach methodology can be summarized as
follows: We begin by describing the dataset for
this task. Then, the preprocessing step is described.
Our final section describes how JUST-DEEP can
identify the patronizing language in the text.

3.1 Data Set:
The SemEval-task 1 competition provided three
files (rial, train, and test dataset(Perez-Almendros
et al., 2020)) The files contain several columns as
follows:

• par_id: the identification number for each
paragraph.

• art_id: the identification number for each arti-
cle.

• keyword: word related to patronizing. .

• country_code: the code for each country.

• text: the text that we want to classify.

• label: denotes if the text contains patronizing
or not (4 levels 0,1,2,3 where 0 and 1 means
no PCL, as well as 2 and 3, means high PCL).

3.2 Data pre-processing:

In this section we describe the basic data pre-
processing steps we applied for all of our experi-
ments:

1. In the beginning, we transform the Label col-
umn into a binary format. If the value is zero
or one, we convert it to zero. And if it is two
or three, we convert it to One. So with this
transformation, the Label is a Binary column
with two values: the Zero means that there are
no PCL in the text, and the value One implies
that there is PCL.We converted the column to
binary because we are working on sub-task
one, so we want to determine if it contains
PCL or not; we don’t care about the degree of
PCL.

2. Pre-trained models don’t work with raw text,
so we converted the text into numbers and
added unique tokens to separate sentences at
the beginning and end of each sentence. Then
we pass the resulting sequence to the models
to perform the classification process.

3. Pre-trained models work with fixed-length se-
quences. So we used a simple strategy to
choose the appropriate maximum length for
all sequences. First, we found that most series
have a size of 160, so we set the size of all
series to 160.

3.3 JUST-DEEP Architecture:

Our task aims to detect whether a text contains
PCL language or not. As shown in Figure 1, JUST-
DEEP architecture uses multiple pre-trained lan-
guage models (BERT and RoBERTa) from the
transformers library.

The first step is data pre-processing. The train-
ing dataset is fed to the augmentation processor,
responsible for adding more data to the training
dataset since it is originally imbalanced data where
the number of Zero class instances is ten times the
One class instances. The augmentation processor
input is all One instances text. The processor aug-
ments the text of the input instances by adding the
same instance to the primary dataset multiple times
with slightly different text but with the same mean-
ing. Next, the textual data is processed into their
corresponding embeddings(tokens) to feed them to
the classifiers.
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Figure 1: Model Architecture

The second step is the classification step. Finally,
the input tokens are fed in parallel to two ensem-
bling models; the first is composed of stacking of
2 BERT models, and the second contains stacking
of 2 RoBERTa models.

Finally, the predictions of the two ensembling
models are joined by a max voting classifier to
produce the final prediction output. We conducted
several experiments with different models and hy-
perparameters, but the JUST-DEEP architecture
achieved the best results.

Figure 2 show an example use case for architec-
ture. If we fed the sentence ’Fast food employee
who fed disabled man becomes internet sensation’
which is an example from the train data labeled
as 1 (contains PCL). In augmentation step we gen-
erate more instances with same meaning of this
row by the augmentation processor which might
add data like ’Fast food worker who fed weakened
guy becomes internet rumor’. Next, the sentence
is converted into numeric token and passed to both
ensemble models.
For instance, the first ensemble model which con-
tains stacking of 2 RoBERTa models produce the
prediction of 1 for this row. The other ensemble
model with stacking of 2 Bert classifiers predicts
Zero as a class label. Finally, the last step which
implement a max voting will generate One as the
final output label for the instance.

4 Result

We performed several experiments to determine
which is the best suitable model for this task and
which model produces the highest value of F1 score.
First, we experimented with BERT and RoBERTa

pre-trained models and tuned their hyperparameters
(batch_size and epoch) to achieve the maximum
possible F1 score. Table 1 shows the experiments
we did, the models, their parameters, and the value
of the f1 score we got in each experiment in the
test dataset.

As a first step, we explored BERT and
RoBERTa’s best hyperparameters, such as
batch_size, epochs, and max sequence length.
Table 2 describes these hyperparameters.

We use five different models: BERT model,
RoBERTa model, stacking of 2 BERT, stacking of
2 RoBERTa, and JUST-DEEP model as described
in the architecture section. As shown in the ta-
ble1 model, JUST-DEEP achieves the best results
compared to the rest of the models we tested, as it
reached an F1 score value equal to 0.502.

As we explained earlier, in the JUST-DEEP
model, we trained the dataset with augmentation.
Then we applied the Stacking Ensemble Technique
separately on 2 BERT Models and 2 RoBERTa
Models. Then, we took the Max voting between
the two models as a result; therefore, this model
produces the best results because it combines the
two models that we used, BERT and RoBERTa.

The other models show less favorable results;
the application of the stacking ensemble technique
to the 2 BERT models gives the highest results
after the JUST-DEEP, where the F1 result is close
to 46%, followed by the model resulting from the
application of the stacking ensemble technique to
the 2 RoBERTa, where it achieved results close
to 0.44. Then, RoBERTa’s model achieved the F1
with a score of 0.43. The worst model was Bert
achieved 0.42.
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Figure 2: Example Description

5 Conclusion

Deep learning helped in the development of many
aspects these days, and with in-text classification,
we become to have the ability to make a lot of
applications related to it and so on. In this paper,
we describe our JUST-DEEP model solving the
SemEval-2022 Task 4 Subtask 1 to check if the
text contains any form of PCL. The JUST-DEEP
model obtained an F1 score of 0.5 using ensem-
bling of pre-trained language models BERT and
RoBERTa. Our strategy depends on training data
set with augmentation then applying stacking en-
semble technique to 2 BERT and 2 RoBERTa and
take max voting between the models to achieve F1
score higher than the other experiments we conduct
where we use plain BERT and RoBERTa models
with different hyperparameters.
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# Classifier Batch size Epoch F1
1 RoBERTa 16 10 0.43
2 RoBERTa 16 4 0.40
3 RoBERTa 8 10 0.42
4 RoBERTa 8 4 0.41
5 BERT 16 10 0.42
6 BERT 16 4 0.428
7 BERT 8 10 0.41
8 BERT 8 4 0.405
9 stacking of 2 RoBERTa 16 10 0.44
10 stacking of 2 RoBERTa 16 4 0.45
11 stacking of 2 RoBERTa 8 10 0.435
12 stacking of 2 RoBERTa 8 4 0.438
13 stacking of 2 BERT 16 10 0.46
14 stacking of 2 BERT 16 4 0.45
15 stacking of 2 BERT 8 10 46.5
16 stacking of 2 BERT 8 4 0.45
17 JUST-DEEP 16 10 0.5

Table 1: Our Experiments.

Parameter Description Values
Batch_Size The number of samples per batch 16,8
Epoch Training examples in both directions ( backward and forward ) 4,10
Dropout Number of examples that can be neglected during training 0.3
Max Sequence Length Sequence length the model can support 160

Table 2: Parameters
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Abstract

This paper describes the second-placed system
for subtask 2 and the ninth-placed system for
subtask 1 in SemEval 2022 Task 4: Patroniz-
ing and Condescending Language Detection.
We propose an ensemble of prompt training
and label attention mechanism for multi-label
classification tasks. Transfer learning is intro-
duced to transfer the knowledge from binary
classification to multi-label classification. The
experimental results proved the effectiveness
of our proposed method. The ablation study
is also conducted to show the validity of each
technique.

1 Introduction

Patronizing and Condescending Language (PCL) is
proposed by Pérez-Almendros et al. (2020), which
builds a dataset for PCL detection. The Patronizing
and Condescending Language Detection (Pérez-
Almendros et al., 2022) contains two text classifi-
cation tasks. Subtask 1 is a binary classification
task, which requires a system to predict whether the
paragraph contains any form of PCL. Subtask 2 is a
multi-label classification task, which must identify
which PCL categories express the condescension.

PCL Detection is a sentiment analysis task and
we treated subtask 2 as an Aspect-Based Sentiment
Analysis (ABSA) (Jo and Oh, 2011) task, which
is also a multi-label classification to classify the
sentence sentiment on different aspects.

Early works on ABSA focus on feature engineer-
ing (Wagner et al., 2014) and subsequent neural
network-based methods (Wang et al., 2017). Re-
cently, Pre-trained Language Models (LMs) such
as BERT (Devlin et al., 2019), ROBERTA (Liu
et al., 2019), ALBERT (Lan et al., 2020) have been
proposed and brought significant improvement in
various NLP applications. As there is not much
improvement in ABSA task through direct imple-
mentation of those pre-trained LMs, Bert-pair (Sun
et al., 2019) has been proposed to help them adapt

to ABSA effectively. Furthermore, Bu et al. (2021)
proposed an attention between sentence embed-
dings and label embeddings to focus on the crucial
tokens which are related to the label. Recently,
CapsNet-Bert (Jiang et al., 2019) used the atten-
tion between the label and the input with capsule
network to improve the performance.

Nowadays, the Pattern-Exploiting Training
(PET) (Schick and Schütze, 2021) and P-tuning
(Liu et al., 2021) has been proposed to utilize the
pre-trained LMs more effectively, which trains fine-
tune model by the pre-training tasks such as Mask
Language Modeling (MLM) by adding a prompt
sequence to the input.

Considering the similarity between PCL and
ABSA, we applied PET and Bert-pair in PCL De-
tection through the following steps: Firstly, we
treat the subtask 1 as a prompt training task (as
described in PET) by using a PCL description as
the prompt. Secondly, we transform the subtask
2 from a multi-label classification task to multiple
binary classification tasks by using the label names
as the prompts. Thirdly, we conduct transfer learn-
ing from subtask 1 to subtask 2 to further improve
the performance. Last but not least, we also pro-
posed a label attention mechanism based on the
multi-prompt training for multi-label classification.

Our contribution can be summarized as follows:
we apply prompt training on PCL detection subtask
1 and 2, and prove its effectiveness on both tasks;
in subtask 2, we propose a label attention mecha-
nism with multi-prompt training; we apply transfer
learning from subtask 1 to subtask 2, where the
transfer learning is proved to be effective in ABSA.

2 Background

2.1 Task Description

The tasks intend to detect whether the input para-
graphs have any forms of PCL, and which PCL cat-
egories are contained. The PCL categories defined
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[CLS] paragraph is Patronize and Condescend[SEP]

Prompt

DEBERTA

Figure 1: Subtask 1 overview, logitp is the correspond-
ing logits of the word "is" in prompt.

in the task paper Pérez-Almendros et al. (2022) are
’Unbalanced power relations’, ’Shallow solution’,
’Presupposition’, ’Authority voice’, ’Metaphors’,
’Compassion’,’The poorer, the merrier’. The tasks
can be formalized as follows:

The training data of subtask 1 consists of tuples
(q, lbinary), where q is a paragraph extracted from
articles, and lbinary is the binary classification label
with values 0, 1. The training data of subtask 2 con-
sists of tuples (q, lcategory), where q is a paragraph
extracted from articles and lcategory is the label for
multi-label multi-classification task. lcategory is a
7-digit binary vector. Each digit represents whether
the paragraph contains the corresponding PCL cate-
gory and it is possible for one paragraph to contain
multiple PCL categories. We also defined a set A,
which contains the names of categories. a ∈ A rep-
resents a category name from all PCL categories.

2.2 DEBERTA

Our comparison of present large pre-trained Lan-
guage Models(LM) showed that DEBERTA (He
et al., 2021b) seems to be the most effective
model. Different from other works, DEBERTA
implemented a disentangled attention mechanism
which utilizes the input contents and relative po-
sitions. We conduct most experiments based on
DEBERTA-v3 (He et al., 2021a), which trained
the DEBERTA model with replaced token detec-
tion (RTD) pre-training task, proposed by ELEC-
TRA (Clark et al., 2020). RTD is a more sample-
efficient pre-training task than replacing Mask Lan-
guage Modeling (MLM). The experiments in He
et al. (2021a) shows that DeBerta-v3-large model
achieves better performance on GLUE benchmark
even compared with larger pre-trained LMs.

[CLS] paragraph[SEP] PCL category name[SEP]
Prompt

DEBERTA

Linear

self-attention

attention

... ...

Figure 2: Subtask 2 overview, we conduct a attention
mechanism between the logits of paragraph and the
logits of label name.

3 System overview

3.1 Prompt Classification

Inspired by PET, we adopt a prompt design on tra-
ditional classification tasks based on pre-trained
LMs. As shown in Figure 1, we adopt DEBERTA-
v3 as the pre-trained LM. The input sequence con-
sists of the original paragraph q and the prompt
sequence, which is "is patronize and condescend"
in subtask 1, denoted as r. The total input sequence
can be described as "[CLS] q r [SEP ]" for sub-
task1. Since the DEBERTA-v3 trained by RTD
as same as ELECTRA, we don’t use the hidden
states of [CLS] for classification. Instead we use
the hidden state of word "is" (as described in Fig-
ure 1) for a binary classification, and the label is 1
when the paragraph contains PCL, 0 when the para-
graph has no PCL. The input sequence is forward
to DEBERTA and the hidden states are calculated
by Equation 1

Hq = F ([q; r]) (1)

logitp = D(Hp
q ) (2)

where F is the pre-trained 24-layer transformers
and D is a linear layer which classify the hidden
states of prompt word from DEBERTA. Then we
use the hidden states Hp

q ∈ Rd selected from Hq

as the input to D, which denotes the hidden states
of the prompt word "is", the d is the hidden size
of DEBERTA. BCE (Binary Cross Entropy) loss,
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which measures the Binary Cross Entropy between
the golden label and the output, is used for binary
classification as Equation 3.

LBCE = BCE(Sigmoid(logitp), lbinary) (3)

where lbinary is the binary label of subtask 1.
In this way, the semantics of prompt can be

jointly learned with the input paragraph. By us-
ing the same training method with pre-trained LM,
the representations stored in the pre-trained LM
has been maximum reserved.

3.2 Multi-label Prompt Classification

For subtask 2, we transform the multi-label clas-
sification task to multi binary classification tasks
by concatenating the paragraph with each PCL
category label names. As shown in Figure 2,
the input paragraph q is concatenated with one
PCL category name a, which can be denoted as
"[CLS]q[SEP]a[SEP]". We use an self-attention
layer as an aggregator to aggregate the sequence
embeddings, which is more effective then using the
[CLS] embedding. It can be formulated as:

Hq = F ([q; a]) (4)

Hagg = S(Hq) (5)

where S is the self-attention layer proposed by
BERT (Devlin et al., 2019), and Hagg represents
the aggregated hidden states of input sequence.
Then we use the [CLS] aggregated hidden states
Hcls

agg to classify whether the paragraph has the cor-
responding PCL category, which can be formulated
as:

logitcls = D(Hcls
agg) (6)

LBCE = BCE(Sigmoid(logitcls), lc) (7)

where lc is the binary label of PCL category detec-
tion, selected from the category label lcategory. The
real output for subtask 2 is the combination of all
PCL category detection results.

From previous works, this approach have been
proved effectively for improving the multi-label
classification tasks. We named this approach
MPrompt in this paper.

3.3 Label Attention
As shown in Figure 2, we also propose a label at-
tention above the MPrompt approach. Although
the transformers model has self-attention between
every tokens, an external attention between para-
graph and label prompt is still helpful for the model
to focus on more important words in the para-
graph. First, We split the output hidden states Hagg

into Hparagraph
agg and H label

agg , where Hparagraph
agg is

the hidden states corresponding to the sequence
"[CLS]q[SEP]", and H label

agg is the hidden states
corresponding to the sequence "a[SEP]". Then,
the label embedding hlabel is computed as average
pooling over H label

agg , where hlabel ∈ Rd.
As shown in equation 8, we use an attention

layer to combine the hlabel and Hparagraph
agg , where

hlabel is used as query (Q), and Hparagraph
agg is used

as key (K) and value (V ) followed the definition
of Scaled Dot-Product Attention in Vaswani et al.
(2017).

hLA = softmax(
QK√
d
)V (8)

where hLA denotes the output of attention layer.
Then we concatenate hLA with the aggregated hid-
den states of [CLS] as follows:

logitp = D([Hcls
agg : hLA]) (9)

where D is the Linear layer for binary classifica-
tion.

3.4 Transfer Learning
We also implemented multi-task learning, joint
learning and transfer learning between subtask 1
and 2. Only the transfer learning has improved
the performance of subtask 2. First we trained
a subtask 1 model with prompt training, then we
use the subtask 1 model as the initial checkpoint,
trained a subtask 2 model with MPrompt. Experi-
ments in section 5.1 proved the effectiveness of this
approach. Unfortunately, transfer learning from
subtask 2 to subtask 1 or other approach has no
improvement.

3.5 Other Tricks
The DEBERTA which has large amount of parame-
ters tends to over-fit on small training dataset. We
utilize RecAdam (Chen et al., 2020) to fine-tune
the pre-trained model to address the over-fitting
problem. RecAdam optimizer is proposed to ad-
dress the catastrophic forgetting problem of se-
quential transfer learning paradigm by introducing
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a recall and learning mechanism into Adam opti-
mizer, which maintain the learned knowledge in
pre-trained model while learning a new task.

The numbers of each category is very unbal-
anced in train dataset, we over-sample the positive
samples to alleviate this problem. On subtask 2,
we keep the proportion of each positive category
unchanged during oversampling.

Data augmentation is not applied in our approach
because we haven’t find other proper datasets.

4 Experimental setup

4.1 Data

We use the official released dataset of Se-
mEval2022 Task4 for experiments. The dataset
contains 8375/2094/3832 samples for train, dev
and test data. The subtask 1 and subtask 2 share the
same input paragraphs, and has different labels re-
spectively. The maximum, mean length of training
data is 1005 and 55.28 in words perspective, and
90% of training data are shorter than 95 words. The
ratio of positive samples is only 9.48% in subtask 1,
even much smaller in subtask 2, since some of PCL
category such as "The poorer, the merrier" is quiet
few. The shortage of positive samples makes the
model more difficult to distinct the PCL descrip-
tions from negative samples, and is hard to train a
model with good generalization.

4.2 Parameter settings

Our implementation is based on the Pytorch frame-
work for transformer-based models Wolf et al.
(2020). We trained our model based on the
pre-trained DEBERTA-v3-large model. We use
Adam/RecAdam optimizer with a learning rate of
3e-5, batch-size of 32 to train our models. The max
sequence length is 256 and the epoch of training
is set to 10 in subtask 1, 3 in subtask 2. To ad-
dress the over-fitting problem, we apply RecAdam
with sigmoid annealing function, where the an-
nealing rate is 0.01 and the annealing time-step
is 500. Specially, in subtask 2, we apply one self-
attention layer as the aggregator and one attention
layer to calculate the label attention. We pick the
best checkpoint based on the performance on the
dev set. Besides using DEBERTA, we also trained
models based on ROBERTA, which is competitive
with DEBERTA on subtask 2.

Since only 2 submissions are permitted in sub-
mitting phase, we trained multiple models under
different settings for model ensemble. We also

adopt 7-fold cross-validation training to improve
the system generalization.

4.3 Ensemble

Two strategies are used for our final submissions on
test data: 1) we ensemble all 7 models from 7-fold
cross-validation training by averaging their outputs,
which is trained on the train data of each subtask;
2) we trained multiple models on the train data
with different model structures. Eight top different
models are selected based on the dev accuracy for
models ensemble, then average their outputs as the
final output.

5 Results and Analysis

5.1 Single Model Performance

In subtask 1, the F1-score of PCL is used as the
official metric and the results of dev set is shown
in Table 2. We implement a baseline model for
comparison, which is the traditional classification
model with pre-trained LMs by using the [CLS]
embedding. We trained two traditional classifica-
tion models which are based on ROBERTA and
DEBERTA. The results shown that DEBERTA is
better than ROBERTA for subtask 1. The prompt
classification improved the F1-scores by 2.80% on
the same pre-trained LM, which proved that prompt
classification is more suitable with the pre-trained
LMs.

In subtask 2, the official metric is the average
score of F1-scores of all PCL categories. As
shown in Table 1, our method achieves signifi-
cant improvement compared with baselines. The
ROBERTA and DEBERTA denote the baseline
models which uses a multi binary classification
head upon pre-train LMs. The MPrompt both im-
proved the performance on ROBERTA and DE-
BERTA by 8.28%, 20.29%, respectively. The in-
formation of label names is utilized by MPrompt
method effectively.

For Transfer Learning(TL), as shown in Table 1,
the scores is improved by 3.62% based on DE-
BERTA, while is dropped by 3.17% based on
ROBERTA. We assume that is because the struc-
ture of ROBERTA in subtask 1 is not suitable for
MPrompt in subtask 2.

Label Attention(LA) is also proved to be an
effective approach both on ROBERTA and DE-
BERTA. Since the transfer learning is not useful in
ROBERTA, we further experiment the ROBERTA
MPrompt with LA and the DEBERTA MPrompt
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Method Unb Sha Pre Aut Met Com Poo avg-F1
ROBERTA 59.28 47.05 25.00 30.76 42.85 49.73 42.85 42.50
ROBERTA MPrompt 58.95 38.09 46.15 35.00 48.71 55.23 39.99 46.02
+TL 61.53 36.36 40.00 34.61 45.83 51.74 42.10 44.56
+LA 61.42 47.05 45.87 37.38 43.03 54.63 39.99 47.05
DEBERTA 55.24 29.16 34.28 25.28 45.45 49.26 19.99 36.95
DEBERTA MPrompt 57.14 40.54 32.81 30.76 44.44 52.77 52.63 44.45
+TL 57.65 29.63 43.10 39.34 60.67 47.61 44.44 46.06
+TL+LA 60.25 30.55 43.69 45.97 53.48 49.49 47.61 47.29

Table 1: Single model performance of subtask 2 on dev dataset, Unb...Poo denotes the F1-scores of each categories,
avg-F1 is the average F1-score. TL denotes the Transfer Learning, and LA denotes the Label Attention.

Method Acc Recall F1
ROBERTA 60.56 64.82 62.62
DEBERTA 66.67 61.31 63.87
DEBERTA Prompt 65.50 65.82 65.66

Table 2: Single model performance of subtask 1 on dev
dataset.

Method Subtask1 Subtask2

Dev set
7-fold ensemble - -
top ensemble 72.16 52.99

Test set
7-fold ensemble 62.73 43.87
top ensemble 58.93 43.20

Table 3: Ensemble performance on dev and test dataset,
where 7-fold is the models from 7-fold cross-validation
training, top ensemble means that ensembles the models
with top dev accuracy.

with TL and LA. The results shown that LA can
improve the performance by 2.23% on ROBERTA,
and 2.67% on DEBERTA, which proved that an
external attention between tokens and label names
is benefit for picking more important tokens related
to the label category.

5.2 Ensemble Performance

The performances of ensemble models are shown
on Table 3, which is obtained from the competition
leader-board. Our system got the second place in
subtask 2 and the ninth place in subtask 1. Ensem-
ble results on dev dataset are exhibited for com-
parison. Since the 7-fold training has trained the
dev set, we don’t exhibit the dev ensemble results
of 7-fold training. It is obvious that the top en-
semble method is much over-fit on dev set, for the
scores of test set dropped much on top ensemble
method. 7-fold ensemble method is an effective
way to avoid over-fitting and got the best test scores

of our system.
In top ensemble, we also found that integrating

different pre-trained models improves the results
significantly. The top ensemble method will be
more useful if the distribution of dev set and test
set are similar.

6 Conclusion

In this paper, we propose a multi-prompt training
with label attention mechanism to improve the per-
formance of multi-label classification task. Pre-
trained models have made great performance gain
compared to traditional neural network models in
many natural language tasks. The above experimen-
tal results may suggest that the current pre-trained
model mechanism still has room for improvement
in ABSA tasks.
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Abstract

PCL detection task is aimed at identifying and
categorizing language that is patronizing or con-
descending towards vulnerable communities in
the general media. Compared to other NLP
tasks of paragraph classification, the negative
language presented in the PCL detection task
is usually more implicit and subtle to be recog-
nized, making the performance of common text-
classification approaches disappointed. Target-
ing the PCL detection problem in SemEval-
2022 Task 4, in this paper, we give an intro-
duction to our team’s solution, which exploits
the power of prompt-based learning on para-
graph classification. We reformulate the task
as an appropriate cloze prompt and use pre-
trained Masked Language Models to fill the
cloze slot. For the two subtasks, binary classifi-
cation and multi-label classification, DeBERTa
model is adopted and fine-tuned to predict
masked label words of task-specific prompts.
On the evaluation dataset, for binary classifi-
cation, our approach achieves an F1-score of
0.6406; for multi-label classification, our ap-
proach achieves an macro-F1-score of 0.4689
and ranks first in the leaderboard.

1 Introduction

Patronizing and Condescending Language (PCL)
towards vulnerable communities in the media has
become a hot issue, which is heatedly discussed
in society at present. The language often refers to
the discourse which is published with a mixture of
pity and superiority towards unprivileged groups.
Such attitude is always adopted unconsciously or
even out of kindness, however, its negative effect
indeed exacerbates social prejudice and routinizes
discrimination towards disadvantaged people (Ng,
2007). Despite the PCL emerging in numerous me-
dia, its style can not be precisely captured by far,
since the usage of PCL is commonly unintended,
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unaffected, and subjective. This poses many chal-
lenges to the detection of PCL, which attracts great
attention from the NLP community. Even though
there exist substantial NLP studies on paragraph
identification in various fields, research specifically
for PCL identification has not been yet seriously
introduced (Pérez-Almendros et al., 2020). Nowa-
days with social discrimination continuously ris-
ing, an effective approach, which can automatically
identify PCL towards vulnerable communities, be-
comes more and more necessary and important to
our society.

To encourage more research on the PCL prob-
lem, SemEval-2022 Task 4 (Pérez-Almendros
et al., 2022) provides an English PCL dataset for
language-modeling study and evaluation. The main
task contains two PCL-classification subtasks, one
for binary classification (SubTask 1) and the other
for multi-label classification (SubTask 2). Given a
paragraph, SubTask 1 is aimed to identify whether
or not it is written with PCL style. F1 over the
positive class is taken as the evaluation metric of
this task. For the same paragraph, the goal of Sub-
Task 2 is to classify which specific PCL categories
it belongs to. In detail, there are 7 different PCL
types needed to be recognized, and one paragraph
can have up to 7 PCL labels at the same time. For
evaluation, SubTask 2 introduces macro F1 over
the 7 classes as the metric.

In this paper, we propose our approach targeting
PCL detection, which is submitted to SemEval-
2022 Task 4. To tackle the sparsity and implicity is-
sues of PCL language, we first reformulate the task
as a specific form of cloze prompt, and then apply
prompt-based learning on it to predict the appropri-
ate label words and corresponding task labels. To
take advantage of the pre-trained Language Model
(LM), DeBERTa (He et al., 2020) is adopted as our
based model, which improves BERT (Devlin et al.,
2018) by introducing two novel techniques: disen-
tangled attention and decoding enhanced masking.
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The same classification method and model architec-
ture are used for both subtasks to train and predict.
Experiments are conducted to show the effective-
ness of our approach. At last, during the evaluation
phase, our approach achieves an F1 score of 0.6406
on SubTask 1 (rank 4th on the leaderboard), and a
macro-F1 score of 0.4689 on SubTask 2 (rank 1st
on the leaderboard).

2 Related Work

Condescending and patronizing treatment is a con-
troversial social problem, which attracts attention
from researchers of various fields (Margić, 2017;
Huckin, 2002). To the NLP community, although
extensive work on detecting different kinds of
harmful language is presented, the targeted lan-
guage styles are often explicit, aggressive, and fla-
grant, which can be perceived obviously. Unlike
the previously studied language, the style of PCL
language can not be easily sensed, since the usage
of PCL is commonly unintended, unaffected, and
subjective, which makes it a challenging identifi-
cation problem. In recent years, more and more
researchers (Mendelsohn et al., 2020; Sap et al.,
2019) start researching this emergent NLP topic,
but the room for progress is still large.

Paragraph classification is a basic and important
NLP task, which has been continuously studied by
industry and academia. Applications based on para-
graph classification are increasingly permeating our
lives, such as spam filtering (Kumar, 2020) and text
sentiment analysis (Gao et al., 2019). Traditional
classification models, such as SVM (Joachims,
1998) and XGBoost (Chen and Guestrin, 2016),
predict the category of paragraph mainly based
on the statistical features extracted from raw text
data. With the appearance of BERT (Devlin et al.,
2018), many researchers (Croce et al., 2020; Jin
et al., 2020) achieve success on paragraph classifi-
cation, by utilizing the contextualized word vectors
of pre-trained language models.

In recent years, with the development of prompt-
based learning (Schick and Schütze, 2020b,a;
Brown et al., 2020), researchers start reformulating
the paragraph classification problem as a masked
language modeling problem. Unlike the traditional
models, prompt-based models first predict the la-
bel word of mask in a prompt and then map the
label word to the label of category by a verbalizer.
Thanks to the power of pre-trained language mod-
els, prompt-based models (Hu et al., 2021; Gu et al.,

2021) demonstrate their strength in performing few-
shot or even zero-shot learning on the scenarios of
paragraph classification with few or no labeled data.
The above studies have shown that prompt-based
learning is highly effective to solve the problem
of paragraph classification. To study the effect of
prompt-based learning on identifying paragraphs of
PCL, in the rest of this paper, our modeling method
and experimental analysis are introduced.

3 Our Approach

In this section, we present our approach to utilize
prompt-based learning for PCL detection. We first
give the overall paradigm of our model and then
introduce the ensemble strategy used in this task.

3.1 Prompt-Based Model

Unlike other traditional classification methods
which take original text as input, the prompt-
based classification method first wraps the orig-
inal text with some specific-designed template and
then feeds the synthesized text into a language
model for classification. In this way, the para-
graph classification problem is reformulated into
a masked language modeling problem. Formally,
let x = (x0, x1, ..., xn) be a raw paragraph with a
length of n from the PCL dataset, T be a prompt
template and xT be the reformulated paragraph of
x using T . For an example of SubTask 1 shown in
Fig 1, with x = “People ordered pizzas to be de-
livered , with the ample leftovers donated to local
homeless shelters.” and T = “Is it patronizing or
condescending? [MASK]”, we wrap them into xT

as “People ordered pizzas to be delivered , with the
ample leftovers donated to local homeless shelters.
Is it patronizing or condescending? [MASK]”.

After the PCL problem is reformulated, an LM
model M can be used to compute the probability
of each word v in a vocabulary list to appear in
the position of [MASK], denoted as P ([MASK] =
v|xT ). To answer the cloze question “Is it patroniz-
ing or condescending? [MASK]”, if M has a large
probability to fill [MASK] with some words of the
meaning related to “YES”, then x is predicted as
PCL class; if words having similar semantics to

“NO” are more likely to be filled, then x is deemed
as non-PCL class. In order to map the probabilities
of predicted words to the probabilities of the labels

“YES” and “NO”, we define a verbalizer to map a
word v, from the label word set Vy, to a label y,
form the label set Y . To construct the verbalizer,
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Figure 1: An example to illustrate our approach.

we first use synonym dictionaries to find the syn-
onyms of labels as the candidate label words, and
then we select the top-k candidate words, accord-
ing to their usage frequency in public corpora, as
the final label words. Assuming that all label words
of the same label contribute equally to label predic-
tion and the prior distribution of them is uniform,
we use the mean of their predicted probabilities
as the output probability of their corresponding la-
bel. Then, given a reformulated paragraph xT , its
predicted label ŷ can be obtained by

ŷ = argmax
y∈Y

(
1

|Vy|
∑

v∈Vy

P ([MASK] = v|xT )

With the above definitions, in the training process, a
cross-entropy loss is applied to fine-tune the model
M as our output model.

In SemEval-2022 Task 4, for the two subtasks,
we use the same method to model and solve them.
The only difference is the template used for each
subtask. For the binary-classification subtask, only
one template is provided to identify whether or
not a paragraph is PCL class. For the multi-label-
classification subtask, as there exist 7 PCL cate-
gories, each of them is given with a unique template
for type detection.

3.2 Ensemble Strategy
To improve the robustness of the proposed ap-
proach, we take advantage of the cross-validation to
make our model more stable and reliable. We ran-
domly split the original PCL dataset into 10 parts,
each of which has 1/10 samples of the dataset. Ac-
cording to the hold-one-out strategy, 10 folds of

the data can be acquired, and each fold has 9/10
samples for training and 1/10 samples for valida-
tion. During the training process, the best-trained
model for each fold is saved, and the average out-
put probability of all models is taken as the final
prediction score. According to the score, each in-
stance is assigned with a predicted label, and then
the predicted labels are compared with the golden
labels to compute the F1 score for validation. The
best models acquired in the validation process are
kept for the final online evaluation.

4 Experiment

4.1 Settings

The PCL dataset (Pérez-Almendros et al., 2020)
containing 10,469 paragraphs is shared by both
SubTask 1 and SubTask 2. The goal of SubTask
1 is to detect 993 PCL samples from the whole
dataset, and the goal of SubTask 2 is to classify
the 993 PCL samples into 7 specific PCL types.
In our experiments, all trials are performed with
Nvidia Tesla A100 and large-DeBERTa is used as
the based pre-trained language model. Considering
the small size of the task data, we take AdamW as
the optimizer in the experiments with a learning
rate of 1e-5 and a maximum epoch number of 10.
Early-Stop strategy is also used in our training pro-
cess. For other parameters, we set the batch size as
16 and the maximum sequence length as 256.

4.2 Used Strategies

For the sake of result analysis, we list all strategies
used in our approach towards SemEval-2022 Task
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Strategy SubTask 1 SubTask 2
R P F1 macro-R macro-P macro-F1

CLS 61.7% 61.0% 61.4% 41.7% 41.1% 41.3%
Prompt 62.2% 61.8% 61.9% 44.3% 44.7% 44.4%
Prompt + Ensemble 63.0% 61.6% 62.3% 46.6% 46.3% 46.4%
Prompt + Ensemble + R-Drop 63.1% 62.0% 62.5% 46.7% 46.4% 46.5%
Prompt + Ensemble + R-Drop + EDA 63.3% 63.0% 63.1% 46.6% 48.2% 47.5%

Table 1: Experimental Results on SubTask 1 and SubTask 2

4 as the following.

• Prompt: Prompt strategy is the method de-
scribed in Section 3.1.

• Ensemble: Ensemble strategy is the method
described in Section 3.2.

• CLS: We directly feed the original text into
DeBERTa model and apply a softmax layer on
the CLS token for classification. This method
is used as a comparison strategy, which does
not reformulate the classification problem.

• EDA: (Wei and Zou, 2019) is a method of
data augmentation, which introduces 4 op-
erations, synonym replacement, random in-
sertion, random swap, and random deletion,
to boost performance on paragraph classifica-
tion.

• R-Drop: (Wu et al., 2021) is a method to
regularize dropout, which minimizes the bidi-
rectional KL-divergence between the distribu-
tions of two sub-models sampled by dropout,
to reduce model randomness.

4.3 Results and Analysis

Table 1 shows all strategy results with Precision,
Recall, and F1. From the results, the effect of each
strategy we used can be clearly observed. The last
method including all Prompt, Ensemble, EDA and
R-Drop performs best compared to other settings.

To show the superiority of the Prompt paradigm,
we first compare it with CLS, which uses the tradi-
tional paradigm of classification. From the table, it
can be seen that Prompt leads CLS by about 0.5%
F1 score in SubTask 1 and 3.1% macro-F1 score in
SubTask 2. As Prompt has natural advantages on
few-shot learning and the size of the PCL dataset
is small, such result is not out of expectation. With
the limited training data, to avoid the occurrence
of overfitting and improve the robustness of our

model, we then apply Ensemble strategy to the
learning process. As shown in the table, with the
robustness improved, a 0.4% increase of F1 score
is achieved in SubTask 1. And for SubTask 2, the
improvement is larger with a 2% increase of macro-
F1 score, since the data size of each category in
SubTask 2 is far less than 1/10 of that in SubTask
1. To further enhance model robustness, R-Drop is
also adopted in our approach, which aims to reduce
the randomness generated by the dropout module
of network. Though the performance improvement
of R-Drop is not big, the stability and convergence
of our approach increases, making the results of
repeated trials more similar.

Besides the techniques of modeling, we also try
to improve the learning by increasing the quantity
of the training data. As described in the previ-
ous sections, the size of the training data is small
and PCL language is often written in an implicit
style. Therefore, EDA strategy is performed to aug-
ment the PCL data, which replaces implicit words
with their synonyms, and transforms the structure
of paragraphs variously, to produce more data for
training. With the augmented data, our approach
achieves a 0.6% lift of F1 score on SubTask 1 and
a 1% lift of macro-F1 score on SubTask 2.

5 Conclusion

In this paper, we propose a prompt-based learning
approach for PCL detection, based on pre-trained
language models. To reformulate the PCL detec-
tion problem into a masked language modeling
problem, how our prompt template is designed
have been fully discussed. We also introduce sev-
eral other techniques, which have a positive impact
on prompt-based learning. Through experimental
comparison, our approach is proven as an effective
solution to detect PCL language. As a result, in
SemEval-2022 Task 4, our approach ranks 4th on
the leaderboard of SubTask 1, and ranks 1st on the
leaderboard of SubTask 2.
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Branka Drljača Margić. 2017. Communication cour-
tesy or condescension? linguistic accommodation of
native to non-native speakers of english. Journal of
English as a lingua franca, 6(1):29–55.

Julia Mendelsohn, Yulia Tsvetkov, and Dan Jurafsky.
2020. A framework for the computational linguistic
analysis of dehumanization. Frontiers in artificial
intelligence, 3:55.

Sik Hung Ng. 2007. Language-based discrimination:
Blatant and subtle forms. Journal of Language and
Social Psychology, 26(2):106–122.

Carla Pérez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2020. Don’t Patronize Me! An
Annotated Dataset with Patronizing and Condescend-
ing Language towards Vulnerable Communities. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 5891–5902.

Carla Pérez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2022. SemEval-2022 Task 4:
Patronizing and Condescending Language Detection.
In Proceedings of the 16th International Workshop on
Semantic Evaluation (SemEval-2022). Association
for Computational Linguistics.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A Smith, and Yejin Choi. 2019. Social bias
frames: Reasoning about social and power implica-
tions of language. arXiv preprint arXiv:1911.03891.

Timo Schick and Hinrich Schütze. 2020a. Exploit-
ing cloze questions for few shot text classification
and natural language inference. arXiv preprint
arXiv:2001.07676.

Timo Schick and Hinrich Schütze. 2020b. It’s not just
size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. arXiv preprint arXiv:1901.11196.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei
Chen, Min Zhang, Tie-Yan Liu, et al. 2021. R-drop:
regularized dropout for neural networks. Advances
in Neural Information Processing Systems, 34.

323



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 324 - 334
July 14-15, 2022 ©2022 Association for Computational Linguistics

DH-FBK at SemEval-2022 Task 4: Leveraging Annotators’ Disagreement
and Multiple Data Views for Patronizing Language Detection

Alan Ramponi
Fondazione Bruno Kessler

Trento, Italy
alramponi@fbk.eu

Elisa Leonardelli
Fondazione Bruno Kessler

Trento, Italy
eleonardelli@fbk.eu

Abstract

The subtle and typically unconscious use of pa-
tronizing and condescending language (PCL) in
large-audience media outlets undesirably feeds
stereotypes and strengthens power-knowledge
relationships, perpetuating discrimination to-
wards vulnerable communities. Due to its sub-
jective and subtle nature, PCL detection is an
open and challenging problem, both for com-
putational methods and human annotators. In
this paper we describe the systems submitted
by the DH-FBK team to SemEval-2022 Task
4, aiming at detecting PCL towards vulnerable
communities in English media texts. Motivated
by the subjectivity of human interpretation, we
propose to leverage annotators’ uncertainty and
disagreement to better capture the shades of
PCL in a multi-task, multi-view learning frame-
work. Our approach achieves competitive re-
sults, largely outperforming baselines and rank-
ing on the top-left side of the leaderboard on
both PCL identification and classification. No-
ticeably, our approach does not rely on any
external data or model ensemble, making it a
viable and attractive solution for real-world use.

1 Introduction

Detecting patronizing and condescending language
(PCL) is an open, challenging, and underexplored
research area in natural language processing (Pérez-
Almendros et al., 2020; Wang and Potts, 2019).
A patronizing and condescending attitude is ex-
pressed as a good-natured and beneficial attitude
from a person of authority towards others, who
are typically depicted in a subtly compassionate
way (Pérez-Almendros et al., 2020).

PCL is a mildly perceived phenomenon. It is
often unconscious, driven by good intentions, and
expressed through flowery wordings (Wong et al.,
2014; Huckin, 2002). This makes PCL identifica-
tion and classification difficult both for NLP sys-
tems and human annotators (cf. Figure 1), as it
cannot be linked to specific words. Nonetheless,

Figure 1: Example showing that patronizing and con-
descending language is a subtle linguistic phenomenon
that human annotators (a1, a2) often perceive differently,
and thus annotate in different ways.

it undesirably conveys harmful messages in many
ways, as it promotes stereotypes, and a superiority
and discriminatory mindset (Fiske, 1993). This is
particularly damaging when used by large-audience
media outlets, since it drives greater exclusion of
already vulnerable communities (Pérez-Almendros
et al., 2020). Automatically detecting PCL has the
potential to enable a range of applications and re-
search directions, such as suggestion tools for news
editors to mitigate condescension in writing before
publication, and studies on the interplay between
condescension and sociodemographic factors.

To encourage research on patronizing and con-
descending language detection, the SemEval-2022
Task 4 (Pérez-Almendros et al., 2022) has recently
been proposed. The shared task aims at investigat-
ing methods for the identification of PCL (subtask
1; Figure 1, top) and the categorization of the lin-
guistic techniques which are used to express it (sub-
task 2; Figure 1, bottom) on English news stories
mentioning vulnerable communities (Section 2).

In this paper, we present the DH-FBK entry
for the SemEval-2022 Task 4 (Pérez-Almendros
et al., 2022). Motivated by the subtle nature of
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Example Category

“We can be extremely proud of the current women winemakers” Unbalanced power relations
“The inclusion of a refugee team” Shallow solution
“An immigrant to a developed country lives in two worlds” Presupposition
“women must wake up” Authority voice
“trapped in the prison of poverty” Metaphor
“more than 400 suspected asylum seekers are awaiting their fate” Compassion
“how talented disabled people can be” The poorer, the merrier

Table 1: Examples of text excerpts expressing patronizing and condescending language, along with their category.

patronizing language and the subjectivity of human
interpretation, we propose a multi-task, multi-view
learning approach which leverages annotators’ un-
certainty and disagreement as auxiliary tasks (Sec-
tion 3) in judging for PCL presence (subtask 1) or
category (subtask 2). Further, we investigate the ef-
fectiveness of sequentially fine-tuning on subtasks
of increasing complexity (subtask 1 7→ subtask 2),
as well as the use of additional information such as
the geographical provenance of news outlets.

Our systems achieve competitive results on the
SemEval-2022 Task 4, outperforming the organiz-
ers’ RoBERTa (Liu et al., 2019) baseline by a large
margin (subtask 1: +8.8 F1; subtask 2: +26.9 F1)
and consistently ranking on the top-left side of the
leaderboard (subtask 1: 18th out of 78 teams; sub-
task 2: 13th out of 49 teams) without using any
external data or ensemble strategy, making it a vi-
able solution for real-world use. We make our code
publicly available to the research community to
encourage future work on this direction.1

2 Data and task description

In this section, we present relevant details on data
and the associated shared task. We firstly summa-
rize the dataset (Section 2.1) and describe the task
setup (Section 2.2). Next, we focus on the data
annotation process as it is central for understanding
our methods (Section 2.3).

2.1 “Don’t Patronize Me!” data

The organizers of SemEval-2022 Task 4 provide
participant teams with the “Don’t Patronize Me!”
annotated dataset, originally introduced in Pérez-
Almendros et al. (2020) and further updated for the
purpose of the shared task (v1.4). The dataset com-
prises a selection of 10,469 paragraphs published

1The source code is available at https://github.
com/dhfbk/pcl-detection-disagreement.

in the news of 20 English-speaking countries2 from
all over the world between 2010 and 2018, and
sampled from the “News on Web” corpus (NoW;
Davies, 2013). Each paragraph mentions one of
ten selected vulnerable communities (i.e., disabled,
homeless, hopeless, immigrant, in need, migrant,
poor families, refugee, vulnerable, and women).
These communities have been chosen because they
are often target of PCL. Notably, attention has been
paid to balance paragraphs across communities and
news outlets’ countries. For further details, we
refer to Pérez-Almendros et al. (2022, 2020).

2.2 Task setup

The SemEval-2022 Task 4 challenge is divided into
the following two subtasks:

1. PCL identification: given an input paragraph,
identify whether it entails any form of PCL.
Formally, this is a binary classification task;

2. PCL classification: given an input paragraph,
decide what linguistic techniques are used to
express the condescension (if any). This is
a multi-label classification task, with 7 possi-
ble labels – i.e., unbalanced power relations
(UNB), shallow solution (SHA), presupposi-
tion (PRE), authority voice (AUT), metaphor
(MET), compassion (COM), and the poorer, the
merrier (THE). These categories follow a vali-
dated PCL taxonomy (Pérez-Almendros et al.,
2020) that we summarize in Appendix A. Ex-
amples for each category are in Table 1.

As PCL is a subtle and mild phenomenon, the
annotation process was not straightforward (Pérez-
Almendros et al., 2020). In the following section,
the annotation scheme followed by dataset creators

2Covered English-speaking country codes: au, bd, ca, gb,
gh, hk, ie, in, jm, ke, lk, my, ng, nz, ph, pk, sg, tz, us, and za.
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Annotation task Individual decisions (a1,a2) Score Instances Gold label

Subtask 1: “Does the paragraph
contain any form of PCL?”
Values: 0, 1, 2

(0,0) 0 8,529
NO

(0,1), (1,0), * 1 947
(1,1), * 2 144

YES(2,1), (1,2), * 3 458
(2,2) 4 391

Subtask 2: “Which PCL category
does the span express (if any)?”
Values: ci, cj ∈ C, NONE

(ci, NONE), (NONE, ci) 1 1,359
ci

(ci, cj)ci ̸=cj , (cj , ci)cj ̸=ci ci, cj
(ci, ci) 2 1,401 ci

Table 2: The annotation process from individual annotators’ decisions to gold labels for both subtasks. For subtask
1, two annotators (a1, a2) assigned value 0 (no PCL), 1 (mild PCL) or 2 (high PCL) to each instance of the dataset.
The “Score” column indicates the sum of their decisions. In subtask 2, the annotators further characterized the
PCL instances of subtask 1, by identifying exact text spans and determining categories of the PCL (if any). We
generalize with ci, cj ∈ C two of the |C| = 7 possible PCL categories which annotators could have chosen, to show
the process in case of disagreement. The “Score” column indicates the number of annotators which agreed on the
category. *Includes cases of total disagreement – i.e., (0,2) and (2,0) – resolved by a third annotator a3.

is presented, as it is especially relevant for under-
standing the data itself and our methods.

2.3 Annotation process
The dataset has been manually labeled by expert an-
notators3 following a two-step process as described
below. The resulting annotations are the gold-
standard reference for the subtasks (Section 2.2).

Subtask 1 The annotation was performed by
three annotators. Two annotators labeled the whole
dataset (a1 and a2), while a third one (a3) intervened
in case of clear disagreement between a1 and a2.
Authors reported that “this annotation step proved
more difficult than expected, stemming from the
often subtle and subjective nature of PCL” (Pérez-
Almendros et al., 2020). Because of this difficulty,
annotators were given the possibility to assign each
paragraph a value 0 (no PCL), 1 (borderline), or 2
(highly PCL). Information about the annotation is
available as a 5-point scale, which reflects a joint
notion of uncertainty and agreement between anno-
tators. For subtask 1, organizers map values into
a binary form (i.e., {0, 1} 7→ NO-PCL, {2, 3, 4} 7→
PCL), evaluating systems accordingly. As antici-
pated, cases of total disagreement (i.e., a1: 0 and
a2: 2, and viceversa) received a third independent
annotation by a3.4 If a3 considered the paragraph
not to contain PCL, a borderline case, or an other-
wise clear PCL case, the paragraph was assigned

3Dataset authors reported the annotators’ background is
on the fields of communication, media, and data science.

4According to the first dataset release, these account for
5.5% of the annotations (Pérez-Almendros et al., 2020).

a value of 1, 2 or 3, respectively. This has the ef-
fect to leave extreme values (0 and 4) reserved for
clear-cut cases. The number of PCL-expressing
paragraphs is 993 (9.5%). A summary of the anno-
tation process for subtask 1 is in Table 2, top.

Subtask 2 In the second round of annotation,
paragraphs previously labeled as containing PCL
were further characterized by a1 and a2. The aim
is two-fold: (i) identify the paragraph segments
(or spans) that express PCL, and (ii) categorize
each of them into one or more PCL categories
(cf. Section 2.2). As a consequence, each identified
span exhibits one or multiple labels, depending on
whether one or both annotators identified it, and
on their agreement on the type(s) of condescension
expressed by the text segment. This results in a
per-span per-type agreement information on a 2-
point scale (1 or 2). Organizers frame subtask 2 as
a paragraph-level classification problem, and thus
each paragraph can express zero or more conde-
scension types based on the resulting 2,760 span
annotations (2.8 annotations per paragraph, on av-
erage). An overview of the annotation process for
subtask 2 is presented in Table 2, bottom.

3 Methods

Models proposed for PCL identification and classi-
fication are all based on multi-task learning (Caru-
ana, 1997) and use multiple views of input data,
inspired by Clark et al. (2018). In this section,
we firstly introduce the general framework on
which all our models are based on (Section 3.1).
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Then, we provide details on data- and task-specific
components that we use in our systems, namely
dataset views (Section 3.2) and auxiliary tasks (Sec-
tion 3.3). Lastly, we present the composition of our
final models (Section 3.4).

3.1 General framework
Our approach is based on multi-task learning, a
learning paradigm that aims to leverage training
signals of related tasks at the same time by exploit-
ing a shared representation in the model (Caruana,
1997). In all our models, we employ a main task,
namely PCL identification or classification, which
is a task of direct interest. Additionally, we em-
ploy auxiliary tasks (see Section 3.3), namely tasks
which can provide useful signals to potentially im-
prove the performance on the main task.

All our models use RoBERTa-base (Liu et al.,
2019) as shared encoder, and a separate decoder for
each task. This way, all tasks benefit from mutual
signals encoded by a shared contextualized repre-
sentation that is jointly fine-tuned during training.

The input is a text instance that is encoded using
byte-pair encoding (BPE; Sennrich et al., 2016),
whereas the output label is given by task-specific
decoders which consist of a linear classification
layer and operate on the contextual embedding of
the special [CLS] classification token.

In our models, each auxiliary task makes use of
a specific form (or view) of the original dataset,
which we introduce in the following (Section 3.2).
When training with multiple views of data, each
input batch to the model consists of examples from
a single data view, and the loss function is only acti-
vated for tasks associated to that data view. For fur-
ther details on multi-view (or multi-dataset) train-
ing, refer to van der Goot et al. (2021). An overview
of the framework is presented in Figure 2.

3.2 Data views
Our models employ different forms (or views) of
the original “Don’t Patronize Me!” dataset pro-
vided by organizers. Specifically, we use (i) para-
graph and (ii) span views as detailed as follows.

Paragraph data view (DP ) This corresponds to
the dataset in its standard form – i.e., whole para-
graphs – as provided by organizers (Section 2.1).

Span data view (DS) A dataset consisting of
all text excerpts – i.e., paragraph substrings – that
have been marked as expressing patronizing and
condescending language. As a result, this dataset

Figure 2: A high-level overview of our multi-task, multi-
view learning framework.

represents a different view of DP data, where only
snippets of PCL are included. Examples of text
instances in DS are reported in Table 1.

These different data views are used by special-
ized task decoders, as presented in Section 3.3.

3.3 Auxiliary tasks

In this section, we describe the auxiliary tasks
we used in one or more of our final models (Sec-
tion 3.4), along with the data view each task uses.
For details on the interplay between main and aux-
iliary tasks, we refer the reader to Section 4.1.

Paragraph uncertainty level (UNCERTAINTY)
This task is used for subtask 1 to consider differ-
ent annotators’ point of view in identifying PCL.
We use the aggregated 5-point scale score (cf. Sec-
tion 2.3, subtask 1) assigned to each paragraph
as auxiliary task. Although disaggregated annota-
tors’ decisions have not been made available for the
shared task, we argue that the combined annotation
provided by organizers can be viewed as a joint
notion of uncertainty and agreement between anno-
tators in identifying PCL, and is thus valuable infor-
mation that can inform PCL identification. Since
this is a paragraph-level information, this auxiliary
task uses the DP data view. For each paragraph, a
label l ∈ {0, 1, 2, 3, 4} must be predicted.

Span agreement level (AGREEMENT) This task
is used for subtask 2 as it potentially drives useful
signals for PCL classification. We hypothesize
that the number of annotators which agree on a
particular PCL category for a span (cf. Section 2.3,
subtask 2) is a crucial information as it can provide
the main task with different shades of PCL based
on annotators’ interpretation and sensibility. The
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(a) MTMW(UNC+SPAN) model for subtask 1. (b) MTMW(AGR+COU+SPAN) model for subtask 2.

Figure 3: Our selected models for PCL identification (subtask 1) and classification (subtask 2).

agreement level is a span-level information, and
thus we use the DS view for the associated task.
For each span, a label l ∈ {1, 2} must be predicted.

Span categorization (SPAN) This auxiliary task
is used for both subtask 1 and 2, as we argue that
making use of small and focused units of informa-
tion such as condescending text excerpts would be
useful to inject knowledge in the encoder about
which paragraph segments are important for recog-
nizing PCL. The task uses the DS data view, and
for each span a label l ∈ {UNB, SHA, PRE, AUT,
MET, COM, THE} has to be predicted (i.e., one
among the condescending types in Section 2.2).

News outlet country (COUNTRY) We employ
this auxiliary task for our subtask 2 model.5 We
hypothesize that the diverse background culture
of countries results in variation in language use,
and thus could have an impact on the expression
of patronizing and condescending language. The
news outlet provenance is provided by organizers
along with the original dataset. The auxiliary task
uses the DP view, and the label to be predicted is a
country code, i.e., l ∈ {au, bd, ca, gb, gh, hk, ie, in,
jm, ke, lk, my, ng, nz, ph, pk, sg, tz, us, za}.

3.4 Models

Our approaches to PCL identification and classifica-
tion are all centered on the hypothesis that leverag-
ing annotators’ uncertainty and disagreement dur-
ing training is beneficial for capturing the subtle
language which characterizes PCL. This is in line

5We have experimented with this auxiliary task on subtask
1 too; however, we noticed a substantial performance degrada-
tion compared to using uncertainty only (cf. Section 4.3).

with recent work emphasizing the importance of
modeling annotators’ disagreement in subjective
tasks (Davani et al., 2022; Leonardelli et al., 2021;
Uma et al., 2021) and initiatives supporting the
release of disaggregated annotations in NLP (Aber-
crombie et al., 2022).

We participated in the SemEval-2022 Task 4
challenge with two submissions for both subtasks.
To this end, we built three models. Two models are
our best systems – as evaluated on the development
set (cf. Section 4.3) – on subtask 1 (Section 3.4.1)
and subtask 2 (Section 3.4.2). We submit them
for the corresponding subtasks. The third model
was instead built aiming at a generic and unified
solution, and represents our second submission for
both subtasks (Section 3.4.3).

3.4.1 MTMW(UNC+SPAN) model for PCL
identification (subtask 1)

In this multi-task, multi-view model (MTMW), we
consider PCL identification as the main (binary
classification) task, and employ UNCERTAINTY and
SPAN as auxiliary tasks, as described in Section 3.3.
We refer to this model to as MTMW(UNC+SPAN).
An overview of the resulting approach for PCL
identification is presented in Figure 3a.

3.4.2 MTMW(AGR+COU+SPAN) model for
PCL classification (subtask 2)

In this multi-task, multi-view model (MTMW), the
main task is PCL classification, whereas AGREE-
MENT, COUNTRY and SPAN are auxiliary tasks. For
PCL classification, each label is modeled through
a dedicated binary classification decoder. We use
MTMW(AGR+COU+SPAN) to refer to this approach
in the remainder of this paper. We graphically
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present the model in Figure 3b, and refer the reader
to Section 3.3 for details on auxiliary components.

3.4.3 Sequential PCL identification and
classification (subtasks 1 & 2)

Given that PCL classification is a fine-grained ver-
sion of the PCL identification task, we argue that
sequentially fine-tuning encoder weights on tasks
of increased complexity should be beneficial to im-
prove the performance on both subtasks. This ap-
proach borrows the idea from modern data-centric
adaptation methods in NLP (Ramponi and Plank,
2020) such as continued pretraining of language
models (Gururangan et al., 2020), however em-
ploying it at the fine-tuning stage, similarly to
intermediate-task transfer (Phang et al., 2018).

We firstly run the PCL identification model de-
scribed in Section 3.4.1. Then, we use the result-
ing fine-tuned encoder weights as initialization for
the encoder of the PCL classification model (Sec-
tion 3.4.2) with SPAN auxiliary only.6 Finally, we
fine-tune it on subtask 2. This results in a single
model that has incrementally learnt the complexity
of PCL detection as a whole. Prediction of labels
for subtask 1 were done simply considering a para-
graph as containing PCL if it exhibits at least a
PCL category label in subtask 2. We refer to this
approach to as SEQ. FINE-TUNING model.

4 Experiments

In this section, we first outline the experimental
setup (Section 4.1). Then, we present the results
of our models (Section 4.2), as well as additional
analyses and discussion (Section 4.3).

4.1 Experimental Setup

We implemented our models using the MaChAmp
v0.2 toolkit (van der Goot et al., 2021) and employ
RoBERTa-base (Liu et al., 2019) as shared encoder
since it has been shown to outperform other com-
monly used pretrained language models on PCL
detection tasks (Pérez-Almendros et al., 2020).

For training, we use default hyperparameters
(Appendix B) and fine-tune each model – roughly
110M trainable parameters – for 10 epochs on a
single GPU.7 We use a cross-entropy loss with
balanced class weights to give equal importance

6This choice is motivated by the need for a simpler and
unified solution for both subtasks. We decided to leave country
and agreement auxiliaries out for this submission due to negli-
gible differences in performance on subtask 2 (Section 4.3).

7NVIDIA Tesla V100-SXM2.

P R F1

Organizers’ baseline 39.35 65.30 49.11

MTMW(UNC+SPAN) 64.23 52.68 57.89
SEQ. FINE-TUNING 53.99 55.52 54.74

Table 3: Official test set results of our models compared
to the organizers’ RoBERTa baseline on PCL identifica-
tion (subtask 1). P: Precision; R: Recall; F1: F1 score
over the positive class. Best results are in bold.

to all classes during fine-tuning, and thus empha-
sizing underrepresented classes in training data.
The multi-task learning loss is computed as L =∑

t λtLt, where Lt is the loss for task t, and λt the
corresponding weighting parameter. In our experi-
ments, we empirically set λt = 1 for the main task,
and λt = 0.25 for auxiliary tasks.8

We solely rely on data provided by organizers,
and use the provided 80% train and 20% devel-
opment split as one fold, additionally creating the
remaining 80%/20% splits in a stratified fashion.
To avoid confounding our results, we ensure train-
ing splits for the span data view do not contain any
text excerpt appearing in development data of the
paragraph data view. This results in 5 folds that
we use for selecting models for our submissions.
For official test set evaluation, we then submit the
selected models trained on the provided data split.

For the purpose of the shared task, models for
PCL identification (subtask 1) are evaluated using
F1 score over the positive class, whereas models
for PCL classification (subtask 2) are evaluated
based on macro-average F1 score. We employ the
same metrics at the model selection stage.

4.2 Results

We present the official results for our proposed
models for subtask 1 and 2 in Table 3 and Table 4,
respectively. We also include scores of the organiz-
ers’ RoBERTa baseline for informed comparison
based on the shared task metrics.

Subtask 1 As shown in Table 3, our submit-
ted MTMW(UNC+SPAN) model outperforms the
RoBERTa baseline by a large margin, with most
of the benefit coming from the precision metric.
This indicates that the uncertainty and agreement

8Except for AGREEMENT, for which we empirically set
λt = 0.125 since it is actually auxiliary of an auxiliary task.
A thorough investigation on the impact of the weighting pa-
rameter on individual auxiliary tasks is left for future work.
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UNB SHA PRE AUT MET COM THE F1

Organizers’ baseline 35.35 0.00 16.67 0.00 0.00 20.87 0.00 10.41

MTMW(AGR+COU+SPAN) 52.46 36.22 26.95 37.71 31.86 45.95 30.30 37.35
SEQ. FINE-TUNING 54.00 46.73 28.07 22.22 29.73 44.28 20.69 35.10

Table 4: Official test set results of our models compared to the organizers’ RoBERTa baseline on PCL classification
(subtask 2). UNB: Unbalanced power relations; SHA: Shallow solution; PRE: Presupposition; AUT: Authority voice;
MET: Methaphor; COM: Compassion; THE: The poorer, the merrier; F1: macro-average F1. Best results are in bold.

level as well as the use of focused text excerpts
do play a positive role in PCL identification. On
the other hand, while also the SEQ. FINE-TUNING

approach provides better results compared to the
baseline, it scores lower than MTMW(UNC+SPAN).
A reason for this behavior can be attributed to the
way we infer labels for this subtask (i.e., based
on predictions for subtask 2, as anticipated in Sec-
tion 3.4.3), or due to catastrophic forgetting (Mc-
Closkey and Cohen, 1989), a phenomenon in which
prior knowledge is largely forgotten when learn-
ing a new task. On the shared task leaderboard,
MTMW(UNC+SPAN) ranked 18th out of 78 teams.

Subtask 2 Similarly to results for subtask 1,
both our submitted systems largely outperform
the RoBERTa baseline, as shown in Table 4. We
notice that the SEQ. FINE-TUNING approach still
scores lower than a tailored approach for subtask
2, i.e., MTMW(AGR+COU+SPAN). Specifically,
MTMW(AGR+COU+SPAN) shows an absolute im-
provement of +26.9 points in macro-average F1

score over the RoBERTa baseline, with a clear ad-
vantage over the SEQ. FINE-TUNING model on un-
derrepresented classes (i.e., AUT, MET and THE).
Our MTMW(AGR+COU+SPAN) model ranked 13th

out of 49 participating teams on the official leader-
board. Overall, our models do not require any
external data or model ensemble, and we think this
makes them viable approaches for real-world use.

4.3 Analysis and discussion

In order to provide insights for future work on PCL
detection, we conduct analyses on the contribution
of auxiliary tasks to performance of our models
(Section 4.3.1), and an in-depth study on the role
of uncertainty and disagreement (Section 4.3.2).

4.3.1 Contribution of auxiliary tasks
Our submitted models for PCL identification and
classification leverage training signals coming from
selected auxiliary tasks (cf. Section 3.4). These

Model F1 score

su
bt

as
k

1

Our single task baseline 56.73±3.2

Multi-task setup
+ COUNTRY 55.99±2.7

+ UNCERTAINTY 56.92±3.2

+ COUNTRY, UNCERTAINTY 57.74±3.5

Multi-task, multi-view setup 55.69±2.0

+ COUNTRY 57.35±1.9

+ UNCERTAINTY 58.38±3.7

+ COUNTRY, UNCERTAINTY 57.53±4.6

su
bt

as
k

2

Our single task baseline 37.02±2.8

Multi-task setup
+ COUNTRY 36.26±2.3

Multi-task, multi-view setup 38.25±3.6

+ COUNTRY 37.16±2.3

+ AGREEMENT 37.53±0.8

+ COUNTRY, AGREEMENT 38.81±2.9

Table 5: Contribution of auxiliary tasks to performance
of models for subtask 1 (top) and subtask 2 (bottom).
We report mean and standard deviation of F1 scores on
development splits. The multi-task, multi-view setups
use SPAN by default. Results for AGREEMENT and its
combinations in the multi-task setup of subtask 2 are
omitted, since they would require the DS view, and thus
only refer to the multi-task, multi-view configuration.

model variants have been chosen after a thorough
performance evaluation on the development splits.
In Table 5 we report the mean and standard de-
viation of F1 scores for each model with differ-
ent auxiliary task configurations. We denote with
“Our single task baseline” our baseline RoBERTa
model with no multi-task nor multi-view learn-
ing. Note that this is different from organizers’
RoBERTa baseline, since we employ a different
hyperparameter setup with the addition of class
weights (Section 4.1). We do not include the or-
ganizers’ baseline here due to incomparability –
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we only have access to results on a single devel-
opment split. For reference, organizers reported
48.29 F1 on subtask 1, and 13.40 F1 on subtask 2
for their baseline. Multi-task setups refer to con-
figurations where DP -based auxiliaries are used,
whereas multi-task, multi-view setups also exploit
the DS view, thus using SPAN as default auxiliary
task on all experiments.

Subtask 1 Table 5 (top) shows the results of mod-
els with different auxiliary task combinations on
subtask 1 development data. All multi-task, and
multi-task multi-view setups outperform the base-
line, with the only exception of the multi-task con-
figuration solely using COUNTRY as auxiliary task.
Overall, the use of UNCERTAINTY as auxiliary task
consistently improves the performance over the
baseline, even when coupled with other auxiliaries.
The best results are obtained when employing a
multi-task, multi-view setup with UNCERTAINTY

only (58.38 F1), suggesting that information com-
ing from the COUNTRY auxiliary is not as useful
as in the multi-task scenario. We hypothesize this
behaviour could be attributed to the use of SPAN in
the multi-task, multi-view setup, which indirectly
provides a more useful inductive bias for PCL iden-
tification. In future work we aim to further dig into
this aspect, exploring various loss weight configu-
rations to assess the strength of this finding.

Subtask 2 We present in Table 5 (bottom) the
contribution of auxiliary tasks on subtask 2 devel-
opment data. Similarly to subtask 1, COUNTRY in
the multi-task setup is the only auxiliary task that
does not improve the performance over our single
task RoBERTa baseline. However, when coupled
with AGREEMENT in the multi-task, multi-view
configuration, it provides the best overall perfor-
mance over all model variants (38.81 F1). This
suggests that the AGREEMENT auxiliary provides
signals orthogonal to COUNTRY, as shown by the
multi-task, multi-view alternatives employing these
auxiliaries in isolation. By a closer look, the per-
formance of the multi-task, multi-view setup alone
(i.e., SPAN only) are highly competitive, confirm-
ing our hypothesis that using PCL-expressing text
excerpts is beneficial for PCL detection as a whole.

4.3.2 Role of uncertainty and disagreement
To delve into the role of agreement and uncertainty,
we further study performance of our best systems
on subtask 1 and 2 as a function of the agree-
ment/uncertainty level. To the goal, we use the

level 0 1 2 3 4

F1 49.27 44.67 27.32 33.39 41.95

Table 6: Performance of our model for subtask 1 as a
function of different levels of uncertainty/disagreement.
F1 scores are averages over the five development splits.

predictions of our models on development splits.

Subtask 1 To investigate the impact of uncer-
tainty/agreement on the performance of our model
for subtask 1, we first divided each development
split by uncertainty/agreement level (cf. “Score”,
Table 2, top). Then, we calculated the per-level
F1 score on each split. Finally, we averaged the
per-level performance on all folds. We report the
experimental results in Table 6. It is interesting to
observe how in this task the uncertainty/agreement
levels 0, 2 and 4 reflect agreement between annota-
tors (0+0, 1+1, or 2+2), but performance for score
2 – where both annotators agree in being uncertain
– is much worse. This suggests a prominent role of
uncertainty in worsening classifier’s performance,
rather than disagreement. On the other hand, uncer-
tainty and disagreement represent two sides of the
same coin, as the less certain and clear a decision
is, the greater probability is to have disagreement
between annotators.

Subtask 2 We perform a similar analysis for sub-
task 2. The agreement level (cf. “Score”, Table 2,
bottom) has a clear effect on model’s performance:
out of the 2,760 PCL-expressing spans, only 44%
of 1,359 spans with an agreement level of 1 are cor-
rectly labeled, compared to 56% of 1,401 spans for
which both annotators signaled a form of PCL. Con-
sidering paragraphs with a single PCL-expressing
span only, this results to 35% of 801 examples for
agreement level 1, and 52% of 798 examples for
agreement 2, further confirming that instances ex-
hibiting disagreement are more difficult to classify.

5 Conclusion

In this paper, we presented our submitted systems
to SemEval-2022 Task 4. We showed that leverag-
ing annotators’ uncertainty and disagreement dur-
ing training in a multi-task, multi-view framework
is beneficial for the identification and classification
of patronizing and condescending language, and
achieves competitive results on the official leader-
board without relying on any external data or model
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ensemble. We also showed that sequential fine-
tuning is a viable alternative to tackle PCL identi-
fication and classification jointly, with the goal of
reducing the use of computational resources during
inference, although it obtains lower performance
compared to our tailored solutions. A thorough
analysis on the impact of diverse auxiliary tasks on
the performance of our models for PCL detection,
and an investigation on the role of uncertainty and
disagreement further confirmed the importance of
considering annotators’ point of view in PCL detec-
tion. As future work, we aim to test the presence
and assess the impact of spurious lexical biases
in the dataset (Ramponi and Tonelli, 2022) and
extend our models to other genres, such as social
media (Wang and Potts, 2019). We hope this work
will encourage future efforts towards annotators-
centric NLP, on PCL detection and other subjective
tasks more broadly.
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Appendix

A PCL categories

In the following, we provide the precise defini-
tions of the PCL categories according to Pérez-
Almendros et al. (2020).

Unbalanced power relations “By means of the
language, the author distances themselves from the
community or the situation they are talking about,
and expresses the will, capacity or responsibility
to help them. It is also present when the author
entitles themselves to give something positive to
others in a more vulnerable situation, especially
when what the author concedes is a right which
they do not have any authority to decide to give.”

Shallow solution “A simple and superficial char-
itable action by the privileged community is pre-
sented either as life-saving/life-changing for the
unprivileged one, or as a solution for a deep-rooted
problem.”

Presupposition “When the author assumes a situ-
ation as certain without having all the information,
or generalises their or somebody else’s experience
as a categorical truth without presenting a valid,
trustworthy source for it (e.g. a research work or
survey). The use of stereotypes or cliches are also
considered to be examples of presupposition.”

Authority voice “When the author stands them-
selves as a spokesperson of the group, or explains
or advises the members of a community about the
community itself or a specific situation they are
living.”

Metaphor “[Metaphors] can conceal PCL, as
they cast an idea in another light, making a com-
parison between unrelated concepts, often with the
objective of depicting a certain situation in a softer
way. [...] Euphemisms are considered as an exam-
ple of metaphors.”

Compassion “The author presents the vulnera-
ble individual or community as needy, raising a
feeling of pity and compassion from the audience
towards them. It is commonly characterized by
the use of flowery wording that does not provide
information, but the author enjoys the detailed and
poetic description of the vulnerability.”

The poorer, the merrier “The text is focused on
the community, especially on how the vulnerability
makes them better (e.g. stronger, happier or more

Hyperparameter Value

Optimizer AdamW
β1, β2 0.9, 0.99
Dropout 0.3
Epochs 10
Batch size 32
Learning rate (LR) 0.0001
LR scheduler Slanted triangular
Decay factor 0.38
Cut fraction 0.2

Main task loss weight 1
Aux task loss weight 0.25
Aux’s aux task loss weight 0.125

Table 7: Hyperparameter values used for all our experi-
ments.

resilient) or how they share a positive attribute just
for being part of a vulnerable community. People
living vulnerable situations have values to admire
and learn from. The message expresses the idea of
vulnerability as something beautiful or poetic. We
can think of the typical example of ‘poor people are
happier because they don’t have material goods’.”

B Hyperparameters

The hyperparameter setting for all our models is
presented in Table 7. This reflects the default
MaChAmp’s hyperparameter values (van der Goot
et al., 2021), with the addition of loss weights, as
introduced in Section 4.1, and 10 epochs of train-
ing as suggested in the original RoBERTa publica-
tion (Liu et al., 2019).

C Credits

People icons included in Figure 1 are by https:
//icons8.com/.
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Abstract

Patronizing and condescending language (PCL)
has a large harmful impact and is difficult to de-
tect, both for human judges and existing NLP
systems. At SemEval-2022 Task 4, we pro-
pose a novel Transformer-based model and its
ensembles to accurately understand such lan-
guage context for PCL detection. To facilitate
comprehension of the subtle and subjective na-
ture of PCL, two fine-tuning strategies are ap-
plied to capture discriminative features from di-
verse linguistic behaviour and categorical distri-
bution. The system achieves remarkable results
on the official ranking, including 1st in Subtask
1 and 5th in Subtask 2. Extensive experiments
on the task demonstrate the effectiveness of our
system and its strategies.

1 Introduction

“Don’t worry, I know this is a mistake you usually
make, we all make it sometimes, but I am bring-
ing you a solution.”, which is a typical example of
Patronizing and Condescending Language (PCL)
(Giles et al., 1993; Huckin, 2002), shows a supe-
rior attitude and apparent kindness towards others,
while is generally expressed unconsciously. The
impact of PCL can potentially be very harmful, as
it feeds inequalities and routinizes discrimination
(Ng, 2007), especially if it is geared towards vul-
nerable communities in the media. If we are able
to detect and identify when we are condescending
or patronizing towards others, a corrective action
(e.g., a more inclusive message) could be taken for
a more responsible communication.

Recently, some works (Wang and Potts, 2019;
Sap et al., 2020) on PCL are gradually emerging in
NLP community. Remarkably, Pérez-Almendros
et al. (2020) have shown that general pre-trained
language models (Devlin et al., 2019; Liu et al.,
2019) can achieve nontrivial performance. How-
ever, the behaviour of PCL is usually more uncon-
scious, subtler, and subjective than other harmful

types of discourse that are widely studied, i.e., hate
speech (Basile et al., 2019), offensive language
(Zampieri et al., 2019), intended sarcasm (Du et al.,
2022), fake news (Zhang et al., 2021b) and ru-
mor (Wei et al., 2021). These characteristics make
PCL detection a difficult challenge, both for human
judges and existing NLP systems.

To address this, we propose a novel Transformer-
based model BERT-PCL (and its ensembles) with
two discriminative fine-tuning strategies, to accu-
rately understand such language context for PCL
detection. The two strategies are grouped layer-
wise learning rate decay (Grouped LLRD) and
weighted random sampler (WRS), and both are
beneficial for task-adaptive fine-tuning based on
language models.

A brief description of these two strategies is
as follows: 1) As different layers capture differ-
ent types of information (Yosinski et al., 2014),
Grouped LLRD, a variant of LLRD (Howard and
Ruder, 2018; Zhang et al., 2021a), is applied to
group hidden layers of the pre-trained Transformer
(Vaswani et al., 2017) into different sets and apply
different learning rates to each in a certain extent.
And then, we can make full use of different layers
to capture more diverse and fine-grained linguistic
features, which can boost understanding of the sub-
tle and subjective nature of PCL. 2) There is a quite
common phenomenon that positive samples (pa-
tronizing or condescending) have a smaller number
than the negative, which reflects usage rates of PCL
in public forums (Wang and Potts, 2019; Pérez-
Almendros et al., 2020). But the positive samples
are more important when detecting PCL, due to the
harmful impacts. To deal with imbalanced classes
scenarios, we introduce WRS to place more empha-
sis on the minority classes. Under this strategy, our
classifier can capture discriminative features from
the categorical distribution and detect whether it
contains PCL in an unbiased manner.

At SemEval-2022 Task 4 (Pérez-Almendros
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et al., 2022), our proposed system achieves 1st in
Subtask 1 and 5th in Subtask 2 on the evaluation
leaderboard1. Meanwhile, in the post-evaluation
phase, we further verified the results of the system
on the test set of both subtasks. For Subtask 1,
the single model BERT-PCL and its ensembles ob-
tained 63.69% and 65.41% performance in terms
of F1 of positive class, respectively. For Subtask 2,
the single model BERT-PCL and its ensembles ob-
tained 43.28% and 45.66% performance in terms
of macro-average F1, respectively. Moreover, a
series of experiments are conducted on the two
subtasks of PCL detection. Results consistently
demonstrate that our model and its ensembles sig-
nificantly outperform comparison methods and the
effectiveness of two strategies used in our system.

2 Background

2.1 Task and Data Description
The aim of SemEval-2022 Task 4 (Pérez-
Almendros et al., 2022) is to identify PCL, and
to categorize the linguistic techniques (categories)
used to express it, specifically when referring to
vulnerable communities in the media.

This challenge is divided into two subtasks, each
corresponding to a subset of the Don’t Patronize
Me! (DPM) dataset (Pérez-Almendros et al., 2020).
The 10,469 annotated paragraphs (i.e., sentences
in context) from the DPM corpus are used as train-
ing data, where each paragraph mentions one or
several predefined vulnerable communities. These
paragraphs are collected using a keyword-based
strategy and cover English language news sources
from 20 different countries. A short description of
the two subtasks and training data is as follows:

• Subtask 1: Binary classification. Given a
paragraph, a system must predict whether or
not it contains any form of PCL. The training
set consists of 10,469 paragraphs annotated
with a label ranging from 0 to 4. Label 2, 3,
and 4 means positive examples (condescend-
ing or patronizing) of PCL and the remaining
labels means negatives.

• Subtask 2: Multi-label classification. Given
a paragraph, a system must identify the cat-
egories of PCL that are present. The 993
unique paragraphs (positive examples) in the
training set, totaling 2,760 instances of PCL,

1https://sites.google.com/view/
pcl-detection-semeval2022/ranking

are labeled with one or more PCL cate-
gories: Unbalanced power relations, Shal-
low solution, Presupposition, Authority voice,
Metaphor, Compassion, The poorer, the mer-
rier.

In addition, the test set for the evaluation phase con-
tains around 4,000 manually annotated paragraphs
with the PCL annotation scheme. More details
about the task can be found on the competition
page2.

2.2 Related Work
Harmful language detection/recognition has been
widely studied in various forms of discourse, such
as hate speech (Basile et al., 2019), offensive lan-
guage (Zampieri et al., 2019), intended sarcasm
(Du et al., 2022), fake news (Zhang et al., 2021b)
and rumors (Wei et al., 2021; Hu et al., 2021).
Unlike these works generally focused on explicit,
aggressive and flagrant phenomena, the study of
patronizing and condescending Language (PCL)
(Giles et al., 1993; Huckin, 2002; Chouliaraki,
2006; Margić, 2017) has been almost ignored in
NLP community until recently.

To encourage more research on PCL language,
Wang and Potts (2019) present a condescension de-
tection task and provides a TALKDOWN dataset in
comment-reply pairs from Reddit. Besides, Pérez-
Almendros et al. (2020) introduce a Don’t Patron-
ize Me! dataset and the challenge of PCL detection
towards vulnerable communities (e.g. refugees,
homeless people, poor families). These works es-
tablish several advanced baselines using pre-trained
language models (Devlin et al., 2019; Liu et al.,
2019), and suggest that detecting such language
is a challenging task both for humans and NLP
systems due to its subtle and subjective nature.

3 System Overview

In this section, we review our system adopted in
SemEval-2022 Task 4, where we design a novel
Transformer-based model BERT-PCL (and its en-
sembles) with two discriminative fine-tuning strate-
gies for both subtasks of PCL detection.

3.1 Model Architecture
BERT (Devlin et al., 2019) uses masked language
models to enable pretrained deep bidirectional rep-
resentations, and can be fine-tuned to create task-

2https://competitions.codalab.org/
competitions/34344
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specific models with powerful performance (Wei
et al., 2020; Hu and Wei, 2020). Inspired by this,
our system utilizes Transformers (Vaswani et al.,
2017) to learn contextual representations of the
input sentence under the BERT-like architecture.

Formally, given an input token sequence
xi1, ..., xiN where xij refers to j-th token in the
i-th input sample, andN is the maximum sequence
length, the model learns to generate the context
representation of the input token sequences:

hi = BERT([CLS], xi1, ..., xiN , [SEP]), (1)

where [CLS] and [SEP] are special tokens, usually
at the beginning and end of each sequence, respec-
tively. hi indicates the hidden representation of the
i-th input sample, computed by the representation
of [CLS] token in the last layer of the encoder.

3.2 PCL Detection
3.2.1 Subtask 1: Binary Classification
Subtask 1, a binary classification task, aims to pre-
dict whether or not a paragraph contains any form
of PCL. After encoding, we apply a fully connected
layer with the Softmax function to predict whether
or not the input contains any form of PCL:

ŷi = Softmax(Whi + b), (2)

where W and b are trainable parameters. We lever-
age Cross-entropy loss to optimize the system. The
objective function of Subtask 1 is defined as:

L = − 1

N

∑

i

(yi log(ŷi) + (1− yi) log(1− ŷi))

(3)
where yi is the ground-truth label of PCL.

3.2.2 Subtask 2: Multi-Label Classification
Subtask 2 is a multi-label classification task. Its
goal is to determine which PCL categories a para-
graph expresses. After encoding, we also apply a
fully connected layer with the sigmoid function to
predict the probability of each PCL class:

ŷc
i = σ(Wchi + bc), (4)

where σ is the sigmoid function. Wc and bc are
trainable parameters. We use Binary Cross Entropy
(BCE) loss (Bengio et al., 2013) for the multi-label
classification task, denoted as:

L = − 1

N

∑

i

M∑

c=1

[yc
i log(ŷ

c
i )+(1−yc

i ) log(1−ŷc
i )],

(5)

where M is the number of classes, ŷc
i indicates the

predicted probability that the i-th sample belongs
to the c-th class.

3.3 Fine-tuning Strategies

For discriminative fine-tuning of the model, we in-
troduce two strategies to boost the accurate under-
standing of PCL context, namely grouped layer-
wise learning rate decay (Grouped LLRD) and
weighted random sampler (WRS).

3.3.1 Grouped LLRD

As different layers capture different types of in-
formation (Yosinski et al., 2014), they should be
fine-tuned to different extents. Therefore, instead
of using the same learning rate for all hidden layers
of the Transformer, we tune each layer with differ-
ent learning rates. Layer-wise learning rate decay
(LLRD) (Howard and Ruder, 2018; Zhang et al.,
2021a) is a popular fine-tuning strategy that applies
higher learning rates for top layers and lower learn-
ing rates for bottom layers. Inspired by this, we
group layers into different sets and apply different
learning rates to each, denoted as Grouped LLRD.

Formally, we split all hidden layers of the Trans-
former into G sets with embeddings attached to
the first set. The parameters of layers are denoted
as {θ1, ..., θG}, where θg refers to the g-th group.
The corresponding learning rate values are denoted
as {η1, ..., ηG}, where ηg indicates the learning
rate of the g-th group. To capture discriminative
features, a multiplicative decay rate λ is used to
change relative value of initial learning rates from
adjacent groups in a controlled fashion. At time
step t, the update of parameters θ is computed by:

θgt = θgt−1 − ηg · ∇θgJ(θ), (6)

where ∇θgJ(θ) is the gradient with regard to the
model’s objective function. The learning rate of the
lower layer is applied as ηg−1 = ηg/λ during fine-
tuning to decrease the learning rate group-by-group.
In addition, same as LLRD, we use a learning rate
that is slightly higher than the top hidden layer for
the pooler head and classifier.

Under the above setting, we can capture more
diverse and fine-grained linguistic features by flexi-
bly optimizing different hidden layers of the Trans-
former. It can boost understanding of PCL’s subtle
and subjective nature.
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3.3.2 Weighted Random Sampler
The PCL dataset is highly imbalanced, which
causes problems for training the above models. To
alleviate this imbalanced classes problem, we use a
Weighted Random Sampler (WRS) to place more
emphasis on the minority classes. The samples are
weighted and the probability of each sample being
selected is determined by its relative weight.

For both subtasks, the sampling weight of the
i-th sample is computed by:

si =

{
1/
√
κp, if it contains PCL,

1/
√
κn, otherwise,

(7)

where κp and κn refer to the ratio of positive and
negative examples of PCL in training data, respec-
tively. Then, the elements are sampled based on the
passed weights. It is worth noting that the number
of samples is equal to the length of the training
set. During training, the sampler tends to select
samples from positive examples with small data
volume. In this way, we can have positive and
negative classes with equal probability. And the
classifier can capture discriminative features from
categorical distribution in an unbiased manner.

3.4 Ensemble

For the final submissions, we apply a voter-based
fusion technique (Morvant et al., 2014) to ensem-
ble several BERT-PCL models. Concretely, we
train the proposed BERT-PCL with five different
random seeds. Then, we select Top-3 models ac-
cording to average result of k-fold cross-validation
on the training data. Finally, results of the test set
predicted by the three optimal models are voted to
get the final submission.

4 Experimental Setup

4.1 Comparison Methods

We compare BERT-PCL and its ensembles with the
following several methods:

• Random is based on random guessing, choos-
ing each class/label with an equal probability.

• BERT (Devlin et al., 2019) is a language
model pre-trained in a self-supervised fashion
based on deep bidirectional transformers. We
use bert-base-uncased3 to initialize BERT.

3https://huggingface.co/

• ALBERT (Lan et al., 2020) presents two
parameter-reduction techniques to lower mem-
ory consumption and increase the training
speed of BERT. We use albert-large-v23 to
initialize ALBERT.

• ERNIE 2.0 (Sun et al., 2020) is a contin-
ual pre-training framework, which builds
and learns incrementally pre-training tasks
through constant multi-task learning. We
use nghuyong/ernie-2.0-large-en3 to initialize
ERNIE 2.0.

• RoBERTa (Liu et al., 2019) optimizes the
training procedure of BERT and removes
the next sentence predict objective when pre-
training. We use roberta-large3 to initialize
RoBERTa.

4.2 Implementation Details

For both subtasks, stratified k-fold cross validation
(Kohavi, 1995; Sechidis et al., 2011) is performed
to split limited training data into 5 folds. We choose
the optimal hyperparameter values based on the the
average result of validation sets for all folds, and
evaluate the performance of systems on the test
data. BERT-PCL is initialized with the roberta-
large3 parameters, due to the nontrivial and con-
sistent performance in both subtasks. Following
Pérez-Almendros et al. (2020, 2022), the evaluation
metrics are F1 over the positive class for Subtask 1
and macro-average F1 for Subtask 2.

We group layers into 3 groups, i.e., G = 3.
The learning rate for layers in the lower, median,
and higher groups as η/λ, η, and η ∗ λ, respec-
tively, where η is set to 1e-5. λ is a hyperparame-
ter searched from {0.6, 1.6, 2.6, 3.6, 4.6, 5.6, 6.6}.
For the training of BERT-PCL, the optimal value
of lambda is 1.6 for Subtask 1 and 3.6 for Subtask
2. The experiments are conducted with batch size
of 4, maximum length of 250, and dropout rate of
0.4. The number of epochs is set to 10 and the
maximum patience number of early stopping is set
to 50 batches. AdamW optimizer (Kingma and
Ba, 2015) is used with a weight decay of 0.01. A
cosine annealing schedule (Loshchilov and Hutter,
2017) is applied to decay the learning rate, with a
linear warmup for the first 10% steps.

To effectively utilize the country term and search
keyword term corresponding to each paragraph in
the corpus, we concatenate these terms with the
original paragraph as the input sequence. In the
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P R F1
Random 8.98 55.21 15.45
BERT 56.20 48.58 52.12
ALBERT 59.43 32.81 42.28
ERNIE 2.0 59.24 58.68 58.95
RoBERTa 60.65 64.67 62.60
BERT-PCL 64.31 63.09 63.69
Ensemble 1.0 † 64.60 65.62 65.10
Ensemble 2.0 65.20 65.62 65.41

Table 1: Results for the problem of detecting PCL,
viewed as a binary classification problem (Subtask 1).
The results are reported in terms of the precision (P), re-
call (R) and F1 score of the positive class. All compared
pre-trained models are fine-tuned on the task dataset. †

indicates the results on the official ranking.

implementation, two special token pairs (i.e., <e>
and </e>) are introduced as the term boundary.

5 Result and Discussion

5.1 Overall Result

The overall results in both subtasks are summa-
rized in Table 1 and 2. Unsurprisingly, all pre-
trained models clearly outperform the random base-
line. The proposed BERT-PCL and its ensembles
(i.e., Ensemble 1.0 and Ensemble 2.0) consistently
obtain the best performance than the comparison
methods on both subtasks. Specifically, BERT-PCL
gains 1.09% and 5.39% absolute improvements for
Subtask 1 and 2, respectively. These results show
the superiority of our models.

In Table 1, both Ensemble 1.0 and Ensemble 2.0
are fused by three optimal full BERT-PCL models
with different seeds and obtain a better performance
than BERT-PCL in Subtask 1. In Table 2, Ensem-
ble 1.0 is fused by the three optimal BERT-PCL
that removes WRS, since we found that it is worse
when performing WRS according to weights of cat-
egory label in Subtask 2. Different from it, in the
post-evaluation phase, we perform WRS according
to weights of positive samples (patronizing or con-
descending) and fuse three optimal full BERT-PCL
as Ensemble 2.0. As shown in Table 2, Ensemble
2.0 obtains a better performance than BERT-PCL
and Ensemble 1.0 in Subtask 2.

Then, we qualitatively analyze the performance
of BERT-PCL and typical baselines on the valida-
tion set for both subtasks. The results are illustrated
in Figure 1. From the figure, BERT-PCL consis-

Figure 1: Results on the validation set for both subtasks.
The box displays the distribution of results where the
green triangle indicates the mean of results, the green
line and two blue lines represent the 25%, 50%, and 75%
quartiles, respectively, and black lines are the maximum
and minimum values. For Subtask 1, we report F1 score
of the positive class; and for Subtask 2, we list macro-
average F1 score.

Figure 2: Results of ablation study for PCL detection.
For Subtask 1, we report F1 score of the positive class;
and for Subtask 2, we list macro-average F1 score.

tently obtains the best performance on the valida-
tion set for both subtasks, which confirms again the
superiority of the proposed method.

5.2 Ablation Study

We conduct ablation studies by removing key
components of BERT-PCL: 1) - w/o Grouped
LLRD refers to removing the Grouped LLRD. 2)
- w/o WRS refers to removing the WRS. 3) - w/o
Grouped LLRD - w/o WRS refers to removing
both Grouped LLRD and WRS, degenerated to
RoBERTa.

Figure 2 shows results of ablation studies on two
subtasks of PCL detection. The full model yields
the best performance on both subtasks. When re-
moving either Grouped LLRD or WRS, the results
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Random BERT ALBERT ERNIE 2.0 RoBERTa BERT-PCL Ensemble 1.0 † Ensemble 2.0
unb. 10.82 51.52 51.31 56.50 57.41 58.90 62.78 61.40
shal. 2.23 40.62 41.79 55.88 50.60 50.55 54.76 55.81
pres. 3.03 20.29 16.39 25.97 26.83 42.86 34.15 39.13
auth. 4.21 6.98 9.64 16.49 26.79 28.07 34.19 34.15
met. 1.91 8.70 9.52 28.07 40.51 40.00 33.33 43.84
comp. 5.98 42.48 40.00 45.90 48.28 49.24 50.82 49.61
merr. 1.22 0.00 0.00 0.00 14.81 33.33 8.70 35.71
Average 4.20 24.37 24.09 32.69 37.89 43.28 39.82 45.66

Table 2: Results for the problem of categorizing PCL, viewed as a paragraph-level multi-label classification problem
(Subtask 2). We report the per-class F1 and macro-average F1. All compared pre-trained model are fine-tuned on
the task dataset. † indicates the results on the official ranking. The considered seven categories are Unbalanced
power relations (unb.), Shallow solution (shal.), Presupposition (pres.), Authority voice (auth.), Metaphor (met.),
Compassion (comp.) and The poorer, the merrier (merr.).

of variants decline significantly on both subtasks.
Specifically, when only removing Grouped LLRD,
the model achieves 2.50% and 2.14% degradation
of performance in Subtask 1 and 2, respectively.
When only removing WRS, the results decline by
1.37% and 3.74% in terms of F1 scores in Subtask 1
and 2, respectively. The above results consistently
indicate the effectiveness of the two components.

When removing both components, the perfor-
mance also decreases on both subtasks. Note that -
w/o Grouped LLRD - w/o WRS achieves a better
F1 score of the positive class than - w/o WRS or
- w/o Grouped LLRD in Subtask 1. This can be
explained that ignoring Grouped LLRD limits to
explore diverse features of positive samples, and
further removing WRS may magnify this limita-
tion due to the imbalanced class problem. There-
fore, the model with two modules removed yields
slightly better results than ablation models with
only one module removed. Different from Subtask
1, Subtask 2 is a multi-label classification problem
and we report the macro-average F1 score. Us-
ing Grouped LLRD can capture diverse features
of each category label in positive samples, and
WRS according to weights of positive and negative
samples further promotes the model’s attention to
positive samples. Hence, removing both modules
obtains the worst performance in Subtask 2.

5.3 Parameter Analysis

In this part, we explore the performance of BERT-
PCL against different λ in Grouped LLRD. Bottom
groups often encode more general and broad-based
information, while top groups closer to the output
encode information more localized and specific to
the task on hand. In our model, a suitable value λ
can control and balance these different layers of the

Figure 3: Results against different values of hyperpa-
rameter λ in Grouped LLRD on both test and validation
sets. We report F1 score of the positive class for Subtask
1, and list macro-average F1 score for Subtask 2.

Transformer to capture different kinds of features
from diverse linguistic behaviour.

The results are illustrated in Figure 3. Based on
k-fold cross validation on training data, we find
the local optimum of λ, 1.6 for Subtask 1 and 3.6
for Subtask 2, and the resulting model consistently
performed excellently on the test set. Under the
optimal setting, different layers in the model can
capture more diverse and fine-grained linguistic
features, enhancing the understanding of the subtle
and subjective nature of PCL. However, larger λ
would make the model overfit to small datasets and
suffer catastrophic forgetting during fine-tuning.
Hence, the performance degrades as λ increases.

It is worth noting that in when λ is up to 5.6 for
Subtask 2, the model achieves suboptimal results
on the validation set but performs exceptionally
well on the test set. This may be because the model
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No. Para. Gold
Pred. Pred. Pred.

(BERT-PCL) (RoBERTa) (ERNIE 2.0)
1 “Jesus is the Master Feminist because he championed the cause

of women,” she said.
pos. pos. neg. neg.

2 There is a saying that goes "A friend in need is a friend indeed.
" This means, a good friend is the one who rescues a friend
trapped in unsolved problems.

neg. neg. neg. pos.

3 "The government is implementing several schemes that would
change the economic position of poor families," she added.

pos. neg. neg. neg.

4 Alexis and her family decided to donate more than 400 of those
presents to children in need.

neg. pos. pos. pos.

Table 3: Case studies in Subtask 1: Binary Classification. The table shows four examples of paragraphs, their gold
labels and predictions by three methods (BERT-PCL, RoBERTa and ERNIE 2.0). The pos. means the positive class
of PCL, i.e. as instances containing PCL. Likewise, the neg. means the negatives.

No. Para. Gold
Pred. Pred. Pred.

(BERT-PCL) (RoBERTa) (ERNIE 2.0)
1 Through Gawad Kalinga, Meloto has proven to be a key

player in the housing industry, helping provide decent
homes and sustainable livelihood to the marginalized
and homeless Filipinos.

unb., comp. unb., comp. - unb., comp.

2 Pope Francis will visit a tiny Italian island to greet
refugees and immigrants, pray for those who have lost
their lives at sea and call for greater solidarity.

unb., shal. unb., shal. - -

3 In South Africa, education is a right and not a privilege,
but an unfavourable background can unconsciously in-
fringe on this right.

unb., pres., met. unb., met. unb., auth. unb.

4 Thankfully, while Krishna Tulasi can’t entirely escape
from the trope of disabled persons with hearts of gold,
it manages to do better than many previous films with
disabled protagonists.

merr. - - -

Table 4: Case studies in Subtask 2: Multi-Label Classification. The table shows four examples of paragraphs,
their gold labels and predictions by three methods (BERT-PCL, RoBERTa and ERNIE 2.0). The categories stand
for: Unbalanced power relations (unb.), Shallow solution (shal.), Presupposition (pres.), Authority voice (auth.),
Metaphor (met.), Compassion (comp.) and The poorer, the merrier (merr.).

overfits some redundant features of the corpus.

5.4 Case Study

Table 3 and Table 4 show several typical examples
in the training set from Subtask 1 and 2, respec-
tively. Their gold labels and predictions by BERT-
PCL, RoBERTa and ERNIE 2.0 are presented in
the corresponding columns.

In Table 3, the first case is correctly classified by
BERT-PCL, while is misclassified by other meth-
ods. We can easily observe that this example has
the characteristics of Unbalanced power relations
and Authority voice, and the language expression
of the latter is more subtle. Unlike other methods,
BERT-PCL can capture the linguistic phenomena
of PCL through a discriminative fine-tuning pro-
cess, and thus detect them correctly. For the second,
BERT-PCL and RoBERTa can accurately identify
the positive paragraphs, using the sentence repre-

sentation ability learned by the pre-trained model.
The latter two examples are consistently predicted
as false negatives and false positives by all methods,
respectively. We notice that both paragraphs have
been annotated by two human annotators as bor-
derline PCL. Unsurprisingly, these methods also
struggle to detect such cases.

As seen in Table 4, only BERT-PCL can cor-
rectly determine fine-grained PCL categories of the
first two cases, which again illustrates the supe-
riority of our method. It can be noticed that the
third example has three PCL sub-categories (i.e.,
unb., pres., met.) with a certain internal correla-
tion, and the gold label (i.e., merr.) of the fourth
example appears too little in the training set. These
phenomena increase the difficulty of identifying
the two examples, which leads to wrong predicted
labels. We believe that identifying multiple related
sub-categories simultaneously and controlling the
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imbalance of positive PCL labels are urgent chal-
lenges for Subtask 2.

6 Conclusion

In this paper, we propose an advanced BERT-like
model and its ensembles to accurately understand
and detect patronizing and condescending lan-
guage. Based on the pre-trained Transformer, we
apply two fine-tuning strategies to capture discrim-
inative features from diverse linguistic behaviour
and categorical distribution. At SemEval-2022
Task 4, our system achieves 1st in Subtask 1 and
5th in Subtask 2 on the official ranking. Extensive
experiments demonstrate the effectiveness and su-
periority of the proposed system and its strategies.
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Abstract

Patronizing behavior is a subtle form of bully-
ing and when directed towards vulnerable com-
munities, it can arise inequalities. This paper
describes our system for Task 4 of SemEval-
2022: Patronizing and Condescending Lan-
guage Detection (PCL). We participated in both
the sub-tasks and conducted extensive experi-
ments to analyze the effects of data augmenta-
tion and loss functions used, to tackle the prob-
lem of class imbalance. We explore whether
large transformer-based models can capture
the intricacies associated with PCL detection.
Our solution consists of an ensemble of the
RoBERTa model which is further trained on ex-
ternal data and other language models such as
XLNeT, Ernie-2.0, and BERT. We also present
the results of several problem transformation
techniques such as Classifier Chains, Label
Powerset, and Binary relevance for multi-label
classification.

1 Introduction

In this paper, we discuss various linguistic tech-
niques used for detecting Patronizing and conde-
scending language (PCL). This task particularly
poses a new challenge in the field of NLP because
of its subjectivity, subtle usage, and requirement
of world knowledge. A person is said to be con-
descending or patronizing when he/she uses a su-
perior tone to talk down to people or tries to raise
pity by describing their situation. Even though
people often use PCL with good intentions, it en-
courages stereotyping, discrimination and leads to
greater exclusion. Therefore, it is important to de-
vise methods that facilitate the automatic detection
of PCL. SemEval 2022 Task 4 (Pérez-Almendros
et al., 2022) is the first attempt to detect the usage
of PCL towards vulnerable communities. It has
two subtasks: In sub-task A, we need to detect if
the given paragraph contains PCL or not. Sub-task
B aims to classify PCL text further among potential
intersecting categories.

The two main challenges faced in this task are
extreme class imbalance in the dataset and the sub-
tle nature of PCL present in the text which makes it
hard, even for humans to classify it correctly. Also,
the model needs to differentiate between actual
news of extremely vulnerable situations from text
containing PCL.

Pre-trained language models such as BERT, XL-
NeT, etc., have emerged as the state-of-the-art mod-
els for many NLP tasks such as text classifica-
tion, machine translation, sequence tagging, etc.
However, they are trained on typical day-to-day
texts. PCL text is not trivial and classifying certain
classes requires some level of world knowledge
and commonsense reasoning. In this paper we
conduct detailed experiments using the following
models: RoBERTa (Liu et al., 2019), XLNet (Yang
et al., 2020), Ernie-2.0 (Sun et al., 2019), BERT-
large (Devlin et al., 2019), label specific attention
network (LSAN) (Xiao et al., 2019) and their en-
sembles for PCL detection. Additionally, we test
the Classifier Chain approach for multi-label clas-
sification.

We achieved significant improvement over the
baseline RoBERTa model in both the sub-tasks. We
were ranked 52nd with an F1 score of 0.4421 in
sub-task A and 33rd with an F1 score of 0.1889 in
sub-task B among 81 teams. We release the code
for models and experiments via GitHub 1

The rest of the paper is organized as follows:
Section 2 describes the challenge, followed by a
brief literature survey. Section 3 explains the pro-
posed approach in detail, while section 4 presents
the experimental details required to reproduce the
results. Results and analysis are shown in section
5. Finally, conclusions are drawn in section 7.

1https://github.com/rak55/
ASRtrans-semeval2022
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2 Background

2.1 Problem Description
SemEval 2022 Task 4: Patronizing and Conde-
scending Language Detection (Pérez-Almendros
et al., 2022) is a paragraph-level text classification
problem that consists of two sub-tasks. Task A is
a binary classification task designed to predict if
the text consists of any form of PCL. In task B,
we need to further classify PCL text among poten-
tial categories namely unbalanced power relations,
shallow solution, presupposition, authority voice,
metaphor, compassion, and the poorer the merrier.

2.2 Related Work
Hate language detection Though the detection of
patronizing and condescending language has not
been studied in depth in the field of NLP, extensive
work has been done in several forms of harmful lan-
guage detection such as Automated hate speech de-
tection (Davidson et al., 2017), rumor propagation
(Gorrell et al., 2019), fake news detection (Con-
roy et al., 2015), and trust-worthiness prediction
(Barrón-Cedeño et al., 2018). However, recently
(Wang and Potts, 2019) introduced a labeled dataset
named TalkDown derived from Reddit communi-
cation threads for modeling condescension. (Sap
et al., 2020) introduced Social Bias Inference cor-
pus to study the unbalanced power relations present
in the condescending language.

Multi-label text classification There are mainly
three different techniques to solve a multi-label text
classification problem: Binary Relevance, Classi-
fier Chains (Dembczyński et al., 2010) and Label
Powerset method (Boutell et al., 2004). Binary Rel-
evance treats each class independently and ignores
label dependence. The Label Powerset method con-
siders each combination of labels as a distinct class,
thereby transforming a multi-label classification
problem into a single-label problem. (Chen et al.,
2007) propose document transformation by assign-
ing label weights based on label entropy. (Alvares-
Cherman et al., 2012) tries to incorporate label
dependency into the Binary Relevance method. Re-
liefF and Information Gain are combined with Bi-
nary Relevance and Label Powerset approaches in
(Spolaôr et al., 2013) to evaluate the importance of
each label. (Wang et al., 2017) show that regularis-
ing the model during the training phase and using
support inference during prediction along with F-
optimizer improves the F1 score of the multi-label
problem.

Figure 1: Frequency distribution of the text length.

Label No. of samples
Unbalanced power relations 230
Shallow solution 716
Presupposition 196
Authority voice 224
Metaphor 469
Compassion 197
The poorer, the merrier 40

Table 1: Distribution of training data for Task B.

Transfer Learning Pre-trained transformer-
based language models such as BERT, RoBERTa,
etc., often outperform many traditional models
trained from scratch. This success can be attributed
to their rich contextual embeddings. Therefore,
these models are used for many downstream tasks.
(Li and Xiao, 2020) use SpanBERT for the de-
tection of propaganda techniques in news articles.
(Ranasinghe and Hettiarachchi, 2020) use BERT-
based multilingual models for offensive language
identification in social media.

3 System Overview

3.1 Data

The Don’t Patronize Me! dataset (Pérez-Almendros
et al., 2020) provided as training data for both the
sub-tasks consists of paragraphs extracted from the
News on Web (NoW) corpus. The distribution of
different labels in the dataset is shown in table 1.
Each training example in sub-task A consists of
a doc-id, keyword, country-code, paragraph, and
label. The text was retrieved from the news of 20
English-speaking countries based on 10 keywords
belonging to vulnerable communities like disabled,
homeless, etc. The frequency distribution of text
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Figure 2: Flow chart for multi-task learning.

Figure 3: Architecture of LSAN.

length is shown in figure 1. The dataset for task
B contains span-level annotation of PCL among
seven categories mentioned earlier.

3.2 Transformer-based models

Our approach is to train several pre-trained lan-
guage models including RoBERTa, Ernie-2.0, XL-
Net, and BERT-large individually and in an en-
semble with different problem transformation ap-
proaches for both the sub-tasks. We conduct exper-
iments with two different settings: Multi-task and
single-task learning. The model used for multi-task
learning is described in figure 2.

3.2.1 Using External data

A RoBERTa model is further trained using the
HuggingFace library with metaphor and conde-
scension datasets since the language and content
present are similar to our training dataset. This
improves the accuracy of the contextual embed-
dings. We extracted around 7000 text instances
for training RoBERTa from the talk-down corpus
(Wang and Potts, 2019), MOH corpus (Mohammad
et al., 2016), VUA dataset (Steen et al., 2010) and
Trofi dataset (Birke and Sarkar, 2006). We call this
trained model as tuned RoBERTa (tRoBERTa) for
the entirety of this paper.

Figure 4: Weighted-Average Ensemble. λRoBERTa,
λERNIE , λXLNeT , λLSAN , and λBERT represent the
weights of the respective models.

3.3 Label-Specific Attention Network

For sub-task B, in conjunction with transformer-
based models, we used LSAN (Label-Specific At-
tention Network) (Xiao et al., 2019) for multi-label
classification. LSAN tries to determine the label-
related text from the given paragraph. It has two
parts: self-attention and label-attention as shown
in the figure 3. Self-attention aims to calculate
the contribution of each word to a particular label.
While it takes into account the context of the given
text, the semantic meaning of labels themselves
is captured by label-attention. The importance of
these two mechanisms is determined by two train-
able fully connected layers. Finally, an MLP layer
with Sigmoid activation is used to get the final out-
put.

3.4 Ensembles

Large Language models differ in the training pro-
cedures and the datasets on which they are trained.
Hence, they may focus on different aspects of the
input text even though they give comparable re-
sults. Therefore, it is a good practice to combine
the results of these language models to get accu-
rate word / sentence embeddings. There are several
ways to combine them: we can concatenate em-
beddings of different models and project them to
a low dimensional space for prediction, but this
will require high computational power. Instead,
we can tune different language models (tRoBERTa,
ERNIE, XLNeT, LSAN and BERT) independently
on the entire dataset and later combine their pre-
dictions as shown in the figure 4. Final results are
obtained by taking a weighted average of the pre-
dictions. In this case, the weights are obtained by
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Model Task B
UPR SS PS AV M C PM Avg. F1

Baseline 0.3535 0 0.1667 0 0 0.2087 0 0.1041
Ours 0.186 0.0875 0.0826 0.198 0.1324 0.2784 0.3571 0.1889
Ours* 0.1413 0.1706 0.0594 0.2086 0.2297 0.2874 0.238 0.1904

Table 2: Comparison of test results our models with baseline RoBERTa model for sub-task B. UPR: Unbalanced
power relations, SS: Shallow solution, PS: Presupposition, AV: Authority voice, M: Metaphor, C: Compassion, PM:
The poorer the merrier.

Model Task A
Precision Recall F1 score

Baseline 0.3935 0.653 0.4911
Ours 0.3558 0.5836 0.4421
Ours* 0.5389 0.5678 0.5530

Table 3: Comparison of test results our models
with baseline RoBERTa model for sub-task A.

* Modified System after submission and not submitted
in the task.

grid search on the validation dataset. Another way
to combine the predictions is the Voting Ensemble
method, where the class predicted by the majority
of the models is considered as the final output. We
tested both approaches and found that the weighted
average method yields better results than the voting
ensemble method.

3.5 Classifier Chains

The classifier Chains approach connects binary
classifiers in a chain such that the output of one
classifier is treated as the input feature for the sub-
sequent classifier. One of the factors that influence
the performance of classifier chains is the sequence
of labels used for training. The sequence of labels
can be decided based on various approaches such
as easiest-to-predict labels, most frequent labels
first, etc. We tested the path 1–> 2 –> 6–> 7–> 4–>
5–> 3 based on the first approach. In the end we
used an ensemble of the paths, 1–> 2–> 3–> 4–>
5–> 6–> 7 (P1) and 1–> 2–> 6–> 7–> 4–> 5–> 3
(P2).

4 Experimental setup

We used Pytorch (Paszke et al., 2019) and Hug-
gingFace library (Wolf et al., 2019) for training and
inference. All the models are trained on Google
Colab. AdamW (Loshchilov and Hutter, 2019)
optimizer with a learning rate of 2e-5 is used for
training all transformer-based models and Adam is
used for training all the other models. The maxi-

mum length of the text is limited to 200. We chose
a batch size of 32 for training all the models.

4.1 Text preprocessing
We cleaned the text by removing punctuation, spe-
cial characters, URLs, etc. We removed the con-
tractions by mapping them to regular text and an-
notated the sentences with a [CLS] token before
passing them into transformer-based models. We
did not remove the stopwords as it deteriorated
performance. We augmented the data based on
contextual augmentation proposed in (Kobayashi,
2018) and back-translation technique.

4.2 Loss functions
We trained our model for sub-task A with binary
cross-entropy loss, whereas for sub-task B we used
focal loss. Focal loss (Lin et al., 2020) is a form of
cross-entropy loss, but it is dynamically scaled. It
is computed as:

FL (pt)
′
= (1− pt)γ log (pt)

′

By setting γ > 0, we are reducing the relative loss
for easy, well-classified examples (pt > 0.5). For
prediction, we used a threshold of 0.35.

4.3 Training details
We split the original training data into train and
development sets with 80% and 20% of the data
respectively. For Sub-task A, we used Stratified-
ShuffleSplit option from sklearn library to split the
dataset whereas for Sub-task B we used iterative
stratification of order 1 from skmultilearn library.
In the case of multi-task models, we used early
stopping criteria on dev set independently for each
task.

5 Results and Analysis

Our model for sub-task A consists of an ensem-
ble of tuned RoBERTa (tRoBERTa), XLNet, and
Ernie-2.0 models trained with binary cross-entropy
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Model Task A Task B
Ernie-2.0 (ST) 0.535 0.498
tRoBERTa (ST) 0.537 0.503
XLNeT (ST) 0.539 0.500
LSAN - 0.493
BERT-large - 0.497
Avg. Ensemble (ST) 0.538 0.502
tRoBERTa (MT) 0.541 0.505
ULMFiT (ST) 0.510 0.487
tRoBERTa (CC with P1) - 0.548
tRoBERTa (CC with P2) - 0.550

Table 4: F1 score (Dev) of the other major models for
both the sub-tasks. ST stands for single-task models,
MT stands for multi-task models, CC stands for Classi-
fier Chains with paths P1, P2 and Avg. Ensemble is the
weighted average ensemble method.

loss. Model for sub-task B consists of a weighted
average ensemble of tRoBERTa, XLNet, Ernie-2.0,
BERT-large, and LSAN trained with focal binary
cross-entropy explained in section 4.2. We also
tested the Classifier Chain approach with tuned
RoBERTa in post-evaluation phase. For this ap-
proach, we tested two sequences of labels P1, P2
(described in 3.5) and their ensemble. The offi-
cial results of the models for sub-task A and sub-
task B along with the baseline results on the test
dataset are summarized in table 3 and 2 respectively.
Apart from these models, the results of other major
transformer-based models are shown in table 4.

Besides transformer-based models, we also
tested Hierarchical Attentional Hybrid Neural Net-
works for Document Classification described in
(Abreu et al., 2019), C-BiLSTM model, and a
BiLSTM-attention model with USE (Cer et al.,
2018) sentence embeddings. In the C-BiLSTM
model, we apply convolutional and max-over-time
pooling layers on the word embeddings and pass
them through a bi-LSTM layer with an attention
mechanism. This approach is the combination of
work used in (Wang et al., 2016) and (Yang et al.,
2016). We implemented traditional machine learn-
ing models like Support Vector Machine (SVM),
Logistic Regression (LR), and Random Forests
(RF). We used TF-IDF on words (both unigrams
and bigrams), TF-IDF on character n-grams (1-
5 characters), ELMO embeddings (Peters et al.,
2018) and the composite features utilized in (An-
zovino et al., 2018) as features for the ML models.
The composite features are a combination of fea-
tures based on the adjective count, length of the text,

Model Task A Task B
HAHNN (CNN) 0.530 0.493
C-BiLSTM 0.500 0.485
USE + BiLSTM 0.520 0.485
SVM (word n-grams) 0.486 0.469
SVM (ELMO) 0.492 0.475
SVM (char n-grams) 0.485 0.462
SVM (composite) 0.489 0.471
LR (ELMO) 0.485 0.465
RF (ELMO) 0.484 0.470

Table 5: Results of RNN-based and ML models.

n-grams, POS tags, and doc2vec (Le and Mikolov,
2014). The results of the above RNN-based and
ML models are summarized in table 5.

The comparison among three different problem
transformation approaches to Multi-label classifi-
cation is shown in table 6. The Label Powerset
(LP) method gives the lowest F1 score as it doesn’t
perform well with unseen label combinations not
covered in the training dataset. Classifier Chain
performed better than Binary relevance as it takes
label correlations into account. Incremental analy-
sis of our system is shown in table 7. This analysis
shows the importance of further training RoBERTa
and focal loss.

Data augmentation is widely used to generate
slightly variant larger datasets from the existing
smaller ones. Since one recurring issue among all
the models we trained is overfitting, three types of
data augmentation techniques are tested to address
this issue. We applied contextual augmentation for
labeled sentences as proposed in (Kobayashi, 2018).
In this method, we replace the words in a sentence
with words predicted by a bi-directional language
model. We also tested the back-translation ap-
proach proposed in (Sennrich et al., 2016) and easy
data augmentation (EDA) techniques described in
(Wei and Zou, 2019). We observed that while back-
translation and contextual augmentation slightly
improved the performance of the model, the use of
EDA degraded it. We conclude this is because of
a contextual mismatch in the text generated with
EDA. Since random deletion is one of the tech-
niques used in EDA, it may have led to the deletion
of the keywords like ’them’, ’us’, ’poor’ etc., re-
sulting in bad performance.

As the training dataset provided for this task is
small and extremely imbalanced, we focused on an-
alyzing the effects of data augmentation and choice
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Approach F1 Macro
Label Powerset 0.479
Classifier Chain 0.506
Binary Relevance 0.492

Table 6: Results of various problem transformation ap-
proaches on Dev set.

System Precision Recall F1
RoBERTa 0.529 0.515 0.521
+ Tuned RoBERTa 0.539 0.521 0.530
+ Focal loss 0.550 0.525 0.537
+ Ensemble 0.557 0.530 0.543

Table 7: Sub-task A (Dev): Incremental analysis of our
system.

of the loss function in this paper. F1 score for the
the poorer the merrier class has greatly improved
even though it is the least represented class in the
entire dataset. Also, the F1 score of the metaphor
class has improved. This improvement is the result
of tuned RoBERTa which is trained on metaphor
datasets. Shallow solution and presupposition are
the classes with the lowest F1 score. This is be-
cause they require some form of world knowledge.
Surprisingly, even though unbalanced power re-
lations is the easiest class to predict, our model
seemed to struggle with it.

6 Conclusion and Future Work

We have presented the results of various experi-
ments using pre-trained language models such as
RoBERTa, XLNeT, Ernie-2.0, BERT-large, and
their ensembles for the detection of patronizing and
condescending language. For the sake of compari-
son, we also presented experimental results of sev-
eral RNN-based and traditional machine learning
models with different features such as character n-
grams, ELMO embeddings, etc. We also conducted
experiments with different problem transformation
approaches like Classifier Chains for multi-label
classification. Since the dataset for this task is
imbalanced, we also tested the effect of several
data augmentation techniques and loss functions.
We have achieved sizeable improvements over the
baseline model by task-specific training and using
techniques to mitigate class imbalance. In future
work, we plan to explore other forms of Classifier
Chains to more effectively model label dependence
and hierarchy.
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Abstract
This paper presents our solutions for Task4 at
SemEval2022: Patronizing and Condescend-
ing Language Detection. This shared task con-
tains two sub-tasks. The first sub-task is a bi-
nary classification task whose goal is to predict
whether a given paragraph contains any form of
patronising or condescending language(PCL).
For the second sub-task, given a paragraph,
we have to find which PCL categories express
the condescension. Here we have a total of 7
overlapping sub-categories for PCL. Our pro-
posed solution uses BERT based ensembled
models with hard voting and techniques applied
to take care of class imbalances. Our paper de-
scribes the system architecture of the submitted
solution and other experiments that we con-
ducted. Our best performing models achieve
an F1 score of 59.4 and 15.7 on sub-tasks 1 and
2 respectively.

1 Introduction

Patronizing and condescending attitude in language
generally denotes the writer’s sense of superiority
over others. If someone is patronizing or conde-
scending, it means what they write/say is accompa-
nied by a sense of pity or compassion. Often, usage
of PCL is relatively unconscious, and the intent of
the writer is not to hurt a particular group or person
they are referring to. So while being harmless in
its intention. Usage of PCL still poses a risk of
harming vulnerable people or groups by stereotyp-
ing them or normalizing specific behaviour towards
them.

Task4 at SemEval-2022 (Pérez-Almendros et al.
(2022)), Patronizing and Condescending Language
Detection provides two sub-tasks. The goal of sub-
task1 is to identify if the given paragraph contains
PCL. The goal of sub-task2 is to determine which
subcategory of PCL expresses the condescension.
The seven subcategories are Unbalanced power re-
lations, Shallow solution, Presupposition, Author-
ity voice, Metaphor, Compassion and The poorer,

the merrier. A given paragraph can show instances
of multiple subcategories.

We experimented with multiple transformer-
based models. We used focal loss and Weighted
Random Sampling to address the class imbalance;
we also tried out ensembling models with hard vot-
ing, which improved the accuracy over the baseline
models for both the sub-tasks.

The paper is structured as follows: Section 2:
describes the dataset and related work. Section
3: describes our system and model architecture.
Section 4 has information regarding the dataset size
and splits with libraries used. Section 5 discusses
the findings from our experiments, and section 6
concludes our paper.

2 Background

There has been work done to detect potentially
harmful forms of language. Liu et al. (2019a) used
BERT and LSTM based models to detect offensive
language in the dataset, Offensive Language Identi-
fication Dataset (OLID) provided by Zampieri et al.
(2019) at SemEval 2019. Indurthi et al. (2019) used
InferSent (Conneau et al. (2018)) semantic sen-
tence representations to detect Hate Speech against
Immigrants and Women in the dataset provided by
Basile et al. (2019) at SemEval 2019.

PCL’s subtle and often unrealised nature makes
its detection an arduous task for humans and Ar-
tificial Intelligence systems alike. There has been
some recent work done when it comes to address-
ing PCL. Wang and Potts (2019) presents a dataset
of social media messages annotated for conde-
scending acts in context.

2.1 Dataset and Task Description

SemEval2022 Task 4 provides the Don’t Patron-
ize Me! dataset (Pérez-Almendros et al. (2020)).
The dataset contains 10469 paragraphs. We divide
the data into training and validation datasets. The
paragraphs in the dataset are annotated for PCL.
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Paragraph Label
Call to restore hope for homeless through inquiry 1
farooqui said women ’s groups were demanding fast-track courts to deal with rape and other
crimes against women .

0

Table 1: Example for Sub-Task1

Paragraph Label
the word of god is truth that ’s living and able to penetrate human souls
( heb. 4:12 ) . consider how powerful scripture is : it can change hearts ,
save lives from eternal condemnation , and give hope to the hopeless

Unbalanced power relations ,
Compassion

these poor ladies are definitely going through some traumatic issues right
now , and i am asking that they come forward so that i help them ? together
with women parliamentarians - to be able to heal.

Unbalanced power relations,
Shallow solution, Presupposi-
tion, Authority voice, Compas-
sion

Table 2: Example Of Sub-Categories of PCL for Sub-Task2

The paragraphs marked positively for PCL are then
annotated for seven different categories of PCL.
The dataset has paragraphs in the English language
and was collected by the News on Web (NoW) cor-
pus. They queried the corpus for paragraphs using
ten keywords related to vulnerable communities
widely covered by the media and from the 20 En-
glish speaking countries in the corpus. Detailed
information of the dataset can be found in the task
description paper (Pérez-Almendros et al., 2019).

2.1.1 Sub-task1
The first sub-task is a binary classification task
where given a paragraph, we have to classify
whether it contains PCL. The annotation in the orig-
inal paper has labels from 0 to 4. The paragraphs
marked 0 and 1 are marked negative for PCL, while
those marked 2 and above are marked positively.
Table 1 shows positive and negative PCL examples
from the dataset for sub-task 1.

2.1.2 Sub-task2
The second sub-task is a multi-label classification
problem where given a paragraph, we have to clas-
sify whether it belongs to one or many of the seven
subcategories of PCL. The subcategories are Un-
balanced power relations, Shallow solution, Presup-
position, Authority voice, Metaphor, Compassion,
The poorer, the merrier. Table 2 shows examples
for paragraphs marked for different categories of
PCL.

3 System-Overview

For our solution, we have relied on using pre-
trained transformer-based models like RoBERTa

Figure 1: Frequencies of PCL subcategories

(Liu et al. (2019b)) which robustly optimizes the
original Bidirectional Encoder Representations
from Transformers(BERT) Devlin et al. (2019).
It is pre-trained on much larger datasets, bigger
batches and employs dynamic masking wherein a
masking pattern is generated every time a sequence
is fed to the model.

We also experimented with the newer Decoding-
Enhanced BERT with Disentangled AttentionV3
(He et al. (2021a)), which is an improved version
of the original DeBERTa (He et al. (2021b)). It
leverages ELECTRA style (Clark et al. (2020)) pre-
training by replacing DeBERTa’s original mask
language modelling (MLM) with a more sample-
efficient pre-training task, replaced token detection
(RTD), where the model is trained as a discrimi-
nator to predict whether a token in the corrupted
input is either original or has been replaced by a
generator.

As the dataset is highly imbalanced, we use two
different ways to deal with the imbalance, focal
loss and Weighted Random Sampling.
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Model UNB_POW SHAL PRES AUTH MET COMP POOR_MERR AVG
RoBERTa sep 19.4 15.9 9.3 5.3 13.9 11.3 9.1 12.0
RoBERTa ens

* 15.8 24.8 10.0 9.3 16 11.2 14.8 14.6
DeBERTa ens 15.7 24.8 10.0 9.2 16 11.3 14.9 14.6
RoBERTa WRS_sep

* 23.2 16.3 9.7 8.0 14.7 10.1 9.5 13
DeBERTa WRS_sep 16.3 24.9 10.3 9.1 10.0 11.6 13.8 13.7
RoBERTa focal_sep 10.9 25.0 8.1 8.8 22.9 16.2 17.7 15.7
DeBERTa focal_sep 15.7 24.8 10.0 9.2 16 11.2 14.8 14.5
RoBERTa baseline 35.35 0.0 16.7 0.0 0.0 20.8 0.0 10.4

Table 3: F1 scores: Sub-Task2

3.0.1 Focal Loss

Focal loss (Lin et al. (2018)) is an improved version
of Cross-Entropy Loss that tries to handle the class
imbalance problem by assigning more weights to
hard or easily mis-classified examples and down-
weight easy examples. It results in the reduction of
the contribution of easy examples. It also makes so
that there is more emphasis on correcting misclas-
sified examples.

L =

{
α(1− p)γ log(p) if y = 1

(1− α)pγ log(1− p) otherwise
(1)

where p is model prediction and y is the ground
truth label; α and γ are hyper-parameters, α is used
to control the loss weight of positive and negative
samples, and γ is used to scale the loss of difficult
and easy samples. The values we take for α is 0.25
and γ is 2.0 which is the default values used in the
original paper.

3.0.2 Weighted Random Sampling

Data sampling provides a way to transform a train-
ing dataset to better balance the class distribution.
Data sampling techniques are helpful in cases of
data imbalance as the class distribution is skewed,
resulting in the models predicting the dominant
class more while learning to ignore the classes with
very few samples.

We use Weighted Random Sampling (WRS),
which samples items from our set such that the
probability of sampling item i is proportional to a
given weight wi which is equal to the class weight
for the label of the i’th item.

wi = 1/ni (2)

Here ni is the number of items in the dataset with
label i.

3.1 Sub-task1
The first sub-task is a binary classification task. We
use our pre-trained BERT based transformers for
this task. We experiment with either using Focal
Loss or Weighted Random Sampling to deal with
imbalanced data. We pass the output of the trans-
former model through a fully connected layer; we
add a Tanh activation function with a dropout layer
before passing it through our final fully connected
layer, which gives us the output. We also train an
ensemble of models using 5-fold cross-validation
and use hard voting method to decide the final la-
bels and combine it with Weighted Random Sam-
pling for dealing with class imbalance

3.2 Sub-task2
For the second sub-task, we have a multi-label clas-
sification problem. We experiment with treating
it as multiple binary classification tasks where for
each label to be predicted, we train a separate clas-
sifier(sep). Even here, we experiment with focal
loss and Weighted Random Sampling to deal with
imbalanced classes.

We also train an ensemble of multi-label classi-
fiers using 5-fold cross-validation and hard voting
to decide on the final labels. As not all labels are
imbalanced, we decided to use binary cross-entropy
as our loss function for ensemble models for this
task. We add weights to the positive samples in
the loss function as done by researchers at (Gupta
et al., 2021) to address the classes which do have
imbalances. The formula is given below:

ℓ(x,y) = − 1

Nd

N∑

n=1

d∑

k=1

[
pkykn log x

k
n + (1− ykn) log(1− xkn)

]

pk =
1

fk
(|K| − fk)

(3)

Where N is the batch size, n index denotes nth

batch element, d is the number of classes, f stands
for a vector of class absolute frequencies calculated
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on the train set, x is the output vector from the last
Sigmoid layer, y is a vector of multi-hot encoded
ground truth labels and |K| is the size of the train
set.

Model Precision Recall F1
RoBERTa focal 64.6 45.4 53.3
DeBERTa focal 68.3 34.7 46.0
RoBERTa WRS

* 51.5 59.9 55.4
DeBERTa WRS 50.1 65.6 56.8
RoBERTa ens_WRS 53.2 67.1 59.4
DeBERTa ens_WRS 56.2 59.6 57.9
RoBERTa baseline 39.35 65.3 49.1

Table 4: Results: Sub-Task1

4 Experimental setup

Parameter sub-task1 sub-task2
Dropout 0.3 0.3
BatchSize 8 8
Epochs 5 8
Learning Rate 1e-05 1e-05
Optimizer Adam Adam

Table 5: Hyperparameters

The dataset contains 10469 paragraphs about po-
tentially vulnerable social groups. 9476 examples
were marked negatively for PCL, while 993 were
marked positively for PCL. For the second sub-task,
only the 993 examples were used for training as
they were marked positively for PCL.

80% of the dataset was used for training while
the rest was used for validation. We only use the
organisers’ test set for testing out our final models.
Hyper Parameters used are mentioned in table 5.
Not much time was spent on hyperparameter tuning
as using other previously mentioned techniques
and different models gave better and more varied
results.

The primary evaluation metrics used is the F1
scores. For sub-task1, precision and recall scores
are also given. For sub-task2, we have individual
F1 scores for each PCL subcategory along with the
average F1-score. We use huggingface 1 library for
our transformer models implemented in PyTorch 2.

1Transformers,v4.16.2,https://huggingface.co/
docs/transformers/index

2PyTorch, v1.10.2, https://pytorch.org/

The models were trained on 4 GeForce RTX
2080 Ti GPUs.

5 Results And Discussion

The results from all our experiments conducted for
sub-task1 and sub-task2 can be seen in Tables 4
and 3, respectively. The models submitted in the
evaluation phase are marked * in the tables, but we
have shown results from all our experiments. We
experimented with several models and techniques
during the development and evaluation phases. We
use the F1 score to judge our models, which is also
the official metric. We ranked 23rd on the first
task and 36th on the second task on our submitted
models. We achieved better results on other models
for both tasks, and the results are shown in their
tables, respectively.

We see that all methods, namely focal loss,
Weighted Random Sampling(WRS) and ensem-
bling performed better than the baseline model.
The 5-fold cross-validation, hard voting ensemble
model with WRS achieves the best F1-score and
Recall score for sub-task1, more than the models
where only WRS is applied.

For the second task, we see the best average
score from RoBERTa model trained separately
(sep) for each label with focal loss to achieve the
best average F1 score. Focal loss performs poorly
on Unbalanced power relations, which has the high-
est number of positive samples (716 out of 993)
and performs better on imbalanced labels having a
lower number of positive samples like Metaphors
and Poorer The Merrier having 197 and 40 positive
samples out of 993 respectively.

6 Conclusion

This paper presents and describes our solution sys-
tem for the SemEval2022 Task4: Towards Patron-
izing and Condescending Language Detection. We
have applied BERT based pre-trained language
models RoBERTa and DeBERTa with hard vot-
ing ensembling techniques along with techniques
to deal with imbalanced datasets like focal loss and
Weighted Random Sampling. Our submitted solu-
tions scored F1 scores of 0.5539 and 0.1456 for the
two sub-tasks, respectively.
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Abstract 

This paper describes the authors’ 
submission to the SemEval-2022 task 4: 
Patronizing and Condescending Language 
(PCL) Detection. The aim of the task is the 
detection and classification of PCL in an 
annotated dataset. The authors of this paper 
worked on two different models with 
finetuned hyperparameters focusing on 
number of epochs, training batch size, 
evaluation batch size, gradient 
accumulation steps and learning rate. The 
authors submitted one RoBERTa model 
and one DistilBERT model. Both systems 
performed better than the random and 
RoBERTA baseline given by the task 
organizers. The RoBERTA model finetuned 
by the authors performed better in both 
subtasks than the DistilBERT model.  

1 Introduction 

With the rise of social media, online hate speech 
has skyrocketed and has posed a problem for social 
media platforms: How can the giant number of 
messages on social platforms be surveilled, so that 
hateful comments can be reported and deleted? The 
answer to this is hate speech detection, a discipline 
within Natural Language Processing that has 
become increasingly popular and successful in 
recent years.  

However, apart from hate speech, there is also 
other harmful language that should be studied. This 
is what the research by Perez-Almendros, 
Espinosa-Anke and Schokaert dives into. They 
collected an annotated dataset that focuses on a 
type of harmful language that is not so easily 

 
1  The code can be found here: https://github.com/julia-

ecrevisse/SemEval2022 

detected: patronizing and condescending language 
(PCL). The researchers describe PCL as follows: 
“An entity engages in PCL when its language use 
shows a superior attitude towards others or depicts 
them in a compassionate way.” (Perez-Almendros 
et. al., 2020) 

One of the difficulties in detecting PCL as 
opposed to openly hateful speech, is that persons 
who use PCL often do not intend to do harm, but 
instead want to support the groups that they name. 
PCL is usually aimed at vulnerable communities 
which makes the detection of PCL even more 
important. 

The SemEval 2022 task 4 competition is based 
on this research by Perez-Almendros et. al: the 
detection of PCL. In two subtasks, one a binary 
classification and one a multi-label classification, 
the participants of the SemEval competition were 
tasked to submit up to two models. 

The authors of this paper participated in both 
subtasks and propose a finetuning based approach 
on a pre-trained RoBERTa language model. Two 
models were submitted to the task organisers, one 
RoBERTa model and one DistilBERT model. The 
RoBERTa model performed better in both 
subtasks.1  

In this paper, the authors will first describe the 
task set out by the SemEval 2022 competition in 
sections 2. In section 3, the authors explain the 
relevance of related work to this topic. Section 4 
gives an overview over the BERT model. In the 
subsequent section, the two pre-trained models are 
presented. In the section experimental setup, the 
two different finetuned models are described in 
detail. Section 7 presents the results of the 
competition and section 8 the conclusion.  

Felix&Julia at SemEval-2022 Task 4: Patronizing and Condescending Language 
Detection  
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2 Task description 

This research paper contributes to task 4 of the 
SemEval 2022 competition2 : PCL detection. The 
starting point of the research task is the paper 
“Don’t Patronize Me! An annotated Dataset with 
Patronizing and Condescending Language 
Towards Vulnerable Communities” (Perez-
Almendros et al., 2020). The researchers provide 
an annotated dataset with paragraphs taken out of 
news articles from English speaking countries 3 
where vulnerable communities are mentioned. The 
following communities are included: disabled, 
homeless, hopeless, immigrant, in need, migrant, 
poor families, refugee, vulnerable and women. The 
dataset includes a total of 10,637 paragraphs 
extracted from the News on Web corpus. 3,554 of 
the paragraphs had been labeled as PCL by the 
annotators.  

The aim of the SemEval task is 1) to identify 
which paragraphs include PCL and 2) if the 
paragraph includes PCL which category or 
categories it belongs to. The two subtasks are 
described as follows: 

Subtask 1: Binary classification. Given a 
paragraph, a system must predict whether or not it 
contains any form of PCL. 

Subtask 2: Multi-label classification. Given a 
paragraph, a system must identify which PCL 
categories express the condescension. There are 
seven different categories: Unbalanced power 
relations, shallow solution, presupposition, 
authority voice, metaphor, compassion and the 
poorer, the merrier.  

3 Related Work 

While other areas related to hate speech and hateful 
language have been a focus of NLP research in 
recent years, the research into PCL is still limited. 
However, there are a few researchers that have 
delved into this discipline from different angles.  

Wang and Potts (2019) discuss condescending 
language and its detection in their research and also 
point out that high quality data for this kind of 
language detection is still limited. They introduce 
the dataset “Talkdown” which is a data set from the 
social media platform Reddit. Their approach 
concentrated on BERT baseline models and the 
researchers concluded that condescending 

 
2 https://sites.google.com/view/pcl-detection-

semeval2022/home?authuser=0 

language is highly connected to context (Wang and 
Potts, 2019). 

Taking a different angle, Sap et al. (2020) write 
about the social and power implications of 
language. They claim that by using language with, 
e.g. social bias, stereotypes and prejudices are 
reinforced. Their collected data stems from 
different social media sites. They state in their 
results that previously successful models can 
categorize social bias relatively well, but they have 
difficulties classifying the social bias frames which 
were developed by the authors (Sap et al., 2020).  

BERT 

The state of the art in natural language 
processing is significantly characterized by 
architecture-based transformer-encoder models 
called BERT (Bidirectional Encoder 
Representation from Transformers) (Peters et al., 
2018).  

 BERT's architecture relies on a two-part 
training process, a pretraining using unlabeled text 
corpora and a subsequent test run using labeled 
data (Develin et al, 2019). Here, BERT models do 
not use any decoder layers (Rothman, 2021) and 
fully rely on the encoder structures developed by 
Devlin et al. (2018). Here, these models are divided 
into base and large.  

In order not to have to perform the training 
process, which is time-consuming, for each new 
task, especially pre-trained models are made 
available on platforms such as Huggingface. These 
can be adapted to the respective requirements by 
means of fine-tuning. 

 
This previous research into hate speech and 

hateful language as well as the research into BERT 
model provides the basis of this paper. The 
challenge of condescending or patronizing 
language as opposed to hate speech is that 
condescending or patronizing language is often 
more difficult to detect as it is often not on purpose 
or not as obvious. Still, the steps taken by previous 
authors show a way on how to tackle these 
challenges. 

4 System overview of pretrained models 

In the paper “Don’t Patronize me!” which is the 
starting point of the SemEval Task, the researchers 

3 News on Web Corpus: https://www.english-
corpora.org/now/ 
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point out that an NLP model with BERT achieves 
the best results. More specifically RoBERTa 
performs slightly better than DistilBERT and 
BERT-base (Perez-Almendros et. al., 2020). 

4.1 RoBERTa model 

The RoBERTa model stands for Robustly 
Optimized BERT Pretraining Approach and is 
based on the basic architecture of BERT, which, 
however, has been insufficiently trained for the 
subtasks to be handled. RoBERTa increases 
performance by improving the pretraining 
processes. To generate this progress, the number of 
pretraining transformers is increased. An example 
of this is the omission of WordPiece tokenization 
(Song et al., 2021) and the associated structuring at 
the byte-level byte pair encoding level (Rothman 
2021).   

For both subtasks, the RoBERTa  model 
was used, which consists of 12 encoders. In 
contrast, the RoBERTa  consists of 24 (Nester, 
2022). The decisive factor for the choice of the 
model was the improved modification of the 
hyperparameters in the fine-tuning, which were our 
primary focus. In addition, the large amount of data 
used to pre-train RoBERTa was a reason for the 
choice. From this, we aimed to improve the 
generalization of the responding capability 
compared to the conventional BERT model 
(Delobelle et al., 2020). 

Apart from the RoBERTa baseline, another 
RoBERTa model from the transformers library was 
tried (Devlin et al, 2019): xlm-roberta-base 
(Huggingface), with the following results: Subtask 
1 F1 score: 0.466, Subtask 2 average F1 score: 2: 
0.110. As this baseline performed worse than the 
original baseline, the authors decided to continue 
with the original RoBERTa baseline. 
 

4.2 DistilBERT model 

DistilBERT is often called the “faster and 
cheaper” version of BERT. Using up massive 
amounts of data is expensive and also wasteful. In 
their research Sanh, Debut, Chaumond and Wolf 
describe that they were able to “reduce the size of 
a BERT model by 40%, while retaining 97% of its 
language understanding capabilities and being 60% 
faster” (Sanh et. al., 2020). That is why it makes 
sense to see if there are promising results with a 
DistilBERT model also for this SemEval task. 

Two different DistilBERT models from 
transformers were tried for the two subtasks: 
distilbert-base-uncased and distilbert-base-
uncased-finetuned-sst-2-english. Both were first 
tried as a baseline. Comparing both models, the 
distilbert-base-uncased showed better results for 
the baseline, especially for subtask 2 (see table 1), 

that is why it was decided to continue with this 
model in the following fintetuning stage. For the 
multilabel classification of subtask 2 the most 
promising predictions of the distilbert-base-
uncased baseline were in the categories unbalanced 
power relations, presupposition, and compassion.  

The distilbert-base-uncased-finetuned-sst-2-
english model only showed a good F1 score for the 
category unbalanced power relations, whereas all 
other categories had a F1 score of 0.0. 

5 Experimental setup 

Fine-tuning was performed on Google Colab. The 
authors used the train and test set as it was provided 
by the task organizers.  

5.1 RoBERTA model 

 
Subtask 1 
The experimental setup used was the RoBERTa 
baseline, which was provided by the Semeval 2022 
team for the task. For fine-tuning, 9 different 
hyperparameters were run in different 
combinations with the model. For this, the F1 score 
was set as a benchmark and depending on the 
development, the hyperparameter was pushed to its 
limit. Using the example of the epochs, a steady 
improvement of the F1 score could be observed up 
to level 5, before it deteriorated again. If such a 
limit of a parameter was reached, it could be set as 
default and the tuning could be supplemented by 
another one. This resulted in a combination of 5 
epochs, a learning rate of 3e-5, an evaluation batch 

Baseline  distilbert-
base-uncased 

distilbert-
base-uncased-
finetuned-sst-2-
english 

Subtask 1  
F1 score 

0.488 0.433 

Subtask 2  
average F1 score 

0.121 0.060 

Table 1:  DistilBERT baselines F1 scores 

 

359



 
 
 

size of 32, a training batch size of 16 and gradient 
accumulation steps of 2.  

In addition, the weight_decay, adam_epsilon, 
max_grad_norm and the warmup_steps were 
implemented at different levels. However, these led 
to a deterioration of the precision and the F1 score 
in all variants. However, it is worth mentioning that 
there was a significant improvement of the recall 
by using warmup_steps= 3500. Without further 
illuminating this direction, a recall of 0.804 was 
achieved, which cannot yet be called a maximum. 

 
Subtask 2 

The findings from Subtask 1 were to be applied to 
multi-labeling. For this purpose, both the 
RoBERTa-baseline model and the same 
hyperparameters were adopted. Again, the different 
hyperparameters were pushed to maximum 
improvement with the goal of obtaining the highest 
possible mean value of the individual F1 scores of 
the labels. Epochs could be increased to 20 until the 
peak was reached. All other efforts to obtain an 
optimized result away from the epochs or in 
combination with them were unsuccessful. The 
mean value reached its possible optimum after 20 
epochs with a result of 0.258. 

5.2 DistilBERT model 

For the DistilBERT model, three 
hyperparameters were tried by the authors: number 
of trained epochs, the evaluation batch size and the 
training batch size. The number of trained epochs 
has been adapted from 1 to 20 epochs, while for the 
evaluation and training batch size 16, 32 and 64 

was used respectively.  
The best results were achieved with the 

hyperparameters described in Table 2. 
 

6 Results 

An overview of the results can be found in table 
3 and 4. 

6.1 RoBERTa model 

In Subtask 1 as well as in Subtask 2 significant 
improvements could be achieved compared to the 
baselines. This is reflected in the results of the test 
data set as well as the final data set. The finetuning 
improved the initial value (F1: 0.483) of the 
RoBERTa baseline in Subtask 1 by about 0.05 to 
0.547. A significant increase of about 0,10 (0.441 
to 0.350) was observed in the Precision section. In 
the Competition a similar value was achieved with, 
so that the robustness of the system and its 
configuration is given. An overfitting could not be 
determined. The results were ranked 31st with a 
Precision of 0.401, a Recall of 0.773 and the F1 
0.528. 

In Subtask 2, RoBERTa nearly doubled the 
mean F1 score from baseline 0.134 to 0.258. On the 
official leaderboard, an almost identical value of 
0.2536 was achieved, so that here, as in Subtask 1, 
no overfitting prevailed and the robustness of the 
system was confirmed. The RoBERTA model 
performed best in the categories “unbalanced 
power relations” and “shallow solution” (see table 
4). The worst results were reached for the 

  Subtask 1 Subtask 2 

Number of 
trained epochs 

5 20 

Evaluation 
batch size 

32 64 

Training batch 
size 

32 16 

Table 2:  Hyperparameters used for 
DistilBERT model 

 

  RoBERTa 
model 

DistilBERT 
model 

Baseline 
RoBERTa 

Precision 0.401 0.357 0.394 

Recall 0.773 0.640 0.653 

F1 0.528 0.459 0.491 

Table 3:  Results subtask 1 

 F1 scores  RoBERTa 
model 

DistilBERT 
model 

RoBERTa 
baseline 

unbalanced 
power 
relations 

0.366 0.352 0.354 

shallow 
solution 

0.351 0.345 0 

presupposition 0.176 0.2 0.167 
authority voice 0.221 0.163 0 
metaphor 0.211 0.095 0 
compassion 0.285 0.271 0.209 
the poorer, the 
merrier 

0.167 0.0 0 

average 0.254 0.204 0.104 

Table 4:  Results for subtask 2 

360



 
 
 

categories “presupposition” and “the poorer the 
merrier”. 

 

6.2 DistilBERT model 

A comparable scenario occurred when running 
the DistilBERT model with the test data. Compared 
to the Random as well as the RoBERTa Baseline, 
the results significantly improved in both subtasks. 
In the comparison, however, the Random Baseline 
is used first. An increase from 0.174 (Random) to 
0.512 could be achieved by applying the above 
mentioned hyperparameters. The RoBERTA 
baseline was thus also exceeded by approximately 
0,30. However, in the official results, the score was 
not repeated and was 0.459 (see table 3). 

In Subtask 2, the Random Baseline result with 
the test data of 0.055 for the mean of the F1 scores 
was almost tripled to 0.146. However, compared to 
the RoBERTa baseline of 0.134, only a small 
improvement was observed.  

Surprisingly, the model performed much better 
with the official data and thus achieved its 
maximum value of 0.203. Also, for the DistilBERT 
model, the categories with the best results were 
“unbalanced power relations” and “shallow 
solutions” (see table 4). The DistilBERT model 
performed worse than the RoBERTA model in 
most categories, except “presupposition”. The 
system performed worst for the category “the 
poorer, the merrier” compared with the other 
categories. 
 

7 Conclusion 

The purpose of this work was to identify PCL in 
texts using NLE. For this purpose, existing text 
classification models were used and adapted to the 
task by fine tuning. The goal was to achieve the 
highest possible F1 scores by the model, which is 
equivalent to the percentage detection of 
condescending terms. A complete detection of all 
these terms was not achieved, but in the binary 
classification with RoBERTa a score above 0.52 
could be obtained. The multi classification was the 
bigger challenge and could only finish with a score 
around 0.250.  

Despite these results, a basis, if not an 
improvement, has been created for future work. 
The hyperparameters which were used can already 
be set to default in the next works at the beginning 
and thus increase the speed of the development 

process for researches in PCL detection by BERT 
models.  More research could also be done into the 
different categories of PCL. There were categories 
that consistently performed better than others 
(unbalanced power relations and shallow solution), 
while the systems had more difficulties with other 
categories (especially the poorer, the merrier). 
 
There are still a lot of directions that the research 
into PCL detection can continue. As stated above, 
PCL detection in NLE is an emerging field that 
would benefit from further research. The task is 
more difficult than traditional hate speech detection 
as PCL is often more subtle. However, PCL can 
contribute to repeating and furthering stereotypes 
and discrimination, especially among vulnerable 
communities and therefore the research into PCL 
detection systems is a vital endeavor. 
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Abstract

In this description paper we outline the sys-
tem architecture submitted to Task 4, Subtask 1
at SemEval-2022. We leverage the generative
power of state-of-the-art generative pretrained
transformer models to increase training set size
and remedy class imbalance issues. Our best
submitted system is trained on a synthetically
enhanced dataset with 10.3 times as many posi-
tive samples as the original dataset and reaches
an F1 score of 50.62%, which is 10 percentage
points higher than our initial system trained on
an undersampled version of the original dataset.
We explore possible reasons for the compara-
bly low score in the overall task ranking and
report on experiments conducted during the
post-evaluation phase.

1 Introduction

Task 4 of SemEval-2022 focuses on the detection
of patronising and condescending language (PCL)
in news (Pérez-Almendros et al., 2022). PCL in
popular media and news sources is detrimental to
an emancipated and equal society, as it is usually
targeted towards minorities and socially disadvan-
taged communities, often in an unsuccessful at-
tempt to show solidarity (Perez Almendros et al.,
2020). PCL has the potential to strengthen existing
stereotypes by representing minorities either as pas-
sive entities to be pitied and supported, thus taking
away their agency and focusing on their vulnera-
bilities or praising members of vulnerable groups
for everyday achievements simply because of their
background (Nolan and Mikami, 2013). In con-
trast to hate speech, PCL is usually subtle, well
intentioned, and free of discriminatory phrases or
racial slurs, which makes it an interesting Natural
Language Processing (NLP) problem.

In other domains with more discriminatory
classes such as hate speech detection, generative
models have recently become increasingly popular

and successful as a tool to increase classification
performance (Wullach et al., 2021; Anaby-Tavor
et al., 2020). In our contribution to the shared task,
we explored to what extent this approach is feasible
for the presented use case, where classification of
a text sample is less distinct and often relies on
world knowledge (Perez Almendros et al., 2020).
The dataset provided for the task was fairly small,
with less than 10% of the data belonging to the pos-
itive class. We thus enhanced the original dataset
in two ways for our system runs:

• balancing the dataset by generating only PCL
samples

• increasing overall dataset size, by generating
an equal amount of PCL and non-patronizing
(nPCL) samples

We generally followed the approach used by Wul-
lach et al. (2021) and initially fine-tuned a BERT
classifier on the original dataset. We then fine-
tuned GPT-3 (Brown et al., 2020) and generated
samples of PCL and nPCL which were classified
using our fine-tuned system. Samples for which the
BERT classification did not correspond to the in-
tended output were discarded. We then fine-tuned
a new BERT instance with the modified dataset
PCLenhanced including the synthetic data. Al-
though our system only ranked middle field in the
competition, both classifiers trained on the modi-
fied datasets improve our initial classifier trained on
the original dataset by multiple percentage points.
We conclude that this approach does add value to
classification, even in cases where the distinction
between the positive and the negative class relies on
subtleties. The code described in the following as
well as the synthetic data used for the modification
of the original dataset is available on Github1.

1https://github.com/khaliso/
MS-IW-at-SemEval-2022-Task-4
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Text Class
Meanwhile "throughout this island, the high level of suicide is terrible and terrifying. "As
Christians" we can give hope, where a person feels only darkness and hopelessnes," he said

PCL

As the house prices go up, so do rents , and the pohara poor families ca n’t afford to live.
Those who own houses, and are only just making it through, will be rated out of their homes

nPCL

Table 1: Examples of PCL and nPCL in the DPM.

2 Background

We participated in Subtask 1 of the competition,
which entailed the binary classification of news
paragraphs as either patronizing or not patroniz-
ing. Basis for the task was the Don’t Patronize
Me! dataset (DPM) (Perez Almendros et al., 2020),
which contains 10,469 paragraphs of annotated
data from 20 English news sources. While all para-
graphs include references to potentially vulnera-
ble groups, only 993 are examples of patronising
speech. The dataset included meta-information
about the country each paragraph was published in,
an article id, a keyword indicating which vulnerable
group is addressed, and a label ranging from 1 to 4,
where 0 and 1 are treated as non-patronizing and
2 to 4 as patronizing. The task organizers define
PCL as often unconscious, subtle and subjective
ways in which the speaker conveys a superiority
“concealed behind a friendly or compassionate ap-
proach towards the situation of vulnerable com-
munities” (Perez Almendros et al., 2020). They
explicitly exclude hate speech and discriminatory
speech from PCL, making it harder to be identified
not only by NLP-systems, but also by humans. We
include examples of both classes in Table 1.

Transformer-based generative models such as
GPT (Radford et al., 2018) and its successors have
become prevalent in various NLP tasks. For in-
stance, Liu et al. (2021a) explored the idea of
synthetically constructing benchmark datasets to
concur with existing benchmarks such as SQuAD,
while Zhang et al. (2018) showed that a fine-tuned
GPT model can accurately mimic the personal con-
versation style of an individual, leading to improve-
ments in the Persona-Chat dataset.

Another increasingly popular use case is the gen-
eration of data on tasks with small labeled cor-
pora to synthetically increase dataset size in order
to train better performing classifiers. Dekker and
van der Goot (2020) used synthetic data for lexical
normalisation, while other researchers employed
such data to train question answering models (Puri
et al., 2020). Even in maths, researchers have pro-

posed ways of creating synthetic theorems (Firoiu
et al., 2021). Wullach et al. (2021) used GPT-2
(Radford et al., 2019) for their approach to hate
speech detection. Their datasets were small to
medium sized (6-53k labelled examples) and highly
unbalanced, with as little as 1-6k hate speech sam-
ples per dataset. They created three mixed datasets
containing 10k, 80k and 240k synthetic samples
respectively, as well as 80% of the original datasets.
The classification models trained on the largest
created dataset outperformed those trained on the
smaller datasets in most cases. Anaby-Tavor et al.
(2020) generated data using GPT and improved
sentence-level topic classification on three datasets,
ranging from 4.2k to 17k entries. Wullach et al.
(2021) and Anaby-Tavor et al. (2020) fine-tuned the
respective GPT models on relatively small datasets,
and find statistically significant improvements on
classifier performance through incorporating syn-
thetic data in the datasets used for fine-tuning clas-
sifiers.

While GPT and GPT-2 were trained on 117M
and 1.5B parameters respectively, GPT-3 models
were trained on up to 175B parameters (Radford
et al., 2018, 2019; Brown et al., 2020). As it has
been shown that an increase in model size system-
atically leads to improvements in text synthesis as
well as common downstream tasks (Brown et al.,
2020), GPT-3 is likely to produce higher quality
and more natural sounding data than its predeces-
sors. We thus expect GPT-3 generated data to
have an even greater impact on performance in
intricate language classification tasks such as PCL
detection. We know of only few other research
teams which used GPT-3 in their experiments, for
instance to search for more suitable prompts for
Natural Language Understanding (NLU) tasks (Liu
et al., 2021b) or using prompts for few-shot gen-
eration (Yoo et al., 2021). Both achieved strong
results on classification benchmarks.

While using foundation models for data genera-
tion has the potential to increase the power of lan-
guage models and mitigate the data scarcity prob-
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Dataset PCL nPCL % PCL F1pos Prepos Recpos

DPM 993 9476 9.5 – – –
DPMundersampled 804 804 50 40.74% 27.2% 81.07%
DPMenhanced 10242 16937 37.7 50.62% 51.15% 50.10%
DPMenhancedPos 7880 7580 49 46.76% 54.39% 41.01%
Official Baseline RoBERTa – – – 49.11% 39.36% 65.30%
Post-Evaluation
DPMenhancedUnfiltered 24984 31886 43.93% 42.28% 43.62% 41.01%
DPMenhancedPosUnfiltered 24984 7580 76.72% 44.07% 43.07% 45.11%

Table 2: Overview of the datasets used for fine-tuning as compared to the original dataset and test classification
metrics.

lem prevalent in many NLP fields (Budzianowski
and Vulić, 2019), this also bears potential risks
not yet fully explored. For instance, past research
showed that GPT-3 is biased in some cases, and
that its defects are inherited by downstream mod-
els (Bommasani et al., 2021). Similarly, Bender
et al. (2021) note, that the widespread application
of foundation models carries a cost - both monetary
and ethically. Thus, this approach’s ethical impli-
cations should be investigated more thoroughly in
future work.

3 System Overview

To generate the synthetic data, we used GPT-3’s
Curie model. Curie has about 13B unique param-
eters, while Davinci has about 175B. Although
Davinci performs significantly better on a num-
ber of NLP tasks than Curie, we chose Curie, as
it is more financially viable than the larger model,
while retaining a comparatively strong performance
(Brown et al., 2020).

For fine-tuning, we split the dataset into PCL
and nPCL data and modified it to meet the API’s
requirements. As the API requires a prompt-
completion pairing, the prompt was set to be empty
(”) and the completion contained the data sample.
Afterwards, two GPT-3 Curie instances were fine-
tuned on the PCL and nPCL data, respectively. We
thus created two models, one to generate PCL and
one for nPCL phrases. Following Wullach et al.
(2021), we called the models with an empty (”)
prompt in the pipeline for synthetic data generation
and the default parameters. We set max_tokens to
the rounded mean length of the samples in the orig-
inal dataset (60 for PCL and 54 for nPCL). With
each iteration, we generated the maximum number
samples (128), resulting in a total of 24.321 syn-
thetic phrases by the nPCL model and 24.197 by

the PCL model.

Like (Wullach et al., 2021), we classified all syn-
thetic samples after generating the data. We used
an initial baseline classifier and discarded all sam-
ples where the intended and predicted class did
not match. Due to the high class imbalance of the
original dataset, we randomly undersampled the
negative class to the size of positive samples for
training of the baseline classifier. We fine-tuned
BERTbase-cased (Devlin et al., 2018) across three
epochs using a learning rate of 1e-5 on the under-
sampled dataset. Since the synthetically generated
data consisted solely of text for each label, we did
not use any of the meta-information or context pro-
vided in the dataset and fine-tuned solely on text
and labels. In the future, it might be useful to take
meta-information into account for text generation.

39% of the generated PCL samples were clas-
sified as such by the baseline classifier, whereas
85,5% of generated nPCL samples were classified
as nPCL. We explain this with the much larger sam-
ple size of nPCL in the DPM allowing the GPT-3
pipeline to generate better suited data. Based on
the predictions, we created two enhanced datasets:
For DPMenhanced, we added a similar amount of
synthetic PCL (9448) and nPCL (9357) samples
to the DPM. For DPMenhancedPos, we added 7086
PCL samples to balance the original dataset. For a
comparison of sample sizes and share of PCL in the
DPM and the different datasets used for fine-tuning
see Table 2. On each of the enhanced datasets, we
trained a BERTbase-cased instance the same way
as our initial classifier. We submitted the classifier
trained on DPMenhancedPos for our first and the clas-
sifier trained on DPMenhanced for the second run.
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Intended Text Pred
coherent samples
PCL so gao becomes emotional as he reflects on the thousands of homeless children

he has come across during his decades long football career – most of them
growing up without a father figure in their lives. “the kids today may be our
future But there is no future for the kids today if we don’t have

PCL

PCL English and humanities teacher blowsy dilworth decided some kids in her
georgian village needed more than a pack of cards to play baseball with – they
needed an ancestral field. so she quested across the border to find some land
for her students, and this week she opened a playfield on that

nPCL

nPCL understandably , many sri lankans look at india with wariness, if not hostility.
foster father pair of us destroyed an Eldorado of a country. thousands of families
were made homeless and live on the streets today. on november medium

PCL

nPCL africa has the largest block of 2017 retirements sufferance among all regions ,
with recent precedent of expenses course and after-inheritance taxed deaths ,
show disclosures by top investment funds in the united states . on the whole ,
fund seniors are think about leaving equities

nPCL

incoherent samples
PCL Subject : Crying Monkey Fortunetelling video 1 ’sunday ’s focus is on a widower

, otis reigns , who recites a fortune to his 11 children while they weep , a
performance that has attracted millions of views online . producer and director
rebeca Ramirez says she

PCL

PCL Crazy Horse 3 is aNATIVEpi agt sanctioned 51 majorityhare partnership firm
jointly owned and managed by a group of indian stipendiaries and based in
vancouver , b. c. agt Crazy Horse 3 is an eyaculofemoral orifice created for the
purpose of

nPCL

nPCL policy to homeseekers , students and the vulnerable.........................transparency
and public control of thebiologist!!!!!!!!!!

nPCL

nPCL seems like coast is in need of some life. you could say that again about their
women’s Water Polo team. the t Vernons Wyr Kangas athletes recent 4ANPer-
formers cabinet hardwood men’s schools100 result in need of some inspiring
coast women

PCL

Table 3: Examples of patronizing and non-patronizing generated data and its classification with the baseline classifier.
Samples where intention and prediction matched were used for DPMenhanced and DPMenhancedPos, regardless of
whether they are coherent or not. All synthetically generated data is available on github.

4 Results and Discussion

The evaluation metric used for ranking in the task
was F1 over the positive class. Our baseline classi-
fier reached an F1-score of 40.74% on the test set
provided by the task organisers after the end of the
competition’s evaluation phase. Although it had a
high recall of over 80%, precision was very low,
leading to a suboptimal F1-score. The classifier
trained on DPMenhanced scored almost 10% higher
than the initial classifier, but had neither the highest
recall, nor the highest precision of the three classi-
fiers trained before the post-evaluation phase. This
was suprising, as we initially expected the classifier

trained on DPMenhancedPos, which was the larger
balanced dataset out of the three, to perform best.
This leads to the assumption that with synthetic
data, sheer amount might be more important than
balancing out the dataset.

Although in the official task scoring, our sys-
tem trained on DPMenhanced ranked in place 41 of
78 and surpassed the official baseline (fine-tuned
RoBERTa) by only about 1%, we note that using
both synthetically enhanced datasets led to a boost
in performance compared to our initial classifier.
This might seem surprising, especially consider-
ing the low performance of the initial classifier
used to filter the GPT-generated data. In the post-
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evaluation phase, we repeated the experiments from
our two system runs without previous filtering of
the GPT-output, to explore the role of the initial
classifier in our system’s performance. Neither
DPMenhancedUnfiltered nor DPMenhancedPosUnfiltered led
to better performance than DPMenhanced. Thus, us-
ing a baseline classifier for filtering seems to be
the most sensible option when working with syn-
thetic data, regardless of its performance strength.
We report on detailed classification results in Table
2. Since our baseline system did not perform very
well in terms of classification, future work should
first and foremost focus on improving it. The base-
line system forms the basis of our approach and
classification errors at this stage are likely to signif-
icantly lower the usefulness of the synthetic data.

We also looked at some of the synthetic data
generated by GPT-3. Both for PCL and for nPCL,
the generated samples were not always coherent
on a semantic level and the occurrence of incoher-
ent text appeared to be more common in the nPCL
condition. However, it seems like coherence did
not impact classification, as in both cases incoher-
ent synthetic samples could be found in the final
dataset (see Table 3).

We also found a lot of text in languages other
than English, possibly because of the small size
of the dataset in comparison to the vast amount of
training data used to create GPT-3. We expect that
filtering out such samples would increase perfor-
mance further. In addition, basic data-cleaning of
the synthetic data before classification might be in
order. Both of this could potentially be achieved
by only using data samples for which a confidence
score above a certain percentage (i.e. 70%) is re-
turned in classification. Another approach might be
using an unrelated dataset to filter out all synthetic
data unrelated to the task at hand. In the context of
PCL detection, this could help discard generated
data that is not related to vulnerable groups.

The approach of using an empty prompt (”)
while fine-tuning the models is debatable, be-
cause the prompt is such a powerful tool (Yoo
et al., 2021; Liu et al., 2021b) and should prob-
ably be utilized. A possible approach would be to
train a single model on both PCL and nPCL data,
and put PCL/nPCL information in each samples’
prompt. The currently unused meta-information
of the dataset could also be incorporated, possibly
causing additional improvements in the quality of
the generated data.

5 Conclusion

We described our system submitted to Task 4, Sub-
task 1 of SemEval-2022. Although the system’s
performance did not score highly on the overall
leaderboard, ranking 41st place, incorporating syn-
thetic data in the original training set still boosted
performance by up to 10% compared to our initial
baseline system, which leads to the assumption that
pairing this approach with more sophisticated clas-
sification systems has some potential to increase
classification performance significantly. We derive
some lessons learned from the presented experi-
ments as follows:

• Using a baseline classifier to filter the syn-
thetic data after generation seems to be essen-
tial.

• The size of the additional data seems to be
more important to increase performance than
balancing the data.

• Further data cleaning and filtering might be
necessary to improve classification perfor-
mance.

• Synthetic data leads to better performance,
even if it includes a lot of incoherent sam-
ples and the baseline classifier has low perfor-
mance.

In the future, we plan to improve the baseline clas-
sifier and explore different data cleaning and filter-
ing techniques, such as using confidence scores re-
turned by the classifier for our data selection, using
unrelated datasets to filter whether a data sample
fits in the task-specific domain or making use of
prompts during GPT-3 fine-tuning and data gen-
eration. Exploring other augmentation strategies
such as back-translation or synonym replacement
of either the original data or the generated samples
might further increase classification performance.
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Abstract

In this paper, we present our submission to
the SemEval 2022 - Task 4 on Patronizing and
Condescending Language (PCL) detection. We
approach this problem as a traditional text clas-
sification problem with machine learning (ML)
methods. We experiment and investigate the
use of various ML algorithms for detecting
PCL in news articles. Our best methodology
achieves an F1- Score of 0.39 for subtask1 with
a rank of 63 out of 80, and F1-score of 0.082
for subtask2 with a rank of 41 out of 48 on the
blind dataset provided in the shared task.

1 Introduction

The explosion of social media in recent years also
enables increasing the number of patronizing and
condescending language (PCL). Patronizing and
condescending language depicts apparently kind
or helpful behavior but betraying a feeling of su-
periority on others. Previously, harmful behavior
in language for example, hate speech (Fortuna and
Nunes, 2018), offensive language (Razavi et al.,
2010), fake news (Oshikawa et al., 2018), rumor
propagation or misinformation (Zhou and Zafarani,
2020), and many others has been widely studied in
NLP, PCL has been a neglected area of study until
very recently.

Identifying PCL is hard even for humans be-
cause it is subjective and subtle. For instance, one
might find condescending something which another
person might consider an objective portrayal of a
situation or some people might not see the harm
in describing how those in a privileged position
donate their remainings to those who need them.
Also, we would expect a member of a so-called
vulnerable community to feel more patronised than
one person who does not belong to such group
while reading how others refer to them.

The goal of SemEval 2022-Task 4 is to design
a system to detect whether or not the text contains
any form of PCL and furthermore, identify which

Class Nb of Samples
PCL 9476
Non-PCL 993

Table 1: Dataset Statistics Task 1

PCL category expresses the condescension. The
organizers provided two datasets, one annotated
based on the intensity of PCL and other with the
PCL categories. We approach this problem using
various machine learning approaches using the lin-
guistics features.

The structure for the rest of the paper is as fol-
lows. Section 2 describes a background about the
dataset. Section 3 describes the experimental setup
of our experiments. It involves pre-processing, fea-
ture engineering, implementation details for all the
respective ML models. Section 4 describes the
results and discussion for both the subtask. And
lastly, in Section 5, we concluded the paper and
suggest ideas for future research.

2 Dataset

The dataset (Perez-Almendros et al., 2020) pro-
vided for this challenge was collected from the
News on Web (NoW) corpus (Davies, 2013). For
task1, we are provided with 10469 text paragraphs.
Each paragraph instance in the dataset is provided
with paragraph-level label, vulnerable community-
info which includes (disabled, homeless, hope-
less, immigrant, in-need, migrant, poor families,
refugee, vulnerable and women), and along coun-
try of origin. There are 5 classes (0-4) based on
the intensity of PCL. For task2, we are provided
with 993 paragraphs. Each paragraph instance
in the dataset is provided with keyword, coun-
try of origin, span-text, category label, and num-
ber of agreeing annotators. The labels comprise
of 7 classes: Unbalanced Power relations(unb) ,
Shallow solution(shall), Presupposition(Pres), Au-
thority Voice(Auth), Metaphor(Meta), Compas-
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Class Nb of Samples
Unbalanced power (unb) 716
Shallow solutions (shall) 196
Presupposition (Pres) 224
Authority Voice (Auth) 230
Metaphor (Meta) 197
Compassion (Comp) 469
The poorer,the merrier (Poorer) 40

Table 2: Dataset Statistics Task 2

Model Val-F1 Test-F1
SVM 0.91 0.053
Logistic 0.86 0.390
SGD 0.90 0.058
MLP 0.89 0.300
AdaBoost 0.89 0.280
Ensemble - 0.340
Roberta-baseline - 0.491

Table 3: F1- score for ML Models for task1

sion(Comp), The poorer,the merrier(poorer). For
our experiments, we perform 80-20 data split with
random state 0 for both the tasks to train the models
for all experimental setup.

3 Experiment Setup

3.1 Pre-processing
Task1 is a binary text classification. The dataset
is annotated from 0 to 4 on the basis of PCL in-
tensity in the text. We further re-label the dataset
instances using the intensity score where 0,1 re-
ferred to Non-PCL text and (2-4) referred to PCL
text. (Ref . Table 1)

Task2 is multi-label classification. Each dataset
instance is annotated with different PCL category
labels and the text span reflecting the PCL label is
provided respectively. Many paragraph instances
were annotated for more than one category of PCL
over a different span of text. (Ref . Table 2)

For our experiments, we remove stopwords by
using NLTK(Natural Language Toolkit) library and
other non-ascii symbols from the text before per-
forming feature engineering.

3.2 Feature Engineering
Count Vectorizer Feature extraction (Vectoriza-
tion) on text, encodes the text as integers or floating
point values for using as input in machine Learning
algorithms. Scikit-learn’s CountVectorizer is used

to convert a collection of text documents to a vector
of term/token counts.

Term Frequency- Inverse Document Frequency
(TF-IDF) We use Sklearn TF-IDF, which is an
approach to quantify words in a set of documents
by computing a score for each word to signify its
importance in the document or corpus.

TF-IDF = Term Frequency (TF) * Inverse Docu-
ment Frequency (IDF)

TF is the ratio the frequency of a word in a doc-
ument and the frequency with the total number
of words in the document whereas, document fre-
quency (DF) is the normalized count of documents
in which the term is present. Inverse Document Fre-
quency is the inverse of the document frequency
which measures the informativeness of a term in
the document. We used the features generated on
the entire corpus and the feature length was 20244.

3.3 Models

Support Vector Machine (Burges, 1998) is an
effective technique for classifying high dimen-
sional data. It learns the optimal hyperplane that
separates training examples from different classes
by maximizing the classification margin. Each
row vector of the word-document matrix repre-
sents the vectorization of text that are mapped to
a latent semantic space in this module by LSA
vector space model, to generate representation
vectors and further classify them. We perform
Principal Component Analysis (PCA) (number
of components=500) to perform dimension re-
duction over text features before inputting to this
model.

Logistic Regression (Cramer, 2002) is a classi-
fication algorithm used to solve binary and multi-
label classification. The logistic regression clas-
sifier uses the weighted combination of the input
features and passes them through a sigmoid func-
tion.

Stochastic Gradient Descent (Ruder, 2016) is
an iterative algorithm that starts from a random
point on a function and travels down its slope in
steps until it reaches the lowest point of that func-
tion. We perform feature scaling before inputting
the features to the model.

AdaBoost (Freund and Schapire, 1997) Adap-
tive Boosting is very popular boosting technique
that combines multiple local weak classifiers into
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Model Unb shall Pres Auth Meta Comp poorer Average F1
SVM 0.87 0.2 0.27 0.16 0.05 0.75 0 0.32
Logistic 0.84 0.56 0.53 0.37 0.27 0.76 0 0.47
SGD 0.84 0.25 0.35 0.08 0.05 0.68 0 0.32
MLP 0.84 0.42 0.47 0.27 0.26 0.71 0 0.42
AdaBoost 0.82 0.3 0.36 0.25 0.28 0.6 0 0.37

Table 4: F1-Score for ML Models for task2 on validation set

Model Unb shall Pres Auth Meta Comp poorer Average F1
SVM 0.11 0.18 0.02 0.094 0.10 0.10 0 0.089
Logistic 0.13 0.14 0.06 0.08 0.04 0.099 0 0.082
SGD 0.11 0.14 0.029 0.046 0.023 0.068 0 0.060
MLP 0.13 0.12 0.029 0.045 0.028 0.092 0 0.063
AdaBoost 0.12 0.089 0.027 0.039 0.054 0.101 0.045 0.068
Ensemble 0.1180 0.2050 0.0192 0.0643 0.0645 0.1018 0 0.082
Roberta-baseline 0.3535 0 0.1667 0 0 0.2087 0 0.104

Table 5: F1-Score for ML Models for task2 on test set

a single strong classifier. It can be used to sig-
nificantly reduce the error of any learning algo-
rithm that consistently generates classifiers whose
performance is a little better than random guess-
ing. We initiate the model with number of
estimators = 400, learning rate = 1,
and base classifier = DecisionTreeClassi-
fier with criterion =’entropy’.

Multilayer Perceptron (MLP) (Rosenblatt,
1961) is a classical type of neural network. They
are composed of one or more layers of neurons.
Data is fed to the input layer, there may be one
or more hidden layers providing levels of abstrac-
tion, and predictions are made on the output layer,
also called the visible layer. MLPs are suitable for
classification prediction problems because they are
known to be capable of modelling complex func-
tions. We used number of hidden layers=
30(for task1),and 1000 (for task2), and maximum
iteration = 2000 to initiate the MLP model.
Activation functioned used for the hidden layer is
by default i.e ReLU (Nair and Hinton, 2010).

3.4 Ensemble

For our submitted system, after predictions were
extracted from different models, we calculate the
ensemble (Kuncheva and Whitaker, 2003) using the
mode to find the most frequently occurring label.
In the presence of a tie-breaker scenario, we select
the label predicted by the best performing model.

3.5 Implementation

For all the models, we used Scikit learn library for
our (Pedregosa et al., 2011) implementation. For
task1, our validation set has 2094 examples and for
task2, we have 199 examples from the training data
according to the initial data split. All the models
were initiated with class_weight =’balanced’
setting , maximum iteration=1000. For the
rest of the hyper-parameters we use the default
setting otherwise specified in their sections. The
github repository containing all the details of our
experiments is made publicly available1.

4 Results & Discussion

We evaluate and report the performance of different
models on our validation set and the blind-test set
(Table 3, 4, 5). We can see that logistic regression
model performs the best among all the models with
TF-IDF features as the input for task1 and SVM
works better than of LR classfier for task2.

We see a steep drop in the performance of model
on the test-set. This can be attributed to the dif-
ference distribution in the training and testing data
which reduces the effectiveness of the TF-IDF fea-
tures. The imbalance in the dataset also can be a
reason for the model to perform badly on the ’Non-
PCL’ class in task1 (1) and ’poorer’ class in task2
(1) . The machine learning models are not effective
compared to the roberta-baseline as we see that

1https://github.com/Abhi-020/PCL
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Gold Paragraph Pred
non-pcl On the other hand,in Europe and North America,educated pcl

and young Muslims are surprisingly found to be vulnerable to such extremism
pcl Many celebrities wore blue ribbons to support the American Civil non-pcl

Liberties Union, which is seeking to shed light on the plight of young
immigrants facing the potential of being deported .

Table 6: Examples of incorrect predictions made by Logistic Regression Classifier in Task 1.

Gold Paragraph Pred
unb Fast food employee who fed disabled man becomes internet sensation non-unb
non-unb When I was born , this was a nightmare town for unb

disabled children , he said to me then
shall After a big casino win , Mario Balotelli gave a homeless man? 1,000 ( PA ) non-shall
non-shall I rather donate to the less privilege in the church shall

or homeless than to pour a cup of water into Nigeria sea of wealth
so that the thieves can grab my little contribution .

Pres Once again the stateless Rohingya are on the run – non-Pres
homeless and increasingly hopeless .

non-Press Antidote for hopelessness Pulitzer Prize-winning journalist Press
Roy Gutman , author of How We Missed the Story , argued that

journalism in conflict zones provides change-makers
and hope as an antidote for hopelessness .

Auth Every family which qualifies for the program should be covered . non-Auth
Every child in poor families must be placed and kept in school ,

and they should enjoy health and nutrition assistance , Romualdez said
non-Auth The government is implementing several schemes Auth

would change the economic position of poor families , " she added
Meta It is the supreme task of this generation to give hope to the hopeless non-Meta

strength to the weak and protection to the defenceless
non-Meta They discounted and denied every conceivable poll which, Meta

showed Jonathan losing the election ,preaching that Nigerians
wanted continuity ,not the change the opposition advocated .

he people of Nigeria were portrayed as somehow loving their poverty
and insecurity , their darkness and weakness , hopelessness and joblessness.

Comp Today , homeless women are still searching for the same thing . non-Comp
A place to sleep and be safe .

non-Comp Housing Minister Grant Shapps added :’The plight of homeless people Comp
should be on our minds all year round - not just at Christmas .

families and be symbols of hope and possibility , of never giving up .
Poorer A lot of my disabled patients over the years have gained strength non-Poorer

and hope from me when they see that I also have a disability
, but that I ’m coping . Sometimes the biggest gift I can give other

people with disabilities is to show them that you can get a job .
non-Poorer One of her proudest achievements as an MP Poorer

is challenging how the disabled are treated
She became the first disability issues spokesperson and later minister .

Table 7: Examples of incorrect predictions made by Logistic Regression Classifier in Task 2.
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static text features are less helpful in the detection
of PCL.

The table 6, 7 contains examples from the task1
and task2 validation set respectively, where the
model failed to label the paragraph instances cor-
rectly. We can see that, the presence of vulnerable
community keywords (Highlighted Table 6,7) of-
ten confuses the model leading it to mislabel the
instances. We observe that TF-IDF features are not
able to capture contextual information as they rely
only on the presence of the word indicators . We be-
lieve that this is the reason behind the inefficiency
of the ML models.

5 Conclusion

This paper presents our study of machine learning
models for the binary and multi-label text classifi-
cation on the PCL detection shared task. We find
that tf-idf features can be effective in cases where
train and testing data are from the same distribu-
tion but it may fail otherwise. For future work,
we plan to experiment with contextual embeddings
from BERT, and other transformer-based models.
We also would like to look into bootstrapping and
data augmentation techniques to solve the class
imbalance problem more effectively.

References
Christopher JC Burges. 1998. A tutorial on support

vector machines for pattern recognition. Data mining
and knowledge discovery, 2(2):121–167.

Jan Salomon Cramer. 2002. The origins of logistic
regression.

Paula Fortuna and Sérgio Nunes. 2018. A survey on
automatic detection of hate speech in text. ACM
Computing Surveys (CSUR), 51(4):1–30.

Yoav Freund and Robert E Schapire. 1997. A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of computer and
system sciences, 55(1):119–139.

Ludmila I Kuncheva and Christopher J Whitaker. 2003.
Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy. Ma-
chine learning, 51(2):181–207.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Icml.

Ray Oshikawa, Jing Qian, and William Yang Wang.
2018. A survey on natural language process-
ing for fake news detection. arXiv preprint
arXiv:1811.00770.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Carla Perez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2020. Don’t patronize me! an
annotated dataset with patronizing and condescend-
ing language towards vulnerable communities. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 5891–5902.

Amir H Razavi, Diana Inkpen, Sasha Uritsky, and Stan
Matwin. 2010. Offensive language detection using
multi-level classification. In Canadian Conference
on Artificial Intelligence, pages 16–27. Springer.

Frank Rosenblatt. 1961. Principles of neurodynam-
ics. perceptrons and the theory of brain mechanisms.
Technical report, Cornell Aeronautical Lab Inc Buf-
falo NY.

Sebastian Ruder. 2016. An overview of gradient
descent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Xinyi Zhou and Reza Zafarani. 2020. A survey of fake
news: Fundamental theories, detection methods, and
opportunities. ACM Computing Surveys (CSUR),
53(5):1–40.

373



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 374 - 378
July 14-15, 2022 ©2022 Association for Computational Linguistics

RNRE-NLP at SemEval-2022 Task 4: Machine Learning Approaches to
Detect Patronizing and Condescending Language

Rylan Yang
The Harker School

San Jose, CA
23rylany@students

.harker.org

Ethan A. Chi
Stanford University

Stanford, CA
ethanchi@stanford

.edu

Nathan A. Chi
De Anza College
Cupertino, CA

chinathan@student
.deanza.edu

Abstract

An understanding of patronizing and conde-
scending language detection is an important
part of identifying and addressing discrimina-
tion and prejudice in various forms of commu-
nication. In this paper, we investigate several
methods for detecting patronizing and conde-
scending language in short statements as part of
SemEval-2022 Task 4. For Task 1a, we investi-
gate applying both lightweight (tree-based and
linear) machine learning classification models
and fine-tuned pre-trained large language mod-
els. Our final system achieves an F1-score of
0.4321, recall-score of 0.5016, and a precision-
score of 0.3795 (ranked 53 / 78) on Task 1a.

1 Introduction

Patronizing and Condescending Language (PCL)
is characterized by expressions that reveal a sense
of compassion or superiority toward others. Re-
search suggests that PCL can perpetuate–and even
veil–discrimination toward vulnerable groups (Ng,
2007). To make matters worse, its presence is often
more subtle than other offensive language (Mendel-
sohn et al., 2020).

Detecting PCL is a challenging task for humans
annotators–and the task becomes even trickier for
artificial systems. Given the varied nature of con-
descension, current NLP models struggle to ac-
curately detect PCL. Part of the issue is defining
what patronizing and condescending language is,
exactly–what one reader considers condescending
might be deemed perfectly respectful by another.

SemEval-2022 Task 4 attempts to address some
of these issues (Pérez-Almendros et al., 2022).
Pérez et al. classify PCL into seven distinct cate-
gories: unbalanced power relations, shallow solu-
tions, presupposition, authority voice, metaphor,
compassion, and the poorer, the merrier.

Task 1a seeks to determine whether the sequence
of text contains any form of patronizing or conde-
scending language. Task 1b seeks to identify the

PCL category that corresponds to the sequence
of patronizing or condescending text. Overall,
developing systems that perform well on these
tasks—-that are capable of flagging condescending
language–is a critical step toward reducing discrim-
ination toward minority groups in media. We in-
vestigate various lightweight models to determine
whether such models trainable on an extremely
small compute budget could effectively identify
PCL, as well as larger pre-trained transformer mod-
els to identify whether performance improves as
models increase in size and complexity.

2 Dataset

For Task 1a, we train and validate our models
on the SemEval-2022 Task 4 training set (Pérez-
Almendros et al., 2020). Each paragraph has been
annotated by two annotators on a Likert-type scale
from 0 to 2 as shown in Table 1. The scores from
each annotator are summed together: an overall
score of 0 signifies that both annotators gave scores
of 0, 1 that just one annotator gave a score of 1, and
2-4 that any higher score given by both annotators
was summed together. A summary of the PCL sta-
tus based on the two annotators’ scores is shown in
Table 2.

We did not investigate Task 1b.

Rating Description

0 no presence of PCL
1 borderline PCL
2 contains PCL

Table 1: Likert scale for annotators to describe PCL
status.

2.1 Train-test split
The dataset has a total of 14366 examples, split
10469–3897 between training and testing sets. The
testing set was not provided until the last phase of
the competition, so we created our own validation
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Sum Description

0-1 Not a PCL paragraph
2-4 A PCL paragraph

Table 2: Summary of PCL status based on two annota-
tors’ scores.

set using a 75/25 train/validation split. For this
reason, our train set has 7851 examples, and our
validation set has 2618 examples. In our paper,
all "validation-set" performance is reported on this
internal held-out set.

3 Methods

3.1 Systems Overview for Task 1a
The aim of this task is to classify a given sequence
of text as patronizing and condescending or not.
We implement the following lightweight machine
learning classifiers in Scikit-learn (Pedregosa et al.,
2011):

• Logistic Regression is a supervised classifi-
cation algorithm that employs a logistic func-
tion to categorize data into discrete classes.
(LaValley, 2008)

• Support Vector Machine is a supervised clas-
sification algorithm that maps data points in a
hyperplane to maximize the width of the gaps
between two or more categories. (Gold and
Sollich, 2003)

• Random Forest is an supervised learning
technique that utilizes random bagging of dif-
ferent bootstrap samples of data to create a
prediction from uncorrelated trees that is more
accurate than any one tree. (Liaw et al., 2002)

• Multi-layer Perceptron is a feed-forward
neural network with an input layer, an out-
put layer, and any number of hidden layers.
(Gardner and Dorling, 1998)

• Gradient Boosting is a greedy additive al-
gorithm that sequentially ensembles an num-
ber of weak learners (typically decision trees)
(Natekin and Knoll, 2013).

• AdaBoost (Adaptive Boosting) is a form of
gradient boosting that adds weights to each
subsequent weak learner (also typically de-
cision trees) with incorrectly classified sam-
ples until either all data points have correctly

classified or the maximum iteration has been
reached. (Hatwell et al., 2020)

Ensemble We also experiment with a Voting-
Classifier ensemble which incorporates one
Logistic Regression, one Random Forest, and
one Gaussian-hybrid models. Our models were
averaged with equal weights.

We also experiment with the following pre-
trained language models to try and effectively clas-
sify the presence of PCL in sentences:

• BERT is a pre-trained masked language
model. We use BERT-cased, BERT-Large-
cased, BERT-uncased, and BERT-Large-
uncased in our experiments. (Devlin et al.,
2018)

• RoBERTa is an optimized BERT model that
utilizes the same architecture but various
changes such as larger mini-batches and learn-
ing rates. We use RoBERTa and RoBERTa-
Large. (Liu et al., 2019)

3.2 Experimental Setup

Normalization We investigate standardizing
the dataset (implemented with the Scikit-learn
StandardScaler preprocessing function) for the
lightweight models.

Pre-Trained Models Regarding the large pre-
trained models, we trained with binary cross-
entropy loss for 5 epochs, using a learning rate
of 1 × 10−5 and batch sizes of 8 (BERT and
RoBERTA-base) and 3 (BERT and RoBERTa-
Large).

4 Results

The official evaluation set performances for our
classifiers are listed in Table 3, while the unofficial
validation set performances for our Scikit-learn and
Transformer-based models are listed in Table 4.

For Task 1a (patronizing and condescending lan-
guage binary classification), we submitted our two
highest-performing lightweight models (Support
Vector Machine and Random Forest models). Due
to error, we did not submit our BERT model. Over-
all, we ranked 53rd out of 78 on this task, achieving
a positive-class F1 score of 0.4321.
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Model positive-class F1 (1a) recall-score (1a) precision-score (1a)

Support Vector Machine 0.4321 0.5016 0.3795
Random Forest 0.3310 0.3691 0.3000

Table 3: Official validation set performance of our lightweight models on Task 1a (binary classification).

Model Features positive-class F1 (1a) Accuracy (1a) Normalize

Logistic Regression GloVe 0.37 0.76 False
Logistic Regression GloVe 0.37 0.76 True
Support Vector Machine GloVe 0.37 0.73 False
Support Vector Machine GloVe 0.48 0.89 True
Random Forest GloVe 0.38 0.87 False
Random Forest GloVe 0.39 0.86 True
Multi-layer Perceptron GloVe 0.40 0.90 False
Multi-layer Perceptron GloVe 0.34 0.88 True
AdaBoost GloVe 0.31 0.90 False
AdaBoost GloVe 0.31 0.90 True
VotingClassifier Ensemble GloVe 0.42 0.87 False
VotingClassifier Ensemble GloVe 0.42 0.87 True
RoBERTa-base — 0.54 0.92 False
RoBERTa-large — 0.55 0.92 False
BERT-cased — 0.55 0.91 False
BERT-uncased — 0.51 0.91 False
BERT-large-cased — 0.56 0.93 False
BERT-large-uncased — 0.53 0.92 False

Table 4: Unofficial validation set performances of candidate models on Task 1a (binary classification). For this task,
the highest-performing lighweight models are the Support Vector Machine model and the Random Forest model,
and the highest-preforming pre-trained models are BERT-cased and RoBERTa-large.

5 Conclusion

We have proposed lightweight and pre-trained sys-
tems that are able to detect PCL in text.

We find that reasonably lightweight models such
as Support Vector Machine and Random Forest
are effective at predicting the level of patronizing
and condescending language. However, we note
that ensembling these models together does not
improve performance.

Additionally, normalizing the dataset had little
effect for most models—-and in the case of the
Multi-layer Perceptron model actually returned a
lower positive-class F1 score. However, it sub-
stantially increased the F1 score with the Support
Vector Machine model from 0.37 to 0.48.

Finally, we find that fine-tuning large pre-trained
models like BERT and RoBERTa achieves results
at least as accurate as lightweight models–if not
better.

An area of interest for future work may be fur-
ther experimentation with ensembles of lightweight
models, as well as inquiries into adversarial and
contrastive learning to improve overall accuracy.

Overall, our results show that both lightweight
and fine-tuned models can achieve reasonable re-
sults at detecting patronizing and condescending

language in human channels of communication.

6 Acknowledgements

The authors would like to thank Ryan A. Chi for
their support and guidance throughout this project.
We would also like to acknowledge Google Collab-
oratory for their free services.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Matt W Gardner and SR Dorling. 1998. Artificial neural
networks (the multilayer perceptron)—a review of ap-
plications in the atmospheric sciences. Atmospheric
environment, 32(14-15):2627–2636.

Carl Gold and Peter Sollich. 2003. Model selection for
support vector machine classification. Neurocomput-
ing, 55(1-2):221–249.

Julian Hatwell, Mohamed Medhat Gaber, and R Muham-
mad Atif Azad. 2020. Ada-whips: explaining ad-
aboost classification with applications in the health
sciences. BMC Medical Informatics and Decision
Making, 20(1):1–25.

376



Michael P LaValley. 2008. Logistic regression. Circu-
lation, 117(18):2395–2399.

Andy Liaw, Matthew Wiener, et al. 2002. Classification
and regression by randomforest. R news, 2(3):18–22.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Julia Mendelsohn, Yulia Tsvetkov, and Dan Jurafsky.
2020. A framework for the computational linguistic
analysis of dehumanization. Frontiers in artificial
intelligence, 3:55.

Alexey Natekin and Alois Knoll. 2013. Gradient boost-
ing machines, a tutorial. Frontiers in neurorobotics,
7:21.

Sik Hung Ng. 2007. Language-based discrimination:
Blatant and subtle forms. Journal of Language and
Social Psychology, 26(2):106–122.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, et al. 2011. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830.

Carla Pérez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2020. Don’t Patronize Me! An
Annotated Dataset with Patronizing and Condescend-
ing Language towards Vulnerable Communities. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 5891–5902.

Carla Pérez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2022. SemEval-2022 Task 4:
Patronizing and Condescending Language Detection.
In Proceedings of the 16th International Workshop on
Semantic Evaluation (SemEval-2022). Association
for Computational Linguistics.

377



Model Hyperparameter Task 1a

Logistic Regression solver lbfgs
penalty none
class weight balanced

Support Vector Machine class weight 0:1, 1:13
degree poly

Random Forest max depth 10
n estimators 100
class weight balanced
min samples leaf 10

Multi-layer Perceptron hidden layer sizes (100, 100)
α 0.01
β 0.2
learning rate adaptive

AdaBoost learning rate 1.0
n estimators 50

Table 5: Hyperparameters for lightweight supervised models.

Sentence label

" Anja Ringgren Loven I ca n’t find a word to describe how I feel for you .... May God almighty keep blessing 4
you and always give you strength and sound health to continue your good work ..... You gave hope to the
hopeless ! ! ! ! Have so much respect for you .. Stay Blessed my good fellow ... " says one commenter on Facebook.
"God bless you and your mission . Glad to see Hope (and all the children ) growing up loved , well fed , happy ,
having fun , and going to school , " says another .

We ’re living in times of absolute insanity, as I ’m pretty sure most people are aware . For a while , waking up every 0
day to check the news seemed to carry with it the same feeling of panic and dread that action heroes
probably face when they ’re trying to decide whether to cut the blue or green wire on a ticking bomb –
except the bomb ’s instructions long ago burned in a fire and imminent catastrophe seems the likeliest outcome .
It ’s hard to stay that on-edge for that long , though , so it ’s natural for people to become inured to this constant
chaos , to slump into a malaise of hopelessness and pessimism .

Table 6: Examples that are considered patronizing and condescending and those not considered patronizing and
condescending, respectively
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Abstract

The act of appearing kind or helpful via the
use of but having a feeling of superiority con-
descending and patronizing language can have
have serious mental health implications to those
that experience it. Thus, detecting this conde-
scending and patronizing language online can
be useful for online moderation systems. Thus,
in this manuscript, we describe the system de-
veloped by Team UTSA SemEval-2022 Task
4, Detecting Patronizing and Condescending
Language. Our approach explores the use of
several deep learning architectures including
RoBERTa, convolutions neural networks, and
Bidirectional Long Short-Term Memory Net-
works. Furthermore, we explore simple and
effective methods to create ensembles of neu-
ral network models. Overall, we experimented
with several ensemble models and found that
the a simple combination of five RoBERTa
models achieved an F-score of .6441 on the
development dataset and .5745 on the final test
dataset. Finally, we also performed a compre-
hensive error analysis to better understand the
limitations of the model and provide ideas for
further research.

1 Introduction

Patronizing and condescending language (PCL)
generally appears as an act to hold a superior at-
titude, resulting in language that “talks down” to
others. For instance, PCL may describe someone in
a power position as the potential “savior” of a vul-
nerable community (e.g., ”A donation of one dollar
can save a life”), masquerading a sense of superior-
ity as compassion. There has been recent research
suggesting that PCL can have adverse effects on
the mental health of individuals (Giles et al., 1993;
Shaw and Gordon, 2021), particularly in the con-
text of ageism. While there has been substantial
research on PCL in various contexts (Huckin, 2002;
Komrad, 1983; Giles et al., 1993; Shaw and Gor-
don, 2021), unfortunately, there have been few ef-

forts to develop PCL detectors in the field of Natu-
ral Language Processing (NLP). Hence, this paper
describes our team’s (UTSA NLP) contributions on
the SemEval-2022 Task 4 (Pérez-Almendros et al.,
2022) that introduced a new dataset for detecting
PCL language.

NLP has investigated a broad spectrum of prob-
lematic language usages, such as hate speech (Vid-
gen et al., 2021), sarcasm language (Bamman and
Smith, 2015), fake news (Hu et al., 2021), and the
spread of rumors and disinformation. However,
PCL has only recently been explored in the NLP
community (?). To alleviate this issue, SemEval-
2022 Task 4 expanded on the work by ?, releasing
a large PCL dataset for two PCL subtasks. Sub-
task 1 focuses on detecting the presence of PCL in
news stories. PCL detection consists of a variety
of sub-problems, for instance, identifying the exact
PCL type expressed post (if any). There are multi-
ple technical challenges for identifying PCL. For
instance, accurate models must handle imbalanced
data (most news stories do not contain PCL) and
complex semantic understanding to relate shallow
solutions for helping vulnerable populations. For
instance, ? describe “Shallow Solutions” as a type
of PCL, e.g., “Raise money to combat homeless-
ness by curling up in sleeping bags for one night”.
Nevertheless, for a model to understand this is an
example of PCL, it would need to understand that
“curling up in sleeping bags for one night” is un-
likely to help the general problem of homelessness.
Hence, we hypothesize that different models will
learn to detect different types of PCL with varying
accuracy; thus, combining multiple methods can
result in better performance than a single method.

Overall, this paper describes our system for
Task 1. Specifically, we evaluate multiple com-
bined methods to handle PCL’s complex nature bet-
ter than a single method. Hence, for our methodol-
ogy, we trained a RoBERTa model and two tra-
ditional deep learning models (a Convolutional

379



Neural Network and a Long Short-Term Memory
Network) for comparison. In addition, we experi-
mented with different model hyperparameters, ran-
dom seeds, thresholds, and pre-trained word em-
beddings using the performance on the validation
set to assess model variants. Finally, we evaluate
multiple simple, yet effective, methods of combin-
ing the neural network models in an ensemble.

2 Background

Based on the work of ?, the SemEval Task 4 dataset
contains 10,637 news stories about vulnerable peo-
ple published in 20 English-speaking countries,
with a novel PCL taxonomy consisting of three top-
level categories (The savior, The expert, and The
poet) and seven low-level PCL categories describ-
ing the different types of condescension (Perez Al-
mendros et al., 2020). Thet task contains two sub-
tasks: binary classification (subtask 1) and multi-
label classification (subtask 2). The binary classifi-
cation for subtask 1 annotated the data with one of
two categories: PCL and Not PCL. Subtask 2, the
multi-label classification task, categorizes the news
stories into a subset of of seven different PCL cate-
gories: unbalanced power relations, authoritative
voice, shallow solution, presumption, compassion,
metaphor, and the pooer, the merrier. A complete
description of each category can be found in ?.

PCL has been studied in a wide array of con-
texts, from sociolinguistics to healthcare (Huckin,
2002; Komrad, 1983; Giles et al., 1993; Shaw and
Gordon, 2021). However, much of the prior work
has focused on interviews and general qualitative
methods. Thus, automated PCL detection models
can provide social scientists with tools to under-
stand the impact of PCL at scale. For instance,
PCL models would allow linguistics to understand
the implicit language actions related to condescen-
sion and aid social scientists in researching the link
between condescension and other characteristics
like gender or socioeconomic status because these
superior attitudes and discourse of pity can rou-
tinize discrimination and make it less visible(Ng,
2007). However, much of the research on harm-
ful language in NLP has concentrated on the ex-
plicit, offensive, and apparent phenomena like false
news identification, trustworthiness prediction and
fact-checking, modeling offensive language, both
generic and community-specific (Vidgen et al.,
2021; Zampieri et al., 2019; Schmidt and Wiegand,
2019); or how rumors spread (Ma et al., 2017). Re-

cently, some work on condescending language has
begun to surface. For example, based on the chal-
lenge that condescension is often undetectable from
isolated discourse because it depends on discourse
and social context, Wang and Potts (2019) intro-
duces the task of modeling the phenomenon of con-
descension in direct communication from an NLP
perspective and developing a dataset with annotated
social media messages. Likewise, ? also trained
various baseline models to examine how existing
NLP approaches perform in this task. Although
they observe that recognizing PCL is achievable, it
is still difficult. Hence, the work by ? formed the
basis of SemEval Task 4.

3 System Description

Overall, we developed an ensemble model strat-
egy for the PCL challenge. Specifically, we eval-
uated three individual methods: RoBERTa, Con-
volutional Neural Networks, and Long Short-Term
Memory Networks. Furthermore, we experimented
with various ensemble combinations. Approach-
ing the task we conduct multiple experiments
with a variety neural network architectures us-
ing Convolutional Neural Networks (CNN) (Kim,
2014), Bi-directional long short term memory (BiL-
STM) (Huang et al., 2015), and the pre-trained
transformer-based model, RoBERTa (Liu et al.,
2020). Each model and ensemble method is de-
scribed in the section below.

CNN. We use the CNN model introduced by Kim
(2014). Intuitively, the CNN model learns to extract
predictive n-grams from the text. For the CNN ar-
chitecture, we used filter sizes that span two, three,
and four words. For the activation functions, we
used ReLU (Glorot et al., 2011). Furthermore, we
only needed two filters for each filter size 1. Be-
tween the max-pooled outputs from the convolu-
tional layer and the the full-connected output layer,
we use dropout with the probability set to 0.5 dur-
ing training. The final fully-connected output layer
uses a Softmax activation and outputs class proba-
bilities for PCL or Not PCL. The model was trained
with the Adam optimizer (Kingma and Ba, 2015).
Furthermore, we trained the CNN models with var-
ious learning rates randomly selected from 1e-4 to
1e-3 for a maximum of 35 epochs.

1We experimented with filter normal filter sizes from 100
to 300, but two seemed to perform just as well. We hypothe-
size this is because of the small number of PCL examples in
the dataset.
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BiLSTM. While CNNs only extract informa-
tive n-grams from text, recurrent neural networks
(RNNs) are able to capture long term dependen-
cies between words. For our RNN method, we
use a Bidirectional Long Short-Term Memory Net-
work (LSTM) (Hochreiter and Schmidhuber, 1997),
specifically we use a variant introduced by Graves
(2012). For the hyper-parameters, we did not use
dropout, trained for a maximum of 35 epochs, and
used variety hidden layer sizes (128, 256, and
512). The models were trained with the Adam op-
timizer (Kingma and Ba, 2015). Furthermore, we
trained the BiLSTM models with various learning
rates randomly selected from 1e-4 to 1e-3.

RoBERTa. In our study we used a variant of
BERT (Kenton and Toutanova, 2019), namely
RoBERTa (Liu et al., 2020) model, which is lighter
and faster. Specifically, we use the roberta-base
variant in the HuggingFace package (Wolf et al.,
2019). We trained the RoBERTa model for 20
epochs with a mini-batch size set to 8 with the
Adam optimizer. The learning rate was initially set
to 2e-5 (other hyper-parameters same as (Liu et al.,
2020)) and the adjusted stepwise linear decay was
used to modify the learning rate through training,
with step sizes of two and three used. Moreover, we
used the last layer’s CLS token which is passed to a
final softmax layer. The model was check-pointed
after each epoch, and the best version was chosen
using the validation data.

Pre-trained Word Embeddings. For the CNN
and BiLSTM models, we compare the following
pre-trained word embeddings: Word2Vec vectors
trained on Google News corpus (Mikolov et al.,
2013), GloVe vectors trained on Wikipedia2014
and Gigaword5 corpus (GLoVe-Word) and Twitter
(GLoVe-Twitter) corpora (Pennington et al., 2014),
and FastText vectors trained on CommonCrawl cor-
pora (Bojanowski et al., 2017).

Ensemble Model. There has been a wide array of
research showing that ensembles of deep learning
models have are useful for boosting model perfor-
mance (Allen-Zhu and Li, 2020; Peng et al., 2018).
We built different ensemble models by taking an un-
weighted average of the probability outputs of each
of the independently trained models. This includes
models trained with different hyperparameters, e.g.,
hidden state size for the BiLSTM models, differ-
ent learning rates, and different random seeds. For
the CNN and BiLSTM, each model was trained on

Model Embedding Seed LR HL

CNN FastText 99 0.002 NA
LSTM Glove_Twitter 99 0.002 128

Table 1: The hyperparameters for the best CNN and
LSTM models found using random search. We report
random seed (Seed), learning rate (LR), and pretrained
embeddings (Embedding), and hidden layer size (HL)
in this table.

four different pre-trained word vectors described
above. The CNN and LSTM models were also
trained on four different random seeds, for each
combination of word embedding and learning rate.
The RoBERTa model was trained with eleven ran-
dom seeds and a number of two different step-wise
learning rate schedulers using step sizes of two and
three. Overall, we trained a total of 46 different
models for the PCL task. Next, we experimented
with two methods of model averaging (i.e., an en-
semble): Ensemble 1 and Ensemble 2.

First, for Ensemble 1, we simply average the top
five model instances—which resulted in different
RoBERTa models trained with different random
seeds and learning step settings, i.e. step sizes of
two with random seed of three; step size of three
with random seed of zero, two, four, or seven. Sec-
ond, for Ensemble 2, we experimented with taking
the top five models combined with the top two
CNN and BiLSTM models, and the hyperparame-
ters (e.g., learning rate and embedding size) of the
best performing models are shown in Table 1.

4 Dataset, Experimental Setup, and
Training Details

For subtask 1, we use the train dataset provided
by the PCL organizers. We choose the best epoch
and the best hyperparameters using performance as-
sessed in terms of F1-score on this development set
based on the random search (Bergstra and Bengio,
2012). We saved the best epoch and best hyper-
parameters for each model variant. For evaluation,
we use the provided test and validation datasets
released by the organizers. We implemented our
models on four GPUs using PyTorch (Paszke et al.,
2019) to train binary classifiers for PCL. We use
Cross-Entropy Loss in all our experiments as the
loss function. We ran the experiments on a server
using a GPU CUDA Version: 11.4. We selected the
epoch based on the F1 score on the development
set to save the best version of each model.
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Figure 1: F1 score distributions for the best CNN,
LSTM and RoBERTa models with the same hyperpa-
rameters, but different random seed values on the de-
velopment dataset. SS stands for the learning rate step
size.

To build a basis for comparison, all models were
trained using the training data provided by the
task organizers and evaluated against the provided
validation dataset. The best-performing models
were then submitted for evaluation against the test
dataset during the task evaluation period. The train-
ing method was repeated three times for CNN and
LSTM and eleven times for Roberta, each with
a new random seed. This is because changing
the random seed used in fine-tuning RoBERTa
models can provide significantly different out-
comes, even if the models are similar in terms
of hyper-parameters (Dodge et al., 2020). The
best-performing hyperparameters in each model
were saved for the remainder of the ensemble study.
We examined three random seeds (17, 42, and 99)
for the best CNN and LSTM models, with stan-
dard deviations .0283 and .0082, respectively. We
also evaluated ten random seeds for the RoBERTa
model with step sizes of 2 and 3, yielding stan-
dard deviations for variance of .0116 and .0197,
respectively. The distribution of each model’s per-
formance for different random seeds is shown in
Figure 1.

We attempted to build a robust ensemble clas-
sifier with softmax output aggregation. For the
ensemble model, the default threshold for interpret-
ing probabilities as class labels is 0.5, but due to
the imbalanced classification problem, we adjust
the optimal threshold range from 0.1 to 0.9 when
converting probabilities to class labels. We found
the optimal probability threshold of CNN, LSTM,
and RoBERTa that resulted in the best F1 score on
the validation dataset were .1, .35, and .35, respec-
tively.An optimal threshold was also chosen for the
ensemble model, which was found to be .35.

AVG P. AVG R. AVG F1

RoBERTa step_size = 2 .5948 .5738 .5826
step_size = 3 .6006 .5916 .5952

CNN

GoogleNews .2542 .7085 .3733
FastText .2738 .5729 .3653
Glove_Word .2253 .4640 .3031
Glove_Twitter .2070 .6549 .3132

BiLSTM

GoogleNews .3250 .4087 .3609
FastText .3659 .4020 .3810
Glove_Word .3525 .4271 .3831
Glove_Twitter .3745 .3953 .3821

Table 2: Average precision (AVG P.), average recall
(AVG R.), and average F1 (AVG F1) for each model.

step_size seed Prec. Rec. F1

Development Results

RoBERTa 3

0 .6103 .6533 .6311
4 .6263 .5980 .6118
2 .6029 .6181 .6104
7 .6277 .5930 .6098

2 0 .5980 .6131 .6055

Ensemble 1 — — .6215 .6683 .6441
Ensemble 2 — — .6093 .6583 .6328

Test Results

Ensemble 1 — — .5412 .5804 .5601
Ensemble 2 — — .5599 .5899 .5745

Table 3: Individual models in the best ensemble, and
overall ensemble performance on the development and
test datasets.

5 Results

Table 2 shows the average recall, precision, and F1
score. The scores are averaged across the different
random seeds and hyperparameters used to train
the models. Overall, we notice that the RoBERTa
model outperforms both the CNN and BiLSTM
models by more than 20%. For the CNN model,
we find that the GoogleNews word embeddings
perform best. However, for the BiLSTM model,
we find that the model performs similarly across
all pretrained embeddings, with the Glove Word
embeddings slightly outperforming others.

In Table 3 we report the results of the two ensem-
ble models: Ensemble 1 (only RoBERTa Models)
and Ensemble 2 (Combining RoBERTa with the
CNN and RNN models). On the development set,
we find that that a single RoBERTa model achieves
an F1 of .6311, with the next best four models
achieving an F1 of around .61. The F1 of Ensem-
ble 1 improves on the best RoBERTa models result
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Figure 2: F1 score for different sized ensembles on the
development dataset.

by more than 1%. Ensemble 2 only improves on the
Best F1 by .1%. However on the final test set, we
find that the differences is not meaningful, with En-
semble 2 slightly outperforming Ensemble 1 (.56
vs. .57).

Next, in Figure 2 we report the results of aver-
aging different number of models in our ensemble.
More specifically, we evaluate averaging the best
two models, best three models, and best N mod-
els, for N up to an ensemble of 30 different models.
The model is chosen based on the top N performing
models across all model types and random seeds.
Overall, we see that initially the result of an ensem-
ble of size 1 (i.e., only using the best RoBERTa
model) has an F1 of around .63. However, that
slowly increases beyond .64 at around the top five
models. After that, the results slow decrease. Over-
all, we find that while a few models with varying
performance improves the results. The more inac-
curate models slowly outweigh the best performing
model, thus decreasing the overall results. How-
ever, we find that the results stabilize around 0.61.
Finally, in Table 4 we measure the number of False
Positives and False Negatives for each of the main
keywords identified in the PCL dataset (e.g., they
keywords are provided by the organizers indicat-
ing a vulnerable group). The model produced 66
false negative predictions and 81 false positives pre-
dictions in total, but most of false positive errors
are come from homeless,in-need, poor families,
and hopeless. And the false negative error occur
more frequently among the homeless, woman, im-
migrant, migrant and disabled topic.

5.1 False Positives and False Negatives

In addition to an exploration of the observation re-
sults, we perform an error analysis by manually

FPs FNs Total PCL Total

homeless 15 9 29 212
poor-families 13 17 38 190
women 3 8 14 233
in-need 15 2 33 226
immigrant 0 4 7 218
hopeless 15 9 26 217
vulnerable 6 4 20 209
migrant 2 3 5 207
disabled 4 7 14 194
refugee 8 3 13 188

Table 4: Summary of the false positives and false nega-
tives found in each of the then PCL types.

comparing the true labels and predictions of En-
semble 1. First, for False Positives, we analyze an
example related to “hopelessness/homelessness”:

FP Example:“The City Without Drugs organi-
sation is still active , as is their YouTube channel
. It features hundreds of videos of drug addicts
being dragged half-conscious through the street
, their faces not blurred , or confessing their al-
leged worthlessness , their hopelessness , their
shame.”

This paragraphs is predicted as PCL, but the
ground-truth is Not PCL. This example indicates
that the Ensemble incorrectly identifies sentences
as PCL when they contain many PCL-related words
that may be related to PCL-like text (e.g., related
to hopelessness), even when the text is not directly
indicating a feeling of superiority. Another false
positive example is from the “homeless” topics:

FP Example:“Viral photo helping fund home-
less kid , his dog.”

We can see that the entity of this sentence is a single
individual. This paragraph is recognized as PCL
by the system, maybe because the PCL system be-
lieves it contains the shallow solution (i.e., viral
photo). However, it neglected the fact that financ-
ing a specific homeless child may be realistic, i.e.
it may not be a shallow solution for a single per-
son. Perez Almendros et al. (2020) also mention
that shallow solutions are also often overlooked
by RoBERTa, where recognizing shallow solutions
in the text requires external knowledge of the sit-
uation and the needs of those affected. Thus, a
large number of false positive results are generated
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by misidentifying the entities and the relationship
between patronizing and condescending language.
Next, we look at a False Negative:

FN Example: “Charity plans to forgo parking
so homeless can have gym and medical centre.”

Here we find another issue with shallow solutions.
Specifically, the model is not able to associate the
proposed procedure as not being a method of really
addressing homelessness. Specifically, the PCL
system unaware that “forgoing parking” is not a
complete solution to help homeless people, which
is a simple and superficial philanthropic effort that
is unlikely to make a significant difference on vul-
nerable communities. The second example of a
false negative concerns presuppositions. People
need to decide whether the assumption made is
reasonable or not for this type of PCL. We found
for the political topic, like immigrant and migrant
topics, there are many preconceived assumptions
in this kind of news. For example, in the following
situation, the author assumes Filipino families are
poor and need assistance based on stereotypes.

FN Example:“But if the Supreme Court gives a
favorable decision for the president , his immi-
gration program would immediately take effect
, changing the lives of eligible Filipino families
and other immigrants.”

This error suggests that the model is incapable of
understanding complex relationships between vul-
nerable communities and ideas. A future interest-
ing research avenue would explore methods for
incorporating relevant knowledge bases, similar to
recent work on common sense generation (Xing
et al., 2021), into transformer models to address
these errors.

6 Conclusion

In this paper, we have presented our submission
for the PCL detection system submitted to the
SemEval-2022 Task 4. Our team are focus on the
subtask1 to identify whether the paragraphs con-
tain the PCL or not. We proposed several ensemble
models that leverages pre-trained word vectors and
three different deep learning architectures. In fu-
ture efforts, we plan to further improve our model
by incorporating structured knowledge bases.
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Abstract 

This paper presents the AliEdalat team’s 

methodology and results in SemEval-2022 

Task 4: Patronizing and Condescending 

Language (PCL) Detection. This task aims 

to detect the presence of PCL and PCL 

categories in text in order to prevent further 

discrimination against vulnerable 

communities. We use an ensemble of three 

basic models to detect the presence of PCL: 

fine-tuned bigbird, fine-tuned mpnet, and 

BERT+BiGRU. The ensemble model 

performs worse than the baseline due to 

overfitting and achieves an F1-score of 

0.3031. We offer another solution to resolve 

the submitted model’s problem. We 

consider the different categories of PCL 

separately. To detect each category of PCL, 

we act like a PCL detector. Instead of 

BERT+BiGRU, we use fine-tuned roberta 

in the models. In PCL category detection, 

our model outperforms the baseline model 

and achieves an F1-score of 0.2531. We 

also present new models for detecting two 

categories of PCL that outperform the 

submitted models. 

1 Introduction 

Increasing internet access rates and the 

development of a diverse range of online forums 

have allowed people around the world to engage in 

a tremendous range of topics. This has been 

accompanied by an increase in unhealthy online 

texts whose negative effects on people have been 

significant. One type of such unhealthy texts is a 

text with  patronizing and condescending language 

(PCL).  When a person's language expresses a 

superior attitude towards others or describes their 

situation in a benevolent way that creates a sense of 

pity, the person has used this type of language. In 

the media, vulnerable communities seem to be a 

good target for this type of language. However, this 

type of language can normalize discrimination. We 

believe that unfair treatment of vulnerable groups 

leads to greater deprivation and inequality for these 

groups. Therefore, recognizing the existence of this 

type of language and its variations is important and 

can prevent these problems. 

So far, significant work has been done on 

modeling the language that deliberately and openly 

undermines others, such as offensive language or 

hate speech, but little has been done on the 

language of humiliation and pity. This language of 

humiliation and pity is used in the media subtly and 

indirectly and different from other types of 

unhealthy languages. The special focus on the 

language of humiliation and compassion for 

vulnerable communities has been noted only in the 

work of Pérez-Almendros et al., (2020). In this 

work, a dataset to identify this type of language is 

presented, but no significant work has been done in 

designing a model to classify this type of text. 

Unhealthy text papers usually focus on obvious 

and aggressive phenomena such as detecting fake 

news, fact-checking, modeling offensive language, 

and spreading rumors. There has been a few work 

on PCL recently. Wang and Potts (2019) introduced 

compassion modeling in direct communication 

from the perspective of natural language analysis. 

They created and tagged a dataset with social 

media messages. Sap et al. (2019) Discussed the 

specific uses of language and power, especially the 

unbalanced power relations often present in 

degrading treatment, and the social consequences 

of these applications. Unfair treatment of 

disadvantaged groups was also examined as an 

example of these cases. Price et al. (2020) Provided 

datasets for classifying unhealthy speech on social 

media. They provided fine-grained classifications 

for all kinds of unhealthy writings, one of which 

was PCL. 

Of course, the use of this type of writing is not 

limited to weak groups in society. There is still a 

need to design a model to detect such language 

towards vulnerable communities. PCL is a toxic 
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language that implicitly has a negative impact on 

public opinion. There are tasks that generally 

identify toxic language that can be used to provide 

an answer to this problem. For example Lees et al. 

(2021) proposed the use of a fine-tuned BERT 

model to detect veiled toxicity. 

To design a model to detect this language in 

vulnerable communities, we participated in 

SemEval 2022 task 4 competition (Pérez-

Almendros et al., 2022). This paper describes the 

models we provide for detecting PCL. The contest 

data is taken from the work of Pérez-Almendros et 

al., (2020). 

To detect the presence of PCL, we present an 

ensemble model. This model consists of three basic 

models: fine-tuned bigbird, fine-tuned mpnet and 

BERT + BiGRU. The models are combined with 

the weighted average. This model cannot perform 

better than the baseline because our model is 

overfitted. In this paper, we present a solution to 

this model’s problem and create a new model that 

can achieve an F1-score of 0.5505. To identify 

existing PCL categories, we consider the categories 

separately. To detect the presence of any category, 

we act like detecting the presence of PCL. The 

basic models for making ensemble models are fine-

tuned bigbird, fine-tuned mpnet and fine-tuned 

roberta. The model can outperform the baseline 

model. In addition to this model, in two categories, 

we improve the diagnostic model and build a new 

model. This model can achieve an F1-score of 

0.3160. The statement of contributions is given 

below. 

To balance the data set, we used a different 

method than the data set providers. Instead of using 

the sampling method (We sample twice the number 

of PCL data from non-PCL data), we used a 

combination of the sampling method and EDA 

(Wei et al., 2019). And in compassion and 

metaphor diagnosis, we used a set of related articles 

for balancing. We paid attention to the medium and 

high lengths of the texts and used language models 

with the ability to summarize long texts. We used 

the ensemble model for classification to help 

reduce the bias caused by the data set imbalance. 

2 Models 

In this section, we describe how to detect the 

presence of PCL in the text and how to detect the 

type of PCL in the text. We describe the models 

used for these diagnoses. 

2.1 Subtask1: PCL detection 

Recognizing the presence of PCL in the text is a 

two-class classification problem. To do this, we use 

a model that is an ensemble of three basic models. 

Our base models are fine-tuned bigbird, fine-tuned 

mpnet, and BERT+BiGRU model. We use BERT 

language model (Devlin et al., 2018) for this 

classification to prepare the BERT+BiGRU model. 

We also fine-tune the Big Bird language model 

(Zaheer et al., 2020) and the MPNet language 

model (Song et al., 2020) to prepare the fine-tuned 

bigbird and fine-tuned mpnet models. 

The texts are taken from the news. For this 

reason, there is medium to long texts in the data, 

and to address this issue, we used two language 

models, mpnet and bigbird, to create our model. 

This allows the model for long texts to extract the 

information needed for classification. Details about 

the length of the texts are given in the section 4.1 . 

Each of the basic models learn separately on the 

training data. We then combine the results of the 

models to predict the text class using the weighted 

average to generate our model prediction. To 

combine the models, we use the probability that the 

text has PCL. Each model predicts this probability 

for each text. First, we use the weighted average of 

the probabilities predicted by these two models. We 

use a weight of 0.4 for the mpnet model prediction 

and a weight of 0.6 for the bigbird model 

prediction. Then, we use the weighted average to 

combine the BERT+BiGRU model prediction and 

the average prediction of the previous two models. 

The weight of the BERT+BiGRU model in this 

average is equal to 0.3 and the weight of the 

combination of the two previous models is equal to 

0.7. 

 

Figure 1 The general structure of BERT+BiGRU 

model 

 

388



 
 

2.2 BERT+BiGRU model 

The model consists of three layers. The first layer 

of the model applies BERT. In this layer, we give 

the cleaned text to the language model and get the 

embedding of text tokens. Then we give tokens' 

embedding to the Bi-GRU layer. The output of the 

Bi-GRU layer is then given to the feed forward 

layer to predict the input class. The general 

structure of this model is shown in Figure 1.  To 

clear the text, we remove the HTML tags, URLs, 

Mentions and Emojis in the text. More details of 

this model are given in Section 3.1 . 

2.3 Fine-tuned other Language Models 

To fine-tune these language models, we use a two-

layer model. In the first layer, the language model 

takes the input text and creates a display for the 

entire text. The classifier token embedding is used 

to display the entire text. In the second layer, we 

predict the label using a feed forward network. In 

these models we do not clean the input text. Figure 

2 shows the general structure of the model to fine-

tune the language model. 

2.4 Subtask2: PCL categories detection 

The PCL categories detection problem is a multi-

label classification. Given a paragraph, a system 

must identify which PCL categories (if any) appear 

in the paragraph. The problem is, a text can have 

multiple categories at the same time. 

To solve this problem, we detect the presence of 

each category in the text separately from the other 

categories. That is, we create a separate model to 

identify each category. Each model solves a binary 

classification problem. This model determines 

whether the text has the desired PCL category or 

not. 

To identify the "Unbalanced Power Relations" 

category in the text, we use an ensemble of two 

basic models. We use fine-tuned bigbird and fine-

tuned mpnet as basic models. We use a weighted 

average to combine the two models. On this 

ensemble, the bigbird model weighs 0.7 and the 

other model weighs 0.3. 

To identify the "Shallow Solution" category in 

the text, we also use an ensemble of two basic 

models. We use fine-tuned roberta and fine-tuned 

mpnet as basic models. We use a weighted average 

to combine the two models. On this ensemble, the 

roberta model weighs 0.7 and the other model 

weighs 0.3. We fine-tune the RoBERTa language 

model (Liu et al., 2019) for this classification to 

prepare the fine-tuned roberta model. 

To identify the "Presupposition" category in the 

text, we use an ensemble of two basic models. We 

use fine-tuned bigbird and fine-tuned mpnet as 

basic models. We use a weighted average to 

combine the two models. On this ensemble, the 

bigbird model weighs 0.7 and the other model 

weighs 0.3 and the sum of the weights is one. In 

bigbird for this category, the error weight for class 

with "Presupposition" is 4 times that of class 

without "Presupposition". 

To identify the "Authority Voice" and 

"Metaphor" categories in the text, the model 

structure is similar to the "Presupposition" 

detection model in the text. The only difference 

between the detection models of these categories is 

in the weights of the base models to create the 

ensemble model. In the weighted average for the 

"Authority Voice" category, the weights of the 

bigbird model and the mpnet model are 0.5 and 0.5. 

For the "Metaphor" category, the weight of these 

models are 0.6 and 0.4, respectively. 

To identify the "Compassion" category in the 

text, we use an ensemble of three basic models. 

First, we combine the results of the two basic 

models with the weighted average. These basic 

models are fine-tuned bigbird and fine-tuned 

mpnet.  We use a weight of 0.4 for the bigbird 

model and a weight of 0.6 for the other model. Then 

we combine the result of combining the previous 

two models with the prediction of the fine-tuned 

roberta model. We use a weighted average with a 

weight of 0.1 for the roberta model and we set the 

weight of the combination of the previous two 

models to 0.9. 

We also use fine-tuned roberta to identify the 

"The Poorer The Merrier" category in the text. 

Task 1 and Task 2 share the same input 

paragraphs and have different labels respectively. 

The reason we chose Task 1 fine-tuning models is 

the same as the reason for using Task 2 models. In 

addition to the Task 1 models, we also used the 

RoBERTa model for Task 2, which is the base 

model presented in the competition. In each 

category, all of these models are trained for 

classification, and we presented the best possible 

combination of these models as the final model. To 

determine the weights for creating the ensemble 

model, the performance of the constituent models 

has been considered. The model with better 
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performance has more weight in the ensemble 

model. 

3 Experimental Setup1 

In this section, the structural details of the base 

models are given. All models are trained on the 

GPU of google colab2 in normal account mode. 

3.1 BERT+BiGRU model 

In the Bi-GRU layer of this model, we use two 

layers. Set the dimension of the hidden layer vector 

to 256. The direction of one GRU (Chung et al., 

2014) is the positive direction of the input sequence 

(from left to right), and the other is the reverse 

direction of the input sequence (from right to left). 

When feature extraction is performed on the input 

sequence, the GRUs in the two directions do not 

share the state. The state transition rules of GRU 

follow the transition occurrence between the same 

states. However, at the same moment, the output 

results of the GRUs in the two directions are 

spliced as the output of the entire Bi-GRU layer. 

We apply dropout to the output of this layer with a 

probability of 0.25. 

We output the Bi-GRU layer result to the feed 

forward network. This feed forward network 

consists of a hidden layer with 256 neurons.  We 

also set the maximum number of input tokens to 

512. In the learning process of this model, we use 

5 epochs. In learning phase, the error weight for 

PCL class is 2 times that of non-PCL class. 

 
1 Our code can be found at: 
https://github.com/AliEdalat/SemEval-

2022-task-4-PCL-detection.git  
2 https://colab.research.google.com/  

3.2 Fine-tuned other Language Models 

In the learning process of this model, we use 1 

epoch. To fine-tune these language models, we use 

the ClassificationModel in the simpletransformers3 

library. The weight of the error in predicting the 

sample of class with label 1 can be different from 

the class with label 0. 

4 Results and Analysis 

4.1 Dataset 

We use the SemEval 2022 task 4 dataset. We have 

three sets of training, evaluation, and testing in the 

competition data. The training dataset is 

imbalanced for both sub-tasks. Task 1 and Task 2 

share the same input paragraphs and have different 

labels respectively. The maximum, mean, and 

median length of training texts are 5518, 294, and 

258. Length means the number of characters. The 

maximum, mean, and median number of words in 

training texts are 911, 53, and 45. 

To solve the problem of class imbalance in the 

learning process, we use the augmentation methods 

provided for toxic texts (Juuti et al., 2020). Among 

these methods, we use the EDA method for all 

binary classification problems. In some cases, we 

use other relevant datasets to increase minority 

class data. 

In Task 1, we consider a constant difference of 

4900 sample between the data number of the two 

classes. For classification, we paste the paragraph 

text, the keyword corresponding to the text, and the 

full name of the country associated with it, and 

consider it as the text for the classification. To 

reduce the data difference between the two classes, 

which is more than 4900, we add the texts of the 

Task 2 dataset that are not in the Task 1 dataset. We 

also add the first 100 texts of the talkdown dataset 

(Wang and Potts, 2019) to the collection. Wang and 

Potts (2019) introduced compassion modeling in 

direct communication from the perspective of 

natural language analysis. They created and tagged 

talkdown dataset with social media messages. 

Compassion is a type of PCL. For this reason, the 

use of compassion data helps detect the presence of 

PCL. All texts with a PCL type are added. We do 

not add the text itself, but we use the modified text 

3 
https://simpletransformers.ai/docs/cl

assification-models/   

 

Figure 2 general structure of our model for fine-

tuning the language model 
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by substituting several words with the same 

meaning by using WordNet (Miller, 1995). We fill 

the rest of the difference between the two classes 

with two EDA methods. One way is to use 

modified texts that have PCL, by replacing some 

words with their synonyms in WordNet. Another 

way is to use modified texts that have PCL, by 

replacing some words with their nearest 

neighbours in Glove (Pennington et al., 2014) 

embedding space. Glove is a pre-trained word 

embedding that is trained on Twitter data. 

 

For each category in Task 2, except for the 

"Metaphor" and "Compassion" categories, as in 

Task 1, we balance the classes. There are only two 

differences. We consider the difference between the 

two classes to be 5900 and do not use any other 

datasets to generate data. For the "Metaphor" 

category, the difference between the two categories 

is 5900. We get help from 1200 datapoints from 

vumc (Mu et al., 2019) dataset for balancing. Like 

the first task, we do not use this data itself and 

modify the text using WordNet. We fill in the rest 

of the gap like the other categories. For the 

"Compassion" category, we act like the "Metaphor" 

category. The only difference is the use of talkdown 

dataset instead of vumc. 

With these methods, we prepare training data. To 

fine-tune non-BERT language models, we sample 

twice the amount of class with label 1 data from 

class with label 0. To predict the test data, we add 

the data that corresponds to the problem, with label 

1 from the evaluation data to the training data. 

4.2 Evaluation Metrics 

We use competition metrics to evaluate system. For 

each binary classification, we use F1 score for label 

1 as the evaluation metric. For Task 2, we use the 

mean F1 score for all categories as the evaluation 

metric. 

4.3 Results 

The results of the proposed model for Task 1 are 

given in the Table 2. In addition to the results of our 

model, the results of the baseline model of the 

competition are also included. The baseline model 

is fine-tuned roberta. This model uses sampling to 

balance the training dataset. In addition to our 

model, our model without using BERT+BiGRU in 

creating ensemble model is included ("(BigBird, 

MPNet)" shows this model in Table 2). 

As you can see, our model did not perform well in 

the test and performed worse than the baseline due 

to overfit. But our model outperformed the baseline 

in evaluation. The reason for this overfit was the 

addition of the BERT+BiGRU model. As can be 

seen, if we remove BERT+BiGRU from the model, 

the model performs better in testing and evaluation 

than the baseline. BERT+BiGRU has contributed a 

little to the performance of the model in evaluation, 

but it has overfitted our model. So, the best model 

to solve this problem is “(BigBird, MPNet)”. Using 

this model, we achieved an F1-score of 0.5505. 

The performance of our model for Task 2 in 

evaluation and testing is given in the Table 3. The 

model presented in the Models section is called 

"Our Model" is listed in Table 3. The "Problem-free 

model in Compassion and Metaphor (PCM)" 

model is similar to our model, except that for the 

Model Eval F1 Test F1 

(BigBird, MPNet, 
BERT+BiGRU) 

submitted system 

0.5965 0.3031 

(BigBird, MPNet) 0.5789 0.5505 

Baseline  0.4829 0.4911 

Table 2 The results of the proposed model for Task 1. 

 

Category Model Eval f1 Test f1 

Metaphor Our, 
submitted 

system 
(MPNet, 
BigBird 

1:4)  

0.4557 0.1345 

PCM 
(MPNet, 
BigBird)  

- 0.2947 

Compassion Our, 
submitted 

system 
(BigBird, 
MPNet, 

RoBERTa)  

0.5565 0.1129 

PCM 
(BigBird, 
MPNet) 

- 0.3932 

Table 1 results of our models in the "Compassion" 

and "Metaphor" categories. 
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"Compassion" category, we remove the fine-tuned 

roberta base model from its detection model. For 

the "Metaphor" category, we also set the weight of 

the class 1 detection error equal to the weight of the 

other class. As can be seen, our two models 

performed better than the baseline. The "PCM" 

model performs better than the "Our" model. 

Unfortunately, we did not use the "PCM" model in 

this competition. The reason for not using more 

models in two tasks was the restriction on 

uploading answers in the contest. Our F1-score in 

Task 2 of this competition was 0.2531. If we used 

the "PCM" model, our F1-score would be 0.3160. 

The results of our two models in the 

"Compassion" and "Metaphor" categories are 

shown in the Table 1. BigBird 1:4 means that the 

two classes zero and one weigh one and four in the 

fine-tuned bigbird, respectively. 

As can be seen, the performance of "Our Model" 

for the two classes in the test phase was very 

different from our performance in the evaluation 

phase. The performance of the "PCM" model in the 

test phase was much better than the Our Model. 

The difference in the performance of "Our Model" 

in the two stages of evaluation and testing in the 

"Compassion" category was due to the use of the 

fine-tuned model roberta as the base model. Using 

this model has caused overfit. The reason for the 

difference in performance in the "Metaphor" 

category was due to the different weight of the class 

with metaphor error compared to the class without 

metaphor in the bigbird model. This different 

weight has created a bias for our model as a whole. 

As can be seen, by solving these problems, the 

"PCM" model was able to perform better than “Our 

Model” 

5 Conclusion 

In this paper, we presented models for two tasks. 

For Task 1, we presented an ensemble model 

consisting of three basic models. We reviewed the 

results of this model in the competition. We 

examined the weaknesses of this model and 

presented another model with a similar structure 

that performed better on the test data. For Task 2, 

we considered identifying each category separately 

from the other categories. We provided a model to 

identify each category. We examined the result of 

our prediction based on these models in the 

competition and identified weaknesses. By solving 

these cases, we changed the classification model of 

the two categories. We were able to come up with 

a new prediction for test data that would have a 

better result than our original model. Using our 

second model resulted in better ranks in the testing 

phase. In future work for the second task, the 

categories can be considered related. This is 

because some categories have a common concept. 

The extracted features according to other 

categories, can be used to classify a category. In 

future work, other ways can be proposed to solve 

the problem of class imbalance. For example, 

constructor models can be used to create text for a 

class on a conditional basis. 
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Abstract

This paper describes our system for Task 4 of
SemEval 2022: Patronizing and Condescend-
ing Language (PCL) Detection. For sub-task
1, where the objective is to classify a text as
PCL or non-PCL, we use a T5 Model fine-
tuned on the dataset. For sub-task 2, which
is a multi-label classification problem, we use
a RoBERTa model fine-tuned on the dataset.
Given that the key challenge in this task is clas-
sification on an imbalanced dataset, our models
rely on an augmented dataset that we generate
using paraphrasing. We found that these two
models yield the best results out of all the other
approaches we tried.

1 Introduction

Detecting the presence of patronizing and conde-
scending elements in text is an important task for
NLP because of the social impact it has. PCL is
characterised by a superior attitude towards others,
or a manner of speech that seems to portray others
in a pitying way. It is different from other problems
in the field of text classification such as detection of
hate speech or abusive comments because it is not
necessarily done on purpose. Having an automated
system that is capable of understanding and classi-
fying language that contains PCL elements would
be the first step towards making people and entities,
such as media publications, aware of the kind of
language they use when talking about vulnerable
communities, and as a result, prevent discrimina-
tion, stereotypes and harm that could potentially
arise from the use of such language.
The PCL Detection task at SemEval-2022 (Pérez-
Almendros et al., 2022) aims to solve this prob-
lem by exploring different systems that are capable
of detecting features that indicate and categorize
PCL in the Don’t Patronize Me! dataset (Pérez-
Almendros et al., 2020). Sub-task 1 has been for-
mulated as a binary classification problem, where
the goal is to identify whether a given text falls

under the category of PCL or not. Sub-task 2 is a
multi-label classification problem, where a given
text is either free of PCL or belongs to one or more
of the seven PCL categories described in the dataset
provided.
This paper describes the system developed by team
Tesla for SemEval-2022 Task 4. One of the key
challenges of this task is the unequal class distribu-
tion across the dataset for both sub-tasks.
In this paper, we introduce a system to detect PCL
using i) a T5 (Raffel et al., 2019) model for subtask-
1 and ii) a RoBERTa (Liu et al., 2019) model for
sub-task 2. For our final submission, we use these
two models finetuned on an augmented dataset,
which we create by generating paraphrases of the
sentences belonging to the minority classes in the
dataset. Our system ranked 51st out of 78 teams in
sub-task 1 and 27th out of 49 teams in sub-task 2, as
shown in the leaderboard1. Our system for sub-task
2 outperforms the RoBERTa baseline, obtaining an
average F1-score of 0.2445 versus 0.1041 for the
baseline. All of our code is made publicly available
on Github2.

2 Task Description

The PCL detection task provides participants with
the Don’t Patronize Me! dataset (Pérez-Almendros
et al., 2020), which consists of more than 10,000
paragraphs taken from English-language news sto-
ries across 20 different countries. Each of these
paragraphs has been annotated to indicate the pres-
ence of PCL, and the dataset for sub-task 2 is fur-
ther annotated with a category label from different
classes proposed. These classes are focused on
PCL towards vulnerable communities.
The datasets for both the sub-tasks are not balanced.
The number of non-PCL examples is nearly 10

1https://sites.google.com/view/
pcl-detection-semeval2022/ranking

2https://github.com/bhattsahil1/pcl_
task
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times more than the number of PCL instances in
the dataset for sub-task 1. Similarly, the seven
classes are not equally represented in the dataset
for sub-task 2, and the number of examples that
do not belong to any category exceeds those that
belong to at least one category by a significant
amount.

3 Related Work

Transformer-based approaches such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), AL-
BERT (Lan et al., 2019), T5 (Raffel et al., 2019),
etc. have shown an impressive performance on a
wide range of NLP tasks, including text classifica-
tion. They have been found to yield good results
on text classification that deal with problems such
as detection of hate speech (Basile et al., 2019) and
offensive language (Zampieri et al., 2019).
The problem of condescending language detection
is explored in the TalkDown Dataset (Wang and
Potts, 2019), where the authors released an anno-
tated Reddit corpus of condescending linguistic
acts in context, along with a BERT model fine-
tuned on the dataset as the baseline.
Data augmentation has been widely used across var-
ious machine learning tasks, particularly in those
tasks where data is scarce, such as computer vision
problems in the medical domain (Sundaram and
Hulkund, 2021), (Sandfort et al., 2019). These aug-
mentation approaches allow for a larger and more
diverse training dataset.
With respect to text data augmentation, (Bayer
et al., 2021) discusses various approaches, both
in the data space and feature space. Techniques
such as synonym-replacement (Wei and Zou, 2019),
embedding replacement (Wang and Yang, 2015),
SMOTE (Chawla et al., 2002), generative methods
(Yu et al., 2016), (Radford et al., 2018) etc. have
been studied for data augmentation.
Many recent works have also used back-translation
(Corbeil and Ghadivel, 2020) and paraphrasing as
a way to increase training data, such as data in the
areas of dialogue-generation (Gao et al., 2020).

4 System Description

4.1 Data
The dataset for sub-task 1 consists of 10469 ex-
amples, containing the paragraph ID, article ID,
keyword, country, paragraph text, binary PCL la-
bel, and original annotator label (on a scale of 0-4).
The labels 2,3 and 4 are considered as examples

Class Instances
PCL 993
Non-PCL 9476

Table 1: Class distribution for sub-task 1 dataset

Class Instances
Unbalanced power relations (unb) 1290
Shallow solution (sha) 356
Presupposition (pre) 386
Authority voice (aut) 422
Metaphors (met) 342
Compassion (com) 832
The poorer the merrier (the) 69
(None of the seven classes) 7581

Table 2: Class distribution for sub-task 2 dataset

containing PCL, whereas those having labels 0 and
1 are negative (non-PCL) examples. The distribu-
tion can be seen in Table 1. The dataset in sub-task
2 follows a similar format and consists of 9368
training examples. Here the label is a one-hot en-
coding of the seven classes to which the text may
or may not belong. These classes are: unbalanced
power relations, shallow solution, presupposition,
authority voice, metaphors, compassion and the
poorer the merrier. The major challenge that both
these datasets pose is the lack of positive samples.
The dataset, such as the one seen in Table 1, has a
positive to negative class ratio of nearly 1:10. This
presents difficulties in learning features that char-
acterize PCL since many of the existing techniques
don’t perform well when there is class imbalance
(Madabushi et al., 2020), which is noticeable if the
training and test data are dissimilar.

4.2 Data Augmentation
One of the most common problems that are faced
in classification problems is the lack of data across
different classes. This is an even bigger problem
in the case of text classification problems, since
generating new samples is not a trivial task.
Undersampling the majority class would lead to a
loss of negative samples and under-utilization of
the given data, hence the approach we take is on the
lines of oversampling minority classes to augment
data. However, instead of directly oversampling
minority samples, we use a T5 model3 finetuned
for the task of paraphrase generation on the PAWS

3https://huggingface.co/Vamsi/T5_
Paraphrase_Paws
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Class Instances
PCL 8758
Non-PCL 9476

Table 3: Class distribution for sub-task 1 dataset after
augmentation

Class Instances
Unbalanced power relations (unb) 5114
Shallow solution (sha) 1413
Presupposition (pre) 1532
Authority voice (aut) 1682
Metaphors (met) 1361
Compassion (com) 3307
The poorer the merrier (the) 274
(None of the seven classes) 7581

Table 4: Class distribution for sub-task 2 dataset after
augmentation

dataset (Zhang et al., 2019). The idea is to generate
samples that are similar to the original text, but not
the same, as we would like to avoid overfitting that
could result from simple oversampling.
We use top-k sampling, in combination with top-p
sampling, setting the values of k=120 and p=0.95.
For sub-task 1, we generate a maximum of 8 sam-
ples for each of the paragraphs belonging to the
PCL class. For sub-task 2, we generate a maxi-
mum of 3 samples for every sentence that belongs
to at least one of the seven class labels. We fi-
nally get 18234 examples for sub-task 1 and 14667
examples for sub-task 2.

Figure 1: An example of the paraphrases generated for
one of the sentences in the dataset (after pre-processing).

4.3 Pre-processing

We remove punctuation and numbers from our text,
and convert each of our sentences to lowercase
before using them to generate paraphrases. We re-
move stop-words from the sentences after carrying
out data augmentation.

5 Models

We fine-tune a range of pretrained models, de-
scribed below, given their good performance
on a wide range of NLP tasks. We use the
transformer model implementations provided by
simpletransformers4 with the default hyper-
parameters.
BERT (Devlin et al., 2019): We try out the
BERTBASE (uncased) model, which consists of 12
transformer layers, 12 self-attention heads per layer,
and a hidden size of 768.
RoBERTa (Liu et al., 2019): We try out the
RoBERTaBASE model. Similar to BERTBASE,
RoBERTaBASE also consists of 12 transformer lay-
ers, 12 self-attention heads per layer, and a hidden
size of 768.
T5 (Raffel et al., 2019): We use the Text-to-Text
Transfer Transformer (T5) released by the authors.
We use the T5BASE model, which has about 220
million parameters, nearly twice the number of pa-
rameters in BERTBASE.
We test all three models for sub-task 1, and
for sub-task 2 we only try out BERTBASE and
RoBERTaBASE.

6 Experiments

6.1 Implementation details

For both the sub-tasks, we concatenate the para-
graph text and the keyword associated with each
sample, to explore if certain keywords have an ef-
fect on the sample being classified as PCL or not.
We train each of the models with two different
conditions - using a dataset without paraphrased
instances (original dataset) and a dataset with the
original and the paraphrased sentences (augmented
dataset). We train them for a single epoch only, to
avoid overfitting since the data available is less.
We use an 80:20 train-dev split, preserving the class
ratio. We use this to evaluate our model perfor-
mance in sub-task 1. For sub-task 2 too, we use an
80:20 split for training and evaluating the model.
For our final submissions, we train the models for
both sub-task 1 and sub-task 2 on the entire dataset.

6.2 Metrics

We report the F1-score, Precision and Recall for
sub-task 1. For sub-task 2, we report the F1-score
across each of the classes, along with the average
score.

4https://simpletransformers.ai/
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7 Results

Before submitting the final models, we evaluated
each of the models’ performances on validation
sets.
Table 5 presents a comparison between all the
different models tried out in sub-task 1. The
T5BASE model yields the best F1-score among
models trained on the original dataset, and the
model also seems to perform decently well on the
augmented dataset. The results presented in the
table for models trained on the augmented dataset
for both the sub-tasks are high since the validation
set also contains paraphrases of sentences it might
have already seen in the training set. Nevertheless,
the relative scores between models trained on the
augmented dataset are still a good indicator of their
expected performance.
Table 6 discusses the results obtained using
BERTBASE and RoBERTaBASE. The average
F1-score reported on the validation set does not
change significantly across the four models used,
however, the F1-scores for individual classes are
significantly different when comparing the models
trained on the original dataset versus models
trained on the augmented one.
We present the results of our final submissions in
Table 7 and 8.

8 Discussion and Conclusion

The T5BASE models that we submitted for sub-task
1 do not perform well on the test set. One reason
for this could be that the T5BASE should have been
trained for longer than one epoch. Another reason
could be that BERT-based approaches (BERT,
RoBERTa) might be better suited for this task. In
addition to this, the results of T5BASE fine-tuned
on the augmented dataset are not very good either,
which could be due to overfitting that results from
seeing many paraphrased instances of the same
sentence during training. A manual inspection
of the generated paraphrases also reveals that
their quality needs improvement, since many of
the generated paraphrases do not differ much
from each other, and at times the generation gets
reduced to simple oversampling.
The results of sub-task 2 are encouraging and we
can see a significant improvement in F1-scores
across almost all classes when we consider the
RoBERTaBASE model trained on the augmented
dataset.

This confirms that augmenting the dataset through
paraphrasing does have a positive effect on
model performance. Ensuring dissimilarity in
the generated paraphrases, choosing an ideal
number of paraphrases to generate, and using other
techniques to handle imbalanced data such as
cost-sensitive learning or augmentation through
other methods (or a combination of them), might
yield better results.
We thus, see that identifying PCL and categorizing
its occurrences is feasible despite its subjective
nature, and that transformer-based approaches are
capable of doing this.
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Abstract

In this paper, we describe our efforts at Se-
mEval 2022 Shared Task 4 on Patronizing
and Condescending Language (PCL) Detection.
This is the first shared task to detect PCL which
is to identify and categorize PCL language to-
wards vulnerable communities. The shared
task consists of two subtasks: Patronizing and
Condescending language detection (Subtask A)
which is the binary task classification and iden-
tifying the PCL categories that express the con-
descension (Subtask B) which is the multi-label
text classification. For PCL language detection,
We proposed the ensemble strategies of a sys-
tem combination of BERT, Roberta, Distilbert,
Roberta large, Albert achieved the official re-
sults for Subtask A with a macro f1 score of
0.5172 on the test set which is improved by
baseline score. For PCL Category identifica-
tion, We proposed a multi-label classification
model to ensemble the various Bert-based mod-
els and the official results for Subtask B with a
macro f1 score of 0.2117 on the test set which
is improved by baseline score.

1 Introduction

Social media is a wide platform and it grows
rapidly. People can communicate with each other
and express their opinions easily without any hesita-
tion on social media. Patronizing and Condescend-
ing Language (PCL) 1 is language use shows a
superior attitude rise towards vulnerable communi-
ties in the social media. This effect is unconscious
and the intention is trying to help communities like
an individual, group of people in need by raising
awareness, moving the user audience to action, and
standing for the rights. However, these dominant
attitudes can lead to discrimination and the user
audience is unaware of this diminishing treatment
due to its subtlety. Moreover, online social media
publications reached more audiences in day-to-day
life and we noticed that diminishing treatment of

1https://www.merriam-webster.com/dictionary/patronizing

vulnerable groups leads to greater inequalities. so,
PCL can potentially be very harmful, as it feeds
stereotypes, routinizes discrimination, and drives
to greater exclusion.

Detecting PCL language and its categorization
of PCL language on social media have gained a lot
of interest recently. The detection of PCL is still an
emergent area of study in NLP. To the best of my
knowledge, this is the first shared task 2 to detect
the PCL and their categories from the vulnerable
communities. The challenge is to detect that PCL
is difficult both for humans and NLP systems, due
to its subtle nature, and its subjectivity reasoning
required to understand this kind of language. Se-
mEval 2022 task 4 presents the problems of detect-
ing PCL and its categorizes of PCL which express
the condescending language in English tweets to
the NLP community. The PCL shared task consists
of two subtasks: Subtask A is to identify the con-
tent is PCL or Not PCL. Subtask B is to classify
whether the content into Unbalanced power rela-
tions, Shallow solution, Presupposition, Authority
voice, Metaphor, Compassion, The poorer, the mer-
rier.

This paper describes the systems submitted for
SemEval 2022 shared task on PCL Detection by
the team SSN_NLP_MLRG. We have participated
in the shared task for all the two subtasks. First, we
experimented with Bert-based models and we used
the ensembling strategies to enhance the perfor-
mance of the model. Finally, we performed voting
to decide the final output. The majority voting on
5 classification models yielded better results than
individual systems. The paper is organized as fol-
lows: In section 2, we describe the Background
work, in section 3, we describe our models, we
present the experimental setup in section 4, and
compare results in section 5, we provide the con-
clusion of our work.

2https://competitions.codalab.org/competitions/34344

400



2 Background

In this section, we describe the task provided to the
participants and the two subtasks.

2.1 Task Description

The participants were required to produce labels
indicating if a paragraph is PCL or Not PCL in the
shared of subtask A, and we categorize the PCL
Language in the shared task subtask B (P’erez-
Almendros et al., 2022).

Subtask A is the binary classification task. Each
text content took one of these labels for subtask A
as follows: PCL Language: The content shows a
superior attitude and language towards a vulnerable
community in media. Not PCL: The content is not
intended for the PCL Langauge

Subtask B is the multi-label text classification
task. Each text content took into these categories of
labels for subtask B as follows: Unbalanced power
relations: The author keeps distance from the com-
munity or based on the situation they express the
will, capacity, or responsibility to help people in
need. The author also presents to give something
positive to the audience in a more vulnerable situa-
tion, especially the author concedes is a right but
they do not have any authority to decide to give.
Shallow solution: A superficial charitable and sim-
ple action by the privileged community which is
presented either as life-saving or life-changing or
as a solution for a deep-rooted problem. Presup-
position. The author assumes a situation as cer-
tain without having all the valid information and
trustworthy source for it (e.g. a survey of research
work). Examples of presupposition such as usage
of stereotypes or cliches.

Authority voice: The author stands themselves
as a superior power of the group, or advises the
members of a community about the specific situa-
tion they are living. Metaphor. They can conceal
PCL, making a comparison between unrelated con-
cepts. An example of a metaphor is euphemisms.
Compassion. The author shows the vulnerable in-
dividual or group of people about raising a feeling
of pity and compassion from the audience towards
them. It is commonly characterized by the use of
flowery vulnerable words. The poorer, the merrier.
How they spread a positive attribute towards the
vulnerable community. People learn to live in vul-
nerable situations and to admire their values. The
typical example of ‘poor people is happier because
they don’t have material goods. Table 1 presents

the sample annotated data.

2.2 Related work

The authors (P’erez-Almendros et al., 2020) de-
scribed a new annotated PCL dataset which is
aimed to identify and categorize language that is
patronizing or condescending language towards
vulnerable communities and used the Bert model
to detect and classify the harmful PCL language.
Recently, Several works are carried out to detec-
tion of offensive language (Kalaivani and Then-
mozhi, 2020a), hate speech (Kalaivani and Then-
mozhi, 2020b), fake news detection, trustworthi-
ness (Atanasova et al., 2018) and fact-checking
(Elsayed et al., 2021) prediction is driven towards
a particular community. The work (Fiske, 1993)
presents a theory of the power of stereotyping and
controlling the power of other outcomes. The au-
thor (Giles et al., 1993) analyzed the effects of re-
sponses and attitudes based on age group towards
patronizing and harmful speech. Discourse analy-
sis promises the need to satisfy the teacher’s, stu-
dent’s textual values that build on techniques and
provide a smoother relationship (Huckin, 2002).
Margić (2017) examined the communication cour-
tesy or condescending between the native and non-
native English speakers. We observed that most of
the work is related to the unfair treatment of the
particular underprivileged community.

3 Methodology

We used the pre-trained models BERT (Bidirec-
tional Encoder Representations from Transform-
ers). We fine-tune a BERT language model (Devlin
et al., 2019) for PCL classification. we also fine-
tuned a RoBERTa-base (A robustly optimized Bert
pretraining approach) model (Liu et al., 2019) to
classify PCL Language and the PCL categories
which can be expressed condescension and viewed
as an optimized version of BERT. We used two vari-
ants of the RoBERTa method that are RoBERTa-
large-cased and RoBERTa-base-cased pre-trained
models. We also fine-tune the DistilBERT (Dis-
tilled version of BERT model) model (Sanh et al.,
2019) is the transformer model, which is a lighter
and faster variant of BERT. We used the AlBERT
(A lite BERT) model (Lan et al., 2019) to fine-tune
the system to predict the PCL language. To fur-
ther explore the performance, we apply the Ensem-
ble strategies to combine the transformers models
output to predict the PCL and Category of PCL
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Text Subtask A Subtask B
1. The scheme saw an estimated 150,000 children from poor
families being sent to parts of the British Empire between
1920 and 1974 , by religious orders and charities who said
they would lead better lives 1 [1, 0, 0, 1, 0, 0, 0]

2. Durban ’s homeless communities reconciliation lunch 0 [0, 1, 0, 0, 0, 0, 0]

Table 1: Sample annotated paragraph. For subtask A, ’0’ presents PCL and ’1’ presents Not PCL. For subtask
B, Seven category of PCL are Unbalanced power relations, Shallow solution, Presupposition, Authority voice,
Metaphor, Compassion, The poorer, the merrier

language which is based on the majority voting
concept. In all cases, we trained the model for 10
epochs. Finally, we got a macro-average f1 score
of 0.5172 for subtask A and f1 average score of
0.2117 for subtask B respectively.

4 Experimental setup

4.1 Data description

The dataset for SemEval 2022 Shared task 4 con-
sists of 10,469 paragraphs are split into training,
development, and testing sets for subtask A and 993
unique paragraphs, totaling 2,760 instances of PCL,
for Subtask B . Don’t patronize me dataset offers
content from media forums. the training data size
is 8,375 contents and the development data size is
2,095 contents and the size of the test data is 3,832
contents. Table 1 presents the split of experiment
data. The shared task of subtask A is a binary clas-
sification task in which the aim is to build systems
able to detect the given paragraph content is PCL
or Not PCL. The shared task of the PCL Category
classification is a Multi-label classification task in
which the aim is to build systems able to classify
the PCL category into Unbalanced power relations,
Shallow solution, Presupposition, Authority voice,
Metaphor, Compassion, The poorer, the merrier.

4.2 Data Preprocessing

We applied down sampling negative instances data
augmentation techniques to balance the dataset be-
cause the negative instances are 7,581 contents and
positive instances are only 794 contents. Prepro-
cessing the text is an important role as the data
from social media can be quite noisy and contain
a lot of noisy words, excessive use of punctuation,
URLs, symbols, misspelling words. We perform
data preprocessing by using NLTK libraries. First,
we remove the duplication because it affects the
system performance. we remove the stop words.

After that, we remove the punctuations, URLs, nu-
merals, emojis and then convert all the upper case
English text into lower case text.

4.3 Experimental setting
For both subtasks A and B, We implement the En-
semble model using Simple transformers. We used
the colab notebook for implementation purposes
with the high-end RAM, GPU for training. For the
hyperparameters for the BERT-based five models,
we set epochs as 10. For the multilabel classifi-
cation task, we used simple transformers and a
multi-label classification model to predict the PCL
Language category. we analyzed the individual
classification of all five BERT-based models for
both the subtasks. We also examined the final out-
put which is the combination of five models based
on a majority voting system for classification.

5 Experimental analysis

This section presents the analysis of the results and
submitted official results

5.1 Result Analysis
We experimented with the various transformer
model are BERT, DistilBERT, AlBERT, Roberta
base, Roberta large, and the ensemble of all five
models. We analyzed the comparison scores of
various approaches based on the evaluation metrics
of precision, recall, and macro average f1 score for
the shared task A. Task 1 is a binary classification
task that will be evaluated using f1 over the positive
class. Task 2 is framed as a multi-label classifica-
tion problem. For each paragraph, your model will
assign a label for each of the seven PCL categories.
Then, results for this task will be evaluated using
per-class f1, and the final ranking for this subtask
will be based on macro-average f1. Table 2 presents
the results of subtask A. Table 3 shows the results
of subtask B.
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Model Precision Recall Macro f1
Run 1:
BERT model 0.3832 0.6940 0.4938
Run 2:
Ensemble model 0.4228 0.6656 0.5171

Table 2: Test Results of subtask A

Model UNB POW SHAL PRES AUTH MET COMP MERR Avg f1
Run 1:
BERT 0.3459 0.3376 0.2068 0.1933 0.1212 0.2772 0.0 0.2117
Run 2:
AlBERT 0.3438 0.3157 0.2056 0.1666 0.1666 0.2677 0.0 0.2094

Table 3: Test Results of subtask B. UNB POW - Unbalanced power relations, SHAL - Shallow solution, PRES -
Presupposition, AUTH - Authority voice, MET - Metaphor, COMP - Compassion, MERR - Poorer and Merrier

We submitted two runs for both of the subtasks.
For run 1, we submitted the prediction made by the
BERT model for subtasks A and B. For run 2, we
submitted the prediction made from the ensemble
model for subtask A and Albert model for subtask
B. We observed that the performance of the Ensem-
ble model achieved good results compared to the
BERT model for subtask A and the performance of
the BERT model achieved good results compared
to the Albert model. Finally, we got the macro f1
score of ensemble model is 0.5172 for the subtask
A and the macro f1 average of Bert model is 0.2117
for the subtask B respectively.

6 Conclusion and Future Work

This paper presents the submitted runs for the pa-
tronizing and condensing language identification
in SemEval 2022 task 4. The results show that
the Not-PCL language and PCL language in the
dataset receives the same macro f1 scores. We
experimented with different approaches such as
a BERT model, AlBERT, Roberta base, Roberta
large, and Distilbert and Ensemble models. Based
on the evaluation, BERT performs well for subtask
B to classify the PCL content into Seven categories
that express condensing language. Ensemble model
performs well for subtask A to detect the content is
PCL language or Not PCL language. Our team sub-
mission had a macro f1 score of 0.5172 for subtask
A and a macro f1 score of 0.2117 for subtask B
which are improved by the baseline f1 scores. For
future work, we will handle the imbalanced dataset
by using external resources and apply the data aug-
mentation techniques to enhance the performance
of our model.
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Abstract
This paper introduces the related work and the
results of Team Sapphire’s system for SemEval-
2022 Task 4: Patronizing and Condescending
Language Detection. We only participated in
subtask 1. The task goal is to judge whether
a news text contains PCL. This task can be
considered as a task of binary classification of
news texts. In this binary classification task, the
BERT-base model is adopted as the pre-trained
model used to represent textual information in
vector form and encode it. Capsule networks
is adopted to extract features from the encoded
vectors. The official evaluation metric for sub-
task 1 is the F1 score over the positive class.
Finally, our system’s submitted prediction re-
sults on test set achieved the score of 0.5187.

1 Introduction

Patronizing and Condescending Language (PCL)
can be considered when someone’s language has
a superior attitude towards others, demeans others,
or describes the situation of others in a compassion-
ate way. Such expressions are often unconscious,
and are used by people to try to induce action or
raise awareness. Because of its subtlety and of-
ten well-meaning when used, users often overlook
the demeaning elements of this expression. Such
elements may contribute to the stereotyped influ-
ence of society on a group, making discrimination
normalized and even leading to stronger exclusion
(Pérez-Almendros et al., 2022).

Detecting PCL in media text is a challenging
task. Recognizing PCL based on Natural Language
Processing (NLP) can alert speakers to examine the
rationality of their speeches, so that speeches can
be more inclusive and constructive, which in turn
leads to more responsible communication.

When processing corpus, the pre-trained model
can convert text information into vector representa-
tion, making it more suitable for NLP tasks. Early
pre-trained models were designed to learn repre-
sentational word embeddings, such as Word2Vec

(Mikolov et al., 2013) and GloVe (Pennington et al.,
2014). Although such methods can capture the se-
mantics of words through word embeddings, they
cannot capture the concepts in the context. With
the introduction of new technologies, there are
now pre-trained models that can learn to represent
contextual word embeddings, such as the ELMo
(Peters et al., 2018) model based on LSTM (Shi
et al., 2015) and the BERT (Devlin et al., 2018)
model based on Transformer Encoder (Vaswani
et al., 2017).

In recent years, using deep neural networks
in NLP, such as Convolutional Neural Networks
(CNNs) in text classification (Kim, 2014), has be-
come mainstream. Capsule networks (Sabour et al.,
2017), as a structure proposed on the basis of CNNs
to improve spatial sensitivity in computer vision,
is also used in text classification tasks (Yang et al.,
2019; Ding et al., 2019). Kim et al. (2020) further
suggest a simple routing method that effectively
reduces the computational complexity of dynamic
routing.

This task aims to predict whether each news text
for each ID contains PCL. Text is represented as
a vector and encoded using a pre-trained BERT
model. It mainly uses the capsule networks to ex-
tract the encoded vector, and uses the output of the
fully connected layer to represent the label proba-
bility. The rest of the paper is organized as follows:
Section 2 introduces the system architecture. Sec-
tion 3 describes the dataset, implementation details
settings and experimental results. The summary
and outlook for future work will be presented in
Section 4.

2 System Architecture

In this section, we will introduce the system archi-
tecture we use in the task, which will consist of two
parts. One is embedding and coding, and the other
is feature extraction and prediction. We call the
model that is ultimately used to test the class pre-
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diction results of the dataset as BERT-Caps. The
architecture of BERT-Caps model is shown in Fig-
ure 1.

Figure 1: The architecture of the BERT-Caps model.

2.1 Embedding and Encoding

When using the early pre-trainied model for text
classification, the text is usually represented as a
word embedding and then the vector matrix is sent
to a bidirectional recurrent network for encoding to
improve the system’s ability to perceive contextual
information. In this paper, we mainly use the BERT-
base model to represent text into vector form and
encode it.

In order to fit the pre-trained model, we need to
preprocess the text in the dataset accordingly. As
standard news text, we do only a little text process-
ing on the news text: unify the text to lowercase.
Add markers to the beginning and end of the text.
For example, when using BERT as the pre-trained
model, [CLS] and [SEP] will be used to mark the
beginning and end of the text, respectively. Then
according to the dictionary information, the words

are converted into a list of their position numbers
in the dictionary. Collate to get a list that marks the
beginning and the end of each sentence.

This part of the work is mainly achieved through
the tokenizer attached to the module used when
importing the pre-trained model. For the imported
model, we set the trainable value of each layer of
the model to True.

2.2 Feature Extraction and Predict
We use the capsule networks to perform feature
extraction on the hidden state of the last layer of the
pre-trained model. In the capsule layer, the input
is firstly processed by the Conv1d function. The
convolution output is treated as a set of capsules,
and a new set of capsules of the specified shape
is derived through the dynamic routing algorithm.
The result is the output of the capsule layer.

The flattened capsule layer output and the text
vector corresponding to the first bit in the pre-
trained model are linked together. In order to
improve the generalization ability of the model,
dropout is used. During training, the concatenated
outputs are first processed by dropout and then fed
into the fully connected layer to predict the proba-
bility that the news text has PCL. The loss function
of this model adopts categorical crossentropy.

3 Experiment and Result

3.1 Dataset and Official Evaluation Metrics
The dataset used in the experiment is provided by
SemEval-2022 Task4, Patronizing and Condescend-
ing Language Detection.(Pérez-Almendros et al.,
2020)

In this dataset, the degree of PCL is divided into
five levels from 0 to 4. In subtask 1, the level
of 0-1 is regarded as a negative example, and 2-
4 is regarded as a positive example. Participants
were asked to predict the presence or absence of
PCL component in the text. The differentiated test
set contains 9476 negative labels and 993 positive
labels, almost reaching 10:1. Due to the imbalance
of samples in the dataset, the F1 score over the
positive class was adopted as the official evaluation
metric.The formula for F1 score is as following:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(1)

Precision means the ratio of correctly predicted
positive observations to the total predicted positive
observations. Recall means the ratio of correctly
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predicted positive observations to all observations
in the real class.

3.2 Implementation Details

In terms of data segmentation, we import
the train_test_split function from the Scikit-
learn(Pedregosa et al., 2011) module to divide
the dataset into training set and validation set, set
test_size to 0.2, random_state to 35.

All experiments in this paper are based on using
the TensorFlow2 backend.

When using BERT-base-uncased1 as the pre-
trained model, we use the Keras-BERT (Shorten
and Khoshgoftaar, 2021) module to implement the
Tokenizer and import the model.

We also tried other BERT-based models, such as
RoBERTa-base and DeBERTa-base. When imple-
menting Tokenizer and importing models, we use
the Transformers (Wolf et al., 2020) module.

The number of capsules, the number of hidden
neurons, and the number of iterations of the dy-
namic routing algorithm are set to 10, 64, and 3,
respectively.

The fully connected layer that outputs the final
result in each model uses softmax as the activation
function. The hyperparameters used are mentioned
in Table1.

Parameters subtask 1
Epochs 8
Batch_size 8
Max_length 128
Drop_rate 0.25
Optimizer Adam
Initial lr 1e-5

Table 1: Hyperparameters

In actual training, in order to alleviate the overfit-
ting situation, ReduceLROnPlateau is introduced.
Also set ModelCheckpoint to save each model with
the smallest loss on the existing basis.

3.3 Experiment and Result

The system uses the dataset provided by the task
organizer for training. The BERT-Caps model that
finally gets the submitted prediction results is saved
at the end of the 8th epoch training.

1https://storage.googleapis.com/bert_models/2018_10_18
/uncased_L-12_H-768_A-12.zip

The results are shown in Table 2. The values
of RoBERTa_baseline comes from the result pub-
lished on the Competition Page2. As can be seen
from the table, as a result, our model has a greater
improvement in precision than the baseline. We
also tried to train some BERT-Caps models that re-
duced the number of capsules in the capsule layer
and increased the number of hidden neurons, but
there was no significant improvement in metric.

Table 2 shows that without the capsule networks,
the performance of the model will be greatly re-
duced compared to the original model. Without
dropout, the prediction performance decreases less
than without the capsule networks.

We also tried to keep almost the same system
architecture, only replacing the pre-trained model
and tokenizer. Unexpectedly, in the experimental
environment of this paper, both DeBERTa-Caps
and RoBERTa-Caps are not as good as BERT-Caps.

The best test set predictions submitted by our
team were produced by the BERT-Caps model.
Considering with the F1 scores obtained by the top
four teams in the English data are all over 0.6400,
indeed, there is a gap. Team Sapphire’s final rank-
ing is 35th.

4 Conclusion

This paper describes the experiments conducted by
Team Sapphire in subtask 1 of SemEval-2022 Task
4: Patronizing and Condescending Language De-
tection. We introduced the system architecture, ex-
perimental dataset situation and results in Section 2
and 3, respectively. From the experimental results,
the BERT-Caps model can achieve better results
on the test set. In future work, we will improve
our method to achieve better results. For example,
using other text representations, and adjusting the
weight of the loss function.
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Abstract
In this paper we propose four deep learning
models for the task of detecting and classify-
ing Patronizing and Condescending Language
(PCL) using a corpus of over 13,000 annotated
paragraphs in English. The task, hosted at
SemEval-2022, consists of two different sub-
tasks. The Subtask 1 is a binary classification
problem. Namely, given a paragraph, a sys-
tem must predict whether or not it contains any
form of PCL. The Subtask 2 is a multi-label
classification task. Given a paragraph, a system
must identify which PCL categories express
the condescension. A paragraph might contain
one or more categories of PCL. To face with
the first subtask we propose a multi-channel
Convolutional Neural Network (CNN) and an
Hybrid LSTM. Using the multi-channel CNN
we explore the impact of parallel word emebed-
dings and convolutional layers involving differ-
ent kernel sizes. With Hybrid LSTM we focus
on extracting features in advance, thanks to a
convolutional layer followed by two bidirec-
tional LSTM layers. For the second subtask
a Transformer BERT-based model (i.e. Dis-
tilBERT) and an XLNet-based model are pro-
posed. The multi-channel CNN model is able
to reach an F1 score of 0.2928, the Hybrid
LSTM model is able to reach an F1 score of
0.2815, the DistilBERT-based one an average
F1 of 0.2165 and the XLNet an average F1 of
0.2296. In this paper, in addition to system
descriptions, we also provide further analysis
of the results, highlighting strengths and limita-
tions. We make all the code publicly available
and reusable on GitHub1.

1 Introduction

With the exponential growth of contents shared on
social networks, a lot of new challenging tasks have
emerged. Many are currently studied and addressed
by scholars, and a pletora of novel machine learn-
ing approaches have been proposed (Arpaci et al.,

1https://github.com/marco-siino/
McRock-SemEval-2022-Task4

2021), (Hosseinalipour and Ghanbarzadeh, 2022),
(Siino et al., 2020). Some of the most common
tasks, often co-located with international confer-
ences, are those about fake news (Rangel et al.,
2020), hate speech (Bosco et al., 2018), misogyny
(Fersini et al., 2018) and cyberbulling (Kumar et al.,
2018) detection.

For these purposes there is a constantly growing
need for tools that can automatically extract and
classify information from online feeds, to face with
consolidated as well as with emerging social issues.
Interest in Natural Language Processing (NLP) has
increased in recent years with advances in machine
and deep learning architectures. There have been
significant efforts in developing methods to auto-
matically detect and classify text content available
online nowadays.

Together with the already mentioned tasks,
an emerging one is about detecting Patroniz-
ing and Condescending Language (PCL) (Pérez-
Almendros et al., 2020). The PCL Detection Task
hosted at SemEval-2022 is covered in detail in
(Pérez-Almendros et al., 2022) and briefly dis-
cussed here. The main task is made of two sub-
tasks. The first one is a binary classification prob-
lem where, given a paragraph, a model has to pre-
dict wheter the paragraph contains or not PCL. The
second one is a multi-label classification task where
each paragraph has to be labelled with one to seven
categories of PCL. Classes are not mutually exclu-
sive and so a paragraph could express one or more
categories of PCL.

To face with the first subtask we propose two
deep models. The first one is a multi-channel Con-
volutional Neural Network (CNN). Such a network
consists of parallel word embedding and convolu-
tional layers to allow different sets of weights for
trained embeddings - because of different kernel
sizes employed by convolutional layers. In terms of
Precision, Recall and F1, results of our model show
certain room for improvements in future work. The
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second model is a hybrid bidirectional LSTM. Such
a network is composed by a convolutional layer and
two bidirectional LSTM layers.

For the second subtask we propose two
Transormer-based models (Vaswani et al., 2017).
The first one is a lighter and faster version of BERT
(i.e. DistilBERT) (Sanh et al., 2019). Our model is
opportunistically trained on an undersampled ver-
sion of the training dataset. The model is able to
outperform RoBERTa (Liu et al., 2019). The sec-
ond is an XLNet-based one (Yang et al., 2019). The
model is based on a generalized autoregressive pre-
training method. It enables learning bidirectional
contexts by maximizing the expected likelihood
over all permutations of the factorization order. Un-
der comparable experiment setting, XLNet outper-
forms BERT (Devlin et al., 2019) on several tasks,
often by a large margin, including question answer-
ing, natural language inference, sentiment analysis,
and document ranking. Our model implementation
is opportunistically trained on an undersampled
version of the training dataset. The model is able
to outperform RoBERTa (Liu et al., 2019) in terms
of average F1.

The rest of the paper is made as follows. In
Section 2 we provide some background on the Task
4 hosted at SemEval-2022. In Section 3 we provide
a description of the models presented. In Section 4
we provide details about the experimental setup to
replicate our work. In Section 5 the results on the
official task and some discussion are provided. In
section 6 we present our conclusion and proposals
for future works.

2 Background

In this section we provide some background about
the Task 4 hosted at SemEval-2022. The aim of
this task is to identify PCL, and to categorize the
linguistic techniques used to express it, specifically
when referring to communities identified as being
vulnerable to unfair treatment by the media. Partici-
pants at the Task 4 received a dataset with sentences
in context (paragraphs), extracted from news arti-
cles. Although news articles were collected from
different countries, they were all provided in En-
glish. The task consists of the two subtasks listed
below.

1. Subtask 1: Binary classification. Given a para-
graph, a system must predict whether or not
it contains any form of PCL. Two opposite la-
belled samples from the dataset provided are

shown below.

Non-PCL Sample Text: "Council customers
only signs would be displayed . Two of the
spaces would be reserved for disabled persons
and there would be five P30 spaces and eight
P60 ones ."

Non-PCL Sample Label: [0]

PCL Sample Text: "It can not be right to
allow homes to sit empty while many strug-
gle to find somewhere to live, others having
to sleep rough on pavements during Christ-
mas, hoping against hope, for some charity
to provide shelter. The number left homeless
and destitute is alarming not necessarily at
Christmas?"

PCL Sample Label: [1]

2. Subtask 2: Multi-label classification. Given a
paragraph, a system must identify which PCL
categories express the condescension. The
PCL taxonomy has been defined based on pre-
vious works on PCL. The proposed categories
are:

• Unbalanced power relations
• Shallow solution
• Presupposition
• Authority voice
• Metaphor
• Compassion
• The poorer, the merrier

Two samples from the dataset provided are
shown below. For each sample the label is an array
containing seven elements. For each element, sym-
bol 1 means that the corresponding PCL category
is expressed in the paragraph.

Sample Text 1: "Yes ... because there is NO
HOPE where he lives . India is a third-world coun-
try . Do n’t be fooled by call centers in big cities .
Most of the country is rural and most of the popu-
lation is illiterate and hopeless ."

Sample Label 1: [1, 0, 1, 0, 0, 1, 0]
Sample Text 2: "For refugees begging for new

life , Christmas sentiment is a luxury most of them
could n’t afford to expect under shadow of long-
running conflicts ."

Sample Label 2: [0, 0, 1, 0, 0, 1, 0]
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Task organizers released a training and a dev
set before the competition officially started. For
both sets the gold labels were provided. During first
phase - Practice phase - participants were able to de-
velope and test their models uploading predictions
on CodaLab. After releasing the unlabelled test
set the second phase - Evaluation phase - started.
Results for both phases are available online 2.

3 System Overview

In this section we discuss the models presented for
each subtask and the design choices made by our
team motivating them. For both models the code is
publicly available and reusable. Further details are
provided in Section 4.

3.1 Subtask 1: Binary Classification

Given the binary nature of the task and his subject,
for our first submission we developed a more ver-
satile CNN based on the one presented in (Siino
et al., 2021). Such a network is composed of par-
allel word embedding and convolutional layers to
allow different weights for embeddings and convo-
lutional filters. A general overview of the model
architecture is shown in Figure 1. The rationale
of the model presented is to have more parallel
convolutional-based channel, each with different
word embeddings and kernel filter weights. More
properly, we set kernel size of 1, 2, 16 and 32 for
each of the 32 Conv1D layer filters. In this way
we drive our model to focus more on single token,
pair of tokens, group of 16 and of 32 tokens respec-
tively. On the basis of our experiments these are
the best-performing kernel sizes for the proposed
task on our preliminary 10 cross-fold validation.
In addition to this behaviour we expect different
coordinates for each word/token in each word em-
bedding channel, with the aim of getting a more
fine-grained positioning of words/tokens in the em-
bedding space.

Based on our preliminary experiments, we found
that on five different seeds initialization, the best
word embedding size for our model is 50. This
size is consistent with the common values reported
in literature (Melamud et al., 2016). For each
dense layer we did not use any activation function.
We trained our model with a binary cross-entropy
loss and using the Adam optimization algorithm
(Kingma and Ba, 2014).

2https://sites.google.com/view/
pcl-detection-semeval2022/ranking

For our second submission, we developed a light
Hybrid LSTM. The model consists of a convolu-
tional layer followed by two bidirectional LSTM
layers. Such a strategy is motivated by our de-
cision to extract relevant features from the word
embedding layer before the first bidirectional one.
A general overview of the model architecture is
shown in Figure 2. Based on our preliminary ex-
periments on five different seeds initialization, we
found that the best word embedding size for the
model was 50. For each dense layer we did not use
any activation function. We trained our model with
a binary cross-entropy loss and using the Adam
optimization algorithm (Kingma and Ba, 2014).

3.2 Subtask 2: Multi-Label Classification

For our first submission at the Subtask 2 we
choosed a transformer-based model lighter than
BERT (i.e. DistilBERT). Due to the high num-
ber of experiments to perform, we needed a faster
model to train. DistilBERT is a smaller general-
purpose language representation model. In Distil-
BERT the original size of BERT model is reduced
by 40%, while retaining 97% of its language un-
derstanding capabilities and being 60% faster. In
terms of knowledge distillation, while BERT is
the teacher, DistilBERT is the student. Student is
represented by a compact model and is trained to
reproduce the behaviour of the larger model (i.e.
the teacher). Such a compact model is trained with
a linear combination of three losses: the distillation
loss (i.e. Lce), the masked language modeling loss
(i.e. Lmlm), and the cosine embedding loss (i.e.
Lcos). Because of the distilled nature of the model,
training and fine-tuning on a specific dataset for a
specific task is of prominent importance. For a de-
tailed discussion of DistilBERT refer to (Sanh et al.,
2019). While we firstly compared the results on
the dev set provided, we finally trained our model
on the full training set - union of train and dev set
- providing predictions on the test set. In addition
we found beneficial maintaining the information
about casing of characters. So we did not lowercase
the text provided, implementing a cased version of
DistilBERT and setting as output for each label
seven digits corresponding to the seven categories
of PCL. Finally we preprocessed each sample to
include country and keyword of each paragraph in
the input text.

For the second submission we implemented an
XLNet-based model. Different unsupervised pre-
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Figure 1: Overview of the multi-channel CNN presented for the first subtask at SemEval-2022. Each channel has a
different kernel size at Conv1D, driving model attention on different sized windows of words. The kernel size of
filters used at each Conv1D are 1, 2, 16 and 32. Each convolutional layer has 32 filters separately trained during
training phase. Such a strategy allows extraction of different-sized features for a fine-grained learning.
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Figure 2: Overview of the Hybrid LSTM presented for
first subtask hosted at SemEval-2022. The presence of
the Conv1D layer is motivated by our intention to extract
relevant features from the previous embedding layer.
The kernel size of the 64 filters used by the convolutional
layer is 2. Such a strategy should allows extraction of
relevant bi-grams from the input text.

training objectives have been explored in litera-
ture. XLNet implements a generalized autoregres-
sive pretraining method that uses a permutation
language modeling objective to combine the ad-
vantages of autoregressive and autoencoding meth-
ods. The neural architecture of XLNet is developed
to work seamlessly with the autoregressive objec-
tive, including the integration of Transformer-XL
and the careful design of the two-stream attention
mechanism. XLNet achieves substantial improve-
ment over previous pretraining objectives on vari-
ous tasks. Among them, autoregressive language
modeling and autoencoding have been the two most
successful pretraining objectives. Furthermore, XL-
Net integrates ideas from Transformer-XL (Dai
et al., 2019) into pretraining. An XLNet model
integrates two techniques from Transformer-XL,
namely the relative positional encoding scheme
and the segment recurrence mechanism. The rel-
ative positional encodings is applied based on the
original sequence. Furthermore, the recurrence
mechanism is included into the proposed permuta-
tion setting and enable the model to reuse hidden
states from previous segments.

Training and fine-tuning of an XLNet for a spe-
cific task is of prominent importance. While we
firstly compared the results on the dev set provided,
we finally trained our model on the full training
set - e.g., union of train and dev set - providing
predictions on the test set.

4 Experimental Setup

We implemented our first two models using Keras3

and TensorFlow4. The dataset provided for the bi-
nary classification task is unbalanced in terms of
negative and positive PCL instances. To face with
this issue we undersampled the negative instances.
On the basis of our preliminary experiments, we
found beneficial undersampling negative instances
to be just six times more the positive ones. Further-
more we found beneficial to include in each sample
(both for training and prediction) the keyword and
the country field of each paragraph from the dataset.
Then we used a batch size of 100. We empirically
found that a good early stopping point for the train-
ing phase is obtained with 10 epochs and a learning
rate of 0.001. We ran the experiments on Google
Colab using the default GPU (NVIDIA Tesla K80).
The training time was around 15 seconds for each

3https://keras.io/
4https://www.tensorflow.org/
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of the ten epochs. The official metrics used for
the task were Precision, Recall and F1 on positive
instances (sample containing PCL). But during our
development phase we focused on the model loss
(i.e., binary crossentropy loss). This choose was
dictated by the fact that the gold labels of the test
set were not provided.

The models for Subtask 2 were implemented us-
ing Simple Transformers5. We used DistilBERT
and XLNet as the pre-trained language models. We
preprocessed the dataset to include, within the text
of each sample, the country and the keyword of
the paragraph. To train our final models we built
a single dataset consisting of the train and the dev
set. Then we undersampled negative instances (i.e.
Non-PCL samples) to alleviate bias in the unbal-
anced dataset provided. We ran the experiments
on Google Colab, using an NVIDIA Tesla K80
GPU. The official metrics used for the task were
F1 for each category and average F1 among them.
In this case too, during our development phase we
focused only on the loss of the models to perform
some fine-tuning.

5 Results

For Subtask 1 the metrics used are Precision, Recall
and F1 defined as shown in 1,2,3 respectively.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3)

Each True Positive (TP) is computed on the pos-
itive instances (i.e. paragraphs containing PCL).
So a TP is a sample containing PCL and correctly
classified, a False Positive (FP) is a sample with-
out PCL but wrongly classified as a PCL sample, a
False Negative (FN) is a sample containing PCL but
wrongly classified as not containing PCL. There-
fore, Precision is the number of the correctly pre-
dicted PCL samples over the total number of pre-
dicted PCL samples. Recall is the number of the
correctly predicted PCL samples over the total num-
ber of actual PCL samples. Finally the F1 Score is
the harmonic mean of Precision and Recall.

The final ranking for the first subtask is drawn up
accordingly to the F1 score on the test set provided.

5https://github.com/ThilinaRajapakse/
simpletransformers

F1 P R
RoBERTa-baseline 48.29 34.99 77.89

Multi-Channel CNN 32.29 23.46 51.76
Hybrid LSTM 26.32 31.47 22.61

Random-baseline 17.35 10.40 52.26

Table 1: Performance comparison on dev set. The re-
sults of the two baseline methods provided by the orga-
nizers (i.e. RoBERTa and Random baseline) compared
to our models based on a multi-channel CNN and Hy-
brid LSTM.

In Table 1 are shown the results on the dev
set provided by the organizers. Results are or-
dered according to F1 score. Our model based
on multi-channel CNN is able to outperform the
Random-baseline provided in terms of F1 and Pre-
cision, obtaining similar results in terms of Recall.
RoBERTa-baseline performs better along the three
metrics provided.

It is interesting to note that RoBERTa is a model
pre-trained on over 160GB of text. Compared to
our proposed model it requires much more in terms
of resources and time needed. Despite such efforts,
RoBERTa outperforms our model by only 16% and
around 11% in terms of F1 and Precision. The
most significant difference is with Recall. This
means that the proportion of actual positives iden-
tified correctly by our model is lower compared
to RoBERTa. This could be mainly due to the in-
ability of our model at contrasting the bias learned
because of the unbalanced dataset provided, where
Non-PCL paragraphs are, in fact, the vast majority.
Our team did an additional submission involving
two deep models based on an Hybrid LSTM (i.e.
made of convolutional and bidirectional LSTM lay-
ers) and on an XLNet (Yang et al., 2019). Our
proposed Hybrid LSTM is able to outperform the
Random-baseline provided in terms of F1 and preci-
sion. RoBERTa-baseline performs better along the
three metrics provided. Compared to the Hybrid
LSTM model, the multi-channel CNN outperforms
the Hybrid LSTM. However the Hybrid LSTM
performs better with regard to precision. Such a
result leads to the conclusion that Hybrid LSTM
correctly predicts an higher number of actual PCL
paragraphs with respect to the total predicted PCL
paragraps. Therefore, further investigation might
be conducted on combinations of main components
of the two proposed models in the effort to improve
the F1.
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F1 P R
hudou (1) 65.10 64.60 65.62

RoBERTa (44) 49.11 39.35 65.30
Multi-CNN (69) 29.28 23.40 39.12

Hybrid LSTM (NA) 28.15 29.62 26.81
mahangchao (79) 4.48 10.59 2.84

makahleh (80) 0.0 0.0 0.0

Table 2: Performance comparison on test set. In table
are shown the RoBERTa-baseline, the first classified
(i.e. hudou), the two last classified and our models
results. In parentheses are shown the positions in the
final ranking according to F1 score. NA stands for Not
Assigned because only the best result of the two model
submitted is considered for final ranking.

In Table 2 are shown the results on the test set
provided by the organizers without the gold labels.
Results are ordered based on the F1 score. Com-
pared to the winner (e.g. hudou), RoBERTa ex-
hibits the most significant gap in Precision. Which
means that proportion of positive instances cor-
rectly classified by the winner team is significantly
more compared to RoBERTa. However, in this
case too, RoBERTa outperforms our model with
similar gap along the three metrics with respect
to the results presented for the dev set. Our two
submitted models exhibit similar performances on
the test set. In this case too, the most significant
gap is in Recall.

For Subtask 2 the metric used is F1 along the
seven categories provided and the final ranking
was drawn up considering the average F1 along the
seven categories on the test set provided. For this
subtask there is an important bias due to the un-
balanced nature of the dataset with regard to each
category. In Table 3(a) the results on the dev set
are shown. Results are ordered based on the av-
erage F1 score. For each category our XLNet is
able to outperform the Random-baseline. The av-
erage F1 is 15% more than such a baseline. It is
worth noting that results with a random predictor
are not uniformly distributed along each category.
This distribution provides further evidences about
the unbalanced nature of the dataset with regard
to this multi-label classification subtask. Further-
more the random predictor outperforms F1 score
of RoBERTa in four of the seven categories pro-
vided. However RoBERTa performs a lot better

in detecting Unb, Pre and Com language (namely,
Unbalanced power relations, Presupposition and
Compassion). These performances could be mo-
tivated by the greater number of samples in the
dataset expressing the first category. Compared to
RoBERTa our DistilBERT-model does better for
five categories out of seven. And for this single
category (i.e. Presupposition) the gap is under
4%. Compared to our other submission, the XLNet
heavily outperforms DistilBERT in terms of F1 for
each category and in the final average F1. In Table
3(b) we report the results of the first model, our
proposed models, RoBERTa and the last classified
one, according to the final ranking drawn up con-
sidering the average F1. In this case too our models
outperform RoBERTa, in terms of F1, for six out
of seven categories. On the test set, RoBERTa per-
forms better in detecting Unb. However, compared
to the results on dev set, our two proposed models
perform with a lower average F1 gap. And there
is just a category (i.e. Metaphor) where Distil-
BERT significantly outperforms the XLNet. It is
worth noting that the best performing model is able
to reach an average F1 of 46.89, outperforming
of over 20% and 36% our proposed models and
RoBERTa respectively. This lead to a conclusion
about the very large room for improvement in this
multi-label task. Some of the difficulties in reach-
ing an average F1 of at least 50% could be due
to the unbalanced dataset as much as the intrinsic
complexity of the task.

6 Conclusion

We propose four deep learning models to detect and
classify PCL on the English dataset provided by
task organizers at SemEval-2022. For the first sub-
task we developed a Multi-Channel CNN, training
parallel word emebeddings and convolutional lay-
ers with different kernel sizes and an Hybrid LSTM.
While results of these architectures exhibit a large
room for improvements, the models are lighter and
faster compared to the RoBERTa-baseline model
proposed by the task organizers. For the second
subtask we implemented a DistilBERT-based and
XLNet-based models. Compared to RoBERTa, Dis-
tilBERT is smaller, faster and lighter. Instead, XL-
Net performs better on average F1 both on dev and
test set. To face with the task proposed we oppor-
tunistically trained the models including the infor-
mation about country and keyword related to each
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Unb Sha Pre Aut Met Com The AVG
XLNet 47.99 20.41 24.61 20.06 16.67 39.24 8.89 25.41

DistilBERT 47.60 15.90 23.84 15.53 10.91 31.23 0.0 20.72
RoBERTa-baseline 35.35 0.0 29.63 0.0 0.0 28.78 0.0 13.40
Random-baseline 11.30 3.23 5.09 3.22 6.04 8.21 1.31 5.48

(a)

Unb Sha Pre Aut Met Com The AVG
guonihe (1) 65.60 52.94 36.90 40.66 35.90 49.18 47.06 46.89
XLNet (29) 32.32 32.93 19.18 20.55 22.22 26.35 7.14 22.96

DistilBERT (NA) 32.62 30.49 18.80 18.31 26.00 25.37 0.0 21.65
RoBERTa-baseline (37) 35.35 0.0 16.67 0.0 0.0 20.87 0.0 10.41

nikss (49) 0.0 1.01 0.0 0.0 0.0 0.0 1.09 0.03
(b)

Table 3: Performance comparison on dev set (a) and test set (b) for Subtask 2. The table shows F1 calculated for
each category and the average F1 in the last column. For Subtask 2 our proposed models based on DistilBERT and
XLNet outperform RoBERTa on both dev and test set. In parentheses are shown positions in final ranking. NA
stands for Not Assigned in this case too.

sample. In addition we undersampled the negative
instances in the dataset to avoid the model to focus
more on non-PCL samples. The trained models are
able to outperform RoBERTa. However, looking
at the final ranking of the task, the room for im-
provements is significant. In future works would be
useful implementing models taking advantage of a
balanced dataset. Both for the binary classification
task and for the multi-label one. Another interest-
ing aspect to further investigate would be about the
behaviours of the proposed models on multilingual
datasets. Although pre-trained models are actually
the state of the art for many NLP tasks, the hard-
ness of the PCL detection task - proved by the final
scores obtained by the winners at SemEval-2022
- could worsen the results on each metric. Finally,
it could be beneficial experimenting with hybrid
and ad-hoc models combining different pre-trained
and non pre-trained models to improve the results
specifically on this task.
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Abstract

We propose the use of a contextual embedding
based-neural model on strictly textual inputs
to detect the presence of patronizing or conde-
scending language (PCL). We finetuned a pre-
trained BERT model to detect whether or not a
paragraph contained PCL (Subtask 1), and fur-
thermore finetuned another pre-trained BERT
model to identify the linguistic techniques used
to convey the PCL (Subtask 2). Results show
that this approach is viable for binary classi-
fication of PCL, but breaks when attempting
to identify the PCL techniques. Our system
placed 32/79 for subtask 1, and 40/49 for sub-
task 2.

1 Introduction

The goal of the task is to be able to identify whether
or not a piece of text contains condescending or
patronizing language, and if it contains patronizing
language identity which linguistic techniques are
used to express that sentiment (P’erez-Almendros
et al., 2022). Studies have shown that PCL fuels
discriminatory behavior, creates and feeds stereo-
types, subtly blames needy individuals for their
problems, and oversimplifies problems. In general,
PCL makes it harder for needy communities to
get the help they need and reach total inclusivity
(P’erez-Almendros et al., 2020). This is obviously
negative, and being able to combat it with AI may
help automate the process and get past inherent
biases that humans identifying PCL may have.

Our system’s goal is to use contextualized word
embeddings to feed the model, and thus have the
model analyze the semantics of the text. We specif-
ically focused on a purely textual analysis and did
not provide the model with any metadata to see if
the model could learn the PCL patterns just from
the text, because although real world usage would
likely include those features, the ability to learn
from the text itself would be useful and more uni-
versally applicable.

In this task, we learnt that it is easier for a model
to simply detect the presence of PCL than the tech-
niques used in a piece of PCL. This is likely be-
cause of both unequal distributions of data and the
fact that the context for the types of PCL likely look
very similar, making the model default to a category
of PCL with a higher frequency when not incredi-
bly clear. We ranked 32/70 on subtask 1, which is
detecting the presence of PCL, and ranked 40/49 on
subtask 2, which involves identifying the PCL tech-
niques used. In particular, the model struggled with
the ‘authority voice’ and ‘metaphor’ categories.

2 Task Overview

The dataset provided was the Don’t Patronize Me!
Dataset (P’erez-Almendros et al., 2020), which is
a collection of paragraphs mentioning vulnerable
communities and published in media in 20 English
speaking countries. Each paragraph has the country
code where the paragraph was published and the
keyword that was used to search for it. For subtask
1, the paragraphs are manually annotated with a
label from 0-4 on how much PCL it contains; these
are converted to binary labels on whether or not a
paragraph contains PCL, where 2-4 indicate posi-
tive examples and 0-1 indicate negative examples.
For subtask 2, all paragraphs in the dataset con-
tain PCL and are annotated with spans containing
categories of linguistic techniques that are used to
express the condescension. These categories are:

• Unbalanced power relations

• Shallow solution

• Presupposition

• Authority voice

• Metaphor

• Compassion

• The poorer, the merrier
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The training portion of the dataset for subtask 1
contained 10,636 paragraphs, and the correspond-
ing dataset for subtask 2 had 993 paragraphs with
2,792 instances of PCL techniques.

3 System Overview

3.1 Data Representation

We felt that attempting to learn from the text itself
and removing the contextual metadata could lead to
more robust textual analysis. Therefore, we relied
solely on the paragraph as our input feature. We
tried two approaches: 1) using pre-trained GloVe
embeddings with a dimension of 300, which track
co-occurences of words in a global corpus (Pen-
nington et al., 2014), and 2) tokenizing the para-
graphs using a BERT tokenizer and inputting these
into a pre-trained BERT model (Devlin et al., 2019).
For subtask 2, where the focus was on shorter la-
beled spans rather than entire paragraphs, we still
used the full text to provide more context for the
detection of PCL.

3.2 Subtask 1

GloVe embeddings are good at capturing word
analogies due to its global vectorization and its
ability to capture sub-linear relationships in the
vector space (Pennington et al., 2014). We felt
that the analogy ability was specifically important
to this task, because it could help capture tonal
similarities between instances of PCL. Therefore,
we began with a bag-of-words model where we
summed the GloVe embeddings of each word in
the text, then performed logistic regression to out-
put a binary label indicating whether or not the
text contained PCL. However, due to the high class
imbalance present in the data, this model predicted
no PCL for nearly all inputs.

Our final model was a fine-tuned BERT model.
Initially, we re-labeled the training data with the
final binary labels of PCL and not PCL, but this
led to issues due to the high class imbalance. We
decided to make the model a multiclass classifier
which output the original 0-4 labels, and then con-
vert these to binary labels. This allowed us to better
adjust model weights to reflect the imbalances in
class distributions, because the imbalances were
not standard to all PCL, and varied dramatically
based on the subtype.

3.3 Subtask 2

The most notable decision in this subtask was us-
ing the entire paragraph instead of focusing on the
spans of PCL. We initially actually tried training
on just the labeled spans, but these did not provide
enough context for the BERT model to fine-tune
to the data. Therefore, we used the entire text
as the input to provide more context. Due to the
small amount of data for the second subtask, we
also chose to apply transfer learning and start our
training from the fine-tuned model from the first
subtask.

One major problem with the task is that the con-
texts between the types of PCL are all similar, as
there can be many instances of categories within
the same paragraph of text in smaller spans. This
leads to the model defaulting to predicting the more
frequent classes. We tried to address this by adding
in the spans without context as training data; how-
ever this actually decreased performance.

4 Experimental Setup

We used BertTokenizerFast to tokenize the text and
fine-tuned on the pre-trained BertForSequenceClas-
sification model, both from the HuggingFace Trans-
formers library (Wolf et al., 2020). We conducted
hyperparameter optimization using the HyperOpt
package (Bergstra et al., 2013), using population-
based training (Jaderberg et al., 2017). It automati-
cally generated sets of hyperparameters for us, and
then based on the results of training with those
hyper parameters updated the future hyperparame-
ter sets. Our final model was trained using Adam
optimization with a learning rate of 2.31468e-05
(Kingma and Ba, 2014); we trained the model for 6
epochs with a batch size of 8. We used a train/test
split of 70/30 and evaluated based on accuracy and
F1.

5 Results

Our model had precision 0.4017, recall 0.7666,
and F1 0.5271 on the evaluation data for subtask
1, and has an average F1 of 0.0963 for subtask
2. We placed 32/79 for subtask 1, and 40/49 for
subtask 2. Based on the results, the model had a
hard time with the types of PCL that showed up
less frequently in the data, and tended to perform
best on the categories that were more frequent. In
retrospect, using the same model architecture and
setup on the two subtasks was not the optimal way
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Metric Score
Precision 0.4017
Recall 0.7666
F1 0.5271

Table 1: Results for Subtask 1.

PCL Category Score
Unbalanced Power Relations 0.1596
Shallow Solutions 0.2694
Presupposition 0.0423
Authority Voice 0.0
Metaphor 0.0
Compassion 0.0864
The Poorer, The Merrier 0.1212
F1 Average 0.0963

Table 2: Results for Subtask 2.

to approach the task, despite some compelling rea-
sons to approach it that way. We did not perform
any quantitative analysis or ablations, but given the
chance we would augment the less frequent PCL
categories and see if that would fix the prediction
issues for subtask 2, even if it wouldn’t necessarily
improve accuracy.

6 Conclusion

We developed a system which attempted to first
classify whether or not a piece of text contained
patronizing or condescending language, and then
identify the technique used to convey the PCL. In
particular, we focused on examining whether or
not pure textual analysis using contextual word
embeddings alone would be enough to perform the
aforementioned tasks. Based on our results, this
approach is only viable for the binary classification
of whether or not a text contains PCL.

In the future, we would explore creating an en-
semble of models, only one of which uses textual
analysis, and the rest would focus on things like
meta data and word frequencies which do not rely
on context. Comparing the result of that ensemble
to a traditional approach to this problem which uses
many of those methods simultaneously would show
whether or not there is a strong overlap between
sources, locations, etc. and PCL, or whether only
the text itself is the best indicator of a sign of PCL.
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Abstract

Patronizing and condescending language (PCL)
can find its way into many mediums of public
discourse. Presence of PCL in text can pro-
duce negative effects in the society. The chal-
lenge presented by the task emerges from the
subtleties of PCL and various data dependent
constraints. Hence, developing techniques to
detect PCL in text, before it is propagated is
vital. The aim of this paper is twofold, a) to
present systems that can be used to classify a
text as containing PCL or not, and b) to present
systems that assign the different categories of
PCL present in text. The proposed systems
are primarily rooted in transformer-based pre-
trained language models. Among the models
submitted for Subtask 1, the best F1-Score of
0.5436 was achieved by a deep learning based
ensemble model. This system secured the rank
29 in the official task ranking. For Subtask
2, the best macro-average F1-Score of 0.339
was achieved by an ensemble model combining
transformer-based neural architecture with gra-
dient boosting label-balanced classifiers. This
system secured the rank 21 in the official task
ranking. Among subsequently carried out ex-
periments a variation in architecture of a sys-
tem for Subtask 2 achieved a macro-average
F1-Score of 0.3527.

1 Introduction

The aim of the current task, viz. Patronizing
and Condescending Language Detection (Pérez-
Almendros et al., 2022), is to identify presence of
condescending and patronizing tones in text, par-
ticularly by the media when referring to vulnerable
communities. Preponderance of PCL in news and
different social media texts, often targeted towards
marginalised and under represented communities
is a major social concern these days. It can feed
stereotypes, tilt the scales of superiority towards
a particular community, and fuel discriminatory
behaviour. Thus the task of identifying PCL partic-

ularly that directed to vulnerable communities is a
crucial task.

The task is based on the English language Don’t
Patronize Me! dataset (Pérez-Almendros et al.,
2020). It consists of two subtasks, binary classi-
fication (Subtask 1) and multi-label classification
(Subtask 2). In Subtask 1, given a paragraph the
aim is to predict whether the paragraph consists
of any form of patronizing and condescending lan-
guage (PCL). In Subtask 2, the aim is to assign each
paragraph a subset of labels which express different
categories of PCL. The major challenges offered in
such tasks emerge from various linguistic aspects,
such as use of cryptic sentences, sarcasms used,
polysemous nature of the English words among oth-
ers. For the present task, further challenge emerges
from the imbalance of dataset as discussed in Sec-
tion 2.

Experiments were conducted with various sys-
tems and the best performing ones for both the
subtasks are discussed in detail. The two systems
that perform best among these, for both the sub-
tasks are ensemble techniques, which employ two
or more classifier models at different stages of the
system.

The paper is organized as follows. The task
background is discussed in Section 2. Sections 3
and 4 discuss the details of the systems and the
experimental setup, respectively. The results from
the systems are given in Section 5. The paper is
concluded in Section 6.

The code for the proposed systems have been
made available at https://github.com/KushagriT/
SemEval2022-TeamLRL_NC

2 Background

As mentioned in Section 1, this task is based
on the Don’t Patronize Me! dataset. The para-
graphs for this dataset have been extracted form the
News on Web (NoW) corpus (https://www.english-
corpora.org/now/), and have been manually anno-
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Label: 1 2 3 4 5 6 7
Neg/Pos 14 52 46 45 52 21 261

Table 1: Label Ratios

tated. The statistics of the subset of data used for
this task are as follows. The Train subset has 8375
samples, Dev subset has 2094 samples, and the
Test set has 3832 samples. The label set considered
for this multi-label classification consists of seven
labels, namely ‘Unbalanced power relations’(1),
‘Shallow solution’(2), ‘Presupposition’(3), ‘Author-
ity voice’(4), ‘Metaphor’(5), ‘Compassion’(6), and
‘The poorer, the merrier’(7). These labels are hence-
forth addressed by their sequence ids as mentioned
above.

The number of negative examples per positive
example, for the binary classification task, in the
Train + Dev dataset (henceforth referred to as Train-
ing dataset), is approximately 10. For Subtask 2,
the number of negative examples per positive exam-
ple (approximated to nearest integer) for each label
in the Training dataset is given in Table 1 (denoted
as Neg/Pos). An approximation of these ratios are
used as scaling factors to manage the unbalanced
classes when creating gradient boosting classifiers
for multi-label classification.

Work has been carried out in the field of NLP
to identify different types of linguistic variations
or harmful languages from text such as, sarcasm
detection (Chatterjee et al., 2020), hate speech de-
tection (Djuric et al. (2015), Gitari et al. (2015)),
and fake news detection (Shu et al. (2017), Con-
roy et al. (2015)). Since the introduction of BERT
(Devlin et al., 2019), transformer-based language
models have been used for a variety of NLP tasks,
such as the use of BERT for a regression task of
predicting eye-tracking features for a given word
of the sentence (Choudhary et al., 2021), or use of
BERT for the task of document classification (?,
Adhikari et al. (2019)).

All the methods proposed in this paper use fur-
ther pre-trained transformer-based language mod-
els to extract document embeddings. The motiva-
tion comes from some recent work that has been
carried out in detecting condescending language
from text. Wang and Potts (2019) introduce a new
labeled dataset, namely TalkDown, of condescend-
ing acts in context, and establish baselines for this
dataset using BERT.

3 System Overview

Experiments were conducted with two types of
models for each of the two subtasks. Each sys-
tem uses transformer-based language models for
generating text embeddings. These language mod-
els were further pre-trained on Masked Language
Modeling (MLM) task on the given data. The para-
graphs from the training dataset were prepared for
MLM with the model specific tokenizer by mask-
ing tokens in the input with probability 0.15, and
using truncation and padding to maximum length
of 256.

The present experiments use further pre-trained
RoBERTa (Liu et al., 2019) and XLNet (Yang
et al., 2019) language models1. These further pre-
trained RoBERTa (roberta-base) and XLNet (xlnet-
base-cased) models are henceforth denoted as My-
Roberta and MyXlnet, respectively. This further
pre-training is done using the given data on the
existing pre-trained RoBERTa and XLNet models
in order to fine-tune the models for the two specific
subtasks, so they become adapted to the given cor-
pus irrespective of the task at hand, whether it is
binary classification or multi-label classification.

The systems discussed in Sections 3.1 and
3.2, use a custom attention head architec-
ture2. The input to this attention head is of
dimension batch size × sequence length ×
embedding dimension, and the output is of di-
mension batch size × embedding dimension.
The attention mechanism is used so that the system
learns the emphasis of different tokens towards the
classification. This layer is henceforth referred to
as Attn_head.

Embeddings are generated using these models
to extract document representations, which will be
used as features in each system. For training the
proposed models, discussed in sections 3.1 and 3.2,
and for the training of the MyRoberta and MyXlnet
models, smart batching is used, with a maximum
token length limit of 256. In smart batching the
dataset is sorted by length of the sequences before
creating batches, and padding is done to each se-
quence in each batch to the length of the longest
sequence in that batch. In the following subsec-
tions the model algorithms are discussed in detail.
Smart batching has been used to optimize the train-
ing speed for the transformer-based models, since
now most of the resulting batches will have shorter

1Training details are discussed in the appendix
2Architecture details discussed in the appendix
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Figure 1: BINARY.1 and BINARY.2 (flow indicated in red)

sequence lengths which would prevent memory
overload.

The following notations have been used in the
further sections. The two subtasks of Binary and
Multi-label classification have been referred to as,
Subtask 1 and Subtask 2, respectively. The two sys-
tems in for each of these tasks have been denoted
as BINARY.1, and BINARY.2 for Subtask 1, and
MULTI.1 and MULTI.2 for Subtask 2. MULTI.1
and MULTI.2, each have two sub-models which
are denoted as MULTI.1.A and MULTI.1.B for
MULTI.1, and MULTI.2.A and MULTI.2.B for
MULTI.2.

3.1 Subtask 1: Binary Classification

In this section the two proposed systems for the
task of binary classification are discussed.

3.1.1 BINARY.1: MyRoberta + MyXlnet +
Attn_head

The first component of BINARY.1 consists of My-
Roberta and MyXlnet. Concatenation of the last
hidden states from the two models is passed as an
input to Attn_head. The output from this layer is
sent to a fully connected layer which serves as the
classifier unit. The architecture for BINARY.1 is
given in Figure 1. The entire flow indicates the
algorithm for BINARY.1.

This system is trained for the task of binary clas-
sification with Cross Entropy loss using AdamW
optimizer which is Adam (Kingma and Ba, 2014)
optimizer with weight decay (Loshchilov and Hut-
ter, 2017). A linear learning rate scheduler with 50
warm-up steps is used. The hyperparameters for
this system are given in Table 2.

Hyperparameter Value
Train Epochs 5
Batch Size 16
Initial Learning Rate 2e-5

Table 2: Hyperparameters for BINARY.1

By using ensemble technique the quality of rep-
resentation of these documents is improved, and
using attention this model learns the emphasis of
each token in the text sequence in contributing to-
wards each label in the predicted label set. This
can be observed from the ablation experiments dis-
cussed in Section 5.

3.1.2 BINARY.2: MyRoberta + Attn_head

The basic architecture used in BINARY.2 is similar
to that of BINARY.1 described in Section 3.1.1.
This system, however, trains the following model.

The first component of this system is MyRoberta.
The last hidden states from this model is passed as
input to Attn_head. The output from this layer is
sent to a fully connected layer which serves as the
classifier unit. The architecture for BINARY.2 is
given in Figure 1, with its flow indicated in red. In
case of BINARY.2, the input dimension for the first
fully connected layer in the Attention Head unit
and the classifier unit is 768 instead of 2*768, as
for BINARY.1.

In this system, while training the weights in the
pooler layer and the last 5 layers of MyRoberta
are re-initialized. The weights for the fully con-
nected layers in MyRoberta are re-initialized with
mean 0 and standard deviation same as that of the
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initializer range of MyRoberta3. The weights and
biases of the layer normalization in MyRoberta are
re-initialized to constant values of 1 and 0, respec-
tively.

This system is trained for the task of binary clas-
sification with Cross Entropy loss using AdamW
optimizer. A linear learning rate scheduler with 50
warm-up steps is used. For BINARY.1 a smaller
batch size is used to prevent memory overload.

Hyperparameter Value
Train Epochs 5
Batch Size 32
Initial Learning Rate (Group 1) 1e-5
Initial Learning Rate (Group 2) 2e-5
Initial Learning Rate (Group 3) 4e-5
Initial Learning Rate (Group 4) 5e-5

Table 3: Hyperparameters for BINARY.2

The initial layers of the MyRoberta model en-
code the more general information that is present in
the text. Additionally, since MyRoberta has already
been trained on the task-specific data, the embed-
ding layer and the first four layers of MyRoberta
are given a lower initial learning rate of 1e-5. This
parameter group is denoted as Group 1. As the lay-
ers move closer the output or the classifier layer, the
model encodes task-specific information. Hence
for the next four layers (Group 2), the learning
rate is chosen as 2e-5, and for the last four layers
(Group 3) the learning rate is chosen to be 4e-5.
The classifier and the pooler layers are assigned a
higher learning rate of 5e-5. This parameter group
is denoted as Group 4. Each of these layers have
weight decay of 0.01, except for bias and layer nor-
malization weights. Table 3 shows the values of
the different hyperparameters for this system.

3.2 Subtask 2: Multi-Label Classification
In this section the two proposed systems for the
Subtask 2, namely MULTI.1 and MULTI.2 are
discussed. MULTI.1 consists of two sub-models,
MULTI.1.A and MULTI.1.B. MULTI.1.A is My-
Roberta + FCL_1 where FCL_1 denotes a fully
connected layer, and MULTI.1.B is a collection
of label-balanced XGBoost Classifiers (XGB).
MULTI.2 also consists of two sub-models. In
MULTI.2.A, a similar architecture is used as in
MULTI.1.A, but with different dimensions and
with an additional layer named FCL_2 which a

3MyRoberta.config.initializer_range

fully connected classifier unit. MULTI.2.B has
two parts: i) Fuzzy C-Means clustering to extract
features, ii) a multi-label classifier model based on
fuzzy membership. These two parts will be denoted
as FCM and Fuzzy_CLF, respectively. The flow
of output between the two models are explained in
Section 3.2.2.

3.2.1 MULTI.1: MyRoberta + FCL_1 + XGB
This system has two parts, namely a model to ex-
tract features from the text (MULTI.1.A), and a
model to assign a set of labels to this text using a
classifier (MULTI.1.B). The architecture for this
model is given in Figure 2.

To extract features MyRoberta is fine-tuned for
the task of multi-label text classification. The first
component of MULTI.1.A is MyRoberta. The CLS
embedding from MyRoberta is passed to a fully
connected classifier layer with output dimension 7,
corresponding to the seven labels. In this model,
while training the weights in the pooler layer and
the last 5 layers for the MyRoberta are re-initialized
as described in Section 3.1.2.

MULTI.1.A is trained using Binary Cross En-
tropy loss between the true multi-labels with the
output, applied with sigmoid activation. It is
trained using AdamW optimizer with. A linear
learning rate scheduler is used, with 100 warm-up
steps and number of total steps corresponding to 25
epochs. This is done to avoid a lower learning rate
at 5 epochs. The hyperparameters for this system
are given in Table 4.

Hyperparameter Value
Train Epochs 5
Batch Size 16
Weight Decay 0.01
Initial Learning Rate 5e-5

Table 4: Hyperparameters for MULTI.1.A

The output from the above model is used as in-
put to the final multi-label classifier (MULTI.1.B).
Two sets of experiments were conducted, one with
the CLS embeddings from MyRoberta, and an-
other with the output of the fully connected clas-
sifier layer from MULTI.1.A, as the desired in-
put to MULTI.1.B. These results are given in Sec-
tion 5. MULTI.1.B consists of individual binary
XGBoost (Chen and Guestrin, 2016) classifiers
for each of the seven labels. These classifiers ac-
count for data imbalance for each given label by
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using the parameter scale_pos_weight to in-
dicate the number of negative examples per posi-
tive example in the training dataset4. The value of
scale_pos_weight is chosen as the approxi-
mation of this value in different partitions of the
dataset (Train, Dev and Train+Dev).

3.2.2 MULTI.2: MyRoberta + FCL_1 +
FCL_2 + FCM + Fuzzy_CLF

This system uses a fuzzy membership-based en-
semble classifier (Tandon and Chatterjee, 2022),
consisting of two sub-models, namely MULTI.2.A
and MULTI.2.B. The sub-model MULTI.2.A uses
fine-tuned MyRoberta for feature extraction, which
is fed to the sub-model MULTI.2.B for classifica-
tion. The architecture for this system is given in
Figure 3.

4The other parameters for these XGBoost Classifiers are
given in the Appendix

The first component of MULTI.2.A is My-
Roberta. The CLS embedding from MyRoberta
is passed to a fully connected layer with output
dimension 100, followed by a fully connected clas-
sifier layer with output dimension 7. While train-
ing the weights in the pooler layer and the last
five layers for the MyRoberta are re-initialized as
described in Section 3.1.2. This model is trained
using Binary Cross Entropy loss applied with sig-
moid activation, using AdamW optimizer. A linear
learning rate scheduler is used with 100 warm-up
steps and number of total steps corresponding to
25 epochs. This model uses 10 train epochs. All
the other hyperparameter values are same as given
in Table 4.

Output from the first fully connected layer in
MULTI.2.A is used as an input to MULTI.2.B.
MULTI.2.B uses this input for Fuzzy C-Means
(Bezdek et al., 1984) clustering algorithm, in which
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the clusters are considered as fuzzy sets over the
set of all samples. Each cluster is represented by
a fuzzy membership function. The parameters for
this model are c (number of clusters) and m (the
weighting exponent). This algorithm outputs Fuzzy
C-partition X = [Xi,j ]l×c which is used as the set
of features for the main classification model. Here,
l is the number of training documents. The use of
this as the set of features aims at measuring the
underlying uncertainty using membership-based
measures.

Using these features the set of input documents
D are clustered in k hard clusters. Each cluster
thus formed is considered as a fuzzy set on the pre-
scribed label set. In case of k clusters and p labels,
the cluster is represented by a p−dimensional vec-
tor of fuzzy membership values which are utilized
to assign the label set for an unseen example. Next,
a measure of association of clusters to each of the
extracted features (generated from Fuzzy C-Means
clustering algorithm) is derived, which aids in re-
trieving a value to represent a new instance as a
k−dimensional vector (R1, · · · , Rk), where each
Ri is the projection of the instance in the ith clus-
ter. Top s (s ≤ k) clusters with highest R values
are chosen. For a threshold value α the predicted
label set for this instance is computed as the set of
all labels whose membership to the union of these
clusters is greater than or equal to α. The math-
ematical details of the algorithm are given in the
Appendix.

4 Experimental Setup

The experiments were carried on Google Colab-
oratory in Python 3.7.12 with Nvidia Tesla P100
GPU. PyTorch (Paszke et al., 2019) and Hugging-
face Transformers (Wolf et al., 2020) are the key
frameworks used to carry out the experiments.

The text from the training data was used to fur-
ther pre-train RoBERTa and XLNet models, with-
out any preprocessing. The text was tokenized us-
ing the fast implementations of RobertaTokenizer
and XLNetTokenizer from the transformers library
i.e., RobertaTokenizerFast and XLNetTokenizer-
Fast, respectively.

The input text was tokenized using XLNetTok-
enizerFast for BINARY.1 and using RobertaTok-
enizerFast for BINARY.2.

For MULTI.1 and MULTI.2, the text in the train-
ing data was preprocessed using the following pre-
processing steps.

• The punctuations ",;- were removed from
the text.

• Extra spaces between contractions were re-
moved, and digits were removed from the text.

• The contractions were fixed using contrac-
tions library.5

• HTML symbols were removed.

• Any additional punctuations in particular,
!"#$%&()*+,-./:;<=>?@[\]ˆ_‘|˜
were removed.

For MULTI.1 and MULTI.2, the preprocessed
text is tokenized using RobertaTokenizerFast from
the transformers library. The XGBoost classifier
has been implemented using the XGBoost6 library
and the MiniBatchKmeans has been implemented
using scikit-learn7 Python library (Pedregosa et al.,
2011). Fuzzy C-means is implemented using the
‘fuzzy-c-means’(Dias, 2021) Python framework.
For MULTI.2, the parameters are given in Table 5.
These parameters are chosen by performing hyper-
parameter tuning using Train and Dev partitions of
the dataset.

Parameter Value
m 1.6
c 22
k 38
α 0.55
s 4

Table 5: MULTI.2.B Parameters

5 Results

Several experiments were conducted using the sys-
tems described in Section 3 and some variations
of these systems. The systems were trained on
the Training dataset (Train + Dev) and the metrics
obtained on Test set are discussed in this section.

5.1 Subtask 1
In BINARY.1, to understand the impact of the lay-
ers MyRoberta, MyXlnet, and Attn_head, ablation
experiments were carried out. For each of these
experiments, each one of these layers are systemat-
ically removed and the results are reported. Since

5https://github.com/kootenpv/contractions
6https://xgboost.readthedocs.io/en/stable/
7https://scikit-learn.org/stable/index.html
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Model Precision Recall F1-Score
BINARY.1: MyRoberta + MyXlnet + Attn_head 0.607 0.492 0.544
BINARY.1: MyRoberta + Attn_head 0.606 0.486 0.539
BINARY.1: MyXlnet + Attn_head 0.621 0.470 0.535
BINARY.1: MyRoberta + CLS 0.606 0.470 0.529
BINARY.1: MyXlnet + CLS 0.568 0.489 0.525
BINARY.1: MyRoberta + MyXlnet + CLS 0.588 0.476 0.526
BINARY.2: MyRoberta + Attn_head 0.631 0.470 0.539
BINARY.2: MyRoberta + CLS 0.598 0.483 0.534
roberta-baseline 0.394 0.653 0.491

Table 6: Experiments: Subtask 1

Model 1 2 3 4 5 6 7 Average
MULTI.1: MyRoberta + FCL_1 0.521 0.427 0.252 0.304 0.288 0.433 0.148 0.339

+ XGB
MULTI.1: MyRoberta 0.534 0.395 0.253 0.276 0.395 0.454 0.162 0.353

+ XGB
MULTI.2: MyRoberta + FCL_1 0.545 0.410 0.231 0.308 0.279 0.432 0.214 0.345

+ FCL_2
MULTI.2: MyRoberta + FCL_1 0.480 0.390 0.176 0.268 0.247 0.350 0 0.273

+ FCM + Fuzzy_CLF
MULTI.2: MyRoberta + FCL_1 0.534 0.421 0.232 0.276 0.235 0.420 0 0.303

+ FCM + Base_CLF
MULTI.2: MyRoberta + FCM 0.504 0.457 0.163 0.283 0.256 0.390 0 0.293

+ Fuzzy_CLF
MULTI.2: MyRoberta + FCM 0.548 0.405 0.219 0.256 0.286 0.362 0 0.297

+ Base_CLF
MULTI.2: MyRoberta + FCL_1 0.541 0.368 0.227 0.288 0.273 0.413 0.148 0.322

+ Base_CLF
MULTI.2: MyRoberta 0.539 0.400 0.200 0.286 0.286 0.416 0.267 0.342

+ Base_CLF
roberta-baseline 0.354 0 0.167 0 0 0.209 0 0.104

Table 7: Experiments: Subtask 2

BINARY.1 considers an ensemble of MyRoberta
and MyXlnet, exactly one of these is eliminated in
each set of experiments. Additionally, the attention
mechanism on the last hidden state is substituted
with using CLS embeddings (denoted CLS) from
the previous layer. The results from these experi-
ments are given in Table 6. This table also includes
the result for BINARY.2 and the official roberta-
baseline. Here, the proposed model in BINARY.2
is denoted by MyRoberta + Attn_head. For each
of these models, the final layer is a fully connected
layer which serves as a classifier unit.

The best precision is observed for the model
MyXlnet + Attn_head among the BINARY.1 ab-
lations, and for BINARY.2, overall. However
proposed model i.e., MyRoberta + MyXlnet +

Attn_head with the ensemble embedding layers
and an attention head performs the best according
to the overall F1-Score.

5.2 Subtask 2

In MULTI.1, two variations of the proposed
model can be achieved, depending on the input to
MULTI.1.B. The CLS embedding from MyRoberta
in MULTI.1.A can be considered as an input to
MULTI.1.B, or the output of the fully connected
layer in MULTI.1.A can be considered as input to
MULTI.1.B.

MULTI.2.A consists of three components,
namely MyRoberta followed by two fully con-
nected layers denoted as FCL_1 and FCL_2, re-
spectively. MULTI.2.B has two parts, namely the
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model consisting of Fuzzy C-Means clustering to
extract features followed by a multi-label classi-
fier model based on fuzzy membership. These two
parts will be denoted as FCM and Fuzzy_CLF, re-
spectively, as mentioned in Section 3.2. Ablation
experiments were performed by removing compo-
nents of these model to understand their impact in
the overall system. For these experiments the main
classifier layer is substituted with a One-vs-the-rest
classifier which fits one classifier per class. The
base estimator for this classifier is taken as a sup-
port vector classifier (This classifier was designed
using the scikit-learn library) . This classifier is
denoted as Base_CLF.

The results from these experiments are given in
Table 7. This table consists of F1-Scores for each of
the seven labels and the macro-average F1-Score.

It is observed that the F1-Score for the label
‘Unbalanced power relations’ is the highest among
all other labels, at 0.548. This value has been ob-
served for the the MULTI.2 ablation MyRoberta +
FCM + Base_CLF. The highest F1-Score for the
label ‘Shallow Solution’ is 0.457 using the model
MyRoberta + FCM + Fuzzy_CLF. The highest F1-
Scores for the labels ‘Presupposition’, ‘Metaphor’
and ‘Compassion’ are observed using MULTI.1
with the CLS embedding from MyRoberta consid-
ered as an input to MULTI.1.B. The highest F1-
Score for the labels ‘Authority Voice’ is observed
for MyRoberta + FCL_1 + FCL_2. The highest
F1-Score for the label ‘the poorer, the merrier’ is
observed for the MULTI.2 ablation MyRoberta +
Base_CLF. Overall best performance is observed
for MULTI.1 with the CLS embedding from My-
Roberta considered as an input to MULTI.1.B. It
is noted that all the presented experiments perform
better than the roberta-baseline.

6 Conclusion

In this paper, systems for the task of binary and
multi-label classification for detection of PCL in
text, have been proposed. For the binary classifica-
tion task, the first proposed system uses an ensem-
ble transformer-based language model architecture.
The other system detailed in the present work, for
binary classification is a fine-tuned transformer-
based language model with some custom layers.
The first system proposed for the task of multi-label
classification combines outputs from a transformer-
based model fine-tuned for multi-label classifica-
tion, and uses the embeddings from this model

as features for individual label-balanced XGBoost
models. Another system for multi-label classi-
fication has also been discussed, which uses a
transformer-based model fine-tuned for multi-label
classification, and uses the outputs from this model
as inputs to a fuzzy-membership based ensemble
classifier.

7 Acknowledgements

The experiments were conducted on Google Colab-
oratory.

A Appendix: Hyperparameters for
Further pre-training

The RoBERTa and XLNet models were further
pre-trained on the text from the Train+Dev set,
with the parameter setting given in Table 8. This
pre-training was carried out using RobertaFor-
MaskedLM (RoBERTa Model with a language
modeling head on top) and XLNetLMHeadModel
(XLNet Model with a language modeling head on
top) for RoBERTa and XLNet models, respectively.
The value of batch size was chosen based on com-
putation specifications, and the values of learning
rate and weight decay were chosen based on em-
pirical results presented in Sun et al.. To tune the
hyperparameter representing the number training
steps, the Train subset is used for training and the
Dev set is used for validation.

Experiment Setting Value
Train steps 30000
Batch Size 64
Initial Learning Rate 2e-5
Weight Decay 0.1
Optimizer AdamW
Learning Rate Scheduler Cosine
Warm-up steps 10

Table 8: Experimental Setting for further pre-training

B Appendix: Attention Architecture

This is defined with a fully connected layer
with input dimension as the size of the docu-
ment embeddings of dimension batch size ×
sequence length× embedding dimension from
the previous layer, and output dimension taken as
512. This is followed by a Tanh activation and an-
other fully connected layer with input dimension
as 512, and output dimension as 1. A softmax ac-
tivation is applied to this layer to get the weights
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corresponding to each token in the sequence. Us-
ing these weights a weighted sum of the document
embeddings of the size which were an input to
this layer, is calculated producing an output of size
batch size× embedding dimension.

C Appendix: Hyperparameters for
XGBoost Classifiers

The seven XGBoost classifiers trained in System B
use the hyperparameter values as given in Table 9.
For the hyperparameters not mentioned in the table,
their default values given in the Python implemen-
tation of XGBoost Classifier are used. In the table,
the parameter n_estimators denotes the number of
gradient boosted trees, eta indicates the learning
rate, min_split_loss indicates the minimum loss
reduction required to make a further partition on
a leaf node of the tree, max_delta_step indicates
the maximum delta step allowed to each leaf out-
put, subsample indicates the subsample ratio of
the training instances, reg_alpha denotes the L1
regularization term on weights, and tree_method
denotes the tree construction algorithm used in XG-
Boost.

Parameter Value
n_estimators 100
eta 0.5
min_split_loss 0.1
max_delta_step 2
subsample 0.6
reg_alpha 0.5
tree_method gpu_hist
objective binary:logistic

Table 9: XGBoost Classifier Parameters

D Appendix: MULTI.2.B Algorithm

The algorithm for MULTI.2.B is given in two parts,
the model generation algorithm and the prediction
algorithm, as given below.

D.1 Algorithm for Model Generation
1 MiniBatchKMeans (Sculley, 2010) clustering

algorithm is applied to X = [Xi,j ]l×c to ob-
tain k clusters namely (D1, · · · , Dk), result-
ing in Ω = [ωi,j ]k×l where

ωi,j =





1 , if the jthdocument
is in cluster Di

0 , otherwise

2 A degree of association ζ(i, j) of each cluster
Di with each feature fj is calculated as av-
erage of the feature values of fj over all the
documents in cluster Di i.e., if the indices of
the samples in clusterDi are {e(i)1 , · · · , e(i)|Di|},
then,

ζ(i, j) =

∑|Di|
r=1Xe

(i)
r ,j

|Di|

3 Cluster Di is modeled as a fuzzy set of labels,
with membership of label cr to Di as µDi(cr),
for r = 1, 2, · · · , p, which is modeled as the
proportion of occurrences of label cr in the
label set of each document in the cluster Di.
Thus,

µDi(cr) =

∑l
s=1 ωi,sGs,r∑l

s=1 ωi,s

where G = [Gi,j ]l×p is defined as

[
Y1 Y2 · · · Yl

]T

Yi = (Yi,1, · · · , Yi,p) is the label vector for
the ith sample where Yj = 1 if the document
has label j and Yj = 0 otherwise.

D.2 Algorithm for Prediction
Given an input text the following steps are per-
formed to compute its label set.

1 This text is passed as input to MULTI.2.A
and the output from the first fully connected
layer is sent to the trained Fuzzy C-Means
clustering algorithm. The Fuzzy C-partition
from this is denoted by v = (v1, · · · , vc).

2 Using ζ(i, j), a vector R = (R1, · · · , Rk) is
calculated as,

Ri =

∑c
j=1 vjζ(i, j)∑c
j=1 ζ(i, j)

Here Ri represents the weighted average of
(v1, · · · , vc) with weights as the degree of
association vector (ζ(i, 1), · · · , ζ(i, c)) corre-
sponding to the ith cluster.

3 Top s, s ≤ k clusters with highest R val-
ues, say {Dγ1 , Dγ2 , · · · , Dγs} are chosen and
their fuzzy union (or fuzzy t-conorm) is con-
sidered. In this case the fuzzy t-conorm alge-
braic sum8 is used.

8u(a, b) = a+ b− ab
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4 For a given threshold α, predicted set of labels
is computed as {ci|µDγ1∪Dγ2∪··· ,Dγs

(ci) ≥
α}.
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Abstract

Patronizing and Condescending Language
(PCL) towards vulnerable communities in gen-
eral media has been shown to have poten-
tially harmful effects. Due to its subtlety and
the good intentions behind its use, the audi-
ence is not aware of the language’s toxicity.
In this paper, we present our method for the
SemEval-2022 Task4 titled "Patronizing and
Condescending Language Detection". In Sub-
task A, a binary classification task, we intro-
duce adversarial training based on Fast Gra-
dient Method (FGM) and employ pre-trained
model in a unified architecture. For Subtask
B, framed as a multi-label classification prob-
lem, we utilize various improved multi-label
cross-entropy loss functions and analyze the
performance of our method. In the final evalua-
tion, our system achieved official rankings of
17/79 and 16/49 on Subtask A and Subtask B,
respectively. In addition, we explore the rela-
tionship between PCL and emotional polarity
and intensity it contains. Our code is available
on Github 1.

1 Introduction

Patronizing and Condescending Language (PCL)
expresses a superior attitude towards vulnerable
communities (e.g. women, refugees, poor families),
and describes them or their situation in a charitable
way that evokes feelings of compassion (Pérez-
Almendros et al., 2022). Although it is generally
used involuntarily and with good intentions, the use
of PCL can potentially be very harmful, as it feeds
stereotypes, routinizes discrimination and drives
to greater exclusion. Due to the subtlety of PCL,
PCL detection is difficult for both humans and NLP
systems and has aroused broad attention.

To address the challenge of patronizing and con-
descending language detection in general media,
Pérez-Almendros et al. (2022) introduce the Task

1https://github.com/Nutpok/GUTS-at-SemEval-2022-
Task-4.git

4 at SemEval-2022, and build a dataset with an-
notated paragraphs extracted from news articles in
English. Given a paragraph, systems must predict
whether it contains condescending language or not
(Subtask A), and whether it contains any of the 7
subtypes identified in the PCL taxonomy (Subtask
B).

For Subtask A, a binary classification task, we
introduce adversarial training based on Fast Gradi-
ent Method (FGM) (Miyato et al., 2016), enhanc-
ing the robustness of the model. And in Subtask
B, a multi-label classification problem, there is a
long-tailed distribution of each label. To address
the class imbalance problem, we utilize various
improved multi-label cross-entropy loss functions:
Focal loss (Lin et al., 2017), Class-balanced focal
loss (Cui et al., 2019) and Distribution-balanced
loss (Wu et al., 2020). We analyze the performance
of our methods and demonstrate the contribution
of each component of the architecture.

In addition to completing basic evaluation tasks,
we also explore the relationship between PCL and
emotional polarity and intensity it contains in offi-
cial dataset. The experimental results demonstrate
that the above two have relevance.

The structure of the paper is as follows: We first
provide a brief overview of related research, and
then introduce our proposed framework. Besides,
experiments and evaluations as well as the analysis
of results are given. Finally, we discuss the future
directions of our work.

2 Related Work

Patronizing and condescending language has been
studied extensively in sociolinguistics and the
traits of PCL have been suggested by related re-
search. PCL builds stereotypes (Fiske, 1993),
which strengthen exclusion, discrimination, rumour
spreading (Nolan and Mikami, 2013) and unbal-
anced power relations (Sap et al., 2019), relying on
subtle language (Mendelsohn et al., 2020). It tends
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to avoid stating the reasons for deep-rooted soci-
etal problems by concealing those responsible and
proposes temporary solutions (Chouliaraki, 2010),
which oversimplify the core problems (Head, 2008).
The abuse of PCL exacerbates the difficulty of im-
proving the lives of disadvantaged groups (Nolan
and Mikami, 2013) and dehumanizes minorities in
news media (Mendelsohn et al., 2020). Due to its
hazard, PCL is classified as a milder form of toxic
speech (Dale et al., 2021).

The increasingly social issue caused by PCL has
attracted considerable attention of researchers in
the natural language processing (NLP) field. Wang
and Potts (2019) introduced the task of condescen-
sion detection in direct communication and built
a dataset with annotated social media messages.
Pérez-Almendros et al. (2020) proposed Don’t Pa-
tronize Me!, an annotated dataset with PCL, and
demonstrated the effectiveness of the model for
PCL detection (Kenton and Toutanova, 2019).

3 Methodology

3.1 Preliminaries

We utilize a transformer-based pre-trained lan-
guage model (PLM), such as BERT and RoBERTa,
to represent the input sentences. Each sentence
x = [CLS, t1, t2, ..., tT , SEP ] is embedded as
s ∈ Rn×demb , where n is the sequence length and
demb is the dimension of the embedding. We add a
softmax classifier on the sentence-level embedding,
such as the final hidden state hCLS of the [CLS]
in BERT:

pi = softmax(Wh[CLS]) (1)

where W ∈ RC×demb , and C denotes the number
of classes.

3.2 Adversarial Training

Adversarial training (Goodfellow et al., 2015) is
a effective regularization method for classifiers to
improve robustness to small, approximately worst
case perturbations. In SubtaskA, we introduce Fast
Gradient Method (FGM) (Miyato et al., 2016), a
novel approach in adversarial training, to improve
the generalization ability of the model in PCL de-
tection. Figure 1 shows the overall framework of
our model.

According to FGM, we apply tiny perturbations
to sentence embeddings rather than original input
itself. The adversarial perturbation radv on s is
defined as:

Figure 1: Model architecture for our proposed method
in Subtask A.

radv = ϵ · g/∥g∥2 where g = ∇sL(s, y) (2)

where ϵ is a hyperparameter limiting the size of the
adversarial perturbations.

To integrate the information trained from origi-
nal and adversarial samples, we use an overall loss
function as follows:

L = L(s, y) + Ladv(s+ radv, y) (3)

3.3 Balancing Methods
Subtask B becomes a challenging multi-label
text classification task because of its long-
tailed distribution of labels, each training sample
{(x1, y1), . . . , (xN , yN )} has a multi-label group
yk = [yk1 , . . . , y

k
C ] ∈ {0, 1}C , and a classification

result zk = [zk1 , . . . , y
k
C ]. In this work, we use

different balancing methods (Huang et al., 2021)
re-weighting the binary cross entropy to address the
class imbalance problem. And the sigmoid func-
tion is used for computing pki = σ(zki ). The codes
of these several balanced loss functions are open
source2.

Focal Loss (FL) proposed by Lin et al. (2017)
places a higher weight of loss on “hard-to-classify”
instances, which are predicted with low probability.
The FL can be formulated as follows:

LFL =

{
−α(1− pki )

γ log(pki ) if yk
i = 1

−α(pki )γ log(1− pki ) otherwise
(4)

2https://github.com/Roche/BalancedLossNLP
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where γ ≥ 0 is a non-negative tunable focusing pa-
rameter to differentiate between easy and difficult
samples and α ∈ [0, 1] is a weighting factor to bal-
ance the training weights of positive and negative
samples, pki is the kth choice of pi.

Class-balanced Focal Loss (CB) (Cui et al.,
2019) re-balances the loss according to the effec-
tive number of samples for each class. Data sam-
pling can be viewed as a random coverage problem,
therefore we assign weights to the different classes
based on the number of effective samples. The
class-balanced term is defined as:

rCB =
1− β

1− βni
(5)

where β ∈ (0, 1) controls the effect of effective
number of samples on marginal benefit. And we
can use this term to re-weight focal loss:

LCB =

{
−rCB(1− pki )

γ log(pki ) if yk
i = 1

−rCB(p
k
i )

γ log(1− pki ) otherwise
(6)

Distribution-balanced loss (DB) Wu et al.
(2020) present DBloss to overcome the additional
imbalance caused by label co-occurrence upon re-
sampling. In the case of single label, the resam-
pling probability of each instance can be defined
as: PC

i = 1
C

1
ni

; while under multi-label conditions,
the instance is repeatedly sampled by each positive
class it contains, thus the resampled probability
can be defined as P I = 1

C

∑
yki =1

1
ni

. And we can
obtain a balancing term: rDB = PC

i /P
I . With a

smooth function r̂DB = α + σ(β × (rDB − µ)),
mapping the weight rDB to a reasonable range, the
re-balanced loss function is defined as:

LR−FL =

{
−r̂DB(1− pki )

γ log(pki ) if yk
i = 1

−r̂DB(p
k
i )

γ log(1− pki ) otherwise
(7)

To mitigate the over-suppression of negative la-
bels, Wu et al. (2020) introduce a Negative Tol-
erant Regularization (NTR) in the loss function.
NTR initializes a non-zero bias vi as a threshold,
and linearly scales the negative logits before the
original loss is computed negative, together with a
regularization parameter λ to constrain the gradient
between 0 and 1. The distribution-balanced loss
with NTR can be defined as:

LDB =




−r̂DB(1− qki )

γ log(qki ) if yk
i = 1

−r̂DB
1

λ
(qki )

γ log(1− qki ) otherwise
(8)

where qki = σ(zki − vi) for positive instances and
qki = σ(λ(zki − vi)) for negative ones. Due to its
strong applicability, NTR can also be utilized in
Focal loss and DBloss to avoid over-suppression
(Huang et al., 2021).

4 Experiments

4.1 Dataset and Evaluation

The dataset from the Task4 of SemEval2022 con-
tains paragraphs about potentially vulnerable social
groups3. The paragraphs have been extracted from
the News on Web (NoW)4 corpus (Davies, 2013).
The total number of training set is 10469 and the fi-
nal test set contains 2971 samples. The statistics of
datasets are shown in Table 1 and the distribution
of PCL categories is reported in Table 2.

Label Samples Proportion
PCL 993 9.49%

no PCL 9476 90.51%
Table 1: The distribution of labels in SubTaskA.

PCL Categories Samples Proportion
Unb. power rel. 716 6.84%
Shallow solu. 196 1.87%

Presupposition 224 2.14%
Authority voice. 230 2.20%

Metaphor 197 1.88%
Compassion 469 4.48%

The p., the mer. 40 0.04%
Table 2: The distribution of labels in SubTaskB.

To estimate the performance of the system, the
organizers used different metrics for subtask A and
B. In Subtask A, a binary classification task, F1
over the positive class is applied as evaluation mea-
sure, while for Subtask B, framed as a multilabel
classification problem, results are evaluated based
on the macro-average F1 of seven PCL categories.

4.2 Experimental Settings

We utilize Roberta-base (Liu et al., 2019) as the
pretrained language model for representing the in-
put paragraphs. The AdamW optimizer is used for
model training. In evaluation period, we perform
five-folds cross-validation on training set and eval-
uate the performance of our model using average
metrics over five-folds. We keep the model param-
eters for optimal performance. In test phase, we

3https://github.com/Perez-AlmendrosC/dontpatronizeme
4https://www.english-corpora.org/now/

434



utilize each fold of the optimal model to predict on
the offical test set and vote on the results to obtain
the final predictions.

Specially, we implement our model with
transformers5 package. During the training
phase, we evaluate the performance of the model
every 200 steps and retain the parameters of the
model that performed best on the validation set.
The hyperparameters settings adopted are shown
in Table 3. All models are trained on NVIDIA
Geforce GTX 3090 GPU.

Hyperparameters SubtaskA SubtaskB
seed 1234 1234

epochs 5 15
batch size 32 8

learning rate 2e-4 2e-4
alpha 0.6 0.95

gamma 2 4
dropout 0.25 -

Table 3: The hyperparameters of the experiment.

4.3 Results and Discussions
The influence of adversarial training. Table 4
shows the influence of adversarial training in Sub-
task A. Based on the experimental results, we ob-
serve that the introduction of FGM can improve the
detection capability of the model in both evalua-
tion phase and test phase. It shows that adversarial
training can improve the robustness of the model.

Evaluation phase
Model F1(postive)

RoBERTa 0.5699
RoBERTa+FGM 0.5785
Test phase

Model F1(postive)
RoBERTa 0.5545

RoBERTa+FGM 0.5790

Table 4: The performance of our model in Subtask A.

The influence of balancing methods. Table 5
shows the results of our framework trained with
various loss functions in Subtask B. It is observed
that the performance after introducing the balanc-
ing methods is significantly more superior than
BCE, while the effect is further improved after em-
ploying NTR.

In the period of test, we choose two models
with the best performance during the evaluation

5https://huggingface.co/

Evaluation Phase
Loss Function F1(macro)

BCE 0.2923
FL 0.3662
DB 0.3767
CB 0.3776

FL+NTR 0.3917
CB+NTR 0.3922

Test Phase
Loss Function F1(macro)

FL+NTR 0.3700
CB+NTR 0.3537

Table 5: The performance in Subtask B.

phase to predict the samples, which are trained
with FL+NTR and CB+NTR, respectively. More-
over, the model trained with FL+NTR performs
better in the final test set. It is because CB is more
sensitive to the assumed sample space size β. If
there is a significant difference between the train-
ing set and the label distribution of the test set, the
ability of the model to address label imbalance will
be reduced. In the follow-up work, we will con-
duct more experiments to observe the impact of
parameters on hyperparameters.

5 Emotional Polarity and Intensity of
PCL

In this section, we conduct a further analysis to
explore the relevance between PCL and emotional
polarity and intensity it contains.

We employ NLTK6, a natural language process-
ing toolkit, to determine the emotional features of a
paragraph. For a given text, parser of NLTK returns
a sentiment score in a interval of [-1,1], which de-
termines if sample is positive or negative and shows
emotional intensity. We divide the sentiment score
into 5 levels, and the mapping relationships reflect-
ing motional polarity and intensity are shown in
Table 6 and Table 7.

Sentiment Score Emotional Level
[−1,−0.6] -2
[−0.6,−0.2] -1
[−0.2, 0.2] 0
[0.2, 0.6] 1
[0.6, 1] 2

Table 6: Mapping between sentiment scores and emo-
tional level of the polarity.

6https://github.com/nltk/nltk

435



Sentiment Score Emotional Level
[−0.2, 0.2] 0

[0.2, 0.4] ∪ [−0.4,−0.2] 1
[0.4, 0.6] ∪ [−0.6,−0.4] 2
[0.6, 0.8] ∪ [−0.8,−0.6] 3
[0.8, 1] ∪ [−1,−0.8] 4

Table 7: Mapping between sentiment scores and emo-
tional level of the intensity.

We divide the training set into 5 subsets based
on the sentiment level and calculate the number of
samples. Then we count the proportion of para-
graph containing PCL in each subset. The experi-
mental result is reported in Figure 2 and 3.

Figure 2: The emotional polarity level of PCL. Blue
strip: proportion of samples with each level reflecting
emotional polarity in the entire dataset, yellow line:
proportion of PCL in subset with each emotional level.

Figure 3: The emotional intensity level of PCL. Blue
strip: proportion of samples with each level reflecting
emotional intensity in the entire dataset, yellow line:
proportion of PCL in subset with each emotional level.

From the results, we can observe that: a) The
paragraph containing PCL is more likely to express
positive emotions since the use of PCL is often
with good intentions. b) Paragraphs with higher
emotional intensity are more likely to contain PCL.
This is because there are numerous excerpts of live
speeches, speakers tend to express their opinions
in a stronger tone, which is often condescending.

6 Conclusion and Future Work

In this work, we present our approach to the
SemEval-2022 Task 4 to tackle the problem of pa-
tronizing and condescending language detection.
We employ adversarial training and balancing meth-
ods for PCL classification with long-tailed class
distribution and demonstrate the effectiveness of
our methods.

Besides basic deep learning techniques, intro-
ducing multi-task learning in PCL detection, such
as predicting the sentiment polarity of a paragraph,
is also a problem worth discussing. We have found
that PCL is associated with the emotional polar-
ity and intensity of paragraphs. In the future, we
will further explore the relationship between sen-
timent analysis and PCL detection and propose
corresponding multitasking frameworks.
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Abstract
This paper describes the system for the
Semeval-2022 Task4 ”Patronizing and Conde-
scending Language Detection”.An entity en-
gages in Patronizing and Condescending Lan-
guage(PCL) when its language use shows a
superior attitude towards others or depicts them
in a compassionate way. The task contains two
parts. The first one is to identify whether the
sentence is PCL, and the second one is to cate-
gorize PCL. Through experimental verification,
the RoBERTa-based model will be used in our
system. Respectively, for subtask 1, that is, to
judge whether a sentence is PCL, the method
of retraining the model with specific task data
is adopted, and the method of splicing [CLS]
and the keyword representation of the last three
layers as the representation of the sentence; for
subtask 2, that is, to judge the PCL type of the
sentence, in addition to using the same method
as task1, the method of selecting a special loss
for Multi-label text classification is applied. We
give a clear ablation experiment and give the
effect of each method on the final result. Our
project ranked 11th out of 79 teams partici-
pating in subtask 1 and 6th out of 49 teams
participating in subtask 2.

1 Introduction

The effect of Patronizing and Condescending Lan-
guage (PCL) towards vulnerable communities in
the media is not always conscious and the intention
of the author is often to help the person or group
they refer to (e.g. by raising awareness or funds or
moving the audience to action). However, these su-
perior attitudes and discourse of pity can routinize
discrimination and make it less visible. While there
has been substantial work on modeling language
that purposefully undermines others, the modeling
of PCL is still an emergent area of study in NLP
since PCL is the speaker’s unconscious superior
speaking attitude, the special word that causes PCL
is subtle compared to the keywords in other natural
language processing problems.

The authors decided to evaluate the questions
separately. In Semeval-2022 task 4: Patroniz-
ing and Condescending Language Detection(Pérez-
Almendros et al., 2022), the purpose of subtask 1 is
to identify whether a sentence is PCL. In contrast,
the goal of subtask 2 is to indicate the presence of
PCL at the text span level, which detects the exact
categories in the seven categories of PCL.In sub-
task 1, the method of using data set retraining to
make the pre-trained language model learn the spe-
cific distribution of the data set, adding keywords
to the input, and integrating five RoBERTa-based
models, subtask 2 is to select k from 7 For classifi-
cation tasks, task-specific loss calculation methods
are designed. These methods will be explained in
detail in the following sections.

2 Background

Research on PCL has been in various fields such
as language studies (Margić, 2017), sociolinguis-
tics (Giles et al., 1993), politics (Huckin, 2002) or
medicine (Komrad, 1983). In recent years, natural
language processing systems for recognizing PCL
languages have also begun to emerge, for exam-
ple, (Wang and Potts, 2019) introduced the task of
modeling humility in direct communication from
an NLP perspective, and developed a dataset of
annotated social media messages. In the same year,
(Sap et al., 2019) discuss the social and power im-
plications behind the use of certain languages, an
important concept in the imbalanced power rela-
tions that often arise in condescending treatment.
But there has not been a standard in terms of accu-
racy and definition of PCL. Therefore, this article
will first explain the definition of PCL and define
some categories of the linguistic techniques used
to express PCL.

2.1 What is PCL

Somebody is patronizing or condescending when
their language denotes a superior attitude towards
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others, talks down to them, or describes them or
their situation in a charitable way, raising a feel-
ing of pity and compassion. For example,People
across Australia ordered pizzas to be delivered on
Saturday night, with the ample leftovers donated to
local homeless shelters. is a sentence that contains
PCL for the sentence conveys a superior attitude
towards the homeless.

Patronizing and Condescending Language (PCL)
is often involuntary and unconscious, and the au-
thors using such language are usually trying to help
communities in need by e.g., raising awareness,
moving the audience to action, or standing for the
rights of the under-represented. On the other hand,
due to its subtlety, subjectivity, and the (generally)
good intentions behind its use, the audience is of-
ten unaware of this diminishing treatment. But
PCL can potentially be very harmful, as it feeds
stereotypes, routinizes discrimination, and drives
to greater exclusion.

PCL detection is difficult both for humans and
NLP systems, due to its subtle nature, its subjec-
tivity, and the fair amount of world knowledge and
commonsense reasoning required to understand
this kind of language. With this task, we expect to
push the boundaries of this new challenge in the
NLP community.

2.2 Categories of PCL

Our PCL taxonomy has been defined based on pre-
vious works on PCL. We consider the following
categories:

Unbalanced power relations The author dis-
tances themselves from the community or the situ-
ation they are talking about and expresses the will,
capacity or responsibility to help those in need. It
is also present when the author entitles themselves
to give something positive to others in a more vul-
nerable situation, especially when what the author
concedes is a right which they do not have any
authority to decide to give.

Shallow solution A simple and superficial char-
itable action by the privileged community is pre-
sented either as life-saving/life-changing for the
unprivileged one or as a solution for a deep-rooted
problem.

Presupposition When the author assumes a situ-
ation as certain without having all the information
or generalizes their or somebody else’s experience
as a categorical truth without presenting a valid,

trustworthy source for it (e.g. a research work or
survey). The use of stereotypes or clichés is also
considered to be an example of presupposition.

Authority voice When the author stands them-
selves as a spokesperson of the group, or ex-plains
or advises the members of a community about the
community itself or a specific situation they are
living.

Metaphor They can conceal PCL, as they cast
an idea in another light, making a comparison be-
tween unrelated concepts, often with the objective
of depicting a certain situation in a softer way. For
the annotation of this dataset, euphemisms are con-
sidered as an example of metaphors.

Compassion The author presents the vulnerable
individual or community as needy, raising a feeling
of pity and compassion from the audience towards
them. It is commonly characterized by the use of
flowery wording that does not provide information,
but the author enjoys the detailed and poetic de-
scription of the vulnerability.

The poorer, the merrier The text is focused on
the community, especially on how the vulnerability
makes them better (e.g. stronger, happier, or more
resilient) or how they share a positive attribute just
for being part of a vulnerable community. People
living in vulnerable situations have values to ad-
mire and learn from. The message expresses the
idea of vulnerability as something beautiful o or
poetic. We can think of the typical example of
‘poor people are happier because they don’t have
material goods.

3 System description

In subtask 1 and subtask 2, we ensemble sev-
eral models to obtain the results, which are all
in RoBERTa-Based architecture (Liu et al., 2019).
RoBERTa learns an inner representation of the En-
glish language that can be used to extract features
useful for downstream tasks. In subtask 1, we pre-
train the model on task-specific data. In subtask
2, we utilize multi-label categorical cross-entropy
loss to improve performance.

3.1 Data pre-processing

Data for both subtask 1 and subtask 2 contain im-
portant information such as the keyword of the
sentence and country code. In subtask 1, We trun-
cate the original text centered on the keyword and
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(a) RoBERTa-Based architecture of subtask 1. (b) RoBERTa-Based architecture of subtask 2.

Figure 1: RoBERTa-Based architecture. In our system, the transformer encoder is RoBERTa, the input is pre-
processed data mentioned above, pooler output denotes the last layer hidden-state of the first token of the sequence
(classification token), hN means hidden states of the keyword extracted during pre-processing, which are the output
of the Nth layer from the bottom of the encoder. Attention Layer uses the attention mechanism and calculates
attention scores of inputs as weights. FeedForward Layer consists of two linear layers and performs the nonlinear
transformation. PN denotes the probability that the Nth label belongs to the sentence.

extract the keyword and its position in the sen-
tence. Also, the article location of the sentence,
the keyword of the sentence and the country of
the sentence are added to the input as additional
features to make the model learn more useful in-
formation. Noting that the given country names
are in abbreviated form, we restore them to their
full form. With this approach, the input formats are
shown in Tabel 1. What’s more, considering the
label imbalance problem of subtask 1, we find the
sentences containing PCL from the data in subtask
2 and merge them to form several new sentences as
data augmentation.

In subtask 2, We collect different labels of the
same sentence to form a single piece of data and
use the same way as subtask 1 to pre-process the
data. Finally, we lowercase the pre-processed text
of both subtasks before they are tokenized.

3.2 Task-Adaptive pretraining

It is proved that Task-Adaptive pretraining can help
improve the performance of downstream tasks (Gu-
rurangan et al., 2020). In order to make our model
better learn the distribution of the data for this task,
we pretrain RoBERTa-large model on unlabeled
data from subtask 1 and subtask 2. For the same
consideration, we process the pretraining data in

the way mentioned in Section 3.1.
We apply masked language modeling to pretrain

RoBERTa model and use dynamic masking accord-
ing to the RoBERTa paper. Compared with the
original model, the model pretrained in this way
can improve the performance to a greater extent.

3.3 RoBERTa-Based architecture

We tried different pretrained models on two sub-
tasks. In our experiments, models initialized with
RoBERTa outperform other models. So we choose
RoBERTa and pretrain it on task-specific data as
our basic model.

Model of subtask 1 In subtask 1, our system
uses ensembles of 5 models based on pretrained
RoBERTa-Based architecture. As shown in Fig-
ure 1(a), the RoBERTa-Based architecture consists
of two components: Transformer Encoder, Atten-
tion Layer.

First, we pre-process the data to carry more in-
formation and tokenize the input into a form ac-
cepted by the model. The transformer encoder
then is used to extract context representation of the
whole sentence. During pretraining, transformer-
based language models always use inputs with
special tokens(such as [CLS]), so we take out the

440



extra information Original text Pre-processed text
par id: 1964
keyword: refugee
country: my

hospitals fill as rohingya
refugees shiver
through winter.

from 1964, keyword: refugee,
country: Malaysia, hospitals fill as
rohingya refugees shiver through winter.

par id: 4136
keyword: homeless
country: za

durban ’s homeless
communities reconciliation
lunch.

from 4136, keyword: homeless, country:
South Africa, durban ’s homeless
communities reconciliation lunch.

Table 1: Examples of Pre-processed text, where ”extra information” means additional information in the training
data, ”Original text” means the original sentence to be judged as PCL or not, ”Pre-processed text” means the
sentence after pre-processing.

last layer hidden-state of the first token of the se-
quence(named pooler output), which is the repre-
sentation of ”[CLS]”, to obtain a vector represen-
tation of the whole sentence. Also, we extract the
hidden-state of the keyword of the last three layers,
as it is proved that high-level network of trans-
former encoder learns rich semantic information
features(Jawahar et al., 2019).

After we get the pooler output and hidden states
of the keyword of each sentence, the two represen-
tations are concatenated and fed into an attention
layer. We utilize the self-attention mechanism to
calculate attention scores as weights in order to
make the model attend to essential information.
Finally, perform a linear transformation to get re-
duced representations. The whole process for the
model to get the classification results is as follows:

Attn(e) = Softmax(A(eW1+b1)W2+b2) (1)

Out = (Attn(e) · e)W3 + b3 (2)

Where e denotes the concatenation of pooler output
and the last three hidden states of the keyword of
each sentence. A is the Gaussian Error Linear Unit
(GELU) (Hendrycks and Gimpel, 2016) activation
function, Out denotes the probabilities of sentence-
level labels.

Model of subtask 2 In subtask 2, our system
uses ensembles of 2 models based on pretrained
RoBERTa-Based architecture. As shown in Fig-
ure 1(b), the RoBERTa-Based architecture consists
of two components: Transformer Encoder, Feed-
Forward Layer.

The pre-processed data is obtained by the same
method as subtask 1. We also take out the pooler
output of the encoder, Furthermore, through experi-
ments, we find that the last two hidden layer outputs
of the keyword in each sentence are more effec-
tive for this subtask. Then the two representations

are concatenated and fed into the Feed-Forward
Layer, which is a combination of multiple linear
and nonlinear transformations. Finally, we get the
probability of each PCL category implied in the
sentence.

According to a previous work (Sun et al., 2020),
we use the loss function called multi-label categor-
ical cross-entropy. Considering that the task is a
multi-label classification problem, a common im-
plementation is to use sigmoid activation, and then
turn it into n binary classification problems, using
the sum of the cross-entropy of the binary classifi-
cation as the loss. Supposing k target categories are
selected from n candidate categories, when n≫ k,
this approach will face a serious class imbalance
problem. Therefore, we try to extend softmax and
cross-entropy to multi-label classification, which
expects each target class score is not less than the
score for each non-target class. Instead of turn-
ing multi-label classification into multiple binary
classification problems, it becomes a pairwise com-
parison of target class scores and non-target class
scores to avoid class imbalance phenomenon. In
the implementation, the weight of each label is au-
tomatically balanced with the good properties of
log-sum-exp. The calculation process of the loss is
as follows:

log(1 +
∑

i∈Ωneg

esi) + log(1 +
∑

i∈Ωpos

e−sj ) (3)

Where Ωneg is the set of negative labels and Ωpos
is the set of positive labels. sN is the score of the
Nth label in the corresponding set. In our exper-
iments, we find that using this loss function can
help improve the model performance.
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task Train Valid Total

subtask 1
PCL 7581 794 2094

not PCL 1895 199 8375

subtask 2

Unb. power rel. 574 142 716
Shallow solution 160 36 196
Presupposition 162 62 224
Authority voice 192 38 230

Metaphor 145 52 197
Compassion 363 106 469

The p., the mer. 29 11 40

Table 2: Statistics of the dataset

4 Experiment

4.1 Dataset

We trained our models on SemEval-2022 Task 4
training data which is an annotated dataset with
Patronizing and Condescending Language(PCL)
towards vulnerable communities(Pérez-Almendros
et al., 2020). The organizers not only annotated
all text spans as containing PCL, but also provided
PCL category labels, including a total of seven
more fine-grained level categories. At last, there
are 10469 marked data in total. The organizers of
the competition have divided the data into train-
ing set and validation set using the split ratio 8:2.
And each text contains an average of 232 tokens.
Subtask 1 is a binary classification task, so the la-
bels are just PCL and not PCL, but most of them
contain PCL accounts for the majority resulting in
imbalance between classes. Subtask 2 is a multi-
label binary classification task that aims to predict
which PCL categories these texts belong to. And
The proportion of each category is more balanced.
The statistics of these datasets are given in Table 2.

4.2 Metric

For Subtask 1, it is a binary classification task that
will be evaluated using F1 value of the positive
class. Subtask 2 is a multi-label classification task,
which is evaluated by macro-F1. The calculation
formula is as follows. The experimental results are
all obtained by averaging three runs with different
random initialization.

F1 =
2× P ×R
P +R

(4)

Macro− F1 =
1

n

n∑

s=1

Fz (5)

4.3 Experiment Settings

After many experiments, the results show that the
effect of using RoBERTa-large is the best and most
stable. So at last, all models used in the end are
all based on the RoBERTa-large. At the same time,
the maximum length of the text is 512. We use
Adam as the optimizer with a learning rate of 2e-5.
We also use gradual warmup(Goyal et al., 2017)
and cosine annealing schedule for learning rate.
The coefficient of L2-regularization is 1e-5 and
batch size is 32. All the experiments are done on
2 NVIDIA 3090 GPUs, and Limited by the size of
GPU memory, we used gradient accumulation.

4.4 Results

For Subtask 1, we designed four models in total:
(1)RoBERTa-ft: simply fine-tune RoBERTa-large
model;(2) RoBERTa-cls3: extract the first hidden
vector of the last three layers of RoBERTa model
and cat them, then pass through a self-attention
layer. At last, the hidden vector obtained by multi-
plying the softmax weight is classified through the
linear layer to get predictions;(3) RoBERTa-cls4:
similar with model1, The only difference is that
this model extracts the first hidden vector of the
last four layers. (4) RoBERTa-key: this model will
take out the hidden vector corresponding to the key-
word and splice it with the pooler-out vector, then
pass through the linear layer to get predictions. For
Subtask 2, we build two models at last, including:
(1) RoBERTa-ff: cat the hidden vectors of the last
two layers, and then spliced with pooler-out to pass
through a feedforward layer. (2)RoBERTa-att: cat
the hidden vectors of the last two layers, and then
spliced with pooler-out to pass through an attention
layer.

Table 3 shows the best F1 values of each model
on the official Subtask 1 validation set. And Table 4
shows the F1 values of the above two models on
each category and their average values in Subtask
2. For both Subtask 1 and Subtask 2, we set the
maximum number of epochs to 10 and open early
stop.

We can see from the data in the table that
all of the considered methods clearly outperform
the baseline. For Subtask 1, the RoBERTa-key
achieves the best performance. We also try some
other methods, such as extracting the last four hid-
den vectors of the model, calculating the average
value or the maximum value, but their effect is
not as good as the above methods. We think that
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Method acc F1
baseline - 0.5211
RoBERTa-ft 0.9254 0.6385
RoBERTa-cls3 0.9288 0.6410
RoBERTa-cls4 0.9303 0.6439
RoBERTa-key 0.9298 0.6475

Table 3: Results of detecting PCL, viewed as a binary classification problem (Subtask 1).

Unb. Auth. Sha. Pre. Com. Meta. The p. average
method F1 F1 F1 F1 F1 F1 F1 F1
Baseline 0.3844 0.3614 0.3212 0.3745 0.3187 0.376 0.1045 0.3201

Robeta-att 0.5876 0.5423 0.4224 0.4341 0.4359 0.5026 0.1635 0.4412
RoBERTa-ff 0.5958 0.4942 0.3942 0.4492 0.3971 0.4874 0.2887 0.4438

Table 4: Results for the problem of categorizing PCL, viewed as a multi-label classification problem (Subtask 2).

Model F1
RoBERTa 0.5921

+Prefix template 0.6045
+key-hidden 0.6127

+pre-train 0.6386
Last 0.6475

Table 5: Ablation results of our model

the keyword can be regarded as an object. For ex-
ample, if the keyword is poor, the passage is to
judge whether the author has an arrogant attitude
towards the poor. Therefore, the hidden vector cor-
responding to the keyword contains more feature
information and is very helpful for our judgment.
At the same time, extracting the last few hidden
vectors contains more information with different
granularity. For Subtask 2, We also tried many
other different structures, the RoBERTa-ff achieves
the best performance we find after a lot of experi-
ments.

4.5 Ablation

We used some stricks and methods in the competi-
tion, and we show the improvement effect of each
method through the ablation experimental results
on Subtask 1 in Table 5. It can be seen that the im-
provement brought by pre-training is the most sig-
nificant which improves by more than two points.
The second is to add a prefix template. In addition
to these methods in the table, there are also slight
improvements by some stricks such as resampling.

5 Conclusion

The paper describes our system at SemEval-2022
Task 4, which uses several different models based
on RoBERTa. We used a series of methods such
as pre-training, constructing prefix templates, and
model fusion to achieve relatively good results. As
we can see, using RoBERTa as the network back-
bone achieves better performance in this task. Also
post-training and using the hidden vectors of the
last few layers of RoBERTa can improve the effect.
At the same time, we also tried FGM, focal loss
and other methods, while none of them seemed to
be beneficial for our task. Still, the F1 value is less
than satisfactory, so we can see that identifying
and categorizing Patronizing and Condescending
Language are difficult challenges. In the future,
we will consider using some external knowledge to
help the judgment of the model.
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Abstract
Patronizing and condescending language (PCL)
is everywhere, but rarely is the focus on its use
by media towards vulnerable communities. Ac-
curately detecting PCL of this form is a difficult
task due to limited labeled data and how sub-
tle it can be. In this paper, we describe our
system for detecting such language which was
submitted to SemEval 2022 Task 4: Patroniz-
ing and Condescending Language Detection.
Our approach uses an ensemble of pre-trained
language models, data augmentation, and opti-
mizing the threshold for detection. Experimen-
tal results on the evaluation dataset released
by the competition hosts show that our work
is reliably able to detect PCL, achieving an F1
score of 55.47% on the binary classification
task and a macro F1 score of 36.25% on the
fine-grained, multi-label detection task.

1 Introduction

Everyone has seen, experienced, and expressed
patronizing and condescending language (PCL).
Someone is patronizing or condescending when
they communicate in a way that talks down to oth-
ers, positions themselves in a superior position to
the subjective group, or describes them in a char-
itable way in order to raise a feeling of compas-
sion for the target person or group. Such language
is seen frequently in social media or other medi-
ums where hate is the norm. Many previous works
have addressed offensive language and hate speech
(Zampieri et al., 2019) (Basile et al., 2019) in such
communities. However, until (Perez-Almendros
et al., 2020) there has not been work in model-
ing PCL where 1) it is targeted towards vulnerable
communities such as refugees or poor families 2)
occurs in the general media or news. The authors
note that this form of PCL is not usually meant
to be harmful, and can often have good intentions,
such as when the author is trying to raise awareness
about an at-risk group. Yet, research in sociolin-
guistics has shown that regardless of the intent,

PCL has negative effects on potential vulnerable
communities such as perpetuating stereotypes, rein-
forcing societal misbehaviors, and oversimplifying
deep-rooted problems. The authors of Don’t Pa-
tronize Me! An Annotated Dataset with Patronizing
and Condescending Language towards Vulnerable
Communities originally proposed a new dataset to
help in detecting such cases of PCL and are cur-
rently hosting a SemEval-2022 competition: Pa-
tronizing and Condescending Language Detection
(Pérez-Almendros et al., 2022).

In this paper we describe our contribution to both
competition subtasks: binary and multi-label clas-
sification. Our final ensemble leverages many tech-
niques including pre-trained language models, data
augmentation, intermediate fine-tuning on related
datasets, and optimizing the detection threshold
to empirically maximize F1. For the binary task,
our system achieves an F1 score of 55.47%, or
6.36% higher than a comparable RoBERTa-based
baseline model. We achieve a macro F1 score of
36.25% on the multi-label task, or 25.84% higher
than a similar RoBERTa baseline. These results
show encouraging progress for the task of detecting
fine-grained and linguistically subtle types of PCL,
although there is still room for improvement.

2 Background

The Patronizing and Condescending Language De-
tection task contains two subtasks. In the first sub-
task, binary classification, the system is given a
paragraph of text and it must predict if it contains
any form of PCL. In the second subtask, multi-label
classification, a system is given a paragraph of text
and it must identify if it contains each of seven
types of PCL (one paragraph can contain multiple
categories of PCL).

2.1 Dataset

The binary classification task dataset contains
10,636 total labeled text samples that were selected
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Text Keyword Country Label
This wally of an MP just wants his name in the press , what has he ever achieved
fro Southend , what did this idle wally do to get the scanner tuned on at the
hospital ... zero ! He raised in parliament the fact that his was his mummies
birthday , but forgot to mention the homeless families on our streets .

homeless gb 3

Our life has completely changed from when he as an able-bodied young man
running around 5000 miles an hour organising everyone . Now , he ’s more
disabled than anyone that he ever helped .

disabled nz 4

The World Health Organization did not give a reason for the increase in deaths ,
but a provincial health official in Sindh said that the disease hit areas where poor
families did not vaccinate their children .

poor-
families

us 2

However , she said immigrant patients urgently need treatment and counselling
from health-care providers who speak Punjabi or Hindi , and that ’s what Roshni
– which means light – will offer them.

immigrant ca 1

In February 2015 , five of the men , aged 23 to 25 at the time , went to the station
to protest the "" arbitrary and violent "" arrest of one of their friends from the
Cova da Moura neighbourhood , known for its large population of immigrants
from Cape Verde , a former Portuguese colony off Africa ’s northwest coast .

immigrant in 0

Table 1: Samples from the competition dataset

Train Validation Test
Positive 683 111 199
Negative 6436 1145 1894

Table 2: Label distribution in train, validation and test
splits for the binary classification subtask

from news stories from the News on the Web cor-
pus (Davies, 2013). All the selected paragraphs
are from news stories that were published between
2010 and 2018 from 20 English speaking countries.
Each paragraph is assigned a label ranging from 0
(not containing PCL) to 4 (being highly patronizing
or condescending). Each paragraph is also associ-
ated with one of ten keywords used to retrieve the
text from the corpus. Samples from this dataset can
be found in Table 1 and the distribution of positive
and negative labels in each of our data splits can be
found in Table 2.

The dataset for the multi-label classification task
contains paragraphs from the binary classification
task which were labeled as containing PCL. Each
paragraph is further labeled with at least one of the
seven classes: unbalanced power relations, shallow
solution, presupposition, authority voice, metaphor,
compassion, and the poorer, the merrier. Each is
associated with a country-code and keyword as be-
fore. Additionally, each paragraph has the start and
end spans of where in the paragraph the particular
category of PCL is contained. Further background
information about this dataset can be found in the
paper published by the competition hosts (Perez-
Almendros et al., 2020).

2.2 Baselines

Recent advances in natural language processing
have enabled complex and subtle tasks to be solved
by fine-tuning large, pre-trained language models
(Kalyan et al., 2021). These models can also be
fine-tuned on small datasets (such as only 1,000
samples) and while still achieving significant pre-
dictive power (Mosbach et al., 2020), or even with
just a few samples (Brown et al., 2020). As such,
the competition authors provided baseline results
using a pre-trained RoBERTa model, one of the go-
to models for fine-tuning for a classification task
(Liu et al., 2019). They provide results of multiple
baselines which help put into context the improve-
ments made by the participating systems. For exam-
ple, one such baseline is simply random guessing,
or assigning each paragraph a random label with
equal probability. In our work we build upon the
RoBERTa baseline by applying techniques often
used in machine learning. Namely, we use early
stopping using a validation dataset and set hyper-
parameters according to best practices discussed
by (Mosbach et al., 2020). We also will experi-
ment with a host of NLP techniques including data
augmentation and other language models.

3 Subtask 1: System Overview

Considering the challenge of the task and the
scarcity of positive examples of PCL, our approach
was to experiment with methods focused on enrich-
ing our small dataset, such as data augmentation
and external datasets. We started with fine-tuning
a pre-trained RoBERTa (Liu et al., 2019) model
to use as a foundation. RoBERTa has been shown
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to be very powerful for a range of NLP tasks such
as text classification, while also being straightfor-
ward to implement and train using libraries such
as HuggingFace (Wolf et al., 2019). We use its
architecture unchanged with pretrained weights
downloaded from HuggingFace. We add a standard
binary classification head on top of RoBERTa’s
pooled outputs. For preprocessing input into the
model, we use HuggingFace’s auto-tokenizer. In
the following subsections, we detail the additional
methods and modifications to the RoBERTa base-
line. The models used in our final ensemble use
a mix of these methods and the exact ensemble
methodology is described in section 3.6.

3.1 Pre-trained Language Models
In addition to RoBERTa, we use MPNet (Song
et al., 2020). This model inherits the pre-training
advantages of both Masked Language Modeling
(Devlin et al., 2018) and permuted language model-
ing (Yang et al., 2019) under a unified view which
splits tokens in a sequence into non-predicted and
predicted parts. Experimental results show that
MPNet outperforms previous models like BERT,
XLNet and RoBERTa by 4.8, 3.4 and 1.5 points
respectively on GLUE tasks. In our work, we fine-
tune MPNet using the hyperparameters suggested
by the authors, which can be found in Appendix A.

3.2 Intermediate Fine-Tuning
We leverage several external data sources which are
related to our task of PCL detection. (Phang et al.,
2018) originally proposed Supplementary Train-
ing on Intermediate Labeled Data Tasks (STILTs),
which we refer to as intermediate fine-tuning. They
observed that by 1) starting from a pre-trained lan-
guage model such as BERT, 2) further training it
on an intermediate, labeled task, and 3) finally
fine-tuned on the target task; improved final perfor-
mance on a variety of NLP tasks. (Pruksachatkun
et al., 2020) and (Vu et al., 2020) provide further
insight into tasks that are well suited for interme-
diate fine-tuning. We used these insights a to de-
velop four independent binary classification tasks
on Stereoset (Nadeem et al., 2020), BiasCorp (On-
abola et al., 2021), Social Bias Inference Corpus
(SBIC) (Sap et al., 2020), and TalkDown (Wang
and Potts, 2019) datasets, and used them for inter-
mediate fine-tuning. Two of these tasks, SBIC and
Biascorp, are used in our final ensemble, while the
other two were left out due to having no perfor-
mance uplift on our task’s test set.

BiasCorp is a dataset containing about 43,000
labeled examples of racial bias from Fox News,
BreitbartNews and YouTube. Each text has 3 bias
ratings from 0 to 5 and corresponding annotator
confidence scores from 1 to 10. To turn this into
a binary classification task, we use a similar ap-
proach from their paper by first computing a confi-
dence weighted score, and then we threshold this
score where scores above 1 are labeled as positive
examples.

The Social Bias Inference Corpus is a labeled
dataset of over 125,000 examples of social me-
dia posts from Reddit, Twitter, and hate sites like
Stormfront. For our binary classification task, we
use the provided offensiveness rating of a post, and
use a threshold of 0.3 for positive examples.

3.3 Sentence-Level Features
Transformers are generally able to vastly outper-
form regression on engineered features. However,
in some text labeling tasks, such as essay scor-
ing, it has been shown that engineered features can
be used in tandem with Transformer output to im-
prove performance (Uto et al., 2020). This can be
achieved simply by concatenating a vector of fea-
tures fn to BERT’s CLS vector. An extended clas-
sification head will now take the extended vector
as input, and similarly project to the final predic-
tion. The classification head, including the added
weights, is trained along with the fine-tuning of
BERT.

Our set of features was inspired by (Uto et al.,
2020), but we excluded the readability metrics be-
cause they are not as relevant for our task. Specifi-
cally, for text sample xn, we calculate the number
of words, number of sentences, number of exclama-
tion marks, question marks, and commas, average
word length, average sentence length, the number
of nouns, verbs, adjectives, and adverbs, and the
number of stop words. Each one of these values is
used as a separate dimension of fn. We leveraged
the spaCy Python library (Honnibal and Montani,
2017) to calculate these values. We also included
the feature calculation as a data pre-processing step,
since calculating the features at run-time would be
too costly.

3.4 Original Labels
Simply collapsing the 0-4 label in the dataset to a
binary value results in a loss of relevant informa-
tion. To combat this, we translate each label to a
probability of a sample containing PCL. Specifi-
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cally, we perform the following mapping: 0 - 0.0,
1 - 0.25, 2 - 0.5, 3 - 0.75, 4 - 1.0. We refer to these
probabilities as the original labels. We adapt our
loss function for this reformulated learning setup by
computing the binary cross-entropy loss between
the predicted probability and the original label.

3.5 Backtranslation
Data augmentation for NLP tasks is becoming
increasingly popular with a vast variety of exist-
ing techniques. Data augmentation refers to any
strategy aimed at increasing the amount of data
available for training, by only leveraging the ex-
isting training set or domain knowledge about the
task (Feng et al., 2021). (Sennrich et al., 2015)
is a model-based technique for data augmentation
where the original text is translated into a desired
language and then back to the original language
to rephrase it. This process can introduce a differ-
ent style of sentence for the same meaning. We
have used French as our intermediate language for
backtranslation on our data. To implement back-
translation for our task, we used the MarianMT
model (Tiedemann and Thottingal, 2020) provided
by HuggingFace to convert between French and
English.

3.6 Ensemble Model
Ensembling is a technique that leverages multiple
trained models to improve task performance on
the test set. For our final ensemble of three in-
dependently trained models, we used a relatively
simple approach. Given a set of models M and
a test dataset D, let ŷni be Mi’s estimate of the
probability that text sample xn is a positive sam-
ple. This value is taken directly from Mi’s softmax
layer output. Each label is then assigned a final
positive probability of ŷn = 1

|M |
∑|M |

i=1 ŷni. We
use this augmented softmax score to make the final
prediction for each label in the test set.

3.7 Choosing an Empirically Optimal
Threshold for F1 Score

The F1 score is the metric used for evaluation in
the competition and it is defined as the harmonic
mean of precision and recall:

F1 =
2 ∗ precision ∗ recall
precision+ recall

Note that the output of our transformer models
for binary classification is the softmax of a final
linear layer. In order to compute the F1 score, those

continuous outputs must be binarized. Typically,
that is done via a simple transformation:

f(x, threshold) =

{
1, x ≥ threshold
0, x < threshold

(1)

, where x is the softmaxed model output and thresh-
old is a value commonly set to be 0.5. Since the
model is optimized using cross entropy loss, it is
unclear if 0.5 is the best threshold to use in order
to maximize F1 score. Since the F1 score is a har-
monic mean, we would like to balance precision
and recall in order to achieve the highest score.
Roughly, precision can be increased (and recall de-
creased) by increasing the threshold, and vice versa
by decreasing the threshold.

In order to find the best threshold, we use a sim-
ple, brute force algorithm to determine the best
threshold on the validation data set. The algo-
rithm takes vectors y_true and y_out, which are
the true binary labels and the normalized model
output, respectively. For each model output, we
treat it as a possible threshold and compute the
F1 score using the true labels and y_out binarized
via f(y_out,model output) (assume f operates on
vectors). The algorithm outputs the threshold that
achieved the highest F1 score.

Algorithm 1: Brute-force F1 Threshold
Input: y_true, y_out
best_score← 0
best_threshold← 0.5
for threshold in y_out do

bin_y_out← f (y_out, threshold)
score← f1_score(y_true, bin_y_out)
if score > best_score then

best_score← score
best_threshold← threshold

return best_threshold

4 Subtask 2: System Overview

Our system for task 2, multi-label classification,
adapts many of the techniques we used in the bi-
nary classification task. Similar to our task 1 sys-
tem, we leverage RoBERTa as a base model for
further fine-tuning. However, the target is now a
vector of binary labels. Another way to view the
problem is as 7 binary classification tasks, one for
each category of PCL. Our final ensemble includes
models treating the problem in this way, and also
training one multi-label classifier directly. We also
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independently train a binary classification model to
generate a prediction for each class using the same
model setup from the binary task. In either case,
the final ensemble of models was computed iden-
tically to the binary classification task by treating
each category independently. The sigmoid function
was applied to each model output before creating
the ensemble.

4.1 Data Processing

The dataset for the multi-label classification task
contains only paragraphs from the binary classifi-
cation task which were labeled as containing PCL.
This creates a disconnect between the data that
would be seen during evaluation (i.e. there are sam-
ples without any category of PCL). To handle this
discrepancy in data distributions, we take every
non-PCL paragraph from the binary classification
task dataset and add it to the multiclass dataset with
a label vector of all 0s.

5 Experimental Setup

We start by splitting our dataset into a train and
test set according to the split provided by the com-
petition authors, which is 80% train and 20% test
data. From the training split, we take 15% to use
as a validation split. Table 2 shows the distribu-
tion of positive and negative labels within the train,
validation and test splits.

Using our validation split, for each experiment,
we perform a hyperparameter sweep by varying the
peak learning rate ∈ {3e-5, 2e-5, 1e-5, 5e-6}. We
use early stopping where the model is evaluated at
the end of each epoch, and if for 10 consecutive
epochs performance does not improve, we stop
training and save the model from the epoch with
the highest valdiation F1 score. For final evaluation
on the test set we use this model that achieved the
highest F1 score on the validation set. We choose a
batch size that maximizes GPU usage, and use the
default maximum sequence length of each model.
A listing of the full hyperparameters used can be
found in Appendix A. Random seeds for Python,
numpy, and PyTorch were fixed at 221 for all
experiments.

For our final results and submission to the com-
petition, we use the validation split for early stop-
ping and train including the test dataset. All models
were trained with a learning rate of 2e-5 unless oth-
erwise noted. We submitted two identical systems,
only differentiated by the random seed used. All

Binary Description P R F1

Model 1 RoBERTa, interme-
diate fine-tuning,
features

67.95 47.75 56.08

Model 2 MPNet, original la-
bels

65.95 55.85 60.48

Model 3 RoBERTa, features,
backtranslation

61.11 49.55 54.73

Ensemble 62.04 60.36 61.19

Table 3: Subtask 1 - Validation split scores for each
of our models that composed the final ensemble. The
scores for each model use the default threshold, while
the ensemble’s threshold is optimal for the validation
split.

Multi-label Description P R F1

Model 1 RoBERTa, features,
backtranslation

42.90 30.52 35.01

Model 2 RoBERTa, back-
translation, LR=1e-
5

46.53 36.18 39.13

B4MC Binary model 1 for
each category

2.51 100.0 4.83

Ensemble 49.38 35.72 40.50

Table 4: Subtask 2 - Validation split scores for each of
our models that composed the final ensemble.

results shown in Tables 3 and 4 are the random seed
that performed better.

Our experiments were run a system with the
following hardware; GPU: NVIDIA RTX 3090,
CPU: AMD 5950X, RAM: 64GB 3200Mhz, SSD:
4TB SATA.

6 Results

Submitted systems were evaluated on the F1 score
(macro F1 score for the multi-label task). We built
several models that each combine different meth-
ods. Observe that in Tables 3 and 4 each model
has a varying degree of balance between precision
and recall. This diversity in outcomes and method-
ology between individual models helps our final
ensemble achieve better overall results than any
individual model. Our best ensemble for subtask
1 placed 22nd out of 78 and our best ensemble for
subtask 2 placed 18th out of 49.

For subtask 1, our best model on the validation
split was the one that used MPNet as a base and
used the original labels during training. Model 1
used RoBERTa as a base and was first trained using
intermediate fine-tuning, before being trained on

449



0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

F1

Figure 1: Plot of the resulting F1 score when using each
validation softmax score (unbinarized) as the detection
threshold.

the final dataset using sentence level features. Inter-
mediate fine-tuning was done by first training using
the SBIC task for 5 epochs, followed by training
for 5 epochs on the Biascorp task. Each interme-
diate task was trained with a learning rate of 5e-6.
Finally, model 3 used RoBERTa as a base and was
trained with sentence level features and additional
backtranslated samples.

For subtask 2, our best model used RoBERTa as
a base and was trained with backtranslated samples
and a learning rate of 1e-5. Model 1 was similar ex-
cept it used sentence level features and our default
hyperparameters found in Appendix A. Binary for
multi-category (B4MC) was 7 individual models
(one for each category), trained using the same
methodology as our best binary model, model 1.

6.1 Thresholds

We use Algorithm 1 to find an optimal F1 threshold
on the validation split in order to increase the F1
score for our final ensemble. Analysis of this opti-
mization for our binary task ensemble is in Figure
1. Based on that plot, we set our prediction thresh-
old to be 0.32, about in the middle of the range
of thresholds that achieved the highest F1 scores.
Notice that if we had picked a threshold of 0.5, we
likely would have achieved a lower score due to
the drop in scores around that mark.

We performed similar analysis for subtask 2.
The thresholds we choose were 0.5, 0.31, 0.49,
0.27, 0.29, 0.21, and 0.4 for the categories unbal-
anced power relations, shallow solution, presuppo-
sition, authority voice, metaphor, compassion, and

the poorer the merrier, respectively.

6.2 Error Analysis

To further analyze how our model compares to
the baseline, we examine samples from the test
set where 1) the baseline made an error, but our
model made the correct prediction, and 2) where
both the baseline and our model made the incorrect
prediction. We examine false positives and false
negatives in both cases.

In Table 5, we can see that the baseline’s false
negatives tend to be more poetic examples. They
paint vivid, dramatic scenes, and use strong adjec-
tives like "shocking" and "hopeless". This indicates
that our model may have picked up on this poetic
language signal as an indicator of PCL.

In the baseline’s false positives, we see phrases
that may be indicative of PCL, such as "in need of
food", "treat men and women differently", and "be-
ing disabled". However, in context, these phrases
are not condescending to the subjects of the state-
ments. It’s possible that the baseline was simply
acting on the presence of these phrases, while our
model was able to identify the lack of other sup-
porting signals as evidence that the sentences were
not PCL.

In Table 6, we can see where both the baseline
and our model failed, where there are a variety of
possible issues. The first two false negatives are
only identifiable as PCL given their subtext (as-
suming the perspective of refugees and creating a
division between disabled and non-disabled peo-
ple), rather than obvious choices of words. While
the third false positive uses flowery language (a pos-
sible PCL indicator), the identifying piece, "people
from poor families have more perseverence...", uses
a positive sentiment. The models seem to struggle
with the "poorer the merrier" category, which this
is an example of. It’s possible that the model is
overwhelmed with more negative sentiments from
other categories so it tends to correlate that too
strongly with PCL.

The false positives all use the kinds of words
that seem to be common in the actual positive ex-
amples, such as "plight", "challenges", "disadvan-
taged", and "vulnerable". What the models seem
to fail at is distinguishing between pointing out a
group’s disadvantage and using that disadvantage
to patronize the group.

Overall, the models seem to be very active on
words and phrases that might indicate PCL. While
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Text Label Baseline
Pred.

Ensemble
Pred.

Categories

real poverty of britain : shocking images of uk in the
sixties where poor really meant poor these hard-hitting
photographs offer a glimpse into the harrowing day-to-
day for poor families living in britain during the sixties .

pos. neg. pos. Authority
Voice, Compas-
sion

rather sad . good set of pictures that tells a tale of survival
, subsistence living , and hopeless nature of life in the
tribal societies . exploiting an unexpected geo-political
bonanza is a temporary relief that is not sustainable .
education and economic development seem miles away .

pos. neg. pos. Presupposition,
Metaphors,
Compassion

as a family , my father was a policeman and he used to
come home with food ( monthly ) , and my mother used
to pack small parcels and we used to give them to the
poor families .

pos. neg. pos. Unb. power rel.,
Shallow solu.

mrs charo said some people were injured while escaping
the floods . she added that they are now in need of food ,
clothing and clean drinking water .

neg. pos. neg. -

she added : i would also like to carefully point out that
the issue was not her religious beliefs , but rather it is
about choosing to treat men and women differently by
shaking the hands of women but not men .

neg. pos. neg. -

i realised that it was not impossible to achieve anything
in the world despite being disabled .

neg. pos. neg. -

Table 5: Samples where the ensemble improved over the baseline.

Text Label Baseline
Pred.

Ensemble
Pred.

Categories

many refugees do n’t want to be resettled anywhere , let
alone in the us .

pos. neg. neg. Presupposition

the law stipulated 21 rights of the disabled persons . the
disabled persons must get the national identity cards and
be listed in the voters roll . even they will be able to
contest in the polls .

pos. neg. neg. Unb. power rel.

however , this success story is not uncommon . it often
happens that people from poor families have more perse-
verance to fight tooth an nail in business than children
of rich parents who are used to get everything they want
with ease . people without a strong spirit will quickly
break down and drop out from the competition .

pos. neg. neg. Presupposition,
Metaphors, The
p., the mer.

your personal leadership has been critical to addressing
the plight of the rohingya who fled to safety in your
country . i thank you for all you have done to assist
these men , women and children in need , he wrote in
the message .

neg. pos. pos. -

she also praised the efforts to stabilise the lives of
refugees , by providing for their basic needs and help-
ing them overcome their challenges , while stressing
that supporting refugees is an ongoing part of the uae ’s
humanitarian directives , and the country has taken the
responsibility to evaluate their needs and provide them
with a variety of urgent and essential aid .

neg. pos. pos. -

Table 6: Samples where both the baseline and ensemble were incorrect.

our best model appears able to deal with these fea-
tures in somewhat intelligent ways, the main down-
side is that it cannot place the samples in a global
context. Simply using certain adjectives to describe
a certain group of people does not necessarily make
a statement condescending. It depends on exactly
which adjectives, which group, and what other con-
text is in the statement. As humans, we have two
main advantages in this task: 1) we understand the

struggles and stereotypes of disadvantaged groups,
and 2) we also can perform deductive reasoning to
determine the underlying meaning of a phrase. Pos-
sibly remedies for our model might be 1) providing
many more examples, so it can build the kind of
context needed to make these distinctions, and 2)
to enhance the model with ways of reasoning about
the problem.
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7 Conclusion

We developed a system to detect patronizing and
condescending language by media towards vulner-
able communities. We combined a multitude of
NLP techniques in our final ensemble. Our system
leveraged backtranslation, sentence level features,
intermediate fine-tuning, and pre-trained language
models. We also proposed multiple training tech-
niques and optimizing the F1 threshold. These
improvements resulted in our system placing in the
top 25% for subtask 1 and the top 40% for subtask
2.
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A Fine-tuning Hyperparameters

Hyper-parameter Fine-tuning

Learning Rate 2e-5
Batch Size 16
Weight Decay 0.1
Epochs Early stopping
Learning Rate Decay Linear
Warmup Ratio 0.06

Table 7: Hyper-parameters for fine-tuning RoBERTa
and MPNet models.
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Abstract

This paper describes a system built for the
SemEval-2022 competition. As participants
in Task 4: Patronizing and Condescending Lan-
guage Detection, we implemented the text sen-
timent classification system for two subtasks
in English. Both subtasks involve determin-
ing emotions; subtask 1 requires us to deter-
mine whether the text belongs to the PCL cate-
gory (single-label classification), and subtask
2 requires us to determine to which PCL cate-
gory the text belongs (multi-label classifica-
tion). Our system is based on the bidirec-
tional encoder representations from transform-
ers (BERT) model. For the single-label classifi-
cation, our system applies a BertForSequence-
Classification model to classify the input text.
For the multi-label classification, we use the
fine-tuned BERT model to extract the sentiment
score of the text and a fully connected layer to
classify the text into the PCL categories. Our
system achieved relatively good results on the
competition’s official leaderboard.

1 Introduction

Text classification is an area of natural language
processing (NLP) that aims to classify text using
certain features. Previous studies on text classifica-
tion tasks used traditional machine learning meth-
ods, which require researchers to manually design
features. Feature extraction methods such as term
frequency–inverse document frequency (TF-IDF)
(Hakim et al., 2014) and N-Gram (Cavnar et al.,
1994) are used to extract features from original
documents, and then the features are input into
classifiers such as naive Bayes(Berrar, 2019), sup-
port vector machines (SVMs) (Hearst et al., 1998),
and decision trees (Vens et al., 2008). Since the
advent of deep learning, text classification tasks
are achievable without manual extraction of text
features. Researchers must simply pretreat the text
and incorporate it into a deep learning model for
training. For text classification using deep learn-

ing methods, the classification accuracy is often
higher than that of traditional machine learning
methods. With their continuous improvement, deep
learning models, such as recurrent neural networks
(RNNs)(Zaremba et al., 2014), multi-channel CNN-
LSTM (Zhang et al., 2017),gate recurrent units
(GRUs) (Rana, 2016), long short-term memory
(LSTM) (Shi et al., 2015), bidirectional long short-
term memory (Bi-LSTM) (Zhang et al., 2015), and
attention-based Bi-LSTM (Zhang et al., 2018) net-
works, can be used to solve text classification prob-
lems. In recent years, bidirectional encoder repre-
sentations from transformers (BERT) (Devlin et al.,
2018), a new deep learning model, has achieved,
or even surpassed, human performance in multi-
ple tasks within the NLP domain, including text
classification.

Task 4 of the SemEval-2022 consists of the fol-
lowing two subtasks.

• Subtask 1: identifying whether the sentence
contains any kind of PCL.

• Subtask 2: identifying which types of PCL
the sentence contains.

In this paper, we introduce a deep learning
system for SemEval-2022 Task 4: Patronizing
and Condescending Language Detection (Pérez-
Almendros et al., 2022). We applied the pretrained
BERT model as the base model. This task con-
tains two subtasks: single-label classification and
multi-label classification. To accomplish both sub-
tasks, we used fine-tuning methods on the base
model with an additional classification layer. Our
contributions are as follows:

• For the sentiment analysis task, we used the
pretrained BERT model as the base model.

• To obtain the classification results, we added
a fully connected layer at the end of the base
model.
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The remainder of this paper is organized as fol-
lows. Section 2 provides an overview of our system
for the two subtasks. Section 3 presents the spe-
cific details of our system. Section 4 discusses the
results of the experiments, and finally, we draw our
conclusions in Section 5.

2 Overview

This section presents an overview of our system
and experiments, consisting of the following steps:

1. The data processing step, in which we use text
processing tools to clean the text content, such
as removing HTML tags in the text.

2. The model training step, in which we build,
train, and evaluate the model.

3. The result generating step, in which we eval-
uate the model and predict the results on the
test dataset.

Task description. The two subtasks involved
text sentiment analysis and classification. The
difference between them is that subtask 1 only
requires us to determine whether the text con-
tains any kind of PCL. Subtask 2 is the multi-
label classification task, and the data of subtask
2 are marked by a list of 0s and 1s, which in-
dicate the type of linguistic techniques (Unbal-
anced_power_relations, Shallow_solution, Presup-
position, Authority_voice, Metaphors, Compas-
sion, The_poorer_the_merrier) used to express con-
descension.

2.1 Data processing
To use the original text as much as possible and
reduce the impact of meaningless text on the model,
we built text cleaning tools that can be used to re-
move redundant text from the original. In addition,
to complete the text classification task, a special
token is added to the front of the original sentence.
Preprocessing. The texts may have been retrieved
from the Internet by an automated program and
inevitably there will be some unnatural language
in the text. Text processing tools, such as regu-
lar expressions and Beautiful Soup, are used to
remove impurities, such as HTML tags and redun-
dant punctuation, from the text. Because the origi-
nal sentence cannot be used in the pretrained BERT
model, a special token [CLS] is added to the front
of the sentence, and the model receives the new
sequence (with the added token) as input.

Figure 1: Embedding blocks

2.2 Deep learning models

In recent years, the use of deep learning for NLP
text classification has become the most commonly
adopted method in the industry. We used the pre-
trained BERT model to accomplish the tasks men-
tioned in the task description.
Bidirectional Encoder Representations from
Transformers (BERT). As the name suggests, the
BERT model is the encoder of the bidirectional
transformer. BERT uses masked LM and next-
sentence prediction to capture the representation
at the word and sentence levels, respectively, and
pretrains the model in a self-supervised manner.

Since the BERT model was proposed by Google
in 2018, the entire field of NLP has entered a new
stage. With BERT, we can easily fine-tune a pre-
trained model to achieve outstanding results that
may even surpass human performance.

BERT consists of two main blocks: the embed-
ding block and transformer encoder block, whose
details are as follows.

1. Embedding Block. After preprocessing the
original text, the output is fed to the embed-
ding block, whose structure is shown in Figure
1.

The embedding block has three embedding
layers: the Token Embeddings, which con-
vert each word into a fixed-dimensional vec-
tor similar to most deep learning models; Seg-
ment Embeddings, which distinguish between
the two sentences; and Position Embeddings,
which represent the position of each word in
the sentence. These embedding layers trans-
form the input text into a three-dimensional
matrix X ∈ RN×n×d, where N is the number
of sentences in the text, n is the number of
words in the sentence, and d is the dimension
of the embedding vector.
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Figure 2: Single-label classification system

2. Encoder Block. The encoder block com-
prises a series of transformer encoder blocks.
Each transformer encoder block comprises
two layers: the multi-head self-attention and
feed-forward layers. The self-attention layer
included in the encoder block of the trans-
former allows each word in the sentence to
use the information of all other words in the
sentence. The output of the current word does
not need to depend on the output of the pre-
vious word, making the training well paral-
lelized and greatly reducing the time to train
the model. Because each word has a different
impact on the sentence category, the atten-
tion mechanism can dynamically change the
weight of each word.

3 Model Description

A pretrained BERT model is used to accomplish
both subtasks with the two independent datasets.
The details of the model built for these two subtasks
are as follows.

3.1 Subtask 1: single-label classification

The architecture of the system built for subtask 1
has three different layers, as shown in Figure 2.

3.2 Subtask 2: multi-label classification

The system built for subtask 2 is similar to that
for subtask 1, and the architecture of this system
is only slightly different in the output layer. The
structure is shown in Figure 3.
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Figure 3: Multi-label classification system

3.3 Details of the model architecture

BERT Layer. After preprocessing, the texts are
input into the z BERT model, which contains the
embedding and encoder blocks. Each word in the
input sequence will output a fixed-dimensional (d)
vector. In our BERT model (bert-based-uncased),
d is 768.

Fully Connected Layer. The fully connected layer
is used to convert a d-dimensional vector into a
vector with the number of categories or labels as
the dimension. In the text classification task, only
the output of the first word, which is [CLS] at the
BERT layer, is fed to the fully connected layer
because it integrates the semantic information.

Output Layer. A matrix X ∈ RN×c is output by
the fully connected layer, in whichN is the number
of sentences and c is the number we manually set.
In the single-label two-category classification task,
it is set to 2, and the fully connected layer converts
the 768-dimensional vector into a 2-dimensional
vector. In the multi-label two-category classifica-
tion task, it is set to the number of labels, 7, and the
fully connected layer converts the 768-dimensional
vector into a 7-dimensional vector.

To obtain the final result for the single-label clas-
sification task, the output of the fully connected
layer is input into the softmax function to calcu-
late the probability of the sentence belonging to
the category, and the outcomes of the softmax func-
tion are fed to the argmax function to obtain the
classification result.
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class =

{
0, value0 ≥ value1,
1, value0 < value1

(1)

If the output value is 1, the sentence belongs to
the label, that is, this sentence contains some kind
of PCL; otherwise, the sentence does not contain
any kind of PCL.

For the multi-label classification task, we input
the result of the fully connected layer into a sigmoid
function that maps each value in the output vector
to a value between 0 and 1. Each value in the vector
is then mapped to 0 or 1 according to the rounding
rules.

labeli =

{
0, labeli ≤ 0.5,

1, labeli > 0.5.
(2)

The output is a 7-dimensional vector that con-
sists of 0 or 1. If the value is 1, the sentence used
the technique corresponding to the vector element
number to express the condescension.

3.4 Training and Hyperparameters

For these two classification tasks, we used the BCE-
withLogits loss function and Adam (Kingma and
Ba, 2017) optimizer to train both models. Both
models use a stochastic gradient with mini-batches
of size 16. The hyperparameters are as follows:
Hyperparameters The maximum input sequence
length of the BERT model is 512, the dimension
of word embeddings (d) is 768, the dropout ratio is
0.1 at each layer in the models, the learning rate is
1e-5, and the number of epochs is 15.

4 Experiment

Dataset. For the two subtasks, the corpus we used
to train the model are from the competition(Pérez-
Almendros et al., 2020), without other external
data.
dontpatronizeme_pcl.tsv This dataset contains
10,469 paragraphs, and each paragraph is annotated
with a label ranging from 0 to 4. In the single-label
classification subtask, the original label annotated
as either 0 or 1 is replaced with 0, and the other
labels with 1.
dontpatronizeme_categories.tsv This dataset con-
tains 993 unique paragraphs with a total of 2,760
instances of PCL. In the multi-label classification
task, each paragraph is annotated with 7 labels
ranging from 0 to 1.

Table 1: Subtask 1 result

Precision Recall F1_Score
0.5097 0.4132 0.4564

Table 2: Subtask 2 result

Label Score
Unbalanced_Power_Relations 0.1600
Shallow_Solution 0.1245
Presupposition 0.0721
Authority_Voice 0.0968
Metaphor 0.0696
Compassion 0.1139
The_poorer_the_merrier 0.0385
Average 0.0965

Evaluation Methods. For subtask 1 (single-label
classification), the competition metrics given by
the competition organizer are precision, recall, and
F1 score. For subtask 2 (multi-label classification),
there are two competition metrics: prediction accu-
racy of each label and average prediction accuracy
of all labels.
Results. The results of the two subtasks are shown
in Tables 1 and 2.

For subtask 1, we ranked 42/81 in precision,
47/81 in recall, and 52/81 in F1 score.

For subtask 2, we ranked 35, 33, 35, 34, 33,
34, and 24 out of 81 for the seven labels: Un-
balanced_power_relations, Shallow_solution, Pre-
supposition, Authority_voice, Metaphors, Compas-
sion, and The_poorer_the_merrier, respectively.
Experiments and Analysis. We used 80% of the
training data as the training set and 20% of the
training data as the validation set. We trained our
model on the training set and used the validation
set to evaluate the accuracy of the model. Our
system achieved relatively good results on the com-
petition’s official leaderboard, which is insepara-
ble from the excellence of the pretrained BERT
model. The outstanding advantage of the pretrained
model is that it can learn the language from a large
amount of unlabeled data and then fine-tune on a
small amount of labeled data. Thus, downstream
tasks often lead to better learning of language and
task-specific features.. Compared to traditional
RNN and LSTM models, BERT can perform con-
currently and simultaneously extract relational fea-
tures of words in a sentence at several different lev-
els, thus comprehensively reflecting the sentence
semantics. Compared to word2vec, the meanings
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of words can also be obtained according to the con-
text of the sentence, which would avoid ambiguity.

5 Conclusion

In this paper, we described our system, which is
based on the pretrained BERT model, for the text
classification task SemEval 2022 Task 4: Patroniz-
ing and Condescending Language Detection. We
added a classification layer to the pretrained BERT
model to address both subtasks. The results gener-
ated by the proposed system achieved a relatively
good ranking. In the future, we hope to explore
other models and methods in the sentiment analysis
field.
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Abstract 

Patronizing and Condescending Language 

is an ever-present problem in our day-to-

day lives.  There has been a rise in 

patronizing language on social media 

platforms manifesting itself in various 

forms. This paper presents two 

performing deep learning algorithms and 

results for the “Task 4: Patronizing and 

Condescending Language Detection.” of 

SemEval 2022. The task incorporates an 

English dataset containing sentences from 

social media from around the world. The 

paper focuses on data augmentation to 

boost results on various deep learning 

methods as BERT and LSTM Neural 

Network. 

1 Introduction 

Nowadays, Patronizing and Condescending 

Language (PCL) (Pérez-Almendros, Espinosa-

Anke, and Schockaert 2022) is used to refer to a 

forced kindness that derives from a perceived 

superiority towards another person. A subtle form 

of bullying, being patronized can leave a person 

feeling infuriated and impotent.  

    It is a type of behaviour that cuts across 

generations. An older person can talk down to a 

younger colleague, but it can just as easily happen 

the other way around. Men can patronize women 

at work and vice versa. But what they have in 

common is power play, with one individual 

exerting their authority or seniority over another. 

    People could feel discriminated by 

condescending comments. Considering the 

relevance of equality and respect, and it is 

important to note that nobody should be treated in 

such a way as to feel intimidated or different. In 

SemEval-2022: Task 4 Subtask 1, participants 

must determine whether a phrase presents PCL or 

not.  

The idea behind the proposed solution was to 

compare three models based on deep learning. 

The first model is a Long short-term memory 

(LSTM) neural network (Zhou et al. 2015). The 

second, a LSTM neural network with embedding 

pretrained layer. The third one uses BERT (Devlin 

et al. 2018). The latter yielded the best results. For 

all the models we have used data augmentation to 

balance the training dataset. 

The F1-score in our final submission (BERT) 

was 0.4134 on the test dataset. Compared to the 

results of the winning team, the difference is not 

extremely large. Nevertheless, our model 

obtained a good result of accuracy (0.61) 

compared to other participants. 

2 Background 

This paper is focused on Subtask 1: Binary 

classification. The corpus provided to perform 

subtask 1 (Pérez-Almendros, Espinosa-Anke, and 

Schockaert 2020) was composed of 10473 

documents with 6 features: “id”, “doc id”, 

“keyword”, “country code”, “text” and “label”. 

The dataset was imbalanced with respect to the 

class “label”. Out of 10473 rows, 9470 were from 

the negative class and 993 from the positive class. 

English data augmentation was applied to the 

original dataset to balance them (Shorten, 

Khoshgoftaar, and Furht 2021).  
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After being balanced with data augmentation, 

the rows of the dataset increased to 19401, 9926 

(class 1) and 9470 (class 0). In order to train the 

three proposed models, we only used the "text" 

and "label" features. The csv file used follows this 

structure:  

- text: “The pope as well called on the 

congregation to reach out…” 

- label: “1” 

 

3 Related work 

In recent years, several people have been 

researching this topic. A few years ago, an 

experiment of the impact of age, race, and 

stereotypes on perceptions of language 

performance and patronizing speech was 

published (Atkinson and Sloan 2017). Indeed, a 

research of different types of behaviours in 

healthcare settings (as condescending language) 

was published to show the impact it has in the 

world (Felblinger 2009). This is a recent problem 

and there are significant challenges to be 

overcome. 

4 System overview 

4.1 Balancing data techniques 

Imbalanced data refers to types of datasets where 

the target class has an uneven distribution of 

observations. Sometimes, when the records of a 

certain class outnumber the other class, our 

classifier may become biased towards the 

prediction.  

    Before considering whether to use balancing 

techniques, we analyzed the data provided and we 

trained the models with the original dataset to test 

the results.  

For this purpose, we trained both LSTM neural 

network and BERT models. The results were as 

expected. Both models reached similar results. To 

summarize, they obtained an accuracy of 0.91 and 

a ROC curve of 0.66. Given the obtained results, 

we decided to apply some balancing techniques to 

the original dataset. 

 

Random Under-sampling 

Random Under-sampling (Prusa et al. 2015) is a 

technique to remove examples from the majority 

class. However, this approach can result in the 

loss of valuable information during model 

training. The original dataset was extremely 

imbalanced, so rows of negative class were 

removed to achieve a balanced dataset.   

The new dataset created using this technique 

totaled 1986 rows, 993 for each class.  

 

Data Augmentation 

Due to the results obtained with the under-

sampling method, data augmentation was used to 

balance the data. Among the most common data 

augmentation techniques, synonym substitution 

was used. The synonym augmenter (Wordnet, 

English) (Miller 1995) to create synonym phrases 

for the minority class was applied. An example of 

this kind of substitution is: 

 

- Sentence: “A quick fox jumps over the lazy 

dog” 

- Synonym sentence: “A prompt dodger 

jumps over the lazy domestic dog” 

 

Finally, the balanced dataset had a distribution 

of 9926 (class 1) and 9470 (class 0).  

Table 1 shows the results obtained after the 

application of the two balancing methods. As can 

be seen, data augmentation produced better 

results. 

Model 

Under sampling Data Augmentation 

Accuracy 
ROC 

Curve 
Accuracy 

ROC 

Curve 

LSTM Neural Network 0.73 0.73 0.97 0.97 

LSTM Neural Network with embedding 

pretrained layer 
0.70 0.70 0.96 0.96 

BERT-base-uncased 0.81 0.81 0.97 0.97 

Table 1:  Results obtained using sampling techniques for balancing the dataset 
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4.2 Models 

Based on LSTM Neural Networks and BERT, 

three different models were implemented. 

 

LSTM Simple Neural Network  

LSTM is a special type of recurrent neural 

network. The main feature of recurrent networks 

is that information can persist by introducing 

loops in the network diagram, so they can 

basically 'remember' previous states and use this 

information to decide what will be next. 

The LSTM was composed of an embedding 

layer with a size of 200, two bidirectional LSTM 

layers, a dense layer, a drop layer and, finally, a 

dense layer with a sigmoid activation. 

The parameters used to train the LSTM Neural 

Network were a batch size of 32 and 10 epochs. 

Indeed, early stopping was invoked to avoid over-

training.  

 

LSTM Simple Neural Network with 

pretrained embedding layer 

A pretrained layer was added to the model 

described above using GloVe 1  (Pennington, 

Socher, and Manning 2014, 1532-1543). GloVe is 

a type of implementation of an inter-contextual 

model, so that each word that appears in training 

will have a single vector representation obtained 

by collapsing all the information available about 

this word with all its appearances in the data. 

Some pretrained word vectors of different sizes 

were downloaded. Finally, we used a file with a 

size of 200d.  Then we added a weight matrix to 

the first layer of the recurrent neural network.  

 

BERT: Bidirectional Encoder Representations 

from Transformers 

A BERT-based transformer was used to train our 

third model. In particular, the model implemented 

was “BERT-base-uncased”, which consists of 12 

transformer layers, 12 self-attention heads per 

layer, and a hidden size of 768. 

     A transformer (Vaswani et al. 2017), has an 

attention mechanism that learns contextual 

relations between words (or sub-words) in a text. 

In its vanilla form, transformer includes two 

separate mechanisms — an encoder that reads the 

text input and a decoder that produces a prediction 

for the task. Since BERT’s goal is to generate a 

 
1 https://nlp.stanford.edu/projects/glove/ 

language model, only the encoder mechanism is 

necessary.  

     The model was fine-tuned with the balancing 

dataset. Before training, every word was set to 

lower case. The model was trained with a batch 

size of 32 and 5 epochs. 

5 Experimental setup 

To set up our models, some libraries were used. 

Some of them were “NLTK” (Wang and Hu 2021, 

1041-1049), “Keras” 2 , “TensorFlow” (Joseph, 

Nonsiri, and Monsakul 2021, 85-111), “Scikit-

learn” (Hao and Ho 2019) and “Pandas” 

(Stepanek 2020). 

    To test whether the data was balanced, the 

original training dataset was used. Once the 

balancing method was decided, the training data 

was split into two parts – 80% for training and 

20% for test, using a stratify approach. 

    The stratify parameter makes a split so that the 

proportion of values in the sample produced will 

be the same as the proportion of values provided 

for the parameter to stratify.   

    During the training phase, we evaluated our 

models with accuracy, ROC curve, precision, 

recall and F1-score measures.  

    Once the organizers provided the test data, the 

models with the original training dataset were 

trained without splitting.  

6 Results 

The two models submitted were LSTM Neural 

Network with pretrained embedding model and 

BERT-base-uncased. According to the official 

metrics (F1-score for the positive class), a result 

of 0.413 and 0.61 of accuracy was obtained. 

BERT-base-uncased reached the best results.  

After training using under sampling and data 

augmentation methods, we concluded that data 

augmentation had the best results.  

Table 2 shows a summary of the results 

obtained during the evaluation phase using data 

augmentation.  

7 Conclusions 

In this paper we present our approach and system 

description on Task 4 (Subtask 1) in SemEval 

2022: Patronizing and Condescending Language 

2 https://keras.io/ 
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Detection towards communities in the media. The 

main aim was to develop three deep learning 

models using data augmentation to solve 

imbalanced problem of the original dataset. We 

implemented three different models. After 

training and analyzing each model, an F1-score of 

0.41 in the evaluation process for class “1” was 

achieved. For future works, we think the models 

could be further improved by training with a 

bigger dataset or using more balancing 

techniques. 
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Abstract

This paper describes our system for Task 4 of
SemEval 2022: Patronizing and Condescend-
ing Language Detection. Patronizing and Con-
descending Language (PCL) refers to language
used with respect to vulnerable communities
that portrays them pitifully and is reflective
of a sense of superiority. Task 4 involved bi-
nary classification (Subtask 1) and multi-label
classification (Subtask 2) of Patronizing and
Condescending Language (PCL). For our sys-
tem, we experimented with fine-tuning differ-
ent transformer-based pre-trained models in-
cluding BERT, DistilBERT, RoBERTa and AL-
BERT. Further, we have used token separated
metadata to improve our model by helping it
contextualize different communities with re-
spect to PCL. We faced the challenge of class
imbalance, which we solved by experimenting
with different class weighting schemes. Our
models were effective in both subtasks, with
the best performance coming out of models
with Effective Number of Samples (ENS) class
weighting and token separated metadata in both
subtasks. For subtask 1 and subtask 2, our best
models were finetuned BERT and RoBERTa
models respectively.

1 Introduction

Patronizing and Condescending Language (PCL)
in the context of vulnerable communities refers to
language that portrays a sense of superiority or has
a tendency to view communities with a pitiful and
passionate lens. PCL works subtly and is intricately
associated with the way that words and phrases are
used. This makes it difficult to classify PCL as com-
pared to overtly offensive language where the na-
ture of words and phrases is clearly negative. Since
the harms associated with PCL are not always evi-
dent, it is often used inadvertently by actors trying
to help these communities. Recognising PCL is
important because the expression of PCL leads to
a paradigm where discrimination and injustices are

routinised and made less visible (Ng, 2007). Use of
PCL also feeds into stereotypes (Fiske, 1993), re-
inforces societal power dynamics and avoids deep-
rooted societal problems, providing surface-level
solutions for the same (Chouliaraki, 2010). Task 4
of SemEval 2022 (Pérez-Almendros et al., 2022)
aims to identify PCL with Subtask 1 working to-
wards binary classification and Subtask 2 working
towards the multi-label classification of PCL.

Our strategy involves using state-of-the-art Pre-
Trained Language Models (PLMs) and finetuning
them for our specific task. We work with BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019),
DistilBERT (Sanh et al., 2019), ALBERT (Lan
et al., 2019) as our models. Additionally, we de-
sign effective and simple approaches to optimize
our models, by experimenting with different cost-
sensitive class weighting methods and working
with token separated metadata to enhance perfor-
mance. With an increasing number of PLMs, each
having millions of parameters and being computa-
tionally expensive to train, it is essential to make
the right model choice. This paper provides a com-
prehensive analysis of the performance of different
models. This can help determine baselines for simi-
lar text classification tasks. For model replicability,
our code is available online.1

2 Background

2.1 Task Description

Patronizing and Condescending Language (PCL)
refers to language which may seem kind or helpful
but is reflective of a sense of superiority. SemEval
2020 Task 4: Patronizing and Condescending Lan-
guage Detection (Pérez-Almendros et al., 2022)
had two subtasks that dealt with the identification
of PCL and the categories used to express it. These
were seen specifically in reference to communities

1https://github.com/MananSuri27/
PatronisingAndCondescendingLanguage
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PCL Non PCL unb sha pre aut met com the
Training Set 794 7581 574 160 162 192 363 145 29
Development Set 199 1895 142 36 62 38 106 52 11

Table 1: Distribution of categories across the training and development set. The labels ’unb’, ’sha’, ’pre’, ’aut’,
’met’, ’com’ and ’the’ refer to ‘unbalanced power relations’, ‘shallow solution’, ‘presupposition’, ‘authority voice’,
‘metaphor’, ‘compassion’, and ‘the-poorer-the-merrier’ respectively.

being identified as being vulnerable and having
unfair treatment in the media.

• Subtask 1: Subtask 1 was binary classifica-
tion, where given a paragraph the system was
supposed to predict whether it contains any
form of PCL. The basis of evaluation was F1
score on the positive class, PCL.

• Subtask 2: Subtask 2 was a multi-label
classification task where given a paragraph,
we were supposed to predict what cate-
gories of PCL the paragraph subscribes to.
Pérez-Almendros et al. (2020) determined
these categories based on previous works
and their research on PCL. The 7 cate-
gories considered are ‘unbalanced power re-
lations’ (unb), ‘shallow solution’ (sha), ‘pre-
supposition’ (pre), ‘authority voice’ (auth),
‘metaphor’ (met), ‘compassion’ (com), and
‘the-poorer-the-merrier’ (the). The basis of
evaluation was average F1 score across the
given classes.

2.2 Data Description
This task is based on the Don’t Patronize
Me!(Pérez-Almendros et al., 2020) dataset by the
task organizers. For this paper, we have considered
the practice split offered by the organizers as the
split between train and development set. The train,
development and test set contain 8375, 2094 and
3831 rows of data respectively.

The paragraphs in this dataset have been selected
from news stories and have been annotated with
labels specifying whether they qualify as PCL and
the categories of PCL that they belong to. The
dataset includes additional information about the
paragraphs— including the country of reference
and the keyword. The keywords clarify the con-
text of the paragraph. The included keywords
are: ‘disabled’ (dis), ‘homeless’ (hom), ‘hope-
less’ (hop), ‘immigrant’ (imm), ‘in-need’ (need),
‘migrant’ (mig), ‘poor families’ (poor), ‘refugees’
(ref), ‘vulnerable’ (vul) and ‘women’ (wom). The
dataset includes reports from 20 countries.

Table 1 shows the distribution of labels in the
train and dev set. We can observe that the dis-
tribution of classes is heavily imbalanced. In the
training set, only 9.5% of the samples belong to the
PCL class. Similarly, in the multi-label category,
72% of all samples with PCL have the class label
of ‘unb’ for the training set.

3 System Overview

3.1 Finetuning Pre-trained Language Models
(PLMs)

Pre-training in NLP is a technique that involves
training general-purpose language representations
through a large set of unannotated text data. It is
beneficial for downstream tasks and avoids train-
ing a new model from scratch. Pre-training leads
to a better generalization performance and helps
in convergence on downstream tasks because it
provides a better model initialisation. Most NLP
datasets contain limited human-annotated samples,
due to which there is a tendency to cause over-
fitting. Pre-training can be regarded as a kind of
regularization, preventing overfitting on smaller
datasets (Erhan et al., 2010). Pre-training models
followed by fine-tuning them for downstream tasks
has shown good performance on many NLP tasks
(Dai and Le, 2015; Radford and Narasimhan, 2018;
Peters et al., 2018).

Briefly discussing the PLMs we have used for
this task:

BERT: BERT refers to Bidirectional Encoder
Representations (Devlin et al., 2019). It uses bidi-
rectional transformers (Vaswani et al., 2017) pre-
trained using a combination of Masked Language
Modeling (MLM) and Next Sentence Prediction
(NSP). It learns deep bidirectional representations
by jointly conditioning on both left and right con-
text layers.

RoBERTa: RoBERTa refers to A Robustly Op-
timized BERT Pretraining Approach (Liu et al.,
2019). It builds on BERT and modifies key hy-
perparameters, such as training with larger mini-
batches and learning rates. RoBERTa also removes
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BERT RoBERTa
Class Weighting precision recall F1 Class Weighting precision recall F1
None 0.672 0.402 0.503 None 0.667 0.462 0.546
INS 0.456 0.698 0.552 INS 0.370 0.779 0.502
ISNS 0.515 0.598 0.553 ISNS 0.510 0.648 0.571
ENS 0.541 0.658 0.594 ENS 0.455 0.678 0.544

DistilBERT ALBERT
Class Weighting precision recall F1 Class Weighting precision recall F1
None 0.703 0.392 0.503 None 0.513 0.296 0.376
INS 0.476 0.492 0.484 INS 0.213 0.764 0.333
ISNS 0.564 0.508 0.542 ISNS 0.377 0.638 0.474
ENS 0.494 0.593 0.539 ENS 0.389 0.739 0.510

Table 2: Subtask1: Binary Classification; The performance of the PLMs we have considered: BERT, RoBERTa,
DistilBERT and ALBERT on the dev set, with different class weighting techniques.These systems also included
token separated metadata. The class weighting strategies (INS- Inverse Number of Samples, ISNS- Inverse of
Square Root of Number of Samples, ENS- Effective Number of Samples) are discussed in section 3.2 .

BERT
Class Weighting unb sha pre aut met com the avg
None 0.339 0.070 0.270 0.190 0.191 0.314 0.000 0.196
INS 0.409 0.190 0.278 0.218 0.245 0.386 0.098 0.261
ISNS 0.440 0.148 0.279 0.156 0.182 0.384 0.098 0.241
ENS 0.427 0.197 0.277 0.223 0.256 0.396 0.129 0.272

RoBERTa
Class Weighting unb sha pre aut met com the avg
None 0.838 0.287 0.209 0.085 0.029 0.642 0.000 0.299
INS 0.838 0.324 0.358 0.370 0.328 0.642 0.062 0.417
ISNS 0.834 0.310 0.315 0.317 0.312 0.642 0.109 0.405
ENS 0.838 0.313 0.367 0.379 0.323 0.642 0.079 0.420

DistilBERT
Class Weighting unb sha pre aut met com the avg
None 0.451 0.092 0.162 0.137 0.121 0.335 0.000 0.185
INS 0.484 0.157 0.255 0.205 0.216 0.394 0.091 0.257
ISNS 0.377 0.147 0.244 0.168 0.184 0.306 0.043 0.210
ENS 0.480 0.217 0.288 0.205 0.212 0.400 0.080 0.269

ALBERT
Class Weighting unb sha pre aut met com the avg
None 0.826 0.000 0.009 0.000 0.010 0.490 0.000 0.191
INS 0.828 0.100 0.258 0.088 0.079 0.449 0.000 0.257
ISNS 0.548 0.177 0.223 0.147 0.083 0.456 0.000 0.233
ENS 0.436 0.217 0.294 0.238 0.228 0.418 0.000 0.262

Table 3: Subtask2: Category Classification; The performance of the PLMs we have considered: BERT, RoBERTa,
DistilBERT and ALBERT on the dev set, with different class weighting techniques.These systems also included
token separated metadata. The columns represent the F1 score for different classes and the average F1 score across
all classes. The class weighting strategies (INS- Inverse Number of Samples, ISNS- Inverse of Square Root of
Number of Samples, ENS- Effective Number of Samples) are discussed in section 3.2 .
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the Next Sentence Training (NSP) objective in
BERT.

DistilBERT: DistilBERT (Sanh et al., 2019) is
a small, fast, cheap and light transformer based
model trained by distilling BERT base. It has lesser
parameters, and runs faster but still conserves a
large proportion of BERT’s performance. Distil-
BERT uses a triple loss combining language model,
distillation and cosine distance losses to leverage
the advantage gained by larger models during pre-
training.

ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations (Lan et al.,
2019) is a modification of BERT which efficiently
allocates model capacity, reducing the training time
and memory consumption. It reduces parameters
by factorised embedding parameterization- where
the embedding matrix is decomposed to a lower di-
mension and projected. Layer sharing across layers
reduced redundancy. Inter-sentence coherence loss
based on Sentence Order Prediction (SOP) is also
employed by the model.

We finetuned the PLMs for both subtasks by
stacking a dropout layer followed by a dense layer
on top of the PLM model. The dropout layer before
the dense classification layer is added for regular-
ization. In Subtask 1 we use Sigmoid activation to
predict binary labels. In Subtask 2 we use sigmoid
activation in the final layer rather than softmax
as it allows us to deal with non-exclusive labels.
For BERT, DistilBERT and ALBERT we use the
features of the [CLS] token and for RoBERTa the
<s> token. The performance of the models along
with the other strategies we have used is present in
Table 2 and Table 3 for Subtask 1 and Subtask 2
respectively.

3.2 Utilising metadata

We have attempted to enrich the PLMs with ad-
ditional metadata provided in context to the para-
graphs in the task. In this setup, more data is avail-
able to the model. This is based on the idea that
more meaningful data leads to better performance
on classification. The same has been observed by
other researchers who have experimented with in-
cluding task-specific data in NLP (Ostendorff et al.,
2019; Zhang et al., 2019).

Pérez-Almendros et al. (2020) included ten key-
words related to potentially vulnerable communi-
ties that are widely covered in media and have had
the propensity of receiving condescending treat-

496 @@26214070 refugee hk 3
Hundreds of thousands of Rohingya refugees
living in sprawling camps in Bangladesh are
celebrating the Muslim holiday of
Eid al-Adha, praying for better lives as they
wonder if they’ll ever again celebrate at their
homes in Myanmar. People streamed into

makeshift mosques in the camps, the children
dressed in new clothing . Those who could
afford it feasted on buffalo
meat. Muslims often...

350 @@21894186 homeless lk 4
It can not be right to allow homes to sit
empty while many struggle to find
somewhere to live, others having to sleep
rough on pavements during Christmas,
hoping against hope, for some charity
to provide shelter . The number
left homeless and destitute is alarming
not necessarily at Christmas ?

Table 4: Two examples from the dataset to get an intu-
itive sense of the advantage that using keyword might
add to contextualise the paragraph. Both paragraphs
describe home, but one in the context of refugees and
the other in context of homelessness. The data included
in the first row of each paragraph includes the serial
number, paragraph ID, keyword, country and annota-
tion.

ment, namely: disabled, homeless, hopeless, im-
migrant, in need, migrant, poor families, refugee,
vulnerable and women. Since PCL involves a sub-
tle use of language, we believe that contextualiz-
ing whether a phrase is PCL also depends on the
context of which community or situation is being
referred to.

To understand this, let us consider two examples
(Table 4) from the dataset, where paragraphs with
ID @@26214070 and @@21894186 are tagged
with the keywords “refugee” and “homeless” re-
spectively, and use the word “home” in different
contexts. With the “refugee” tag, we are given
to understand that “home” refers in a very spe-
cific way to a place in the actor’s country of origin
whereas in the “homeless” context, “home” refers
to accommodation or the lack there-of. The pur-
pose of including additional metadata thus was to
add to the contextualizing abilities of the model.

We include the metadata by adding it to the input
string itself as another sentence in itself; separating
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the metadata from the text with the [SEP] token in
case of BERT, DistilBERT and ALBERT and the
</s> token for RoBERTA.

Therefore, the input in case of BERT, Distil-
BERT and ALBERT looks like:

[CLS] keyword [SEP] paragraph [SEP],

and in the case of RoBERTa, looks like:

<s> keyword </s> paragraph </s>.

We make this system design choice based on the
following ideas:

• The chosen PLMs are strong enough to learn
how the metadata interacts with the input
sequence, considering that we have enough
training samples available.

• Using token separated metadata rather than
concatenating another model reduces the num-
ber of additional parameters to be trained.

• Using the [SEP] and </s> tokens help us uti-
lize the power of pre-training which wouldn’t
have been convenient if we defined new spe-
cial tokens to separate the metadata instead of
using the predefined special tokens.

Subtask 1
Model F1 with F1 without
BERT 0.595 0.556
RoBERTa 0.571 0.566
DistilBERT 0.534 0.510
ALBERT 0.474 0.450

Subtask 2
Model Avg F1 with Avg F1 without
BERT 0.272 0.229
RoBERTa 0.420 0.387
DistilBERT 0.269 0.249
ALBERT 0.262 0.238

Table 5: The performance of the chosen models with
and without use the of token separated metadata on the
development set. For each model, the same parameters
including class weights are used to ensure comparabil-
ity.

Table 5 includes a comparison of the different
models we have used, with and without the token
separated metadata. For comparability, the same
parameters including class weights are used for
each model.

3.3 Cost Sensitive Learning
One of the challenges in the task was a heavy imbal-
ance in the number of samples in the given classes
in the training data. The positive class for the bi-
nary classification task (Subtask 1) was underrepre-
sented where the number of samples with PCL was
only around 9.5% of the training set. Similarly, sub-
task 2 which included multi-label classification had
a large proportion of samples from only 2 classes-
’unb’ and ’met’ (72% and 45% of all samples with
PCL respectively), and some classes such as ’the’
were heavily underrepresented(3% of training sam-
ples with PCL). This varying distribution is a sig-
nificant issue while training because it becomes a
challenge for us to ensure that our model learns the
characteristics of the minority classes as well.

Class imbalance is a common issue in many real-
world datasets, and many techniques have been
developed to mitigate this problem: changing the
data (undersampling the majority class, oversam-
pling the minority class, data augmentation by us-
ing synonyms or other such methods) or adjusting
the model (like changing the performance metric).
We found in our experiments that data manipulation
techniques only provide a marginal performance
boost, and the same has been observed by other
researchers working on transformer-based models
in text classification tasks (Tayyar Madabushi et al.,
2019).

The technique that we have used is cost-sensitive
learning (Elkan, 2001), which is based on the statis-
tical concept of importance sampling. Importance
sampling refers to weights being assigned to sam-
ples in a way that matches the given distribution
of data. Mathematically, the loss function is modi-
fied to account for a multiplier that represents the
weight of the class. This method doesn’t modify
the distribution of the imbalanced data directly.

For a single prediction x with a gold label of a
given class, the loss function is then modified as:

loss(x, class) = weight[class]Θ (1)

where Θ represents the original loss function.
This can be interpreted as adjusting the cost of

misclassification of the given classes, practically
increasing the cost for misclassification of an im-
portant class such as a minority class by assigning
a larger weight to it.

We explored different cost weighting strategies
which are discussed below. Table 6 describes the
count as well as class weights of different cate-
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PCL Non PCL unb sha pre aut met com the
Count 794 7581 574 160 162 192 363 145 29
INS 10.55 1.10 3.65 13.09 12.93 10.91 5.77 14.44 72.21
ISNS 297.22 96.19 1.91 165.55 164.52 151.12 109.91 173.90 388.85
ENS 11.85 2.80 16.30 20.32 20.22 19.01 16.68 21.18 64.27

Table 6: Count of different categories in the training set and the calculated weights according to the Inverse of
Number of Samples (INS), Inverse of Square-root of Number of Samples(ISNS) and Effective Number of Samples
(ENS) schemes.

gories for subtask 1(PCL, No PCL) and subtask 2
(unb, sha, pre, aut, met, com, the) according to the
different weighting schemes we discuss below.

1. Inverse of Number of Samples (INS)
For finding the class weight for a given class, we

simply take the inverse of the number of samples
in the class. It is a simplistic way of ensuring that
under-represented classes have a higher weight and
classes with a large number of samples have a lower
weight. INS class weighting can be described by
the following equation:

weight[class] ∝ 1

nclass
(2)

where nclass is the number of samples in that class.
2. Inverse of Square Root of Number of Sam-

ples (ISNS)
The INS method increases the recall by decreas-

ing the number of false negatives, we observed that
because the weight of the majority class had been
highly diminished, the precision is still low because
of a higher number of false positives. The ISNS
method mathematically is the inverse of the root of
class frequency. Mathematically, this means that
the class weights are larger numeric quantities here
than in the INS method and more importantly, the
problem of the weights of the majority class being
highly diminished for our dataset is mitigated by
this method. The ISNS class weighting strategy
can be summarised by the following equation:

weight[class] ∝ 1√
nclass

(3)

where nclass is the number of samples in that class.
3. Effective Number of Samples (ENS)
A third class weighting strategy that we consider

is the Effective Number of Samples (ENS) method
which was described by Cui et al. (2019). The
authors argue that as the number of samples of
a class increases, the benefit added by each new
sample will diminish. Instead of considering indi-
vidual rows of data as singular points in the space,

Figure 1: The plots of the mathematical functions that
define INS, ISNS and ENS class weighting schemes.
The actual class weight may involve additional con-
stants.

this model considers them as small neighbouring
regions, the effective number of samples is then
calculated mathematically as the effective volume
of samples, given by the simple formula:

ENS[class] =
1− βnclass

1− β (4)

where β is a parameter that can take values as 0.9,
0.99, 0.999 and so on, ENS refers to the effective
number of samples and nclass is the number of sam-
ples in the given class.

The weight of the class is then defined as being
the inverse of the effective number of samples.

weight[class] ∝ 1− β
1− βnclass

(5)

For a very high value of β , this class weight
comes very close to the INS class weight.

Figure 1 is a graphical representation of the math-
ematical functions that define the class weights
we have discussed above. The performance of
the PLMs we have considered with different class
weighting strategies can be seen in Table 2 and
Table 3 (Subtask 1 and Subtask 2 respectively).
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Subtask 1: Binary Classification
RANK TEAM NAME PRECISION RECALL F1-SCORE
38 Team PiCkLe 0.46 0.5804 0.513

Subtask 2: Categorical Classification
RANK TEAM NAME UNB SHA PRE AUT MET COM THE F1 AVG
35 Team PiCkLe 0.1091 0.2254 0.1439 0.2101 0.1916 0.0651 0.1151 0.1515

Table 7: PiCkLe’s Results on the official leaderboard for subtask 1 and subtask 2.

4 Experimental Setup

To ensure comparability, all models are trained on
the same train, dev and test split. Further, the train-
dev splits are the same splits provided by the task
organizers in the practice splits.

The models were developed on Keras2 (Chollet
et al., 2015), and implemented using the transform-
ers library by HuggingFace3 (Wolf et al., 2019).
We experimented with learning rates of 1e-5,2e-5
and 5e-5 for all models, finding the best results at
2e-5. For all the models, we fixed the max length
parameter at 256 tokens and the batch size param-
eter to 16. The finetuning for the models was per-
formed on Google Colab GPU. We trained each
model for 1-2 epochs and found the best results at
2 epochs. The value of β for ENS class weight-
ing was taken as 0.9997 for Subtask 1 and 0.99
for Subtask 2 based on experiments with different
values.

Class weighting was implemented using the
class_weight parameter during model fitting. We
used the Autotokenizer offered by HuggingFace’s
transformers library to tokenize our inputs. We im-
plemented the token separated metadata by setting
the add_special_tokens parameter of the tokenizer
as True and using the text_pair parameter. We
used the Adam (Kingma and Ba, 2014) optimiser
by Keras. The loss function used is binary cross-
entropy and categorical cross-entropy for Subtask
1 and Subtask 2 respectively.

5 Results and Analysis

Based on the performance of different PLMs with
different configurations (Table 2 and Table 3) on
the development set, for Subtask 1 we submitted a
finetuned BERT model with ENS class weighting
and token separated metadata. For Subtask 2 we

2https://keras.io/
3https://huggingface.co/docs/

transformers/index

submitted a finetuned RoBERTa model with ENS
class weighting and token separated metadata.

Our results in the given subtasks on the test set
are shown in Table 7 for subtask 1 and subtask 2.
We have ranked 38 on subtask 1 with an F1 score of
0.513. For subtask 1, our best performing model on
the test set is BERT with token separated metadata
and ENS class weighting. This model performs
better than the baseline RoBERTa model and falls
in the top half of all the models entered into the
competition. For subtask 2, our submitted model
for the evaluation phase was RoBERTa with token
separated metadata and ENS class weighting. This
model seems to have performed very well on the
development set however it has failed to give the
same performance on the evaluation set. While we
saw an average F1 of 0.419 on the development
set, we get a lower F1 of 0.1515 on the evaluation
set. This model still ranks 35 on the leaderboard
and has performed better than the baseline model.
Moreover, this model is amongst the top 20 models
in terms of the F1 scores on ’the’ class which was
in the smallest proportion in the training set, show-
ing how the cost-sensitive learning that we have
performed has been effective in taking into account
the minority classes.

While we recognise that our model has per-
formed well for subtask 1, the model still lacks
in terms of learning what exactly represents PCL.
Recognising PCL is an inherently difficult task be-
cause of the subtle nature of the language used
and the lack of an exact benchmark of what consti-
tutes PCL. With further tuning of parameters and
attempts at improving paragraph representations,
we may improve the performance of our existing
model.

For Subtask 2, on analysis, we believe that a pos-
sible issue with the chosen model for submission
is that its performance on the development set is
heavily biased by the distribution of labels in the
training and development set. This is evident by
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the fact that ’unb’ which is in the highest propor-
tion in Subtask 2 has a development F1 score of
0.838 on the ’unb’ class (which also raises the aver-
age F1), signifying that a large number of samples
have been correctly classified as ‘unb’ in the de-
velopment set. We believe that since this model
has a high tendency to classify samples as ‘unb’, it
gained a high F1 for ‘unb’ on the development set
where this class was statistically well represented
with 71% of the samples with PCL having the class
‘unb’ in the development set, however, the same
distribution may not present in the evaluation set
revealing a pitfall of our model.

6 Conclusion

The task of predicting Patronizing and Condescend-
ing Language (PCL) is relatively new in the field
of Natural Language Processing and comes with
its challenges as discussed in this paper. We used
a finetuning approach to build models to identify
and classify PCL and explored the performance of
various models as well as training variations and
present them as a comparative in this paper. We
explore techniques to deal with class imbalance,
which is a rampant problem in real-world datasets
by considering various class weighting techniques
which work based on cost-sensitive learning. We
also explore the idea of using metadata to optimize
our model by adding a context that represents the
target community or situation being referred to in
a given paragraph.

In the future, we would like to explore other
options that utilise the power of task-specific meta-
data. We would also like to work with other
transformer-based models such as T5 (Raffel et al.,
2019) and ELECTRA (Clark et al., 2020). We
would also like to work on improving the ability of
our model to recognise the subtle use of language
which is embodied by PCL.

Acknowledgements

We would like to thank Dr Vijay Kumar Bohat
and Aniruddha Chauhan for their support during
writing this paper. We would also like to thank the
organisers of SemEval-2022 for conducting this
competition.

References

Francois Chollet et al. 2015. Keras.

Lilie Chouliaraki. 2010. Post-humanitarianism: Hu-
manitarian communication beyond a politics of pity.
International Journal of Cultural Studies, 13(2):107–
126.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. CoRR, abs/2003.10555.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song,
and Serge J. Belongie. 2019. Class-balanced loss
based on effective number of samples. CoRR,
abs/1901.05555.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. 28.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Charles Elkan. 2001. The foundations of cost-sensitive
learning. Proceedings of the Seventeenth Interna-
tional Conference on Artificial Intelligence: 4-10
August 2001; Seattle, 1.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and Samy
Bengio. 2010. Why does unsupervised pre-training
help deep learning? Journal of Machine Learning
Research, pages 625–660.

Susan Fiske. 1993. Controlling other people: The im-
pact of power on stereotyping. The American psy-
chologist, 48:621–8.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. 2019. ALBERT: A lite BERT for self-
supervised learning of language representations.
CoRR, abs/1909.11942.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Sik Hung Ng. 2007. Language-based discrimination:
Blatant and subtle forms. Journal of Language and
Social Psychology, 26(2):106–122.

Malte Ostendorff, Peter Bourgonje, Maria Berger, Ju-
lian Moreno-Schneider, Georg Rehm, and Bela Gipp.
2019. Enriching bert with knowledge graph embed-
dings for document classification.

471



Carla Pérez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2020. Don’t Patronize Me! An
Annotated Dataset with Patronizing and Condescend-
ing Language towards Vulnerable Communities. In
Proceedings of the 28th International Conference on
Computational Linguistics, pages 5891–5902.

Carla Pérez-Almendros, Luis Espinosa-Anke, and
Steven Schockaert. 2022. SemEval-2022 Task 4:
Patronizing and Condescending Language Detection.
In Proceedings of the 16th International Workshop on
Semantic Evaluation (SemEval-2022). Association
for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. CoRR, abs/1802.05365.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of BERT: smaller, faster, cheaper and lighter. CoRR,
abs/1910.01108.

Harish Tayyar Madabushi, Elena Kochkina, and
Michael Castelle. 2019. Cost-sensitive BERT for
generalisable sentence classification on imbalanced
data. In Proceedings of the Second Workshop on
Natural Language Processing for Internet Freedom:
Censorship, Disinformation, and Propaganda, pages
125–134, Hong Kong, China. Association for Com-
putational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. ERNIE: en-
hanced language representation with informative en-
tities. CoRR, abs/1905.07129.

472



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 473 - 478
July 14-15, 2022 ©2022 Association for Computational Linguistics

ML_LTU at SemEval-2022 Task 4: T5 Towards Identifying Patronizing
and Condescending Language

Tosin Adewumi, Lama Alkhaled, Hamam Mokayed, Foteini Liwicki
and Marcus Liwicki

Machine Learning Group
EISLAB, SRT

Luleå University of Technology
firstname.lastname@ltu.se

Abstract
This paper describes the system used by the
Machine Learning Group of LTU in subtask
1 of the SemEval-2022 Task 4: Patronizing
and Condescending Language (PCL) Detection.
Our system consists of finetuning a pretrained
Text-to-Text-Transfer Transformer (T5) and in-
novatively reducing its out-of-class predictions.
The main contributions of this paper are 1) the
description of the implementation details of the
T5 model we used, 2) analysis of the successes
& struggles of the model in this task, and 3)
ablation studies beyond the official submission
to ascertain the relative importance of data split.
Our model achieves an F1 score of 0.5452 on
the official test set.

Pérez-Almendros et al. (2020) introduced the
dataset for the SemEval-2022 Task 4 (Pérez-
Almendros et al., 2022)1. The dataset covers the
English language. It is meant to support Natural
Language Processing (NLP) models in identifying
PCL towards vulnerable communities, such as poor
families and refugees. The dataset is designed for
2 subtasks in the competition. Subtask 1 is a bi-
nary classification task of predicting the presence
of PCL while subtask 2 is a multi-label classifica-
tion task of predicting PCL categories. We address
subtask 1 in this system paper.

PCL is an expression that depicts someone in a
compassionate way or shows a superior attitude of
the speaker (Pérez-Almendros et al., 2022). PCL
identification is important because PCL has been
shown to have harmful effects on vulnerable groups
(Fox and Giles, 1996; Morris, 2007; Bell, 2013;
Wang and Potts, 2019). This task of identifying and
categorizing PCL is apparently more challenging
than some other types of harmful language because
it is subtle and generally used with good intentions
(Wang and Potts, 2019; Gilda et al., 2022).

The main strategy of our system, to address the
challenge, was to use a recent SoTA model (T5) in

1semeval.github.io/SemEval2022/tasks

a simple, novel way to reduce out-of-class predic-
tions. We discovered that our system achieves a
relatively good performance on the task and PCL
identification is a challenging task, due to its sub-
tle nature. It achieved an F1 score of 0.5452 on
the test set while the best score was 0.651. This
made us rank 27 (66th percentile) out of 78 and
we surpass the official RoBERTa baseline. We per-
form error analysis and ablation studies to evaluate
the strengths and weaknesses of the model. We
contribute the model checkpoint publicly on the
HuggingFace hub2 and the T5 code 3

The rest of this paper is organized as follows.
Section 1 gives a brief background of related work
in PCL. Section 2 gives the system overview of
what we used for the task. Section 3 describes
the experimental setup for the task and the addi-
tional experiments beyond the official submission.
Section 4 gives the tables of results and discusses
relevant observations from the results. We share
concluding remarks in section 5.

1 Background

Work on various sorts of harmful language in NLP
has mostly concentrated on explicit aggressive and
brazen phenomena (Pérez-Almendros et al., 2022).
Scholars are striving to distinguish between harm-
ful and unhealthy language by identifying the fun-
damental characteristics of unhealthy language.
Price et al. (2020) proposed one of the most re-
cent efforts in this regard. The research introduced
a new dataset containing 44,000 comments with
the unhealthy category sub-classified as either (1)
hostile; (2) antagonistic, insulting, provocative or
trolling; (3) dismissive; (4) condescending or pa-
tronizing; (5) sarcastic; and/or (6) an unfair gen-
eralisation. In their work, it is assumed that the
language with a PCL tone will assume an atti-
tude of superiority, implying that the other speak-

2huggingface.co/tosin/pcl_22
3github.com/tosingithub/pcl (after another competition)
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ers/listeners are ignorant, naive, or unintelligent.
In such scenarios, the language will usually imply
that the other speaker should not be taken seriously.

Similarly, Morris (2007) explains the high like-
lihood of using PCL language when there is dis-
cussion between two persons with different mental
health conditions. He demonstrated that patron-
izing language is common when a discussion oc-
curred between a cashier with no cognitive issue
and a customer who suffers from cognitive disabil-
ity. Overall, PCL does not have an obvious negative
or critical language and there is the challenge of
limited, high-quality labelled data.

There have been different efforts at automatically
detecting PCL. Wang and Potts (2019) showed that
models with contextual representations are much
better at identifying PCL and this bolstered the
hypothesis that context is essential for PCL detec-
tion. They implemented the BERT model, which
deploys a Transformer-based encoder architecture,
on the TALKDOWN corpus they introduced. Both
the base and large versions of the BERT model
are implemented and evaluated over the new pro-
posed corpus for balanced and imbalanced data.
Price et al. (2020) added more context to their
work by comparing the performance of BERT to
human performance in order to better understand
the model’s performance. In their experiments,
they observed that the BERT model detects PCL
with a 78% accuracy, whereas the average over
human annotators does so with a 72% accuracy.
(Warholm, 2021) also finetuned a BERT model
to classify the unhealthy comments in Norwegian
data. This model was subjected to a variety of
finetuning approaches to distinguish between con-
descending and non-condescending cases and in
the binary classification subtask, the best accuracy
was 0.862.

1.1 Data

“Don’t patronize me” is an annotated dataset of
PCL by (Pérez-Almendros et al., 2020) through
crowdsourcing. It is a collection of texts which
targets vulnerable communities. The dataset is ex-
tracted from News On Web (NoW) corpus4, con-
taining web articles from over 20 English-speaking
countries. It contains 10,637 paragraphs. In ad-
dition to the words (disabled, homeless, hopeless,
immigrant, in need, migrant, poor families, refugee,
vulnerable and women) for identifying PCL for an-

4english-corpora.org/now/

notation in paragraphs, the following traits are also
identified as indicators and used for acquiring the
dataset:

• Words expressing feeling of pity towards the
vulnerable community. For example: god
bless the victims , all those people and their
poor families , and i feel so sorry but i want
to tell them it was n’t my son who did this , it
was a different seifeddine

• Words describing the vulnerable community
as lacking certain privileges, knowledge or
experience. For example: After Vatican con-
troversy, McDonald’s helps feed homeless in
Rome

• Expressions that present members of the vul-
nerable community as victims. For example:
the biggest challenge is the no work policy
. i think that refugees who come here , or
asylum seekers , they ’re unable to work and
they have kids here – their kids are stateless .
that ’s really the cause of a lot of stress in the
community

The dataset was annotated by 3 expert annota-
tors. It has two-level classification of PCL: binary
classification used to determine if a paragraph has
PCL or not, and then categorical label for those
with PCL. The categorical classification has three
higher-level categories: saviour, expert and poet.
"Other" category is the final category to classify
all paragraphs with PCL but that do not fit any of
the previous categories. The saviour category rep-
resents text in which the author is in a privileged
class as opposed to the target community. It has
two subcategories: unbalanced power relations and
Shallow solutions. The expert category is for text
where the author is also in a privileged position
and presents themselves as knowing better than the
target group what their needs are. It also has two
subcategories: presupposition and authority voice.
The final category “Poet” is identified by how the
author frames the community with a literary style
writing. It has three subcategories: Metaphor, Com-
passion and The poorer the merrier.

2 System Overview

The T5 architecture (Raffel et al., 2020) is very
similar to the originally proposed architecture of
the Transformer by Vaswani et al. (2017). We use
the pretrained base version of the model from the
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HuggingFace hub (Wolf et al., 2020). Input se-
quence of tokens are mapped to embeddings and
then passed to the encoder, which has alternating
set of multi-head attention and feed-forward layers.
The attention mechanism (Bahdanau et al., 2015)
replaces each element of a sequence by a weighted
average of the remaining sequence (Raffel et al.,
2020). In addition to each self-attention layer of the
decoder, there is the standard attention mechanism.
As self-attention is order-independent, relative po-
sition embeddings are used in the architecture.

The training method (for both pretraining and
finetuning) uses maximum likelihood objective (i.e.
teacher forcing) and a cross entropy loss (Raffel
et al., 2020). The model was pretrained on 34B
tokens. Adam optimizer is used for optmization
during finetuning. The model has 12 layers each
in the encoder and decoder blocks and a total of
220M parameters (Raffel et al., 2020). When we
refer to T5, we mean the base model, except where
explicitly stated otherwise. The size of the model
meant that a batch size of 64 or 32 required more
memory than what is available on a single V100
GPU, so we lowered the batch size to 16. T5 takes
a hyperparameter called a task prefix. We, hence,
use ‘classification: ’ as the task prefix.

We introduced a correction to the out-of-class
prediction of the model, as shown in the flow chart
in Figure 1. Raffel et al. (2020) mentioned this
issue as a possibility but they did not experience it.
The issue appears to be because all the tasks the T5
model is trained on are framed as "text-to-text" be-
fore training. Hence, sometimes, the model might
predict tokens seen during training but that do not
belong to the category of classes in a classification
task. This behaviour seems more common in the
initial epochs of training and may not even occur
sometimes. We further observed that replacing tar-
get labels with numbers and explicitly typecasting
them as string reduces this occurrence, as the model
becomes more stable with predictions.

We split 10% of the training set for validation
(dev set) for both of our submissions to the com-
petition. We explored different sizes, however, in
further ablation studies, as explained in the next
section. The 2 submissions of prediction files are
based on 2 adaptive optimizers: Adam and AdamW
(Loshchilov and Hutter, 2019). The predictions
based on Adam had the better F1 score. Each exper-
imental run was for 3 epochs and the model check-
point with the lowest validation loss was saved and

Figure 1: Flowchart of out-of-class code section for the
T5 model during prediction.

used to make prediction on the test set. The initial
learning rate and scheduler for both submissions
are 2e-4 and linear schedule with warmup, respec-
tively.

3 Experimental Setup

All the experiments were conducted on a shared
DGX-1 cluster of 8 × 32GB Nvidia V100 GPUs.
The server runs on Ubuntu 18 OS and has 80 CPU
cores. The experiments were conducted in a Python
(3.6.9) virtual environment with the PyTorch frame-
work (1.8.1+cu102). We use both the training &
test data provided by Pérez-Almendros et al. (2020).
Besides the 2 submissions of prediction files, we
perform ablation studies over the training/dev set
split ratio (95%/5%, 90%/10%, 85%/15%, and
80%/20%). The training set was shuffled before
splitting each dev set. We evaluate all the mod-
els using macro F1 scores, precision (P) and recall
(R). In the absence of the ground truth of the test
set, we perform error analysis by constructing the
confusion matrix on a split of the dev set (20%).
Further to that, in order to have a basis of compari-
son of the T5 model’s strengths and struggles with
the official RoBERTa baseline, we removed the 10
examples provided in Table 5 by Pérez-Almendros
et al. (2022) from the training set and concatenated
them with the dev set before training and evalua-
tion. The predictions of 9 of the samples are given
in Table 3.

Evaluation of the available data, by code, be-
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fore and after running the script provided by Pérez-
Almendros et al. (2022) to categorize the labels
into 0 (neg) and 1 (pos) (for subtask 1) reveals
that there are a total of 10,469 samples. The script
treated paragraphs with the original labels 0 and 1
as 0 (instances not containing PCL) and paragraphs
with the original labels 2, 3 and 4 as 1 (instances
containing PCL). After running the script, the fol-
lowing are obtained: 9,476 samples classified as
0 and 993 classified as 1 in the training set. The
test set has 3,832 samples. Before training, the
following preprocessing steps were applied to all
splits of the data:

• Emails & URLs are removed.

• All the characters are made lowercase.

• Extra spaces are removed.

• Special characters such as hashtags(#) and
emojis are removed.

• Numbers & IP addresses are removed.

4 Results and Discussion

Our model performed relatively well with an F1
score of 0.5452 in the official assessment. This
made it rank 27 (the 66th percentile) out of the
78 scores. All the F1 scores we report are macro
scores. Our model has 11% advantage over the
RoBERTa baseline, which achieved 0.4911, as
shown in Table 1. Indeed, our second submis-
sion, based on the AdamW optimizer, also per-
forms better than the baseline, achieving an F1
score of 0.5282, precision and recall of 0.5976 and
0.4732, respectively. The T5 model may have per-
formed even better in the official rankings but for
the shortcoming we described in section 2. In abla-
tion studies, as shown in Table 2, we observe that
training/dev set split ratio affects the performance
of the system. All the results are based on submis-
sions to the official evaluation system5. Using 5%
of the training set as the dev set gave the worst F1
score but we observe improvements as the size is
increased, though not linearly. We observe a sharp
rise in F1 score when we increase the split from 5%
to 10% but the rate of increase falls for subsequent
increases.

5competitions.codalab.org/competitions/34344

Model Rank P R F1
best 1 0.646 0.6562 0.651
T5 (ours) 27 0.5801 0.5142 0.5452
RoBERTa baseline 43 0.3935 0.653 0.4911
worst 78 0.1059 0.0284 0.0448

Table 1: Abridged official result ranking for subtask 1.

Model (dev split) P R F1
T5 (5%) 0.0725 0.8643 0.1339
T5 (10%) 0.6725 0.3628 0.4713
T5 (15%) 0.6067 0.4574 0.5216
T5 (20%) 0.5818 0.5047 0.5405

Table 2: Ablation studies results on the test set for
subtask 1. Hyperparameters are the same for all model
modifications. The T5 (10%) model is retrained afresh
like the others, to avoid test/dev set feedback because
of the samples in table 3.

4.1 Error Analysis
Since the ground truth labels of the test set are
not available, we perform error analysis on the dev
set. The T5 (20%) model achieves an F1 score
of 0.7405 on the dev set (20%). However, the
confusion matrix, as depicted in Figure 2, reveals
that the model predicted 0 (neg) correctly 96.4%
of the time while struggling to make the correct
predictions when it came to 1 (pos), making only
47.8% of predictions correctly. This is very likely
due to data imbalance, as 90.5% of the total train-
ing set contains samples labeled as 0 (neg). Ways
of mitigating this may include data augmentation,
possibly in a similar strategy to that used by Sabry
et al. (2022), where an autoregressive model was
deployed (Adewumi et al., 2022). A more careful
stratification of the data split may also be helpful
in this case.

Pérez-Almendros et al. (2022) report that the
models they considered struggled to detect certain
categories of PCL. We observe a similar challenge
though our model achieves a better performance
than the official baseline. For example, our T5
(20%) model’s predictions for the same examples
shown by Pérez-Almendros et al. (2022) for sub-
task 1 reveal that our model correctly predicts 5 out
of the 9 displayed in Table 3, unlike the 3 correct
predictions out of the 10 by the official baseline.
The reason the T5 (20%) may have misclassified 2
of the samples labeled 0 (neg) in Table 3 may be
because of tokens such as vulnerable patients and
hopelessly, since they belong to the keywords used
for annotating paragraphs with PCL, as discussed
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Figure 2: Confusion matrix of T5 (20%) on the dev set
(20%). Macro F1 (0.7405): [0.9549 (neg) 0.5260 (pos)]

in section 1.

5 Conclusion

We describe the system involving the pretrained T5
model, which we use for our submission for the sub-
task 1 of the SemEval-2022 Task 4. We split 10%
of the training set as dev set for hyperparameter
evaluation in our official submission. Typecasting
integer values, which represent classes, as string
before feeding the T5 model and adjusting for
out-of-class predictions improved the stability of
the model in making predictions. Furthermore, in
the post-competition phase, we performed ablation
studies on the relative importance of dataset split
by experimenting with different ratios of the train-
ing/dev set and showed what the model struggles
with. Our results show that the encoder-decoder T5
model is competitive in this binary task and can ob-
tain better performance with more hyperparameter
tuning.
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Abstract

This paper describes my participation in the
SemEval-2022 Task 4: Patronizing and Conde-
scending Language Detection. I participate in
both subtasks: Patronizing and Condescending
Language (PCL) Identification and Patronizing
and Condescending Language Categorization,
with the main focus put on subtask 1. The ex-
periments compare pre-BERT neural network
(NN) based systems against post-BERT pre-
trained language model RoBERTa. This re-
search finds that NN-based systems in the ex-
periments perform worse on the task compared
to the pretrained language models. The top-
performing RoBERTa system is ranked 26 out
of 78 teams (F1-score: 54.64) in subtask 1, and
23 out of 49 teams (F1-score: 30.03) in subtask
2.

1 Introduction

An entity is considered to engage Patronizing and
Condescending Language (PCL) when its language
use presents a superior attitude towards others
or depicts them in a compassionate way (Pérez-
Almendros et al., 2020). Such language is of-
ten used toward vulnerable communities such as
women, refugees, and homeless people. These
unfair treatments of the vulnerable groups are be-
lieved to result in further exclusion and inequalities
in society. Compared to other types of harmful
language (e.g. hate speech), PCL is considered
more subtle and unconscious. Given the negative
effects of PCL on society and its subtle nature, en-
abling computers to identify and categorize PCL
presents an interesting technical challenge to the
NLP community.

This paper describes my participation in both
subtasks of the SemEval-2022 Task 4: Patronizing
and Condescending Language Detection (Pérez-
Almendros et al., 2022). Subtask 1, Patronizing
and Condescending Language Identification is a
binary text classification task to predict whether

a given paragraph contains PCL or not. Subtask
2, Patronizing and Condescending Language Cat-
egorization is a multi-label classification task to
identify the categories of a given paragraph accord-
ing to the taxonomy defined in Pérez-Almendros
et al. (2020), which categorizes PCL into 7 types:
1) Unbalanced power relations 2) Shallow solution
3) Presupposition 4) Authority voice 5) Metaphor
6) Compassion 7) The poorer, the merrier. The
dataset (Pérez-Almendros et al., 2020) contains an-
notated paragraphs in English, collected from news
stories in 20 English-speaking countries.1

The focus of my experiments is primarily on
subtask 1, meanwhile, this paper also proposes a
solution to subtask 2. For subtask 1, the exper-
iments compare pre-BERT neural network (NN)
based systems including a majority voting system
of NN models against pretrained language model
RoBERTa. The experiments start with building in-
dividual NN models from the most basic artificial
neural network (ANN) to long short-term memory
network (LSTM) models following previous work
on NN for text classification. It was found that
the NN-based systems in the experiments perform
worse on this task in comparison to the pretrained
language models. The best-performing NN-based
voting system could not outperform the RoBERTa
baseline model. For subtask 2, this paper simply
proposes a RoBERTa solution.

The code is released at: github.com/JINHXu/
PCL-Detection-SemEval2022-task4.

2 Background

Numerous previous research had been conducted
on the treatment of condescension and patroniza-
tion. The studies range in various areas from so-

119 countries and Hong Kong: Australia, Bangladesh,
Canada, Ghana, Ireland, India, Jamaica, Kenya, Sri, Lanka,
Malaysia, Nigeria, NewZealand, Philipines, Pakistan, Sin-
gapore, Tanzania, UK, United States, South Africa, and the
special administrative region of China, Hong Kong.
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ciolinguistics (Irisawa et al., 1993) to medicine
(Komrad, 1983). Whereas in the field of natural
language processing, automatically identifying or
categorizing PCL has been an understudied area.
Most research on harmful language detection has
focused on more explicit and aggressive topics such
as hateful speech (MacAvaney et al., 2019), offen-
sive language (Zampieri et al., 2019), and fake
news (Conroy et al., 2015). Only in recent years,
few in the research community have started to show
interest in enabling computers to identify conde-
scending language. Prior to this shared task, for
instance, Wang and Potts (2019) proposed an anno-
tated TalkDown corpus of condescending language
from social media.

3 Dataset

The corpus used for this shared task, the Don’t
Patronize Me! dataset is described in Pérez-
Almendros et al. (2020). The corpus consists of
10,637 paragraphs extracted from the News on Web
(NoW) corpus (Davies, 2013). The paragraphs
were selected according to 10 keywords related
to potentially vulnerable communities (disabled,
homeless, hopeless, immigrant, in need, migrant,
poor families, refugee, vulnerable, and women).
And for each keyword, a similar number of para-
graphs were chosen for each of the 20 English-
speaking countries.2 Each paragraph is annotated
with a true/false label indicating whether it con-
tains PCL or not, and the ones that contain PCL are
annotated with a category label. Each category la-
bel is a set of 7 binary predictions, each prediction
indicates the existence of a specific type of PCL.

The dataset is highly imbalanced. The
POS:NEG ratio is approximately 1:10, which poses
a challenge to the predictive modeling process. In
the experiments of this paper, various strategies
were employed in order to deal with the imbalance
in data. The following sections will describe these
strategies in detail.

Additionally, the shared task provides a compara-
ble 80/20 split of the training data for development.
In the experiments of this paper, the same split was
used to train models and generate predictions in the
development stage.

2Except for Hong Kong, which is not a country.

4 Model

4.1 Preprocessing

In the preliminary experiments, it was found that
preprocessing data by removing stop words de-
creases model performance. Thus in the following
model training process, the text data are used as-is.
Furthermore, in order to deal with data imbalance,
various approaches including data oversampling,
undersampling, and setting class weights were ex-
perimented with. The neural network models were
found in preliminary experiments to work the best
with the original data, with class weights set to 10:1
according to the POS:NEG ratio in data. Whereas
the RoBERTa models present the best performance
with oversampled data with default class weights.

4.2 Neural Network Models

The experiments start with exploring NN models
for the binary text classification subtask. Previ-
ous work has shown that linear classic machine
learning models such as Linear SVM (Suthaharan,
2016), Bernoulli Naive Bayes (Webb et al., 2010),
and Logistic Regression (Wright, 1995) have ad-
vanced performance on binary text classification
with proper feature engineering. This paper is, how-
ever, interested in exploring neural network solu-
tions to the task, given the sufficient size of the
dataset.

Neural network models have been regarded to
be capable of achieving remarkable performance
on text classification. In addition to the popular
LSTM (Hochreiter and Schmidhuber, 1997) mod-
els, some basic ANN (McCulloch and Pitts, 1943)
models have also been proved in previous work
to perform well on the task of binary text classi-
fication. The experiments of this paper start with
building individual NN models from the most basic
ANN models to the more sophisticated LSTM mod-
els. Furthermore, in order to continue improving
system performance from the individual models,
a majority voting system that uses the predictions
of both of the best-performing ANN and LSTM
models was built.

4.2.1 Basic ANNs
Common basic ANN architectures for binary text
classification tasks typically consist of an Embed-
ding layer, a pooling layer of different types (av-
erage, minimum, maximum), and various dense
layers. Following the previous work, the ex-
periments start with building a baseline ANN
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model using a GloVe (Pennington et al., 2014)
embedding layer for word representation, with a
GlobalAveragePooling1D built on top of it,
followed by a ReLU layer, and a sigmoid layer
to generate predictions. In the preliminary experi-
ments, various types of pooling were tried, and the
model with the GlobalAveragePooling1D
layer presented the best performance. The con-
fidence threshold was initially set to 0.5, which
resulted in low precision and high recall. Thus the
threshold was gradually increased in experiments,
with 0.7 found to generate the best predictions in
the development stage.

In order to improve the ANN model from the
baseline, more dense layers were added to the net-
work gradually. Since there are no rules of thumb in
building a neural network, the strategy employed in
this experiment is to continue adding dense layers
of tanh and ReLU to the baseline model before the
output layer. The F-score reaches a peak value af-
ter two additional tanh layers with a ReLU layer in
between were added to the baseline model. Adding
more dense layers did not further help increase the
model performance in the experiments.

4.2.2 LSTM
The LSTM model uses the same GloVe embedding
layer for word representation, with a single layer
of LSTM units (output dimension size 60) built
on top of it. A GlobalMaxPool1D layer is built
on top of the LSTM layer, followed by a ReLU
layer, and a sigmoid layer to generate predictions.
The dropout rate is set to 0.1. With the confidence
threshold set to 0.5, relatively even precision and
recall were obtained.

4.2.3 NN voting system
NN model performance can be unstable in each
run, this was also confirmed in the experiments of
this paper. In order to handle the instability, also to
continue increasing system performance from the
individual models, a majority voting system based
on both NN models was built. The system consid-
ers the predictions of both the ANN and the LSTM
models in two separate runs, which results in four
votes in total. The systems prediction for each
paragraph is then based on the majority vote of
the four votes produced by both models in two runs.

All NN models in the experiments are im-
plemented using tensorflow.keras (Chollet
et al., 2015). During training, each model uses 10%

of data for validation, with class weights set to 10:1
as mentioned in a previous section.

The hyperparameter tuning process in this ex-
periment focuses on batch size and the number of
training epochs. For each model, batch sizes of 16,
32, 64, 128, and training epochs of 10, 50, 100 were
tried. All models present the best performance with
the number of training epochs set to 50. The LSTM
model works the best with training batch size of
128, and ANN models with 32.

4.3 Pretrained Language Model: RoBERTa
For both shared tasks, this paper proposes a
RoBERTa (Liu et al., 2019) solution. RoBERTa
is regarded as an improved pretraining procedure
from BERT (Devlin et al., 2018), and it is able
to match or exceed the performance of all post-
BERT methods. All pre-trained language mod-
els in the experiments are implemented using
the simpletransformers library (Rajapakse,
2019).

In subtask 1, the shared-task provides a baseline
roberta-base model with default configura-
tions, trained on undersampled data. On top of this
work, I further tuned the hyperparameters (mainly
the number of training epochs, in the search space:
1, 2, 3, 5, 10) and improved model configurations
using manually oversampled/undersampled PCL
data of various POS:NEG ratios, class weights for
fine-tuning. In addition to the roberta-base
model used in the baseline model, I also experi-
mented with a number community models3 alterna-
tive to roberta-base. Among the community
models, the experiments mainly focus on BERT-
and RoBERTa-based models for toxic language de-
tection and sentiment analysis, given the similarity
and relevance of the tasks to PCL detection. Ap-
pendix A lists the community models tried in the
experiments. However, none of these community
models in Appendix A turned out to work better
than roberta-base in my experiments. I be-
lieve the models are too specialized in their own
tasks (e.g. sentiment analysis, toxic language de-
tection), therefore resulting in poor performance
on the PCL detection task.

The best-performing model in the development
stage is a roberta-base model, with the num-
ber of training epochs set to 1, maximum input
sequence length increased to 500.4 The data was

3A list of community models can be found on the website:
huggingface.co/models.

4The longest paragraph in training data is of the length
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balanced by manually repeating all positive data
instances 9 times, and keeping the same number of
negative data instances for training. The balanced
dataset results in 8937 data instances of each class
for training. In order to reduce training time, GPUs
were used for model training and inference. All
RoBERTa-related experiments were conducted on
Google Colab.5

In subtask 2, the shared-task also provides
a RoBERTa baseline model configured with
roberta-base model, with default configura-
tions. The baseline model is trained on undersam-
pled data (794 positive data instances, 397 negative
data instances). I simply increased the maximum
input sequence length to 500 from the baseline
model and oversampled data to obtain 7146 posi-
tive data instances and 7146 negative data instances
for training.

5 Results

5.1 Subtask 1: PCL Detection

Model Precision Recall F-score
ANNbaseline 32.63 39.19 35.61
ANN 36.50 46.23 40.79
LSTM 41.44 46.23 43.70
voting_NN 46.29 40.70 43.32
RoBERTabaseline 40.98 50.25 45.14
RoBERTa-base 51.15 66.83 57.95
BERT-emotion 35.93 41.7 38.6
RoBERTa-toxic 37.5 66.33 47.91

Table 1: Model performance on development data.

Table 1 shows the precision, recall, and F1-score
of the models in the development stage. Among the
neural network systems, the LSTM model presents
the most advanced performance with an F-score of
43.7. Meanwhile, the voting system has an F-score
(43.32) only slightly lower than the LSTM model.
The F-score of the ANN model is lower than the
LSTM model, however, the performance gap is
not huge. Nevertheless, the best-performing neural
network based system LSTM does not outperform
the RoBERTa baseline model.

The tuned RoBERTa-base model has the highest
score of 57.8 among all systems in the develop-
ment stage. As mentioned in a previous section,

between 400 and 500, in case of future longer data instances
to predict on, the model’s maximum input sequence length is
set to 500.

5colab.research.google.com/

the community models pretrained on sentiment or
toxicity language data present poor performance
on the PCL data compared to the base model of
RoBERTa.6 Overall, for each model in the devel-
opment stage, the difference between precision and
recall is not vast, except for the tuned RoBERTa
model and the toxicity model of RoBERTa.

Model Precision Recall F-score
ANNbaseline 28.34 48.90 35.88
ANN 26.62 67.19 38.14
LSTM 38.31 50.16 43.44
voting_NN 48.50 40.69 44.25
RoBERTabaseline 39.02 62.78 48.13
RoBERTa-base 46.19 66.88 54.64
BERT-emotion 36.54 35.96 36.25
RoBERTa-toxic 25.19 84.54 38.81

Table 2: Model performance on test data.

Table 2 presents model performance on the test
data in the evaluation stage. It is notable that among
the neural network models, the top-performing sys-
tem on test data becomes the voting system (F-
score: 44.25) instead of the LSTM model, which
performs the best in the development stage. The F-
score of the voting system in the evaluation stage is
also higher than in the development stage. Nonethe-
less, as the top-performing neural network based
system in the evaluation stage, the NN voting sys-
tem presents an F-score still lower than that of the
RoBERTa baseline model (F-score 48.13). Both
the LSTM and the ANN model F-score decreased
from in the development stage. While the baseline
ANN model presents a similar F-score on the test
data to that on the development data. In general,
in the evaluation stage, the gap between precision
and recall is rather big for both the ANN baseline
and the ANN model, whereas it is small for the
LSTM model and the NN voting system. By com-
paring the performance of the neural network based
systems during the development stage to the eval-
uation stage, it can be seen that the performance
of the ANN models is less stable compared to the
LSTM and the voting system.

The tuned RoBERTa-base model is still the top
performer among all models in the evaluation stage,
with an F-score of 54.64. However, this score de-
creased from in the development stage. While for
the RoBERTa baseline model, the F-score in the

6Only the performance of two of the community models
tried in the experiments are presented in the tables.
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evaluation stage is higher than in the development
stage. As for the two community models, their
performance on test data is also worse than on
the development data. Overall, every RoBERTa
model shows higher recall than precision with a
notable gap. This is also true for the ANN mod-
els as mentioned in the previous paragraph. These
models produce more false positives than false neg-
atives. While for the BERT-based emotional model,
it shows similar precision and recall, although also
a low F-score. In general, for every model in the
evaluation stage except for the BERT model, the
gap between precision and recall further increased
from that in the development stage.

5.2 Subtask 2: PCL Categorization

F-score RoBERTabaseline RoBERTa

Unb. power rel. 35.35 55.94
Shallow solu. 00.00 31.74
Presupposition 29.63 24.44
Authority voice. 00.00 19.35
Metaphor 00.00 23.88
Compassion 28.78 45.83
The p., the mer. 00.00 15.38
Average 13.40 30.94

Table 3: Model performance on development data.

Table 3 presents the per-class and average F-
scores of the RoBERTa baseline model and the
proposed RoBERTa model for subtask 2 in the de-
velopment stage. The proposed RoBERTa model is
able to produce a higher F-score for each class with
the exception of the Presupposition category. Over-
all, the average F-score is improved from baseline
by around 17%.

F-score RoBERTabaseline RoBERTa

Unb. power rel. 35.35 54.38
Shallow solu. 00.00 47.06
Presupposition 16.67 26.92
Authority voice. 00.00 24.06
Metaphor 00.00 11.11
Compassion 20.87 46.72
The p., the mer. 00.00 00.00
Average 10.41 30.03

Table 4: Model performance on test data.

Table 4 presents the per-class and average F-
scores of the RoBERTa baseline model and the

proposed RoBERTa model for subtask 2 in the eval-
uation stage. As can be seen from the table, the
proposed RoBERTa model increased the per-class
F-score from the baseline model for each category
except for only the the poorer the merrier class, for
which neither the baseline model nor the proposed
model is able to detect. The average F-score of
the proposed model is also increased from that of
the baseline model. However, the score slightly
decreased in the evaluation stage from in the devel-
opment stage.

6 Conclusion

The experiments of this paper compare some
of the pre-BERT neural network based systems
against the post-BERT pretrained language model
RoBERTa. The experiments start with building
individual NN models from the most basic ANN
models to the more sophisticated LSTM models,
and create a majority voting system based on the
individual NN models. It was found that the NN-
based systems in the experiments perform worse on
the task compared to the RoBERTa baseline model.
And the community models pretrained on relevant
data such as sentiment and toxicity data turn out to
be too specialized in their own task thus resulting
in poor performance on the PCL data compared to
the RoBERTa-base model.

This paper explores neural network models
mainly the basic ANN and LSTM models. Future
work should also consider convolutional neural net-
works (CNN) for PCL detection. In addition to
the neural networks, I suggest also investigating
classic machine learning models such as Logistic
Regression, as well as indicative linguistic features
of PCL for feature engineering. Furthermore, on
top of the RoBERTa-base model, I propose to pre-
train a RoBERTa model using the TalkDown corpus
proposed in Wang and Potts (2019), and fine-tune
the pretrained model using the PCL data. Finally,
future work should run further error analysis of the
models to improve performance.
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Abstract

This paper describes the use of AutoNLP tech-
niques applied to the detection of patronizing
and condescending language (PCL) in a binary
classification scenario. The proposed approach
combines meta-learning, in order to identify the
best performing combination of deep learning
architectures, with the synthesis of adversar-
ial training examples; thus boosting robustness
and model generalization. A submission from
this system was evaluated as part of the first sub-
task of SemEval 2022 - Task 4 and achieved
an F1 score of 0.57%, which is 16 percentage
points higher than the RoBERTa baseline pro-
vided by the organizers.

1 Introduction

The harmful use of language in social media can
have negative and long-lasting effects such as ex-
clusion and unfair treatment, specially when tar-
geting vulnerable communities. For this reason,
the detection of toxic, hateful and abusive com-
ments has been the central topic of several work-
shops and tool evaluations, drawing a lot of atten-
tion from the Natural Language Processing (NLP)
research community in the last years. However,
while toxic language has a clear intent and is usu-
ally obvious to the reader, patronizing and conde-
scending language (PCL) is more subtle and likely
used in a subconscious manner even in traditional
media (Perez Almendros et al., 2020). The afore-
mentioned characteristics and its subjective nature
makes PCL harder to identify than abusive com-
ments by both humans (Sap et al., 2019) and NLP
applications.

The continuously increasing taxonomies of lan-
guage misuse poses new challenges to social media
platforms, thus not only requiring more effort and
cost in order to identify abuse across different lan-
guages and textual genres but also having to keep
a balance between aggressive and conservative fil-
tering strategies. On the one hand, users eventually

devise ways of evading automatic content mod-
eration (Gerrard, 2018), while on the other hand,
policing that restricts freedom of speech can lead to
distrust (Kirk and Schill, 2021). For these reasons,
content filters usually rely on the latest advances
in NLP research, dominated in the recent years
by deep learning architectures. Despite the com-
petitive scores achieved via transfer learning and
models such as the Transformer (Vaswani et al.,
2017) in this area, choosing and optimizing the
right modeling framework for a given NLP task is
still a non-trivial problem.

Automated Natural Language Processing (Au-
toNLP), the equivalent of Automated Machine
Learning (AutoML) for NLP, is a relatively new
field of study that aims to automate the iterative
components of developing a NLP model given a
specific input data and task without requiring any
special domain expertise. By building upon exist-
ing concepts such as transfer learning, data augmen-
tation and meta-learning the author hypothesizes
that is possible to generate strong NLP baselines
with minimal human interaction. An analysis of
the results of the shared task 4 of SemEval-2022:
Patronizing and Condescending Language Detec-
tion (Pérez-Almendros et al., 2022) shows that Au-
toNLP can be successfully applied to PCL classi-
fication, obtaining a 16% higher F1 score than the
baseline provided by the task organizers.

This paper is organized as follows: In Section 2,
the state of the art is reviewed. Further on, Section
3 describes the AutoNLP approach for PCL classi-
fication. Next, in Section 4, an in-depth discussion
of the results obtained is described, and finally Sec-
tion 5 concludes this research and outlines future
work.

2 Related Work

There have been several research works on the
detection of different types of harmful language,
not only focused on the most explicit such as hate
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speech (Zampieri et al., 2019) (Garibo i Orts, 2019)
but also more subtle usages such as condescend-
ing interactions (Wang and Potts, 2019) and social
power implications (Sap et al., 2020). PCL towards
vulnerable communities in news articles has also
been characterized into 7 categories (Perez Almen-
dros et al., 2020) used in order to label the most
comprehensive PCL-annotated corpus to date: the
Don’t Patronize Me! (DPM) dataset, the official
training resource for the shared task 4 of SemEval-
2022: Patronizing and Condescending Language
Detection.

3 AutoNLP for PCL

Deep neural network modeling techniques have
inspired state of the art approaches in various do-
mains, such as image classification and language
modeling, thus dominating several benchmarks and
shared tasks in the last years. For this reason, NLP
applications relying on manually-crafted features
have been less popular in comparison with deep
learning (DL) architectures (Young et al., 2018),
specially where extensive manual feature engineer-
ing is required to achieve a similar performance
(Mosquera, 2021). However, since building a high-
quality DL system for a specific task still relies
on human expertise, AutoML offers a promising
solution to this problem by automating most of the
modeling steps (He et al., 2021).

In order to tackle an arbitrary NLP classification
task, in this case PCL detection, a custom end to
end AutoNLP solution has been designed and evalu-
ated by using exclusively the DPM dataset provided
by the organizers, off-the-shelf pre-trained models
and without applying any special pre-processing or
feature engineering besides standard tokenization.
The main components of the system are described
in the following section.

3.1 Adversarial Data Augmentation
Adversarial data augmentation can not only in-
crease model robustness but also improve general-
ization by increasing the number of training sam-
ples (Shorten et al., 2021). This can be specially
relevant when using neural networks, which tend
to under-perform in a low-data regime (Antoniou
et al., 2018). The different data augmentation strate-
gies incorporated in the AutoNLP pipeline are as
follows:

• Backtranslation: Transformation using Tex-
tAttack (Morris et al., 2020) that translates a

PCL sentence into a random target language
and translates it back to English.

• Checklist: TextAttack implementation of the
Invariance Testing Method: Contraction, Ex-
tension, Changing Names, Number, Location
(Ribeiro et al., 2020) applied to the positive
class.

• Wordnet: Word swap by swapping synonyms
in WordNet (Fellbaum, 1998) for PCL para-
graphs.

• Embedding: Attack that replaces words
with synonyms in the word embedding space
(Mrkšić et al., 2016) for PCL texts.

• Counterfactual: Inspired by the concept of
counterfactual augmentation (Kaushik et al.,
2020), this manipulation only applies to text
from the positive class which is augmented
with random texts from the negative class. The
resulting paragraph should still have a positive
(PCL) label.

• Shuffle: Attack that shuffles words in a PCL
paragraph.

• Parrot: Paraphrased PCL sentences generated
with Parrot (Damodaran, 2021).

• Pegasus: PCL augmentation by generating
paraphrases via conditional augmentation us-
ing Pegasus (Zhang et al., 2019).

3.2 Meta-learning

A common approach to meta-learning is stacked
generalization (Wolpert, 1992), where a set q of
base learners applied to a training set Ttrain :
{(X̃i, ci)}

m

i=1 to produce q hypotheses {hj}qj=1 is
redefined into a new set T ′

train by replacing each
vector X̃i with the class predicted by each of the q
hypothesis on X̃i. T ′

train is used as input to a set of
meta-learners, producing a new set of hypotheses
(Vilalta and Drissi, 2001).

While this approach has been successfully ap-
plied in several NLP tasks (Li and Zou, 2017) (Mos-
quera, 2020), an small variation that deals with
skewed datasets and automatically sub-samples
the majority class in each base learner (Chan and
Stolfo, 1998) was considered instead for this chal-
lenge. In order to do this, a pool of 40 base learners
was generated by randomly combining different
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data augmentation approaches, deep learning archi-
tectures via transfer learning and sub-sampling fac-
tors. Logistic regression was used as meta-learner
in the second layer, with probability thresholds and
hyper-parameters optimized via cross-validation.

Several pre-trained resources were used for fine-
tuning with early stopping including BERT (Devlin
et al., 2019), ELECTRA (Clark et al., 2020), GloVe
(Pennington et al., 2014) embeddings with capsule
networks (Frosst et al., 2018), RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019). The num-
ber of optimal training epochs was determined via
cross-validation. However, for cost mitigation pur-
poses, no model was trained for longer than 10
epochs and most hyper-parameters were left with
the default values.

3.3 Model Selection
The maximum relevance and minimum redundancy
(MRMR) algorithm (Zhao et al., 2019) was applied
as feature selection method, reducing the final num-
ber of base learners used by the meta-model to 8.

After analyzing the cross-validation results we
can observe that base models fine-tuned with
ELECTRA obtained the highest F1 scores. Like-
wise, the most successful data augmentation was
the combination of the Checklist and Backtrans-
lation methods. The final list of base learners, in-
cluding their cross validation F1 score and logistic
regression coefficient is shown in Table 1.

4 Evaluation and Results

Final test set results obtained in the PCL classi-
fication task by the AutoML system (amsqr) and
the winning submission (hudou) can be found in
Table 2. The official RoBERTa baseline and the
development set results are also included for com-
parison purposes.

Model Precision Recall F1
hudou 0.646 0.656 0.651
amsqr (dev) 0.587 0.578 0.582
amsqr (test) 0.547 0.599 0.572
RoBERTa baseline 0.393 0.653 0.491

Table 2: PCL classification results.

The fact that only 42 out of 78 competing teams
were able to beat the RoBERTa baseline provided
by the task organizers highlights the difficulty
of this competition. Besides the nature of the
task, other challenging factors were the strong

Model Augmentations F1 β

BERT Checklist 0.52 0.31
ELECTRA Checklist 0.55 0.25
ELECTRA Checklist 0.55 0.17

Backtranslation
ELECTRA Checklist 0.54 0.13

Backtranslation
Embedding
Counterfactual
Wordnet

RoBERTa Checklist 0.53 0.30
Backtranslation

RoBERTa Parrot 0.54 0.14
RoBERTa Checklist 0.54 0.09

Backtranslation
Embedding

RoBERTa Checklist 0.53 0.13
Backtranslation
Embedding
Counterfactual
Wordnet

Table 1: Final list of base learners selected via MRMR
with their cross-validation score and regression coeffi-
cient estimated during the training phase.

class imbalance and the considered evaluation met-
ric, which required careful tuning of classification
thresholds via cross-validation (Lipton et al., 2014).
A post-competition analysis in Table 3 shows that
the automatically chosen classification threshold of
0.26 during training was also optimal for the test
set.

Threshold Precision Recall F1
0.20 0.498 0.656 0.566
0.22 0.516 0.634 0.569
0.24 0.532 0.621 0.573
0.28 0.558 0.586 0.572
0.30 0.566 0.574 0.570

Table 3: Post-competition classification results in the
test set for different probability thresholds.

5 Conclusion and Future Work

This paper describes the system developed for the
PCL detection task of SemEval 2022. The author
demonstrates that the selected AutoNLP approach
can produce competitive results by leveraging meta-
learning, adversarial data augmentation and pre-
trained resources. Automatic hyper-parameter op-
timization and exploring different meta-learning
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algorithms are left to a future work.
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Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
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Abstract

A logistic regression model only fed with char-
acter and word n-grams is proposed for the
SemEval-2022 Task 4 on Patronizing and Con-
descending Language Detection (PCL). It ob-
tained an average level of performance, well
above the performance of a system that tries to
guess without using any knowledge about the
task, but much lower than the best teams. To
facilitate the interpretation of the performance
scores, the F1 measure, the best level of perfor-
mance of a system that tries to guess without
using any knowledge is calculated and used to
correct the F1 scores in the manner of a Kappa.
As the proposed model is very similar to the
one that performed well on a task requiring to
automatically identify hate speech and offen-
sive content, this paper confirms the difficulty
of PCL detection.

1 Introduction

This paper presents the SATLab’s participation in
SemEval-2022 Task 4: Patronizing and Conde-
scending Language Detection. It is a very recent
task that aims at identifying passages in texts in
which a person is condescending to a vulnerable
community (Pérez-Almendros et al., 2020; Wang
and Potts, 2019). The task organizers have pro-
posed to identify this type of discourse in para-
graphs extracted from news stories published in
English-speaking media.

The Patronizing and Condescending Language
(PCL) Detection task is part of the large family of
tasks that aim at automatically identifying prob-
lematic language, whether in media or on social
networks. Examples include the detection of hate
speech and offensive content, fakenews and hy-
perpartisan news (Kiesel et al., 2019). The PCL
challenge, however, differs from these cases in one
important characteristic. As pointed out by (Pérez-
Almendros et al., 2020), using PCL is not always
conscious and the intention of its author is often

positive. Nevertheless, PCL tends to indirectly de-
mean the community in question and reinforce neg-
ative stereotypes about it. It is therefore important
to develop procedures to identify it.

Recently, the SATLab performed well on a task
requiring to automatically identify hate speech and
offensive content in tweets using a classical super-
vised algorithm only fed with character n-grams
(Bestgen, 2021b). It was especially effective for
resource-poor languages (e.g., Marathi). For En-
glish, its performance (F1 = 0.782) was aver-
age, but nevertheless relatively close to the best
team (F1 = 0.831) that used complementary re-
sources, pre-trained embeddings and deep learning
approaches. These performances suggest that the
proposed approach could be a interesting baseline
to evaluate the benefits of these more complex ap-
proaches.

The goal of SATLab’s participation in the PCL
detection task was to evaluate whether this find-
ing can be generalized to this new task. A priori,
one might think that the performance of the system
should be significantly worse here for two reasons.
First, this task seems to be much more difficult
because of the complex language means of expres-
sion on which it relies and the considerable amount
of world knowledge and common sense reasoning
required to understand this type of language (Pérez-
Almendros et al., 2020). Secondly, this task is only
proposed for English, a language for which many
additional resources are available.

The rest of this document presents the task (see
Pérez-Almendros et al. (2022) for more details),
the proposed system and the performances reached
in the challenge.

2 Task

For this challenge, the organizers extracted para-
graphs mentioning predefined vulnerable commu-
nities, such as homeless people, migrants or poor
families, in news stories from various media in dif-
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ferent countries, all in English. Each paragraph was
annotated according to whether or not it contained
one or more instances of PCL. Annotators were
also asked to identify the type of PCLs present in a
paragraph using seven categories.

On this materials, the SATLab participated in the
two tasks proposed by the organizers. The first task
consists in deciding whether a paragraph contains
some kind of PCL or not. It is thus a classical
binary decision task.

The second task is a fine categorization task in
seven positive and one negative categories. The
seven positive PCL categories are: a)1 Unbalanced
power relations, b) Shallow solution, c) Presuppo-
sition, d) Authority voice, e) Metaphor, f) Compas-
sion, g) The poorer, the merrier. It is important
to note that this categorization is non-exclusive: a
single instance can be an example of two, three,
four and even five categories. I treated this second
problem as Task 1 and thus as seven independent bi-
nary problems, the predictions of the seven models
being simply concatenated in the final submission.
For this second task, the organizers also provided
the precise position of the text areas that had been
identified by the annotators as warranting the as-
signment of a given category. This information was
not used.

The dataset provided by the organizers to de-
velop the systems consisted of 10,469 instances
(but one, id = @@16852855, contained no text).
It was highly unbalanced for Task 1 with only 9.5%
positive instances. The distribution was even more
unbalanced in Task 2 since it contained the same
proportion of negative cases. The most frequent
positive category (a) represented 6.84% of the total
instances and the least frequent only 0.38%.

For the system development phase, the organiz-
ers proposed a division of the paragraphs into a
learning set (80%) and a development set. The
test set used in the final evaluation of the sys-
tems, whose responses were therefore unknown,
consisted of 3,832 paragraphs.

The measure of effectiveness chosen by the orga-
nizers was the F1-score on the positive category for
Task 1 and the unweighted average of the F1-scores
on the seven PCL categories for Task 2.

1The letters are used to identify these categories in Table 2
and 4.

Condition Char Word Combi

F1 0.443 0.440 0.468

Table 1: Performance on the development set

3 System

The proposed system is adapted from the SATLab’s
participation at HASOC 2021. It is based on the
following components.

3.1 Features
The only features used were character and word
n-grams. These n-grams were extracted from the
lowercased paragraphs. The character n-grams had
a length between 1 and 7. The extracted word
n-grams contained from 1 to 4 words. The tok-
enization provided in the materials was used. All
n-grams present at least twice in the materials were
extracted.

3.2 Weighting schema
BM25 (for Best Match 25) was used to weight
the frequency of the features in each paragraph
(Robertson and Zaragoza, 2009; Bestgen, 2021a).
It is a kind of TF-IDF with specific choices for each
of the two components, but above all it takes into
account the length of the document. Its classical
formula is:

BM25 =
tf

tf + k1 ∗ (1− b+ b ∗ dl
dl−avgdl

)

× log
N − df + 0.5

df + 0.5

(1)

in which tf refers to the frequency of the term in
the paragraph, N is the number of paragraphs in
the set, df the number of paragraphs that include
the term, dl the length of the paragraph and avgdl
the average length of the paragraphs in the set. The
parameter k1 was set to 2 and b to 0.75.

3.3 Regularization
The feature values for each paragraph were regular-
ized using the L2 norm.

3.4 Supervised learning procedure
These character and word n-grams were the only
features provided to the supervised learning pro-
cedure: the L2-regularized logistic regression as
implemented in the LIBLinear package (Fan et al.,
2008). This procedure is extremely fast and very
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Sub P T1 T2a T2b T2c T2d T2e T2f T2g

1 C 3.1 4.75 0.95 0.55 0.35 0.25 0.95 0.014
w1 180 500 1,600 1,300 700 1,250 850 1,400

2 C 2 3.75 0.90 0.70 0.65 0.40 1.45 0.016
w1 50 300 2,000 1,500 1,400 750 1,750 1,800

Table 2: Parameters for the two submissions for each task

simple to implement because it only requires the op-
timization of two parameters: the regularization pa-
rameter C and −wi which allows to adjust this pa-
rameter C for the positive category, the one which
has the most influence in the efficiency measure.
It should be noted that during the development pe-
riod of the system, tests were carried out with an
approach much slower and much more complex
to optimize: a gradient boosting decision tree as
implemented in the LightGBM free software (Ke
et al., 2017). But, this approach was abandoned
because it did not improve the efficiency of the
system.

3.5 Comparison to HASOC

The main difference between this system and the
one used for HASOC 2021 is the addition of word
n-gram. This decision was made during the de-
velopment phase of the system, carried out on the
basis of the division of the materials into a train set
and development set as provided by the organizers.
Table 1 shows the F1-scores on the positive cate-
gory for the models based on each n-gram type and
their combination. The parameters were optimized
directly on the development set, which obviously
raises the concern of overfit, but it can be assumed
to be similar for each condition compared. As we
can see, the two types of n-grams produce very
similar performances and the combination brings a
small benefit. The addition of word n-grams means
that the system can no longer be considered com-
pletely language agnostic like the HASOC system,
because it relies on the tokenization provided by
the organizers and because a number of characters,
such as punctuation marks, are removed.

4 Results

The system just described is identical for the two
tasks, the only differences being in the parameters
of the logistic regression which were optimized
independently for each task and for each target
category in Task 2. For the two final submissions,

Rank Id Prec. Rec. F1-Score

1 First 0.646 0.656 0.651
43 Baseline 0.394 0.653 0.491
54 SATLab 0.348 0.552 0.427

Table 3: Results for Task 1 (N = 79)

these parameters were optimized by a 5-fold cross-
validation procedure applied to the combination
of the training and development sets using several
steps of exhaustive grid search.

The parameters employed for each submission
are given in Table 2. The parameters for the
first submission were those that produced the best
overall performance in the cross-validation experi-
ments while those for the second submission corre-
sponded to a model producing close performance,
but in which the difference between precision and
recall for the target categories was as small as pos-
sible.

As can be seen in this table, the parameter values
are often very different in the two versions while
the performance of the models was very close.

Tables 3 and 4 show the performance of the bet-
ter of the two submissions on the test set, as pro-
vided by the organizers. For Task 1, submission
1 performed better while submission 2 performed
better for Task 2. The differences between the two
submissions for the two tasks are however very
small, less than 0.005. These two tables also give
the performance of the first team in the challenge as
well as that of the Roberta-based Baseline proposed
by the organizers.

The proposed system outperformed the Roberta-
based Baseline in Task 2, but not in Task 1. It
ranked in the middle of the participants at best,
very far from the challenge winners. It is unfor-
tunate (for the SATLab at least) that the task was
not proposed in languages with less resources and
precomputed embeddings, making the use of Deep
Learning much more easier.
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Rank Id a b c d e f g Mean F1

1 First 0.656 0.529 0.369 0.407 0.359 0.492 0.471 0.469
24 SATLab 0.424 0.331 0.170 0.232 0.175 0.315 0.142 0.256
38 Baseline 0.354 0 0.167 0 0 0.209 0 0.104

Table 4: Results for Task 2 (N = 49)

Figure 1: Corrected F1 for all teams in Task 1.

It is interesting to note that the performances
obtained on the test set is only slightly lower than
those obtained when optimizing the parameters by
a cross-validation procedure on the training set.
For task 1, this performance on the training set was
only 0.03 higher and, on task 2, only 0.008. This
suggests that the optimization did not produce an
overfit.

The comparison of the system’s performance to
that of the best team for the seven categories (Ta-
ble 4) shows that for none of the categories does
the system manage to come close to this bench-
mark. The differences are always approximately
0.20, except a) Unbalanced power relations, which
is by far the most frequent category, and for g) The
poorer, the merrier, which is by far the rarest in
the learning set, categories for which they are even
higher. The more than limited effectiveness of the
system does not seem to justify a detailed analysis
of its errors.

While the F1-score has become the standard
of evaluation for NLP categorization tasks, its
interpretation is not obvious. One may wonder
whether a Mean F1 of 0.256 (Task 2) represents
a prediction of at least an acceptable value. A
priori, this does not seem to be the case. On
the other hand, the large differences in the
frequency of the categories and the imbalance

Figure 2: Corrected F1 for all teams in Task 2.

in favor of the negative category may explain
the relatively low F1. One way to answer this
question more objectively is to determine the best
level of performance a system that tries to guess
without using any knowledge about the task (Best
Guess) can expect to achieve. Ansgar Grüne in
his blog post available at https://inside.
getyourguide.com/blog/2020/9/30/
what-makes-a-good-f1-score shows2

that in the case of a binary task this is the F1
obtained by a system that always predicts the
positive category. If q is the actual proportion of
instances belonging to this positive category,

F1 Best Guess =
2q

q + 1
. (2)

This value can also be obtained by submitting the
responses of a system that always predicts the pos-
itive category, the approach I used here since the
challenge participants still ignore the proportion of
each category in the test set. In the present chal-
lenge, this F1 Best Guess is 0.153 for Task 1 and
0.041 for Task 2. A system that would not ex-
ceed these values therefore does no better than a
system that always predicts the positive category.

2I confirmed empirically this analysis on the task materials
by means of a Monte-Carlo procedure in which the proportion
of instances in the positive categories were varied between 0
and 1.
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SATLab’s performance is five times better than this
baseline for Task 2, but less than three times better
for Task 1. In absolute value, the gain compared to
the Best Guess is 0.274 for Task 1 and 0.205 for
Task 2. So the n-grams bring some information,
but it is obvious that it is not enough to perform
well in this task.

This best guest can also be used to correct partic-
ipants’ scores on the task using a formula derived
from the Kappa coefficient proposed by Cohen
(1960) to adjust the degree of agreement between
two judges for agreement due to chance alone. The
formula for this correction is:

Normalized F1 =
System F1− F1 Best Guess

1− F1 Best Guess
.

(3)
Figures 1 and 2 show the normalized perfor-

mance of all teams on both tasks. The best system
for task 1 achieved a corrected F1 slightly below
0.60. It thus performed 60 % of the way between
doing nothing (i.e., the Best Guess) and a perfect
performance. This again highlights the complexity
of the task. The normalized F1 of the SATLab is
only slightly higher than 0.30. For task 2, all the
corrected performances are even worse. Figure 2
shows also that the SATLab normalized F1 is quite
far from the team directly ahead of it.

5 Conclusion

The SATLab’s proposed system for SemEval-2022
Task 4: Patronizing and Condescending Language
Detection relies solely on the character and word n-
grams present in the paragraphs to be categorized.
It does not use any additional data and employs
a classical supervised learning procedure (i.e., lo-
gistic regression). It obtained an average level of
performance, well above the performance of a sys-
tem that tries to guess without using any knowledge
about the task, but much lower than the best teams.

Compared to the performance obtained in the
HASOC task (Bestgen, 2021b) and in the detection
of hyperpartisan news articles (Bestgen, 2019), this
system is clearly further from these best teams.
These results confirm, if it were necessary, the
much greater difficulty of PCL detection compared
to hate speech and offensive content identification
(Pérez-Almendros et al., 2020, 2022). They thus
suggest, unless other teams using a similar ap-
proach were more successful, that the use of much
more complex approaches is essential for the PCL
task.
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Abstract
This work describes the development of dif-
ferent models to detect patronising and conde-
scending language within extracts of news arti-
cles as part of the SemEval 2022 competition
(Task-4). This work explores different models
based on the pre-trained RoBERTa language
model coupled with LSTM and CNN layers.
The best models achieved 15th rank with an
F1-score of 0.5924 for subtask-A and 12th in
subtask-B with a macro-F1 score of 0.3763.

1 Introduction

The use of Patronising and Condescending Lan-
guage (PCL) in text or speech can affect healthy
communication channels adversely. The effect of
PCL on the vulnerable sections of society have
been widely studied. PCL acts as a catalyst for dis-
criminatory behaviour (Mendelsohn et al., 2020)
against various vulnerable groups. It has been ob-
served to promote exclusion and discrimination
among communities and provide a conducive en-
vironment for rumour spreading and misinforma-
tion (Nolan and Mikami, 2013). These negative
effects of PCL are unaffected by the intent of the
writer/speaker who might have unknowingly used
PCL. These reasons provide a strong argument for
developing methods that can identify and prevent
unwanted use of PCL in news articles, blogs, and
other pieces of text.

In subtask-A of the Patronizing and Conde-
scending Language Detection task at Semeval-2022
(Pérez-Almendros et al., 2022), the goal is to de-
velop a model which takes a sample text as an input
and outputs a label indicating the presence or ab-
sence of PCL. In subtask-B, the model was required
to identify the correct set of PCL categories. The
model takes in a sample text as an input and return
seven separate outputs each indicating the presence
or absence of the pre-defined seven categories. The
dataset for the task was shared by the task organis-
ers in the English language. To tackle these tasks,

RoBERTa based models were developed. Different
variations of the models involved the use of feed-
forward layers, LSTMs, CNN and their combina-
tions. For subtask-A RoBERTa with LSTM, CNN
and feed-forward layers outperformed all the other
variations with an F1 score of 0.5924. In subtask-B
RoBERTa with feed-forward layers got the best F1
score of 0.3763 as compared to the other variations.
For subtask-A, this work achieved 15th rank in the
leader board and 12th rank for subtask-B details of
which are discussed in section 3.2.

2 Background

Identification and analysis of PCL in text is well
explored in linguistics (Aggarwal and Zhai, 2012),
politics (Huckin, 2002), sociolinguistics (Thapar-
Björkert et al., 2016) and other fields. However, in
NLP it is still heavily unexplored and starting to
gain traction. In the past topics such as sentiment
analysis (Feldman, 2013), offensive speech identi-
fication (Safaya et al., 2020) and fake news identi-
fication (Shu et al., 2017) have been significantly
worked upon. One major roadblock in exploring
PCL in the text is the lack of well structured and la-
belled dataset. Recently, some new work has been
developed to tackle this issue. Wang et al. (Wang
and Potts, 2019) developed a model for identifying
the condescending language in Reddit threads and
also developed an annotated dataset for the same.

2.1 Dataset

For training and development of the model pre-
sented in this work "The Don’t Patronize Me!"
dataset (Perez-Almendros et al., 2020) was used.
The dataset contains paragraphs in the English lan-
guage extracted from the News on Web (NoW)
corpus. It comprises 10469 samples out of which
993 have been classified as positive samples, i.e.
they contain PCL. The dataset categorizes PCL
into 7 different sub-categories, namely, Unbal-
anced power relations (UPR), Shallow solution
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Sentence Keyword Label
In September , Major Nottle set off on foot from Melbourne
to Canberra to plead for a national solution to the homeless problem . homeless 1
10:41am - Parents of children who died must get compensation , free
medicine must be provided to poor families across UP : Ram Gopal Yadav poor-families 1
Today , homeless women are still searching for the same thing .
A place to sleep and be safe homeless 0
For refugees begging for new life , Christmas sentiment is a luxury most
of them could n’t afford to expect under shadow of long-running conflicts refugee 0

Table 1: Sample text and keyword pairs along with corresponding labels.
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Figure 1: Distribution of the number of sentences per
sample.

(SSL), Presupposition (PS), Authority voice (AV),
Metaphor (MTP), Compassion (CMP), The poorer
- the merrier (PM). Each positive sample can be-
long to any combination of these categories. The
distribution of each category out of all the positive
samples is described in Figure 4.

For developing the models for subtask-A the
dataset also provides binary labels (0 or 1) to sig-
nify the presence or absence of PCL in the text.
Along with the paragraphs, the dataset includes
the country of origin of the original article and
keywords that occur in the paragraph under consid-
eration. These keywords comprise the following,
Disabled, Homeless, Hopeless, Immigrant, In need,
Migrant, Poor Families, Refugee, Vulnerable and
Women. These keywords are usually present in
texts that concern the vulnerable sections of society
(refer Table 1).

3 System Overview

This section describes the different model designs
explored for Task A and Task B and the pre-
processing techniques employed. Section 3.1 de-
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Figure 2: Distribution of the number of words per sen-
tence in a sample.

scribes the pre-processing techniques and how
they tackle the challenges offered by the dataset.
The different models are described under section
3.2 along with a description of the different sub-
components and the underlying intuition.

3.1 Data pre-processing
The "The Don’t Patronize Me!" dataset offers pri-
marily three major challenges, which are, low
number of samples, high class imbalance and the
low context in the textual data (smaller sentence
length). To deal with high class-imbalance and
lower number of samples data augmentation tech-
niques, loss weighting strategies were adopted and
to address the low context issue, keywords shared
in the dataset were used to provide added context
to the models.

3.1.1 Tokenisation
Each sample was tokenised using RoBERTa (Liu
et al., 2019) tokenizer. To identify the optimal To-
kenisation length analysis was done on the distribu-
tion of the number of a sentence per sample (Figure
1) and the distribution of the number of words for
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Figure 3: An example of tokenisation

each sentence (Figure 2). On analysing the two
distributions length of 50 to 60 tokens seemed a
viable candidate for Tokenisation operation. How-
ever, on further analysis, it was found that out of
993 positive samples, 193 (19.43 %) had more than
75 words. Thus, to prevent loss of information
Tokenisation was done with a length of 100.

Each tokenised sentence was prepended with a
tokenised keyword corresponding to that sample
separated by the SEP token. Finally, the Tokenisa-
tion process was completed by adding a CLS and
SEP token at the beginning and the end respectively
(refer Figure 3).

3.1.2 Data augmentation
For data augmentation back-translation method
was explored. Back-translation is the process of
using a language model to translate a text from
its parent language to another language, generally
using a language model. The new text is then trans-
lated back to its parent language. This method
introduces slight changes in the structures of the
text while retaining the underlying context. This
method has been shown to boost the performance
of models trained over smaller datasets.(Sennrich
et al., 2016). Helsinki-NLP models 1 were used
to translate a sentence from English to French and
back to English. Only 30 per cent (randomly sam-
pled) of the positive samples from the dataset were
back-translated.

3.1.3 Loss weighting
Initial exploratory analysis of the dataset has shown
high class imbalance. To address this issue cost-
sensitive re-weighting technique developed by Cui
et al (Cui et al., 2019) and suggested by Jurkiewicz
et al (Jurkiewicz et al., 2020) was adopted. The
weighting factor for each class was identified as
per the following definition:

(1− β)/(1− βni) (1)

where β is a hyper-parameter in [0,1), and ni
is the number of samples belonging to the class
i. Using these weights the updated softmax cross-
entropy loss is given as:

1https://huggingface.co/Helsinki-NLP
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Figure 4: Number of samples for each of the seven PCL
classes

Model BASIC AUG WT
RB-FNN 0.6177 0.6301 0.6080
RB-BiLSTM 0.6140 0.6305 0.6258
RB-CNN 0.5879 0.5954 0.6037
RB-BLS-CNN 0.6059 0.6095 0.6318

Table 2: Analysis of the models trained under WT,
AUG and BASIC setting for subtask-A

L(z, y) =
1− β
1− βni

log

(
exp (zy)∑C
j=1 exp (zj)

)
(2)

where z = [z1, z2, ..., zC ] is the predicted output
of the model for C classes and y being one of the
possible class labels, i.e. y ∈ C

3.2 Model description

This work explores four different model designs.
Each design includes RoBERTaLARGE (Liu et al.,
2019) as it’s base layer. The output of the last hid-
den state (shape = 106 X 1024) is then further fed
down the network to get the final prediction. For
subtask-A, all the models perform binary predic-
tion (0 = no PCL, 1 = contains PCL) to identify if
the input text contains PCL, while for subtask-B
each model produces 7 binary predictions, one for
each possible PCL category. The design of the four
models remains the same for both tasks except for
the number of outputs generated by them (Figure
5). Binary Cross-Entropy (BCE) loss was used for
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Figure 5: Generalised architecture of the models devel-
oped. For subtask-A classifier layers consist of single
FNN with 2 units. For subtask-B classifier layers consist
of 7 FNN layers each with 2 units.

all the outputs. Adam optimizer was utilized with
a learning rate set to 1e-6 and epsilon at 1e-6.

3.2.1 RB-FNN
The model employs the use of two feed-forward
layers added on top of RoBERTaLARGE. The out-
put of the last hidden layer is flattened and passed
down the model. The initial feed-forward layer has
106 units. For subtask-A, the output of this hidden
layer is passed on to a single feed-forward layer
with 2 units for binary prediction, while for subtask-
B the output is shared by seven feed-forward layers
each with 2 units predicting the presence of each
sub-category of PCL.

3.2.2 RB-BiLSTM
LSTM is a type of recurrent neural network (RNN)
that allows the model to learn underlying features
in temporal data without the added drawbacks of
general RNN models such as exploding or vanish-
ing gradients. LSTM allows the model to capture
the long term dependencies in the data and identify
the underlying temporal nature of the data(Tang
et al., 2015). LSTMs have shown to achieve state
of the art performance in different text classifi-
cations tasks (Tang et al., 2015) and (Li et al.,
2020). Shi and Lin (Shi and Lin, 2019) also
showed that using LSTM coupled with BERT can
improve the performance compared to BERT by
itself. For this model the output of the last hid-
den layer of RoBERTaLARGE model is fed into a
Bi-Directional LSTM layer with 106 units. The

output of the BiLSTM layer is then fed down to
two FNN layers with 106 and 2 units respectively
(subtask-A). For subtask-B, the output of the first
FNN layer is fed to seven feed-forward layers each
with 2 units.

3.2.3 RB-CNN
CNN based models have been shown to perform
well for various text classification problems (Chen,
2015) (Safaya et al., 2020). CNN layers are able
to capture the semantic relationships within the
textual data and given the structured nature of
the embeddings obtained from RoBERTaLARGE

model it seemed beneficial to use CNN layers to
extract the hierarchical features within the data
(Rodrigues Makiuchi et al., 2019). In this model,
the last layer embeddings of the RoBERTaLARGE

model are fed to two CNN layers coupled with a
max-pooling layer. The first CNN layer comprises
64 10X10 filters with stride 1 and the second layer
comprises 32 5X5 filters with stride 1. After each
CNN layer, a two-dimensional max-pooling opera-
tion is done with a shape of 2X2. The output of the
last max-pooling operation is fed to an FNN layer
with 106 units which is followed by an FNN layer
with 2 units (subtask-A). For subtask-B, the out-
put of this FNN layer is fed to seven feed-forward
layers each with 2 units.

3.2.4 RB-BLS-CNN
To get the model to learn both temporal and hierar-
chical features within the data a hybrid model was
developed employing both LSTM and CNN layers.
This model is created as an amalgamation of the
RB-BiLSTM and RB-CNN models. The last layer
RoBERTaLARGE embeddings are fed to an LSTM
layer with 106 units. The output of the LSTM layer
is then further fed to the CNN architecture defined
in the RB-CNN model. The final FNN layer with
106 units is then further fed to a single FNN layer
with 2 units for subtask-A and to seven separate
FNN layers each with 2 units for subtask-B.

4 Experimental setup

To gauge the effect of data augmentation and loss
weighting techniques on the performance of mod-
els for each subtask four experiments were carried
out (Table 6). The goal was to identify how both
the techniques interacted with each other and to
find the right combination for each subtask. For
each experiment, the model was trained on 80 per
cent of the data as the training set and 20 per cent
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Model Macro F1 UPR F1 SSL F1 PS F1 AV F1 MTP F1 CMP F1 PM F1
Baseline 0.1041 0.3535 0 0.1667 0 0 0.2087 0
RB-FNN 0.3763 0.5969 0.4578 0.3333 0.2178 0.3043 0.536 0.1875

Table 3: F1 score comparison on evaluation dataset for subtask-B between the RoBERTa baseline shared by task
organisers and the RB-FNN under AUG experimental settings.

Model F1 score Precision Recall
Baseline 0.4911 0.3935 0.653
RB-BLS-CNN 0.5924 0.5357 0.6625

Table 4: F1 score comparison on evaluation dataset
for subtask-A between the RoBERTa baseline shared
by task organisers and the RB-BLS-CNN under WT
experimental settings.

Model BASIC AUG WT
RB-FNN 0.4054 0.4082 0.3158
RB-BiLSTM 0.3643 0.3818 0.2880
RB-CNN 0.3594 0.3903 0.3180
RB-BLS-CNN 0.3599 0.3519 0.2871

Table 5: Analysis of the models trained under WT,
AUG and BASIC setting for subtask-B

as the validation set. The 80-20 split shared by the
task organisers was used. F1 score for subtask-A
and macro F1 score for subtask-B were chosen by
the task organisers as the criteria to identify the best
performing model, thus the same was used to eval-
uate the performance of different models created
for the two subtasks under different experimental
settings. For each experiment, training was done
for 20 epochs with a batch size of 8. The best ver-
sion of the model from each experiment was used
to generate predictions for the evaluation dataset.

5 Results

For subtask-A RB-BLS-CNN under WT experi-
ment achieved the highest F1 score of 0.5924 with
a precision of 0.5357 and recall of 0.6625 on the
evaluation dataset. While on the validation dataset
the same model received an F1 score of 0.6318
with a precision of 0.5685 and recall of 0.7109.

For subtask-B RB-FNN performed best out of all
the models under the AUG experimental settings.
The model achieved a macro F1 score of 0.4006 on
the validation dataset and 0.3763 on the evaluation
dataset.

The minute difference in the F1 scores of the
best models for the evaluation dataset and the vali-
dation dataset shows that the model did not overfit

Exp Augment Loss Weighting
BASIC No No
AUG Yes No
WT No Yes
AUG+WT Yes Yes

Table 6: Different experiments carried out on each
model.

during the training phase despite a large number of
training epochs.

The effect on class re-weighting (refer 3.1.3) and
data augmentation was also explored (refer Table
2 and Table 5). It was found that for subtask-A
a majority of the four models received a boost in
the F1 score when class re-weighting was applied
as compared to the BASIC experimental setting.
However, this trend was absent for all the models
of subtask-B. Rather class-weighting had a detri-
mental effect on the models for subtask-B as shown
in Table 5. The low number of samples for each
of the seven sub-classes coupled with the added
complexity of the task as compared to subtask-A
could have been the underlying cause behind this
observation.

Similarly, the effect of data augmentation on
model performance was also explored (refer to Ta-
ble 2 and Table 5). For subtask-A, all the different
models received a boost as compared to the models
without augmented data. The same trend persisted
for the majority of models trained for subtask-B.

Another interesting find in subtask-B was the sig-
nificantly poor performance of the LSTM and CNN
based models as compared to the vanilla RoBERTa
model i.e. RB-FNN. This is not in line with the
trend observed for the models in subtask-A (Table
2). The reason for this result could be similar to
the unexpected trend observed for the models of
subtask-B in class re-weighting experiments. Espe-
cially for LSTM based models as a large number
of samples are required to train models that employ
LSTMs in their design.
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UPR SSL PS AV MTP CMP PM
Precision 0.6076 0.3684 0.5667 0.3428 0.5652 0.6521 0.6666
Recall 0.5563 0.3889 0.2741 0.3157 0.25 0.4245 0.1818

Table 7: Precision and Recall values for RB-FNN model under AUG experimental settings on test data.

6 Conclusion

This work explored the design and training of dif-
ferent RoBERTa based models for PCL detection
in text. The added benefits of using CNN and
LSTM layers along with RoBERTa in boosting
model performance was also shown. This work
also explored the effects of using back translation
as a data augmentation technique along with a class
re-weighting technique to deal with low sample
size and high class imbalance. Finally, the chal-
lenges offered by the models under different prob-
lem statements were explored which gives a deeper
insight into the impacts of different design method-
ologies. The best models achieved 15th and 12th
rank for subtask-A and subtask-B respectively.

Future work can include expanding the dataset
with more data as the current dataset includes
10469 samples. Also, the original article can be
provided against each sample which can be fed to
the model as added context. This added context
should significantly boost model performance.
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Abstract

This paper presents a combination of data aug-
mentation methods to boost the performance
of state-of-the-art transformer-based language
models for Patronizing and Condescending
Language (PCL) detection and multi-label PCL
classification tasks. These tasks are inherently
different from sentiment analysis because posi-
tive/negative hidden attitudes in the context will
not necessarily be considered positive/negative
for PCL tasks. The oblation study observes that
the imbalance degree of PCL dataset is in the
extreme range. This paper presents a modified
version of sentence paraphrasing deep learning
model (PEGASUS) to tackle the limitation of
maximum sequence length. The proposed algo-
rithm has no specific maximum input length to
paraphrase sequences. Our augmented under-
represented class of annotated data achieved
competitive results among top-16 SemEval-
2022 participants. This paper’s approaches rely
on fine-tuning pretrained RoBERTa and GPT3
models such as Davinci and Curie engines with
extra-enriched PCL dataset. Furthermore, we
discuss Few-Shot learning technique to over-
come the limitation of low-resource NLP prob-
lems.1

Keywords: Natural Language Processing,
Transformers, Data Augmentation, RoBERTa,
GPT-3, Curie and Davinci Engines.

1 Introduction

Natural Language Understanding (NLU) and Inter-
pretation (NLI) is a branch of Natural Language
Processing (NLP) in Artificial Intelligence (AI),
which involves understanding and analyzing human
language in-depth. Recent advances in Deep Neu-
ral Networks (DNNs) have enabled NLP research
scientists to achieve state-of-the-art results for tasks

1Our implementation is publicly available at
https://github.com/daniel-saeedi/PCL_
Detection_SemEval2022

that were extremely difficult, if not impossible De-
vlin et al. (2019), Lan et al. (2020). However, un-
derstanding human emotions, reactions, and uncov-
ering hidden insights from unstructured text data
such as news stories channel is still challenging.

Language attitudes and intentions extracting in
response to the support for the marginalized and
vulnerable communities is one of the emergent
NLP applications. Patronizing and condescending
language (PCL) is a type of behavior that projects
a sense of superiority to vulnerable populations
Pérez-Almendros et al. (2020). Furthermore, biases
and discrimination can result from patronizing atti-
tudes, causing some people to feel unfairly treated,
inadequate, unintelligent, and possibly infuriated
Saeedi et al. (2021).

Since raw text data extracting from web is a
common data collection method, language mod-
els can learn different forms of harmful language
Heidari and Jones (2020). The PCL understand-
ing is inherently different from sentiment analysis
because positive/negative hidden attitudes in the
context will not necessarily be considered posi-
tive/negative for PCL tasks. It is difficult due to the
fair amount of world knowledge and commonsense
reasoning required to understand this kind of lan-
guage Saeedi et al. (2020). The fine-grained idea
of PCL detection towards vulnerable communities
was presented by Pérez-Almendros et al. (2022).
They evaluated baseline results of NLP techniques
to detect the presence of PCL and classify PCL
types at the text span level.

In this paper, we describe systems participat-
ing in the SemEval-2022, PCL detection competi-
tion, multiple tasks of language interpretation. The
competition is divided into binary classification
and multi-label categorization tasks. Data qual-
ity analysis led us to explore several NLP data
augmentation techniques and state-of-the-art DNN
architectures for these challenging tasks. Our at-
tempts to improve the performance of previous
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Figure 1: PCL data for binary and multi-label classification problems. Labels 0 and 1 are corresponding to not
containing and containing PCL, respectively. "Authority voice" is the PCL category of paragraph. Training model
on combined features as the concatenation of keyword and paragraph with RoBERTa separation token "</s>".

efforts ranked us 16 among 79 NLP research teams
with very competitive results on the PCL detection
task. Our system’s performance achieved 80% and
58% F1-score on the training and test datasets, re-
spectively. In comparison, the winning system’s
F1-score was 65%. Also, the in-depth dataset anal-
ysis revealed multi-label classification techniques
commonly confused in the PCL categorization task.

This paper is organized as follows. In Section
2, we introduce two PCL tasks, an in-depth anal-
ysis of their datasets, and the challenges of these
tasks. In Section 3, we describe our different strate-
gies to tackle discovered challenges of data quality.
Next, we explored text augmentation methods to
fine-tune the Transformer-based model for each in-
dividual task. In Section 4, we discuss our applied
models, the experimental setup for fine-tuning mod-
els, and their performance. Finally, we conclude
the paper in Section 5.

2 Tasks Definition and Dataset Analysis

As discussed, PCL competition consists of two
classification tasks, each focused on the different
objectives of PCL towards underprivileged com-
munities. Figure 1 shows samples of data, their
salient features, and annotated labels in training set
for both tasks. The first task aims to classify a para-
graph that contains PCL as an act of appearing kind
or helpful but internally feeling superior to others.
The second task is the investigation of the text cat-

egorization problem, where each PCL-containing
paragraph may belong to several PCL categories2.

2.1 Data Analysis of Binary Classification

For the PCL binary classification task, we had ac-
cess to 10469 human-labeled paragraphs for train-
ing our models. Two annotators consider their dis-
agreement on borderline cases as not containing
PCL. Our exploratory data analysis reveals not con-
taining PCL paragraphs with label ‘0’ make up a
large proportion of dataset (90.4%), and target class
‘1’ as containing PCL is the minority class.

The imbalance degree of PCL binary classifica-
tion dataset can be measured in moderate to ex-
treme range Leevy et al. (2018). The highly imbal-
anced data would be problematic because models
are mostly trained on non-PCL data and will not
learn enough from the PCL samples. In this case,
a non-PCL outcome is almost always predicted by
the trained model. Our experiment shows models
yield inaccurate results, see Section 4.

To combat imbalanced training data and mis-
leading classification results, we investigate several
techniques in Section 3. Furthermore, this problem
is highly challenging because the nature of PCL de-
tection is different from other domains, such as hate
speech, inappropriate and fake content detection.

2Seven categories for different traits of PCL: Unbalanced
power relations (unb), Shallow solution (shal), Presupposition
(pre), Authority voice (aut), Metaphor (met), Compassion
(com), The poorer, The merrier (merr).
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Words that might have positive connotations in sen-
timent analysis will not necessarily be considered
positive in PCL.

aut unb shal pre com met merr
PCL categories 
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Figure 2: Imbalanced data representation. This chart
illustrates the number of observations per PCL category
is not equally distributed because in the first task not
containing PCL class can obviously discriminate the
minority class.

2.2 Data Analysis of Multi-label Classification

For identifying PCL types, the number of manually
labeled samples in the datasets is 2760, including
all PCL positive data from the previous task. Each
text span within the containing PCL paragraph can
represent one or more PCL categories.

We were challenged to build a multi-label deep
learning model capable of detecting different types
of PCL. The unevenly distributed labels, also in the
case of multi-label classification, could be problem-
atic. Figure 2 illustrates the number of paragraphs
associated with "unb" and "com" are the dominant
categories. In Sections 3, we present different meth-
ods to combat these challenges, and we describe
our efforts of training model on the proper distribu-
tion to handle imbalanced dataset in Section 4.

3 Tackling Data Imbalance

Taken together, these challenges led us to ap-
proach skewed class proportion problems in the
PCL dataset with various Data Augmentation (DA)
techniques in NLP Wei and Zou (2019). Like many
other NLP techniques, DA is not an exact science,
and understanding both dataset and task is essen-
tial. We conducted an ablation study to measure the
impact of DA on the performance of the system.

We aimed to enhance the size of dataset to reduce
the side effect of data imbalance. Before trying text

augmentation methods, we preprocessed the data
by removing HTML-tags and non-alphabetic char-
acters. Then, we expanded English language con-
tractions, e.g., from "you’ve" to "you have." The
following subsections explain our DA methods.

3.1 Synonym Replacement
Synonym Replacement (SR) is a simple operation
that randomly chooses some non-stop words from
the sentence and replaces them with one of their
synonyms chosen at random. We applied wordnet
database from nltk library to identify synonyms of a
given word within the paragraph Miller (1995). As
SR is a lightweight and efficient way of performing
DA, we tried to replace 1 to 3 words at a time to cre-
ate diverse PCL samples. Table 1 illustrates scores
achieved by training RoBERTaLarge model on
the augmented dataset. Regardless of the approach
taken, the model performance did not spike as ex-
pected. As shown later, this approach has been
mixed with other text augmentation methods in
training models.

3.2 Oversampling
Since containing PCL samples are under-
represented, we considered oversampling (OS)
Padurariu and Breaban (2019). Oversampling
randomly duplicates data in the minority class by
a factor of 8 and adds them to the PCL training
dataset, so the number of samples in each class
becomes almost equal. The performance of the
training pre-trained model with augmented training
data by far exceeded the baseline result. (See Table
1)

3.3 Back Translation
We applied back translation (BT) to treat the prob-
lem of underrepresented class and boost model
performance. In this case, we used a powerful aug-
menter method of BT in nlpaug library and FairSe-
qMachineTranslation Wang et al. (2020) model
from HuggingFace 3 Transformers. The aim was to
generate more PCL samples and then train model
on the true distribution. BT translates all PCL sam-
ples from English to German, then translates the
previously translated text back into the source lan-
guage. We reused our best-performing model on
OS and SR methods. However, later experiments
showed that this technique led the model heavily
to overfit the augmented training data (Figure 3).

3https://huggingface.co/docs/
transformers/model_doc/fsmt
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Note that we did no model validation using aug-
mented data but did training with a mixture of OS,
SR, and BT approaches. Although the improve-
ment offered by BT is not so intelligible, statistical
analysis is remarkable. The results are shown in
Table 1.

Figure 3: 80% F1-score was achieved at epoch 3. We
can see a clear sign of overfitting after this epoch.

3.4 PEGASUS Paraphrasing

Paraphrase generation was the last effort in DA.
Paraphrase generation models (in an encoder-
decoder form) learn to reconstruct the input using
different words and retaining the same meaning
while paraphrasing. Paraphrasing can act as a regu-
larizer and reduce the overfitting during the training
process Fu et al. (2020).

To leverage PCL dataset efficiently, we per-
formed paragraph paraphrasing along with SR to
come up with a less imbalanced dataset. PEGA-
SUS (Pre-training with Extracted Gap-sentences
for Abstractive Summarization) Zhang et al. (2020)
is a self-supervised Transformer model that masks
important sentences from the input and then gener-
ates them as one output sequence from the remain-
ing sentences.

The original PEGASUS is limited by the
length of text and does truncation on long texts
input. The maximum length of PCL paragraphs
is 5493 tokens, while the longest input of original
PEGASUS model can be 60 tokens. Therefore,
we need to handle the limitation of Transformers
on the size of the text while training Liu et al.
(2019). We proposed an algorithm, multi-sentence
PEGASUS, to modify PEGASUS model for
arbitrarily long document paraphrasing. This
algorithm separates each paragraph into sentences,

and then multi-sentence PEGASUS generates
ten paraphrased sentences from each individual
sentence. The main challenge is to retrieve
the original paragraph, because the number of
paraphrased sentences for each paragraph was
different due to different number of sentences in
each sample data. This algorithm can concatenate
paraphrased sentences to get the original paragraph
in efficient time (The implementation is available
at our GitHub). Multi-sentence PEGASUS
generates a new dataset containing PCL paragraph
over ten times larger than the original containing
PCL training data. The following example is
a containing PCL data and its corresponding
paraphrased context:

Original Paragraph: Shepherding in America has

always been an immigrant’s job, too dirty, too cold and too

lonely for anyone with options.

PEGASUS Paraphrased: In America, shepherding has

always been an immigrant’s job, dirty, cold, and lonely.

After multi-sentence PEGASUS paraphrasing,
two words in each generated text are replaced by
their respective synonyms from wordnet corpus.
The hyper-parameters values for PEGASUS model
have been selected by trial and error. We set a num-
ber of times the model searches for the most opti-
mal follow-up word within the text to 10 and played
with the parameter that regulates the chances of ap-
pearance of high/low probability words.

4 Model Description

Our system is based on pre-trained transformers
models on the augmented PCL dataset. We focused
on exploiting superior performance of RoBERTa
and GPT3 models.

4.1 Fine-tuning RoBERTa

To simulate the baseline result, we first did regu-
lar fine-tuning RoBERTa for each PCL task on the
concatenated features of dataset (keyword and para-
graph). Submitted systems on the SemEval-2022
leaderboard were evaluated on the F1-score met-
ric. The (73%) F1-score was achieved by training
the model with parameter values of 1e− 5, 2, 400
for learning rate, number of epochs, and warm-up
steps, respectively while the baseline is 70.63%
(See Table 1).

For the next step, we fine-tuned RoBERTa on
the augmented datasets via each method mentioned
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Models Original Dataset SR OS BT Peg SR/Peg SR/OS/BT/Peg
Task1 RoBERTaLarge 73% 73% 79% 73% 76% 77% 81%
Task2 RoBERTaLarge 32% 57%
Hyper-parameters LR WS Epoch

{1e-5, 5e-6} {400, 800, 3000, 4000} {1, 2, 4, 8, 10}

Models labels precision recall f1-score support accuracy
Task1 GPT3/Curie 0 61% 22% 32% 50

1 52% 86% 65% 50 54%
Task1 GPT3/Davinci 0 58% 30% 39% 50

1 53% 78% 63% 50 54%

Table 1: Peg stands for PEGASUS paraphrasing. The training RoBERTa on the extra enriched dataset
(SR/OS/BT/Peg) outperforms other DA methods. The learning process is controlled by setting hyper-parameters
(Learning Rate (LR), Warm-up Steps (WS), and Number of Epochs) in the defined range. GPT3 model with Davinci
and Curie engines yield good performance with small subset of PCL training dataset. Support parameter indicates
the number of queries which is the same for both models. 100 queries in total, and 50 queries for each label.

in Section 3, separately. Moreover, we took pre-
trained RoBERTa and retrained on the extra en-
riched PCL dataset, which was boosted by a com-
bination of three DA previously explained meth-
ods. Same as regular fine-tuning RoBERTa, we
fed concatenation of keyword and paragraph with
RoBERTa special token "</s>" to the model
and hyper-parameters are defined in Table 1. Aug-
mented PCL dataset with SR and BT methods led
to lower performance of our system compared to a
mix of all described DA approaches. Using all DA
methods together boosted the model performance
to 81%. Figure 3 shows the accuracy of the model
in each epoch, and it hits 81% F1-score at epoch 3,
and then model start overfitting later. Our system
trained and evaluated on the training dataset.

For multi-label classification, the trained
RoBERTa model on the extra enriched dataset out-
performed (57%) the same model trained on the
original dataset (32%). However, the model’s per-
formance on the test dataset released in the post-
evaluation phase was not the same. It is worth
mentioning that the F1-average of the winning sys-
tem (46%) for multi-lable classification task was
not better than the random guess model.

4.2 GPT-3 Davinci and Curie

Limitation in the amount of available labeled data
can be rectified with Few-Shot Learning technique
by providing a few examples at inference time with
a large language model. OpenAI GPT3 Brown
et al. (2020) language model uses this technique
and also can be applied to PCL binary classification
task. GPT3 has been trained on a huge text dataset

from the open internet with billions of parameters.
In this scheme, we considered two offered mod-

els of GPT3 with different capabilities and price
points. Davinci is the most capable in understand-
ing the intent of a text, the motives of characters,
and also the expensive engine. Also, Curie is quite
faster and lower cost than Davinci and capable of
tasks like sentiment classification.

We tried both models with Few-Shot learning
technique by feeding the model a small amount of
PCL training data (with an equal number of labels)
as a prompt. The labeled examples were uploaded
as a JSON file to OpenAI API for the purpose of
classification. Davinci and Curie leverage a few
labeled sets of examples without fine-tuning and
enable to understand previously unseen data. We
queried the model with a subset of training data
to predict the most likely label for each query. In
fact, Davinci and Curie engine classify specified
queries using provided labeled data in a JSON file.
These engines first search over the labeled data to
select the most relevant for a particular query. Our
implemented code is publicly available 4.

Table 1 illustrates the performance of Davinci
and Curie models. OpenAI GPT3 prices are per
tokens. Therefore, we just prompted Davinci and
Curie by 1000 and 200 labeled data, respectively.
They were evaluated on F1-score with 100 queries
of even class distribution. Surprisingly, both mod-
els perform well without hyper-parameter tuning
and on just a few examples of PCL. Davinci’s per-
formance was the same as Curie’s result but with

4https://github.com/daniel-saeedi/PCL_
Detection_SemEval2022
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five times fewer labeled examples. OpenAI API
offers the ability to fine-tune their model on the de-
sired task, which is quite costly and time-intensive.
An interesting future research direction can be ex-
ploring GPT3 applications for PCL detection and
multi-label classification tasks, regardless of the
cost to train the model.

5 Conclusion

This paper presented a system description for PCL
detection and multi-label categorization tasks. Our
exploratory data analysis revealed annotated PCL
dataset is highly imbalanced. We enhanced data
quality with a combination of data augmentation
methods. We presented a modified version of sen-
tence paraphrasing deep learning model, Multi-
sentence PEGASUS, to tackle the limitation of
maximum sequence length. The proposed algo-
rithm has no specific maximum input length to
paraphrase sequences. We evaluated the perfor-
mance of the large pre-trained RoBERTa model
on the extra enriched PCL dataset. We boosted
the baseline performance and achieved competi-
tive results among the top-16 SemEval-2022 par-
ticipants. Furthermore, we tried two models of
GPT3, Davinci and Curie with Few-Shot learning
technique. Our investigation showed both mod-
els perform well without hyper-parameter tuning
and on just a few examples of PCL. We believe
these tasks have many potentials and challenges to
further improve current results.
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Abstract

This paper details our implementations for find-
ing Patronizing and Condescending Language
in texts, as part of the SemEval Workshop Task
4. We have used a variety of methods from
simple machine learning algorithms applied on
bag of words, all the way to BERT models, in
order to solve the binary classification and the
multi-label multi-class classification.

1 Introduction

The Patronizing and Condescending Language De-
tection Task (Pérez-Almendros et al., 2022) is
based on the paper Don’t Patronize Me! (P’erez-
Almendros et al., 2020), which is an annotated
Dataset with Patronizing and Condescending Lan-
guage Towards Vulnerable Communities.

The aim of this task is to identify PCL, and to
categorize the language used to express it, specifi-
cally when referring to communities identified as
being vulnerable to unfair treatment in the media.

Participants were provided with sentences in con-
text (paragraphs), extracted from news articles, in
which one or several predefined vulnerable com-
munities are mentioned. The challenge is divided
into two subtasks.

1. Subtask 1: Binary classification. Given a para-
graph, a system must predict whether or not it
contains any form of PCL.

2. Subtask 2: Given a paragraph, a system must
identify which PCL categories express the
condescension. The PCL taxonomy was de-
fined based on previous works on PCL (i.e.
Unbalanced power relations, Shallow solution,
Presupposition, Authority voice, Metaphor,
Compassion, The poorer, the merrier. )

2 Background

The dataset used for this SemEval 2022 task was
Don’t Patronize Me! (P’erez-Almendros et al.,

2020), which contains a suite of sentences that men-
tion some vulnerable communities and published
in media in a lot of English speaking countries.
The paragraphs were manually annotated to show
1) whether the text contains any kind of PCL, and
2) if it contains PCL, what linguistic techniques
(categories) are used to express the condescension.
The paragraphs, according to (P’erez-Almendros
et al., 2020), were extracted from News on Web
(NoW) corpus (Davies, 2013), being annotated by
three expert annotators, with backgrounds in com-
munication, media and data science.

The dataset for subtask 1 (binary classification)
contained a number of 10.636 paragraphs and 2.792
instances were used for the categories classification
subtask.

In Figure 1, it can be seen that for the first sub-
task, there are almost 1000 texts that contain PCL.
This means that the dataset is highly imbalanced
and this problem needs to be addressed.

Figure 1: Classes Distribution for Binary Classification
problem (Subtask 1)

For task 2, the paragraphs from task 1 are split
according to the type of PCL speech category into
sentences, resulting in 950 samples.

3 System Overview

1. Subtask 1 (Binary Classification)

Because the dataset was very imbalanced, we
tried different approaches in order to make it
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balanced:

• Adding a class weight to the models used.
In this approach, we computed a metric
in which we obtained a class weight ac-
cording to the imbalance of the dataset.
Through this method, we gave some dif-
ferent weights to both the majority and
minority classes. This whole process had
the purpose to penalize the miss classi-
fication made by the minority class by
setting a higher class weight and at the
same time, reducing the weight for the
majority class.

• Using oversampling methods and spe-
cial ensemble techniques. In this ap-
proach, we used methods like SMOTE
(Synthetic Minority Over-sampling Tech-
nique) (Chawla et al., 2002), Adasyn
(Adaptive Synthetic) (He et al., 2008),
SVM-SMOTE (Mathew et al., 2015) and
SPE (Self-Paced Ensemble) (Liu et al.,
2020) that performs strictly balanced
under-sampling in each iteration, being
very efficient computationally.

• Augmenting the data. Because we notice
so little data for label 1, we decided to
collect hate speech datasets from Kag-
gle1 and add the positive texts into our
dataset in order to balance the classes fre-
quency, obtaining a total of 6372 from
795 initial texts with label 1. We will
notice in the results section that this col-
lection and generation of new dataset did
not provide good results.

The dataset was preprocessed. The prepro-
cessing consisted in: clearing the special char-
acters, lowercasing, tokenization, stopwords
removal, removing the words shorter than 3
characters. Then, the resulted (and clean)
dataset was split into two preprocessed types:
lemmatized cleaned dataset and stemmed
cleaned dataset. These two datasets were gen-
erated in order to make some comparison be-
tween those two techniques and to see which
provided the best results.

To extract features from text, we have used TF-
IDF (Sammut and Webb, 2010), Keras Tok-
enizer2, Word2Vec with Skip-Gram (Mikolov

1Hate Speech datasets
2Tokenizer method brought by Keras

et al., 2013) and, finally, Bert Tokenizer pro-
vided by Hugging Face (Wolf et al., 2019).

We have also used a variety of models such as
Neural Networks with 3 dense layers, Long
Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) with 64 and 128 neu-
rons with dropout of 0.1 as well, basic Ma-
chine Learning algorithms like Logistic Re-
gression, Random Forest, Support Vector Ma-
chines as XGBoost. In the end, we decided
to try BERT embeddings and a BERT classifi-
cation model, BertForSequenceClassification
3, that contains a single linear classification
layer on top and that provided the best results
after all of the other approaches.

Another approach, called "Text shards" made
use of the subtask related to multi-class classi-
fication as well. For an average text that con-
tains PCL, only some small pieces of them
are actually PCL and the rest of the text are
not. The assumption is that this confuses the
model, because a combination of PCL and
non-PCL is labeled as PCL. To address this,
the following approach is used:

• negative examples are left as they are
• each positive example is replaced with

the actual pieces of PCL inside it that we
can get from the categories file

• the positive examples obtained this way
are added with the negative examples to
obtain a training dataset

• all the sentences are cleaned of charac-
ters that are not letters and the words in
each sentence are lemmatized

• a Tensorflow Hub pretrained model
called Universal Sentence Encoder (Cer
et al., 2018) is trained on it

• for each text that we want to predict, we
first use the model on the whole text to
get an initial label

• a window (of the size of the average
length of a cleaned PCL fragment * 2) is
slided through the text and the model is
used to predict that particular substring.
If it is labeled as PCL, then we consider
the whole text as PCL.

2. Subtask 2 (Multi-label Multi-class Classifica-
tion)

3Bert for Sequence Classification
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Considering the fact that the vocabulary of
the is English is large, we have tried to lever-
age the power of pretrained language mod-
els. Therefore we have chosen 3 BERT-based
models which were pretrained for hate speech
detection and sentiment analysis. The BERT
models also provided a tokenizer which split
the sentences into tokens and appended the re-
quired tokens. The BERT models are used
from the transformers library (Wolf et al.,
2019).

• BERT (Devlin et al., 2018) Uncased
• BERT Multilingual Uncased
• BERT HateXplain (Mathew et al., 2020):

This model was trained to classify text
as Hate speech, Offensive or Normal. It
was trained on Gab, Twitter and Humain
Rationale;

• Distil BERT : This model is a version of
Distilled BERT finetuned on the Twitter
dataset;

• Distil BERT Multilingual Cased (Sanh
et al., 2019)

• Distill RoBERTa : This model is a ver-
sion of Distilled RoBERTa finetuned on
the Twitter dataset;

In the paper describing the dataset (P’erez-
Almendros et al., 2020), the authors group the
categories into 3 General categories.

(a) The saviour: Unbalanced power relations
and Shallow relations

(b) The Expert: Presupposition and Author-
ity voice

(c) The Poet: Compassion, Metaphor and
The poorer the merrier

From this idea, we tried to train the models to
predict those 3 categories, and save the hidden
features to a fixed latent space. Then these
learned features can be used when training the
model to predict the required 7 sub-classes.

Along with those BERT-based model, we
also tried to implement models based on
Word2Vec (Mikolov et al., 2013) (trained on
"Google News") and Machine Learning algo-
rithms based on TF-IDF and BOW:

• LSTM Word2Vec Embeddings (Staude-
meyer and Morris, 2019)

• BiLSTM Word2Vec Embeddings
(Huang et al., 2015)

• RNN Word2Vec Embeddings (Sherstin-
sky, 2020)

• SVM TF-IDF
• RandomForest TF-IDF

We also dabbled with the thought of training
our own Word2Vec, in order to create a model
specialized on hate speech. However we de-
cided against this idea, due to the lack of us-
able datasets and the computational resources
required for this task.

4 Results

1. Subtask 1 (Binary Classification)

Since we experimented with various tech-
niques and approaches, we decided to split
the results based on the experiments made.

(a) Deep Learning / Machine Learning for
Imbalanced and Oversampled dataset
In table 1, we can notice the results pro-
vided by classical Machine Learning al-
gorithms and 3-layer Neural Networks
(512, 256 and 128 layers with ReLU ac-
tivation and using class weight for pro-
viding accurate performance in terms of
data imbalance) on 4 types of datasets:
the original dataset (without proceeding
to class balance, but using class weights
for controlling the class weights), Ran-
dom Forest with Self-Paced Ensemble
Bootstrap technique (SPE), SMOTE and
SVM-SMOTE.
Logistic Regression gave solid results
on all variations of the datasets, provid-
ing an f1_score of 0.35 on lemmatized
dataset and 0.38 on stemmed validation
dataset. Neural Networks provided as
well good results, but did not manage to
obtain the performance of Logistic Re-
gression. We could infer from the tables
that Logistic Regression gave the best
performance on stemmed dataset.

(b) Keras Tokenizer & Word2Vec Embed-
dings + LSTM neural network
Another experiment that we conducted
was the use of Keras Tokenizer and
Word2Vec in order to extract the embed-
dings from the texts. We then applied
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Approach \ Dataset Simple SPE SMOTE SVM-SMOTE
Neural Networks 0.27 - 0.2823 0.3187
Logistic Regression 0.34 - 0.35 0.35
Random Forest 0.067 0.31 0.19 0.16
Support Vector Machines 0.27 - 0.10 0.14
XGBoost 0.15 - 0.23 0.24

(a) Results on Imbalanced and Oversampled Lemmatized dataset
Approach \ Dataset Simple SPE SMOTE SVM-SMOTE
Neural Networks 0.2698 - 0.289 0.3166
Logistic Regression 0.35 - 0.38 0.37
Random Forest 0.038 0.31 0.21 0.13
Support Vector Machines 0.27 - 0.14 0.20
XGBoost 0.17 - 0.23 0.24

(b) Results on Imbalanced and Oversampled Stemmed dataset

Table 1: Results on Imbalanced and Oversampled Lemmatized & Stemmed dataset. The results are in terms of
f1_score.

Approach \ Dataset Augmented dataset
Neural Networks 0.2155
Logistic Regression 0.23
U.S.E. + 2 dense layers 0.2316

Table 2: Results on Augmented dataset.

two LSTM models: one with 64 neurons
and the other one with 128 neurons.
The results of these two models on both
Lemmatized & Stemmed datasets with
two variations of created embeddings
(Keras Tokenizer and Word2Vec) are pro-
vided in table 3. LSTM with 64 neu-
rons provided best results on the datasets
that were using the default Tokenizer
from Keras, with an f1_score of almost
27% on Lemmatized dataset and 32&
on Stemmed dataset. Word2Vec did not
seem to provide good results in combina-
tion with LSTM networks.

(c) Data augmentation
As we discussed in the previous sec-
tion, we augmented the data by using the
positive texts from different hate speech
datasets from Kaggle and adding to our
dataset. We then applied TF-IDF vec-
torizer with 5000 features and fed the
embeddings into a 3-layer Neural Net-
work (512, 256 and 128 neurons) and to
a Logistic Regression model. Another
method used was Universal Sentence En-
coder (U.S.E. annotated in table) + 2
dense layers of 128 and 64 neurons.
The results are present in table 2. We can
infer that the third method provided the

best results, but still insufficient to reach
the level and performance of Logistic
Regression from (a).

(d) BERT Transformers + BertForSequence-
Classification
For Bert Transformers, we obtained a
performance of 0.5074, the best result
provided among all of the other models
and techniques. This performance was
obtained by using Bert Tokenizer for en-
coding the entire texts, calculating the
class weight and providing it to a BERT-
base-uncased model with AdamW as op-
timizer (learning rate of 2e − 5) and 3
epochs for training. The total training
time took 2 hours.

(e) Text shards
For "Text shards" approach, we obtained
an F1 score of 0.3117.

Overall, for the first subtask, we obtained the
best performance using BERT Transformers
and fine-tuning a BERT model with an F1
score of 0.5074. The second best-performing
algorithm was, surprisingly, Logistic Regres-
sion, that provided 0.38 on SMOTE oversam-
pled dataset.

2. Subtask 2 (Multi-label Multi-class Classifica-
tion)

(a) BERT models approach for classification
across 7 classes. Table 4a shows that
the model was able to learn only two of
the classes. The best model, DistilBERT,
obtains F1 score of 0.34.
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Approach \ Dataset Keras Tokenizer Word2Vec
LSTM (64 neurons) 0.2693 0.2109
LSTM (128 neurons) 0.2317 0.2308

(a) Results on Lemmatized dataset with class weight
Approach \ Dataset Keras Tokenizer Word2Vec
LSTM (64 neurons) 0.3213 0.2093
LSTM (128 neurons) 0.2789 0.2412

(b) Results on Stemmed dataset with class weight

Table 3: Results on Lemmatized & Stemmed datasets using Keras Tokenizer and Word2Vec as word embeddings.
The results are in terms of f1_score.

Model \ Class Unb Sha Pre Aut Met Com Mer Mean
BERT 0.82 0.0 0.0 0.0 0.0 0.0 0.64 0.21
DistilRoBERTa 0.83 0.0 0.0 0.0 0.0 0.0 0.59 0.20
DistilBERT 0.82 0.0 0.0 0.0 0.66 0.08 0.0 0.34

(a) Results of transformers trained directly on 7 classes
Model \ Sub-classes Expert Aut Pre Saviour Sha Unb Poet Com Mer Met Mean
BERT 0.44 0.0 0.0 0.85 0.0 0.84 0.69 0.0 0.0 0.59 0.20
DistilRoBERTa 0.54 0.0 0.0 0.85 0.0 0.84 0.69 0.11 0.0 0.65 0.22
DistilBERT 0.42 0.0 0.40 0.75 0.0 0.81 0.61 0.0 0.0 0.67 0.26
DistilBERTMLC 0.36 0.0 0.0 0.86 0.0 0.83 0.60 0.0 0.0 0.52 0.19

(b) Results of transformers that were trained on 3 general classes, then finetuned for the desired 7 classes

Table 4: Transformer Results

(b) The general class approach is detailed
in table 4b, where the general classes
are italicized. It shows that the general
classes were learned, but when using
the pretrained models and fine-tuning on
the specific classes, some of previously
learned features are lost. The best results
it obtained yet again by the DistilBERT
model with an F1 score of .26.

5 Conclusion

In this paper, we presented our solution to the prob-
lem posed by SemEval 2022 Task 4: Patronizing
and Condescending Language Detection. We ap-
plied various methods, including the application
of Word Embedings (Bag of Words, Word2Vec,
BERT), tokenization, oversampling/undersampling
of the datasets.

In the binary classification problem, the ap-
proach that gave the best result on the validation
dataset was BERT transformers combined with
BERT for Sequence Classification, obtaining 0.50
as F1 score, followed by Logistic Regression ap-
plied on stemmed SMOTE dataset with a perfor-
mance of 0.38.

In the multi classification multi label task, the
number of labels proved to be a challenge. The

results overall are low and the models were only
able to learn only a few classes. The general class
approach also proved to be inefficient. Perhaps a
more suitable approach would be to build more
complex models and use models that do not rely
on specific pretrained approaches.

Some recommendations for future work could
be to have a better approach and introduce more
linguistic insight in the approach.
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Abstract

This paper narrates the work of the team Am-
rita_CEN for the shared task on Patronizing
and Condescending Language Detection at Se-
mEval 2022. We implemented machine learn-
ing algorithms such as Support Vector Machine
(SVM), Logistic regression, Naive Bayes, XG
Boost and Random Forest for modelling the
tasks. At the same time, we also applied a fea-
ture engineering method to solve the class im-
balance problem with respect to training data.
Among all the models, the logistic regression
model outperformed all other models and we
have submitted results based upon the same.

1 Introduction

Discriminatory language on the social media is
lately creating hostile environment towards the vul-
nerable communities especially women and minori-
ties. These are reflected in day to day conversations
happening on popular social media sites. It is a
high time now to build a technological solution to
counter the discrimination against vulnerable com-
munities. Here in this task, we consider one such
issue known as "Patronizing and Condescending
Language (PCL) Detection". When someone’s lan-
guage conveys a pompous attitude toward others or
portrays them or their circumstances in a compas-
sionate manner, eliciting feelings of sympathy and
compassion, they are patronising or condescending.
This is why it is important to develop a computa-
tional model to predict whether there is patronizing
content in social media or not (Pérez-Almendros
et al., 2020). This challenge can be solved by the
applying Natural Language Processing (NLP) con-
cepts. The Social media platforms reaches a huge
audience, which might contribute to increased ex-
clusion and inequity among vulnerable groups. De-
spite the fact that harmful language behaviour (such
as hate speech, abusive language, fake news, ru-
mour propagation, or disinformation) (Sreelakshmi
et al., 2020), (Sreelakshmi et al., 2021) has been

extensively investigated in NLP, PCL has remained
a neglected field of research.

We implemented seven machine learning mod-
els which include three classical machine learning
algorithms and four ensemble models: Support
Vector Machine (SVM), Logistic regression, Naive
Bayes, XG Boost and Random Forest for mod-
elling the tasks (Soman et al., 2009), (Premjith
et al., 2019), (Premjith and Kp, 2020). The class
imbalance problem was dealt by a minority over-
sampling technique called SMOTE and compara-
tive analysis of our algorithm was done by various
evaluation metrics such as precision, recall and F1
score.

The remaining parts of the paper are described
as follows: Section 2 contains dataset description
along with works related to that. Section 3 de-
scribes the system overview. Section 4 explains the
experimental setup. Section 5 discusses result and
the paper is concluded in Section 6.

2 Related works

This section provides a brief review of the literature
published for the detection of various offensive and
abusive contents pertained to violence, cyberbully-
ing etc. shared on the social media.

Adithya et.al (Bohra et al., 2018) analysed the
hate speech data in code-mixed form and proposed
classification models for the detection. They cre-
ated a dataset consisting of Hindi-English code-
mixed tweets. Machine learning algorithms like
SVM, Random forest were used for the classifica-
tion of tweets into different categories. Conroy et.al
(Rubin et al., 2016) reported the problem of fake
news detection in their paper and their study offered
a classification of different types of truthfulness
evaluation methods that fall into two categories:
linguistic cue with machine learning and network
analysis approaches. Zampieri et al (Zampieri et al.,
2019) predicted the nature and victim of offensive
content shared on social media. They used the Of-
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fensive Language Identification Dataset (OLID) for
the analysis. They compared the performance of
different machine learning models on this dataset.
Wang and Potts (Wang and Potts, 2019) used a
corpus called TALKDOWN for detecting the con-
descension in a text by incorporating the context.
The dataset consist of annotated social media mes-
sages. They explored the issue of modelling con-
descension in direct communication from an NLP
perspective. They used BERT-based models for
developing the baseline models.

3 Task and Data Description

3.1 Task1

The competition mainly consisted of 2 sub tasks
(Pérez-Almendros et al., 2022). The objective of
the subtask 1 is to develop a model, which could
predict whether a given paragraph contain conde-
scension or not, which is a binary classification
problem. The dataset used for subtask 1 consists
of 10469 paragraphs. Each of the paragraphs de-
scribes the people belonging to vulnerable social
categories. It contains excerpts from news items
from 20 English-speaking nations that feature at
least one of the following terms relating to poten-
tially weaker sections of the society: vulnerable
or women, refugee, hopeless, migrant, immigrant,
in need, homeless, poor families, disabled, with
Patronizing and Condescending Language (PCL)
comments.

3.2 Task2

The objective of the subtask 2 is to develop a model,
which could predict whether a given paragraph
comes under any of the top 7 PCL taxonomies
namely, Unbalanced power relations, Shallow solu-
tion, Presupposition, Authority voice, Metaphor,
Compassion, The poorer, the merrier, which is
a multi-label classification problem. The dataset
used for subtask 2 consists of 993 paragraphs. Each
of the paragraphs describes the people belonging
to vulnerable social categories. It contains excerpts
from news items from 20 English-speaking nations
that feature at least one of the following terms re-
lating to potentially weaker sections of the society:
vulnerable or women, refugee, hopeless, migrant,
immigrant, in need, homeless, poor families, dis-
abled, with Patronizing and Condescending Lan-
guage (PCL) comments.

Figure 1: Flowgraph of the methodology

4 System Overview

This section discusses the procedure followed for
developing models for each subtasks in comple-
tion. Figure 1 represents the block diagram of the
workflow of the methodology.

This section explains the steps followed for de-
veloping models for the PCL shared tasks.

4.1 Preprocessing
Initially, we cleaned the data by removing stop-
words, URLs and special characters. The cleaned
texts were tokenized and lemmatized to obtain the
root form of the word. It helped to reduce the vo-
cabulary in the corpus, which further reduce the
dimension of the sentence vector obtained using
Term Frequency-Inverse Document Frequency (TF-
IDF) vectorizer algorithm.

4.2 Feature Engineering
We represented the textual data as vectors using
TF-IDF for the further processing. In addition to
that, we employed SMOTE (SMOTE: Synthetic
Minority Over-sampling Technique) (Chawla et al.,
2002), an oversampling algorithm to address the
problem of class imbalance in the data. The
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SMOTE algorithms synthetically generates random
data for the minority classes to increase the size of
the minority classes. It is done by selecting one
or more of random k-nearest neighbour for each
minority instances. We employed SMOTE after
converting texts into vector using Term Frequency-
Inverse Document Frequency vectorizer algorithm.

4.3 Machine Learning modelling

The dataset for subtask 1 consists of total 10469
instances and for subtask 2 it is 993 instances. We
considered a train-test split ratio of 80:20. The
parameter stratify was used for the purpose of mak-
ing a split so that the share of values in the sam-
ple produced will be the equal to the proportion
of values provide to parameter stratify. For pre-
diction, we have a total of 2094 test instances in
which 1895 belongs to class 0 and 199 belong-
ing to class 1 in subtask 1 and 198 test instances.
For logistic regression model, hyper parameter
tuning was done using sklearn’s GridSearchCV
function 1. The parameters that was given for
tuning was penalty =l1, l2 and value of C =
array([0.01, 0.1, 1, 10, 100]). After hyperparame-
ter tuning using GridSearchCV, the best parameters
were found to be C(regularization_term) = 10
and Penalty = l2. For subtask 2, we set the
class_weight hyperpaameter to be ’Balanced’. To
predict the multi-label output, we used the ’Multi-
OutputClassifier’ function from Scikit-learn 2. For
models other than logistic regression, we used de-
fault parameters available in Scikit-learn for classi-
fication.

4.4 Evaluation

The evaluation measures used for this work were
macro average F1,precision and recall. Recall is
ratio of correct positive predictions to the total num-
ber of positives and Precision is ratio of correct
positive predictions to the total number of positive
predictions. F1 score is the harmonic mean of pre-
cision and recall. Macro average is defined as the
average of precision, recall, F1 score on different
classes.

5 Results

In both the sub tasks we used three classical ML
models and four ensemble techniques for classifica-
tion. The three ML models were logistic regression

1GridSearchCV: https://rb.gy/lajkio
2MultiOutputClassifier: https://rb.gy/52vpax

Model Recall
Log Reg 0.73
SVM 0.53
Dec Tree 0.57
Bagging 0.54
Random For 0.51
GradBoost 0.53
XGBoost 0.56

Precision F1
0.64 0.66
0.75 0.53
0.57 0.57
0.61 0.55
0.64 0.49
0.75 0.54
0.68 0.58

Table 1: Comparitive analysis of our ML models for
subtask 1 considering macro averages

Model Recall
Log Reg 0.48
SVM 0.30
Dec Tree 0.35
Bagging 0.29
Random For 0.27
GradBoost 0.28
XGBoost 0.33

Precision F1
0.45 0.45
0.58 0.32
0.36 0.35
0.41 0.33
0.56 0.31
0.45 0.32
0.47 0.36

Table 2: Comparitive analysis of our ML models for
subtask 2 considering macro averages

,SVM and DecisionTreeClassifier and the ensem-
ble techniques were Bagging classifier, Random
forest, GradientBoost and XGBoost. Validation
dataset was used to get a comparative analysis of
our algorithm. In this analysis we used evaluation
metrics such as precision, recall and F1 score. The
official evaluation metric was F1 score for positive
class for subtask 1. For the validation dataset an F1
score of 0.41 was achieved for positive class and in
case of test dataset an F1 score of 0.39 was obtained
and our final rank for subtask 1 in the competition
was 60. For subtask 2 we got a macro_average F1
score of 0.45 during the post evaluation phase.

From the Tables 1 and 2 we can clearly see that
the macro F1 score of Logistic regression stood out
among all the other models. Moreover the execu-
tion time for logistic regression was less compared
to other models especially the ensemble techniques.
Hence this model was used for the final prediction
of the test dataset.

6 Conclusion

This paper narrates the work of Amrita_CEN with
respect to SemEval 2022 Task 4 competition named
" Patronizing and Condescending Language Detec-
tion ". A total of seven machine learning algorithms
were used which include three classical ML mod-
els and four ensemble techniques. The problem
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of class imbalance was dealt with minority over-
sampling technique called SMOTE. Considering
macro F1 score for both the sub tasks, logistic re-
gression performed the best and the results were
submitted using the same model. Coming to the fu-
ture work, implementation using deep learning and
BERT approaches can give better results compared
to classical machine learning models.
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Abstract 

This paper describes our submissions to SemEval-2022 

subtask 4-A - “Patronizing and Condescending 

Language Detection: Binary Classification". We 

developed different models for this subtask. We applied 

11 supervised machine learning methods and 9 pre-

processing methods. Our best submission was a model 

we built with BertForSequenceClassification. Our 

experiments indicate that pre-processing stage is a must 

for a successful model. The dataset for Subtask 1 is 

highly imbalanced. The F1-scores on the oversampled 

imbalanced training dataset were higher than the results 

on the original training dataset. 

1 Introduction 

The explosion of social media in recent years also 

enables an increasing the number of patronizing 

and condescending language (PCL). Patronizing 

language is best described as expressions that are 

agreeable and show kindness to a person or group 

in a condescending manner, indicating that the 

person or group is inferior (McCune and 

Matthews, 1978). 

The discourse of condescension has three main 

characteristics: (1) It does not contain anything 

openly critical or negative, and often contains 

insincere praise; (2) it assumes a difference in 

status and worth between the writer and the person 

who wrote about him; and (3) this assumed 

difference is disputed by the listener (Huckin, 

2002). 

PCL can harm individuals or groups of people 

and may cause harmful effects on society. 

Therefore, it is important to develop efficient 

computerized systems capable of detecting PCL 

(Lo and Wei, 2006). 

PCL detection is not a simple problem because 

it requires understanding the context of the 

situation, the relevant culture, and indirect clues. In 

social media texts, the problem is harder due to the 

different levels of ambiguities in natural language 

and the noisy nature of such texts. 

In contrast to the offensive language or hate 

speech detection field, where there has been 

relatively an extensive research (e.g., Basile et al., 

2019; Zampieri et al., 2019; Zampieri et al., 2020), 

PCL is still a relatively new and open field of study 

in Natural language processing (NLP) and machine 

learning (ML) (Pérez-Almendros et al., 2020). 

Pérez-Almendros et al. (2020) introduced the 

Don’t Patronize Me! Dataset. This dataset contains 

paragraphs extracted from news stories, which 

have been annotated to indicate the presence of 

PCL at the text span level. 

This paper describes our research and 

participation in subtask 4-A for patronism 

detection in posts written in English. The full 

description of task 4 in general and 4-A, in 

particular, is given in Perez-Almendros et al. 

(2022). 

The structure of the rest of the paper is as 

follows. Section 2 introduces a background 

concerning patronism detection, text pre-

processing, and TC with imbalanced classes. 

Section 3 describes subtask 4-A and its training 

dataset. In Section 4, we present the submitted 

models and their experimental results. Section 5 

summarizes and suggests ideas for future research. 

2 Related Work 

Various NLP methods have been applied in the 

detection of several types of harmful language such 

as offensive language or hate speech detection 

(Basile et al., 2019; Zampieri et al., 2019; Zampieri 

et al., 2020). Previous NLP tasks have generally 

focused on explicit, aggressive, and flagrant 

phenomena such as fake news detection (Conroy et 

al., 2015). 

During the last three years, several studies on 

PCL have appeared. Wang and Potts (2019) 
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introduced the task of modeling 

condescension and developed an annotated 

dataset of social media messages. Sap et al. 

(2019) discussed various implications behind 

certain uses of language. Mendelsohn et al. 

(2020) analyzed, from a computational 

linguistics viewpoint, how language has 

dehumanized minorities in media news. 

2.1 Text preprocessing 

Text preprocessing is an important step of TC in 

general and in social text documents in particular. 

Classification of text dataset that has not been 

carefully cleaned or preprocessed might lead to 

misleading results. 

HaCohen-Kerner et al. (2019) investigated the 

impact of all possible combinations of six 

preprocessing methods (spelling correction, 

HTML tag removal, converting uppercase letters 

into lowercase letters, punctuation mark removal, 

reduction of repeated characters, and stopword 

removal) on TC in three benchmark mental 

disorder datasets. In another study, HaCohen-

Kerner et al. (2020) explored the influence of 

various combinations of the same six basic 

preprocessing methods on TC in four general 

benchmark text corpora using a bag-of-words 

representation. The general conclusion was that it 

is always advisable to perform an extensive and 

systematic variety of preprocessing methods 

because it contributes to improving TC accuracy. 

2.2 Text classification with imbalanced 

classes  

The problem with TC with imbalanced classes is 

that there are too few examples of the minority 

class to effectively learn a good predictive TC 

model. There are various methods to cope with this 

problem (e.g., Liu et al., 2004). The main idea is to 

change the dataset until a more balanced 

distribution is reached. Two well-known sampling 

methods that enable such a change are 

oversampling and undersampling (e.g., Yap et al., 

2014). Random oversampling means randomly 

duplicating examples in the minority class. 

Random undersampling means randomly deleting 

examples in the majority class. 

An additional frequent method is to generate 

synthetic samples, which means randomly 

sampling the attributes from instances in the 

minority class (Zhu et al., 2017). There are several 

algorithms that support the generation of 

synthetic samples. The most popular one is called 

the Synthetic Minority Over-sampling Technique 

(SMOTE) (Chawla, 2002). This method is an 

oversampling method that creates synthetic 

samples from the minor class instead of creating 

copies. This method selects two or more similar 

instances and perturbs an instance one attribute at 

a time by a random amount within the difference 

to the similar instances. 

Other possible methods are to try a variety of 

different types of machine learning (ML) methods 

in general and penalized variants of these methods 

that charge an additional cost on the model for 

making classification mistakes on the minority 

class during training. 

Readers interested in expanding and deepening 

the topic of solutions to TC with imbalanced 

classes are referred to the following articles 

(Chawla et al., 2002; He and Ma, 2013; 

Krawczyk, 2016; Brownlee,  2020). 

3 Task and Training Dataset Description 

We only participated in subtask 4-A - “Patronizing  

and Condescending Language Detection: Binary 

Classification", which deals with the classification 

of each post as a patronizing or condescending 

language (PCL) or not in the English language. 

Table 1 presents various statistical details about the 

data set. 

The analysis of the details presented in Table 1 

shows that the dataset is highly imbalanced with a 

ratio of about 91:9 (not patronize: is patronize). We 

changed this rate to 77:23 by the creation of new 

partial 'patronized' posts extracted from various 

posts that belong to different categories of positive 

patronized labels available from TASK 6-2 (multi-

label classification). We also evaluated an equal 

  

not 

patronize 

is 

patronize total 

Documents 9,476 993 10,469 

% Docs 90.5 9.5 100 

words 453,690 53,245 506,935 

characters 2,514,890 286,435 2,801,325 

avg word per 

doc 47.87 53.62 50.745 

avg chars per 

doc 265.39 288.45 276.92 

words std 32.77 28.62 30.695 

chars std 158.36 175.52 166.94 

Table 1: Details of the training set. 
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split (50:50) by duplication of the patronized 

sentences. However, the experimental results using 

the equal split lead to results that were lower than 

the results using unequal ratios. All the python 

code lines used for improving the ratio, 

preprocessing methods, and the different models 

are available on Github at 

https://github.com/meyrow/pcl-detection-task4-

semeval2022.  

4 The Submitted Models and 

Experimental Results 

We applied 11 supervised ML methods to the 

training dataset. Seven of them were classical ML 

methods: Random Forest (RF), K Nearest 

Neighbours (KNN), Support Vector Classifier 

(SVC), XGBoost Classifier, Logistic Regression 

(LR), Decision Tree (DT), Naive Bayes (NB), and 

four of them were deep learning (DL) methods: 

Bert, DistilBert, Roberta, and Albert. 

In our various models, we applied nine sub-

types of preprocessing methods: remove 

newlines, remove HTML Tags, remove Links, 

remove White spaces, remove accented 

characters, conversion to lower-case, reduce 

repeated characters, and punctuations, expand 

contractions, and remove special characters. 

These methods were applied using the following 

tools and information sources:  

• The Python 3.7.3 programming language1. 

• Scikit-learn – a Python library for ML 

methods2. 

• Numpy – a Python library that provides fast 

algebraic calculous processing, especially for 

multidimensional objects3. 
 

In our experiments, we tried to find the best 

combination of ML method, preprocessing 

methods, and oversampling methods. The 

training set was split into 80:20 train: test and the 

training test was using 90 percent in every epoch 

to train and 10 percent of the training set was used 

for validation. 

Figure 1 presents training and validation loss 

curves of our BERT model with 20 epochs 

showung that training and validation 

continuously improved themselves. We noticed 

that a gap between training and validation began 

to grow, therefore we had to stop the model after 

                                                 
1 https://www.python.org/downloads/release/python-

373/ 

20 epochs, otherwise, the model will be 

overfitted. Figures 2 and 3 present the confusion 

matrices of our BERT model with 20 epochs and 

the decision tree model, respectively. The 

confusion matrix of both models demonstrates 

that the dataset is imbalanced as shown in Table 

1. We also noticed that the ratio of 77:23 after 

improving the original dataset is close to the ratio 

shown in the confusion matrix. That indicates that 

our models are well trained. To select the best 

model we compared the F1-score. 

 
Figure 1: Training and validation loss curves of our 

BERT model with 20 epochs. 

 

 
Figure 2: Confusion matrix of our BERT model 

with 20 epochs. 

 

 
Figure 3: Confusion matrix of our Decision Tree 

model. 

2 https://scikit-learn.org/stable/index.html 
3 https://numpy.org 
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Our best submission was a model called Matan-

bert that we built using a function called 

BertForSequenceClassification. This BERT model 

includes 768 layers. Its values of the learning rate, 

epsilon, number of epochs, and batch size were 2e-

7, 1e-8, 20, and 16, respectively. This model was 

ranked the 62nd position. Its F1-score over the PCL 

class, precision, and recall results are 0.377, 

0.3536, and 0.4038, respectively. 

Table 2 presents the results of the submitted 

models. The F1-score over the PCL class on the 

training dataset of our best model was 0. 77 while 

the F1-score over the PCL class on the test dataset 

of our best model was only 0.377. Currently, the 

posts' labels of the test dataset are unknown. 

Therefore, we do not have any definite 

explanation(s) for such a large decrease in the 

results. Possible explanations might be: (1) The 

training dataset is different in its balance rate than 

the balance rate of the competition test dataset and 

(2) the content of a relatively high number of 

news items in the competition test dataset is 

fundamentally different from the content of the 

news in the training dataset. 

 

Our code is available on Github at 

https://github.com/meyrow/pcl-detection-task4-

semeval2022. Our models are available for 

reproducibility with comments that explain the 

code and parameters such as epsilon, learning rate 

batch, and epochs. 

5 Conclusions and Future Research 

In this paper, we describe our submissions to 

subtask 4-A of the SemEval-2022 contest. We 

submitted the models that achieved the best results 

while trying to choose two models that applied 

different supervised learning methods.  

Future research ideas include (1) Acronym 

disambiguation that will extend and enrich the 

social text and might enable better classification 

(e.g., HaCohen-Kerner et al., 2008; HaCohen-

Kerner et al., 2010A); (2) use of skip character n- 

to overcome problems such as noise and sparse 

data (HaCohen-Kerner et al., 2017); (3) use of 

stylistic feature sets (HaCohen-Kerner et al., 

2010B) and key phrases that can be extracted from 

text files (HaCohen-Kerner et al., 2007). 
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Abstract
We describe the ULFRI system used in the Sub-
task 1 of SemEval-2022 Task 4 Patronizing and
condescending language detection. Our models
are based on the RoBERTa model, modified in
two ways: (1) by injecting additional knowl-
edge (coreferences, named entities, dependency
relations, and sentiment) and (2) by leveraging
the task uncertainty by using soft labels, Monte
Carlo dropout, and threshold optimization. We
find that the injection of additional knowledge
is not helpful but the uncertainty management
mechanisms lead to small but consistent im-
provements. Our final system based on these
findings achieves F1 = 0.575 in the online
evaluation, ranking 19th out of 78 systems.

1 Introduction

Despite invaluable contributions to the society, the
internet can also serve as an infrastructure for a
rapid spread of hurtful language, in part due to
the anonymity it commonly provides (Burnap and
Williams, 2015). The spread of such language can
have a serious impact on individuals, such as the
increased development of mental health problems
in children (Munro, 2011). To prevent this, the
society has to establish moderation mechanisms.
Fully manual content moderation is infeasible both
due to the large scale of the web as well as the
possible negative psychological effects on human
moderators (Arsht and Etcovitch, 2018). Much at-
tention has been devoted to the automatic detection
of offensive language within the field of natural lan-
guage processing (NLP). Some examples include
the detection of hate speech (Davidson et al., 2017),
toxic language (Pavlopoulos et al., 2021), and cy-
berbullying (Dadvar et al., 2013), which use a rela-
tively explicit form of hurtful language (Waseem
et al., 2017). In contrast, patronizing and conde-
scending language (PCL) is more implicit in nature.
PCL can roughly be described as an expression of
a superior attitude towards others, possibly uncon-
sciously. Perez Almendros et al. (2020) have shown

that large language models are able to detect PCL
to a various degree, but consistently better than
random guessing or a machine learning approach
using the bag-of-words representation. Based on
that, the authors propose SemEval-2022 Task 4
(Pérez-Almendros et al., 2022), which aims to en-
courage further research and improvements in the
detection of PCL.

We present our attempts at modeling PCL, based
on the RoBERTa model (Liu et al., 2019) and fol-
lowing two main lines:

1. Injection of additional knowledge. We
experiment with the injection of additional
knowledge on coreferences, named entities,
dependency relations, and sentiment.

2. Leveraging uncertainty present in the task.
We experiment with the use of soft labels in
the form of the target label probability distri-
bution, and with the Monte Carlo dropout as
a means for more accurate estimation of the
label posterior probability (Gal and Ghahra-
mani, 2016).

Our first set of modifications aims to guide the
model to better follow the definition of PCL. The
additional coreference and named entity knowl-
edge may help the model to focus on detecting
an imbalance between entities in the text, while
the dependency relations and sentiment knowledge
may help the model discover more subtle linguistic
patterns used in PCL. We inject different forms
of knowledge as the second input sequence to the
model, combining it with the primary text represen-
tation during training of the PCL detector. This is
motivated by the Factored Transformer (Armengol-
Estapé et al., 2021).

The second set of modifications aims to capture
the subjectivity and uncertainty that is inherently
present in the task and is reflected in the annotator
disagreement. This is motivated by the data per-
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spectivism paradigm (Basile et al., 2021) which
argues the disagreements are not necessarily errors.

We participate in Subtask 1, and our best model
ranks 19th out of 78 systems1. In our analysis,
we find that (1) injection of additional knowledge
does not increase the F1 score significantly and (2)
leveraging uncertainty in the task leads to small but
consistent increase in the F1 score.

The remainder of the paper is structured as fol-
lows. In Section 2, we describe the details of the
task. In Section 3, we describe our approach, and
analyze its performance in Section 4. In Section
5, we summarize our work and provide ideas for
further work.

2 Task Description

Given an updated version of the Don’t Patronize
Me! dataset (Perez Almendros et al., 2020), the
goal of SemEval-2022 Task 4 Subtask 1 is the de-
tection of patronizing and condescending language
(PCL). The provided dataset consists of 10 469
paragraphs annotated by three annotators: two were
tasked with annotating the examples as not contain-
ing PCL (0), containing PCL (2), or borderline (1).
The third annotator resolved complete disagree-
ments, i.e. examples annotated as {0, 2} by the two
annotators. The annotations are aggregated into a
five-point fine-grained class yF :

• yF = 0 if both annotators assigned the label
0,

• yF = 1 if one annotator assigned the label 0
and the other assigned 1,

• yF = 2 if both annotators assigned the label
1,

• yF = 3 if one annotator assigned the label 2
and the other assigned 1,

• yF = 4 if both annotators assigned the label
1.

We provide the distribution of these fine-grained
class labels in Figure 1. For the task evalua-
tion, the fine-grained five label class is binarized
into a coarse-grained class yC , where yC = 1 if
yF ∈ {2, 3, 4}, and yC = 0 otherwise. Although
the final evaluation uses binary labels, the fine-
grained labels can provide additional information

1Our code is available at https://github.com/
matejklemen/pcl-detection-semeval2022t4.
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Figure 1: Fine-grained PCL label distribution. The
numbers above bars indicate the number of examples
for each label.

in the form of label uncertainty. We leverage this
information in one of our modifications, described
next.

3 Methods

In this section, we describe our methodology. First,
we describe RoBERTa, which we use as the base-
line model. Then, we describe how additional
knowledge is injected into the model in Section
3.2. In Section 3.3 we describe how we leverage
the task uncertainty in our model.

3.1 RoBERTa

RoBERTa (Liu et al., 2019) is a robustly opti-
mized BERT model (Devlin et al., 2019), com-
posed of multiple transformer layers that use the
self-attention mechanism to construct a text repre-
sentation. It is first pre-trained on a general corpus
using the masked language modeling objective, af-
ter which it can be fine-tuned for a downstream
task. Motivated by its strong performance on the
PCL detection task shown by Perez Almendros
et al. (2020), we use the RoBERTaBASE model as a
baseline.

3.2 Knowledge injection

We inject various types of additional knowledge
through a secondary aligned input sequence con-
taining additional knowledge in the form of special
tokens. The procedure is shown in Figure 2 for one
type of additional knowledge. Using RoBERTa,
we independently obtain two representations and
combine them using a learned weighted linear com-
bination to obtain a single representation. Lastly, a
linear layer transforms the representation into label
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After a big casino win , Mario Balotelli gave a homeless man ? 1,000 ( PA )
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Figure 2: Injection of additional coreference knowledge
for PCL detection. The secondary sequence (in yellow)
consists of special tokens that denote if a word repre-
sents an entity (Ei) or not (O).

scores. The individual sequence representations
correspond to the output of the last layer for the
<s> token in each sequence.

We experiment with four different types of ad-
ditional knowledge, one at a time: coreferences
(obtained using neuralcoref2), sentiment (obtained
using SentiWordNet (Esuli and Sebastiani, 2006)),
named entities, and dependency relations (obtained
using Stanza (Qi et al., 2020)). We provide addi-
tional preprocessing details and the used tagsets in
Appendix A.

As our modification requires embedding two in-
put sequences instead of one, the memory require-
ment during training is doubled, and the batch size
has to be halved. To minimize differences due to
a halved batch size, we accumulate gradients over
two half-sized batches before updating the parame-
ters.

3.3 Leveraging uncertainty
We experiment with two ways to leverage the task
uncertainty. The first approach trains a model on
soft instead of hard (one-hot encoded) labels. We
show the comparison between hard and soft labels
in Table 1. As described in Section 2 each example
is annotated twice. We assign each annotation a
probability of the example containing PCL: 0.0 if
the annotation is 0, 1.0 if it is 2, and 0.5 if it is 1
(borderline). To obtain the final soft labels, we then
take the mean of the two annotations. In this way,
we transform a five-class problem into a binary
one while approximately preserving information

2https://github.com/huggingface/
neuralcoref

about label differences. Additionally, we poten-
tially avoid issues when a label has few training
examples.

Table 1: Conversion scheme from fine-grained annota-
tions into hard and soft binary target vector.

Label
type

Fine-grained
annotation (yF)

Binary
target vector

hard
0, 1 [1.00, 0.00]

2, 3, 4 [0.00, 1.00]

soft

0 [1.00, 0.00]
1 [0.75, 0.25]
2 [0.50, 0.50]
3 [0.25, 0.75]
4 [0.00, 1.00]

The second approach uses the Monte Carlo
dropout (MCD) (Gal and Ghahramani, 2016) to
sample the label distribution during the prediction
phase. Instead of determining the target label us-
ing a single prediction, we obtain multiple non-
deterministic predictions while applying dropout
(Srivastava et al., 2014), and then aggregate them
into a single prediction (in our case, using the
mean) (Miok et al., 2022).

Both modifications transform the target label
probability distribution, so using the PCL probabil-
ity threshold of 0.5 may no longer be suitable. For
this reason, we also experiment with the decision
threshold optimization, i.e. we select the threshold
based on the validation set F1 score.

4 Evaluation

In this section, we evaluate our methodology and
compare it to the baseline. We start by describ-
ing the experimental settings in Section 4.1, and
continue with the results in Section 4.2.

4.1 Experimental settings

We select the hyperparameters for the training of
RoBERTa using the validation set F1 score in pre-
liminary experiments on a single 80%:10%:10%
split into the training, validation and testing set.
In our main experiments, we use the learning rate
10−5, maximum sequence length of 158, and batch
size of 48. The latter two were selected in a way to
allow training on an 11GB GPU.

In the evaluation, we use 10-fold cross valida-
tion and report the means across folds. In each
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cross validation iteration, we use 10% of the train-
ing set for tuning and early stopping. Following
the official evaluation, we use three metrics: pre-
cision, recall, and F1 score for the positive (PCL)
label. To improve clarity, we only report the mean
F1 score throughout this section, and provide other
metrics and standard deviations of the results in Ap-
pendix B. We statistically test the differences in F1

score between pairs of models using the Wilcoxon
signed-rank test (Wilcoxon, 1945). The same test is
applied to the difference between groups of models,
where one group uses and one group does not use
certain modification (e.g., soft labels). In all cases,
we use a confidence level α = 0.01 to determine
the significance of the differences.

For the online evaluation, we retrain the model
using the best parameters on a 90%:10% split into
a training and validation set.

4.2 Results

Table 2 shows the F1 scores of our enhanced
models in comparison to the RoBERTaBASE base-
line. We interpret the results below, starting with
knowledge-enhanced models in Section 4.2.1 and
models leveraging uncertainty in Section 4.2.2.

4.2.1 Knowledge-enhanced models
We first only consider the knowledge injection in
isolation, i.e. the scores for each type of knowledge
in Table 2a.

We can observe that the addition of knowledge
about coreferences (F1 = 0.575), named entities
(F1 = 0.563), and dependency relations (F1 =
0.567) increases the performance over the baseline
(F1 = 0.556). However, none of the increases
are statistically significant due to the variance in
performance across the folds.

4.2.2 Knowledge- and uncertainty-enhanced
models

Next, we consider the effect of leveraging un-
certainty both on the base model as well as the
knowledge-enhanced models, i.e. analyze the full
results in Table 2. Unless stated otherwise, we com-
pare the modified models with their respective base
model without the discussed modifications (i.e. not
necessarily always against the roberta-base model
without MCD).

The first observation is that training the models
on soft instead of hard labels in most cases im-
proves the F1 score both when not using MCD and
when using MCD. Using soft labels increases the

Table 2: Results of the base models and their modifica-
tions. The best score in each table is displayed in bold.

(a) Results without MCD.

train on
hard labels

train on
soft labels

Model F1 F1

roberta-base 0.556 0.570
+ opt. thresh. 0.550 0.577

+ coreference 0.575 0.582
+ opt. thresh. 0.573 0.572

+ sentiment 0.544 0.554
+ opt. thresh. 0.532 0.582

+ named ent. 0.563 0.568
+ opt. thresh. 0.563 0.577

+ dep. relations 0.567 0.580
+ opt. thresh. 0.557 0.578

(b) Results using 10 MCD rounds.

train on
hard labels

train on
soft labels

Model F1 F1

roberta-base 0.546 0.553
+ opt. thresh. 0.551 0.580

+ coreference 0.550 0.566
+ opt. thresh. 0.573 0.579

+ sentiment 0.526 0.535
+ opt. thresh. 0.540 0.575

+ named ent. 0.556 0.556
+ opt. thresh. 0.553 0.577

+ dep. relations 0.557 0.557
+ opt. thresh. 0.564 0.583

(c) Results using 50 MCD rounds.

train on
hard labels

train on
soft labels

Model F1 F1

roberta-base 0.546 0.554
+ opt. thresh. 0.556 0.586

+ coreference 0.549 0.570
+ opt. thresh. 0.568 0.580

+ sentiment 0.527 0.563
+ opt. thresh. 0.543 0.581

+ named ent. 0.557 0.563
+ opt. thresh. 0.569 0.581

+ dep. relations 0.554 0.560
+ opt. thresh. 0.569 0.577
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F1 score for 13 models and makes no difference
for 2 models (named entity and dependency rela-
tion enhanced models using 10 MCD rounds). The
differences are statistically significant.

Optimizing the threshold after training on soft
labels improves the F1 score for 14 models: for 13
models, the improvement over baseline is larger
than without threshold optimization. The only ex-
ception where the F1 score decreases is the corefer-
ence enhanced model without MCD, which could
be due to overfitting the threshold to the tuning
set. Optimizing the threshold after training on
hard labels has a mixed effect. For models without
MCD, it consistently leads to equivalent or lower
F1 scores compared to the baseline model without
the optimized threshold. On the other hand, the
threshold optimization leads to the statistically sig-
nificant increase in the F1 score for models with
MCD. Concretely, it increases the F1 score for 9
models and decreases it for 1 model.

Using MCD on its own is not helpful. Without
also training the model on soft labels or optimiz-
ing the threshold, it decreases the F1 score for all
10 models in comparison to the respective models
not using MCD. However, as described previously,
using MCD in combination with either or both of
these mechanisms mostly leads to an increase in
F1 score.

Lastly, using more MCD rounds starts to bring a
diminishing increase in the F1 score after a certain
point. Concretely, using 50 instead of 10 MCD
rounds leads to only a small additional increase in
F1 score.

The best F1 score is achieved by the model with-
out additional knowledge, trained on soft labels,
using 50 MCD rounds and the threshold optimiza-
tion. This model achieves the F1 score of 0.586
(+0.030 over the baseline) in the offline evaluation,
and the F1 score 0.575 on the official online test
set.

5 Conclusion

We have described our approaches for the detec-
tion of PCL as part of the SemEval-2022 Task 4.
We attempted to inject knowledge into prediction
models and leverage the uncertainty present in the
task. The injection of additional knowledge did
not increase the F1 score significantly. Leveraging
the uncertainty in different ways produced mixed
effects. Training the models on soft instead of hard
labels consistently increased the F1 score, while

using MCD on its own was not beneficial. How-
ever, using MCD in combination with soft labels
and threshold optimization brought consistent im-
provements in the F1 score and produced our best
score.

Both directions of our research have potential
for further work. In our knowledge injection exper-
iments, we have only experimented with a single
type of additional knowledge at a time. To inject
multiple types simultaneously, we would need to
create special tokens for each combination, which
could lead to overfitting due to relatively small and
imbalanced data. Therefore, in further work we
will try a different method for knowledge injection
considering multiple types of additional knowledge
simultaneously. In leveraging uncertainty, we have
constructed the soft binary labels from the two an-
notations per example and aggregated the annota-
tions by weighing them equally. A possible further
work would experiment with different weighting
schemes.
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Table 3: Used tagsets for representing additional knowl-
edge.

Knowledge Tagset

coreference
O, ENT0, ENT1, . . . , ENT50;

52 tags

sentiment
NEG, OBJ, POS, UNK;

4 tags

named ent.
O, {B-, I-, E-, S-} ×

{ORG, PER, LOC, MISC};
17 tags

dep. relations
universal dep. relations

(including subtypes)
(Nivre et al., 2020); 63 tags

A Additional details of knowledge
injection experiment

Table 3 shows the tags used to inject the additional
knowledge. The tags are added as special (indi-
visible) tokens to the tokenizer and used in the
secondary input sequence as described in Section
3.2. For sentiment and coreference knowledge, we
note additional preprocessing details:

• Sentiment. We obtain the sentiment tags us-
ing SentiWordNet. Each token is assigned a
positive, negative and objectivity score, and
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Table 4: Extended results of the base models and their modifications: mean and standard deviation of precision (P),
recall (R), and F1 score across 10 folds.

(a) Results without MCD.

train on
hard labels

train on
soft labels

Model P R F1 P R F1

roberta-base 0.575
(0.051)

0.543
(0.057)

0.556
(0.038)

0.612
(0.040)

0.539
(0.067)

0.570
(0.045)

+ opt. thresh. 0.571
(0.056)

0.537
(0.068)

0.550
(0.048)

0.597
(0.060)

0.570
(0.081)

0.577
(0.051)

+ coreference 0.591
(0.046)

0.567
(0.063)

0.575
(0.032)

0.583
(0.073)

0.594
(0.061)

0.582
(0.031)

+ opt. thresh. 0.566
(0.061)

0.593
(0.066)

0.573
(0.033)

0.572
(0.084)

0.591
(0.077)

0.572
(0.028)

+ sentiment 0.589
(0.056)

0.514
(0.074)

0.544
(0.054)

0.614
(0.061)

0.529
(0.132)

0.554
(0.077)

+ opt. thresh. 0.587
(0.043)

0.494
(0.080)

0.532
(0.056)

0.596
(0.061)

0.585
(0.097)

0.582
(0.047)

+ named ent. 0.538
(0.053)

0.604
(0.076)

0.563
(0.026)

0.569
(0.067)

0.585
(0.081)

0.568
(0.028)

+ opt. thresh. 0.563
(0.021)

0.588
(0.087)

0.563
(0.021)

0.565
(0.044)

0.595
(0.062)

0.577
(0.031)

+ dep. relations 0.537
(0.028)

0.605
(0.076)

0.567
(0.040)

0.581
(0.042)

0.585
(0.064)

0.580
(0.028)

+ opt. thresh. 0.572
(0.061)

0.558
(0.091)

0.557
(0.039)

0.593
(0.037)

0.575
(0.085)

0.578
(0.038)

(b) Results using 10 MCD rounds.

train on
hard labels

train on
soft labels

Model P R F1 P R F1

roberta-base 0.610
(0.062)

0.499
(0.054)

0.546
(0.041)

0.660
(0.054)

0.481
(0.068)

0.553
(0.056)

+ opt. thresh. 0.580
(0.064)

0.534
(0.069)

0.551
(0.040)

0.593
(0.043)

0.577
(0.095)

0.580
(0.059)

+ coreference 0.612
(0.043)

0.507
(0.084)

0.550
(0.051)

0.614
(0.069)

0.537
(0.075)

0.566
(0.038)

+ opt. thresh. 0.537
(0.058)

0.621
(0.055)

0.573
(0.040)

0.572
(0.078)

0.602
(0.085)

0.579
(0.043)

+ sentiment 0.627
(0.063)

0.460
(0.074)

0.526
(0.059)

0.667
(0.075)

0.474
(0.129)

0.535
(0.086)

+ opt. thresh. 0.575
(0.056)

0.514
(0.058)

0.540
(0.047)

0.610
(0.059)

0.553
(0.077)

0.575
(0.042)

+ named ent. 0.589
(0.062)

0.543
(0.087)

0.556
(0.034)

0.621
(0.077)

0.523
(0.098)

0.556
(0.041)

+ opt. thresh. 0.560
(0.062)

0.561
(0.086)

0.553
(0.034)

0.540
(0.056)

0.628
(0.074)

0.577
(0.043)

+ dep. relations 0.577
(0.039)

0.544
(0.063)

0.557
(0.037)

0.633
(0.062)

0.511
(0.100)

0.557
(0.060)

+ opt. thresh. 0.555
(0.044)

0.577
(0.046)

0.564
(0.033)

0.572
(0.059)

0.608
(0.076)

0.583
(0.031)

(c) Results using 50 MCD rounds.

train on
hard labels

train on
soft labels

Model P R F1 P R F1

roberta-base 0.609
(0.055)

0.499
(0.051)

0.546
(0.038)

0.662
(0.052)

0.480
(0.062)

0.554
(0.051)

+ opt. thresh. 0.564
(0.046)

0.558
(0.090)

0.556
(0.046)

0.594
(0.058)

0.587
(0.063)

0.586
(0.034)

+ coreference 0.616
(0.035)

0.503
(0.078)

0.549
(0.046)

0.620
(0.080)

0.538
(0.072)

0.570
(0.043)

+ opt. thresh. 0.561
(0.084)

0.601
(0.099)

0.568
(0.040)

0.582
(0.084)

0.599
(0.101)

0.580
(0.048)

+ sentiment 0.630
(0.066)

0.461
(0.074)

0.527
(0.061)

0.629
(0.080)

0.531
(0.099)

0.563
(0.045)

+ opt. thresh. 0.574
(0.040)

0.523
(0.092)

0.543
(0.055)

0.543
(0.058)

0.633
(0.059)

0.581
(0.038)

+ named ent. 0.589
(0.068)

0.544
(0.086)

0.557
(0.038)

0.629
(0.080)

0.531
(0.099)

0.563
(0.045)

+ opt. thresh. 0.551
(0.038)

0.596
(0.072)

0.569
(0.030)

0.543
(0.058)

0.633
(0.059)

0.581
(0.038)

+ dep. relations 0.575
(0.033)

0.541
(0.071)

0.554
(0.043)

0.636
(0.056)

0.513
(0.091)

0.560
(0.049)

+ opt. thresh. 0.556
(0.043)

0.588
(0.062)

0.569
(0.035)

0.568
(0.058)

0.607
(0.107)

0.577
(0.050)
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the final tag is the one with the highest of the
three scores. The token UNK is used if a token
does not have associated scores.

• Coreference. We enumerate the coreference
clusters in the document randomly. We find
this has a positive effect on the performance,
possibly as the model is overtrained on the
tags with lower IDs otherwise.

B Extended evaluation results

Table 4 shows the extended results of the base and
extended models.
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Abstract

The paper describes the SemEval-2022 Task
5: Multimedia Automatic Misogyny Identifica-
tion (MAMI),which explores the detection of
misogynous memes on the web by taking ad-
vantage of available texts and images. The task
has been organised in two related sub-tasks: the
first one is focused on recognising whether a
meme is misogynous or not (Sub-task A), while
the second one is devoted to recognising types
of misogyny (Sub-task B). MAMI has been
one of the most popular tasks at SemEval-2022
with more than 400 participants, 65 teams in-
volved in Sub-task A and 41 in Sub-task B from
13 countries. The MAMI challenge received
4214 submitted runs (of which 166 uploaded
on the leader-board), denoting an enthusiastic
participation for the proposed problem. The
collection and annotation is described for the
task dataset. The paper provides an overview
of the systems proposed for the challenge, re-
ports the results achieved in both sub-tasks and
outlines a description of the main errors for a
comprehension of the systems capabilities and
for detailing future research perspectives.

1 Introduction

Women have a strong presence online, particularly
in image-based social media such as Twitter and In-
stagram: 78% of women use social media multiple
times per day compared to 65% of men (Depart-
ment, 2019). However, while new opportunities for
women have been opened on the web, systematic
inequality and discrimination offline is replicated
in online spaces in the form of offensive contents
against them (Frenda et al., 2019; Anzovino et al.,
2018; Farrell et al., 2019; Plaza-Del-Arco et al.,
2020; Gasparini et al., 2018). A popular commu-

nication tool in social media platforms are image
macros popularly connoted as "memes" (Shifman,
2013). An internet meme is usually an image com-
municating pictorial content with an overlaid text
that is added a posteriori by the meme author,
with the main goal of being funny and/or ironic
(Shifman, 2013). Although many memes are cre-
ated with humorous intent, others have political
or activist ambitions. Few familiar with the for-
mat would be surprised to learn that memes can
be used to express hate against women, via sexist
and aggressive messages in online environments
(Paciello et al., 2021) that subsequently amplify the
sexual stereotyping and gender inequality of the of-
fline world (Franks, 2011). In order to counter this
phenomenon, the Multimedia Automatic Misogyny
Identification (MAMI) shared task has been organ-
ised at SemEval-2022 (Emerson et al., 2022). The
proposed challenge consists of the identification
of misogynous memes, taking advantage of both
text and images available as sources of information.
The task is organised around two main sub-tasks:
- Sub-task A: a basic task of misogynous meme
identification, where a meme should be categorised
either as misogynous or not misogynous;
- Sub-task B: an advanced task, where the type of
misogyny should be recognised among potential
overlapping categories such as stereotype, shaming,
objectification and violence.

Some other tasks related to this topic, but
that did not consider the same data and a multi-
modal approach have been previously organised
in the same area of interest, i.e. AMI@Evalita
(Fersini et al., 2018a; Elisabetta Fersini, 2020),
AMI@IberEval (Fersini et al., 2018b), HatEval
(Basile et al., 2019) and OffenseEval (Zampieri
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(a) Shaming (b) Stereotype (c) Objectification (d) Violence

Figure 1: Examples of misogynous memes.

et al., 2020). However, the proposed MAMI chal-
lenge is a step forward the previous ones for two
main reasons: (1) it is focused on multi-modality
and (2) the type of misogynous contents are ex-
pressed in a completely different form, i.e. in the
former challenge the presence of hateful contents
was explicit within the text, while here it is often
implicit.

2 Dataset and Annotation Process

Candidate memes have been collected by focusing
on the following main types of misogyny:

• Shaming: The practice of criticising women
who violate expectations of behaviour and ap-
pearance regarding issues related to gender
typology (such as “slut shaming”) or related
to physical appearance (such as “body sham-
ing”) (Van Royen et al., 2018). This category
focuses on content that seeks to insult and of-
fend women because of some characteristics
of their body or personality.

• Stereotype: a stereotype is a fixed, conven-
tional idea or set of characteristics assigned
to a woman (Eagly and Mladinic, 1989). A
meme can use an image of a woman according
to her role in the society (role stereotyping),
or according to her personality traits and do-
mestic behaviours (gender stereotyping).

• Objectification: A practice of seeing and/or
treating a woman like an object (Szymanski
et al., 2011).

• Violence: A meme that indicates physical
and/or a call to violence against women (An-
dreasen, 2021).

Examples of the above mentioned types of
misogynous memes are presented in Figure 1.

The procedure for collecting relevant memes
for this shared task consisted of: (1) searching
the most popular social media platforms, such
as Twitter and Reddit; and (2) downloading sam-
ples from websites dedicated to meme creation
and sharing, such as 9GaG, Knowyourmeme and
Imgur, by site scraping and manual download. In
both cases, in order to collect a proper number of
misogynous memes, 4 main activities have been
performed: (1) searching for threads dedicated to
memes with women as the subject; (2) searching
for threads or conversations dedicated to or written
by persons who identify as anti-women or anti-
feminist (such as the MGTOW website and the re-
lated threads on Reddit); (3) exploring discussions
in recent events involving famous women (such
as Michelle Obama); (4) searching by keywords
and/or hashtags such as #girl, #girlfriend, #women,
#feminist.
The final collection is composed of 15k memes
that have been labelled by human annotators (dupli-
cates have been previously removed). Among the
labelled memes we obtained an adequate number
of misogynous and non misogynous memes. The
final benchmark dataset released for the MAMI
challenge is composed of 10k memes for train-
ing and 1k for testing (balanced between classes).
The dataset has been labelled using crowd-sourcing
platforms according to the following primary ques-
tions1:
- Is this meme misogynous or not?
- If the meme is misogynous, what are the main
categories to which the meme belongs (shaming,

1The prototype of the annotation interface and the annota-
tion guidelines are reported in Appendix A
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file_name misogynous shaming stereotype objectification violence Text Transcription

10846.jpg 1 0 1 1 1
SANDWICH!!!!!!
don’t make me tell you twice woman.

Table 1: Annotation format of the training and testing instances.

stereotype, objectification, violence)?
In the last case, i.e. related to the misogyny cate-
gory, multiple overlapping labels have been con-
sidered. The memes were shown one at a time to
avoid bias introduced by the annotators seeing mul-
tiple memes simultaneously.

Memes were annotated by 3 observers and the

Figure 2: Raw image (10486.jpg)

final label was given according to the majority of
the labels (2/3). The text of the memes have been
transcribed using Google Cloud Vision2. We report
an example of a meme that has been provided to
the participants as training example, which is com-
posed of raw image (Figure 2) and the correspond-
ing labels available through a csv file (Table 1).

We estimated the inter-annotator agreement us-
ing the Fleiss-κ coefficient (Fleiss, 1971). In par-
ticular, we used the traditional Fleiss-κ measure
for estimating the agreement related to the misogy-
nous vs not misogynous annotation necessary for
Sub-task A, while we adopted the Fleiss-κ with the
MASI (Jaccard) index (Passonneau, 2006) to calcu-
late the agreement between annotators on multiple
(overlapping) annotations necessary for Sub-task
B. Regarding the agreement on the misogynous
vs not misogynous annotations, we estimated a
coefficient equal to 0.5767, while for the type of
misogyny labelling we derived a coefficient equal
to 0.3373. We report in Table 2 the details about
the dataset provided to the participants. The values
of the Fleiss-κ measure suggest that the agreement

2https://cloud.google.com/vision/docs/
ocr

for the misogynous labelling is moderate, denoting
a quite simple task for humans, while the agree-
ment for the type of misogyny annotation is fair,
denoting a quite hard task.

3 Evaluation Measures and Baseline

Sub-task A. Systems have been evaluated using
macro-average F1-Measure. In particular, for each
class label (misogynous and not misogynous) the
corresponding F1-Measure has be computed, and
the final score has been estimated as the arithmetic
mean of the two F1-Measures. The baseline models
used as benchmark with respect to the participants
are:
- Baseline Text: a deep representation of text, a
fine-tuned sentence embedding using the USE (Cer
et al., 2018) pre-trained model;
- Baseline Image: deep representation of image
content, based on a fine-tuned image classification
model grounded on VGG-16 (Simonyan and Zis-
serman, 2014);
- Baseline Image_Text: a concatenation of the pre-
vious deep image and text representations through
a single layer neural network.

We also used two multi-label models introduced
for Sub-task B and detailed in the following para-
graph.

Sub-task B. Systems have been evaluated using
weighted-average F1-Measure. In particular, the
F1-Measure has been computed for each label and
then the average has been weighted by the number
of true instances for each label. For Sub-task B, the
baselines are grounded on:
- Baseline Flat Multi-label: a multi-label model,
based on the concatenation of deep image and text
representations for predicting simultaneously if a
meme is misogynous and the corresponding type;
- Baseline Hierarchical Multi-label: a hierarchical
multi-label model, based on text representations for
predicting whether a meme is misogynous or not
and, if misogynous, the corresponding type.

4 Participant Systems and Results

MAMI has been one of the most popular tasks in
SemEval-2022, with 65 teams that joined Sub-task
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Misogyny Labelling (Sub-task A) Type of Misogyny Labelling (Sub-task B)

Misogynous Not Misogynous Fleiss-k
Agreement Shaming Stereotype Objectification Violence Fleiss-k

Agreement
Training Set 5000 (50%) 5000 (50%)

0.5767
1274 (25.48%) 2810 (56.20%) 2202 (44.04%) 953 (19.06%)

0.3373Test Set 500 (50%) 500 (50%) 146 (29.20% ) 350 (70.00%) 348 (69.60%) 153 (30.60%)

Table 2: Dataset characteristics.

A and 41 teams that participated in Sub-task B. We
received a total of 4,214 submissions, of which 166
submitted to the leader-board. Among the teams
joining the MAMI challenge, 41 groups have pro-
vided the details about their participation (team
name, number of team members, country, and de-
scription of their system). In Appendix B (Table
8), we report features about the teams that have
provided team information for further analysis and
discussion. On average, the teams are composed of
2 members, varying from 1-person teams (the most
frequent case) to 7 members (the largest team). Re-
garding geographic distribution, the majority of the
participants come from India (12 teams), followed
by USA and Germany (5), UK and China (4), Italy
and Spain (3) and the remaining countries with 1
team each.

As a general overview of the results, we report
in Table 3 the mean, standard deviation (StDev),
minimum, maximum, median and the first and third
quartiles (Q1 and Q3) of the performance achieved
by the participant teams.
In Sub-task A, we notice that the maximum value

Min Q1 Mean Median StDev Q3 Max
Sub-task A 0.481 0.649 0.680 0.679 0.064 0.722 0.834
Sub-task B 0.467 0.634 0.663 0.680 0.059 0.706 0.731

Table 3: Basic statistics of the results for the participat-
ing systems in Sub-task A and Sub-task B, expressed
in terms of macro-averaged and weighted-average F1-
score respectively.

(0.834) is much higher than the corresponding one
in Sub-task B (0.731), while the difference is less
evident when considering the mean (from 0.680 to
0.663) and the median value (from 0.679 to 0.680).
When considering the max values, it emerges that
Sub-task B seems to be more difficult than Sub-task
A, while the median values indicates that for the
50% of the systems both tasks are equally challeng-
ing.

In regards to the models adopted by the partici-
pants, it has been observed that the majority of the
teams exploited pre-trained models, distinguished
in text-based, where the most used ones are based
on BERT (Devlin et al., 2019) such as RoBERTa

(Liu et al., 2019), and image-based models, where
the most adopted ones are based on VisualBERT
(Li et al., 2020a). Among these systems, consid-
ered by 90% of the teams, half of them adopted an
ensemble strategy to make the final prediction. The
remaining ones adopted either traditional neural
networks (30%) or multi-task (20%) approaches to
classify the memes. Few teams exploited models,
such as CLIP (Radford et al., 2021) and ViLBERT
(Lu et al., 2019), to jointly learn the characteristics
of misogynous and not misogynous memes, and
the related misogyny categories.

4.1 Sub-task A

Sub-task A was attempted by 65 teams, where 47 of
them (72%) outperformed the best provided base-
line, the Baseline Hierarchical Multi-label model,
in terms of macro-averaged F1-score. The highest
score (0.834) has been obtained by the SRCB team
(Zhang and Wang, 2022), which defined an ensem-
ble model of deep multi-modal features with Multi
Layer Perception (Kubat, 1999), Extreme Gradient
Boosting (Chen and Guestrin, 2016) and Gradient-
Boosted Decision Trees (Si et al., 2017).

We report in Table 4 the Top-10 teams in Sub-
task A, ranked according to macro-average F1-
score (the overall leader-board is reported in Ap-
pendix C.) Regarding the top-3 systems, DD-TIG

Team Name
1 SRCB (Zhang and Wang, 2022)
2 DD-TIG (Zhou et al., 2022)
3 RIT Boston (Chen and Chou, 2022)
4 NLPros
5 ASRtrans (Rao and Rao, 2022)
6 Poirot (Srivastava, 2022)
7 R2D2 (Sharma et al., 2022b)

8
PAIC (ZHI et al., 2022)
ymf924
RubCSG (Yu et al., 2022)

9 hate-alert
10 AMS_ADRN (Li et al., 2022)

Table 4: Top-10 teams in Sub-task A, ranked according
to macro-average F1-score.

(Zhou et al., 2022), ranked second place by defin-
ing an ensemble of different pre-trained models: (1)
ERNIE-Vil (Yu et al., 2021), which incorporates
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structured knowledge obtained from scene graphs
to learn joint representations of vision-language;
(2) Uniter (Chen et al., 2020), which learns a joint
multi-modal embedding through a Transformer-
based architecture over four image-text datasets;
(3) VisualBERT (Li et al., 2020a), which is com-
posed of a stack of Transformer layers that implic-
itly align elements of an input text and regions in
an associated input image with self-attention; (4)
Oscar (Li et al., 2020b), which exploits object tags
detected in an image as anchor point to learn the
alignment with the caption fragments.

RIT Boston (Chen and Chou, 2022) ranked third
and used OpenAI’s CLIP model (Radford et al.,
2021) to obtain high-quality multi-modal features
and then used a logistic regression (LR) model to
make a binary classification. In their model, a data-
centric AI principle was used to further improve
performance by manually rating a subset of test
data and adding this extra data into the train set.

4.2 Sub-task B
Sub-task B was attempted by 41 teams, where 35
of them (85%) outperformed the best MAMI base-
line, which also in this case is the Baseline Hier-
archical Multi-label model. We report in Table 5
the Top-10 teams in Sub-task B, ranked according
to weighted-average F1-score (the overall leader-
board is reported in Appendix C). The highest re-

Team Name

1
SRCB (Zhang and Wang, 2022)
TIB-VA (Hakimov et al., 2022)
PAIC (ZHI et al., 2022)

2 ymf924
3 DD-TIG (Zhou et al., 2022)
4 NLPros
5 QMUL
6 Unibo (Muti et al., 2022)
7 RubCSG (Yu et al., 2022)
8 AMS_ADRN (Li et al., 2022)
9 taochen (Tao and jae Kim, 2022)
10 ASRtrans (Rao and Rao, 2022)

Table 5: Top-10 teams in Sub-task B, ranked according
to weighted-average F1-score.

sult (0.731) has been obtained by three teams, i.e.,
SRCB (Zhang and Wang, 2022), TIB-VA (Haki-
mov et al., 2022) and PAIC (ZHI et al., 2022). The
SRCB team (Zhang and Wang, 2022) adopted the
same ensemble model used for Sub-task A. The
system developed by TIB-VA is instead based on a
Deep Learning model grounded on CLIP image and
text features combined with a LSTM (Hochreiter
and Schmidhuber, 1997), while PAIC (ZHI et al.,

2022) did not provide any information about their
approach. In second place, the ymf924 team did
not provide any information about their approach,
while in third place is the DD-TIG (Zhou et al.,
2022) team with the same approach used for Sub-
task A.
In general, the most predominant models for ad-
dressing Sub-task B are multi-class approaches,
multi-task learning, and/or ensemble methods,
where the feature space for learning has been de-
rived either by image and text pre-trained models
or by a joint embedding space.

5 Error Analysis

In order to gain deeper insight into the prediction
capabilities of the systems and delineate the open
issues about the recognition and classification of
misogynous memes, we conducted a detailed error
analysis on both sub-tasks, considering all partici-
pating teams. The error distributions and the types
of the most common errors in regards to the labels
to be predicted are detailed in the following sub-
sections. We considered memes misclassified by at
least 25%, 50% and 75% of the teams, distinguish-
ing False Positive (FP) and False Negative (FN),
according to the labels available in each sub-task.
For the memes misclassified by at least 75% of
the teams, we reported the most frequent types of
errors by analysing the visual and textual content
of the memes.

5.1 Sub-task A

In Figure 3, the distribution of correct classifi-
cations with respect to the number of successful
teams is reported for misogynous and not misogy-
nous memes. The distribution of correctly classi-
fied misogynous memes (Figure 3(a)) is uni-modal
and peaked towards higher values, implying that
most memes have been correctly classified by most
teams. On the other hand, considering the not
misogynous ones, the distribution is more uniform
(Figure 3(b)), denoting that in general the models
are more recall than precision oriented. There are
14 memes out of 500 (2.8%) correctly classified as
misogynous by all the teams (Figure 3(a), last bin),
while no one is misclassified by all the teams. In
the worst case, only one misogynous meme was
misclassified by 63 out of 65 teams.

In Table 6 the error distribution of Sub-task A
is reported, considering the misclassification of
misogynous memes and not misogynous ones sepa-
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(a) (b)

Figure 3: Distributions of correct classifications with respect to the number of successful teams for misogynous (a)
and not misogynous (b) memes.

Teams Misogynous memes predicted
as NOT Misogynous (FN)

NOT Misogynous memes predicted
as Misogynous (FP)

Overall misclassified memes
(FP+FN)

25% (16 teams) 128 25.60% 340 68.00% 468 46.80%
50% (33 teams) 46 9.20% 220 44.00% 266 26.60%
75% (49 teams) 12 2.40% 109 21.80% 121 12.10%

Table 6: Error distribution on Sub-task A.

rately, and finally the overall errors. In general, the
percentage of classification errors of non misog-
ynous memes are higher than misogynous ones,
confirming that the methods are more precision
than recall oriented. This suggests that most of the
systems tends to be biased towards the misogyny
category due to the presence of text or images that
mislead the systems. Focusing on the memes mis-
classified by at least 75% of the teams, the most
frequent types of errors can be summarised in the
following paragraphs.

Misogynous memes predicted as NOT misog-
ynous (FN). Twelve memes belong to this set.
Five of them involve sexual objectification, that
requires correlation of textual and visual content to
classify. In particular, the meme depicted in Figure
4 is characterised by a neutral text and depicts a
neutral object. In this case, the shape of the ob-
ject together with the text needs to be correlated
to grasp the sexual meaning. This meme was cor-
rectly classified by only 6 teams out of 65. Another
group of misclassified memes, corresponding to
one third of this set, is related to violence, both
physical (visually represented), and sexual, which
is less explicitly evoked.

Figure 4: A misogynous meme classified as a non misog-
ynous one (Raw image: 17013.jpg).

NOT Misogynous memes predicted as misogy-
nous (FP). 109 NOT misogynous memes were
incorrectly predicted by at least 75% of the teams.
The majority of the misclassified memes contain
textual or visual content that are often contained
in misogynous memes. For example, 38% of the
memes contain words and phrases such as “woman,
man, fat, boobs, kitchen, dishwasher, chicks, make
me a sandwich, . . . ”, and 31% depict close up im-
ages of women, which often emphasise the neck-
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Figure 5: Example of meme with an antithetical content
(Raw image: 15138.jpg).

line, or depict faces with evident makeup. An in-
teresting group of misclassified memes (7 out of
109) shows antithetical content. In general, most
of the visual and textual information recall typi-
cal misogynous memes (with viral phrases such
as “back to the kitchen” or depicting misogynous
scenes such as physical violence), however addi-
tional information both visual and textual, with
an opposite meaning, changes the overall message
conveyed, as depicted in the example in Figure 5.

Memes featuring famous characters or actors
who are often depicted associated to messages of
all kinds, such as Ryan Gosling with the “hey girl”
memes, Dwight Schrute or Willy Wonka, are also
frequently misclassified (about 10%). Finally it is
worth noting that other misclassified memes are
those that convey feminist ideals and content.

5.2 Sub-task B
We report in Table 7, the error distribution of Sub-
task B, accordingly to the labels predicted (i.e.,
Stereotype, Violence, Shaming and Objectifica-
tion). The first interesting insights involve the
misogyny categories that are misclassified by at
least 75% of the teams, in a ranked order: Objectifi-
cation (14.60% of memes are wrongly classified by
at least 31 teams in the over 41 participating teams),
Stereotype (13.10%), Violence (3.30%) and Sham-
ing (3.2%). A further interesting insight relates to
the ability of the models with respect to the False
Negative (FN) and the False Positive (FP) of each
class. While for Shaming and Violence the per-
centage of FP (0.82% and 0.12% respectively) is
much lower than the percentage of FN (17.2% and
20.92%), for Stereotype and Objectification the

Figure 6: Most common example of Shaming meme
misclassified as NOT Shaming (Raw image: 15559.jpg)

opposite is true, where FP (27.71% and 35.92%
respectively) rates are much higher then FN (5.23%
and 3.22%). We analysed the most predominant
errors, with respect to each misogyny category.

Shaming. Regarding the first misogyny category,
the most frequent error by at least 75% of the teams
relates to the classification of Shaming memes
as NOT Shaming (17.12%). The majority of the
memes wrongly classified relates to the concept
of fat shaming where overweight women are com-
pared, implicitly or explicitly, to a narrow standard.
An example of such errors is reported in Figure 6.

Violence. With the Violence category, the most
frequent error by at least 75% of the teams relates
to the classification of Violence memes as NOT
Violence ones (20.92%). In this case, the majority
of the memes wrongly classified as NOT Violence
relates to the concept of physical assault typically
depicted with a violent image (e.g., woman with
bruises) but with neutral text (e.g., “don’t tell her
twice”) or by a neutral image (e.g., standing men)
coupled with a violent text (e.g., “women need a
good beating once in a while”). An example of a
misclassified violent meme is shown in Figure 7.

Stereotype. In the Stereotype category, the most
frequent error by at least 75% of the teams relates
to the classification of NOT Stereotype memes as
Stereotype ones (27.71%). In this case, the most
frequent misclassification concerns memes that are
related to the concept of men in the kitchen, where
the image typically represents men and the text
is related to the stereotype of woman in kitchen
(“cooking”). An example of such errors is re-
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Teams Shaming predicted as
NOT Shaming (FN)

NOT Shaming predicted as
Shaming (FP)

Overall misclassified
Shaming memes (FP+FN)

25% (11 teams) 92 63.01% 143 16.74% 235 23.50%
50% (21 teams) 59 40.41% 44 5.15% 103 10.30%
75% (31 teams) 25 17.12% 7 0.82% 32 3.20%

Violence predicted as
NOT Violence (FN)

NOT Violence predicted as
Violence (FP)

Overall misclassified
Violence memes (FP+FN)

25% (11 teams) 90 58.82% 32 3.78% 122 12.20%
50% (21 teams) 65 42.48% 6 0.71% 71 7.10%
75% (31 teams) 32 20.92% 1 0.12% 33 3.30%

Stereotyope predicted as
NOT Stereotyope (FN)

NOT Stereotyope predicted as
Stereotyope (FP)

Overall misclassified
Steretype memes (FP+FN)

25% (11 teams) 236 36.31% 278 79.43% 514 51.40%
50% (21 teams) 94 14.46% 190 54.29% 284 28.40%
75% (31 teams) 34 5.23% 97 27.71% 131 13.10%

Objectification predicted as
NOT Objectification (FN)

NOT Objectification predicted as
Objectification (FP)

Overall misclassified
Objectification memes (FP+FN)

25% (11 teams) 151 23.16% 260 74.71% 411 41.10%
50% (21 teams) 65 9.97% 205 58.91% 270 27.00%
75% (31 teams) 21 3.22% 125 35.92% 146 14.60%

Table 7: Error distribution on Sub-task B.

Figure 7: Most common example of Violence meme
misclassified as NOT Violent (Raw image: 16067.jpg)

ported in Figure 8. The analysis of the errors in the
stereotyped category is controversial and interest-
ing. Some of the memes that our annotators have
labelled as non-stereotypical could be considered
expressions of benevolent sexism (Glick and Fiske,
1996). Benevolent sexism is a subtle form of prej-
udice, which apparently values women more than
men but does it connecting this positive evaluation
to their traditional roles. This is a manifestation of
sexism that is difficult to detect and it is still not
consensual in society. In fact, these memes were
considered by our annotators not to be an expres-
sion of stereotype. The task team decided to keep
the annotators’ view that reflects the majority think-
ing in society today, however, the models seem to

have detected benevolent sexism and the errors go
in that direction. If models are only detecting the
kitchen scenario or a more subtle form of prejudice
is an intriguing question for future research.

Figure 8: Most common example of NOT misogynous
and NOT Stereotype meme misclassified as Stereotype
(Raw image: 15137.jpg)

Objectification. In the Objectification category,
the most frequent error by at least 75% of the teams
relates to the classification of NOT Objectification
memes as Objectification (35.92%). In this case,
there is not a predominant archetype over the others
that confounds the majority of the models.
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6 Conclusions

The high number of participating teams at the
MAMI challenge at SemEval-2022 confirms the
growing interest of the research community not
only in detecting abusive language but also pic-
torial content as sources of information. Overall,
results and error analysis confirm that the detec-
tion of misogynous memes is challenging, with
many open issues that need to be addressed. First
of all, the fact that the most predominant error in
misogyny recognition relates to the misclassifica-
tion of NOT misogynous memes as misogynous
ones suggests that some potential issues could be
related to biased models. The research community
is therefore encouraged to pay attention not only
to accuracy metrics, but also to ensure models are
unbiased before applying them in a real context.
Another open issue relates to the capability of the
systems to model the dynamics of the memes. Ev-
ery day different memes, with different images and
different text are generated on the web and shared
online.
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A Annotation Guidelines

We report here the annotation guidelines pro-
vided to the annotators participating in the crowd-
sourcing annotation process of the collected memes.

Since some memes contain sensitive content, we
provided an explicit advisory message to the anno-
tators.

A.1 Overview

The job aims at labelling English memes shared by
users on the web as misogynous or not misogynous.
The first step is about collecting socio-demographic
information about the annotators:

• Gender: indicate your gender as female, male,
unspecified

• Age: please choose your age range between
18-15, 25-35, 35-45, 45-60, over-60

• Location: please indicate your country of birth

The second step is about misogyny labelling. An-
notators have to decide whether a meme is misogy-
nous or not. If a meme is labelled as misogynous,
then two other questions will be answered:

• Type of misogyny: the annotator should indi-
cate (multiple choice) if the meme represents
shaming, stereotype, objectification and/or vi-
olence.

• Misogyny rating: the annotator should pro-
vide a rating about how much the meme is
misogynous using stars, i.e. *, ** or ***.

A.2 Guidelines and examples

Misogyny Labelling. Looking at a meme at a
time, annotators should label it as misogynous or
not according to the following definitions:

• Misogynous: a meme is misogynous if it con-
ceptually describes an offensive, sexist or hate-
ful scene (weak or strong, implicitly or explic-
itly) having as target a woman or a group of
women. Misogyny can be expressed in the
form of shaming, stereotype, objectification
and/or violence.

• Not Misogynous: a meme that does not ex-
press any form of hate against women.

Remark: a meme is NOT misogynous if it is con-
ceptually not related to women or even if it is re-
lated to women, but it does not represent an offen-
sive, sexist or hateful concept against women.
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Type of misogyny. If a meme is considered
misogynous, then the annotator has to choose one
or more types of misogynous categories, according
to the following definitions:

• Shaming: memes aimed at insulting and of-
fending women because of some characteris-
tics of the body. These types of misogynous
memes are related to denigrating the physical
appearance of women (body shaming).

• Stereotype: memes are aimed at representing
a fixed idea or set of characteristics assigned
to women. These types of memes convey the
image of women according to their role in the
society (i.e., Role Stereotyping), to her per-
sonality traits and domestic behaviours (i.e.,
Gender Stereotyping) or to fixed ideological
characteristics related to women’s rights (i.e.,
Feminism Stereotype).

• Objectification: it is a practice of see-
ing and/or treating a woman like an object.
These types of memes usually report an over-
appreciation of women’s physical appeal, de-
picting woman as an object (sexual objectifi-
cation or human being without any value as a
person).

• Violence: indicates a physical or verbal vio-
lence represented by textual or visual content.
These types of misogynous memes are aimed
at showing violence against women or at al-
luding to the intent of physically assert power
over women.

Misogyny Rating. If a meme is considered
misogynous then the annotator has to indicate, ac-
cording to his/her opinion, how misogynistic it is
using a 1 to 3 ratings: * indicates weak misogyny,
** means medium misogyny, *** means strong
misogyny.

B Team Information

We report here the details provided by those teams
that have responded to a request for team informa-
tion.

Team Name Country Members
InfUfrgs Brazil 1
HateU Chile 3
AMS_ADRN

China

3
DD-TIG 1
SRC-B 6
YNU-HPCC 3
TIB-VA

Germany

2
qinian 3
Hildesheim 1
RubCSG 4
TechSSN

India

4
IITR CodeBusters 3
IIT DHANBAD CODECHAMPS 1
LastResort 1
SSN_NLP_MLRG 2
Gini_us 3
ASRtrans 1
IIITG-ADBU 1
Transformers 7
R2D2 3
Poirot 1
Tathagata Raha 1
JRLV

Italy
2

Unibo 3
Triplo7 1
YMAI Jordan 2
UAEM-ITAM Mexico 3
UPB Romania 1
taochen Singapore 1
UMUTeam

Spain
1

AIDA-UPM 6
I2C 1
NLPros

UK

5
MMVAE 1
codec 1
QMUL 1
Mitra Behzadi

USA

1
RIT Boston 2
Charicfc 1
Stanford MLab 5
TeamOtter 2

Table 8: Team characteristics.
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C Leader-boards

C.1 Leader-board of Sub-task A
We report in Table 9 the leader-board for Sub-task
A. Team Names marked with * have submitted
team name and additional information for further
analysis and discussion. For those teams that have
not provided the Team Name, we maintained the
user name used on Codalab for submitting their
predictions.

To produce the reported leader-board, we filtered
the ranking defined by the evaluated metrics to
maintain only the highest achieved score per group.
Afterwards, we scrolled through this ranking from
top to bottom in order to create clusters based on
the obtained scores and the statistical difference
resulting from the application of the McNemar test
(McNemar, 1947).
In particular, starting from the first entry in the
ranking, we have included in the same cluster the
groups that presented (1) the same score or (2) had
a statistical equality in performance.
As stated before, statistical equality was computed
with a pairwise analysis performed with the McNe-
mar test: we evaluated the equality in performance
of the analysed algorithm with the algorithm that
obtained the highest score within the cluster, con-
sidering a value of alpha equal to 0.05. According
to this criterion, in the event that the algorithm un-
der analysis could not be included in the cluster, a
new one was created; the subsequent ones would
have been compared with the latter.

Notice that in the leader-board were maintained
all the baseline results for comparison.

C.2 Leader-board of Sub-task B
We report in Table 10 the leader-board for Sub-
task B. Team Names marked with * have submitted
team name and additional information for further
analysis and discussion. For those teams that have
not provided the Team Name, we maintained the
user name used on Codalab for submitting their
predictions.

To obtain the reported leader-board, a similar
approach to the one used for Sub-task A has been
adopted. A McNemar test (McNemar, 1947) was
adopted to evaluate the similarity in performance
for the identification of every single type of misog-
yny. Two algorithms have been considered statisti-
cally equal in performance if there was statistical
significance in all 4 tests (i.e., if there was a sta-
tistical significance for the performance related to
all 4 types of misogyny). Thus, a difference in
performance for the prediction of only one of the
four types has been valued sufficient to consider
the analysed algorithm as statistically unequal. As
for Sub-task A, the grouping depends on statistical
equality and on the scores obtained.

Notice that in the leader-board were maintained
all the baseline results for comparison.
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Leaderboard Sub-task A

Team Name Macro-average
F1-score

1 SRCB* (Zhang and Wang, 2022) 0.834

2
DD-TIG* (Zhou et al., 2022) 0.794
RIT Boston* (Chen and Chou, 2022) 0.778
NLPros* 0.771

3

ASRtrans* (Rao and Rao, 2022) 0.761
Poirot* (Srivastava, 2022) 0.759
R2D2* (Sharma et al., 2022b) 0.757
PAIC (ZHI et al., 2022) 0.755
ymf924 0.755
RubCSG* (Yu et al., 2022) 0.755
hate-alert 0.753
AMS_ADRN* (Li et al., 2022) 0.746
TIB-VA* (Hakimov et al., 2022) 0.734

4

union 0.727
Unibo* (Muti et al., 2022) 0.727
MMVAE* (Gu et al., 2022b) 0.723
YMAI* (Habash et al., 2022) 0.722
Transformers* (Mahadevan et al., 2022) 0.718
taochen* (Tao and jae Kim, 2022) 0.716
codec* (Mahran et al., 2022) 0.715
QMUL* 0.714
UPB* (Paraschiv et al., 2022) 0.714
HateU* (Arango et al., 2022) 0.712
yuanyuanya 0.708
Triplo7* (Attanasio et al., 2022) 0.699
InfUfrgs* (Lorentz and Moreira, 2022) 0.698
Mitra Behzadi* (Behzadi et al., 2022) 0.694
Gini_us* 0.692

5

riziko 0.687
UMUTeam* (García-Díaz et al., 2022) 0.687
Tathagata Raha* (Raha et al., 2022) 0.687
LastResort* (Agrawal and Mamidi, 2022) 0.686
TeamOtter* (Maheshwari and Nangi, 2022) 0.679
ShailyDesai 0.677
JRLV* (Ravagli and Vaiani, 2022) 0.670
I2C* (Cordon et al., 2022) 0.665
qinian* (Gu et al., 2022a) 0.665
A.111 0.662
IITR CodeBusters* (Sharma et al., 2022a) 0.662
YNU-HPCC* (Han et al., 2022) 0.662
WeiLW 0.661
SSN_NLP_MLRG* 0.658
UNIBUC-FMI 0.657

6

IIT DHANBAD CODECHAMPS* (Barnwal et al., 2022) 0.656
Sattiy 0.655
lianlio 0.654
thisisatharva 0.650
Baseline_Hierarchical_M. 0.650
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Table 9 Continued from previous page
Leaderboard Sub-task A

Team Name Macro-average
F1-score

6

IIITG-ADBU* 0.649
UAEM-ITAM* (Roman-Rangel et al., 2022) 0.641
Baseline_Image 0.640
Baseline_Text 0.639
Yet 0.639
RaNdom 0.638
AIDA-UPM* (Huertas-García et al., 2022) 0.636
vishesh_gupta 0.634
Levante 0.634
Aily 0.632
Charicfc* 0.620
Stanford MLab* 0.619

7

rhitabrat 0.609
Will To Live 0.606
Hildesheim* (Kalkenings and Mandl, 2022) 0.603
SakshiSingh 0.579

8
Baseline_Image_Text 0.543
areen 0.524
TechSSN* (Sivanaiah et al., 2022) 0.522

9 UET 0.481
10 Baseline_Flat_Multilabel 0.437

Table 9: Leader-board of Sub-task A.

Leaderboard of Sub-task B

Team Name Weighted-average
F1-score

1

SRCB* (Zhang and Wang, 2022) 0.731
TIB-VA* (Hakimov et al., 2022) 0.731
PAIC (ZHI et al., 2022) 0.731
ymf924 0.730

2
DD-TIG* (Zhou et al., 2022) 0.728
NLPros* 0.720

3 QMUL* 0.713
4 Unibo* (Muti et al., 2022) 0.710
5 RubCSG* (Yu et al., 2022) 0.709
5 AMS_ADRN* (Li et al., 2022) 0.708
6 taochen* (Tao and jae Kim, 2022) 0.706
7 ASRtrans* (Rao and Rao, 2022) 0.705
8 codec* (Mahran et al., 2022) 0.698
9 Transformers* (Mahadevan et al., 2022) 0.695

10

Triplo7* (Attanasio et al., 2022) 0.693
LastResort* (Agrawal and Mamidi, 2022) 0.692
R2D2* (Sharma et al., 2022b) 0.690
hate-alert 0.690

11 RIT Boston* (Chen and Chou, 2022) 0.689
12 Mitra Behzadi* (Behzadi et al., 2022) 0.681
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Table 10 Continued from previous page
Leaderboard Sub-task B

Team Name Weighted-average
F1-score

13 TeamOtter*(Maheshwari and Nangi, 2022) 0.680
14 Tathagata Raha* (Raha et al., 2022) 0.679
15 UPB* (Paraschiv et al., 2022) 0.673
16 riziko 0.668
17 UMUTeam* (García-Díaz et al., 2022) 0.663
18 UAEM-ITAM* (Roman-Rangel et al., 2022) 0.646

19
RaNdom 0.643
qinian* (Gu et al., 2022a) 0.637
UNIBUC-FMI 0.637

20 IITR CodeBusters* (Sharma et al., 2022a) 0.635

21
MMVAE* (Gu et al., 2022b) 0.634
Yet 0.634

22
YNU-HPCC* (Han et al., 2022) 0.633
Poirot* (Srivastava, 2022) 0.632

23 AIDA-UPM* (Huertas-García et al., 2022) 0.629
24 Baseline_Hierarchical_M. 0.621
25 YMAI* (Habash et al., 2022) 0.592
26 yuanyuanya 0.584
27 Stanford MLab* 0.563
28 UET 0.499
29 TechSSN* (Sivanaiah et al., 2022) 0.467
30 Baseline_Flat_Multilabel 0.421

Table 10: Leader-board of Sub-task B.
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Abstract

Social media is an idea created to make the
world smaller and more connected. Recently,
it has become a hub of fake news and sexist
memes that target women. Social Media should
ensure proper women’s safety and equality. Fil-
tering such information from social media is of
paramount importance to achieving this goal.
In this paper, we describe the system developed
by our team for SemEval-2022 Task 5: Multi-
media Automatic Misogyny Identification. We
propose a multimodal training methodology
that achieves good performance on both the sub-
tasks, ranking 4th for Subtask A (0.718 macro
F1-score) and 9th for Subtask B (0.695 macro
F1-score) while exceeding the baseline results
by good margins. The code will be available
here1

1 Introduction

With the rising usage of social media and the Inter-
net, it is tougher to establish an inclusive and wel-
coming community among users. Offensive speech,
hate speech, and targeted insult have been increas-
ing among users, disturbing everyone. With the
rising utilization of the Internet in a pandemic, hate
speech prevalence on the Internet is also increased.
Online hate speech with targeted discrimination
also creates threats and crimes offline.

Among these, online misogyny or sexist com-
ments have been increasing among women (Salter
et al., 2018), which includes name-calling, sexual
threats, shaming. This emphasizes the need for

1https://github.com/shankrmahadevan/
semevalmami2022

specialized automatic misogyny detection in on-
line platforms. Platforms such as Twitter 2 and
Facebook already have policies for banning hate-
ful content. However, these systems are primarily
through manual methods and might not scale well
for large users and multimodal content. Moreover,
hate speech is also prevalent in multimodal form
since most social media platforms support Images,
text, audio and video content. These memes have
been popular among users to express their opinions
since people express information through memes,
GIFs, and videos. But, unfortunately, this also
causes the rise of multimodal hate, and offensive
content, which is disturbing to users (Suryawan-
shi et al., 2020). This includes misogynistic posts,
which are targeted towards women.

Previous works on Misogyny detection have
been primarily focusing on one modality, which
is text (Pamungkas et al., 2020). Misogyny detec-
tion in text falls under an area of text classification.
Text classification methods such as BERT, LSTM,
Naive Bayes have been used to detect misogynistic
comments. In this work, we have used the provided
data, which contains both images of the memes and
the extracted OCR text from the memes.

This paper describes our submission for the task;
we have used multiple concatenation-based fusion
models and ensembled them for the final submis-
sion.

2https://help.twitter.
com/en/rules-and-policies/
hateful-conduct-policy
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2 Related Work

The past works have concentrated on collecting
the dataset from popular social media sites such as
Facebook, Reddit, and Twitter. Recent statistics do
not simply focus on hate but also on the kind of hate
the meme attempts to spread. Work has also been
done in detecting offensive memes using various
pre-trained models. (Fersini et al., 2019) presents
a novel dataset for the sexist meme classification
task. Sexism could be of several forms that could
be categorized based on the context of the cap-
tion and the objects on the meme. The main types
of sexism against women addressed in the dataset
are shaming, stereotypes, objectification and vio-
lence. The research paper largely focused on a
comparison between the unimodal and multimodal
classifiers. The article has attempted to answer var-
ious research concerns such as whether unimodal
architectures can predict the target correctly, will
merging the features of both text and picture cap-
ture the inherent complexity of the sexist memes,
and which one of the two modalities dominates
the other. The research discovered that unimodal
classifiers have shown that textual information is
an excellent indicator, whereas visual information
is a poor indicator to identify sexist memes. This
study between unimodal and multimodal showed
that unimodal architectures performed better than
multimodel architectures.

In the paper, (Zia et al., 2021) the analysis is
done on the dataset that focuses beyond hateful or
not hateful by annotating the hate meme dataset
further by the kind of hate the meme is actually
spreading. This would help in understanding the
meme and the intention of the person who cre-
ated the meme better rather than just labelling it
as hateful or not. The paper focused on two tasks.
The first task was to identify the kind of hate the
meme intended to spread. The second task was to
detect the type of attack the meme did on a partic-
ular group such as slurs, inferiority, and mocking.
Models such as CLIP (Contrastive Language Im-
age Pre-Training) and LASER (Language Agnos-
tic SEntence Representations), LaBSE (Language
agnostic BERT Sentence Embedding) were used
to extract features from the image and text. The
paper concluded that multimodel architectures out-
performed unimodal architecture. The multimodal,
concatenated textual features (CLIP, LASER, and
LaBSE) and visual features (CLIP) was the best
performing model with AUROC of 0.96 and 0.97

Figure 1: Training data distribution. It can be seen that
the positive and negative classes are in equal propor-
tions.

for task A and task B, respectively.
(Guest et al., 2021) introduced a taxonomi-

cal dataset of 6,383 samples from Reddit. The
dataset has a three-level taxonomy which makes
this dataset very different from what already ex-
ists. The first level is a binary classification be-
tween misogynistic content and non-misogynistic
content. The second level corresponds to the
subtypes of misogynistic and non-misogynistic
content. Misogynistic content categories include
misogynistic pejoratives, misogynistic treatment,
misogynistic derogation and gendered personal at-
tacks against women. Non-misogynistic content
categories include counter speech against misog-
yny, non-misogynistic personal attacks and None
of the categories. In the third level, additional flags
for some of the second-level categories have been
defined. BERT based models were trained on the
dataset to achieve a test accuracy of 0.93.

3 Dataset

The dataset provided for the competition (Fersini
et al., 2022) consisted of images of memes and
OCR extracted text and labels for both subtask A
and B. For Subtask A, the binary label of misogy-
nous is given; for Subtask B, four labels were given:
they are shaming, stereotype, objectification and
violence, each of them containing binary values 0
or 1. The provided dataset contains 10,000 training
images, 100 validation images and 1000 images for
test set submission. The training dataset was ran-
domly shuffled and split into five-folds, with each
fold containing 2000 images each. The first four
folds were used to train the model, and the last fold,
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along with the eval dataset provided, was chosen
as the validation dataset to improve the model per-
formance. The final number of samples in training,
validation and test set are reported in Table 1. The
Data distribution is given in Figure 1.

4 Preprocessing

Since the text was extracted from the memes using
OCR tools, much noise in the text had to be cleaned
manually. First, all internet links, stopwords and
Twitter user handles were removed from the text.
Then, the text was lemmatized using a word-net
based lemmatizer. The text truncation length was
set to 256. An interesting observation in the dataset
was that memes that were not misogynistic in na-
ture did belong to the other four classes. So, it was
evident that a meme might not be misogynistic yet
belong to any of the other subcategories.

5 Methodology

5.1 Models
Since this topic was multimodal in nature, we fine-
tuned multiple text-based models and image-based
models to handle this task. Convolutional Neu-
ral Networks (CNNs) excel in image classification
challenges due to their intrinsic spatial inductive
bias. CNNs have been leading the computer vision
research arena for the last two decades due to their
superior spatial comprehension ability. The CNN
based image models chosen for this task are: Incep-
tionV3 (Szegedy et al., 2015) and EfficientNetB7
(Tan and Le, 2020) from the TensorFlow library.
The BERT (Devlin et al., 2019) model was used
as the text feature extraction backbone. We also
tried finetuning CLIP (Radford et al., 2021) for
this task, as it was trained in a multimodal fashion.
For both CLIP and other multimodal models we
added a fully connected layer with softmax for clas-
sification.Another approach was to extract a set of
embeddings from State-of-the-Art Text and Image
models and classify the features using Support Vec-
tor Machines (SVMs). The models selected for this
approach were: XLM-RoBERTa (Conneau et al.,
2020), DistilBERT(Sanh et al., 2020), ResNext
(Xie et al., 2017) and Data-efficient Image Trans-
former (Touvron et al., 2021).

5.2 Experiment Setup
We implement our multimodal training in Ten-
sorFlow using Tensor Processing Units (TPUs)
offered by Google Colab for training. TPUs

Split No. of Samples
Training 8,000
Validation 2,100
Test 1,000

Table 1: Dataset Split

greatly shortened the time required to conduct
numerous tests and hyper-parameter optimization.
All the photos were resized to 256x256. The
TensorFlow version of the BERT and CLIP
models from the transformers library was used. A
CUDA-accelerated implementation of SVM from
the cuML library created by NVIDIA was used in
the SVM training.

Image Augmentation methods Typically,
CNNs are trained using millions of images to
attain good accuracy. However, since the number
of photos available in the dataset was less in
nature, image augmentation methods were added
to generate synthetic augmented images and thus
boost the amount of data utilized to train the model.
This ensures that the model better generalizes to
the patterns present in the image modality. We
employ (i) random resizing, (ii) random cropping,
(iii) random horizontal flipping and (iv) random
vertical flipping as the augmentation methods.

The SVMs were trained using a single K80
GPU provided by Google Colab.

5.3 Multimodal Training

The Multimodal training illustrated in this section
follows the procedure shown in Figure 2. The
model using InceptionV3 and BERT backbone is
termed as Model A, EfficientNet B7 and BERT as
Model B, CLIP Image and CLIP Text Backbone
as Model C. Models A and B use Adam optimizer
with a base learning rate of 1e-06 and a linear learn-
ing rate decay. Model C uses Adam optimizer with
a base learning rate of 6e-05 and a linear learn-
ing rate decay. Image preprocessing is done as
provided by the model authors. Text cleaning and
tokenization is performed for feeding to the text
model. All the models are trained for 50 epochs
with an Early Stopping callback to terminate the
training when the model does not learn any dis-
criminatory features and/or overfits to the training
set. A fully connected layer is added at the end to
perform classification.
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Figure 2: An overview of the multimodal training approach. Late fusion is adopted for effective classification.

5.4 SVM Training

In the multimodal training approach, complete
models were finetuned for classification. In this
approach, the pre-trained image and text models
are used as feature extractors alone, and the fea-
tures are supplied to SVMs for classification. Since
the time complexity of training SVMs increases
quadratically with respect to the available data,
when the data becomes higher than tens of thou-
sands of samples, it practically becomes impossible
to train SVMs on CPUs. Since there is a significant
amount of data in the training set, SVMs acceler-
ated using CUDA from the cuML library were uti-
lized for training the SVMs. Due to the highly par-
allel nature of GPU computation, the time required
to train the SVM is reduced to seconds. Since SVM
is a binary classifier, the multiclass classification
problem is broken down into smaller binary classi-
fication problems. Thus, 5 SVMs are employed for
classification.

6 Results and Discussion

The Test set results are reported in Table 2. Finetun-
ing the CLIP model (Model C) gave results worse
than the baseline findings provided by the task au-
thors. So, Model C is not used when building
the ensemble. Model A, Model B and SVM re-
sults exceed the baseline results by a good margin.
This also illustrates that finetuning the models on a
downstream task helped boost the accuracy, unlike
the case of SVM where it was trained to classify
using features extracted by a pre-trained network.

Model Task A Task B
Baseline 0.6500 0.6210
Model A 0.6893 0.6774
Model B 0.7005 0.6823
Model C 0.6537 0.5937
SVM 0.6760 0.6447
Ensemble 0.7182 0.6949

Table 2: Test Set Results

7 Conclusion

Thus we illustrate the system developed by us
for SemEval-2022 Task 5: Multimedia Automatic
Misogyny Identification. We compare multimodal
finetuning vs classification of pre-trained network
feature extraction. We have also discussed various
methods adopted to train such models and also the
data preprocessing done. We show the potential of
employing such a model in real-world use cases.
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Abstract

This paper describes our system used in the
SemEval-2022 Task 5: Multimedia Automatic
Misogyny Identification (MAMI) . Multimedia
automatic misogyny recognition consists of the
identification of misogynous memes, taking ad-
vantage of both text and images as sources of
information. The task will be organized around
two main subtasks: Task A is a binary classi-
fication task, which should be identified either
as misogynous or not misogynous. Task B is
a multi-label classification task, in which the
types of misogyny should be identified in poten-
tial overlapping categories, such as stereotype,
shaming, objectification, and violence. In this
paper, we proposed a system based on multi-
task learning for multi-modal misogynous de-
tection in memes. Our system combined image
features with text features to train a multi-label
classification. The prediction results were ob-
tained by the simple weighted average method
of the results with different fusion models, and
the results of Task A were corrected by Task B.
Our system achieves a test accuracy of 0.755 on
Task A (ranking 3rd on the final leaderboard)
and the accuracy of 0.731 on Task B (ranking
1st on the final leaderboard).

1 Introduction

In the era of mass online communication, more
and more people like to share their thoughts on
social media platforms. Social media platforms
provide users with the ability to express themselves
freely.However, it has also led to a rise in cyber
hate, such as bullying, sarcasm, and misogyny, on
the internet. A study has shown that women have a
strong presence online, particularly in image-based
social media such as Twitter and Instagram: 78%
of women use social media multiple times per day
compared to 65% of men. The Web has opened up
a whole new world of opportunities for women, but
systematic inequality and discrimination in the real
world are also found in online spaces in the form of

offensive content against them. Now that we live
in a world where everything is connected through
social media, hate speech against women used to be
limited to a specific place or time. There’s no need
to wait for a specific time or place. All you have
to do is type a few keys on the keyboard. Because
people on big social media sites make millions of
posts every day, it is not possible to manually check
all misogynistic posts. To help human curators, it
is important to make algorithms that can tell when
users post inappropriate content.

Memes are one of the most popular ways to com-
municate on social media platforms. A meme is
essentially an image characterized by a pictorial
content with an overlaying text a posteriori intro-
duced by human, with the main goal of being funny
and/or ironic. Most of them are made to be funny,
but in a short time, people started to use them as a
form of hate against women, which led to sexist and
aggressive messages in online environments that
made the sexual stereotypes and gender inequality
in the real world even worse. Misogyny is a type
of offensive speech directed at women. It is com-
mon on all social media platforms and is becoming
more and more of a problem. Previous work on au-
tomatic misogyny detection mostly focused on text
mode, and they came up with a bunch of supervised
methods, like traditional machine learning methods
with lexical features and deep learning methods. It
can’t be certain, though, if memes are misogynistic
if only text mode is used to detect them. Memes
are intuitively important for automatic misogyny
identification tasks.

In this paper, we describe a system that we sub-
mitted for detecting misogynous memes. More
specifically, we introduce an ensemble model that
uses a multi-task learning mechanism based on
multi-modal inputs (image information and text
information). In our system, image feature repre-
sentation was extracted by the pre-trained model of
ConvNeXt, and text feature representation was ex-
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tracted by different pre-trained models (deberta-v3-
large and roberta-large model). The two features
then undergo representation fusion, where they are
transformed into reconstructed representation vec-
tors and pumped into a classification layer to yield
the final result. Finally, a modality fusion layer
performs a weighted average on the fusion results,
which results in different text and image features,
and the threshold of the final results is adjusted.

2 Background

Many researches worked on identification misog-
ynous in texts. Earlier methods extract carefully
engineered discrete features from texts, including
n-grams, keyword’s sentiment, punctuations, emoti-
cons, etc(Bouazizi and Ohtsuki, 2015), (Ptácek
et al., 2014). Recently, researchers have used the
powerful technology of deep learning to obtain a
more accurate semantic representation of twitter
text, including CNN (Convolutional Neural Net-
work), LSTM (Long Short Term Memory) and
pre-trained model, etc. Shushkevich and Cardiff
(2018) proposed a technique based on combining
several simpler classifiers into a more complex
blended model. The model considers the prob-
ability of classes calculated by simpler models
(Logistic Regression, Naive Bayes, and Support
Vector Machines - SVM) . Another method from
Liu et al. (2018) was proposed, which three clas-
sifiers trained by using SVM with a linear kernel,
Random Forests (RF) and Gradient Boosted Trees
(GBT). In the testing stage, the same way of text
pre-processing and feature extraction is applied to
test instances separately, and each pair of two out of
the three trained classifiers (SVM+RF, SVM+GBT
and RF+GBT) are fused by combining the proba-
bilities for each class by averaging.

The primary driver was the renaissance of neu-
ral networks, particularly convolutional neural net-
works (ConvNets). The introduction of AlexNet
(Krizhevsky et al., 2017) precipitated the "Ima-
geNet moment", ushering in a new era of com-
puter vision. Since then, this field has developed
rapidly. Representative ConvNets like VGGNet
(Simonyan and Zisserman, 2015), ResNe(X)t (He
et al., 2016), DenseNet (Huang et al., 2017), Mo-
bileNet (Howard et al., 2017) and RegNet focused
on different aspects of accuracy, efficiency and
scalability, and popularized many useful design
principles. However, the introduction of Visual
Transformer (VIT) completely changed the land-

scape of network architecture design, which soon
replaced ConvNets and became state-of-the-art im-
age classification model. Although the effect of
swin transformer is much better than ResNet on
the premise of the same size. However, due to the
shift operation, it is difficult to design different net-
works for different sizes of inputs and restart train-
ing. And like Detection Transformer (DETR), the
convergence is too slow when training. This year,
researchers from Facebook AI Research (FAIR)
and UC Berkeley reexamined the design space and
tested the limits that pure convnet can reach, which
shows that the performance of convolutional neural
network is no less than that of visual transformer.
This series of pure convnet models is named Con-
vNeXt. It is constructed entirely from standard
convnet modules and competes with transformers
in terms of accuracy and scalability.

However, little has been revealed by far on how
to effectively combine textual and image informa-
tion to automatic misogyny identification of memes.
Schifanella et al. (2016) simply concatenate manu-
ally designed features or deep learning based fea-
tures of texts and images to make prediction with
two modalities. Cai et al. (2019) proposed a hierar-
chical fusion model to deeply fuse three modalities.
Different from there works, We proposed a multi-
task learning and multi-model.

3 System overview

Figure 1 shows the architecture of our proposed.
In this work, we treat text and image classification
tasks as two models. Image features are mined us-
ing a fine-tuned image classification model based
on ConvNeXt. Text features are extracted using a
fine-tuned sentence embedding based on the pre-
trained RoBERTa model. Image features and text
features are fused by direct splicing. A classifica-
tion layer is connected to the fused model to obtain
the category probability of memes. Additionally,
we create another fused model that adopts the pre-
trained model DeBERTa instead of RoBERTa for
text feature exaction progress. Our final submitted
labels are voted on by the results inferred by these
two proposed models (ConvNeXt + RoBERTa and
ConvNeXt + DeBERTa). The threshold value se-
lected for the weighted voting method is 0.405.
The classification label returns 1 when the classifi-
cation probability is greater than 0.405, otherwise
it returns 0.

556



Figure 1: Overview of our proposed model

3.1 Image Feature Representation

In this work, we extracted image feature represen-
tation based on an image classification model of
ConvNeXt, which trained a baseline model with
the Vision Transformer training procedure. Ad-
ditionally, ConvNeXt (Liu et al., 2022) applied a
series of design decisions which are summarized
as 1) macro design, 2) ResNeXt, 3) inverted bottle-
neck, 4) large kernel size, and 5) various layer-wise
micro designs. In macro design, ConvNeXt ad-
justs the number of blocks in each stage and adopts
depth-wise convolution. And in micro design, Con-
vNeXt used fewer activation functions, replacing
ReLU with GELU and fewer normalization lay-
ers, substituting Batch Normalization (BN) with
Layer Normalization (LN), etc. It is worth mention-
ing that ConvNeXt used data augmentation tech-
niques such as Adamw optimizer, Mixup, Cutmix,
RandAugment, Random Erasing, and regulariza-
tion schemes including Stochastic Depth and Label
Smoothing. This was of great help in improving
the performance of the model.

3.2 Text Feature Representation

Different pre-trained modals (RoBERTa and De-
BERTa) was used as the text feature representation
extractor.

RoBERTa - RoBERTa(Liu et al., 2019) is es-
sentially a BERT model with optimal parameters.
Compared with BERT model, it used more training
data and larger batch size to training longer time.
In addition, RoBERTa was trained with dynamic
masking instead of static masking, and without
NSP loss.

DeBERTa - DeBERTa(He et al., 2021)is a new
network architecture proposed by Microsoft. It
makes the BERT and RoBERTa models better by
using two new techniques. First, the disentangled
attention mechanism is applied to represent each
word by two vectors, which show their content and
relative positions. The attention weights between
the word content and position are calculated by
disentangled matrices, respectively. Another thing
that helps with model pre-training is an "enhanced
mask decoder", which adopts the absolute position
to predict the masked tokens. In addition, a new
virtual adversarial training method is used for fine-
tuning to improve models’ generalization.
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Our system used a series of training techniques.
For example, since the general language informa-
tion and context information obtained by the lower
self-attention layer are limited, with the continuous
superposition of attention layers, each layer can
obtain more language information and context in-
formation when encoding. When approaching the
last layer, the pre-trained model starts to adjust its
embedding information to adapt to different tasks
based on different fine-tuning tasks. Therefore, our
system set different learning rates in the network
to improve the performance of the model. Espe-
cially, we set lower learning rates for bottom layers
and higher learning rates for top layers. Mean-
while, our system decayed the learning rate with
a cosine annealing (Loshchilov and Hutter, 2017)
for each batch to improve its overall performance
when training deep neural networks.

3.3 Modality Fusion
Multi-modal feature fusion is a useful technique for
improving performance in a variety of tasks. Ac-
cording to the order of fusion and prediction, it is di-
vided into early fusion and late fusion. Early fusion
is to fuse features before the training model, such
as concatenate, add, TFN, MFN, LFN, etc. Late
fusion is the fusion of results of different modal pre-
dictions, such as maximum fusion, average fusion,
etc.

In this scheme, we tried to use different fusion
methods for multi-modal fusion, including concate-
nate, TFN, etc., but finally found that the effect of
directly concatenating image features and text fea-
tures is the best method. Therefore, we concatenate
the image features and text features into the fully-
connected layer, and then get the fusion features
through the normalization layer and multi-sample
dropout layer.

3.4 Classification layer
In this work, our system used a two-layer fully-
connected neural network as our classification layer.
The activation functions for the hidden layer and
the output layer are the ReLu and Sigmoid func-
tions, respectively. The loss function is a BCE
loss. In addition, we also tried to use SVM as the
classification layer, but the performance was not
effective.

3.5 Model Fusion
Our system used different pre-trained models to
extract text features (RoBERTa and DeBERTa). Af-

ter fusing image features, we trained a multi-label
classification model to obtain the probability value
of each category (misogyny, stereotype, shading,
objective, and violence). We used weighted voting
to fuse the results with two fusion models (Con-
vNeXt + RoBERTa, and ConvNeXt + DeBERTa).
The threshold value selected for the weighted vot-
ing method is 0.405 (the classification label returns
1 when the classification probability is greater than
0.405, otherwise it returns 0). Through analysis, it
is found that when "shaming", "stereotype", "ob-
jectification", and "violence" are positive samples,
the "misogynous" must also be positive. In order to
improve the results of Task A, the prediction results
of "misogynous" are corrected by the prediction re-
sults of "shaming", "stereotype", "objectification"
and "violence". Experiments show that it is a sig-
nificant improvement over the result of Task A.
Moreover, we also tried to use the results of "sham-
ing", "stereotype", "objectification" and "violence"
to correct the results of "misogynous", but found
the effect was not satisfying.

4 Experimental setup

4.1 Dataset

The datasets for the MAMI competition(Fersini
et al., 2022) are memes collected from the web and
manually annotated via crowd sourcing platforms.
As summarized in Table 1, the organizers provided
10,000 memes (in jpg format) and a csv file for the
training set and 1,000 memes (in jpg format) and a
csv file for the testing set. For both Subtask A and
B, the memes are released as jpg images.

misogynous: a binary value (1/0) indicating if
the meme is misogynous or not. A meme is misog-
ynous if it conceptually describes an offensive, sex-
ist or hateful scene (weak or strong, implicitly or
explicitly) having as target a woman or a group of
women.

shaming: a binary value (1/0) indicating if the
meme is denoting shaming. A shaming meme aims
at insulting and offending women because of some
characteristics of the body.

stereotype: a binary value (1/0) indicating if the
meme is denoting stereotype. A stereotyping meme
aims at representing a fixed idea or set of (physi-
cally or ideologically) characteristics of women.

objectification: a binary value (1/0) indicating
if the meme is denoting objectification. A meme
that describes objectification represents a woman
like an object through over-appreciation of physical
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Task A Training Testing Task B Training Testing

Misogynous 5000 500

stereotype 1271 146
shaming 2810 350

objectification 2201 348
violence 953 153

No Misogynous 5000 500

stereotype 3 0
shaming 0 0

objectification 1 0
violence 0 0

Total 10000 1000 Total 7239 997

Table 1: Dataset label distribution

appeal (sexual objectification) or depicting woman
as an object (human being without any value as a
person).

violence: a binary value (1/0) indicating if the
meme is denoting violence. A violent meme de-
scribes physical or verbal violence represented by
textual or visual content.

The label distribution related to the training and
testing datasets is reported in Table1. While the
distribution of labels related to the field of misog-
ynous is balanced (for both testing and training
datasets), the classes related to the other fields are
quite unbalanced. Furthermore, when memes are
labeled as "No Misogynous," the classes of "sham-
ing," "stereotype," "objectification," and "violence"
are found to be positive in testing datasets. How-
ever, there is some error data in training datasets
where memes are identified as "No Misogynous".

4.2 Training Details
Image datasets. The public pre-trained model of
ConvNeXt_base_22k_1k_384 is adopted in the pro-
posed model. Preprocess the image data through
random horizontal and vertical clipping, Random
Affine, ColorJitter, Normalize, etc. It is worth men-
tioning that we set the image size of the training
datasets to 384 x 384 and the image size of the ver-
ification and testing datasets to (384 + 32) x (384
+ 32), which can improve the generalization of the
model.

Text datasets. The pre-trained model of deberta-
v3-large and roberta-large are adopted for analyz-
ing the text. Models download from HuggingFace1

are directly used in our model.
Learning rate initialization. Our system sets

different learning rates for each layer of text pre-
trained model. In particular, the layers of the pre-

1https://huggingface.co/models

trained model are divided into three groups with
distinct hyper parameters. The learning rates for
layer-0 to layer-7 were set to 1e-5/2.6, while layer-8
to layer-15 were set to 1e-5, and layer-16 to layer-
23 were set to 1e-5 * 2.6. Setting different learn-
ing rates for different layers can make the training
more effective and improve the performance of the
model.

Learning rate decay. Our system used a
method of cosine annealing to decay the learning
rates for each batch to avoid falling into a local
optimal solution.

multi sample dropout. The four samples
dropout were used in our system after fusing the
image features and text features. Experiments show
that the performance and effects have been signifi-
cantly improved.

Optimization. Our system applied the AdamW
optimizer to optimize the loss function.

Loss Function. Our system applied the BCE
loss for multi-label binary classification.

Evaluation Function. Due to our mistakes, we
used the incorrect evaluation criteria, which used
macro-average F1-Measure instead of weighted-
average F1-Measure to train the multi-label classi-
fication model. Through offline experiments, we
discovered that using the correct evaluation criteria
training can result in better and more stable results.

5 Results

In this section, the results of the experiments for
our runs will be discussed and compared to the
results published in Table 2. We try to only use
image or text features for training through different
pre-trained models, including Swin Transformers,
ConvNeXt, RoBERTa, and DeBERTa. In addition,
we also used some other training techniques, such
as training a multi-label classification model with
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Figure 2: Learning rate initialization

five or four classes, using different classification
layers (SVM or full-connected layer), using differ-
ent fusion methods (concat or LFN), and adjusting
the threshold value of fusion prediction results, etc.
The specific result of the analysis is shown in Table
2.

V1: Training a image classifica-
tion model based on a fine-tuned im-
age classification model grounded on
swin_large_patch4_window12_384_22k.

V2: Training an image classification model
based on a fine-tuned image classification model
grounded on ConvNeXt_base_22k_1k_384.

V3: Training a text classification model based
on a pre-trained model of roberta-large.

V4: Training a text classification model based
on a pre-trained model of deberta-v3-large.

V5: Training a binary classification model for
Task A and a multi-label classification model for
Task B using four classes (stereotype, humiliation,
objectification and violence) after fusing the image
features by ConvNeXt_base_22k_1k_384 and the
text features by roberta-large, respectively.

V6: Training a multi-label classification model
that uses four classes (stereotype, humiliation, ob-
jectification and violence) after fusing the image
features by ConvNeXt_base_22k_1k_384 and text
features by roberta-large (the misogynous results
are obtained by the multi-label predictions).

V7: The only difference between this scheme
and V6 is that LFN uses feature fusion rather than
simply concatenating.

V8: This scheme is the same as the V6. The
only difference is that the training labels contain
misogynous content (five classes of misogynous,
stereotype, humiliation, objectification, and vio-
lence).

V9: This scheme is the same as V6. The only
difference is that the text features extractor was

replaced by deberta-v3-large.
V10: In this scheme, the results of V8 and V9

are fused by a weighted average approach with a
threshold set to 0.5.

V11: This scheme is the same as in v10. The
only difference is that the threshold is adjusted to
0.4.

V12: This scheme is the same as in v10. The
only difference is that the threshold is adjusted to
0.405 (Final results of the leaderboard).

V13: This scheme is the same as in v10. The
only difference is that the threshold is adjusted to
0.403 (results not submitted).

Through the experiment, we found the follow-
ing conclusions:

• The effect of Con-
vNeXt_base_22k_1k_384 is better than
swin_large_patch4_window12_384_22k in
our system.

• The effect of multi-modal (text and image) is
better than single-modal (text or image) in our
system.

• In our system, the effect of multi-task learning
is better than individual training.

• According to the results of stereotype, humili-
ation, objectification and violence to correct
misogynous results have a significant improve-
ment effect in our system.

• Adjusting the prediction results also has an
improvement for Task B in our system.

• The simple concatenate method is better than
the complex feature fusion method in our sys-
tem.
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Version A Model Task A Task B
V1 swin_large_patch4_window12_384_22k 0.6135 0.5965
V2 ConvNeXt_base_22k_1k_384 0.6431 0.6229
V3 roberta-large 0.656 0.6389
V4 deberta-v3-large 0.6947 0.649
V5 ConvNeXt + RoBERTa + TaskA + TaskB + 4 categories 0.7053 0.7136
V6 ConvNeXt + RoBERTa + TaskB/A + 4 categories 0.7514 0.7136
V7 ConvNeXt + RoBERTa + TaskB/A + 4 categories + LFN 0.7464 0.704
V8 ConvNeXt + RoBERTa + TaskB/A + 5 categories 0.7643 0.7129
V9 ConvNeXt + DeBERTa + TaskB/A + 5 categories 0.7727 0.7240
V10 v8+v9+0.5 0.7785 0.719
V11 v8+v9+0.4 0.7554 0.728
V12 v8+v9+0.405 0.7566 0.7307
V13 v8+v9+0.403 0.7569 0.7319

Table 2: Experimental results of task a and Task B

6 Conclusion

In this paper, we proposed a system to make full
use of two modes (image and text) for solving the
challenging multi-mode misogynous meme detec-
tion task. We extracted the image features and
text features using different pre-trained models and
weighted averaged the results after fusing the fea-
tures of image and text. The system performs
well in identifying misogynistic memes, achiev-
ing 77.85% percent accuracy on TaskA and 73.1%
percent accuracy on TaskB.
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Abstract

This paper describes our submission for task
5 Multimedia Automatic Misogyny Identifi-
cation (MAMI) at SemEval-2022. The task
is designed to detect and classify misogy-
nous memes. To utilize both textual and vi-
sual information presented in a meme, we
investigate several of the most recent visual-
language transformer-based multimodal mod-
els and choose ERNIE-ViL-Large as our base
model. For subtask A, with observations of
models’ overfitting on unimodal patterns, strate-
gies are proposed to mitigate problems of bi-
ased words and template memes. For subtask
B, we transform this multi-label problem into
a multi-class one and experiment with over-
sampling and complementary techniques. Our
approach places 2nd for subtask A and 5th for
subtask B in this competition.

1 Introduction

Online misogynous speech has been a worldwide
phenomenon spread widely across social media
platforms where women are increasingly subjected
to offensive content. It has been shown that women
are twice as likely as men to encounter online sex-
ual harassment and gender-based violence (Dug-
gan, 2017).

The problem with misogyny detection is that
it requires context and external knowledge to un-
derstand online speech, which sometimes can be
very short and contain subtle meaning (Kiela et al.,
2020). Since memes are getting popular as commu-
nication tools on social media platforms, misogy-
nous memes have the potential to affect everyone in
our society. Automatic multimodal internet memes
identification becomes a new challenging type of
misogyny detection task that can only be solved
by joint reasoning and understanding of visual and
textual information (Zhu, 2020).

The proposed task Multimedia Automatic
Misogyny Identification (MAMI) (Fersini et al.,

2022) at SemEval-2022 requires participants to
identify misogynous memes (subtask A) and clas-
sify them as certain overlapping categories: stereo-
type, shaming, objectification, and violence (sub-
task B).

This paper describes the system developed by
the DD-TIG team for SemEval-2022 Task 5 MAMI.
This work contributes to the following: for subtask
A, solutions to biased words and template memes
are proposed to mitigate the effects of overfitting
in unimodal information. We also utilize ensem-
ble learning and external knowledge source like
Perspective API to boost the performance of our
system. For subtask B, we transform the multi-
label classification problem into a multi-class clas-
sification problem and reach a better result with
oversampling and complementary strategy.

2 Background

2.1 Misogynous memes dataset

MAMI task provides participants with a misogy-
nous memes dataset that contains meme images,
the transcriptions of texts on memes, and label
annotations. For the training set and test set, misog-
ynous and non-misogynous labels are balanced
while misogynous category labels are imbalanced
(see Table 1).

Label Trial Training Test
Misogynous 44 5000 500
Non-misogynous 57 5000 500
Shaming 0 1274 146
Stereotype 34 2810 350
Objectification 2 2202 348
Violence 9 953 153

Table 1: Summary of the misogynous memes dataset
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Figure 1: The overall architecture of our proposed system

2.2 Vision and language task

Multimodal misogynous memes identification is
a vision and language task. Current state-of-the-
art Vision-Language machine learning models are
based on the transformer architecture (Vaswani
et al., 2017). Among these models, there are
two prevalent approaches: single-stream and dual-
stream. In single-stream models, such as Visu-
alBERT (Li et al., 2019), UNITER (Chen et al.,
2020), OSCAR (Li et al., 2020), image and text
features are concatenated and inputted to a standard
BERT architecture, which comes under the cate-
gory of early fusion. In dual-stream models, such
as LXMERT (Tan and Bansal, 2019), ERNIE-ViL
(Yu et al., 2020a), DeVLBERT (Zhang et al., 2020),
VilBERT (Lu et al., 2019), the image and text fea-
tures are first sent to two independent transformer
layers and then into cross-modal transformer lay-
ers. Features are combined towards the end of the
model as the category of late fusion.

2.3 Vilio: Hateful memes detection
framework

The Hateful Memes Challenge (Kiela et al., 2020)
is proposed by Facebook AI to leverage machine
learning models to solve hateful memes detection
problem. Vilio1 (Muennighoff, 2020) is a code
base of 12 different vision+language models and
applied to the Hateful Memes Dataset. In our work,
we conducted our baseline research on the code of
Vilio.

1https://github.com/Muennighoff/vilio

3 System overview

3.1 Preparation

We use the detectron22 framework to extract Im-
age features from memes. Detectron2 is provided
by Facebook AI with state-of-the-art detection and
segmentation algorithms. Specifically, 50 boxes of
2048 dimensions region-based image features are
extracted for every meme by Mask-RCNN model.
Together with the meme text, which has been ex-
tracted using optical character recognition (OCR)
and provided in the dataset, features are then fed
into the models.

3.2 Vision and language models

We first choose four different base models of VL
transformer architectures, namely: VisualBERT,
UNITER, OSCAR, and ERNIE-Vil.

We carry out continual pretraining on our dataset
with the idea of domain adaptation to reduce the dis-
tribution gap between the pretraining dataset and
our misogynous memes dataset. MLM pretrain-
ing task is taken on pretraining VisualBERT-large,
UNITER-large, and OSCAR-large model. How-
ever, this does not produce significant performance
improvements on our task during the finetuning
stage.

Through comparison of results, we found that
ERNIE-Vil-large achieves the best performance.
In the following steps, we only use the results of
ERNIE-Vil-large models.

2https://github.com/facebookresearch/
detectron2
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3.3 Strategy for subtask A

3.3.1 Biased words masking
Former research has shown that misogyny detec-
tion models can be affected by an unintended bias
(Nozza et al., 2019). Some sensitive words, called
identity terms, are associated with unreasonably
high misogynous scores since they are frequently
used in misogynous texts. For example, we observe
that the term kitchen is frequently used as a stereo-
typical word against women in our data. Thus, our
models tend to associate some non-misogynous
texts containing this word with an unreasonably
high misogynous score. This situation is known as
unintended bias, in which models learn usual asso-
ciations between words (commonly called identity
terms) which causes them to classify content as
misogynous just because it contains one identity
word (Godoy and Tommasel, 2021).

Through error analysis on the results of models
in the practice stage, we manually collect a list
of biased words, including synonyms of woman,
dirty words, and controversial words related to fem-
inism. The obtained list of words has been then
extended by including their plural form. Refer to
Appendix A for the words list.

We propose a novel strategy of biased words
masking to mitigate the effects of unintended bias,
which also can be regarded as a means of data aug-
mentation. Specifically, when training models, we
first use NLTK (Loper and Bird, 2002) to tokenize
texts Ti and lemmatize words wj ∈ Ti and get
T̂i = {w1, w2, w3, · · · , wl}. Then, for each word
wj in the input text T̂i , with the biased words set
A = {w1, w2, w3, · · · , wk}, if wj ∈ A, it may be
masked with a mask token [mask] by a 20 percent
probability. We also take strategy with dynamic
masking where we generate the masking pattern
every time we feed a sequence to the model.

3.3.2 Image captioning
Visual and textual information is semantically
aligned in some multimodal tasks, like image-text
matching, image-text retrieval, VQA (Yu et al.,
2020b). However, for some misogynous memes,
image and text are weakly aligned. Thus, there
is a semantic gap between visual and textual in-
formation. Therefore, we take the strategy of im-
age captioning proposed by previous studies (Das
et al., 2020) to enhance model’s understanding
of visual components. Memes are sent into an
image caption model (Xu et al., 2015), which is

based on encoder-decoder architecture. This model
uses the ResNet-101 as encoder and LSTM as de-
coder and takes the attention mechanism and beam
search when decoding. As a result, this image
caption model generates additional descriptions
Ta = {w1, w2, w3, · · · , wi} for visual contents of
each meme in the training set; the original text
To and generated text Ta are concatenated with a
separate token [sep].

3.3.3 Templates memes
Through examination of images in the misogyny
memes dataset, we notice that many memes are
generated by tools of online memes websites. For
example, in IMGflip 3, users can choose a meme
template from thousands of meme templates and
just input their text to caption this template and
then get a new meme. In the following part, we
refer to memes generated by templates as template
memes.

In our training set, more than 20 percent of
memes are template memes. Some misogynous
memes and non-misogynous memes are generated
with the same templates and different texts. This
may raise a problem that our model associates a
high misogynous score or low misogynous score
to certain meme templates that actually serve as
the medium and contain no misogynous meaning,
especially when there is only a few misogynous
and non-misogynous sample based on certain tem-
plates in the training set. We propose two solutions
to mitigate this problem.

Additional template memes: We collect 1,800
memes from memes website. These memes are ex-
amples of meme templates and contain no misog-
ynous meaning. Therefore, these memes can be
used as the negative sample in our dataset. With-
out directly adding these memes into the training
set, we use our model to make inferences on these
memes and only add those false samples (about 90
memes) into the training set.

Templates substitution: we can use an image
retrieval model like pre-trained imageNet (Vedaldi
and Lenc, 2015) to match memes and templates
and find memes that are generated by templates.
There are more than 200 memes in the test set
are generated with templates. For those memes,
original texts and different background pictures
are combined to produce K new memes Ii =

3https://imgflip.com
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{I1, I2, I3, · · · , Ik}. The probability p̂ of a sam-
ple will be a combination of model’s inferential
result on the original meme Ia and new memes Ii
with a weighted average w.

p̂ =
pa + w ·∑k

j=1 pj

K + 1
(1)

3.3.4 Ensemble learning
The predicted results of our models can be vary-
ing since we take the above-mentioned strategy to
train different base models. Thus, we continue to
improve the whole system’s generalizability and
robustness with ensemble learning, where predic-
tions of multiple base models are combined with
the method of majority Voting (Velioglu and Rose,
2020). In particular, K (K=20) models are selected
for ensemble learning, and predictions are collected
from each of the models. The label of data is deter-
mined by the majority voted class. We hypothesize
that some models show a high recall and low pre-
cision and vice versa. So a collection of models
may balance out individual weaknesses to achieve
better performance than any single model used in
the ensemble.

ŷ =

∑K
j=1 yj

K
(2)

3.3.5 Perspective API
Perspective 4 is a free API that uses machine learn-
ing to identify toxic comments, making it easier
to host better conversations online. We use Per-
spective API to get a toxic score for the text of our
test data. Labels from the previous models’ output
and probabilities from Perspective API’s results are
linearly combined with simple linear regression.

3.4 Strategy for subtask B

3.4.1 Transforming a multi-label problem into
multi-class problems

A conventional way to solve a multi-label problem
is to transform it into binary classification prob-
lems where one binary classifier is independently
trained for each label. In machine learning imple-
mentation, each unit in the output layer uses the
sigmoid activation. This will predict a probability
of class membership for the label, a value between
0 and 1. Finally, the model would be fit with the
binary cross-entropy loss function. However, there
are two problems with this approach. On the one

4https://www.perspectiveapi.com

hand, it is troublesome to set an optimal threshold
for each label. On the other hand, it does not incor-
porate information about the relationships between
labels. For example, label ya may only occur by
itself; labels ya and yb may often occur together;
labels ya and yc may never occur together.

Since the number of labels in subtask B
is 4, which is relatively small, we transform
this multi-label problem into multi-class prob-
lems. Every possible combination of output labels
([0, 0, 0, 0], [1, 0, 0, 0], · · · ) will be taken as a class,
and the new space of the label set would be 24.

3.4.2 Over-sampling Technique

label Positive Negative
Shaming 12.74% 87.26%
Stereotype 28.10% 71.90%
Objectification 22.02% 77.98%
Violence 9.53% 90.47%

Table 2: Distribution of misogynous categories labels
in training set

In subtask B, as shown in table 2 , the number of
positive samples and negative samples in all misog-
ynous categories is widely imbalanced. Hence,
up-sampling of data is done using over-sampling
on the positive sample. Thus our new loss function
is defined as follows:

J = −
N∑

i=1

log pi · α (3)

α =

{
αneg yi = [0, 0, 0, 0]

αpos otherwise
(4)

where N is the size of training set; αpos and
αneg are the weights for the misogynous and non-
misogynous respectively such that αneg > αpos and
αneg + αpos = 1.

3.4.3 Combination with subtask A results
We train a binary-classification model for task A
and multi-class classification for task B separately.
Then, we will use the result of Model A to modify
the result of Model B, which means if sample Xi a
is predicted as ya = 0 or non-misogynous in Model
A, it would not belong to any misogynous category,
and its predicted label yb of Model B would be
discarded.

ŷ =

{
[0, 0, 0, 0] ya = 0

yb ya = 1
(5)
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4 Experimental setup

In our baseline approaches, VisualBERT-Large,
OSCAR-Large, and UNITER-Large provided by
Villo are trained for 5 epochs with a batch size
of 16. ERNIE-ViL-Large models provided by the
original author are trained for 5000 steps with a
batch size of 8. In our work, not much time was
spent on hyperparameter optimization, and since
we notice that there is not much difference when
training models with varying hyperparameter set-
tings and we focus more on other strategies. The
hyperparameters for finetuning ERNIE-ViL-Large
are presented in Appendix B.

5 Results & Discussion

5.1 Subtask A

Table 3 presents the results of our baseline ap-
proaches on the test set, where models are evalu-
ated using Accuracy and a macro-average F1-score,
while the latter one is the official metrics for system
evaluation in this competition.

Model Accuracy F1-score
Oscar-large 69.6 68.9
Uniter-large 69.2 68.4
VisualBERT-large 69.2 68.0
ERNIE-Vil-large 71.5 70.7

Table 3: The performance of base models on subtask A

ERNIE-Vil has been the STOA model on the
multimodal task leaderboard and also achieves
competitive performance on our task without any
other modification. It is also worth mentioning that
continual pretaining with MLM task is conducted
on Oscar, Uniter, and VisualBERT, but no improve-
ment is observed. Therefore, ERNIE-Vil is chosen
as our base model for further modification with
other strategies. Table 4 shows the results of bi-
ased word masking, image captioning, and adding
false positive samples of template memes into the
training set.

Biased word masking experiments have been
conducted several times, and the effectiveness is
shown by considerable improvement. It is noted
that we do not raise scores by only taking the Im-
age captioning technique, but F1-score has a slight
increase when image captioning is combined with
biased word masking. We hypothesize that im-
age captioning may add noise to our training data
since there is a gap between memes in misogynous

datasets and the image captioning model’s training
data. This intuition is confirmed after examining
the caption text generated by the Image caption-
ing model, which fails to detect several objects in
several images. After we add false-positive sam-
ples of template memes into the training set, the
performance of our model is boosted. It shows that
our model does associate certain normal memes
patterns with misogynous or non-misogynous at-
tributes, which can be regarded as biased images.

The results of ensemble learning, templates sub-
stitution, and perspective API are shown in Table
4. Ensemble learning obtains a significant improve-
ment where we use different models produced by
several times’ training of random biased words
masking. Since these models are trained with vary-
ing texts, we hypothesize their errors will be dif-
ferent, and therefore ensembling may lead to com-
plementary effects and help improve performance.
Templates substitution also shows the effectiveness,
and this is explained as we find models tend to as-
sociate template memes with a high misogynous
score, but a majority of them are negative. Perspec-
tive API can correct predicted results when sen-
tences contain other malicious words and phrases,
but our model does not meet the word or phrase in
the training set.

5.2 Subtask B
Table 5 presents the results of our system on the test
set for subtask B, where models are evaluated using
a weighted-average F1-score, which is the official
metric for system evaluation in this competition.

The performance of our model on subtask B
is notably improved after the results are modified
with the result in subtask A, which has reached a
relatively high accuracy score and can be benifical
to reduce the number of false positive samples.

5.3 Error analysis
A confusion matrix for subtask A (see Table 6) and
a classification report for subtask B (see Table 7)
are presented, which will be combined with some
bad cases to have both qualitative and quantitative
assessments on our system.

Misogynous Non-misogynous
Misogynous 328 46
Non-misogynous 172 454

Table 6: Confused matrix for subtask A

For subtask A, obviously, the problem with
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Model Accuracy F1-score
ERNIE-Vil-large 71.5 70.7
ERNIE-Vil-large + WM 72.8 72.1
ERNIE-Vil-large + IC 71.0 70.6
ERNIE-Vil-large + WM + IC 72.7 72.5
ERNIE-Vil-large + WM + IC + AD 73.8 73.7
ERNIE-Vil-large + WM + IC + AD + Emsembling 76.7 76.5
ERNIE-Vil-large + WM + IC + AD + Emsembling + TS 78.1 78.0
ERNIE-Vil-large + WM + IC + AD + Emsembling + TS + PA 79.4 79.3

Table 4: The performance of our systems on subtask A (WM is biased words masking. IC is image caption. AD is
addtional data of template memes. TS is template substitution. PA is the Perspective API.)

Model F1-score
ERNIE-Vil-large 70.8
ERNIE-Vil-large + Oversampling 71.3
ERNIE-Vil-large + Oversampling + PT 71.7
ERNIE-Vil-large + Oversampling + PT + RC 72.8

Table 5: The performance of our systems on subtask B (PT is problems transformation into multi-class classification.
RC is results combination with subtask A)

our system is that a considerable number of non-
misogynous samples, about 17.2 percent of total
and 34.4 percent of the negative sample, is mis-
classified as misogynous, as the error type false
positive. The goal of strategies like biased words
masking is to reduce the effects of certain patterns
in texts or images and prevent overfitting. Some
patterns still are regarded as crucial features of
misogyny by our models, but actually, they are
biased. Enlarging the size of our dataset may be
beneficial to deal with this problem.

The figure in Appendix C shows an example
labeled as non-misogynous in the dataset but pre-
dicted as misogynous by our model. As mentioned
in the previous part, the word kitchen frequently ap-
pears in the misogynous sample since misogynists
always hold the stereotype to associate women with
certain gender roles. We try to mitigate the bias by
biased word masking, but it still can not be solved.
Moreover, a girl in this image may be associated
with the text, but the image and text are not aligned
in fact.

label Precision Recall F1-score
Shaming 0.36 0.55 0.43
Stereotype 0.62 0.64 0.63
Objectification 0.69 0.70 0.69
Violence 0.64 0.55 0.59

Table 7: Classification report for subtask B

For subtask B, our model shows relatively poor
performance on the label shaming. According to
the definition of shaming provided by MAMI orga-
nizers, a shaming meme aims at insulting and of-
fending women because of some characteristics of
the body. There are two possible reasons to explain
this problem. First, we notice that there are some
female characters in memes generated by mocking
templates, and in truth, the texts on the memes are
not targeted towards the female characters in the
memes. Second, the definition of shaming is vague
and overlaps with other categories of misogyny.

Thus, there is the challenge of this competition:
the information from the image and text modali-
ties should not always be treated equally. Some-
times text information should be emphasized if this
meme is based on some templates. In multimodal
understanding and reasoning tasks, unimodal infor-
mation can be imbalanced.

6 Conclusion

In this paper, we have presented our work on Multi-
media Automatic Misogyny Identification (MAMI)
at SemEval-2022. Mainstream vision-language
models are applied on misogynous memes dataset
in the baseline approach. For subtask A, to better
utilize multimodel information and unimodal infor-
mation, we propose solutions to mitigate the effects
of biased words and templates memes. Ensemble
learning and external knowledge source like per-
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spective API are used to enhance the performance
of our system. For subtask B, training with over-
sampling strategy, we use a multi-class model to
solve this multi-label problem and gain improve-
ment from our subtask A model. In short, this task
could never be solved easily since it relies heav-
ily on the context, external knowledge, relations
between modalities.
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A Biased words list

bitch, bitches, clean, cooking, dish, equal, female,
females, feminist, feminists, fuck, fucking, gender,
genders, hooker, hookers, horny, house, housewife,
kitchen, mama, mom, moms, prostitute, prostitutes,
sex, sexism, sexual, single, wash
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B Hyperparameters setting

ERNIE-ViL-Large
Training steps 5000
Warm steps 500
Learning rate 1e-5
Learning rate decay 0.1
Batch size 8
Fusion method sum
Attention dropout 0.1
Dropout rate 0.5
Max seqence length 256
Optimizer AdamW

Table 8: Hyperparameters setting for finetuning ERNIE-
ViL-Large

C An example of bad cases

Figure 2: An example of bad cases
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Abstract

Research is progressing in a fast manner in
the field of offensive, hate speech, abusive and
sarcastic data. Tackling hate speech against
women is urgent and really needed to give re-
spect to the lady of our life. This paper de-
scribes the system used for identifying misog-
ynous content using images and text. The sys-
tem developed by the team TECHSSN uses
transformer models to detect the misogynous
content from text and Convolutional Neural
Network model for image data. Various mod-
els like BERT, ALBERT, XLNET and CNN
are explored and the combination of ALBERT
and CNN as an ensemble model provides bet-
ter results than the rest. This system was de-
veloped for the task 5 of the competition, Se-
mEval 2022.

1 Introduction

In our society, women are facing lot of challenges
in terms of education, employment, career and
life. Eventhough women are better off now-a-days,
there are not considered as equal to men in many
situations. With the invent and rapid usage of so-
cial media platforms, offensive images and texts
conveying several forms of hate against women
are transmitted and spread online in a fast manner.
Although opportunities for women have been in-
creased on the Internet, systematic inequality and
discrimination offline is continued in online in the
form of offensive contents through MEMEs. A
meme is essentially an image characterized by a
pictorial content with an overlaying text introduced
by human on it.

Most of the memes are created mainly for funni-
ness, still it is used for ironic purpose too. The task
5 by Fersini et al. (2022) in SemEval 2022 mainly
focused on identifying the misogynous memes us-
ing textual and image contents. There are two sub-
tasks in this. Subtask A is to categorize the memes
as misogynous or not misogynous. Subtask B is

to classify the misogynous memes into one of the
categories like stereotype, shaming, objectification
and violence.

2 Related Work

The survey on various techniques used for Auto-
matic Misogyny Identification (AMI) tasks hap-
pened in EVALITA 2018 and IBERALEVAL 2018
were discussed in detail by Shushkevich and
Cardiff (2019). Machine learning (SVM, Naive
Bayes, Logistic Regression) and deep learning tech-
niques (CNN, GRU, RNN, LSTM) are used and
achieved an accuracy of 90% in IBERALEVAL
task and 70% in EVALITA task.

García-Díaz et al. (2021) uses sentiment analy-
sis and social computing technologies with word
embeddings and linguistic features for AMI that
achieves better results than traditional machine
learning algorithms. Hate speech against women is
handled by Frenda et al. (2019). Pamungkas et al.
(2020) created models using RNN and BERT for
multilingual misogyny detection.

We have performed irony and offensive lan-
guage detection in earlier SemEval workshop tasks
Sivanaiah et al. (2021), Sivanaiah et al. (2020),
Sivanaiah et al. (2019) and Sivanaiah et al. (2018).
Various machine learning techniques like linear re-
gression, logistic regression, naive Bayes, Random
forest, Support Vector Machines and deep learn-
ing techniques like Recurrent Neural Networks,
Convolutional Neural Networks, Long Short Term
Memory Networks, BERT, ColBERT models are
used in the above tasks. BERT and ColBERT mod-
els perfomed better than other machine learning
and deep learning models.

3 System Overview

The proposed system uses the Transformer models
to classify the textual content of the memes and
Convolutional Neural Network (CNN) to classify
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Dataset Misogynous Shaming Stereotype Objectification Violence
1 0 1 0 1 0 1 0 1 0

Training (10000) 5000 5000 1271 3729 2810 2190 2201 2799 953 4047
Trial (100) 44 56 0 44 34 10 2 42 9 35
Test (1000) 500 500 146 354 350 150 348 152 153 347

Table 1: Data distribution

the visual content. The majority voting ensem-
ble classifier is used to predict the label for the
input sample using the output of textual and visual
content classifiers. The data is preprocessed to re-
move the unwanted information before building the
model. The architecture of the system is shown in
Figure 1.

Textual Data

Data Collection

Image Data

Transformer model CNN Model

Ensemble Prediction

Pre-processing Pre-processing

Figure 1: System Architecture

The steps can be summarized as follows:

1. Preprocess the text data and image data sepa-
rately

2. Separate the image data into folders according
to the label category

3. Setup the architecture of the transformer mod-
els

4. Train and evaluate the transformer models
with text data

5. Use CNN model to train and evaluate the im-
age data

6. Generate the class labels for the test data using
transformer model and CNN model

7. Combine the output of both the models using
majority voting ensemble classifier

3.1 Dataset

Organizers have provided the data with 10000,
100 and 1000 samples in training, trial and test-
ing datasets. The division of data into various la-
bels are shown in Table 1. Out of 10000 train-
ing data, 5000 belongs to misogynous class and
5000 belongs to non-misogynous class. Out of
5000 training misogynous data, 1271 belongs to
shaming category and 3729 to not-shaming cate-
gory. There are 2810 stereotype samples and 2190
non-stereotype samples in 5000 training misogy-
nous data. We have 2201 objectification and 2799
non-objectification samples in misogynous type in
training dataset. There are 953 violence and 4047
non-violence samples in misogynous training data.

3.2 Data Pre-processing

Data preprocessing is critical for the success of any
machine learning solution to remove the irregulari-
ties in the data. Normalization is done to flatten the
dimensions of data in textual form. The text data is
cleaned and processed to remove URLs, annotate
emojis, emoticons, convert uppercase to lowercase,
remove stopwords, remove special characters, re-
move accented characters, lemmatize text, and re-
move extra whitespace. The images are categorized
into their corresponding label folders for further
processing. Noise in the image data is removed
and converted into pixel values of size 128x128.

3.3 Classification with Transformer models

A transformer is a deep learning model that uses
self-attention with weights. Transformer models
are used in natural language processing and com-
puter vision. It uses encoder-decoder mechanism
to learn features from the sequential input data.
Encoder learns the relevant features in the input
and pass them to next layer. Decoder does the
opposite by taking the output of encoder and incor-
porate the contextual information to generate the
output sequence. Both encoder and decoder layer
uses attention mechanism to perform these opera-
tions. While Recurrent Neural Networks (RNN)
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process the data in the sequential order, transform-
ers does not require this. Bidirectional Encoder
Representations from Transformers (BERT) is a
popular model developed by Google for language
modelling (Devlin et al., 2018). Variants of BERT
like A Lite BERT (ALBERT) (Lan et al., 2019),
XLNET (Yang et al., 2019), Robustly optimized
BERT approach (ROBERTa) and COntextualized
Late interaction over BERT (ColBERT) are used to
perform the learning on text data. XLnet is an ex-
tension of the Transformer-XL model pre-trained
using an autoregressive method to learn bidirec-
tional contexts.

BERT model works in a better manner for sparse
data representations. Instead of training the model
from the base, we can take a pretrained model and
tune the model to suit our need. The drawback
of BERT model is that it generates many param-
eters for learning which makes the model com-
plex and time consuming. ALBERT model is a
lighter version of BERT that reduces the parame-
ters size without much reduction in performance.
ALBERT model uses the multi-headed, multi-layer
transformer architecture. The number of epochs
used to train the models is 5. The embeddings
used are albert-base-v2, xlnet-base-uncased and
bert-base-uncased.

3.4 Classification using CNN model
Convolutional Neural Network (CNN) (Albawi
et al., 2017) is a deep learning technique that takes
the image as input, assign importance in the form
of learnable weights, learn the various aspects in
the input and classify the data. It uses convolu-
tional, maxpooling and dropout layers to learn the
features. CNNs have wide applications in com-
puter vision, medical image processing, NLP and
recommender systems. We have used 3 convolu-
tional layer with ReLU activation function, max-
pooling layer after each convolutional layer, fully
connected layer with ReLU activation function and
final output layer with softmax activation. Adam
optimizer is used with learning rate 0.001 for 30
epochs.

3.5 Ensemble Prediction
Performance of text model and image model are
analyzed with the ensemble technique. Majority
voting is done with the output of transformer mod-
els and CNN to predict the final output class label.
Ensemble method will predict the output class la-
bel as misogynous if both transformer and CNN

models predict the label as misogynous.

4 Results and Discussions

We have used variants of BERT models for analyz-
ing text data and CNN for image data. The results
are tabulated in Table 2. The models are executed
for various epochs and the results are listed for 5
epochs.

Models Subtask A Subtask B
AlBERT 0.5128 -
XLNet 0.3524 -
BERT 0.4584 0.4137
CNN Model 0.4756 -
Ensemble model 0.5223 0.4673

Table 2: F1-measure Results

In subtask A, we have used AlBERT, XLNet and
basic BERT techniques to classify the given sam-
ple as misogynous or non-misogynous using the
text data. Albert model gives better results than
other BERT variants. CNN model is used for the
classification of image data. The combined ensem-
ble model (AlBERT + CNN) gives better F1 score
than using them separately. For the subtask B, we
have worked on two models BERT and ensemble
model. Ensemble model with multi-label classi-
fication model in transformers and CNN is used
for predicting the subcategories. The ensemble
model (image and text) achieved better score than
the BERT model (text alone) and the performance
can be increased by tweaking the hyper parameters.

5 Conclusion

User generated content in social media is rapidly
increasing day by day that detecting and limiting
the diffusion of sarcastic and hate speech content
against women is tedious. Automatic identifica-
tion and removal of these contents is the current
topic of research. Many shared tasks are conducted
in various conferences for Automatic Misogyny
Identification (AMI).

Task 5 in SemEval 2022 focuses on Multime-
dia Automatic Misogyny Identification (MAMI)
with the help of image and text data. Transformer
models are used to identify the misogynous con-
tent from the text and CNN model is used to detect
from the image content. Performance of the system
can be increased by tweeking the parameters in
the transformer models. The current system trains
the text and visual modalities independently on
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the labels. However, memes portray misogynis-
tic content though a combination of text and im-
age cues, and training these models independently
might miss out on the context provided by the other
modality, which might be crucial to further improve
the performance of this system.
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Abstract
In current times, memes have become one
of the most popular mediums to share jokes
and information with the masses over the in-
ternet. Memes can also be used as tools to
spread hatred and target women through de-
grading content disguised as humour. The task,
Multimedia Automatic Misogyny Identification
(MAMI), is to detect misogyny in these memes.
This task is further divided into two sub-tasks:
(A) Misogynous meme identification, where a
meme should be categorized either as misog-
ynous or not misogynous and (B) Categoriz-
ing these misogynous memes into potential
overlapping subcategories. In this paper, we
propose models leveraging task-specific pre-
training with transfer learning on Visual Lin-
guistic models. With our best performing mod-
els, we were able to achieve rank 5 th and 10 th

on sub-tasks A and B respectively.

1 Introduction

The term "misogyny" means hatred towards
women. Misogyny can be interpreted through
multiple forms such as male privilege, sexual ha-
rassment, violence against women, objectification.
Memes that targeted women focus on appearance,
intellect, their traditional gender roles and capabili-
ties of women (Siddiqi et al., 2018).

For this, SemEval 2022 Task 5 (Fersini et al.,
2022) focuses on identifying such behaviour in a
multimodal setting (text + image). The textual cues
to this task are given in the English language. The
task is divided into two sub-tasks. The first sub-
task is modelled as a binary classification problem.
The second sub-task focuses on identifying type
of misogyny from a set of overlapping categories,
making it a multi-label classification problem.

A meme contains text superimposed on an image.
The image’s aim in a meme is generally to reinforce
a technique in the text, thus making its classifica-
tion a multimodal problem. Both the modes of
information are crucial to establishing the message

Figure 1: Example memes from the dataset showing the
multimodal nature

conveyed by the meme, which can be very differ-
ent from when the two modalities are evaluated
separately.

We experiment with Visual Linguistic (VL) Mod-
els like OSCAR (Li et al., 2020) and UNITER
(Chen et al., 2020) to understand the memes
through both modalities. We employ transfer learn-
ing to use a model trained on another similar dataset
and then finetune it on our dataset.

As task-specific pretraining has shown to im-
prove results on several NLP tasks (Gururangan
et al. (2020)), We experiment with task-specific
pretraining our VL models before finetuning it and
also finetune it on models task-specifically pre-
trained for other similar task like hateful memes
detection (Kiela et al. (2021)).

We also train BERT (Devlin et al., 2019) based
models on only the textual data, thus comparing the
performances of multimodal setting vs unimodal
settings. This comparison helps us understand how
vital each modality is and how much using both
together makes a difference.
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We discover that even though detecting misog-
yny in memes can be modelled as a multi-modal
task, it can, to a very good extent be done through
working with just the textual cues but when it
comes to detecting more subtle forms of misog-
yny, the visual cues play an important role as well.
Our system ranked 38th and 19th for sub-taskA and
sub-taskB respectively.

The paper is structured as follows: Section 2
describes the dataset along with related work. Sec-
tion 3 describes our system and model architecture.
Section 4 has information regarding the dataset size
and splits with libraries used to implement our sys-
tem. Section 5 has the discussion about the findings
from our experiments and section 6 concludes our
paper.

2 Background

Nowadays, the internet and various social media
platforms have become an intrinsic part of more
and more people’s lives. With its growth, the prob-
lems associated with it have also increased exceed-
ingly, like the increase in hate speech against cer-
tain groups including women.

Detecting misogyny and sexist slurs in general
over social media can be challenging as its overall
meaning can depend on its context and the user it
is shown. (Fasoli et al., 2015). For this, look at the
few examples in Figure 1 to exhibit the importance
of visual and textual cues.

Memes can be defined as an image, video, or
text, typically humorous in nature, that is copied
and spread rapidly by internet users, often with
slight variations. Memes in online culture have
been seen to push potential instances of misogyny
as a form of "joke" and "irony" while disguising
itself as a harmless form of humour. (Drakett et al.,
2018).

There has been previous work done to detect hate
speech and misogyny. (Pamungkas et al., 2018)
Employed Support Vector Machine(SVM) based
architectures with a novel lexicon of abusive words
to detect misogyny in English and Spanish tweets.
(Gasparini et al., 2018) compared unimodal textual
classifiers to multimodal classifiers trained with
both visual and textual features using early fusion
on a dataset of advertisements consisting of image
and text marked for being sexist.

The meme classification task is primarily a
Visual-linguistic(VL) task where we are trying
to classify data where the image can be seman-

tically correlated with the text. Traditional VL
approaches are based on primary fusion techniques
like early or late fusion, where each modality is
learned separately. However, a multimodal pre-
trained model might perform better at memes clas-
sification (Afridi et al., 2020).

Figure 2: Data Distribution of labels in the training set.

Dataset Description
The dataset (Fersini et al., 2022) contains 10,000
memes.It is furthere divided into train and dev
splits. Both tasks require the same dataset, but
each task’s final labels are different. Half of the
10,000 data points are marked positive and half
negative. Of these half marked positive, the data
is further annotated for potential overlapping cate-
gories of misogyny, namely: stereotype, shaming,
objectification and violence.

3 System Overview

We use transformer based models for both the tasks
with task specific modifications.

3.1 Pre Processing
Our text is tokenized into subwords to lookup the
embedding. For our images, features were ex-
tracted using Faster-RCNN (Ren et al., 2016) pre-
trained on the VisualGenome dataset(Krishna et al.,
2017) trained with and & without object attributes
(Anderson et al., 2018).We extract features with
object attributes of fixed box sizes 36(OSCAR36)
and 50(OSCAR50) and features without object at-
tributes of fixed box size 50 (OSCARV50).

The final input embeddings is a concatenation of
both textual and image features represented as

h[CLS], ht1 , · · · , htn , h[SEP ], hi1, · · · , him
Here h[CLS] and h[SEP ] are the vector repre-

sentations of the special [CLS] and [SEP] tokens
respectively. ht1 , · · · , htn represents the text em-
beddings and hi1 , · · · , him represents the vision
embeddings.
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(a) Text Only Models (b) VL Models

Figure 3: Proposed architectures

3.2 Task-specific Pretraining

For both the tasks, We experiment with task-
specific pretraining. Every task-specifically pre-
trained models were pretrained on two pretraining
objectives, namely Masked language Modelling
(MLM) and Image Text Matching (ITM). We also
make use of models trained on the hateful-memes
dataset (Kiela et al., 2021). We use checkpoints
from models that were:

1. Task-specifically pretrained on our dataset.
2. Task-specifically pretrained on hateful memes

dataset.
3. Task-specifically pretrained and finetuned on

hateful memes dataset.
The checkpoints for models pre-trained, fine-

tuned on hateful memes dataset were taken from
the vilio repository. 1

3.3 Sub-task A

We used OSCAR as our primary VL model, we
also experiemnt with another VL model named
UNITER.The UNITER and OSCAR pre-trained
weights are based on the BERT transformer. We
used Binary Cross Entropy as our loss function to
train our models. We trained 3 separate models on
the 3 different visual features extracted but use the
same textual features. We also experimented with
ensembling these models using simple average as
our ensembling technique.

We also train transformer-based models like
BERT and RoBERTa (Liu et al., 2019) using just

1vilio-repository,https://github.com/
Muennighoff/vilio/blob/master/SCORE_
REPRO.md

the textual cues. We use Binary Cross entropy as
our loss function to train our models.

We use the CLS token embeddings from our
transformer models and apply classification on top
of it. The complete architecture for both text only
and VL models can be seen in Figure 3.

3.4 Sub-task B

Here, instead of treating this problem as a multil-
abel classification problem, we treat it as a binary
classification problem just like sub-taskA. We train
VL models separately for each of the four labels,
namely stereotype, shaming, objectification and
violence, rather than training a single model for
all labels. We also use an ensemble of models
trained on different visual features like we did for
sub-taskA.

For our textual models, we trained BERT-based
multilabel classification models. We use cross-
entropy loss to train our models. Since there is
a significant class imbalance, we add weights to
our positive data samples while calculating the loss
function as done by researchers at (Gupta et al.,
2021).The formula is given below:

ℓ(x,y) = − 1

Nd

N∑

n=1

d∑

k=1

[
pkykn log x

k
n + (1− ykn) log(1− xkn)

]

pk =
1

fk
(|K| − fk)

(1)

Where N is the batch size, n index denotes nth

batch element, d is the number of classes, f stands
for a vector of class absolute frequencies calculated
on the train set, x is the output vector from the last
sigmoid layer, y is a vector of multi-hot encoded
ground truth labels and |K| is the size of the train

577



set.

4 Experimental setup

Parameter Text Only VL
Dropout 0.3 -
BatchSize 8 4
Epochs 5 3
Learning Rate 1e-05 1e-05
Warmup - 0.1
Optimizer Adam AdamW

Table 1: Hyperparameters

The dataset contained 10,000 images along with
the corresponding texts. Half of the data is marked
positive for being misogynous. 85% of the dataset
was used to train the model, and the rest was used
to validate the model for both subtasks.

We use the VL model implementations of OS-
CAR and UNITER from the library vilio and for
image feature extraction. 2. We use huggingface 3

library for our transformers trained on just text.
The information about the hyperparameters can

be found in Table 1. All models were trained on a
GeForce RTX 2080 Ti GPU.

4.1 Evaluation Metrics
We use f1-macro scores as our primary evaluation
metrics for both the tasks. We also calculate the
accuracy scores for both tasks.

Model Accuracy F1-Macro
RoBERTalarge 68.4 68.3
BERTlarge 64.7 63.7
OSCARens 68.7 67.2
OSCAR pretrained_ens 69.5 67.8
OSCAR hm_pretrained_ens 70 68.5
OSCAR hm_finteuned_ens 59.9 59.3
UNITER ens 65.8 63.3
OSCAR + UNITER ens 68.1 66.5
OCSAR36 69.5 67.9
OSCAR50 68.2 66.3
OSCARV50 67.1 64.7

Table 2: Results: Sub-TaskA

2vilio,https://github.com/Muennighoff/
vilio

3Transformers,v4.16.2,https://huggingface.co/
docs/transformers/index

5 Results And Discussion

The detailed results from all our experiments con-
ducted can be seen in Table 2 and 3.

We here use the F1 macro scores to judge our
models. For subtaskA, We see that OSCAR ensem-
ble models, task-specifically pre-trained on hateful
memes dataset perform the best. Another interest-
ing thing to notice is the textual only RoBERTa
large model performs almost as good as our best
performing VL model and better than all other VL
models and is significantly better than BERT large.

We also see that simple average ensemble mod-
els for OSCAR perform better than each of its
constituent models, and using transfer learning
methods with model fine-tuned on hateful memes
dataset performed unexpectedly worse. It means
that even though hateful memes detection and de-
tecting misogyny in memes are closely related in
their idea, they are still not necessarily similar to
predict.

In sub-taskB, we see that the ensemble of mod-
els with task-specific pretraining on our dataset
worked the best and slightly better than the ensem-
ble with task-specific pretraining on the hateful
memes dataset. We also see that our OSCAR VL
models worked significantly better here than text-
only models like BERT and RoBERTa, which is
unexpected since the text-only models worked very
well compared to VL models in sub-taskA.

Model Accuracy F1-Macro
BERT large 31.9 45.8
RoBERTa large 35.8 45.7
OSCAR ens 41.4 52.6
OSCAR hm_pretrained_ens 42.3 52
OSCAR pretrained_ens 45.5 31.3
RoBERTa large_misogynous_labels 12.5 41

Table 3: Results: Sub-TaskB

As we observe that BERT Based models give
comparable, and in the case of RoBERTa, better
performance than almost all the VL models, it in-
dicates that detecting misogyny might not be an
utterly multimodal problem, and just the textual
cues are enough in identifying the misogyny.

We also observe that even though text-only mod-
els performed very well on misogyny detection,
they performed poorly on more fine grained clas-
sification tasks, showcasing that the visual cues
mattered as well to figure out the subtleties in the
classification of the type of misogyny.
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We also trained both textual, and VL models on
just the data points marked for misogyny as those
are the only ones where at least one of the sub-
categories of misogyny will be marked positively.
However, in this case, the models performed much
more poorly. It is because they are not trained on
examples that are not misogynous in nature and
thus perform poorly on them in the test dataset.

The scores according to the official metrics for
our best performing unimodal and multimodal mod-
els were as follows: Sub-taskA: RoBERTa large:
68.3; OSCAR hm_pretrained_ens: 68.6; Sub-taskB:
RoBERTa large: 63.6; OSCAR hm_pretrained_ens: 69.1

6 Conclusion

In this paper, our experiments indicate that al-
though misogyny detection in memes is designed as
a multi-modal setting, the textual cues also perform
very well and, in some instances, better than Visual
Linguistic models. We also found out that when
it comes to detecting more subtle forms of misog-
yny, visual cues seem to help in the classification
task and perform better than transformer models
with just textual cues. More work can be done to
improve the results. Future work like experiment-
ing with more upcoming VL models, employing
better techniques to address the class imbalance,
and using more advanced ensembling techniques
like Rank Averaging, Power Averaging & Simplex
Optimization can improve results.
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Abstract
Hate speech expressions in social media are
not limited to textual messages; they can ap-
pear in videos, images, or multimodal formats
like memes. Existing work towards detecting
such expressions has been conducted almost
exclusively over textual content, and the analy-
sis of pictures and videos has been very scarce.
This paper describes our team proposal in the
Multimedia Automatic Misogyny Identification
(MAMI) task at SemEval 2022. The challenge
consisted of identifying misogynous memes
from a dataset where images and text transcrip-
tions were provided. We reported a 71% of
F-score using a multimodal system based on
the CLIP model.

1 Introduction

Expressions of hate are common in online envi-
ronments, and they can appear in different types
of multimedia content (Bhattacharya et al., 2020).
However, the related work on hate-speech and of-
fensive language detection is primarily focused
on textual English content (Agrawal and Awekar,
2018; Hosseinmardi et al., 2015). But, even for
the English language, the task is still not solved.
Evidence of that is recent reports of the increasing
amount of hateful content in social media1 follow-
ing the occurrence of social or political events. Re-
cent events like the COVID pandemic have brought
a new wave of hate (Vishwamitra et al., 2020),
with new targets and expressions including hateful
memes (Pramanick et al., 2021). Therefore, the
techniques for hate speech detection need to evolve
towards new types of hate, representations, and
languages.

The lack of generality of existing resources along
with the emergence of new nets of hate makes cur-
rent systems quickly outdated2.

1https://www.channel4.com/news/george-floyd-death-
has-led-to-increasing-online-hate-speech-report-claims

2https://whatsnewinpublishing.com/the-rise-of-hate-
speech-and-what-the-media-can-do-about-it/

Most of the available datasets contain tweets
(Waseem, 2016; Basile et al., 2019), Facebook and
Youtube comments (Bosco et al., 2018) and, in
general, textual content. Similar to The Hateful
Memes Challenge 3 hosted by Facebook in 2020,
The Multimedia Automatic Misogyny Identifica-
tion (MAMI) challenge (Elisabetta Fersini, 2022)
is an excellent opportunity for covering the hate
speech detection task beyond written expressions.

In this competition, the organizers provided a
training set of 10,000 memes labeled as hate speech
in two different forms: binary (misogynous, not
misogynous) and multi-class (stereotype, shaming,
objectification, and violence). The competition
comprises two tasks: Task A, for binary identifi-
cation of misogyny, and Task B, for fine-grained
classification of misogynous memes. For final sys-
tem evaluation, the organizers published a set of
1000 extra unlabeled memes. Each meme in train-
ing and testing sets consists of an image with an
overlay text. Each object in the dataset consists of
an image and a transcription of the overlay text.

This paper describes our team participation in
Task A of the MAMI challenge. We encoded im-
ages and texts using a pre-trained multi-modal
model based on the CLIP model (Radford et al.,
2021). We combined the encoded vectors in differ-
ent ways to obtain a final classification output. Our
best result reported was 71% of f-score.

In Section 2 we describe the work that has been
done on hate speech detection using multi-modal
content. In Section 3 we described the training
dataset provided in the competition. Then, in Sec-
tion 4 we describe our system and experiments.
Our conclusions can be read in Section 6.

2 Background

Most of the research in hate speech detection has
been conducted over textual datasets (Davidson

3https://www.drivendata.org/competitions/64/hateful-
memes/page/205/
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et al., 2017; Agrawal and Awekar, 2018; Founta
et al., 2018). Several strategies based on machine
learning models and Natural Language Processing
have been used to solve the task, though without
success.

On the other hand, the identification of hate other
than text formats of multimedia content has been
treated only in a few works. Hosseinmardi et al.
in 2015 and Singh et al. in 2017 have took advan-
tages of the multi-modal information they could
extract from Instagram4 for they work on cyberbul-
lying detection. While Perez-Martin et al. (2020)
used the multi-modal representations for retrieving
Twitter memes from textual queries.

Fortunately, in recent years the multi-modal de-
tection of hateful content has gained popularity
due to competitions like "The Hateful Memes Chal-
lenge" (Velioglu and Rose, 2020) hosted by Face-
book where different models were proposed to de-
tect hateful content on memes.

The proposed approaches encompass different
visual state of the art models like VisualBert (Li
et al., 2019), LXMERT (Tan and Bansal, 2019),
VilBert (Lu et al., 2019) among others. The win-
ning system combined some of these models with
predefined rules (Zhong, 2020) for improving the
classification accuracy of difficult samples.

Another recent result on multimodal detection
of offensive content has addressed the detection of
harmful memes related to the COVID pandemic,
also contributing with a new meme dataset (Pra-
manick et al., 2021).

There is much to do in the multimedia offensive
language detection in images and video, consider-
ing the popularity of social networks like Instagram
and Tik Tok5.

3 Dataset Description

The dataset is composed of 10 000 memes, 5000
of which are labeled as misogynous and 5000 as
not misogynous. For each meme is provided the
corresponding image in jpg format and meme text
transcription. All texts are in English; the most
extensive text transcription found in the dataset
contains 252 words, while the shortest contains
one word. A characteristic of this dataset is that
in some examples, only the text is enough for de-
termining the nature of the comment (see Figure
1). We do not have evidence of an example where

4https://www.instagram.com/
5https://www.tiktok.com/

Figure 1: Meme example 17082. In this example only
the texts is necessary for identifying the nature of the
meme. The text transcription is: "We don’t mind if a
man tries to rape you. We only mind you don’t carry his
baby to term."

System F-Score
Text_Only 69.23
Image_Only 65.37
CLIP_concat 70.50
CLIP_sum 71.20

Table 1: The results obtained in our experimentation.
The details of each system is described in Section 4.

only the image would be necessary for identifying
the nature of the meme. This characteristic may
be detrimental to the multi-modal intention of the
competition.

4 Experiments and results

Though we experimented with several models for
texts and images, our best result was obtained using
the CLIP model as the core of our system.

CLIP model: The CLIP model proposed by Rad-
ford et al. 2021 exploits the state-of-the-art textual
and visual approaches for learning about images
from texts. The general idea of the CLIP training
strategy is to jointly learn image and text represen-
tations and predict the most similar pairs (image,
text). According to the authors, the model can
competitive transfer to different vision tasks.

CLIP based systems: We use a pre-trained CLIP
model6 for learning text (text_clip) and image
(text_clip) representations from the texts transcrip-
tions and images provided for the competition. We
combined these outputs in different ways to ob-
tained a vector x used as input for a classification
final classification.

output = FFN(x)

6https://github.com/OpenAI/CLIP
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The different results can be found in Table 1.
Text_Only: Based on the characteristic of the

dataset spotted in Section 3, we investigated if only
the text transcriptions were enough for successfully
detecting misogyny using this dataset.

x = text_clip

With this system, we obtain a 69% of f-score af-
ter three epochs. This result is very close to our best
result using both types of information (71%). One
of the reasons could be the percentage of memes
that can be classified by only using the texts, but
more need to be studied to obtain a conclusive ex-
planation.

Image_Only: Similar to the Text_Only system,
we investigated if only the images were enough for
successfully detecting misogyny using this dataset.
The f-score obtained after five epochs is 65%, a
lower result than the Text_Only system.

x = image_clip

CLIP_concat: This system considered both im-
age and text representations by concatenating them
into a single vector in one single vector.

x = concat(image_clip, text_clip)

The results improved by using both representa-
tions to a 70% of f-score.

CLIP_sum_system: In this variant of the system,
we sum both image and text representation in one
single vector. This sum was pondered by a train-
able parameter of the model a. The idea of this
combination is to give the possibility to the model
of using the necessary weights for image and text.

x = sum(a ∗ image_clip, (1− a) ∗ text_clip)

With this combination we obtained our best re-
ported result for the competition.

5 Error Analysis

We observed the memes miss classified by our best
model (CLIP_sum). The most common type of er-
ror was the false negative error, examples wrongly
classified as not misogynist, we noticed that most
of them represent male figures or inanimate objects.
Only a small number of memes picture a woman
as the central figure (see Figure 2 ).

On the other hand, the female figures in the false
positive examples is very common (see Figure 3).

Figure 2: Meme example 15115 from the testing
set. Our model CLIP_sum wrongly classified it as
a not misogynist meme. The text transcription is:
"YOU DON’T WORK,COOK, CLEAN OR GIVE
HEAD? LMAOBRUH LMAOBRUH.com LEGALLY,
MY CLIENT IS ENTITLED TO A SIDE B*TCH OR
TWO"

Figure 3: Meme example 15977 from the testing set.
Our model CLIP_sum wrongly classified it as a misogy-
nist meme. The text transcription is: "2020 BEFORE
AND AFTER"

This phenomenon could be caused by a partic-
ular bias in the training set that relates misogyny
memes with the images of women. But a deeper
analysis has to be conducted in this regard.

6 Conclusions

This paper describes our team participation in Task
1 of the Multimedia Automatic Misogyny Identifi-
cation (MAMI) at SemEval 2022. The purpose of
this task was to identify memes as misogynists or
not. Images and texts were provided in a training
set of 10000 examples. Our team implemented a
system based on the pre-trained CLIP approach and
reported a 71% of f-score.

The multimodal hate speech detection has been
under-addressed through the years and recently is
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gaining popularity, though there is still much for
research in this regard. Moreover, other types of
multimedia, like videos, need to be analyzed since
they are popular ways of communicating on social
networks.
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Abstract

Online misogyny meme detection is an im-
age/text multimodal classification task, the
complicated relation of image and text chal-
lenges the intelligent system’s modality fusion
learning capability. In this paper, we investigate
the single-stream UNITER and dual-stream
CLIP multimodal pretrained models on their ca-
pability to handle strong and weakly correlated
image/text pairs. The XGBoost classifier with
image features extracted by the CLIP model
has the highest performance and being robust
on domain shift. Based on this, we propose the
PBR system, an ensemble system of Pretrain-
ing models, Boosting method and Rule-based
adjustment, text information is fused into the
system using our late sequential fusion scheme.
Our system ranks 1st place on both sub-task
A and sub-task B of the SemEval-2022 Task
5 Multimedia Automatic Misogyny Identifica-
tion, with 0.834/0.731 macro F1 scores for sub-
task A/B correspondingly.

1 Introduction

Much of the real world’s information comes in mul-
timodality, a combination of images, texts, audios
and so on. Multimodal understanding aims to uti-
lize different modal of information to improve the
overall system recognition intelligence or robust-
ness (Gadzicki et al., 2020), which plays a key
foundation role in cognitive AI and embodied AI.

With transfer learning by large deep models and
colossal corpus achieving remarkable success in vi-
sion and language domain, there is a rising interest
in combining both sides’ advances to push the mul-
timodality understanding further (Lu et al., 2019;
Tan and Bansal, 2019; Chen et al., 2019; Li et al.,
2020; Yu et al., 2020; Huo et al., 2021; Kim et al.,
2021; Radford et al., 2021). We will limit the dis-
cussion scope of multimodal to vision and language
in this paper. There are two kinds of representative

∗Contribution during Intership in Samsung Research
China-Beijing.

architecture of multimodal learning models, single-
stream models and dual-stream models. Single-
stream model fuses the image and text data at an
early stage, and then feed into the model. Dual-
stream models design separated structure as image
encoder and text encoder, and a further module is
stacked on top of the unimodel encoders for cross-
modal learning objectives (Tan and Bansal, 2019;
Yu et al., 2020; Radford et al., 2021; Huo et al.,
2021). Usually per-unimodal objectives and mul-
timodal objectives are designed to ensure that the
model learns unimodal and crossmodal knowledge,
like masked image prediction, masked token predic-
tion, and text-image pairing (Chen et al., 2019; Kim
et al., 2021). Two kinds of data distributions are
explored for the large-scale pretraining, strongly
paired data (Chen et al., 2019; Radford et al., 2021;
Li et al., 2020; Kim et al., 2021) and weakly paired
data (Huo et al., 2021). The different distributions
would directly affect the correlations learned by the
model, yet each pretraining corpus only falls in one
pattern.

The SemEval-2022 Task 5 (Fersini et al., 2022)
Multimedia Automatic Misogyny Identification
(MAMI) is a multimodal classification task in En-
glish. It targets the identification of misogynous
memes (characterized by a pictorial content with
an overlaying text a posteriori introduced by hu-
man), using the image and text from the meme as
input data. It has two sub-tasks: sub-task A: 2-
fold classification, to identify whether a meme is
misogynous or not; sub-task B: 4-fold fine-grained
classification, to further recognize the misogynous
meme among potential overlapping categories of
stereotype, shaming, objectification and violence.

The relationship of the MAMI paired meme im-
age/text data can vary from highly correlated to
weakly correlated or not correlated at all. The se-
mantic logical relationship between the meme’s
image and text can be: 1) align with each other,
containing the same semantic, 2) independent but
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connected to form a complete semantic, 3) irrele-
vant with each other, only one modality decides the
meme’s semantic (refer to the appendix for illustra-
tions). In summary this task demands both under-
standing the image and text, as well as setting up
the correct semantic logic between the image/text
modalities.

In this paper, we want to investigate either the
multimodal pretrained models of different design
architecture are capable of handling such com-
plex relationship between vision and language,
and whether the pretrain-and-fine-tuning paradigm
is advantageous over the feature-extraction-and-
machine-learning-classification paradigm. We
choose two strong baseline pretrained models,
UNITER (Chen et al., 2019) as the single-stream
model, and CLIP (Radford et al., 2021) as the dual-
stream model, and fine-tuning with cross-entropy
softmax is compared against the widely adopted
XGBoost (Chen and Guestrin, 2016) classifier. Do-
main shift is discovered between the train (dev)
and test dataset, and the above two paradigm is
explored for both in-domain situation and domain
shift situation. An adversarial discrimination loss
(Tzeng et al., 2015) is added to the fine-tuning deep
neural network for domain shift, while the XG-
Boost classifier is tuned with its hyper-parameters.

Our results show that 1) for both pretrained
models, multimodal fine-tuning performs better
than unimodal. The CLIP dual-stream model
performs sightly better than the UNITER single-
stream model on in-domain data, given the much
greater pretraining corpus CLIP has than UNITER.
On data with domain shift, the CLIP fine-tuning
is much more stable than the UNITER model, but
both models suffer from great performance degra-
dation. 2) the performance of feature-extraction-
and-machine-learning-classification by XGBoost
classifier is no weaker than that of fine-tuning on
top of pretrained models, the XGBoost classifier
utilizing only image features from CLIP hits best
performance on the test dataset among all modality
combinations, plus that the XGBoost is cheaper to
train. 3) for domain shift, the XGBoost classifier is
more robust, the domain adversarial loss for fine-
tuning brings a small rise, but still falling behind
the XGBoost classifier.

Our final winning system is a combination of
machine learning and deep neural network, by Pre-
training models, Boosting method and Rule-based
adjustment, which we name PBR, based on the

XGBoost classifier of CLIP image features, and
a late sequential fusion of multimodal/text infor-
mation into the classifier’s prediction, followed by
rule-based adjustment. The details will be stated
in Section 2. Our system gets 0.834 macro F1
score on sub-task A and 0.731 macro F1 score on
sub-task B, ranking 1st place in both the tasks in
the leaderboard.

2 System Overview

2.1 Overall Architecture

Our 3-stage ensemble system showed in Figure 1
works as following:

• stage 1, the image feature extracted by the
CLIP model is learned by the XGBoost clas-
sifier, to form a image only prediction. The
image/text paired data is used to fine-tune the
UNITER model on the MAMI task. And ex-
ternal text datasets together with the MAMI
text data is fed into the BERT model to train a
text only model on the MAMI task.

• stage 2, the UNITER fine-tuning predictions
and the BERT fine-tuning predictions are used
to adjust the medium confidence zone of the
XGBoost prediction, by our late sequential
fusion scheme.

• stage 3, the sub-task A and sub-task B predic-
tions are mutually adjusted, taking advantage
of the two sub-tasks’ logical inference rela-
tionship with each other.

2.2 Deep Pretrained Model for Image and
Text Representation

The multi-head attention of transformer architec-
ture modelling the interaction between any two
tokens within a sequence by constant O(∞) dis-
tance, has proved to be powerful in learning deep
bidirectional interactions in language and vision
(Lu et al., 2019; Dosovitskiy et al., 2020). We
choose two transformer based pretrained model to
get the image and text representations.

1) single-stream model UNITER. UNITER
(Chen et al., 2019) is a large-scale pre-trained
model for UNiversal Image-TExt Representation.
The image and text input are fused early by con-
catenation, and fed into the transformer module to
learn contextualized representations. The pretrain-
ing includes unimodal and multimodal tasks. The
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Figure 1: The overall architecture of our ensembled system.

model outputs a fused text and image representa-
tion. The pretraining dataset has about 8.4 million
image/text pairs.

2) dual-stream model CLIP. CLIP (Radford
et al., 2021), the Contrastive Language-Image Pre-
training model, has separate image transformer en-
coder and text transformer encoder. The two are
joined by a contrastive loss to learn the multi-modal
embedding space. The model is pretrained on a
dataset of 400 million (image, text) pairs collected
from the internet. The simple pretraining task only
involves multimodal alignment, predicting which
text as a whole is paired with which image, uni-
modal learning task is not applied. whereas the nat-
ural language performs well in enabling zero-shot
transfer of the model to downstream tasks when
used to reference visual concepts and functioning
as prompt text.

2.3 Classification on Downstream Task

2.3.1 Fine-tuning with Pretrained Models

As illustrated in Figure 2, for the UNITER model,
the fine-tuning head is a feed forward neural layer
(ffn) followed by the cross-entropy softmax classi-
fier. And for the CLIP model, the encoded image
and text representations are linearly transformed
separately, and then concatenated to be passed for-
ward to a ffn layer and a cross-entropy softmax clas-

Figure 2: Fine-tuning head structure for UNITER(left)
and CLIP(right).

sifier. The fine-tuning structure of BERT model is
the same as the UNITER model. The fine-tuning is
used to select the base pretrained model for MAMI,
and the fine-tuned UNITER model is utilized as
a multimodal voter and the fine-tuned BERT as a
text unimodal voter for the model ensemble.

2.3.2 XGBoost Classifier
XGBoost (Chen and Guestrin, 2016) classifier is
a tree boosting ensemble model that uses additive
functions to predict the output. The boosting en-
semble learning algorithm combines multiple weak
learners in a sequential method, iteratively improv-
ing upon observations. XGBoost borrows from
random forests and supports column sampling as
well as data sampling. The benefits of the XGBoost
classifier is its capability to reduce bias and the low
training cost.

In Eq. 1 , the fk stands for the kth regression
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Dataset Modality # Samples # Labels
train/dev/test # misogyny # non-misogyny

MAMI img/txt 3227/837/1000 5000 5000
searched-meme img/txt 3447/-/- 1564 1883
misogynistic-meme img/txt 800/-/- 400 400
sexist-detection txt 1142/-/- 627 515
online-misogyny-eacl2021 txt 6567/-/- 699 5868

Table 1: MAMI task and augmented datasets statistics.

tree with K trees in total, ŷi is the prediction of
sample i formed by the sum of K regression trees.
In Eq. 2, L is the training objective, l a differen-
tiable convex loss function that measures the dif-
ference between the prediction ŷi and the target yi,
and Ω is the penalty function to avoid over-fitting.
The Eq. 3 describes the iterative update of object
function L, yti is the prediction of the i-th instance
at the t-th interation. At each iteration t, a new tree
ft is added to optimize the objective, the selection
of ft is by a greedy algorithm that most improves
the model according to Eq. 2.

ŷi =
K∑

k=1

fk(xi) (1)

L(ϕ) =
∑

i

l(yi, ŷi) +
∑

k

Ω(fk) (2)

Lt(ϕ) =
∑

i

l(yi, ŷi
t−1 + ft(xi)) +

∑

k

Ω(fk)

(3)

2.4 Post-adjustification

2.4.1 Late Sequential Fusion
The XGBoost classifier with image features ex-
tracted by CLIP stands out among all modality
combinations by a large margin, including the mul-
timodal fusion pattern of both CLIP and UNIER,
thus it is chosen as our basis. While the infor-
mation in text is non-negligible, we make use of
it in a late sequential fusion fashion, with image
going first and text catching up. We treat the XG-
Boost prediction score ranging [0,1] as the pre-
diction confidence, denoted as p̂, and the whole
XGBoost predicted confidence on the MAMI test
cases are denoted as P̂ . We rank P̂ in decreasing
order, and divide it into three intervals, the high,
medium and low confidence intervals. The predic-
tion confidence score from the BERT fine-tuning

(text modality) and UNITER fine-tuning (multi-
modality) are denoted as p̂b and p̂u.

p̂ =





p̂, if p̂ ∈ [P̂hi, P̂t1 ]

vote(p̂, p̂u, p̂b), if p̂ ∈ (P̂t1 , P̂t2 ]

vote(p̂, p̂b), if p̂ ∈ (P̂t2 , P̂lo]

(4)

The medium confidence interval reflects the
model’s uncertainty for classification based on im-
age solely. In the low confidence interval, when
the image is highly non-misogynous, while the text
is highly misogynous, the whole semantic of the
meme would be positive. Thus we fuse the text
and image modality in a late sequential way by the
scheme in Eq. 4. The high confidence interval
take the XGBoost classifier prediction as the result
directly, and the medium interval combines the text
(p̂b) and multimodal (p̂u) information by voting,
while the low interval takes advantage of the text
information to adjust the image-only prediction.
P̂hi and P̂lo refer to the highest and lowest proba-
bility, by experience we choose the endpoints of
the medium interval t1 to be 300, and t2 be 700 in
the descending ranked P̂ sequence ( eg. P̂t1 equals
the probability value of the 300th P̂ ).

2.4.2 Mutual Adjustment of the Sub-task A/B

This step is the final adjustment towards our final
results. By task definition, when the MAMI sub-
task A is non-misogynous, all labels in sub-task
B should be 0, vice visa. If any of sub-task B
is labelled as 1, sub-task A should be misogynous.
Therefore, we design the following rules to increase
performance.

1) If the prediction of "misogynous" in sub-task
A has high confidence for label 0, while some of
the four sub-classes in sub-task B are labelled as 1
, we ignore them and set all the labels to 0s due to
the high confidence of the misogyny binary classi-
fication.
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2) If multiple 1-labels appear in sub-task B, it
suggests the sample meme probably being misog-
yny. Meantime if the confidence level of "misog-
ynous" for sub-task A is in the medium interval
and the text and visual combination are also very
ambiguous, we set the label to be 1 in sub-task A.

2.5 Data Augmentation

Data augmentation is applied to enrich the data dis-
tribution and enhance the system’s generalization
capability (Perez and Wang, 2017) in the down-
stream task classification phase (applied both in
fine-tuning and XGBoost classification).

Our data augmentation strategy includes 3 as-
pects: 1) collecting memes of the misogyny topic
from search engines with a set of misogynous key-
words and neutral keywords. 2) collecting public
dataset on misogyny and related topics, to help
provide more knowledge on the topic. 3) self-
augmentation from the task dataset. For image
self-augmentation, we used geometric-based aug-
mentations, including flipping horizontally and ver-
tically with cutout (DeVries and Taylor, 2017), ran-
domly resized cropping and 30-degree rotation, as
well as color-based transformation, color jittering.
For text self-augmentation, back-translation is used.
Details of 1) and 2) can be referred in Section 3.1

3 Experimental Setup

3.1 Training Datasets

The MAMI task dataset and augmented datasets
are used for training.

MAMI. Dataset for the SemEval-2022 Task
5 (Fersini et al., 2022), the labels of sub-
task A is evenly distributed (1:1 for misog-
yny and non-misogyny samples), and the la-
bels for sub-task B are distributed unevenly, the
shaming/stereotype/objectification/violence have
1271/2810/2201/953 labels correspondingly.

searched-meme. Memes crawled from com-
mercial search engines. Searching by keywords in
commercial search engines, and an in-house OCR
tool is applied to get the paired text for each meme.
The final dataset contains 3447 image-text pairs.
The searching keywords is listed in the appendix.

misogynistic-meme. An expert-labeled open
misogynistic dataset (Gasparini et al., 2021), it con-
tains 800 memes with manually transcribed text,
the misogynisticDE field is used as the label for
misogyny.

sexist-detection. A text dataset of sexist state-
ments at workplace (Grosz and Conde-Cespedes,
2020), the label for sexism or not is mapped to
misogyny or not for the SemEval-2022 Task 5.

online-misogyny-eacl2021. A text dataset of
6567 labels for Reddit posts and comments for
online misogyny detection (Guest et al., 2021).

3.2 Training Details

For the fine-tuning of UNITER and CILP, we
mainly follow the original paper, detailed hyper-
parameters can be referred in the appendix. The
hyper-parameters of the XGBoost classifier is listed
in Table 5 in the appendix. We treat the sub-task
B as four independent binary classification tasks
with four independent XGBoost classifiers. Deal-
ing with the label imbalance, we adjust the XG-
Boost parameter "scale_pos_weight" to achieve
good performance. The sub-task A is evaluated
using macro-average F1-Measure, the sub-task B
is evaluated using weighted-average F1-Measure
(Fersini et al., 2022). A point worth noting is that
when there is data imbalance of positive (label-1)
and negative (label-0) samples, it is more profitable
to predict the less labelled ones in the measure of
macro F1. So we try to find label-1 in each category
of sub-task B as much as possible by tuning the
hyper-parameters since label-1 samples are much
less than label-0.

4 Results and Discussion

4.1 Multimodal Pretrained Model Selection

We take the BERT text model as the baseline for
text modality and the CLIP image model as the
baseline for image modality (the image features
of CLIP model outperforms state-of-art image pre-
trained models in image classification tasks (Rad-
ford et al., 2021)), which we will denote as TB
and IB below. We randomly split the 10000 train-
ing data into train/dev/inner-test data by 8:1:1, and
the test data is released by the task organizer. The
UNITER image model and text model are tested
by putting the unimodal-only data into the model.

As shown in Table 2, the UNITER image model
is well below the IB and the UNITER text model
is well below the TB on dev dataset. The UNITER
image-text multimodal fine-tuning dev results gains
large increase compared to its unitmodal implemen-
tations, while slightly better than the TB/IB. This
suggests that the unimodal pretraining objectives
in UNITER is not as well learned as the unimodal
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Figure 3: Visualization of t-SNE data distribution under CLIP(a,b,c) and UNITER(d,e,f) models.

Pre-trained Fine-tuning
model dev test

BERT txt (TB) 82.6 65.9

UNITER img 70.2 60.3
UNITER txt 76.8 60.7
UNITER img+txt 82.8 67.1

CLIP img (IB) 82.1 68.1
CLIP txt 82.0 66.8
CLIP img+txt 84.3 72.1

Table 2: Baseline performance of single-stream and
dual-stream pre-trained models.

benchmarks, and the cross-modal learning objec-
tive is better learned through its pretraining given
the improvement over the unimodality UNITER
models.

The CLIP text model has a comparative perfor-
mance with the TB, noting that there is no specified
text pretraining objective in CLIP. With the well
learned image and text unimodal semantics, the
CLIP multimodal fine-tuning brings a marinal im-
provement, leading to 84.3 macro F1 score on dev
dataset.

Overall the CLIP multi-modal fine-tuning per-
forms better than the UNITER multimodal fine-

tuning, both on dev and test dataset, with compara-
tive unimodal performance at the same time.Thus
CLIP is chosen as the pretrained model to provide
image/text representations.

4.2 Domain Shift

The big performance gap between the dev and test
set in Table 2 suggests domain shift between the
train (dev) and test data. Domain shift can be sim-
ply expressed as Eq. 5, ps denotes source data
distribution and pt denotes target data distribution.

ps(x, y) ̸= pt(x, y) (5)

p(x, y) = p(x|y)p(y) = p(y|x)p(x) (6)

According to Bayesian joint probability distribution
formula in Eq. 6, the analysis of inconsistent
data distributions can be turned to the analysis of
marginal probability distributions and conditional
probability distributions.

1) ps(x) ̸= pt(x), ps(y|x) = pt(y|x)
We consider the training set as the source domain
and the test set as the target domain. The distribu-
tion of positive and negative samples in the training
set is more separable, as shown in Figure 3-a and
3-d. However, the distribution of two classes in test
set is mixed, especially the distribution of negative
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samples drawn in black triangle shows a signifi-
cant domain shift,the black triangle, as shown in
Figure 3-b and 3-e. Therefore, we regard this as
ps(x) ̸= pt(x) case.

2) ps(x) = pt(x), ps(y|x) ̸= pt(y|x)
Another way is to observe the overall distribution
in the data set clusters together, as shown in Figure
3-c and 3-f. It is indicated that the distribution
of the training set and the test set have relatively
low difference. ps(x) = pt(x). Generally, the
training and test sets are composed of easy samples
and hard samples. A hard sample in terms of
visualization is a positive sample running into the
domain of a negative sample, or a negative sample
distributed in the domain of a positive sample. The
test set of this competition has a large number of
ambiguous samples and difficult samples. This
causes the deep learning model to crash, while the
more interpretable XGBoost performs better.

To alleviate the problem, we exploit data aug-
mentation and explored further with the XGBoost
hyper-parameters

4.2.1 Extra Data for Better Generalization
The external searched-meme dataset and the
misogynistic-meme dataset is added for training
and the macro F1 score was improved by 2.1 points.
This improvement is shown in Figure 4.

4.2.2 XGBoost on Domain Shift
XGBoost has many design parameters to prevent
overfitting. These include the number of trees, tree
depth, subsampling and colsampling, etc. In ad-
dition, there are two penalty terms in XGBoost.
Ω(f) corresponds to Ω in Eq. 2. γ and λ denote
the penalty factor, T is the number of leaf nodes.
||w||2 is equivalent to the L2 norm in Eq. 7 .

Ω(f) = γT +
1

2
λ||w||2 (7)

As shown in Table 3, the XGBoost classifier shows
advantage over fine-tuning on the CLIP model. Dif-
ferent from the fine-tuning paradigm, the image-
text CLIP feature performs worst on the XGBoost
classifier, with 82.4 macro F1 score. The CLIP
text model with XGBoost classifier achieves the
best results on dev data, 90.1 macro F1 score, and
CLIP image model with XGBoost achieves 85.2 on
dev data, but achieves the highest macro F1 score
on test data, both of them outperforms the CLIP
multimodal fine-tuning. The CLIP image model
with XGBoost classifier is chosen as our basis.

Pre-trained Fine-tuning XGBoost
model dev test dev test

CLIP img 82.1 68.1 85.2 77.6
CLIP txt 82.0 66.8 90.1 65.4
CLIP img+txt 84.3 72.1 82.4 75.1

Table 3: XGBoost Performance on dev and test data
compared with pretrained model fine-tuning.

Figure 4: Accuracy of XGBoost classifier trained by
different datasets. mis. meme is the misogynistic-meme
datase and sea. meme is the searched-meme dataset.

4.2.3 Fine-tuning with Domain Adaptation
Compared to the XGBoost Classifier

We apply domain adaption to the CLIP fine-tuning
model by an adversarial loss between the source
and the target domain following (Tzeng et al.,
2015). The core concept is to fuse the distributions
of source and target data by a domain classifier
together with a domain confusion loss. Besides the
standard cross-entropy loss for misogyny classifi-
cation, the domain classifier (with loss Ldm) is on
top of CLIP pretrained model to discriminate the
source and target data, and the domain confusion
loss Lconf forces the output of the domain classi-
fier to be a uniform distribution, thus achieving the
goal of fusing the source and target domain. By
minimising two adversarial losses Ldm and Lconf ,
the performance of CLIP model improves by 1.5 on
the macro F1 score of testing dataset (72.1->73.6)
while it still falls behind the XGBoost.

4.3 Late Sequential Fusion and Mutual
Adjustment

The confidence statistics of the XGBoost image
(CLIP feature) and BERT text models are shown
in Figure 5. It illustrates our intuition of the late
sequential fusion. The upper left and lower right
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Figure 5: The joint density plot of visual and text modal-
ities on test data.

Task XG-
Boost

Aug.
data

Seq.
fus.

Mut.
adj.

sub-task A 77.6 79.5 81.9 83.4

sub-task B 71.1 - 71.9 73.1

Table 4: Ensemble performance of the system.

corner in the figure shows the disagreement of the
image model and the text model. In the medium
confidence interval of the XGBoost image predic-
tion, the BERT text prediction can sometimes pro-
vide high confidence positive prediction. In addi-
tion, the box plot shows the positive skewness dis-
tribution in the BERT text model is more obvious
than the CLIP-image XGBoost classifier, which
means more negative samples are misjudged as
positive by the BERT text model. The late sequen-
tial fusion boosts the macro F1 score of sub-task
A (79.5->81.9) and sub-task B (71.1->71.9). And
we get the leading score of 83.4 in sub-task A and
73.1 in sub-task B by the mutual adjustment of the
two sub-tasks.

5 Conclusion

In this paper, we investigated the single-steam
model UNITER and dual-stream model CLIP’s
performance on the downstream multimodal classi-
fication task, and compared the pretrain-and-fine-
tuning paradigm over the feature-extraction-and-
machine-learning-classification paradigm.

The experiment results show that the CLIP per-

forms better than UNITER on the MAMI task, and
is more robust on domain shift. The UNITER uni-
modal fine-tuning results are significantly worse
than the unimodal pretrain model benchmark, sug-
gesting its weakness in handling the complicated
semantic logical relationship in the MAMI task.
Wheras the structure of CLIP image feature extrac-
tion and XGBoost classificatin achieves the highest
baseline performance.

We proposed the late sequential fusion scheme
to fuse text information into our system PBR, and
exploited extra data and mutual adjustment of the
two sub-tasks to further improve the system per-
formance. Our system ranks 1st place in both the
sub-tasks in the leaderboard of the SemEval-2022
Task 5 MAMI.
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A Task Data Analysis

The 3 kind of semantic logical relationships be-
tween the meme image and meme text in the In-
troduction Section is illustrated in Figure 9. The
subfigures a-c are the cases only text decide the
meme’s semantic, and d-f are cases that only image
decide the semantic, lastly e-g are cases the image
and text together form the complete semantic of
the meme. Figure 8 shows the high frequency uni-
and bigram text distribution. We analyse the top
30 frequent unigram and bigram features of the
text input over training and testing distribution (
with stop words filtering and ubiquitous words fil-
tering such as "come, "makeameme", "org" which
indicate sources of memes). These plots show sig-
nificant bias, in terms of content and frequency,
between train and test distributions.

B Hyper-parameter settings

XGBoost classifier hyper-parameters is shown in
Table 5, the BERT fine-tuning hyper-parameters
is in Table 6, and the UNITER fine-tuning hyper-
parameters shown in Table 7.

Hyper-parameters Value
objective binary:logistic
n_estimator 800
learning_rate 0.03
subsample 0.90
max_depth 7
lambda 10
colsample_bytree 0.85
reg_alpha 10
reg_lamba 10
scale_pos_weight 15

Table 5: Hyper-parameters of XGBoost classifier

C keywords for crawling meme data from
search engines

The keywords for misogynous memes are
{’meme misogyny’,’meme anti-feminist’,
’meme chauvinism woman’, ’meme sham-
ing/objectification/stereotype/violence/insult
women/woman/girl/female/feminine’, ’meme
sexist’ , ’woman/women/female/feminine hater’
}. The keywords for non-misogynous memes
are randomly selected neural words like {’meme
happy girl’, ’meme plants’, ’meme school’, ’meme
actress’} etc.

Hyper-parameter Value
learning rate 1e-5
learning rate decay linear
warmup fraction 0.1
Adam ϵ 1e-6
Adam beta1 0.9
Adam beta2 0.98
gradient clip norm 1.0
Weight Decay 0.01
Dropout 0.1
Batch Size 32
Train Epochs 10

Table 6: Hyper-parameters for BERT fine-tuning

Hyper-parameter Value
learning rate 1e-5
learning rate decay linear
warmup fraction 0.1
Adam ϵ 1e-6
Adam beta1 0.9
Adam beta2 0.98
gradient clip norm 2.0
Weight Decay 0.01
Dropout 0.1
Batch Size (Token
Batch)

5120

Train Epochs
10 for

fine-tuning
max txt len 60

Table 7: Hyper-parameters for UNITER fine-tuning

D Experimental results for the late
sequential fusion

Figure 6 shows the intial CLIP-image XGBoost
classifier’s tendency to misclassify the negative
sample as positive samples. Figure 7 shows the
intermediate ensemble performance.
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Figure 6: Confidence probability density distribution
of textual and visual modalities in "CLIP + XGBoost".
Aligned with the TSNE visualization, many negative
examples are incorrectly identified as positive examples.

Figure 7: Some extra experimental for the combination
of fine-tuning and XGBoost. Normal fine-tuning makes
the model learn more towards the training data and
performs relatively poorly in the test set. Fine-tuning
with domain adaptation can improve the generalization
ability of the model. Also according to the dashed line,
it can be seen that XGBoot still has a large improvement
in the results after fine-tuning.

(a)

(b)

(c)

(d)

Figure 8: Text analysis of train dataset and test dataset.
(a) and (b) corresponds to unigram features. (c) and (d)
corresponds to bigram features of train and test dataset.595



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 9: Different image and text semantic relations in MAMI. a-c only text decide the meme semantic, d-f only
image decide the meme semantic, g-i text and image together decide the semantic
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Abstract

Women are frequently targeted online with hate
speech and misogyny using tweets, memes,
and other forms of communication. This paper
describes our system for Task 5 of SemEval-
2022: Multimedia Automatic Misogyny Identi-
fication (MAMI). We participated in both the
sub-tasks, where we used transformer-based ar-
chitecture to combine features of images and
text. We explore models with multi-modal
pre-training (VisualBERT) and text-based pre-
training (MMBT) while drawing comparative
results. We also show how additional train-
ing with task-related external data can improve
the model performance. We achieved sizable
improvements over baseline models and the of-
ficial evaluation ranked our system 3rd out of
83 teams on the binary classification task (Sub-
task A) with an F1 score of 0.761, and 7th out
of 48 teams on the multi-label classification
task (Sub-task B) with an F1 score of 0.705.

1 Introduction

Despite its unique advantages, social media is con-
sidered to be one of the harmful elements of society,
if not monitored properly. It has become a medium
to express hatred towards particular groups, es-
pecially women. Women have a strong presence
online and have become victims of systematic in-
equality and discrimination which is reflected from
the behavior offline. Violence has increased to the
point where for many girls, abuse is a day-to-day
reality. A landmark survey conducted by Plan In-
ternational in more than 20 countries has revealed
shocking accounts of escalating online violence
against girls and women, with respondents exposed
to explicit messages, pornographic photos, cyber-
stalking, and other forms of internet abuse. The
most common type of online harm includes using
abusive and insulting language, followed by delib-
erate embarrassment, body shaming, and threats of
sexual violence.

One of the most popular communication tools in
social media is a meme. It is a combination of im-
age and text, created typically for humor. SemEval
2022 Task 5 is the first misogynistic meme detec-
tion challenge that incorporates several categories
such as stereotyping, shaming, objectification and
violence.

Pre-trained language models such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019), etc.,
have emerged as the state-of-the-art models for
many NLP tasks such as text classification, ma-
chine translation, sequence tagging, etc., mainly
due to their rich contextual embeddings. Hence,
we chose a transformer-based architecture to fuse
both visual and textual features. Two types of pre-
training techniques are explored in this paper: text-
based and multi-modal-based. Instead of directly
using a pre-trained text transformer, we further
train RoBERTa on task-related data and fine-tune
the model with extended visual features extracted
from a image classification network (e.g. ResNet).
We also use ensemble learning to combine the re-
sults of the two pre-training techniques.

We achieved significant improvement over base-
lines in both the sub-tasks. We were ranked (1)
3rd with an F1-macro score of 0.761 in sub-task A
and (2) 7th with a weighted F1 score of 0.705 in
sub-task B among 83 teams. We release the code
for models and experiments via GitHub 1

The rest of the paper is organized as follows:
Section 2 describes the challenge, followed by a
brief literature survey. Section 3 explains the pro-
posed approach in detail while section 4 presents
the experimental details required to reproduce the
results. Results and analysis are shown in section
5. Finally, conclusions are drawn in section 7.

1https://github.com/rak55/
ASRtrans-semeval2022
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Label No. of samples
Misogynous 5044
Shaming 1274
Objectification 2204
Violence 962
Stereotype 2844

Table 1: Distribution of training data.

2 Background

2.1 Problem Description
SemEval 2022 Task 5: MAMI: Multimedia Auto-
matic Misogyny Identification (Fersini et al., 2022)
consists of two sub-tasks: Sub-task A is a sim-
ple binary classification task to identify whether
a meme is misogynous or not. Sub-task B is
an advanced multi-label classification task, where
memes are further classified among four categories
namely stereotype, shaming, objectification, and
violence.

2.2 Related Work
Multimodal data classification There are two
types of approaches to multimodal data classifi-
cation: late fusion and early fusion. Early works on
multimodal data employed late fusion techniques
such as combining major image features with bag-
of-words-based text features (Tian et al., 2013). In
this approach, two separate models are trained with
images and text and their outputs are combined at
a later stage. (Zhang and Pan, 2019) used a late
fusion of CNN-based image features and RNN-
based text features. The late fusion approach can
be used even if one of the modalities is missing
in the input. The disadvantage of this approach
is, it fails to learn the interactions between dif-
ferent modalities. On the other hand, early fu-
sion approaches use joint representations of images
and text, thereby training a single model to learn
within and across both modalities. With the de-
velopment of pre-trained language models such as
BERT, early fusion models like VisualBERT (Li
et al., 2019), Vision and Language BERT (Lu et al.,
2019), Visual-Linguistic BERT (Su et al., 2019),
Multimodal Bitransformers (MMBT) (Kiela et al.,
2019) and Learning Cross-Modality Encoder Rep-
resentations from Transformers (Tan and Bansal,
2019) have quickly risen in popularity. However,
early fusion models may perform poorly because
using a single optimization strategy is sub-optimal
for a model dealing with multiple modalities as

Figure 1: Frequency distribution of #labels per meme.

explained in (Wang et al., 2019).
Multi-label classification There are mainly

three different techniques to solve a multi-label
classification problem (sub-task B) : Binary Rele-
vance, Classifier Chains (Dembczyński et al., 2010)
and Label Powerset method (Boutell et al., 2004).
Binary Relevance treats each class independently
and ignores label dependence. The Label Powerset
method considers each combination of labels as a
distinct class, thereby transforming a multi-label
classification problem into a single-label problem.
Classifier Chains connects binary classifiers in a
chain such that the output of one classifier is treated
as the input feature for the subsequent classifier.

3 System Overview

We explored models using both single-task and
multi-task learning approaches. Since multi-task
learning did not provide any significant improve-
ment, our final model was trained using single-task
learning. Consequently, we trained models using
one modality (either text or image) and both modal-
ities for the sake of comparison. We also compared
the performance of models with and without multi-
modal pre-training.

3.1 Data

The training data provided for this task consists
of 10,00 memes. The text transcription of memes
along with the annotated labels for each image file
is provided in a .csv file. Memes in the dataset
are of random size. The distribution of different
labels in the public training data is shown in Table
1. The frequency distribution of the number of la-
bels per meme is shown in Figure 1. Each meme is
labeled as either misogynous or non-misogynous
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Figure 2: Architecture of the proposed model.

and in turn, misogynous memes are further classi-
fied among potential overlapping categories. 20%
of data is randomly sampled from the training data
for validation. The final test data provided for eval-
uation consists of 1000 memes.

3.2 Single modality approach
3.2.1 Text-based approach
We tested the following text-based models: i) A
bidirectional LSTM model with Glove embeddings.
ii) Pre-trained RoBERTa-base model fine-tuned
with a classification head. iii) Ernie-2.0 (Sun et al.,
2019), fine-tuned in the same way as RoBERTa-
base model. RoBERTa model is further trained
with external data and fine-tuned with training data
for classification.

3.2.2 Leveraging External data
RoBERTa (Liu et al., 2019) has 12 layers, 12
heads, and a hidden layer dimension of 768. It
is trained with masked language modeling on
five datasets: BookCorpus, English Wikipedia,
CC-News, OpenWebText, and Stories. We ini-
tiated it with pre-trained weights and trained on
sexism-based datasets using the HuggingFace li-
brary. Sexism-based datasets are used since the lan-
guage and content present is similar to our training
dataset. (Grosz and CONDE-CESPEDES, 2020)
introduced a labeled dataset consisting of sexist
comments made in the workplace. We took 624
comments labeled ’sexist’ out of 1137 comments
present in this dataset. (Singh et al., 2021) pre-
sented a dataset to determine the use of sexism in
English sitcoms from which, we extracted 1631
sexist text instances. From EXIST2021 dataset
(Rodríguez-Sánchez et al., 2021-09), sexist text
instances in English language are extracted. Alto-
gether, we curated 5049 sexist text instances for
training. Since the acquired dataset is small, we

did not train the RoBERTa model from scratch. We
call this model tuned RoBERTa (tRoBERTa) for
the entirety of this paper.

3.2.3 Image-based approach
We fine-tuned several large-scale image feature ex-
traction networks such as VGG-16 (Liu and Deng,
2015), ResNet-50, ResNet-152 (He et al., 2015)
and Vision transformer (Dosovitskiy et al., 2021)
for both the sub-tasks.

3.3 Multimodal input

We implemented the late fusion approach men-
tioned in section 3.2.1 by combining image features
from VGG-16 and text features from a BiLSTM
model. Besides, we also trained the state-of-the-
art multimodal models such as VisualBERT and
MMBT described in section 2.2.

VisualBERT is an integration of BERT and
pre-trained object proposal system, Faster-RCNN.
Similar to BERT, VisualBERT is pre-trained using
two language model objectives: 1) Masked lan-
guage modeling, where part of the input text is
masked and predicted using contextual visual and
text tokens. 2) Sentence-image prediction where
the model determines if the text data matches the
image or not. By combining image and text re-
gions through a transformer, VisualBERT aims to
learn useful alignments between them. For this
purpose, it uses unordered visual embeddings ex-
tracted from an object detector, each correspond-
ing to a bounded region in the image. In addition
to BERT inputs, VisualBERT takes visual embed-
dings, visual token type ids, and visual attention
masks as input. We fine-tuned VisualBERT for the
task which is pre-trained on the VQA task with
COCO dataset. Image features are extracted from
a ResNeXt-based Faster RCNN, pre-trained on Vi-
sual Genome dataset.

MMBT combines representations from large lan-
guage models and state-of-the-art convolutional
neural networks in a straightforward way. It em-
ploys a BERT-base uncased model (12-layer 768-
dim) trained on English Wikipedia. It uses N sepa-
rate image embeddings extracted from the ResNet-
152 network with average pooling over K x M
grids (N = K x M ). The dimension of each em-
bedding is 2048. MMBT maps these image em-
beddings to BERT’s token space using a set of
randomly initialized mappings. The output of the
[CLS] token in the last layer of BERT is given to
a dense layer for classification. In our system, we
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Model Task A Task B
BiLSTM + Glove emb. 0.585 0.571
RoBERTa (single-task) 0.646 0.629
RoBERTa (Multi-task) 0.648 0.631

Ernie-2.0 0.643 0.630
VGG-16 0.639 0.610

ResNet-50 0.617 0.608
ResNet-152 0.631 0.611

Vision Transformer 0.624 0.609
VGG-16 + BiLSTM 0.641 0.625

MMBT 0.725 0.669
VisualBERT 0.723 0.673

MMBT with tRoBERTa 0.751 0.700
Avg. Ensemble 0.761 0.705

Table 2: F1 score of all the major models on test dataset for both the sub-tasks. Avg. Ensemble is the weighted
average of both the models.

use the tuned RoBERTa (tRoBERTa) described in
section 3.2.2 instead of the BERT model used in
the original implementation. The architecture of
our proposed model is shown in Figure 2. This
model is fine-tuned with a classification head on
top by optimizing focal binary cross-entropy loss
for multi-label classification.

3.4 Ensemble Learning

Multimodal models such as VisualBERT and
MMBT differ in their training procedures and the
datasets on which they are trained. Hence, they
may focus on different aspects of the input. So, it is
a good practice to combine the results of these two
models to learn accurate representations. There are
several ways to combine them: we can concatenate
embeddings of different models and project them to
a low dimensional space for prediction, but this will
require high computational power. Instead, we can
train these models independently and later combine
their predictions. In a Weighted-Average Ensemble,
results are obtained by taking a weighted average
of the predictions. In this case, the weights are
obtained by grid search on the validation dataset.
Another way to combine the predictions is the Vot-
ing Ensemble method, where the class predicted by
the majority of the models is considered as the final
output. We experimented with both approaches
and found that the weighted average method yields
better results than the voting ensemble method.

Rank Team F1-macro
1 SRC-B 0.834
3 DD-TIG 0.794
5 NLPros 0.771
6 ASRtrans 0.761
61 Baseline_Text 0.640
62 Baseline_Image 0.639
79 Baseline_Image_Text 0.543

Table 3: Comparison of our sub-task A results with
those on leaderboard.

4 Experimental Setup

We used pytorch (Paszke et al., 2019) and Hugging-
Face library (Wolf et al., 2019) for training and
inference. All the models are trained on Google
Colab. AdamW (Loshchilov and Hutter, 2019) op-
timizers with learning rates of 2e-5 and 5e-5 are
used for training Visualbert and MMBT models
respectively. Other text models such as RoBERTa
and Ernie-2.0 also use AdamW optimizer with a
learning rate of 2e-5. The maximum length of the
text is limited to 50. We chose a batch size of 32
for training all the models. All the hyperparameters
are tuned on the validation set which is 20% of the
training data.

4.1 Data prepocessing

An input image is resized to 256 x 256 and then
center-cropped to 224 x 224, followed by normal-
ization before passing into MMBT. Text transcrip-
tions of memes are cleaned to get rid of any URLs,
HTML tags, and punctuation. Subsequently, they
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Rank Team F1
1 SRC-B 0.731
7 NLPros 0.720
8 QMUL 0.713
14 ASRtrans 0.705
41 Baseline_Hierarchial 0.621
48 Baseline_Flat 0.421

Table 4: Comparison of our sub-task B results with
those on leaderboard.

are annotated with the [CLS] token in the beginning
before passing to the model. Removing stopwords
showed a slight deterioration in the performance.
Hence, we did not remove them.

4.2 Data Augmentation
Data augmentation is widely used to generate
slightly variant larger datasets from the existing
smaller ones. Since one recurring issue among all
the models we trained is overfitting, three types of
data augmentation techniques are tested to address
this issue. We applied contextual augmentation for
labeled sentences as proposed in (Kobayashi, 2018).
In this method, we replace the words in a sentence
with words predicted by a bi-directional language
model. We also tested the back-translation ap-
proach proposed in (Sennrich et al., 2016) and easy
data augmentation (EDA) techniques described in
(Wei and Zou, 2019). We observed that while back-
translation and contextual augmentation slightly
improved the performance of the model, the use of
EDA degraded it.

4.3 Loss functions
We trained our model for sub-task A with binary
cross-entropy loss, whereas for sub-task B we used
focal loss. Focal loss (Lin et al., 2020) is a form of
cross-entropy loss, but it is dynamically scaled. It
is computed as:

FL (pt)
′
= (1− pt)γ log (pt)

′

By setting γ > 0, we are reducing the relative
loss for easy, well-classified examples (pt > 0.5).
For prediction, we used a threshold of 0.35 as it
produced better results on the validation set.

5 Results and Analysis

We have tested transformer and non-transformer-
based models with features extracted from text,
images, and a combination of text and images as

System F1
MMBT with RoBERTa 0.682
+ tuned RoBERTa 0.690
+ focal bce loss 0.696
+ threshold at 0.35 0.700

Table 6: Sub-task B (dev): Incremental analysis of our
system.

input. We experimented with models that employ
text and multimodal pre-training like MMBT and
VisualBERT respectively. The results of these ex-
periments are summarized in Table 2. We can infer
from the results that pre-training transformer-based
language models give better results compared to
LSTM-based text models. This performance can
be attributed to their rich contextual embeddings.

No. of img embeds F1
1 0.751
3 0.743
4 0.739
5 0.740

Table 5: Comparison of results of sub-task A with dif-
ferent number of image embeddings.

Our model (MMBT with tuned RoBERTa) per-
forms slightly better than VisualBERT without any
multimodal pre-training. This is because Visual-
BERT is pre-trained on Microsoft’s image anno-
tation dataset COCO and most real-world multi-
modal inputs are not as straightforward as a caption
describing an image. For the model to adapt to the
target domain, we need additional pre-training with
the data of interest. In our case, instead of extra
multimodal pre-training, we just trained the text
model (RoBERTa) for a few epochs using external
data. This is computationally more efficient and
flexible. Furthermore, this approach can be easily
applied to inputs with missing modalities.

The performance of our model on the develop-
ment set with a different number of image embed-
dings is shown in Table 5. Using a single image
embedding gave better results than using multiple
ones. Also, an incremental analysis of our system
is shown in Table 6. This shows the importance
of further training RoBERTa and focal loss. Be-
sides, combining VisualBERT and our model in an
ensemble gave an additional performance boost of
around 1% (F1 score) in sub-task A and 0.5% in
sub-task B.
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Meme

Pred. label stereotype, violence
stereotype, objecti-
fication

shaming, stereo-
type, objectification

objectification

Org. label stereotype, violence
stereotype, objecti-
fication

non-misogynous
shaming, stereo-
type

Table 7: Sample test predictions of our model.

Comparison of the results of our model with the
top submissions on the leaderboard for sub-task
A and sub-task B are reported in Table 3 and 4
respectively. The official baselines for sub-task A
are fine-tuned USE sentence embeddings (only text
as input), fine-tuned VGG-16 model pre-trained
on ImageNet dataset (only image as input), and
concatenation of the above two models (image plus
text as input). Baselines for sub-task B are: i) flat
multi-label classification model with the concate-
nation of USE sentence embeddings and VGG-16
model features. ii) a hierarchical multi-label model
based on USE sentence embeddings. Our model
outperforms the best baseline model by 12% in
sub-task A and 8.4% in sub-task B.

Error analysis of our model is shown in Table
7. The first two columns are examples of correctly
classified memes whereas the last two columns are
the incorrectly classified ones. The Model fails
to classify the third meme as non-misogynous be-
cause it overlooks the word ’not’. This has been
a common problem in language models such as
BERT since they don’t understand negation well,
resulting in incomplete syntactic knowledge. In the
last meme, the usage of the words sexual objects
most likely misled the model into classifying it as
objectification without taking into account ’not’.
As this is a common error, in future, special meth-
ods should be devised to help models overcome
it.

6 Conclusion and Future Work

We conducted experiments with models trained
on features extracted from text, images, and both
modalities combined for meme classification. To
evaluate the text-based approach, we trained lan-
guage models such as RoBERTa, Ernie-2.0, etc.,
and RNN-based models. Subsequently, we con-

cluded that the transformer-based models produced
best results. We showed that further training
the RoBERTa model (tuned RoBERTa) with task-
related data improves the performance. This tuned
RoBERTa model combined with the features from
ResNet-152 without multimodal pretraining per-
forms slightly better than VisualBERT. Further-
more, an ensemble of these two models gave an ad-
ditional performance boost. In the future, we plan
to test other problem transformation approaches
such as Classifier Chains and their variants for
multi-label classification in order to accurately
model label dependence and hierarchy. Addition-
ally, we plan to train VisualBERT from scratch on
meme datasets to see if there is an improvement in
its performance.
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Abstract

In the context of the Multimedia Automatic
Misogyny Identification (MAMI) competition
2022, we developed a framework for extract-
ing lexical-semantic features from text and
combine them with semantic descriptions of
images, together with image content represen-
tation. We enriched the text modality descrip-
tion by incorporating word representations for
each object present within the images. Im-
ages and text are then described at two lev-
els of detail, globally and locally, using stan-
dard dimensionality reduction techniques for
images in order to obtain 4 embeddings for
each meme. These embeddings are finally con-
catenated and passed to a classifier. Our results
overcome the baseline by 4%, falling behind
the best performance by 12% for Sub-task B.

1 Introduction

The Multimedia Automatic Misogyny Identifica-
tion (MAMI) competition (Fersini et al., 2022) con-
sists in the identification of misogynous memes,
taking advantage of both text and images available
as source of information. The task was organized
around two main sub-tasks. Sub-task A: a basic
task about misogynous meme identification, where
a meme should be categorized either as misogy-
nous or not misogynous; Sub-task B: an advanced
task, where the type of misogyny should be rec-
ognized among potential overlapping categories

such as stereotype, shaming, objectification, and
violence.

In this paper, we present a proposed solution for
Sub-task B only, which consists of a framework
for extracting lexical-semantic features from text
and combine them with semantic descriptions of
images, together with image content representation.
We propose to use a pre-trained BERT model (De-
vlin et al., 2019) as lexical feature enhancer, and to
use a vision-language model (Zhang et al., 2021)
as visual descriptor.

The rest of this paper is organized as follows. We
introduce our multimodal framework in Section 2.
In Section 3 we present and discuss our results. We
conclude the paper in Section 4.

2 Methods

Fig. 1 shows a diagram of the method that we pro-
pose to describe memes using both visual and text
inputs. It is known that local descriptors can pro-
vide rich representations, as they can extract fine
details from local areas within documents (Lowe,
2004). Therefore, we compute two types of descrip-
tion for each modality -visual or text-. Namely,
global and local descriptors, and then concatenate
the resulting four descriptors into a single vector
that we use for classification.

More specifically, we relied on transfer learning
coupled with fine tuning procedures, in which one
pre-trained model was further adjusted for each of
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the four input modalities, and for the five classes
problem presented by the MAMI competition.

2.1 Image descriptors

We describe images at two levels of detail. First
globally using a pre-trained CNN, and also lo-
cally by detecting and describing individual objects
within the images.

2.1.1 Global descriptors
In order to generate a global visual description
of the image, we use the InceptionV3 (Szegedy
et al., 2016) network pretrained on ImageNet (Rus-
sakovsky et al., 2015) to perform a fine tuning on
the MAMI dataset. The classification head is re-
placed with a global average pooling, a dropout
layer, and 4 dense layers with weights randomly
initialized. The first three dense layers have 1024,
512, and 64 units. The last dense layer has five
units with sigmoid activations.

To train the network, first the convolutional basis
is frozen and the parameters of the classification
head are optimized for ten epochs using a learning
rate of 1e−3. Next, all parameters are unfrozen and
retrained with a smaller learning rate (1e−5). The
training is stopped by using the regularization strat-
egy of Early Stopping to avoid overfitting. Once
the training process is completed, a 64-vector of
floating-point values is generated for each image.
This descriptor is obtained in inference mode from
the output of the penultimate dense layer.

2.1.2 Local descriptors
We detect and describe each of the objects con-
tained in the images by means of the pre-trained
VinVL model (ResNeXt-152 C4 architecture)
(Zhang et al., 2021). VinVL was pre-trained on
four public datasets specialized in object localiza-
tion, so it considers up to 1848 object categories
and 524 attribute categories (nouns and adjectives
respectively).

This stage generates a feature vector of length
2048 for each object within the image. More pre-
cisely, this step produces a matrix of varying length
according to the number of objects detected in an
image, where each component is a fixed-length vec-
tor of size 2048. We post-process this matrix using
Principal Component Analysis (PCA) on both of
its axes, and recovering the eighth principal com-
ponents for each axis. This is, we identify features
corresponding to the eighth most relevant objects in
a given image, as well as those corresponding to the

eighth most relevant variables describing each ob-
ject representation, both of them in an orthogonal
space of PCA that is independent across images.

This PCA processing results in a 64-D represen-
tation of the visual features for all object detected
within an image.

2.2 Text representations

Analogous to the image processing stage, we also
describe the meme’s text transcriptions at two lev-
els of granularity. First, generating an embedding
for the whole sentence, and then incorporating in-
dividual word representations.

2.2.1 Contextual embeddings
We generated a global sentence embedding for each
meme transcription. This was performed using
a pre-trained BERT model (Devlin et al., 2019).
Namely, the small uncased BERT “L-4 H-512 A-
8” for English language (Turc et al., 2019). This
model was used up to the layer that produces its
so-called pooled output, which provides a sentence
embedding vector of 512 elements. We connected
such output to a classification multi-layer percep-
tron (MLP) for fine tuning the model.

The classification MLP, added to BERT for fine
tuning, consists of two fully-connected hidden lay-
ers of 512 and 64 perceptrons, and a final 5 units
layer that performs multi-class multi-label classifi-
cation for the five possible labels defined for this
challenge. Both hidden layers contain ‘swish’ acti-
vation functions, while the output layer implements
‘sigmoid’ non-linearities to ensure that it outputs
values bounded between 0 and 1. We chose ‘swish’
as activation function to obtain a smooth transi-
tion between the positive and negative sides of the
response space of the non-linear projection (Ra-
machandran et al., 2017). Dropout layers with rate
equal to 0.1 were added in between fully-connected
layers.

We performed fine tuning of this model on the
training set of the MAMI challenge. First, warming
up only on the added MLP during 8 epochs. Then,
on the full model during 8 more epochs. Both
training stages made use of the Adam optimizer
(Kingma and Ba, 2014), the first one with initial
learning rate of 3e−3 and the latter with 3e−5.

2.2.2 Enhanced vocabulary representations
We enriched the text modality description by in-
corporating word representations for each object
present within the images. To this end, we relied on
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Figure 1: Architecture proposed

the pre-trained VinVL model (Zhang et al., 2021),
which is used to segment objects, and provides a
list of nouns and adjectives for each segmented
object. Some examples of words generated in this
stage are: woman, man, red, blue, thin, tall, etc.

This process produces as many lists as there are
objects detected within the image. We concate-
nated all individual words discovered for the same
image into a single vector. Then, we used this vec-
tor of nouns and adjectives to train a classification
network with the same architecture and process as
the one explained in sec. 2.2.1, i.e., the architecture
and training process are repeated on a different set
of parameters.

2.3 Classifier

After the individual training of each of the mod-
els described through sections 2.2 and 2.1, we used
them in inference mode to process their correspond-
ing inputs, and obtained their respective outputs up
to their next-to-last layers. This step produces a
64-D vector for each of the four models.

By concatenating these four representations into
a single vector, we produced a multi-modal feature
vector of length 256. This resulting vector is used
as input for a final MLP classification model, which
consists of nine fully-connected layers as shown in
Fig. 2.

This final model also uses ‘swish’ activation
functions for all hidden layers, and the ‘sigmoid’
activation function for its output layer. As shown
in Fig. 2, this model is organized in four blocks,

each of which is composed by: a regularization pro-
cess plus two consecutive fully-connected layers.
Regularizers are either dropout or batch normaliza-
tion. Dropout regularizers use a dropout rate of 0.3.
Similarly to the previous individual models, this
one also uses an output layer of five perceptrons
corresponding to each of the five possible classes
in the classification task.

2.4 Training

The final classification model was trained using bi-
nary cross entropy as loss function, and the Adam
optimizer (Kingma and Ba, 2014) with default pa-
rameters as implemented in tensorflow: learning
rate η = 0.001, decay for the smoothing of first and
second order moments β1 = 0.9 and β2 = 0.999,
and minimum tolerance ε = 1e−7. We trained this
model during 50 epochs with batches of size 64.

We decided to stop training at 50 epoch, as we
observed after several attempts that the loss func-
tion has consistently converged by then, for both
training and validations sets, i.e., no overfitting was
observed.

3 Results and discussion

Table 1 shows the accuracy obtained by our model
during training and validation, as well as the F1
score obtained on the test set as reported by the
server of the MAMI challenge. These scores are
presented for Task B (multi-class - multi-label clas-
sification) and for three models: the baseline as
reported by the organizers of the challenge; our
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Figure 2: Classification MLP that processes the merged
multi-modal feature descriptor.

proposed model; and the best model submitted to
the leader board of the competition.

Model Training Validation Test (F1)
Baseline − − 0.621
Ours 0.937 0.895 0.646
Best − − 0.731

Table 1: Performance on Sub-task B from the base-
line model, our proposed model, and the top model
reported on the leader board. Columns Training and
Validation report accuracy, while column Test reports
the F1 score.

Fig. 3 shows the confusion matrices produced by
our model on the instances of the MAMI challenge,
computed on the joined training and validation sets.
We show five confusion matrices because the cate-
gories are not mutually exclusive. Each of the ma-
trices contains true negatives [0,0], false positives
[0,1], false negatives [1,0], and true positives [1,1].
In all cases, the accuracy is greater than 0.90, with
the “misogynous” class having the highest score
(0.97) and the stereotyped class the lowest (0.90).
Using the F1 measure, the “shaming” and “vio-
lence” (the most unbalanced) classes have the worst
performance with 0.68 and 0.71 respectively. This
situation is due to the small number of true positive
instances in these two classes, which might bias the
model towards the prediction of the negative label.
Meanwhile, the “misogynous”, “stereotype” and
“objectification” (the most balanced) classes have a
similar performance with an F1 score above 0.82.
Moreover, the classes with the lowest performance,
have a proportionally much lower number of train-
ing examples. This fact limits the fine tuning of the
model parameters in the overall training process.

Fig. 4 visualizes the ROC curve, which repre-
sents the rate of true positives versus the rate of
false positives. As in the confusion matrices, it can
be observed that the best performance is obtained
in the class “misogynous”, while the worst occurs
with the classes “shaming” and “violence”.

4 Conclusions

In this paper, we proposed a framework for extract-
ing lexical-semantic features from text and com-
bine them with semantic descriptions of images in
the context of the Multimedia Automatic Misogyny
Identification (MAMI) competition 2022. Our re-
sults overcame the baseline by 4%, but fell behind
the best performance by 12% for Sub-task B. Our
model’s performance could be explained by the un-
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(a) Misogynous. (b) Shaming.

(c) Stereotype. (d) Objectification.

(e) Violence.

Figure 3: Confusion matrices for the 5 classes in the
challenge.

Figure 4: ROC curve for the five classes in the MAMI
challenge: “misogynous”, “shaming”, “stereotype”,
“objectification”, and “violence”. “Shaming” and “vi-
olence” curves are overlapped.

balanced classes and low number of examples, and,
therefore, is limited in this sense, achieving a per-
formance below 0.9 and around 0.7, for accuracy
and F1 measure, respectively. Still, for balanced
classes we obtained a performance above 0.9 and
0.8, in terms of accuracy and F1 score respectively.
As future work we propose three alternatives: 1) To
fine tune the classification threshold of the sigmoid
output layer of the model, independently for each
class, i.e., not all classes need to have 0.5 as clas-

sification threshold; 2) Optimize the loss function
directly on the F1 score; and, 3) Weight the con-
tribution of each class in the overall loss function
during backpropagation.
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Abstract
Gender discrimination is a serious and
widespread problem on social media and online
in general. Besides offensive messages, memes
are one of the main means of dissemination for
such content. With these premises, the MAMI
task was proposed at the SemEval-2022, which
consists of identifying memes with misogynous
characteristics. In this work, we propose a so-
lution to this problem based on Mask R-CNN
and VisualBERT that leverages the multimodal
nature of the task. Our study focuses on observ-
ing how the two sources of data in memes (text
and image) and their possible combinations im-
pact performances. Our best result slightly ex-
ceeds the higher baseline, but the experiments
allowed us to draw important considerations re-
garding the importance of correctly exploiting
the visual information and the relevance of the
elements present in the memes images.

1 Introduction

Even though many advances and initiatives have
been carried on in the last decades, misogyny and
gender discrimination still represent a serious so-
cial problem. Comments and posts with hate mes-
sages or bad jokes having the female gender as the
target are published every day on social networks.
Memes are the most popular means of communi-
cation on the internet. A meme basically is an
image with overlayed text. The combination of
image and text should transmit in a clear and di-
rect way a message, which is often funny or ironic.
However, many users use them to spread hate or
discriminatory messages against certain categories
of people. Considering the number of contents that
are published online every moment, social network
administrators require automatic tools to identify
and remove this type of memes. Such tools can
be an effective way to fight and stop sexist and
misogynous manifestations online.

For the SemEval-2022 it has been proposed
the Multimedia Automatic Misogyny Identification

(MAMI) task (Fersini et al., 2022), which consists
of identifying misogynous memes.

In this work, we present our proposed solution
for subtask A of MAMI, which is a binary classifi-
cation problem where a meme must be categorized
as misogynous or non-misogynous. Our solution
exploits the multimodal nature of the available data
(a meme is represented by a pair image - overlayed
text) by using a VisualBERT model together with
a Mask R-CNN. Our solution classified 35th out
of 69 participants, getting an F1 score 2% higher
than the best baseline. Beyond metric values, our
work highlights the different importance of various
visual elements and how their usage can affect the
performances.

2 Task Overview

The purpose of MAMI is identifying misogyny con-
tents and messages within memes through the use
of visual and textual information. Organizers set up
this task as a competition, providing an annotated
dataset and proposing two different sub tasks.

2.1 Dataset

The training dataset contains 10000 memes. Each
sample is composed of a pair (image, text) cor-
responding to the visual and textual information
inside the meme.All texts transcripts are already
extracted from pictures and available in English lan-
guage. Data samples are labeled with five different
binary tags, each aimed at identifying a different
type of hate content: misogyny, objectification, vi-
olence, stereotype and shaming. More than one
class can characterize a single data sample.

During the final phase of the MAMI challenge,
task organizers released a test dataset, made by
1000 elements, which labels were released at the
end of the competition only. Therefore, we decided
to reserve 25% of the labeled training samples for
the validation set to perform our experiments.

In addition to general information, we compute
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some image-related statistics to analyze and com-
pare all dataset splits. In particular, we use Mask R-
CNN (He et al., 2018) classification and bounding-
box regression branches to identify which, how
many and how large are the most frequent ele-
ments within the images. We try two different
Mask R-CNN pretraining: the former trained on
COCO (Lin et al., 2015) (91 classes) while the lat-
ter trained on LVIS version 0.5 (Gupta et al., 2019)
(1230 classes).

Computed statistics for both mask R-CNN pre-
trainings are reported in Table 1. Comparing the
two, it is possible to observe how the COCO
pretraining allows identifying elements in greater
quantity and of greater dimensions than the LVIS
one. This is a strange result considering the higher
number of classes contained in LVIS. Looking
in detail at the detected objects we noticed that
the majority of elements identified by the COCO-
pretrained network belong to the class "person"
(∼ 63% for train and validation, ∼ 68% for test).
This category is not present among those of LVIS,
which instead detects as most popular categories
some types of clothing and jewelry, such as swim
suits, dresses, necklaces and earrings (each appear-
ing at most in ∼ 8% of predicted classes). More-
over, COCO pretraining performs better also in
other domains different from photos, such as draw-
ings and cartoons, where LVIS pretraining is often
not able to detect and extract any relevant patch. A
last noteworthy fact is the dimensional discrepancy
between the test and the other splits when using
the COCO pretraining. Even though the detected
object ratio is lower on the test set, the percentage
of covered picture is higher, implying that elements
in test images are larger but in less quantity than in
the other splits.

2.2 Sub-tasks

Regarding the goals of the challenge, the MAMI
task is split up into two sub-tasks:

• Sub-task A consists of a binary classifi-
cation problem, where each sample/meme
must be categorized as misogynous or non-
misogynous. The two classes are balanced.

• Sub-task B is a multi-class and multi-
label classification problem, where each
meme/sample must be assigned labels belong-
ing to 5 different classes: misogynous, stereo-
type, shaming, objectification, and violence.

It is an advanced task since the labels identify
more in-depth the type of offensive content
and the classes are unbalanced.

Our team worked on a solution for sub-task A only.

3 Related Works

Hate speech detection in text data has been deeply
studied in the last few years. State-of-the-art ap-
proaches usually apply transformers-based meth-
ods achieving impressive results. (Mozafari et al.,
2020) for example proposed different hybrid ar-
chitectures to fine-tune a BERT model (Devlin
et al., 2019) for detecting offensive tweets. How-
ever, identifying hate content in multimodal data
requires correlating visual and textual information
and introduces an additional challenge. Multi-
modal transformers, such as VisualBERT (Li et al.,
2019) and ViLBERT (Lu et al., 2019), are currently
the state-of-the-art models for these types of prob-
lems.

In 2020 Facebook AI organized the Hateful
Memes Challenge (Kiela et al., 2021). The compe-
tition was similar to MAMI and consisted of cate-
gorizing a meme as hateful or non-hateful. The
dataset contained memes with various types of
hate messages (e.g. targeting an ethnicity, a re-
ligion, or the sexual orientation of people). Win-
ning solutions all used ensembles of multimodal
transformers-based networks. (Zhu, 2020) won
the competition using a complex and task-specific
pipeline to extract additional information from the
data with which to fine-tune multimodal transform-
ers networks. (Muennighoff, 2020) and (Velioglu
and Rose, 2020), who ranked respectively second
and third, proposed simpler ensemble methods
based on VisualBERT and VilBERT-derived archi-
tectures.

Many other works regarding meme analysis for
hate speech detection can be found in the literature.
Each has its own peculiarities, often related to in-
formation extraction techniques, especially from
the visual content. Among them, the most used are
text removal, object detection, image captioning,
and entity recognition, such as in (Deshpande and
Mani, 2021), (Pramanick et al., 2021) and (Lee
et al., 2021).

4 Method

In this section, we present architectures and prepro-
cessing steps used to address sub-task A of MAMI.
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COCO LVIS

Split Size Detected
Objects

Objects
Ratio

Selected
Area

Detected
Objects

Objects
Ratio

Selected
Area

Train 7500 21480 2.86 51.55% 13665 1.82 13.20%
Validation 2500 7174 2.87 52.31% 4460 1.78 12.79%
Test 1000 2490 2.49 60.89% 1439 1.44 12.29%

Table 1: dataset statistics related to image content. For each split and for each pretraining version of Mask R-CNN
are reported the total number of detected objects, the average number of elements per image and the average
percentage of pixels per image contained in all the selected boxes .

First of all, we exploit single modalities separately,
through state-of-the-art deep models, to investigate
their relevance and the quantity of information they
carry on. Subsequently, we combine image and
text embeddings to estimate the performance of a
multimodal approach.

The strategies mentioned above can be consid-
ered as three baseline models in which the informa-
tion from each modality is retrieved without taking
into account the other one and then used both alone
or together. Afterward, we adopt early fusion meth-
ods to create a more informative embedding of a
whole meme, extracting information jointly from
both modalities with the same model. This allows
to directly obtain a final representation depending
on both text and image, thus removing the need for
a fusion point between unimodal embeddings.

4.1 Text Encoding

Transformer architectures (Vaswani et al., 2017)
are currently the state-of-the-art models in NLP
as regards the generation of textual embedding.
Among them, BERT (Devlin et al., 2019) is the
most renowned sentence encoder, with top-level
performances in encoding sentence semantics.

Our text-based baseline model exploits BERT
encoder to convert the input sentence into a 768-
dimensional embedding vector, obtained with a
mean pooling operation over all the output tokens.
The classification is accomplished by a single fully
connected layer. Both sentence encoder and classi-
fication head are trained end-to-end.

4.2 Image Encoding

Convolutional Neural Networks (LeCun et al.,
1999) are the type of model most commonly em-
ployed in image analysis. CNNs consist of a stack
of convolutional layers that extract visual elements
from the image, assigning each an appropriate rele-
vance. Among all CNNs, VGG16 (Simonyan and

Zisserman, 2015) is one of the most known and
used.

Our image-based baseline end-to-end model
uses the VGG16 feature extractor along with
a multi layer perceptron to obtain a 2048-
dimensional embedding vector from the entire orig-
inal input image. Once again, the classification
is accomplished by an additional fully connected
layer, as happens for the text, and the two pieces of
architecture are trained end-to-end.

4.3 Multimodal Fusion

As a naive multimodal solution, we combine each
modality embedding extracted with the previously
described techniques. Adopting this implementa-
tion we build an end-to-end architecture with two
input branches, one for each modality, and a single
classification head that takes as input the concatena-
tion of text and image representation vectors, thus
setting a late fusion point in the system.

4.4 Multimodal Extraction

Baseline architectures presented in previous sub-
sections suffer from several disadvantages. First
and foremost, the choice of fusion point is a criti-
cal decision during the construction of multimodal
architectures. A late fusion point does not allow
information contained in one modality to affect the
embedding creation of the others, limiting the in-
fluence between modalities only through the back-
propagation steps along with the end-to-end archi-
tecture. On the other hand, an early fusion has
proven to be the best choice for a wide range of
other tasks, such as in (Barnum et al., 2020) and
(Peinelt et al., 2020).

Another weakness is the usage of the entire in-
put image. The overlayed text in memes is often
characterized by a showy style. Since transcrip-
tions are available and typography is unlikely to
bring any useful information about hate content,
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the text should be removed from the pictures, or
simply not considered, to avoid affecting the image
representations with noise data.

VisualBERT (Li et al., 2019) is a novel trans-
former designed to address vision-and-language
tasks. It reuses self-attention mechanism to align
elements of the input text and regions in the input
image. VisualBERT is able to address all the weak-
nesses highlighted above. Input tokens originate
from both text and image concurrently, implicitly
setting an early fusion point at the model input
stage. Furthermore, image input tokens are typi-
cally extracted from the original picture as small
patch representations, instead of using the whole
figure, allowing to focus on important details and
ignoring text, background and noise elements. This
architecture has been successfully applied to other
tasks involving memes (Velioglu and Rose, 2020).

The criterion adopted to select the input patches
is based on Mask R-CNN. The same pretrainings
mentioned in the dataset sections are used to re-
trieve multiple Region Of Interest (ROI) in the pic-
ture. Then, if a ROI overcomes a fixed confidence
threshold, it is select as input token for VisulBERT.

Similarly to BERT, VisualBERT provides a 768-
dimensional vector for each input tokens, based on
both image and text information, that is finally fed
as input for the fully connected classification layer.

5 Experimental Results

5.1 Experimental Design

We try several configuration of the proposed archi-
tecture. During the ROIs identification step we ex-
ploit both COCO and LVIS pretraining, feeding the
model with the patches coming from both Mask R-
CNN versions, both separately and simultaneously.
Another setting of our architecture concerns the
use of transformer output embeddings as input for
the classification head: we feed the final fully con-
nected layer with both the CLS token embedding
only and the average of all input token embeddings.
During our experiments, one of the major issues
we faced was the small dimension of the dataset
and, consequently, the risk of overfitting. Thus, we
used our validation set, obtained with an hold-out
splitting as described in 2.1, to monitor the model
performance during training. Then, the test set is
evaluated selecting the best model according to the
results obtained on validation set. Task organizers
designated the F1 score as the official metric for
the competition, so we used it for model selection.

Algorithms’ configuration. We train our models
for 25 epochs to minimize BCE loss with AdamW
(Loshchilov and Hutter, 2019), using a batch size
of 32 and 10−5 as learning rate. Many of the best
models were obtained within of the first 10 epochs,
so there were no need for longer training sessions.
For the sake of reproducibility, the code is publicly
available in the project repository 1.

Hardware Settings. Experiments were per-
fomed on a machine equipped with AMD® Ryzen
9® 3950X CPU, Nvidia® RTX 3090 GPU, and 128
GB of RAM running Ubuntu 21.10.

5.2 Results

Table 2 shows F1 scores on validation and test set
of our baselines and proposed methods. We also
report the best organizers baseline result, which
was released at the end of competition.

As we can see, VisualBERT methods per-
form slightly better than our baseline approaches.
Among them, the unimodal BERT and the multi-
modal fusion method turn out to be our best base-
lines on the validation and test sets respectively,
while exploiting visual information only gives un-
satisfactory results. This leads us to formulate
some considerations about the nature of the task.
First of all, not in all memes the quantity of rele-
vant information is equally distributed between the
two data sources (image and text). Indeed, some
memes can be formed by a neutral image but a
very offensive text or by a neutral or ironic test
and a tacky image. The former can be success-
fully recognized by a text-only approach, which
can manage to classify also the latter if correctly
trained on identifying malicious messages in ironic
texts. On the contrary, image-only methods can
only spot misogyny in memes with explicit offen-
sive images. Furthermore, simple approaches that
focus on whole images like our VGG16 will fail to
link different objects in the image scene and to un-
derstand the context depicted in it. As a result, the
network will work properly only if the meme im-
age clearly contains the target of the hate message
(e.g. a woman on the foreground).

However, in some misogynous memes the hate
message is formed by the combination of an ap-
parently innocent meme and a neutral text. Vi-
sualBERT should be capable of merging the two

1The GitHub project repository is available
at https://github.com/VaianiLorenzo/
SemEval-2022-MAMI
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sources of information and putting them into con-
text, identifying these subtle cases. Indeed, it sig-
nificantly outperforms baseline methods in both
validation and test set.

Focusing on the VisualBERT-based methods, we
found that using the CLS token over the average of
the output embeddings for the classification gave
better results in general. We can see from Table 2
that all the three pretraining modalities for Mask
R-CNN led to similar results on the validation set,
with the LVIS one performing slightly better and
achieving an F1 score of 0.823. However, when
evaluating on the test set, VisualBERT with Mask
R-CNN pretrained on the COCO dataset performed
the best, with an F1 score of 0.67 and an improve-
ment of 4% over the other two methods and 2%
compared with task organizers baseline. Accord-
ing to the results, giving VisualBERT features from
both pretrained modalities gave no improvement.
The motivation behind this can be the high over-
lap probability between patches: combining them
brings no additional information and introduce re-
dundancy.

The performance gap between the COCO-
pretrained model and the LVIS one on the test set
compared to the validation can be explained by the
statistics described in Section 2.1. The pretrain-
ing on COCO allows the Mask R-CNN to detect
ROIs containing whole people, that is, it allows to
provide to VisualBERT features regarding the po-
tential targets of the misogynous messages. Since
more people are found in the test set images, Visual-
BERT can exploit the visual information in a more
effective way in those memes. Some examples of
critical types of memes discussed in this section
and their analysis can be found in the Appendix A.

Due to the limited number of examples, our mod-
els showed signs of overfitting after a few epochs.
Using the whole available training set brought no
improvements. Hence, we tried some solutions to
help the model to generalize better on unseen data.
We did a pre-train phase where we applied our
VisualBERT to the Hateful Memes task before fine-
tuning it on the MAMI one with a lower learning
rate. Unfortunately, this did not bring any improve-
ment. The model only converged faster on the
MAMI training set, maybe due to a similarity be-
tween the data of the two competitions. Afterward,
we tried to keep the VisualBERT layers frozen and
gradually unfreezing them during training, but also
in this case we got no improvements.

Model Val F1
score

Test F1
score

Task Baseline - 0.650
BERT 0.786 0.607
VGG16 0.696 0.571
BERT + VGG16 0.756 0.628
VB (COCO) 0.811 0.670
VB (LVIS) 0.823 0.631
VB (LVIS + COCO) 0.818 0.632

Table 2: F1 scores of our VisualBERT-based architec-
tures compared with both our and organizers baselines.
Best results obtained for validation and tests splits are
underlined and highlighted in bold respectively.

6 Conclusions and Discussion

In this work we demonstrate how leveraging the
multimodal nature of data allows to achieve a sig-
nificant boost in performance when facing tasks
involving memes. Moreover, we confirm that an
early fusion point between modalities implemented
using VisualBERT, the current state-of-the-art ar-
chitecture for vision-and-language tasks, can lead
to satisfactory results to the MAMI task. The re-
liability of this model allows us to focus on other
crucial aspects of the problem, such as the data to
use as input to the network. While unimodal trans-
formers successfully identify offensive content in
textual data, state-of-the-art computer vision mod-
els obtain lower results on this task when analyzing
visual information only. Catching the message of a
meme requires understanding the context created
by the text and the various elements depicted in
the image. A deep learning model will struggle
to form this context if the visual data are analyzed
as a whole. Therefore, we have to first extract the
relevant parts from the image and use their features
separately as input to our multimodal network. By
doing this, VisualBERT is capable of correlating
text and visual scene to create the aforementioned
context. Our experiments showed that the most
relevant elements in the images are people, likely
the target or the offender mentioned in the text.

Despite these discoveries, the extraction of infor-
mation from the pictures remains the main obstacle
of this task. As a future work, we plan to thor-
oughly investigate the content analysis of images.
In particular we would like to enrich the prepro-
cessing stage, performing captioning and entity
detection of the image, in order to transpose some
visual information in textual format.
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A Memes Examples

(a) Meme with a neutral image and offensive text. (b) Meme with neutral/ironic text and tacky image.

Figure 1: two example of misogynous memes where one of the two modalities, image in (a) and text in (b), contains
neutral and /or not useful information according to the task goal. These memes highlight the importance of a
multimodal approach.

(a) misogynous meme. (b) not misogynous meme.

Figure 2: Two memes from test set depicting a woman in the foreground. The image-only baseline model classifies
both memes as misogynous, probably due to the presence of a woman as main element in the picture. On the other
hand, our best performing model predicts the appropriate label, demonstrating that the text is definitely needed to
correctly classify these type of memes.
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Figure 3: Two misogynous memes depicting several people. The highlighted boxes are the Mask R-CNN ROIs:
red ones from the COCO pretraining and blue ones from the LVIS pretraining. As we can see, people are detected
only by the former, while the latter retrieves mainly small objects. Moreover, it is possible to notice blue boxes are
often contained in red ones, justifying why using COCO and LVIS pretraining jointly there is no improvement in
performances.

Figure 4: Two misogynous memes with cartoon style. The bounding boxes are all retrieved with Mask-R CNN
pretrained on COCO, which is able to detect people also in images other than photos. On the contrary, the LVIS-
pretrained model is often not able to identify any details in these kind of pictures.
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Abstract

In recent times, the detection of hate-speech,
offensive, or abusive language in online me-
dia has become an important topic in NLP re-
search due to the exponential growth of social
media and the propagation of such messages,
as well as their impact. Misogyny detection,
even though it plays an important part in hate-
speech detection, has not received the same
attention. In this paper, we describe our classifi-
cation systems submitted to the SemEval-2022
Task 5: MAMI - Multimedia Automatic Misog-
yny Identification. The shared task aimed to
identify misogynous content in a multi-modal
setting by analysing meme images together
with their textual captions. To this end, we
propose two models based on the pre-trained
UNITER model, one enhanced with an image
sentiment classifier, whereas the second lever-
ages a Vocabulary Graph Convolutional Net-
work (VGCN). Additionally, we explore an en-
semble using the aforementioned models. Our
best model reaches an F1-score of 71.4% in
Sub-task A and 67.3% for Sub-task B position-
ing our team in the upper third of the leader-
board. We release the code and experiments for
our models on GitHub1.

1 Introduction

The web and social network platforms, in particu-
lar, have become a significant part of our modern
social lives. Sharing information, opinions, news,
and jokes through these platforms with friends and
family are now daily routines. One of the most
prevalent forms of jokes in social networks are
memes. Internet memes are small cultural units that
are transformed, mixed, and shared using online
platforms, often spreading in a viral manner (Mil-
ner, 2013). A prolific part are image-based memes,
often available as templates that are accompanied
by humorous or witty text. Unfortunately, a consid-
erable proportion of the memes shared by Internet

1https://github.com/readerbench/semeval-2022-task-5

users are offensive or even hateful messages2.
Detecting hate and offensive speech is a signifi-

cant task for any online platform. Not only compa-
nies have this legal obligation in most countries, but
also such language establishes a toxic environment
that is detrimental to any online community on the
long run. Hate speech can take multiple forms, but
it is most frequently encountered as a disparaging
message on the basis of a characteristic as race,
gender, religion, and other criteria; Misogyny is
one such frequent form specific to meme culture
(Drakett et al., 2018; Phillips, 2012). Detecting
hate speech is often a hard problem, even in an uni-
modal setting since the message often relies on the
context, addresses current events, and incorporates
cultural knowledge that cannot be easily incorpo-
rated into an automated model. The multi-modality
of Internet memes increases the difficulty of the
task since many memes can have a seemingly be-
nign text that, contextualized with the associated
image, becomes offensive or hateful.

Multi-modal hate speech detection had less at-
tention in the research literature than traditional
text-only methods. In the past two years, sev-
eral datasets and challenges have addressed this
by proposing detection tasks on meme-based data
(Kiela et al., 2020; Gasparini et al., 2021; Miliani
et al., 2020). Misogyny detection, as a subgroup
of hate speech detection tasks, has also been more
frequently encountered in research in recent years.
The series of Automatic Misogyny Identification
tasks proposed at IberEval 2018, EVALITA 2018,
EVALITA 2020, and TRAC-2020 (Fersini et al.,
2018a,b, 2020; Kumar et al., 2020; Bhattacharya
et al., 2020) focused on the classification of tweets
in English, Spanish, Italian, Bangla, and Hindi lan-
guages. In these tasks, researchers identified misog-
ynous tweets and classified them as aggressive/non-
aggressive or active/passive.

2https://www.hmc.org.uk/blog/third-teenage-boys-admit-
sending-receiving-racist-homophobic-content-online/
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Semeval-2022 Task 5: MAMI - Multimedia
Automatic Misogyny Identification (Fersini et al.,
2022) is a multi-modal classification task, aim-
ing to detect misogynous memes by leveraging
both image and text information. The task in-
cludes two sub-tasks: a binary identification of
misogynous/non-misogynous memes (Sub-task A),
and a multi-label classification distinguishing be-
tween the types of misogyny, namely: stereotype,
shaming, objectification, and violence (Sub-task
B).

In this paper, we present our contribution to
this task by proposing two architectures based on
the pre-trained multimodal UNITER (UNiversal
Image-TExt Representation) model (Chen et al.,
2020), as well as an ensemble from these two mod-
els. UNITER is an early fusion model pre-trained
on large text-image datasets. UNITER leverages
visual and location features extracted with Faster R-
CNN (Ren et al., 2016), together with WordPiece
encodings (Wu et al., 2016) derived from text to-
kens using a Transformer-based model (Vaswani
et al., 2017). UNITER learns a generalizing rep-
resentation for the text-image context by bringing
the visual and text representations in a common
embedding space. We use UNITER at the core of
our two architectures: the first one enhances the
pre-trained model with image sentiment features
using a VGG-19 model (Vadicamo et al., 2017),
while the second leverages graph convolutions on
a co-occurrence graph (Kipf and Welling, 2016)
built from an external dataset.

2 Background

Multi-modal tasks were traditionally associated
with visual question answering (Goyal et al., 2017),
image captioning (Gurari et al., 2020), audio-
visual speech recognition (Paraskevopoulos et al.,
2020), or cross-modal retrieval (Wang et al., 2016).
With success of competitions like the Hateful
Memes Challenge (Kiela et al., 2020), more re-
search focused on multi-modal offensive classifi-
cation. Pre-trained transformer models such as
ViLBERT (Lu et al., 2019), VisualBERT (Li et al.,
2019), LXMERT (Tan and Bansal, 2019), Oscar
(Li et al., 2020), and others, dominated the compe-
tition leaderboard, either as stand-alone models or
in large ensembles. While considering UNITER,
Lippe et al. (2020) used an ensemble that placed
them in the top 5 teams.

3 Method

We explored two ways of enhancing UNITER, first
by adding a unimodal late fusion with a visual sen-
timent classifier, and second by using a multimodal
early fusion with a modified Vocabulary Graph
Convolutional Network (VGCN) (Lu et al., 2020;
Paraschiv et al., 2021).

Dataset analysis and preprocessing

The training dataset contains 10,000 records, half
of them misogynous. One misogynous record can
have one or more of the four labels. The class distri-
bution among the types of misogyny is as follows:
shaming - 1,274, stereotype - 2,810, objectification
- 2,208 and violence - 953 samples.

The text modality from the dataset was obtained,
as far as we can tell, through OCR without any
manual cleaning. This lead to the inclusion of
date, times, mobile carrier names, Facebook user
names or words on some unrelated objects in the
image like "Verizon LTE 4:41 PM Bikram Dec
11 at 12:31 AM". Additionally, many memes
contain the watermark of the publishing website:
"imgflip.com", "makeameme.org", "memez.com".
Since most memes use full uppercase fonts, the
letter casing was not reliable throughout the dataset
and we choose to lowercase all training entries.

In our experiments, we tried two types of data
cleaning techniques: one where we remove all
timestamps and date mentions using the SUTime
library (Chang and Manning, 2012) and a second
with the supplementary step of removing all web-
site mentions and Twitter usernames from the text.

Visual Sentiment-enhanced UNITER

Offensive texts, hate speech, and misogynous lan-
guage are often correlated with negative sentiments,
whereas the tone, context, and content is often
highly loaded with polarized language (Ali et al.,
2021; Gitari et al., 2015); as such, our intuition
to enhance the UNITER model with a sentiment
classifier. We focused only on image modality
since large language models often already capture
features required for text sentiment analysis. All
images were classified using a pre-trained VGG-19
model (Simonyan and Zisserman, 2014) fine-tuned
on the T4SA dataset (Vadicamo et al., 2017). The
resulting 4,096 sized feature vectors were fused by
concatenation with the UNITER’s pooled output
and classified through a fully connected layer in
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Figure 1: Illustration of the proposed UNITER-Sentiment model.

the classes for each sub-task (see Figure 1).

VGCN-enhanced UNITER

Graph enhanced BERT models have proven to be
powerful for text classification (Mamani-Condori
and Ochoa-Luna, 2021), even in multimodal tasks
(Vlad et al., 2020). Using a GCN on a vocabu-
lary graph (Kipf and Welling, 2016), the model can
train an embedding layer to be fused with the Trans-
former embedding, before being processed by the
multi-head attention layers. For our architecture,
we employ a novel approach, namely to create a
heterogeneous graph with nodes that represent text
tokens and objects detected by the R-CNN layer,
in the corresponding image.

A Kaggle dataset3 containing 3,000 meme tem-
plates and their various possible text captions, to-
taling 533,827 text records, was used to build the
aforementioned graph. The same R-CNN layer and
object-token encoding as the UNITER model were
considered to create a co-occurrence graph, having
nodes as BERT-token-IDs and detected object-IDs,
while edge values were computed using Point-wise
Mutual Information (PMI). In contrast to (Lu et al.,
2020), the obtained graph is independent of the
training dataset and can be used for several tasks
in the same domain.

In the training step, the UNITER image and text
embeddings are fed through a GCN layer on top
of the pre-built graph, thus generating a new em-
bedding vector. The concatenated text, image, and

3https://www.kaggle.com/zacchaeus/meme-project-raw

graph embeddings are then processed by multi-
head attention layers, while the pooled outputs are
classified using a fully connected layer (see Figure
2).

Ensemble model

In order to leverage the learning of both proposed
models, we also utilize an ensemble formed from
multiple versions of both models, trained on dif-
ferent train/dev/validation splits, that are then com-
bined via a soft voting scheme. The best per-
forming trained versions evaluated on our test set
were picked in the ensemble. For our final submis-
sion, we used the votes from 2 UNITER-Sentiment
with UNITER-base, 2 with UNITER-large, and 7
UNITER-VGCN with UNITER-large. We chose
these components of the ensemble based on the
results for Sub-task B on our validation set, as seen
in Table 1. Details on general hyper-parameters
across all models are presented in the subsequent
section. For UNITER-Sentiment models, we used
150 warm-up steps with a weight decay of 0.01, in
contrast to only 120 warmup steps with a weight
decay of 0.1 for UNITER-VGCN models. All
UNITER-VGCN models in our ensemble had a
graph embedding size of 16 and the edges had a
minimum normalized PMI (Bouma, 2009) of 0.3.
Since we trained each of the 11 ensemble compo-
nents on a different train/dev/validation partition
with the same seed, each configuration converged
on different weights, with different performances.
The results of all 11 models were combined through
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Figure 2: Illustration of the proposed UNITER-VGCN model.

a soft-voting scheme based on the average pre-
dicted probability for each label. Additional config-
urations were trained, but overall this ensemble had
the best test performance among our submissions
to SemEval-2022 Task 5.

3.1 Experimental Setup

Since the regions of interest (ROI) detection in
the R-CNN layer4 returns the probability for each
rectangle, in our experiments, we use the mini-
mum threshold for a ROI to be included in the
dataset as an input hyperparameter. We experi-
mented with both versions of UNITER: UNITER-
base with 12 attention heads and 768 output dimen-
sions, and UNITER-large with 24 attention heads
and 1024 dimensions5. In order to mitigate class
imbalance from Sub-task B, we used a weighted bi-
nary cross entropy loss using the class distribution
in the training set. Other hyperparameter values
were determined through grid search. Thus, the
minimum confidence level for ROIs was set at 0.7,
the learning rate at 1e-4 using an AdamW optimizer
(Loshchilov and Hutter, 2017), and the maximum
text length at 64 tokens. We experiment with GCN
embedding sizes between 8 and 32, and selected
16 as the optimum value.

In order to further address the class imbalance
between the misogyny sub-types, we experimented
with oversampling from the minority classes, as an
alternative to the loss re-weighting technique. Also,

4https://github.com/MILVLG/bottom-up-
attention.pytorch

5https://github.com/ChenRocks/UNITER

from our experiments, we learned that using an
additional "non-misogynous" class besides the four
misogyny types improved the model performance.

During training, we optimize the weighted-
average F1-score (i.e., the F1-scores computed
for each label, afterwards weighted by the label
support) using early-stopping with a patience of 2
epochs.

4 Results

While considering the two proposed data prepro-
cessing techniques, removing the websites from the
textual information proved to decrease the perfor-
mance of the models. Even though removing the
source from the texts would provide a better gener-
alization in a production setting, this information
turned out to be a clue on misogyny content in this
dataset.

Compensating for the unbalanced classes with
oversampling from the minority classes proved to
be less impactful than weighting the loss of the pos-
itive classes. Also, we noticed a strong tendency
to overfit during our experiments. A common used
mitigation technique is to augment the training
data with small variations - e.g., data augmenta-
tion using similar words in the embedding space
(Wang and Yang, 2015), as well as simpler replace-
ment, swap, and deletion methods (Wei and Zou,
2019). None of the applied augmentation methods
improved performance. We thus hypothesize that
although these augmentations create similar mean-
ings, innuendos get lost. For example, the phrase
"Her: Excuse me, I’m trying to put a load in the
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Sub-
task A

Sub-
task B

Model Precision Recall Weighted-F1 Precision Recall Weighted-F1
UNITER-base+Sentiment1 81.60% 63.95% 67.17% 68.41% 42.13% 61.34%
UNITER-base+Sentiment2 83.80% 62.82% 66.16% 63.59% 44.72% 63.16%
UNITER-large+Sentiment1 83.00% 63.17% 66.47% 57.67% 49.68% 64.69%
UNITER-large+Sentiment2 86.80% 62.54% 66.13% 70.51% 45.00% 64.18%
UNITER-large+VGCN1 78.80% 65.78% 68.59% 63.39% 48.87% 65.89%
UNITER-large+VGCN2 78.40% 64.05% 66.78% 58.38% 47.06% 64.50%
UNITER-large+VGCN3 78.40% 68.89% 71.36% 66.30% 46.54% 64.84%
UNITER-large+VGCN4 77.60% 65.10% 67.70% 48.24% 51.84% 64.25%
UNITER-large+VGCN5 86.60% 63.03% 66.74% 70.91% 42.76% 61.66%
UNITER-large+VGCN6 79.20% 68.39% 71.12% 58.48% 50.62% 65.35%
UNITER-large+VGCN7 81.60% 65.18% 68.50% 53.66% 50.18% 65.56%

Table 1: Results on our validation set for the Ensemble components.

Model Precision Recall Weighted-F1
UNITER-base+Sentiment1 72.60% 67.60% 68.86%
UNITER-base+VGCN 86.20% 61.66% 64.91%
UNITER-large+Sentiment1 83.00% 63.16% 66.47%
UNITER-large+VGCN3 78.40% 68.89% 71.36%
Ensemble 83.20% 66.88% 70.56%

Table 2: Results on the official test set for Sub-task A.

Model Precision Recall Weighted-F1
UNITER-base+Sentiment2 59.97% 46.43% 63.99%
UNITER-base+VGCN 63.99% 45.61% 63.39%
UNITER-large+Sentiment1 57.67% 49.68% 64.68%
UNITER-large+VGCN1 66.30% 46.54% 64.84%
Ensemble 63.19% 50.65% 67.31%

Table 3: Results on the official test set for Sub-task B.

Rank Team Sub-task A Score Team Sub-task B Score
1 SRC-B 83.4% SRC-B 73.1%
2 DD-TIG 79.4% TIB-VA 73.1%
3 beantown 77.8% PAFC 73.1%

UPB (our) 71.4% UPB (our) 67.3%
Baseline 65.0% Baseline 62.1%

Table 4: Comparison for Sub-tasks A and B between the top 3 team results, our scores, and the competition baseline.

dishwasher Him: Same @gogomeme" would get
an augmented counterpart "Her: Excuse me, I’m
trying to put a burdened in the dishwasher Him:
Same @gogomeme". Changing the word "load",
which in the context has a double meaning, loses
the implicit misogynistic comparison of the woman
to a dishwasher. Similarly, a text like "my horny
girlfriend on her period me" augmented as "my

horny girlfriend on her deadline me" would not
improve the training.

Tables 2 and 3 are the best performances on
the official competition test set for the models we
trained. All modes were trained using the hyperpa-
rameters specified in the previous section.

Even though the performance on the binary clas-
sification from Sub-task A was comparable with
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Figure 3: Per class confusion matrices for the ensemble model.

the best single model (UNITER-VGCN), it was
slightly lower. As seen in Figure 3, our best sys-
tem - the ensemble model - has the tendency to
over-predict misogyny. Some erroneous predic-
tions were driven by their aggressive language, for
instance "IF YOU’RE DATING MY DAUGHTER
AND YOUR STUPID ENOUGH TO DO THIS I’M
GOING TO KILL YOU!" depicting also that a do-
mestic abuse victim was understandably detected
as misogynous type "violence". Records 15566 and
15311 depict a face close up of a famous woman
and were incorrectly labeled as misogynous, even
if the text is replaced with a neutral or even positive
one like "woman" or "best". This can be explained
by the off-balance in the training data where the
visual object "woman" is detected 2,262 times in
the misogynous entries, and only 639 times in non-
misogynous memes; similarly, "eyebrows" are four
times more likely to appear in the misogynous class.
However, memes like "When you know it’s a trap
but you can’t wait to take the bait" that depict a
woman body are not detected as misogyny since
these memes require additional background knowl-
edge in order to understand the real intent.

5 Conclusion

In this paper, we describe the architectures used
in our submission at Semeval-2022, Task 5:
MAMI - Multimedia Automatic Misogyny Identifi-
cation. Our proposed models took the pre-trained
UNITER-base and UNITER-large models and en-
hanced them with image sentiment features or, by
using a GCN, with additional domain informa-
tion from an external dataset. Our best model
achieved an F1-score of 71.4 for Sub-task A and
67.3 in Sub-task B, seen in Table 4 in comparison
to the top three results on each sub-task, arguing
that these models can perform reasonable well in
a multi-modal setting and that the generalization
power of the UNITER pre-trained model was en-
hanced by integrating image object nodes in the
co-occurrence graph. Also, we showed that our

ensemble smoothed out the uneven performance
caused by different train/dev data splits and im-
proved the overall performance.

In terms of future work, we plan to continue our
research into the automatic detection of abusive
and hateful online content, and extend the exper-
iments onto other pre-trained multi-modal mod-
els, as well as to attempt to improve their perfor-
mance through task-adaptive pre-training (Guru-
rangan et al., 2020). Even though Internet memes
provide an interesting combination of textual mes-
sage and image, they represent only one medium
that can spread toxic messages. Studying other
modalities like video or audio would help widen
the understanding on how to detect and limit the
spread of these undesired messages.
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Abstract

This work presents an ensemble system based
on various uni-modal and bi-modal model ar-
chitectures developed for the SemEval 2022
Task 5: MAMI-Multimedia Automatic Misog-
yny Identification. The challenge organizers
provide an English meme dataset to develop
and train systems for identifying and classify-
ing misogynous memes. More precisely, the
competition is separated into two sub-tasks:
sub-task A asks for a binary decision as to
whether a meme expresses misogyny, while
sub-task B is to classify misogynous memes
into the potentially overlapping sub-categories
of stereotype, shaming, objectification, and vio-
lence. For our submission, we implement a new
model fusion network and employ an ensem-
ble learning approach for better performance.
With this structure, we achieve a 0.755 macro-
average F1-score (11th) in sub-task A and a
0.709 weighted-average F1-score (10th) in sub-
task B. 1

1 Introduction

Hate speech against women remains rampant de-
spite many efforts at education, prevention and
blocking. Misogyny takes place online and offline.
Especially on social media platforms, misogyny
appears in different forms and has serious implica-
tions (Chetty and Alathur, 2018). Currently, auto-
mated detection and filtering seem to be the most
effective way to prevent hate speech online. How-
ever, over the past few years, the rising popularity
of memes brought misogyny to a new multi-modal
form, which may be more likely to go viral due
to their often surprising combinations of text and
image that may strike viewers as funny and hence,
as eminently shareable.

The multi-modality of memes also makes auto-
matic detection more challenging. Some memes

1Code available at: https://github.com/
rub-ksv/SemEval-Task5-MAMI.

express their hatred implicitly or through juxtaposi-
tion, so they may even appear harmless when con-
sidering the text or the image in isolation. SemEval-
5 2022 Multimedia Automatic Misogyny Identifica-
tion (MAMI) (Fersini et al., 2022) aims to identify
and classify English misogynous memes.

In recent years, the Transformer model (Vaswani
et al., 2017) has been widely used in natural lan-
guage processing (NLP) and image processing.
Transfer learning (Torrey and Shavlik, 2010) with
a pre-trained Transformer model can save training
resources and increase efficiency with less training
data (Wang et al., 2020).

Therefore, in this work, we consider transfer
learning to customize three uni-modal models
based on the Transformer model: i) fine-tuning
a pre-trained RoBERTa model for classification
(BERTC) (Liu et al., 2019); ii) training a graph
convolutional attention network (GCAN) using
the pre-trained RoBERTa model for word embed-
ding; iii) fine-tuning a pre-trained image model,
the Vision Transformer (ViT) (Dosovitskiy et al.,
2020). Based on these three uni-modal models,
four bi-modal models are trained through our pro-
posed model fusion network, namely BERTC-
ViT, GCAN-ViT, BERTC-GCAN, and BERTC-
GCAN-ViT. All models are evaluated with 10-fold
cross-validation. The macro-average and weighted-
average F1-scores are employed as the metrics for
the sub-tasks. Ultimately, the ensemble strategy is
applied on both the dataset- and the model-level
(detailed in Section 3.3) for better performance.

The remainder of the paper is structured as fol-
lows: Section 2 introduces the MAMI challenge
and related solutions to the task. Our ensemble
model is described in Section 3, followed by the
experimental setup in Section 4. Finally, our results
are shown and conclusions are drawn in Sections 5
and 6.
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2 Background

The MAMI dataset contains 10,000 memes as the
training and 1,000 memes as the test set; all of
these are given together with the text transcription
as obtained through optical character recognition
(OCR). The reference labels are obtained by man-
ual annotation via a crowdsourcing platform.

The challenge is composed of two sub-tasks:
Sub-task A represents a binary classification task
and focuses on the identification of misogynous
memes, so each meme should be classified as not
misogynous (noMis) or misogynous (Mis). Sub-
task B, in contrast, presents a multi-label classifi-
cation task, where the misogynous memes should
be grouped further, into four potentially overlap-
ping categories. The dataset class distribution is
illustrated in Table 1.

Table 1: MAMI-22 dataset class distribution. Mis:
misogynous; Shm: shaming; Ste: stereotype; Obj: ob-
jectification; Vio: violence.

Sets Mis Shm Ste Obj Vio

training set 5000 1274 2810 2202 953
test set 500 146 350 348 153

Since the provided dataset contains two modali-
ties (namely, images and texts), an automated ap-
proach requires integrating the information from
the images with the textual information. However,
the OCR-based transcriptions are quite error prone,
while the images are often hard to recognize for au-
tomatic systems, due, among other reasons, to over-
laid text and to the popularity of further changes,
such as the composition of multiple sub-images.
Consequently, it is challenging to identify the per-
tinent information of the respective modalities, in
order to merge it into a joint classification decision.

Some researchers have already worked on meme
datasets. For example, (Sabat et al., 2019) created
a hateful memes database, using the BERT model
to extract a contextual text representation and the
VGG-16 convolutional neural network (Simonyan
and Zisserman, 2014) for image features. Then,
text and image representations are concatenated to
obtain a multi-modal representation. Facebook also
organized a challenge for the identification of hate-
ful memes in 2020 (Kiela et al., 2020). The winner
of this challenge adopted an ensemble system with
four different visual-linguistic transformer archi-
tectures (Zhu, 2020).

The Transformer model has shown excellent per-
formance in many tasks, and it also shows promis-
ing results in the above studies, based on its use of
the attention mechanism to extract the contextual
information within a text. However, its ability to
capture global information about the vocabulary of
a language remains limited (Lu et al., 2020), and
we hypothesize that this is even more of an issue in
the task at hand, due to the very short texts in the
given challenge.

For this reason, we combine a Transformer
model with a graph convolutional network
(GCN) (Yao et al., 2019), which may help to ad-
dress this issue. GCNs can be understood as a
generalization of CNNs, where the data has graph
structure and locality is defined by the connectiv-
ity of the graph. As input, a GCN receives fea-
tures that connect to a set of nodes. From layer
to layer, the features of a node are updated as
weighted combinations of its neighbors' features.
In our case, the graph is defined as follows: There
is a node for every word in the vocabulary and
for every document. The collection of nodes is
V = {D1, D2 · · ·DnD ,W1,W2, · · ·Wnw}, where
Di and Wi indicate the document and word nodes,
respectively. nD is the number of documents and
nW is the number of unique words in the cor-
pus. The edges between word nodes are weighted
with the word co-occurrence, the edges between
document-word pairs are weighted with the term
frequency-inverse document frequency (TF-IDF).

A fixed-size sliding window with step size 1 is
used to gather the word co-occurrence information
through the entire dataset. The point-wise mutual
information (PMI) is employed to measure the re-
lationship between the words i and j as follows:

PMI(i, j) = log p(i,j)
p(i)p(j) ,

p(i, j) = N(i,j)
N ,

p(i) = N(i)
N ,

(1)

whereN(i) counts the sliding windows in the train-
ing set that contain word i,N(i, j) is the number of
sliding windows that carry both words i and j, and
N is the total number of sliding windows in the cor-
pus. As described in (Yao et al., 2019), a positive
PMI value indicates a high semantic correlation of
words in corpus and vice versa.

The adjacency matrix A of the graph is then
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computed elementwise, as follows:

Ai,j =





PMI(i, j) i, j are word nodes, PMI(i, j) > 0;

nD < i, j ⩽ nD + nW

TF-IDFi,j document node i and word node j;

i ⩽ nD;nD < j ⩽ nD + nW

1 i = j

0 otherwise
(2)

Since the graph is undirected, the adjacency ma-
trix is symmetric. Finally, the adjacency matrix
is normalized by

∼
A= D− 1

2 AD− 1
2 , where D is the

degree matrix of A. The normalized adjacency ma-
trix

∼
A is used to weight the graph node features,

cf. Section 3.1. A PyTorch implementation based
on Text-GCN (Yao et al., 2019), as provided on
GitHub2, was used for the implementation.

3 System Overview

In this section, we specify our uni- and bi-modal
models.

f BERTC: 1×1024

Text

RoBERTa

LS×1024

Pooling

Classifier

1×n

Sigmoid

f BERTC
p

BERTC

1

(a) BERTC

Text

RoBERTa

x k: LS×1024

LS×1024

GCAN

sum, dim=1

f GCAN: 1×1024

Classifier

Sigmoid
1×n

f GCAN
p

GCAN

1

(b) GCAN

f ViT: 1×1024

Image

ViT

Classifier

1×n

Sigmoid

3×224×224

f ViT
p

ViT

1

(c) ViT

Figure 1: Uni-modal models, where LS is the sequence
length, which depends on the RoBERTa tokenizer.

Figure 1 depicts the three uni-modal models
BERTC (1a), GCAN (1b), and ViT (1c), which
form the basis of our further experiments. The
bi-modal models are constructed based on trained
uni-modal models and our proposed model fusion
network, which is further detailed in Section 3.2.
Finally, we apply soft and hard voting ensembles
on the trained candidate models.

3.1 Uni-modal models
As illustrated in Figure 1, every uni-modal model
has two outputs: the classification probabilities

2https://github.com/codeKgu/Text-GCN

pi and the classification features fi. All classifier
blocks in our models have the following, identi-
cal structure: a fully connected layer reduces the
feature dimension to half the input dimension, fol-
lowed by a ReLU activation and a dropout layer.
Ultimately, an output layer projects the features to
the output dimension n, and a sigmoid function
squashes the range of the output vector compo-
nents to (0, 1), allowing for an interpretation as a
vector of label probabilities, with possible overlap
in categories.

BERTC: We fine-tune a pre-trained large
RoBERTa language model (roberta-large)
for classification. The text input is encoded by the
RoBERTa model with the embedding dimension
1024. The Pooler layer returns the first classifica-
tion token [cls] embedding fBERTC and feeds it
into the classifier to obtain the probabilities pBERTC.

GCAN: Again, a pre-trained RoBERTa model ex-
tracts contextual text information. Each token is
considered as a word node and each meme is a
document node. Thus the word node representa-
tion is given by the corresponding RoBERTa word
embedding vector. We denote the input embedding
sequence of document k as xk = [xk1, xk2, · · · xkLS

],
where xki , i ∈ {1, . . . ,LS} is a 1024-dimensional
embedding vector of the i-th token. As depicted
in Figure 1b, xk is an LS×1024 matrix. The first
classification token [cls] embedding represents
the document classification information. Thus, we
use the document-word co-occurrence information
TF-IDF as the edge weights for the [cls] em-
bedding. All other token embeddings are weighted
with the word co-occurrence information PMI.

For each document k, we extract its specific adja-
cency matrix

∼
Ak from the complete adjacency ma-

trix
∼
A by reducing it to rows and columns of all the

document and word nodes (i and j in Equation 2)
that are present in this document. The extracted
document adjacency matrix

∼
Ak is an LS × LS ma-

trix.

The GCAN block in Figure 1b adopts the multi-
head self-attention mechanism in 3 successive
GCAN layers to embed the node representations.
The queries Q, keys K and values V are identical
and set to the respective layer input. The first layer
input is given by the RoBERTa word embeddings
xk of the input text. The attention of head j is
obtained by
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αj = softmax




(
WQ

j QT
)T (

WK
j KT

)
√
dk




(
WV

j VT
)T

(3)

where W∗
j are learned parameters for the queries

Q, keys K, and values V, respectively. A super-
script T denotes the transpose; dk = datt

h , datt is
the attention dimension and h is the number of at-
tention heads. Having computed the multi-head
self-attention, each attention head output is multi-
plied by the document adjacency matrix

∼
Ak

∼
αj =

∼
Akαj . (4)

Equation 5 describes the output α of the GCAN
layer: The weighted outcomes all heads are con-
catenated (concat), and a fully connected layer
(FC) projects the representation to the attention
dimension. Inspired by (Veličković et al., 2017), in-
stead of concatenating the weighted attention head
outputs, we employ averaging (avg) to fuse these
weighted outputs in the last GCAN layer. A fully
connected layer again projects the final representa-
tion to the attention dimension. Thus, after the
GCAN block, the text representation is still an
LS×1024 matrix. The document classification fea-
ture vector fGCAN is obtained by summing all node
representations.

α =





FC
(

concat
(∼
α1, · · · ∼αh

))
not in last layer

FC
(

avg
(∼
α1, · · · ∼αh

))
in last layer

(5)

ViT: To extract the visual contextual infor-
mation, we utilize the pre-trained ViT model
vit-large-patch16-224 to encode the in-
put image. For this purpose, the input image is
split into fixed-size patches, and a linear projec-
tion of the flattened patches is used to obtain the
patch embedding vectors. The Transformer en-
coder transforms the embedding vectors. Finally,
the embedding fViT of the first classification token,
[cls], is fed to the classifier to obtain the predic-
tion probabilities pViT.

3.2 Bi-modal models
Figure 2 shows our fusion model structure.

Each model Mi has two outputs: the vector of its
classification probabilities pi and the classification
features fi. We concatenate the model classifica-
tion probabilities and features as a multi-modal
representation to make the final decision.

Two fusion strategies—stream-weighting-based
decision fusion and representation fusion—are con-
sidered. The weight predictor and the classifier in

M1

...

Mm

f 1

...

fm

p 1

...

pm

Weight
predictor

Softmax

SigmoidClassifier

w
p sw

p rf

p f

p

+

0.5

0.5

1

Figure 2: Fusion model structure

Figure 2 both have the same structure as the classi-
fier block in Figure 1. The weight predictor output
dimension is the number m of candidate models
for fusion. The stream weighting probability psw
is obtained through a weighted combination of the
class probability vectors of all uni-modal model
outcome probabilities, i.e.

psw =
∑

i

pi · wi. (6)

The classifier output dimension is the same as the
number of classes n. A sigmoid function computes
the representation fusion probabilities prf from the
combined multi-modal representation. Finally, we
average the stream weighting and the representa-
tion fusion probabilities. The following model com-
binations are attempted, where Mi, i ∈ {1, 2, 3} is
the i-th pre-trained uni-modal model.

Bi-modal model M1 M2 M3

BERTC-ViT BERTC ViT -
GCAN-ViT GCAN ViT -

BERTC-GCAN BERTC GCAN -
BERTC-GCAN-ViT BERTC GCAN ViT

3.3 Ensemble learning

Having established a number of possible uni-modal
and bi-modal models, we now combine these
trained models into ensembles. It has been re-
ported in many studies that ensemble learning can
enhance performance in comparison to single learn-
ers (Onan et al., 2016; Zhu, 2020; Gomes et al.,
2017). Therefore, we consider soft and hard voting
ensemble approaches.

We use the Python sklearn package3 for 10-
fold cross-validation. Thus, each model structure

3https://github.com/scikit-learn/
scikit-learn
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was trained ten times with different inner test sets.
Finally, these ten models are used to evaluate the
official test set and deliver ten predictions for ev-
ery sample. The soft voting ensemble method is
implemented as follows: pMi

, the ensemble proba-
bilities that are used in the overall class decisions,
are computed via

pMi
=

9∑

j=0

wj
Mi
· pjMi

. (7)

Here, pjMi
denotes the probabilities of model Mi in

the j-th fold. The weights wj
Mi

are computed by

wj
Mi

=
F1jMi∑
f F1fMi

. (8)

F1jMi
corresponds with the best F1-score of model

Mi over all epochs, computed on the inner test set
in fold j. This soft voting ensemble, using the same
model structure, but with the multiple outcomes
from 10-fold cross-validation, is referred to as a
dataset-level ensemble in the following.

The second type of ensemble—the model-level
ensemble—is constructed from the dataset-level
ensemble results of each model. We use a hard vot-
ing strategy with seven candidate models (BERTC,
GCAN, ViT, BERTC-ViT, GCAN-ViT, BERTC-
GCAN, and BERTC-GCAN-ViT). In this approach,
we set the final prediction for a data point to one,
if at least half of the considered models vote one,
making it a simple majority-voting strategy.

4 Experimental Setup

In the following, we describe our data processing
and training pipeline in more detail.

4.1 Data pre-processing

The challenge dataset provides a transcription text
stream that was obtained via OCR. Via image cap-
tioning, we derive a second text stream that con-
tains a description of the image in a few words.

For the OCR text, we first use the Python ftfy
package4 to fix the garbled sequences that result
from unexpected encodings (the mojibake) like
"à¶´à¶§à·". Next, all "@", "#" symbols and website
addresses are removed from the text. The emojis
are converted to text form by the Python emoji

4https://github.com/rspeer/python-ftfy

package5. Finally, we remove non-English charac-
ters and convert the text to lowercase.

For image captioning, we utilize a pre-trained
encoder-decoder attention model (Xu et al., 2016)6.
Although the translation from image to text is not
very accurate, most likely owing to issues like the
overlaid meme text, it was nonetheless beneficial
for our classification task. We found that the de-
scription becomes more precise, when we split the
memes into their constituent sub-images where ap-
plicable. In that case, the image caption is extracted
over every sub-image as well as the entire meme.
Finally, the image captions are combined with the
word "and" and then concatenated with the OCR
text, separated by ". ". With this rule, the final text
of the meme in Figure 3 is: "mgo ci aindo make
make me sandwich!!. a couple of baseball players
standing next to each other and a woman holding
a sign in front of a sign and a woman standing next
to a group of people."

(a) a woman hold-
ing a sign in front
of a sign

(b) a couple of
baseball players
standing next to
each other

(c) a woman stand-
ing next to a group
of people

Figure 3: In (a) and (b), we see "sub-images" and corre-
sponding captions. (c) shows the meme and its caption
(when not considering the sub-image structure).

We use the entire meme as the image input for
ViT. All memes are first resized to 256×256 and
center-cropped to 224×224 dimensions. The ViT
model uses all 3 RGB channels, so we retain the
RGB structure, thus the input image dimension
is 3×224×224. We regularize the entire image
database to range 0 to 1, then normalize each indi-
vidual image to have zero mean and unit variance.

4.2 Loss function

We decided to use the binary cross-entropy (BCE)
loss for both subtasks.

Due to the imbalance in the class distributions
(see Table 1), in sub-task B, we weighted the class-

5https://github.com/carpedm20/emoji
6https://github.com/sgrvinod/

a-PyTorch-Tutorial-to-Image-Captioning
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specific loss terms by their support as follows:

wc =

NoS
NoS(c)∑
c′

NoS
NoS(c′)

, c ∈ [Shm,Ste,Obj,Vio] (9)

where NoS is the total number of samples in the
training set and NoS(c) represents the number of
true instances for class c. The loss is then computed
through the weighted combination of the single
BCE terms:

L1 =
∑

c

wc · BCE(pBc , y
B
c ). (10)

Here, pBc represents the system’s output probability
of class c and yBc is the binary ground truth for
sub-task B.

Additionally, we employ a teacher forcing loss to
connect both subtasks. The idea is that an instance
should be identified as misogynous and possibly
grouped into sub-categories simultaneously. The
teacher forcing loss is defined as:

L2 = ∥pA − yA∥, (11)

where the system’s output probability for sub-task
A is determined as:

pA = max
(
pB

Shm
, pB

Ste
, pB

Obj
, pB

Vio

)
. (12)

The final loss is computed by

L = 0.7 · L1 + 0.3 · L2. (13)

4.3 Model training
All models are trained using the PyTorch li-
brary (Paszke et al., 2019) for 50 epochs. The
AdamW optimizer (Loshchilov and Hutter, 2017)
is used for backpropagation, using a linear learning
rate scheduler with a warm-up to adapt the learning
rate during the first four epochs in the training stage.
The dropout rate is 0.5. The RoBERTa model pa-
rameters in the BERTC and the GCAN model are
optimized separately.

In our GCAN model, the adjacency matrix is
computed with a sliding window of length 10. An 8-
head self-attention is applied over 3 GCAN layers
with an attention dimension of 1024.

For all uni-modal models, the batch size is 16
and the initial learning rate is 2 · 10−5. The
RoBERTa and ViT block parameters in Figure 1 are
also fine-tuned. The bi-modal models are trained
based on the pre-trained uni-modal models. Here,

we choose the batch size as 32, the initial learning
rate is 5 · 10−6. As the RoBERTa and ViT block
parameters in Figure 1 are already updated dur-
ing the uni-modal training stage, we froze these
parameters in bi-modal re-training.

To avoid overfitting, we adopt early stopping to
exit the training process when the computed F1-
score on the inner test set does not increase over 4
epochs. Inspired by (Huang et al., 2017), we finally
averaged those two epoch-wise model parameters,
which had the highest validation F1-score during
the training stage.

The models have the same structure for sub-tasks
A and B. The only differences are that in sub-task
A, the classifier output dimension n is 1, and the
BCE is used as the loss function (Setup A), whereas
in sub-task B, the classifier output dimension n
equals 4 and training uses the weighted BCE with
teacher forcing (Equation 13) as the loss function
(Setup B). All models are trained using NVIDIA’s
Volta-based DGX-1 multi-GPU system, using 3
Tesla V100 GPUs with 32 GB memory each.

5 Results

In summary, we investigated two configurations,
displayed in Table 2. Setup A represents the binary
classification for sub-task A, resulting in an output
dimension n = 1. Setup B additionally deals with
the multi-label classification of sub-task B, return-
ing an output of dimension n = 4. All results are
evaluated on the official test set.

Setup Task Dimension Loss

Setup A sub-task A n = 1 BCE

Setup B sub-tasks A/B n = 4
Weighted BCE &

Teacher Forcing

Table 2: Summary of the considered configurations.

5.1 Results for Setup A (Sub-task A)

In the first stage, we trained three different uni-
modal models (i.e., BERTC, GCAN, and ViT). In
the second stage, we optimized the bi-modal mod-
els (i.e., BERTC-ViT, GCAN-ViT, BERTC-GCAN,
and BERTC-GCAN-ViT). The evaluation results
in terms of the macro-average F1-score are dis-
played in Figure 4 and Table 3, showing the per-
formance in identifying misogynous memes. To
assess the statistical significance of performance
differences, we applied a 10-fold cross validation
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and computed the Mann-Whitney-U test (Mann
and Whitney, 1947).

BERTC GCAN ViT BERTC- 
 ViT

GCAN- 
 ViT

BERTC- 
 GCAN

BERTC- 
 GCAN- 
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0.62
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Figure 4: Macro-average F1-scores for sub-task A based
on 10-fold cross validation. Asterisks indicate a statisti-
cally significant difference, where ** denotes 1e-04 < p
<= 1e-03, * corresponds to 1e-02 < p <= 5e-02, and ns
indicates results where p > 5e-02.

As we can see, the text-only models (BERTC
and GCAN) generally show a superior performance
compared to the image-only model (ViT). The re-
sults in Figure 4 clearly indicate robust perfor-
mance for our bi-modal models. They are more
accurate and robust. In summary, the GCAN-ViT
model yields the best results w.r.t. the reported
median F1-score.

Model Ensemble Model Ensemble

BERTC 0.663 GCAN-ViT 0.707
GCAN 0.674 BERTC-GCAN 0.677

ViT 0.619
BERTC-

GCAN-ViT
0.689

BERTC-ViT 0.697 - -

Table 3: Macro-average F1-scores of soft voting ensem-
bles for sub-task A.

Table 3 lists the averaged F1-scores for soft vot-
ing ensembles, obtained by combining all learned
models from the 10-fold cross-validations. The re-
sults show that our GCAN-ViT model outperforms

all other models, achieving an F1-score of 0.707.

5.2 Results for Setup B (Sub-tasks A/B)

Next, we addressed sub-task B, i.e. to classify the
misogynous memes into four, potentially overlap-
ping, categories. Similar to Setup A, we trained the
same uni- and bi-modal models, but incorporating
a different loss (see Table 2). For sub-task B, the
weighted-average F1-score is applied. The results
are presented in Figure 5.

Interestingly, the models optimized for sub-task
B also perform better for sub-task A. In this case,
we set the estimated label "misogynous" to 1 if at
least one of the labels for "shaming", "stereotype",
"objectification", or "violence" is 1.

Figure 5a depicts the sub-task A results while
Figure 5b shows the corresponding performance
for sub-task B. Again, we see that the bi-modal
model GCAN-ViT outperforms all other models.

In addition, Tables 4 and 5 show the results for
soft and hard voting ensembles. By comparing
Table 4 with Table 3 (both tables represent soft
voting results), we observe significantly improved
F1-scores for Setup B.

Model Sub-task A Sub-task B

BERTC 0.714 0.684
GCAN 0.725 0.695

ViT 0.666 0.641
BERTC-ViT 0.746 0.692
GCAN-ViT 0.758 0.704

BERTC-GCAN 0.724 0.696
BERTC-GCAN-ViT 0.755 0.704

Table 4: F1-scores of soft voting ensembles for Setup B
(sub-tasks A and B).

Combination Sub-task A Sub-task B

Three uni-modal models 0.728 0.698
Four bi-modal models 0.752 0.709

All seven models 0.755 0.706
Oracle model combination 0.762 0.716

Table 5: Model-level hard voting ensemble performance
with Setup B for sub-task A and B.

As a last experiment, we applied hard voting
on the ensembles. Again, sub-task A results are
derived from sub-task B.
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(a) Results for sub-task A.
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(b) Results for sub-task B.

Figure 5: Performance for Setup B. The notation is defined in Figure 4.

Table 5 shows the results of different combina-
tions. Generally, the combination of the four bi-
modal models in the 2nd row outperforms a com-
bination of three uni-modal models in the 1st row.
If we combine all uni- and bi-modal models (3rd
row), the F1-score is 0.755 for sub-task A, and
0.706 for sub-task B.

The results in bold print represent our submitted
approaches for both sub-tasks, showing an F1-score
of 0.755 for sub-task A and 0.709 for sub-task B.

After the challenge ended, we again evaluated
all possible subset combinations of the seven can-
didate models. The followed combinations give
the best achievable results by knowing the official
test set reference labels: ViT, BERTC-GCAN-ViT,
BERTC-ViT, GCAN-ViT achieves an F1-score of
0.762 for sub-task A, while an ensemble consisting
of BERTC-ViT and BERTC-GCAN-ViT yields an
F1-score 0.716 on sub-task B. These results are
shown for comparison in the final row of Table 5
as oracle results.

6 Conclusion

This paper presents our ensemble-based approach
to address two sub-tasks of the SemEval-2022
MAMI competition. The challenge aims to iden-
tify misogynous memes and classify them into—
potentially overlapping—categories. We train dif-

ferent text models, an image model, and via our
proposed fusion network, we combine these in a
number of different bi-modal models.

Among the uni-modal systems, all text mod-
els show a far better performance than the image
model. As expected, our proposed graph convolu-
tional attention network (GCAN), which also con-
siders the graph structure of the input data while
using pre-trained RoBERTa word embeddings as
node features, consistently outperforms the pre-
trained RoBERTa model.

The proposed fusion network further improves
the performance by combining the ideas of stream-
weighting and representation fusion. We addi-
tionally adopt 10-fold cross-validation and use a
dataset-level soft voting ensemble to obtain better
and more robust results. Finally, our model-level
hard voting ensemble integrates the soft voting en-
semble predictions of our best uni- and bi-modal
models. Our experiments indicate that this layered
ensemble approach can significantly improve the
model accuracy. Ultimately, our submitted system
results in an F1-score of 0.755 for sub-task A and
0.709 for sub-task B.

Overall, we believe that the identification of
misogyny in memes is best addressed through bi-
modal recognition, considering both textual and
image information. Concerning the text-based clas-
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sification, we found a graph convolutional attention
neural network to be beneficial as an integrative
model for Transformer embeddings. This helps
in the text classification, when the documents are
short, as for the given meme classification task.

To cope with the bi-modality of the task at hand,
we have implemented a range of systems for in-
tegrating the information from both streams. An
idea that proved to be effective here was that of
bringing together the strengths of early fusion and
decision fusion in a joint framework. This allowed
us to dynamically adjust the contributions of the
two modalities through dynamic stream weighting,
while still being able to combine information at the
feature level across the streams, thanks to the repre-
sentation fusion branch of our bi-modal systems.
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Abstract

Detecting MEME images to be misogynous
or not is an application useful on curbing
online hateful information against women.
In the SemEval-2022 Multimedia Automatic
Misogyny Identification (MAMI) challenge,
we designed a system using two simple but
effective principles. First, we leverage on
recently emerging Transformer models pre-
trained (mostly in a self-supervised learning
way) on massive data sets to obtain very effec-
tive visual (V) and language (L) features. In
particular, we used the CLIP (Radford et al.,
2021) model provided by OpenAI to obtain
coherent V and L features and then simply
used a logistic regression model to make binary
predictions. Second, we emphasized more on
data rather than tweaking models by following
the data-centric AI principle. These principles
were proven to be useful and our final macro-F1
is 0.778 for the MAMI task A and ranked the
third place among participant teams.

1 Introduction

Systematic inequality and discrimination to women
does not appear offline but also in online communi-
cation. MEME is an image characterized by a vi-
sual content with an overlaying text added MEME
creators. Although most of MEMEs are created
with the intention of making funny jokes, some
of MEMEs are created as a form against women.
Therefore, identifying misogynous MEMEs is im-
portant for curbing such misuse.

In the SemEval-2022, the task 5, Multimedia Au-
tomatic Misogyny Identification (MAMI) (Fersini
et al., 2022), was organized for this purpose. The
challenge consists of two sub-tasks, including the
task A, which is determining a MEME be misog-
ynous or not, and the task B which distinguishes
non-misogynous and 4 overlapped misogyny sub-
types.

∗Equal contributor

We participated in the MAMI challenge and fo-
cused on the task A. Our solutions focused on ex-
ploring various pre-trained Transformer models for
extracting textual and visual features and utilizing
a simple logistic regression (LR) model to make
binary predictions. In addition, following a new
trend in AI research, which is relying on the power
provided by data more, i.e., data-centric AI (Ng,
2021b,a), we expanded available training data by
manually marking more samples from the evalu-
ation set. As a result, by jointly utilizing these
methods, our team ended up on obtaining the third
rank in the task A.

2 Related work

Automatic Misogyny Identification (AMI) has be-
come an active research topic in natural language
processing (NLP). For example, in the IberEval-
2018, the AMI task was introduced as a new task
(Fersini et al., 2018). The task consists of the three
sub-tasks, i.e., misogyny identification, misogynis-
tic behavior categorization, and target classifica-
tion. The misogyny related annotations are made
on both Spanish and English tweets. Among 11 dif-
ferent teams from 5 countries, (Pamungkas et al.,
2018) ranked first in the misogyny identification
task on both languages. It proposed an SVM-based
architecture and explored several sets of features,
including lexical features relying on the lexicon of
abusive words.

Another AMI challenge (Fersini et al., 2020)
was organized at the Evalita-2020 evaluation cam-
paign and used Italian tweets. Its sub-task A is
about misogyny and aggressiveness identification
(4 class labels). A total 8 teams from 6 different
countries participated in the challenge. Though a
few teams used traditional word embedding to be
textual features, most of the participants explored
richer sentence embedding such as BERT (Devlin
et al., 2019) or Roberta. Regarding modeling, the
used methods are diverse, ranging from simple lo-
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gistic regression (LR), to Convolutional Neural
Network (CNN), even to fine-tuning pre-trained
models.

Data plays an important role on AMI research
development. How to organize misogyny labels is
an important research question. (Guest et al., 2021)
created a new dataset for tackling online misogyny.
Its dataset consists of 6, 567 labels for Reddit posts
and comments. A new hierarchical taxonomy has
been proposed and a careful training was provided
to annotators for obtain high-quality labels.

In the misogyny detection works described
above, only textual clues are utilized. In a related
topic, detecting hateful speech, image clues have
been widely used to better reflect the fact that hu-
man communication is naturally multimodal. A
Hateful Memes Challenge competition was held
at NeurIPS 2020 (Kiela et al., 2020). The task
is to classify a meme (i.e., an image and asso-
ciated texts) to be hateful or not. In the chal-
lenge, a set of language-visual pre-trained mod-
els, such as UNITER, VILLA, and ERNIE-ViL,
have been widely used for extracting semantically
coupled textual and visual features. For exam-
ple, the winning solution utilized four types of VL
transformers (Zhu, 2020). The multimodal hate-
ful meme detection prompts more follow-up re-
search. For example, (Zhou et al., 2021) proposes
using a triplet-relation network to improve encod-
ing on texts, images, and captions generated on
images. The improved encoding helps final predic-
tion performance. (Pramanick et al., 2021) propose
MOMENTA (multimodal framework for detecting
harmful memes and their targets) that uses both
global and local perspective to detect all kind of
hateful memes. In addition, this framework can
be easily explainable and can generalize to unseen
contexts.

3 Task and Data

The MAMI challenge consists of the two sub-tasks.
The task A is a binary classification task on iden-
tifying a MEME to be misogynous (labeled as 1)
or not (labeled as 0). The task B is a multi-label
classification task on identifying a MEME to be
non-misogynous or misogyny sub-types that can
be overlapped, i.e., shaming, stereotype, objectifi-
cation, and violence. Table 1 reports on counts of
0/1 labels on the five types of labels. Note that on
the misogyny label that is the task A’s prediction
goal, half of MEMEs in the training data are misog-

ynous (label = 1). Among four types of misogyny
sub-types, we can find that their distributions are
not balanced. For example, most frequent sub-type
is stereotype with 2810 positive MEMEs while the
least frequent label is the violence with only 953
positive MEMEs. For the task A, the evaluation
metric is macro-F1. For the task B, the evaluation
metric is micro-F1 among five sub-types.

4 Methods

Regarding extracting features from MEME posts’
text and image parts, we chose using pre-trained
Transformer models to utilize their highly effec-
tive feature representations. On texts, we consid-
ered two ways, including fine-tuning BERT (Devlin
et al., 2019) model and using sentence representa-
tions based on BERT, such as Universal Sentence
Encoding (USE) embedding (Cer et al., 2018) and
SBERT (Reimers and Gurevych, 2019). A ma-
jor difference between these two ways is that pre-
trained BERT model weights are updated in the
fine-tuning process. In a contrast, when using USE
or SBERT embedding features, these pre-trained
models are kept intact.

Regarding the visual encoder processing MEME
images to visual representations, we chose a newly
emerging Transformer model similar to the BERT
model on texts. In recent years, Transformer based
visual models have become popular (Han et al.,
2020). Among the many visual Transformer mod-
els, we selected the ViT model (Dosovitskiy et al.,
2020), which is a pure Transformer that is applied
directly on an image’s P × P patch sequence. In
the implementation, it follows the original Trans-
former’s design as much as possible. ViT utilizes
the standard Transformer’s encoder part as an im-
age classification feature extractor and adds a MLP
head to determine the image labels. The ViT model
is pre-trained using a supervised learning task on a
massive image data set. The size of the supervised
training data set impacts ViT performance signifi-
cantly. When using Google’s in-house JFT 300M
image set, ViT can reach a performance superior
to other competitive ResNet (He et al., 2016) mod-
els. We used the open-sourced pre-trained mod-
els on the ImageNet 21K dataset.1 After convert-
ing a MEME image to P × P patches, ViT con-
verts these patches to visual tokens. After adding
a special [CLS] visual token to represent the en-

1https://github.com/google-research/
vision_transformer
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labels misogynous stereotype shaming objectification violence
0 5000 8726 7190 7798 9047
1 5000 1274 2810 2202 953

Table 1: Count of label 1 (positive) and 0 (negative) on the misogyny label and other 4 types of sub-types of
misogyny in the training set with n = 10, 000 MEMEs

tire image, the M = P × P + 1 long sequence
is fed into a ViT model to output an encoding as
v = (v0, v1, v2, ...vM ), where M = P × P .

CLIP model (Radford et al., 2021) is a semi-
nal work from OpenAI. As shown in Figure 1, on
a massive set of image-text pairs, about 350 mil-
lion, CLIP can pre-train a quite powerful vision-
language (VL) joint model by using a simple cross-
modal contrastive learning. The trained model
shows many impressive applications, like superior
performance on many zero-shot image classifica-
tion tasks. Note that the advantage of using the
CLIP model is that the extracted visual and lan-
guage features have been mapped into a unified
embedding space. This will facilitate the next step
that combines the two types of features (V for vi-
sual features and L for language features) and then
uses a simple LR model for predicting misogyny.

After obtaining visual (V) and language (L) fea-
tures, one solution could be using sophisticated
multimodal fusion methods as shown in (Chou
et al., 2020) to consider inter-actions between the
two types of features. However, after our pilot
experiments, we did not find noticeable gains by
using such advanced fusion methods compared to
the simple early fusion, i.e., simply concatenating
both V and L features. Therefore, we focused on
utilizing the early fusion method in this challenge.
Figure 2 depicts our proposed model. The image
and text part of a MEME post are sent into the
CLIP model to extract both V and L features. Then,
the V and L features are combined and fed into a
LR model to make a binary prediction on misogyny.

Besides the LR model, we also considered an-
other novel way, DeepInsight (Sharma et al., 2019)
that is suggested recently. People were impressed
by Convolution Neural Network (CNN) on its uni-
versal ability on extracting useful image features.
Therefore, DeepInsight was proposed for convert-
ing a tabular feature vector into a 2D image and
using a CNN model to do classification. On some
tasks, such method shows its effectiveness on ex-
tracting features from complicate tabular data. In

Model macro F1
BERT fine-tuning 0.608

SBERT embedding + LR 0.650
USE embedding + LR 0.671

ViT fine-tuning 0.633
visualBERT fine-tuning 0.642

USE,ViT + LR 0.720
CLIP VL features + LR 0.765

Table 2: Macro-F1 on misogyny detection from various
models that are based on using pre-trained Transformer
models to extract features.

addition, a set of techniques that have shown to be
useful for improving image classification perfor-
mance, such as data augmentation in the training
stage, i.e., mix-up (Zhang et al., 2017), or in infer-
ence stage, testing time augmentation (TTA), are
already developed on the image classification task
and can be easily applied.

In recent years, a new trend in AI research has
emerged and it emphasizes the power brought by
data sets (Ng, 2021a). On some AI tasks, the per-
formance increase can be achieved by adding a
set of labeled samples and sometimes such new
data set could be small. In a contrast, performance
increases could be hard to achieve when trying dif-
ferent models. For example, in the challenge (Ng,
2021b), all participants were required to solve the
problem by only using data-related methods while
keeping using one identical model. We also ex-
plored this new approach. In this challenge, we
explored the data-centric AI approach by manu-
ally annotating more samples in the evaluation set.
Although we don’t have an access to the coding
manual used in the MAMI challenge, we checked
the training and trial data that were provided with
manual labels. After learning the how-to, we an-
notated a subset of testing samples and then added
these labeled samples into our model’s training.

5 Results

Table 2 reports on experiment results on vari-
ous models based on pre-trained Transformers.
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Figure 1: CLIP model is pre-trained on a large number of text-image pairs in a contrastive learning way

Figure 2: Our model is based on using a logistic regres-
sion to detect misogyny by using VL features extracted
by the CLIP model

When using BERT fine-tuning, i.e., adding a fully-
connected layer on the [CLS] token after BERT
model’s output layer and fine-tuning two models
together by using the cross-entropy (CE) loss, the
macro-F1 is 0.608. A different way is obtaining
sentence level representations and then feeding
these dense features into a LR model implemented
in the scikit-learn Python package. We tried both
SBERT and USE sentence level representations.
This way of using sentence level representations
in fact shows improved performance. The macro-
F1 can be improved to 0.605 for using the SBERT
features and 0.671 for using the USE features.

On image features, we explored ViT model fine-
tuning and observed that images play an important
role on the misogyny detection. The performance
simply using images is 0.633, which is higher than
using texts by fine-tuning a BERT model.

Regarding fusing both textual and image fea-
tures for making a multimodal classification, we

tried two methods. The first is fine-tuning a joint
Visual-Language (VL) model, visualBERT (Li
et al., 2019). However, the performance is not
very impressive. Its performance is 0.642, only a
slight gain on top of either of uni-modal’s perfor-
mance. The second method is using an early fusion
by concatenating textual (USE embedding) and im-
age features (ViT embedding) and then fed into a
logistic regression (LR) for predicting misogyny.
By doing so, the performance can be improved to
0.720.

However, the USE and ViT embeddings are
learned from separate models and may not exist
in a unified space. To address this issue, We tried
the CLIP model for the two attractions, i.e., (1)
having coherent textual and visual features in an
unified space and (2) image encoder training is on
a massive image set with about 350 million im-
ages. Consistent to our prediction, after switching
to CLIP features, the misogyny prediction’s macro-
F1 value immediately increased to 0.765.

To explore other possible sophisticated mod-
els besides using an LR model, we explored the
DeepInsight (Sharma et al., 2019). After convert-
ing the dense VL features output from the CLIP
model into 2D images, we use a ResNet34 CNN
model pre-trained on the ImageNet dataset and con-
verted the misogyny detection into a CNN-based
image classification. However, as shown in Table 3,
the performance, i.e., 0.751, is worse than using an
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Model macro F1
DeepInsight + CNN 0.751

+ mixup 0.758
+ TTA 0.726

Table 3: Macro-F1 on misogyny detection by using the
method converting visual and textual embeddings to 2D
images and then using CNN model to do a classification.

Model macro F1
CLIP VL features + LR 0.765

+ 50 labeled samples 0.767
+ 150 labeled samples 0.772
+ 250 labeled samples. 0.777

using semi-supervised learning 0.778

Table 4: Macro-F1 on misogyny detection by introduc-
ing more labeled samples annotated on the test set.

LR model directly. When using the mix-up aug-
mentation, we observed a further performance gain
to 0.728. Surprisingly, The TTA method did not
show any help. One possible explanation is that
we used dense vectors rather than regular tabular
data whose feature columns represent some real
physical values.

Table 4 reports on the results of utilizing the data-
centric AI principle. We can find that by adding
increasing number of labeled samples (from the
evaluation set), we can keep increasing macro-F1
values. When using labels created by us on 25%
of the evaluation set, we can reach a macro-F1 to
0.777. We also used a simple pseudo-label semi-
supervised method that is provided by the sci-kit
learn Python package and treated all evaluation set
(n = 1, 000) to be unlabeled data. This gave us
another small gain to reach our final result of 0.778.

6 Discussions

Multimedia misogyny detection is an important nat-
ural language processing application. It uses pow-
erful AI technologies to against misinformation or
even harmful information appearing in online com-
munication. For a world emphasizing equal roles
between genders, finding misogyny information
and removing them is critical for a healthy online
communication platform. In this challenge, our
methods have been focusing on (a) relying on vari-
ous pre-trained Transformer models to provide high
quality multimodal features and (b) applying the
data-centric AI principle to rapidly improve model

performances with controllable human efforts. Re-
garding text encoding, we found that running a
simple LR model on top of sentence level represen-
tations works consistently better than fine-tuning
BERT models. Joint VL model, e.g., visualBERT,
does not work quite well in this challenge. How-
ever, CLIP, which is trained on a large-sized text-
image pair data set in a self-supervised learning
approach, can provide high-quality multimodal fea-
tures and these features can be conveniently used in
down-stream classification tasks. On top of highly
effective multimodal features, utilizing sophisti-
cated models becomes secondary. In our experi-
ments, simply using an LR model gave us better
result than using other complicate models, e.g.,
DeepInsight. At last, the data-centric AI principle
is worth noting. By focusing on our efforts on ex-
panding labeled training data, we can consistently
improve our misogyny prediction performance.
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Abstract

We describe our system for the SemEval
2022 task on detecting misogynous content in
memes. This is a pressing problem and we ex-
plore various methods ranging from traditional
machine learning to deep learning models such
as multimodal transformers. We propose a mul-
timodal BERT architecture that uses informa-
tion from both image and text. We further
incorporate common world knowledge from
pretrained CLIP and Urban dictionary. We
also provide qualitative analysis to support out
model. Our best performing model achieves an
F1 score of 0.679 on Task A (Rank 5) and 0.680
on Task B (Rank 13) of the hidden test set.
Our code is available at https://github.
com/paridhimaheshwari2708/MAMI.

1 Introduction

In this era of the internet, memes have become a
new form of communication, which predominantly
contain an image and a small caption. While their
general purpose is to invoke humour or irony, they
are also increasingly being used as a source of
harmful, offensive and misogynistic content. De-
tecting such content in an automated manner is an
important problem to avoid the spread of hate.

Memes pose a unique multimodal challenge as
their underlying implication is not just a simple
combination of the image and text, but a subtle
inference that comes naturally to humans. Another
complexity is that memes are highly contextual
and the component image and text pieces might be
completely uncorrelated. Understanding this fusion
of modalities is a challenging task for machines.
Our aim is to automatically identify misogynistic
multimodal memes using machine learning.

2 Related Work

The task of identifying misogyny in memes is a
relatively new area and is closely related to hate de-

∗ These authors contributed equally

tection. While there has been a lot of work on iden-
tifying hateful content in unimodal data (Gandhi
et al., 2019; Fortuna and Nunes, 2018), there is
little work on multimodal hate detection. Recently,
Facebook Hateful Memes Challenge (Kiela et al.,
2020) explored fusion of text and vision models
along with advanced architectures like cross-modal
BERT (Lu et al., 2019). A major problem with
these large pretrained models is the domain gap be-
tween memes and training data. Some works try to
solve this with better pretraining (Zhu, 2020) and
disentangling hate from meme representations (Lee
et al., 2021). In this work, we build on these tech-
nologies for our specific use-case of misogyny de-
tection and incorporate common world knowledge
from Urban Dictionary (Wilson et al., 2020) and
CLIP (Radford et al., 2021) to address the domain
gap.

3 Method

3.1 Baselines
The task of detecting misogynistic content in
memes can be posed as a classification task based
on visual and textual features. We start with simple
baselines, namely SVM, Naive Bayes and Logistic
Regression, and also experiment with unimodal fea-
ture space, i.e, training classifiers with text only and
image only features. For text only models, we in-
corporate the TF-IDF technique with bag-of-words
concepts to compute features. To capture visual
cues from images, we leverage pretrained VGG-
16 (Simonyan and Zisserman, 2014) for feature
extraction. Since memes are a complex combina-
tion of text and image, we require cues from both
modalities and we therefore, move towards multi-
modal methods for classification.

3.2 Deep Learning Architectures
We leverage various Deep Learning (DL) tech-
niques for this task. We first start with unimodal
techniques, namely LSTM and CNN architectures.
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Model Binary Classification Multi-class Multi-label Classification

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Using Only Text Features

Logistic Regression 0.802 0.802 0.801 0.801 0.844 0.800 0.455 0.524
SVM 0.794 0.807 0.790 0.790 0.838 0.673 0.556 0.596
Naive Bayes 0.794 0.795 0.795 0.794 0.827 0.707 0.363 0.371

Using Only Image Features

Logistic Regression 0.634 0.634 0.634 0.634 0.762 0.462 0.399 0.425
SVM 0.631 0.631 0.631 0.631 0.767 0.468 0.385 0.417
Naive Bayes 0.633 0.632 0.632 0.632 0.677 0.441 0.558 0.480

Using Both Image and Text Features

Logistic Regression 0.760 0.760 0.759 0.634 0.808 0.583 0.516 0.545
SVM 0.786 0.786 0.786 0.786 0.818 0.593 0.577 0.584

Table 1: Evaluation of various baselines.

For text, we use the GloVe (Pennington et al., 2014)
embeddings to initialize individual words and pass
this sequence through an LSTM layer. Finally,
this embedding is fed to FC layers that outputs a
score for each class. For image, we extract the
feature representations from a pretrained VGG-
16 (Simonyan and Zisserman, 2014) model and
pass through a classifier head which is composed
of FC layers. All models are trained end-to-end
using binary cross entropy loss for every class inde-
pendently. Note that we do not pose this as softmax
classification as each meme can belong to multi-
ple classes simultaneously, i.e., multi-label classi-
fication. To handle class imbalance in the dataset,
we give more importance to the positive examples.
Specifically, we weigh the positive component of
the binary cross entropy loss with the ratio of nega-
tive to positive occurrences per class.

Since our data is inherently multimodal, we pro-
pose advanced DL methods that incorporate both
textual and visual features. This is important be-
cause memes are complex entities and the fusion of
both modalities is necessary to understand the full
meaning of the meme (which might not be apparent
from a single modality alone). We experiment with
the following mulitmodal networks:

1. CNN + LSTM: This architecture does a sim-
ple late-fusion of the two unimodal designs.
We concatenate image and text features and
pass through a FC classifier for prediction.

2. VQA: There has been significant work in mul-
timodal learning on Visual Question Answer-
ing, which requires subtle reasoning around
both modalities to answer complex queries.
Given similar reasoning in memes, we experi-
ment with the VQA model (Antol et al., 2015).

Both image and text (question) features are
transformed to a common space and fused via
element-wise product, which is then passed to
a FC layer to get class scores (answers).

3. MUTAN: This model (Ben-Younes et al.,
2017) tries to effectively mix and merge in-
formation from the two modalities. It uses
a multimodal Tucker decomposition to effi-
ciently parametrize bilinear interactions be-
tween visual and textual representations. It
demonstrates improved performance on the
visual question-answering task by learning in-
terpretable embedding spaces.

Recently, Bidirectional Encoder Representations
from Transformers (BERT) models (Devlin et al.,
2019) trained on large-corpus have proven to pro-
vide state-of-the-art results for diverse NLP applica-
tions. Given an input sentence, a pretrained BERT
model gives a hidden representation for each token
in the sentence along a pooled output for the entire
sentence. These representations are rich in contex-
tual knowledge and we explore different ways to
use this information as follows:

4. Concat BERT: The pooled output for text
is concatenated with the image feature, and
passed through a FC classifier.

5. Average BERT: Similar to the previous set-
ting, but the average of the final hidden state
is taken as the text feature.

6. Gated BERT: The final hidden state is aver-
aged to get text feature. We combine the text
and image feature using a Multimodal Gated
Layer (Ovalle et al., 2017), which weights rel-
evance of each modality and combines them
to output prediction classes.
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3.3 Common World Knowledge

Language in memes is informal and often contains
slang words. We propose to use the Urban dictio-
nary which is a crowd-sourced repository of com-
mon slangs along with their definitions. Particu-
larly, we initialize our constituent words with em-
beddings pretrained on the Urban Dictionary (Wil-
son et al., 2020) instead of GloVe vectors. These
features perform well on extrinsic tasks such as sen-
timent analysis and sarcasm detection where some
knowledge of colloquial language is required.

Popular vision algorithms (such as VGG-16) are
trained on object detection tasks and they require
explicit supervision from labels. This limits their
usability. More recently, pretraining on image-text
matching (Radford et al., 2021) has gained traction
by outperforming other methods. Since the images
are crawled from the internet, we believe that the
distribution captured by CLIP (Radford et al., 2021)
are more relevant and representative of the online
media today, and hence, more suitable for our task.

3.4 Joint Learning

In the previous sections, we were considering the
two tasks independently and training separate mod-
els. Given the synergy between the two tasks, we
propose a joint learning framework where we use
weight sharing between networks to exploit the
commonalities and learn improved features. We
propose two approaches to achieve this:

1. Multi-Task Learning: We start with a multi-
modal deep network as a shared embedding
layer for both modalities, and followed by two
different classifier heads, one for each task.

2. Hierarchical Learning: We utilize the inher-
ent hierarchy between the two tasks where
the second classifier kicks in only when the
probability for “misogynous" class from first
classifier is greater than 0.5. The model ar-
chitecture is same as the multi-task setup, but
now the second classifier head for finer catego-
rization is only trained on misogynous items.

4 Experiments and Results

4.1 Task and Dataset

We work on the “Multimedia Automatic Misog-
yny Identification" task (Fersini et al., 2022) at
SemEval 2022. The problem comprises of two
sub-tasks: (i) Binary Classification to categorize

a given meme as misogynous or not; (ii) Multi-
class Multi-label Classification to further classify
misogynous memes into fine-grained, overlapping
categories (shaming, stereotype, objectification, vi-
olence). Our dataset consists of 10,000 memes and
we partition them into 70% / 20% / 10% for train,
validation and test respectively. We only report
metrics on this data split as we do not have the
ground truth labels for the competition’s hidden
test set. We measure the performance using these
metrics: average accuracy per class, and weighted-
average precision, recall and F1 scores where the
weights are determined by the support of that class.

4.2 Textual and Visual Cues
Prior work on detecting sexism in memes (Fersini
et al., 2019) use specially curated textual and visual
cues. We curated the profanity scores for text using
a pretrained model on toxic comment classification
(Pearson coeff. -0.05), sentiment polarity from
Textblob (Pearson coeff. -0.012), and percentage
of skin in images (Pearson coeff. 0.125). Thus,
many intuitive cues showed no correlation with
misogyny, exemplifying the difficulty of our task.

4.3 Baselines
Table 1 presents the baseline results. We extend
these linear models to the multi-label setting as a
one-vs-all task, where separate classifier are trained
for each class. We observe the following: (i) Tex-
tual models perform better than image only models.
(ii) Performance of text + image models is similar
to text only methods, implying that TF-IDF vectors
are a strong indicator for meme classification.

4.4 Deep Learning Architectures
The results are tabulated in Table 2 and we make the
following observations: (i) Using both image and
text significantly improves performance over the
unimodal variants. We further provide qualitative
comparison of unimodal and multimodal methods
in Figure 1, which also illustrates the complexity
of the task and the subtle relations between the
two modalities. (ii) Similar to the baselines, text
only methods give better results than image only
methods. (iii) BERT-based models show significant
improvement in performance for multi-label classi-
fication task. (iv) For the multi-class, multi-label
classification problem, there is a skewed distribu-
tion of positive and negative examples within a
class. Hence, performance varies across different
classes, as shown in Figure 2. Here, training the
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Figure 1: Qualitative evaluation of Text Only, Image Only and Text + Image models.

Model Binary Classification Multi-class Multi-label Classification

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Using Only Text Features

LSTM 0.772 0.773 0.770 0.770 0.654 0.504 0.712 0.558
LSTM (CWK) 0.778 0.779 0.776 0.777 0.644 0.453 0.571 0.478

Using Only Image Features

CNN 0.717 0.727 0.712 0.711 0.673 0.497 0.629 0.524
CNN (CWK) 0.839 0.838 0.838 0.838 0.769 0.580 0.790 0.654

Using Both Image and Text Features

CNN + LSTM 0.799 0.798 0.799 0.798 0.700 0.522 0.761 0.598
VQA 0.785 0.789 0.787 0.784 0.669 0.503 0.821 0.599
MUTAN 0.821 0.821 0.820 0.820 0.639 0.483 0.855 0.594
Concat BERT 0.715 0.719 0.712 0.711 0.780 0.531 0.477 0.501
Average BERT 0.742 0.746 0.740 0.740 0.796 0.563 0.541 0.540
Gated BERT 0.728 0.728 0.727 0.727 0.800 0.587 0.523 0.553

CNN + LSTM (CWK) 0.836 0.837 0.834 0.835 0.770 0.585 0.798 0.658
VQA (CWK) 0.828 0.829 0.826 0.827 0.771 0.592 0.800 0.662
MUTAN (CWK) 0.828 0.827 0.827 0.827 0.781 0.607 0.791 0.670
Concat BERT (CWK) 0.840 0.841 0.841 0.840 0.798 0.628 0.723 0.658
Average BERT (CWK) 0.837 0.837 0.836 0.836 0.838 0.655 0.700 0.676
Gated BERT (CWK) 0.839 0.839 0.839 0.838 0.845 0.665 0.710 0.684

Table 2: Evaluation of various deep learning architectures. Here, CWK refers to common world knowledge sources,
namely Urban Dictionary (Wilson et al., 2020) and CLIP (Radford et al., 2021), for text and image respectively.

Model Binary Classification Multi-class Multi-label Classification

Accuracy Precision Recall F1 Accuracy Precision Recall F1

Multi-Task Learning

CNN + LSTM (CWK) 0.832 0.833 0.830 0.831 0.750 0.598 0.810 0.662
VQA (CWK) 0.845 0.845 0.844 0.844 0.771 0.601 0.790 0.663
MUTAN (CWK) 0.836 0.835 0.835 0.835 0.769 0.585 0.803 0.658
Average BERT (CWK) 0.843 0.843 0.843 0.843 0.757 0.598 0.816 0.665
Concat BERT (CWK) 0.838 0.838 0.838 0.838 0.734 0.580 0.804 0.646
Gated BERT (CWK) 0.842 0.842 0.842 0.842 0.725 0.571 0.803 0.639

Hierarchical Learning

CNN + LSTM (CWK) 0.839 0.838 0.839 0.838 0.773 0.590 0.804 0.663
VQA (CWK) 0.843 0.842 0.842 0.842 0.770 0.598 0.794 0.662
MUTAN (CWK) 0.829 0.828 0.829 0.828 0.772 0.587 0.777 0.653
Average BERT (CWK) 0.842 0.842 0.842 0.842 0.799 0.613 0.769 0.671
Concat BERT (CWK) 0.838 0.838 0.838 0.838 0.796 0.609 0.751 0.661
Gated BERT (CWK) 0.835 0.835 0.835 0.835 0.788 0.599 0.761 0.658

Table 3: Evaluation of various deep learning architectures using joint learning techniques.
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models with weighted cross entropy plays an im-
portant role in the precision-recall trade off. Note
that F1 score is a better measure than accuracy
because of the class imbalance.

Figure 2: Class-wise performance across metrics.

Figure 3: Multimodal features projected into two dimen-
sional space along with misogynous-or-not labels.

4.5 Common World Knowledge
Incorporating Common World Knowledge (CWK)
from Urban Dictionary and CLIP provides a sub-
stantial boost in performance across all models,
and this is because visiolinguistic models are able
to learn more discriminative features. To illustrate
this, we consider two set of multimodal features
(with and without CWK) and run dimensionality
reduction using Uniform Manifold Approximation
and Projection (McInnes et al., 2018). We visual-
ize the feature space in lesser variables and plot
the misogynous-or-not class in Figure 3. It can be
seen that the features without CWK are not able
to differentiate between the classes, whereas fea-
tures with CWK result in better separation, and are
therefore, more effective for our task. We provide
further qualitative evidence in Figure 4.

4.6 Joint Learning
The results for multi-task and hierarchical learning
are presented in Table 3. We observe that there is
an improvement in the binary classification task,
and we reason that the joint learning paradigm
provides significantly new information about sub-
classes from the multi-class setting to the binary

Figure 4: Examples where Gated BERT fails, but Gated
BERT with CWK classifies the memes correctly.

task. However, results for the multi-class setting
are comparable to the independent models.

5 Conclusion and Future Work

Our work focused on the task of misogyny detec-
tion in multimodal memes. We demonstrated that
using a combination of visual and textual, i.e, multi-
modal features outperforms the unimodal counter-
parts. In addition to simple baselines, we have
also experimented with advanced DL architectures
inspired from VQA and multimodal transform-
ers. Further, we have shown how incorporating
common world knowledge from Urban dictionary
and pretrained CLIP can significantly help in iden-
tifying misogynistic content, along with qualita-
tive evidence. Finally, the proposed joint learning
paradigm can exploit the synergy between the two
tasks, instead of training models independently.
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Abstract

We present a multi-modal deep learning sys-
tem for the Multimedia Automatic Misogyny
Identification (MAMI) challenge, a SemEval
task of identifying and classifying misogynistic
messages in online memes. We adapt multi-
task learning for the multimodal subtasks of the
MAMI challenge to transfer knowledge among
the correlated subtasks. We also leverage on
ensemble learning for synergistic integration
of models individually trained for the subtasks.
We finally discuss about errors of the system to
provide useful insights for future work.

1 Introduction

Multimodal machine learning processes data from
different modalities (e.g. visual, auditory, lingual)
to infer their combined meaning. This topic has
seen tremendous development, encompassing vi-
sual question answering (VQA) (Stanislaw Antol,
2015), image captioning (Chen et al., 2015), mul-
timodal classification and beyond. SemEval 2022
Task 5 “Multimedia Automatic Misogyny Identifi-
cation” (MAMI) (Fersini et al., 2022) also requires
multimodal machine learning to analyze both vi-
sual and textual information from memes (image,
caption) in order to identify and classify misogynis-
tic memes. The MAMI challenge has the following
two subtasks:

• Subtask A: Classification of a meme as either
misogynistic or not

• Subtask B: Categorisation of the type of
misogyny if the meme is identified as misog-
ynistic in Subtask A. There are 4 types (or
sub-categories) of misogyny: shaming, stereo-
type, objectification and violence

As introduced by a multimodal research survey
(Baltrušaitis et al., 2019), data representation, fu-
sion, and co-learning are the primary challenges

∗Corresponding Author

in multimodal classification problems. To address
those challenges, we explore the following relevant
topics: data augmentation, multimodal pre-training,
multi-task learning and ensemble learning. Data
augmentation helps enrich under-represented fea-
tures in data. Multimodal pre-trained models may
represent multimodal data like those of the MAMI
challenge better than unimodal pre-trained mod-
els. We also adapt multi-task learning to transfer
knowledge in training data among related tasks. As
the misogyny sub-categories are correlated to each
other, this approach is especially useful in Subtask
B. Our final predictions are determined by majority
voting among the top performing models.

This paper is structured as follows: In Section 2,
we describe the task description and dataset. Sec-
tion 3 explains in details the models and methods
we incorporate into the final system architecture.
Section 4 discusses the evaluation results of the
models and methods, including multi-task learning
and ensemble learning. We conduct error analysis
in Section 5 and conclude our findings in Section 6.

2 Task Description and Dataset

SemEval 2022 Task 5 “Multimedia Automatic
Misogyny Identification” (MAMI) (Fersini et al.,
2022) is a classification task that aims at identify-
ing and classifying misogynistic memes in social
media. While most memes are funny and harmless,
some deliver misogynistic content and have strong,
negative influence due to their high speed of spread.
Such memes need to be detected and removed from
online sites to avoid gender-related hate. In partic-
ular, the MAMI task targets memes, each of which
is essentially an image characterized by a pictorial
content with an overlaying text a posteriori intro-
duced by human, thus a multi-modal (image+text)
analytics task.

The MAMI task has two subtasks. In Subtask A,
participants must classify memes into misogynis-
tic and non-misogynistic. The evaluation metric is
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macro-average F1 score. Subtask B is to identify
the type of misogyny from the possibly overlap-
ping categories: shaming, stereotype, objectifica-
tion, and violence if the meme is misogynistic. The
evaluation metric is weighted-average F1-Measure,
where the F1 scores of the four categories are aver-
aged with weights by support, i.e. the number of
true instances for each label.

The training dataset contains 10,000 memes with
English captions, assembled from social media plat-
forms. Another 1,000 memes are given as the test
dataset. Besides memes in JPEG file format, the
task also provides transcriptions of memes cap-
tions in a separate text file. Parts of the data are
collected and evaluated as described in (Gasparini
et al., 2021).

3 Methods

We present a system that utilizes a multi-task learn-
ing method to deal with dependencies between the
subtasks, fills in the lacking parts of the training
dataset by using data augmentation methods, and
combines the outputs of multiple base models with
ensemble methods.

3.1 Multimodal Base Models

The Hateful Memes Challenge (Kiela et al., 2020b),
calling for state-of-the-art models for hate speech
detection in multimodal memes, published baseline
codes called MMF, which are modular and highly
scalable. We thus chose MMF as the codebase of
our base models. We extracted 100 features from
each meme with the image feature extraction func-
tion of MMF and the configurative specifications
produced by HateDetectron (Kiela et al., 2020b),
the second runner-up of the Hateful Memes Chal-
lenge. The feature extractor is backboned by Faster-
RCNN (Ren et al., 2015) and ResNet-152 (He et al.,
2016).

Below are detailed descriptions of all the base
models offered in MMF that we used.

Unimodal (text): We included a unimodal
model as a control group. The modality for this
model is configurable. After experimentation, we
decided to go for text as the single modality for
prediction, as it rendered better results than using
only images or feature vectors.

ConcatBOW/BERT/MMF: MMF has baseline
models for multimodal classification tasks. We ob-
tain text representations from bag-of-word (BOW),
BERT, and MMF models and image representa-

tions as feature vectors. The “Concat” models
concatenate the two representations (text+image)
as fusion, and the fusion results are then passed
through a Multi-Layer Perceptron (MLP) to output
predictions.

LateFusionMMF: The Late fusion model takes
the mean between the text and image representa-
tions, instead of concatenation.

ViLBERT: Vision-and-Language BERT (ViL-
BERT) (Lu et al., 2019) is a BERT-based multi-
modal model pre-trained on the Conceptual Cap-
tions (Sharma et al., 2018) dataset, comprising
captioned images. It uses two pre-trained strate-
gies: (1) reconstructing image regions or words for
masked inputs based on the unmasked portions and
(2) prediction of multimodal image-text alignment.

The fundamental difference from the original
BERT architecture lies in the attention mechanism,
with co-attention used in place of self-attention.
By exchanging key-value pairs in multi-headed at-
tention, ViLBERT conducts vision-attended lan-
guage attention in the visual stream and language-
attended vision attention in the linguistic stream.
ViLBERT has shown state-of-the-art performance
on multiple vision-and-language tasks.

Visual BERT: Like ViLBERT (Li et al., 2019),
Visual BERT is another BERT-based multimodal
model. It reuses the self-attention system in trans-
formers to implicitly match image regions with
texts. The visual embeddings comprise segment
embeddings, positional embeddings, and feature
vectors of bounding boxes, generated by Faster-
RCNN (Ren et al., 2015). They are then fed into the
transformer together with text embeddings. With
visual and linguistic inputs pre-trained together,
the model can discover interesting alignments and
implicitly construct effective joint representations.

Visual BERT was pre-trained task-agnostically
on the COCO (Chen et al., 2015) dataset for two
tasks: masked language modelling and sentence-
image prediction. For better adaptation to a par-
ticular domain, Visual BERT is usually fine-tuned
using masked language modelling on task data be-
fore it is applied to downstream tasks.

MMBT: The basic idea of Multimodal Bitrans-
formers (MMBT) (Kiela et al., 2020a) is to apply
self-attention to both modalities (i.e. text and im-
age) all at once. This is achieved by utilizing seg-
ment embeddings to differentiate between the two
modalities, the same method for typical question
answering tasks to separate question from para-
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graph.
A fundamental difference between MMBT and

other self-supervised architectures like ViLBERT
and VisualBERT is that MMBT only pre-trains in-
dividual modalities unimodally. Such design has
the plug-and-go advantage if a better vision or lan-
guage model emerges. It is trivial to replace the
pre-trained models for different modalities since
they are pre-trained separately. On the other hand,
MMBT cannot fully gauge the powerful attention
mechanism on multimodal data during pre-training.

3.2 Multi-task Learning
Our baseline models’ results (see Section 4) show a
significant gap between Subtasks A and B and also
uneven performance among the misogynistic sub-
categories of Subtask B. This means the models
fall short of generalizing the meaning of misogyny.
Therefore, we adapted multi-task learning (MTL)
to uncover the shared knowledge among all the
misogynistic sub-categories.

A MTL learns multiple tasks simultaneously by
constructing a generalized representation for the
data in different yet related contexts. It is suitable
for our dataset since we have five inter-correlated
outputs (1 from Subtask A and 4 from Subtask
B). To realize multi-task learning, we altered the
architecture of the Visual BERT baseline model.
While the encoder portion was kept unchanged,
we duplicate the classification layer of the decoder
into five, each associated with a sigmoid layer for
prediction of one of the five outputs. We used
binary cross-entropy (BCE) loss combined with
Kullback–Leibler divergence loss (KL) as the loss
function and summed all the losses generated by in-
dividual classification layers. For comparison pur-
pose, we also tried MTL on only the four misogyny
types of Subtask B, but the five layers configuration
yielded better results.

In fact, we tried to fine-tune Visual BERT on
Subtask A first before further fine-tuning it on Sub-
task B, because we view the misogynistic classifi-
cation as the main task, and the type categorization
task stems from it. Contrary to our expectations, we
observed a decrease in model performance. Instead
of the misogyny classification inferring the types of
misogyny, the results could indicate that the types
of misogyny dictate the misogyny classification.

3.3 Data Augmentation
Upon inspection of the validation dataset errors,
we found that around 30% of them are blurry or

have low resolution, and that about 17% of them
express sarcasm against men but are misclassified
as misogyny. To address this issue, we created new
data by augmenting 10% of the original training set
that compare males with females. We augmented
them with nine transformations: (1) rotation, (2)
Gaussian noise, (3) blurring, (4) horizontal flip, (5)
contrast, (6) Affine transformation, (7) distortion,
(8) elastic transformation, and (9) change in hue
and saturation, with 100 memes per transformation.
This boosted the robustness of our model to deal
with various data qualities. The data augmentation
library we used is imgaug (Jung et al., 2020).

3.4 Ensemble Learning

Ensemble learning (Opitz and Maclin, 1999) is an
effective method that makes better achievements
by combining multiple models’ outputs. Taking ad-
vantage of the “wisdom of the crowd”, an ensemble
model can outperform a single contributing model.

Based on our baseline results (see Section 4),
all the baseline models except Concat BOW and
Unimodal Text have competency on at least one
subtask. Thus, the ensemble model pool only ex-
cludes the two underperforming models. We ex-
perimented with two ensemble strategies, 1) an
Multi-layer Perceptron (MLP) and 2) a majority
voting layer that averages output probabilities, and
compared their results, where both take as input
the concatenation of the outputs of the selected
baseline models and predict the final outputs per
subtask1.

4 Results

We show the evaluation results of the baseline mod-
els, multi-task learning and ensemble methods, and
then based on the results, present the overall archi-
tecture of the final system we used for our official
submission of the MAMI challenge in Section 4.4.

4.1 Baseline comparison

The baseline models serve as the starting point for
our experimentation. We trained and evaluated
all models included in Section 3.1 individually on
all subtasks (misogyny, shaming, stereotype, ob-
jectification, violence). Table 1 summarizes the
evaluation results.

1We refer to the lowercase "subtask" as the misogyny type
columns (misogyny, shaming, stereotype, objectification, and
violence), in comparison to the capitalized "Subtask" (Sub-
tasks A and B) in the MAMI challenge.
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Model Misogyny Shaming Sterotype Objectification Violence
Unimodal (text) 80.9% 68.8% 72.2% 74.7% 65.3%

ConcatBOW 74.9% 67.2% 63.5% 73.3% 64.0%
ConcatBERT 83.7% 68.0% 71.6% 77.5% 72.0%
ConcatMMF 84.4% 69.6% 72.7% 77.1% 74.0%
Late Fusion 82.8% 70.9% 72.3% 76.1% 69.1%
ViLBERT 83.4% 69.8% 72.1% 79.7% 75.2%

VisualBERT 84.4% 72.0% 73.8% 75.5% 71.5%
MMBT 82.3% 71.4% 70.9% 73.6% 67.2%

Table 1: Baseline performance evaluated on the validation set. Scores in this table are macro-averaged F1-scores.
The best three performance for each subtask are highlighted in bold.

Since there was no noticeable change in model
performance after we tuned the hyperparameters,
we set them as fixed values specified as follows:
Enabled early stopping, learning rate of 2e-05, ep-
silon of 1e-05, batch size of 16, learning rate ratio
of 0.6, and warm-up steps of 500.

As seen in Table 1, model performance varies
significantly from task to task. Among all the sub-
tasks, Shaming and Violence are the hardest to
learn, carrying a non-negligible difference of more
than 10% from the Misogyny subtask. This differ-
ence in performance will be addressed in the next
section.

An interesting note is that early fusion (Snoek
et al., 2005) models like Visual BERT are com-
parable to late fusion (Gunes and Piccardi, 2005)
models such as Concat BERT and MMBT. Based
on this finding, modal correlations may be picked
up at both the decision level as well as the low-
dimensional feature level, although the learnt cor-
relations could be different.

Concat BOW performs the worst since it uses
simple bags of words as text representation. Its
performance is even worse than the unimodal text
model. All other multimodal models achieved bet-
ter results than the unimodal model, showing the
involvement of visual information contributes to
the overall understanding of the meme contents.
We selected the best three models for each subtask
for later experiments.

4.2 Multi-task learning evaluation

The alteration of Visual BERT for multi-task learn-
ing resulted in an overall advancement of 2.6%
for Subtask B and a slight improvement of 1.3%
for Subtask A. We also explored different speci-
fications of the classification layers, adjusting the
number of hidden layers and activation functions.

Method Subtask A Subtask B
Top-3 models + MLP 71.6% 68.2%
Top-3 models + majority voting 66.1% 69.5%
Top-6 models + MLP 70.2% 67.9%
Top-6 models + majority voting 67.4% 69.2%

Table 2: Performance comparison between ensemble
learning methods. Scores in this table are of the metrics
used for Subtasks A and B, and evaluated on the test set.

However, none of them showed significant influ-
ence on model’s performance.

4.3 Ensemble evaluation

Table 2 summarizes the evaluation results of two
ensemble methods (MLP, majority voting) with
the top-k models (k=3,6)2. For each subtask, the
top-3 models used are highlighted in bold face in
Table 1, and all models except Concat BOW and
Unimodal Text are selected as the top-6 models.
Refer to Table 1 for the top-3 models selected for
each subtask.

The evaluation results of the ensemble methods
do not identify a single best method. The majority
voting with top-3 models shows the best perfor-
mance for Subtask B, while MLP is the best for
Subtask A. Based on these mixed results, we select
different models and ensemble methods for the two
Subtasks A and B, which is illustrated in the next
section.

4.4 Overall system architecture and
evaluation

After considering the evaluation results above, we
selected the following three models as parts of the
final system architecture:

2We refer to the lowercase "subtask" as the misogyny type
columns (misogyny, shaming, stereotype, objectification, and
violence), in comparison to the capitalized "Subtask" (Sub-
tasks A and B) in the MAMI challenge.
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Figure 1: The high-level architecture of the multimodal multitask learning and ensemble learning framework

1. A Visual BERT based multi-task learning
model

2. An ensemble learning model that feeds the
output probabilities from the top-3 models in-
dividually trained on each subtask to a Multi-
layer Perceptron (MLP)

3. An ensemble learning model that does major-
ity voting among the top-3 models individu-
ally trained on each subtask

In Subtask B, results are generated by applying yet
another majority voting layer to these three mod-
els. In Subtask A, results are directly taken from
the outputs of the ensemble model with MLP (the
second model on the list), since we found applying
majority voting to Subtask A produced suboptimal
results. During the evaluation phase of the competi-
tion, we achieved 71.6% in Subtask A and 70.6% in
Subtask B, ranked 4th and 6th on the leaderboard,
respectively. Figure 1 illustrates how the models
are integrated into the final system architecture.

5 Error Analysis

5.1 Analysis on Subtask A

Despite the competitiveness of our system, it still
misinterprets the misogyny of some memes in Sub-
task A. A deeper examination reveals the most com-
mon error clusters as discussed below.

First, memes often include references to news,
celebrities and cultural practices, e.g. those contain-
ing members of “the squad” in the 2019 US House
election. This issue may be addressed by detecting
entities in memes and collecting their details from
the Web to better represent the entities.

Second, the current system falls short of extract-
ing meaning from text positions in memes and the

order of sentences (e.g. four-frame mangas). This
issue may be addressed by correcting the sentence
order and learning their alignment to meme frames.

Third, memes of anti-violence propaganda are
often misclassified into the violence category since
they include violent-looking images, while the cap-
tion is about fighting against violence. In con-
trast, other misogynistic memes portray violent
acts against women in the caption and praise their
actions in the image, e.g. with a thumbs-up icon or
trophies.

Fourth, memes about comparison between men
and women are often confusing. We noticed that
these memes either mock males by comparing them
to females or describe the real difference between
males and females in a funny way. This issue may
be addressed by using data augmentation of switch-
ing gender-referring words (e.g. man, woman, boy,
girl) in the captions of those memes.

5.2 Analysis on Multi-task Learning

In the hold-out set from the training data, our model
achieved 83% for Subtask A and 73% for Sub-
task B. Nevertheless, the same model only yielded
69.7% and 67.5% on the test data. This discrep-
ancy may indicate that training and test data come
from different distributions. Conventional multi-
task learning is vulnerable to out-of-distribution
because it assumes the predicted targets are inde-
pendent given the input. Unfortunately, the target
sub-categories are dependent on each other. This
issue might be addressed by adapting, e.g. gen-
erative multi-task learning (Makino et al., 2022),
which considers the dependency between targets.
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6 Conclusion

In this paper, we presented our system for the Multi-
media Automatic Misogyny Identification (MAMI)
task in SemEval 2022. We augmented the data
with visual transformation techniques and extracted
features from memes by using multimodal base-
line models. We further enhanced the system by
adapting multi-task learning and ensemble learning
methods. We leave issues such as incorporating
external information about entities, frame layout in
memes, gender-related text data augmentation and
cross-subtask dependency in multi-task learning as
future works.
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Abstract

Warning: This paper contains examples of lan-
guage that some people may find offensive or
upsetting.

In this paper, we describe the system proposed
by the MilaNLP team for the Multimedia Au-
tomatic Misogyny Identification (MAMI) chal-
lenge. We use Perceiver IO as a multimodal late
fusion over unimodal streams to address both
sub-tasks A and B. We build unimodal embed-
dings using Vision Transformer (image) and
RoBERTa (text transcript). We enrich the in-
put representation using face and demographic
recognition, image captioning, and detection of
adult content and web entities. To the best of
our knowledge, this work is the first to use Per-
ceiver IO combining text and image modalities.
The proposed approach outperforms unimodal
and multimodal baselines.

1 Introduction

Monitoring and detecting hateful content online
is of paramount importance to limit the spread of
hate, misconception, and prejudice. Content on
social media platforms poses several challenges,
from fast-paced, large-scale generation requiring
automatic solutions, to ever-changing information
mediums, like internet memes.

Misogynous memes are an unfortunately com-
mon phenomenon. Based on sexist preconceptions,
these memes target and degrade women for hu-
mor. This intricate nature makes them hard to de-
tect with classical computational models as hate
is conveyed by associating known visual concepts
with specific textual wording. In the Multimedia
Automatic Misogyny Identification task (Fersini
et al., 2022) novel systems are required to detect
misogynous memes in English. The task is divided
into two sub-tasks. Sub-task A requires solving
the sole misogynous meme identification (i.e., a
binary task). Sub-task B requires recognizing more
specific categories, namely stereotype, shaming,

Figure 1: Sample from the training set (top) annotated
with Misogynous and Stereotype labels. We enriched
the meme with additional information (bottom), namely
detected faces (F), web entities (W), caption (C), and
adult content (A).

objectification, and violence. Figure 1 (top) shows
an example from the dataset.

We propose a novel architecture where uni-
modal1 components extract salient information
from the meme. We present all information to
a late fusion layer that distills it into a latent rep-
resentation. We use renowned unimodal encoders
networks and Perceiver IO (Jaegle et al., 2022) as
the late fusion layer. Notably, while jointly learning
from all modalities, Perceiver IO easily extends to
multi-task learning. To the best of our knowledge,
this work is the first to use Perceiver IO combining
text and image modalities. We hence effectively
address, with the same architecture, both sub-tasks
A and B.

1We use unimodal whenever a single modality is involved,
e.g., when dealing with Image content only. By extension,
multimodal refers to a mixture of unimodals, e.g., Image and
Text.
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The proposed system outperforms both uni-
modal and multimodal baselines. The results
show that Perceiver IO is an effective and efficient
method to jointly fuse input representations from
different modalities in multi-task setups. However,
we achieved sub-par performance against other
competing solutions. We ranked 25th (13 F1 points
worse than the best system) out of 69 competing
teams on sub-task A and 15th (4 F1 points worse
than the best system) out of 42 competing teams
on sub-task B. Our system is not specialized in ei-
ther of the sub-tasks and hence it under-performs
against task-engineered solutions. We report a brief
error analysis in Section 5.

We release the code to replicate our experiments
at https://github.com/MilaNLProc/
milanlp-at-mami.

2 Background

In the last years, the task of hate speech detection
has attracted considerable attention from the Nat-
ural Language Processing and Computer Vision
communities. Among the research work in this
area, only a limited number of approaches have fo-
cused on the problem of misogyny detection, which
is a concrete problem in social media platforms.
Nozza (2021) shows that hate speech detection
models do not transfer across different hate speech
targets, further demonstrating the need for ad-hoc
misogyny detection approaches and datasets. In-
deed, the corpora made available as part of shared
tasks (Fersini et al., 2018, 2020b; Basile et al.,
2019; Mulki and Ghanem, 2021) enabled a vari-
ety of NLP approaches to the problem of automatic
misogyny detection on Twitter posts (Indurthi et al.,
2019; Fersini et al., 2020a; Attanasio and Pastor,
2020; Lees et al., 2020, inter alia).

The Multimedia Automatic Misogyny Identifi-
cation task focuses on the problem of misogyny
detection with the new perspective of multimodal-
ity. The most similar research effort in the direction
of hateful memes detection is the Hateful Memes
Challenge (Kiela et al., 2020) and the MMHS150K
corpus (Gomez et al., 2020).

On the other hand, multi-modal models that com-
bine image and text are now becoming incredibly
popular in Natural Language Processing (Cao et al.,
2020; Lu et al., 2019; Tan and Bansal, 2019; Rad-
ford et al., 2021; Bianchi et al., 2021; Su et al.,
2020, inter alia) due to their capabilities to solve

zero-shot tasks.2

In this paper, we focus on the use of Perceiver
IO (Jaegle et al., 2022) to combine the information
coming from different sources such as the meme
image, the text, and other features.

3 System overview

Following recent work addressing similar
tasks (Pramanick et al., 2021; Zhu, 2020; Lee et al.,
2021, inter-alia), we decompose the multimodal
learning of hateful memes into two stages. First,
we embed with unimodal encoders different input
sources. Next, we adopt a multimodal late fusion
to jointly learn from different modalities. With this
setup, we tackle both sub-tasks A and B with no
additional data other than the one provided for the
task.

We build unimodal streams using pretrained,
modality-specific encoder networks. Each encoder
contributes an input representation to the subse-
quent fusion layer. We then use Perceiver IO (Jae-
gle et al., 2022) as a late fusion approach over
the concatenation of modality-specific representa-
tions. Perceiver IO produces a structured, multi-
dimensional output. We leverage this ability to
jointly learn misogyny and other relevant aspects
(e.g., aggressiveness, objectification, etc.) from
the input. With that, we effectively solve both sub-
tasks A and B of the challenge using a single model
in a multi-task learning setting.

The system architecture is shown in Figure 2. To
the best of our knowledge, this is the first attempt to
use Perceiver IO as a multimodal late fusion layer
for multi-task learning.

In the following sections, we further describe
what type of unimodal source we considered (Sec-
tion 3.1) and how we adapted Perceiver IO to multi-
modal, multi-task learning (Section 3.2).

3.1 Unimodal streams

The provided memes are characterized by two fea-
tures: the meme image and the transcription of the
over-imposed text. Building on ideas from recent
work (Blaier et al., 2021; Pramanick et al., 2021),
we enrich the meme with semantic information
including image caption, face and demographics,
detection of adult content, and web entities. We
report a sample in Figure 1.

2See also Frank et al. (2021) for a detailed study and abla-
tion analysis on the capabilities of these models.
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Figure 2: System overview. Light yellow boxes are the raw meme components. Green shapes are unimodal encoders.
White boxes are external models used to enrich the meme. The darker yellow array represents the input array to the
Perceiver IO fusion layer.

We derive a different input stream from each of
the features of the semantically-augmented meme
(Figure 2, bottom).

Image We encode raw images using a pretrained
Vision Transformer (Dosovitskiy et al., 2021) (ViT).
In this stream, the input image is divided into
patches of 16x16 pixels and fed through a stacked
transformer architecture. We use the last hidden
token embeddings as the output of the stream.

Text Transcript We encode the text transcript
using a pretrained RoBERTa (Liu et al., 2019) and
use the last hidden token embeddings as the output
of the stream. We choose RoBERTa based on its
performance and its hurtful sentence completion
(HONEST) score (Nozza et al., 2021, 2022b).

Face and Demographics Some images contain
one or more faces. We use a pretrained Fair-
Face (Karkkainen and Joo, 2021) model to detect
faces and demographics. For each face found, we
extract three categorical attributes, namely Age3,
Gender, and Ethnicity. Figure 1 (bottom, F) reports
an example of face and demographics extracted
with FairFace from a training sample. We encode
face demographics with a simple embedding layer.

3FairFace produces age ranges, e.g., 60-75, 75+.

Adult Content We use NudeNet4, a pretrained
classification and detection model for nudity detec-
tion and censoring, to detect if the image contains
adult content. We encode this information with
additional embeddings.

Image caption We include an automatically gen-
erated image caption to have a textual description
of the meme content. We use a pretrained Show,
Attend and Tell model (Xu et al., 2015) to gener-
ate the caption for both training and test memes.
Figure 1 (bottom, C) reports an example of an auto-
matically generated caption. We encode the caption
using a pretrained DistilBERT (Sanh et al., 2019).

Web Entities We use Google Cloud Vision API
to detect web entities starting from the meme im-
age.5 As a summary of the extracted entities, we
use the textual field best guess labels pro-
vided by the API. We encode this text using a pre-
trained DistilBERT. Note that this is a different
model than the one used for captions.

4https://github.com/notAI-tech/NudeNet
5https://cloud.google.com/vision/docs/

detecting-web
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3.2 Late fusion with Perceiver IO

We concatenate all the information extracted by
unimodal streams into a single input array (Fig-
ure 2, top). Ideally, this array contains all the raw
unrouted information necessary for the task. We
use a Perceiver IO-based late fusion layer for infor-
mation distillation and multi-task learning.

Perceiver IO builds on Perceiver (Jaegle et al.,
2021) a modality-independent neural architecture
with two crucial advantages over unimodal mod-
els. First, it is designed not to leverage inductive
biases as in modality-specific architectures. Be-
cause of that, it effectively learns from the input
of any shape and nature. Second, Perceiver dis-
tills inputs in a much smaller latent representation
for memory efficiency. On top of that, Perceiver
IO (Jaegle et al., 2022) adds a decoding step to
produce a structured output of arbitrary size and
semantics. The output is generated using decoder
queries cross-attending the latent representation.
The number of queries and their dimension defines
the output shape.

We use this feature of Perceiver IO to address
both sub-tasks A and B at once. Specifically, we de-
fine five different task queries, one per characteris-
tic of the misogynous meme identification problem,
i.e., misogyny, shaming, aggressiveness, objectifi-
cation, and violence. In this multi-task setup, we
generate logits and extract probability distributions
for each of the five aspects.

4 Experimental setup

The provided training set counts 10,000 samples.
Class labels are balanced on misogyny (p1 = 0.5)
but unbalanced on shaming (p1 = 0.18), stereo-
type (p1 = 0.28), objectification (p1 = 0.22), and
violence (p1 = 0.095). We validated our models
and baselines using three-fold cross-validation over
the training set. We measure performance with F1
Macro on the binary misogyny detection task.

For ViT, RoBERTa, and DistilBERT, we use im-
plementations and checkpoints from the transform-
ers library (Wolf et al., 2020) and HuggingFace
Hub. We use monolingual English checkpoints
for text models. For Perceiver IO, we use the lu-
cidrains’s PyTorch implementation.6

Unimodal encoders For ViT, we used the
google/vit-base-patch16-224-in21k

6https://github.com/lucidrains/
perceiver-pytorch

checkpoint. We used the standard feature processor
which entails 1) resizing to a maximum shape
of 224x224 and channel normalization. We
also augmented the image using color jitter
(hue = 0.1), random horizontal flip (p = 0.5),
affine transformations,7 contrast (p = 0.3) and
equalization (p = 0.3) variations. We discard
the CLS last token embedding and use the
sequence of the remaining 196 tokens as the image
representation.

For RoBERTa, we used the roberta-base
checkpoint and its standard tokenizer padding and
truncating up to a maximum of 32 tokens. We
performed text augmentation via token removal
(p = 0.15).

For DistilBERT, we used the
distilbert-base-uncased checkpoint and
its standard tokenizer padding and truncating
up to a maximum of 32 tokens. Note that this
configuration is duplicated for both the text
transcript and web entity streams.

Perceiver IO We did not use a Perceiver
IO pretrained checkpoint. We manually
fine-tuned the number of latent variables in
{64, 128, 256, 512, 1024}, latent dimension
in {128, 256, 512, 1024}, and number of self-
attention layers in {6, 12}, and settled on the
configuration [265, 512, 6]. Self-attention
layers are applied sequentially and do not share
weights. We use 5 decoder queries to produce a
structured output of shape (5, 2). We project the
output using a final linear layer and consider the
result as the tasks logits. We also tried to use a
different linear projection layer per task but with
no measurable improvement in performance.

Training setup We trained the entire system end-
to-end, i.e., we jointly optimized all unimodal en-
coders and Perceiver IO. Following Bianchi et al.
(2021), we tried to freeze the encoders for an arbi-
trary number of steps and then unfreeze them, with
no significant improvement.

We manually tuned the learning rate in the range
[10−5, 10−6]. We then used 10−5 with linear decay
and 10% of total steps as warmup steps. We set
weight decay to 10−2. We trained the system for
four epochs using Focal Loss (Lin et al., 2020) to
account for class imbalance. We set alpha to 0.25
and gamma to 2.

7For the full set of affine transformations please refer to
our repository.
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Model F1

Lexicon BoW + LR 66.4
RoBERTa 77.4
Vision Transformer 73.1

Perceiver IO 82.9
Perceiver IO (FWCA) 83.3

Table 1: F1 performance (%) on our three-fold cross-
validation setup of unimodal (top) and multimodal (bot-
tom) models in the misogyny identification task (sub-
task A).

Model F1
Best system 83.4
Perceiver IO (FWCA) 69.9
Provided baseline 64.0
Best system 73.1
Perceiver IO (FWCA) 69.3
Provided baseline 62.1

Table 2: Performance on sub-task A (top) and sub-task
B (bottom) compared to best systems and baselines
provided by task organizers.

5 Results

The provided test set counts 1,000 samples. Target
labels are balanced in terms of misogyny but imbal-
anced for the rest of the categories. Unbalancing
is slightly more marked than the training set. We
report the prior frequency of the positive class as
p1 in Table 3.

In the following, we compare the performance
of the proposed system which encodes detected
faces (F), web entities (W), the image caption (C),
and adult content detection (A). We refer to the sys-
tem as Perceiver IO (FCWA). It achieves an overall
F1 (macro) score of 69.9% in sub-task A and an
F1 (weighted) score of 69.3% in sub-task B. We
rank 31th (13 F1 points worse than the best system)
on sub-task A and 18th (4 F1 points worse than
the best system) on sub-task B. The system outper-
forms several baselines provided by the task orga-
nizers. On sub-task A, we outperform 1) sentence
embeddings from a pretrained Universal Sentence
Embedding model, 2) an image classifier fine-tuned
from a VGG model, and 3) a classifier based on the
concatenation of the first two representations plus
a single layer neural network. On sub-task B, we
outperform 1) a multi-label model based on the con-
catenation of deep image and text embeddings and

Category F1 P R p1

misogynous 69.91 75.07 71.10 0.50

shaming 65.98 65.69 66.31 0.15
stereotype 67.79 68.58 67.34 0.35
objectification 70.06 71.72 69.30 0.35
violence 74.29 82.73 70.27 0.15

Table 3: Performance on the test set in terms of F1
(%), Precision (P), and Recall (R) with macro averaging.
Prior frequency (p1) of the positive class in the training
set.

2) a hierarchical multi-label model based on text
representations. Results are reported in Table 2.

5.1 Quantitative analysis

In the proposed dataset, misogyny characteristics
(e.g., shaming or objectification) apply only to
misogynous content. Hence, we consider perfor-
mance on sub-task A (binary misogyny detection)
as a proxy for the overall quality of the model con-
figuration. We report performance on our cross-
validation over the training set in Table 1.

We compared our system with internal unimodal
baselines. For the textual modality, we tested a Bag-
of-Word (BoW) representation8 extracted from the
HurtLex lexicon (Bassignana et al., 2018) fed to
a Logistic classifier and RoBERTa. For the visual
modality, we tested Vision Transformer. Our sys-
tem outperforms by a large margin these unimodal
baselines.

Further, we validated the intuition of semanti-
cally enriched memes with input ablation. Results
are reported in Table 1. Specifically, we removed
all streams but the encoders of the raw image and
the transcript (Perceiver IO). Cross-validation re-
sults show that our enriched input (Perceiver IO
(FWCA)) improves classification performance.

5.2 Error analysis

In the post-evaluation phase of the task, we studied
the labels predicted by our system on the 1,000 test
memes. Results are reported in Table 3 separately
by category.

The system effectively learned all categories (F1
is always greater than 65%) but with differences.
The misogynous identification task has a 70% F1

8We use a binary presence matrix, i.e., the rows are the
transcript of the meme, the columns each of the terms of the
lexicon, and the cell is 1 if the transcript contains the term at
least once or 0 otherwise.
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(a) (b) (c) (d)

Figure 3: A sample of false positives from the test set on the misogyny identification task.

(a) (b) (c) (d)

Figure 4: A sample of false negatives from the test set on the misogyny identification task.

score composed of a promising 75% in precision
and 71% recall. While performance between stereo-
type and objectification are close, the system under-
performed in the shaming category. We think this
behavior is due to the broad kind of both visual and
textual content that can convey shameful messages
and is hence more difficult to learn. Finally, the
model performed best in violence, where it is prob-
ably simpler to identify visual clues that let intend
a violent message.

We also manually inspected the errors of our
model. We conducted the analysis separately by
false positives (Figure 3) and false negatives (Fig-
ure 4). In the following, we speculate on the possi-
ble causes of these errors.

Weak Adult Content detection We noticed sev-
eral wrong annotations extracted by NudeNet in
both false positives and false negatives (e.g., all
memes in Figure 3 are labeled as NSFW). We
believe this might have introduced noise in our
training that further propagated in classifying test
memes.

Bias towards composite memes Several memes
have a composite nature. They contrast some be-
havior or reaction of two groups (e.g., boys and

girls) using a predefined structure. A typical exam-
ple is achieved by organizing one group on top of
another (Figure 3b and 3c).

We noticed several composite memes among
false positives. We argue this kind of meme has
a strong association bias with the positive class
(misogynous = 1). Indeed, we believe that, in ab-
sence of relevant information, the system leverages
the structure of the memes and wrongly produces a
positive prediction.

Hard stereotypes Several memes contain non-
hateful wording and image content. However, they
convey misogynous messages because the combi-
nation of image and text leverages a well-known
stereotype about women. We argue that the correct
classification of these memes must involve either a
solution explicitly modeling the stereotype or suffi-
cient training data to become aware of it. We call
“hard stereotypes” those memes whose stereotyp-
ical message is not backed by sufficient training
data. We noticed several hard stereotypes in our
misclassified memes. Figure 4 shows four exam-
ples of those.

Gender Bias We noticed several memes misclas-
sified as false negatives depicting only a man in the
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scene. We believe the system might have learned a
spurious bias associating the presence of men in the
image with the negative class (misogynous = 0).

5.3 Further considerations
Quality of generated information In our exper-
iments, automatically generated image captions
often describe coherently the content of the image,
although we do not expect them to generalize well
to complex and diverse concepts.

Instead, FairFace extracts almost always precise
face counts and age, ethnicity, and gender for each
face even in crowded images (there are cases of 14
people in a single image). Web entities are often
significant but provide coarse-grained information
(e.g., "internet cat meme").

Unconditioned prediction During the post-
evaluation phase, we identified a potential weak-
ness in the proposed architecture.

Decoding queries in Perceiver IO are indepen-
dent by design. This behavior enhances the model’s
generalization capabilities as it needs to learn inter-
nal representations useful for all outputs. However,
it also prevents any conditioning between them. In
our task, the misogynous aspect influences the re-
maining ones in the sense that only misogynous
memes are characterized by one or more categories
for sub-task B. We are not explicitly modeling this
condition and hence probably hindering the perfor-
mance.

6 Conclusion

We addressed both sub-tasks A and B of the Multi-
media Automatic Misogyny Identification shared
task with a novel Perceiver IO-based system. We
take advantage of pretrained encoders and external
services to extract and enrich with salient informa-
tion the input meme. Then, we use Perceiver IO as
a multimodal, multi-task late fusion layer of several
unimodal streams. To our knowledge, this is the
first time Perceiver IO has been used to combine
text and image modalities.

The proposed system outperforms unimodal and
multimodal baselines but underperforms against
more specialized, task-specific competitor systems.
We ranked 25th out of 69 competing teams on sub-
task A and 15th out of 42 competing teams on sub-
task B. In future work, we will explore improved
input preprocessing (e.g., for the OCR-based text
provided), and model ensembling. Additional ef-
fort should be put into identifying and mitigating

unintended bias that may be present in our mul-
timodal misogyny detection model following ap-
proaches proposed for text modality (Nozza et al.,
2019; Attanasio et al., 2022a,b). The development
of these multi-modal hate speech classifiers can
be useful for the automatic evaluation of large pre-
trained models (Nozza et al., 2022a).
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Abstract

We present our submission to SemEval 2022
Task 5 on Multimedia Automatic Misogyny
Identification. We address the two tasks:
Task A consists of identifying whether a meme
is misogynous. If so, Task B attempts to iden-
tify its kind among shaming, stereotyping, ob-
jectification, and violence. Our approach com-
bines a BERT Transformer with CLIP for the
textual and visual representations. Both textual
and visual encoders are fused in an early-fusion
fashion through a Multimodal Bidirectional
Transformer with unimodally pretrained com-
ponents. Our official submissions obtain macro-
averaged F1=0.727 in Task A (4th position out
of 69 participants) and weighted F1=0.710 in
Task B (4th position out of 42 participants).

1 Introduction

Evolving from the two previous editions of
the Automatic Misogyny Identification initia-
tives (Fersini et al., 2018, 2020), the Multimedia
Automatic Misogyny Identification shared task at
SemEval 2022 (MAMI) targets multimodal data for
the first time. Within MAMI, Fersini et al. (2022)
propose two classification tasks:

Task A A basic task about misogynous meme
identification, where a meme should be cate-
gorized either as misogynous or not.

Task B An advanced task, where the type of
misogyny should be recognized among po-
tentially overlapping categories: stereotyping,
shaming, objectification and violence.

The increasing volume of meme posts on social
media renders the development of models able to
identify malicious instances timely. The task is
more challenging than when dealing with text alone
because, in general, both the textual and the visual

channels play an indivisible role in conveying the
desired message.1

We build upon our previous experience in iden-
tifying misogyny and aggressiveness in text (Muti
and Barrón-Cedeño, 2020) and approach both mul-
timodal tasks with a supervised multi-modal bi-
transformer model (MMBT) (Kiela et al., 2020a).
We use bert-base-uncased-hatexplain (Mathew
et al., 2020) and bert-base-uncased (Devlin et al.,
2019) for the textual embeddings, and CLIP (Rad-
ford et al., 2021) for the visual ones. We also build
two unimodal baselines to compare against.2

Our experiments aim at understanding if and to
what extent our multimodal model outperforms the
two unimodal ones that address the problem sepa-
rately. Since meme classification is a challenging
task due to its multimodal nature, we shed some
light on which component should weigh more in
the decision process —text or image— by observ-
ing the impact of both modalities in the predictions.

Our official submission for Task A achieved a
macro-averaged F1 score of 0.727, whereas that
for Task B obtained a weighted F1 score of 0.710,
positioning our team in the 4th position in the task,
for both tasks.

In addition, we identify the linguistic and visual
elements which are potentially responsible for the
misclassification. We perform an error analysis to
check whether misclassified memes rely heavily
on external world knowledge and/or are subtle and
implicit, as we believe that those two aspects cause
struggle to the models.

The rest of the paper is structured as follows.
Section 2 provides essential definitions for this task,
such as misogyny and memes. We then move on to
dataset description as well as a summary of related
work. Section 3 describes our models for both tasks.

1This is different from other multimodal scenarios, such as
visual question answering or image captioning, where one of
the two modalities tends to be the dominant one (Zhu, 2020).

2Our model is publicly available at https://github.
com/TinfFoil/Unibo-at-SemEval-2022-MAMI.
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train test
Not Misogynous 5,000 500
Misogynous 5,000 500

Table 1: Class distribution for the binary Task A misog-
ynous or not.

Section 4 describes the experimental setup. Our
results are presented and discussed in Section 5.
Section 6 presents our error analysis. Section 7
concludes with a summary of our findings.

2 Background

2.1 Definitions
Memes are relatable acts of communication made
of visual and textual artifacts, where often an im-
age is superimposed with text with a humorous pur-
pose (MacDonald and Wiens, 2022). To be fully
understood, memes require context and real-world
knowledge. They are often satirical, implying hu-
mour and sarcasm in a subtle way (Sharma and
Pulabaigari, 2020). These factors cause the identifi-
cation of phenomena in them —such as expressions
of misogyny— difficult.

Humour does not always come as harmless fun
and that is the case with misogynous memes. Such
memes contribute to the establishment of a rape
culture (Ridgeway, 2014), where violence and sex-
ual harassment are tolerated, belittled, normalized,
excused and transformed into jokes. Therefore, de-
veloping automatic approaches to tackle misogyny
has both technological and social value.

According to the MAMI guidelines (Fersini
et al., 2022), a meme is misogynous when it con-
veys an offensive, sexist or hateful message (be
it weak or strong, implicitly or explicitly) target-
ing a woman or a group of women. Four kinds of
misogyny are considered for this task:

Shaming occurs when memes insult or offend
women because of their physical aspect.

Stereotyping represents a fixed idea or set of char-
acteristics; physically or ideological.

Objectification represents a woman like an object
through the over-appreciation of her physical
appeal (sexual objectification) or by depicting
her as an object (a human being without any
value as a person).

Violence shows physical or verbal violence toward
women.

train test preds

Shaming 1,274 146 130
Stereotype 2,810 350 379
Objectification 2,202 348 334
Violence 953 153 102

Sh
am

in
g
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ty

pi
ng
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bj

ec
tifi

ca
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n

V
io

le
nc

e

train test preds

✓ 400 24 32
✓ 1,247 32 152

✓ 992 37 96
✓ 250 19 21

✓ ✓ 286 32 20
✓ ✓ 161 25 40
✓ ✓ 11 2 0

✓ ✓ 412 152 118
✓ ✓ 302 40 31

✓ ✓ 116 38 23
✓ ✓ ✓ 301 45 32
✓ ✓ ✓ 55 3 1
✓ ✓ ✓ 12 5 0

✓ ✓ ✓ 162 36 20
✓ ✓ ✓ ✓ 45 10 5

Total 4,752* 500 591
∗ 248 of the misogynous memes lack type annotation.

Table 2: Number of instances per class for the multi-
label Task B (top). Class distribution (bottom). Column
preds shows the predictions of our best submitted model
(Multi; cf. Section 5).

2.2 Datasets

The datasets are balanced with respect to Task A
(see Table 1). The same instances include the multi-
label annotation for Task B. Table 2 shows the
number of instances for each label combination.

Stereotyping is the most represented class, with
3.2k instances overall, followed by objectification
(2.2k) and shaming (1.2k); violence is the least rep-
resented, with less than 1k. The label overlapping
plays an important role in our results analysis (c.f.,
Section 6). As Table 2 shows, stereotyping and ob-
jectification tend to come together, whereas sham-
ing and violence do not. We will explore whether
our models capture this intersection in Section 6.
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2.3 Related Work

The identification of misogyny in textual form
was explored in the series of shared tasks
on Automatic Misogyny Identification (AMI),
held at IberEval (Anzovino et al., 2018) and
EVALITA (Fersini et al., 2018, 2020). AMI at
IberEval 2018 focused on identifying misogyny
on English and Spanish tweets and on classify-
ing the misogynous tweets into seven categories:
discredit, stereotype, objectification, sexual harass-
ment, threats of violence, dominance, and derailing.
AMI at EVALITA 2018 targeted the analysis of Ital-
ian and English tweets. Task A addressed misogyny
identification as well. Task B aimed at recogniz-
ing whether the target of a misogynous post was a
specific person or women in general, and at classi-
fying the positive instances in the aforementioned
categories. AMI at EVALITA 2020 targeted the de-
tection of misogyny and aggressiveness in Italian
tweets (Task A) and the identification of unintended
bias (Task B).

Multimodality has been explored for the auto-
matic analysis of memes. Sharma and Pulabaigari
(2020) worked in the task of identifying whether
an image is a meme or not. Two recent SemEval
tasks have targeted memes as well. Sharma et al.
(2020) proposed an emotion identification task.
The best performing system consisted of a text-only
approach, a feed-forward neural network (FFNN)
wth word2vec embeddings (Keswani et al., 2020).
Dimitrov et al. (2021) proposed a shared task on
the identification of propaganda techniques. Feng
et al. (2021) approached it with a pre-trained trans-
former using text with visual features. They ex-
tracted grid features using ResNet50 (He et al.,
2016) and salient region features using BUTD (An-
derson et al., 2018). They further used these grid
features to capture the high-level semantic informa-
tion in the images. Moreover, they used salient re-
gion features to describe objects and to caption the
event present in a meme. They built an ensemble of
fine-tuned DeBERTA+ResNet, DeBERTA+BUTD,
and ERNIEVIL (Yu et al., 2021) models.

Multimodal hate speech has attracted the inter-
est of the research community only recently. In
2019, Facebook AI launched the Hateful Memes
Challenge (Kiela et al., 2021b), which consisted in
identifying hate speech in memes: hateful vs not. It
is constructed such that unimodal models struggle
and only multimodal models can succeed: difficult
examples (“benign confounders”) are added to the

dataset to make it hard to rely on unimodal signals.
The most successful approaches used both early
fusion and late fusion (Kiela et al., 2021a), with the
former achieving the best results. Those include
VilBERT (Lu et al., 2019), VisualBERT (Li et al.,
2019), MMF (Singh et al., 2020), MMBT (Kiela
et al., 2020a) and CLIP (Radford et al., 2021). In
late fusion approaches, systems for each modality
are trained independently. The scores produced by
each model are joined during inference to produce
the final prediction (Kiela et al., 2020b).

In early fusion the different modalities are com-
bined at an early stage to learn one single clas-
sification model (Kiela et al., 2020b). The top-
performing model applied optical character recog-
nition to find and remove the text from the input
images in order to improve the quality of object de-
tection, named entity identification and human race
detection, using all these tags as input for different
transformer models (Zhu, 2020).

Although MAMI is the first shared task on
misogyny detection on memes, there has been pre-
liminary work on automatic detection of sexist
memes. Fersini et al. (2019) explored unimodal
and multimodal approaches both with late and early
fusion to understand the contribution of textual and
visual cues on the MEME dataset, a dataset con-
taining 800 sexist and not sexist memes. The sexist
memes were also annotated according to aggres-
siveness and irony. From their work emerged that a
unimodal textual model performs better than image-
based ones. Concerning multimodality, late-fusion
worked better.

3 System Overview

Our approach is based on the multimodal bi-
transformer model (MMBT) (Kiela et al., 2020a).
MMBT fuses image and text embeddings in an
early fashion. MMBT jointly finetunes unimodally
pretrained text and image encoders by projecting
image embeddings to the text token space. Fig-
ure 1 represents the model architecture. MMBT
combines two segments: segment 0 corresponds
to the text, whereas segment 1 corresponds to the
picture. They are fed together to use attention over
both modalities at the same time. Each token is
indexed according to its position from 0 to the max-
imum text length, which we set to 80. Each image
representation is indexed from 0 to 640.

The original MMBT combines BERT (Devlin
et al., 2019) and ResNet (He et al., 2016). We con-
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Figure 1: Representation of the MMBT model architecture combining CLIP and BERT; adapted from (Kiela et al.,
2020a).

sider other models. For the textual embedding we
tried with bert-base-uncased-hatexplain (Mathew
et al., 2020), a version of BERT trained on identi-
fying hate speech. For the image embedding we
used CLIP, since it has outperformed all alterna-
tive models in a large variety of multimodal tasks,
including OCR, action recognition in videos, geo-
localization, and various types of fine-grained ob-
ject classification (Radford et al., 2021). CLIP is
pre-trained on the task of predicting which caption
should be tied together with a given image. In this
way it learns state-of-the-art image representations
from scratch, enabling zero-shot transfer of the
model to downstream tasks.

The two embeddings are fused through MMBT.
For Task A we use the sigmoid activation function
for the output layer and threshold at 0.5 to discrim-
inate between misogynous or not. For Task B we
adopt a binary relevance approach (Zhang et al.,
2017), combining four binary classification models.
The output for each classifier is a sigmoid function
too. We opt for this approach after observing that
treating the classes separately increased the perfor-
mance in a multi-class model predicting misogy-
nous, misogynous-aggressive or none (Muti and
Barrón-Cedeño, 2020). This approach allows us to
predict multiple mutually non-exclusive classes.

We apply a heuristic to refine the multi-label de-
cisions in Task B. All four decisions are turned off
if an instance had not been predicted as misogy-
nous by our Task-A model.

Pre-processing Since CLIP requires square im-
ages, following Neskorozhenyi (2021) we produce
288×288 pixel versions of all memes. The memes
come in different sizes and orientations, hence we
rescale them until the largest side reaches 288 pix-
els respecting the aspect ratio and pad to fill the
empty pixels in the square. Then, we slice the re-
sized images into three equal parts horizontally if
the image orientation is landscape and vertically if
it is portrait to obtain both global and local image
features. We extracted four vectors for each image:
a vector for each part encoding spatial information
and one for the whole image. We used the Pillow
library (Clark, 2015) to perform these operations.

No preprocessing is applied to the text, other
than applying the BertTokenizer (Devlin et al.,
2019).

4 Experimental Setup

We shuffled the training set and take 10% of the
data for development preserving the class distribu-
tion through stratified random sampling (Pedregosa
et al., 2011).

We trained three alternative models to identify
the best possible configuration. Unitxt is a BERT-
based unimodal system that considers the text alone.
Uniimg is a CLIP-based unimodal system that con-
siders the image alone. Multi is a multimodal sys-
tem, fusing BERT and CLIP embeddings through
MMBT.3

3We tried a variation of Unitxt for Task A. We augmented
the training data with the tweets corpus from AMI at Evalita

666



model variation macro F1

Multi5 after 5 epochs 0.703
Multi6 after 6 epochs 0.727
Unitxt bert-base-uncased 0.656
Unitxt bert-Hatexplain 0.569
Uniimg with fine tuning 0.703
Uniimg zero-shot 0.417

Table 3: Official macro-averaged F1-measures for our
submissions to Task A.

Hyperparameters For Multi, we tried learning
with different numbers of learning epochs, in range
[3, 6]. The best validation performance was ob-
tained after 5 epochs in Task A in the development
set. We trained over 5 epochs in Task B. For both
Unitxtwe train over 4 epochs. For the Uniimgwe
train over 5 epochs. In all cases we saved the
model only when an increase in the performance
was obtained. Since we also aimed at assessing
how CLIP performs in making zero-shot predic-
tions in this task, we used CLIP without fine-tuning
on the training set, to check whether it could be
effectively used to detect misogyny without prior
annotation. We considered batch sizes of 16 and
32, with the former consistently performing better.
We used a learning rate of 2e-4, the MADGRAD
optimizer (Defazio and Jelassi, 2021), and a binary
cross-entropy loss function.

The results reported in Section 5 are obtained
with a model trained during 5 epochs for Task B
and 6 epochs for Task A with 16 as the batch size.

Evaluation metrics We stick to the official
MAMI evaluation metrics: macro-averaged F1-
measure for the binary Task A and weighted-
averaged F1-measure for the multi-label Task B.

5 Results

In this section we present the results obtained by
our submissions to both Task A and Task B.

5.1 Task A
Table 3 shows the results of our submitted runs for
Task A. The highest score is obtained after train-
ing the multimodal model Multi during 6 epochs:
F1=0.727. Considering the textual information
alone runs short; the highest performance being
obtained when the Unitxt model is trained upon

2018 (Fersini et al., 2018). Since no improvement was ob-
served in the model, the results are neglected.

model masked with weighted F1

Multi Multi5 0.710
Multi Multi6 0.588
Unitxt Unitxt bert-base-uncased 0.660

Table 4: Official weighted F1-measures for our three
submissions to Task B. Column masked with specifies
the model from Task A used to mask the output labels.

a generic BERT: 0.656. As expected, the zero-
shot Uniimgmodel performs the worst, with a per-
formance lower than that of a random model. A
proper fine-tuning of the Uniimg model turns into
the runner-up performance with F1=0.703. The
improvement of the Uniimgover the Unitxtmodel
by five points suggests that the visual information
is captured better than the textual one. The reason
might be that the text is too short and out of context
to be captured effectively by BERT.

5.2 Task B
Table 4 shows the results of our submitted runs for
Task B. In this case, we trained one single Multi
model during 5 epochs. The difference between
the two configurations is in the masking of the
multi-label classification. The most successful mul-
timodal model gets F1=0.710, after masking with
respect to Task A’s Multi5 model. Masking on
the basis of Task A’s Multi6 model causes a per-
formance drop of twelve points. Multi5 predicts
more misogynous instances than Multi6 (678 vs
653). Multi6 blacks out more predictions which are
false positives and hence a potentially correct de-
cision by the multi-label model gets ignored. The
text-alone approach, masked by the corresponding
Task A model, runs short by five points.

In Table 5 we zoom into the performance of our
Task B Multi model for each of the four classes.
The model struggles the most when trying to spot
stereotyping and shaming. This reflects the nature
of misogyny. Stereotyping and shaming tend to be
less explicit, and hence harder to spot —even for
human beings. On the contrary, violence, which
is the most explicit, is more likely to be identi-
fied. Stereotyping is the class that has been over-
predicted the most (cf. Table 2).

6 Qualitative Analysis

In this section we present a qualitative analysis
of the results to further examine the strengths and
weaknesses of our approach.

667



prec recall F1

Shaming 0.52 0.46 0.49
Stereotype 0.54 0.58 0.56
Objectification 0.69 0.66 0.67
Violence 0.73 0.48 0.58

Table 5: Per-class performance on the positive class for
model Multi; our best submission to Task B.

Unitxt Uniimg Multi
false positives 0.20 0.23 0.21
false negatives 0.14 0.06 0.06
true positives 0.36 0.44 0.44
true negatives 0.30 0.27 0.29

Table 6: Error analysis across all models for Task A
showing relative frequencies.

6.1 Analysis on Task A

To address the question of which component for
detecting misogyny in multimodal settings is more
important, we looked at the distribution of the kind
of errors made by the different models, as well
as the overlapping instances among the four cate-
gories. Table 6 shows the relative frequencies. The
amount of false negatives is much lower than that
of false positives across all models. Considering a
practical application, false negatives could have a
greater impact as they are the misogynous instances
that could not be detected, and could therefore lead
to harm. On the other hand, blocking instances that
were not misogynous but were classified as such
could be considered censorship.

Table 6 shows the prediction analysis of the best
runs for each modality. Looking at each model in-
dividually, Unitxt has less false positives but more
false negatives than the other two models. Uniimg
has the highest number of false positives, and the
same number of false negatives as the Multi model.
This means that the textual model performs worse
than the others in capturing misogyny, while the
visual one tends to overpredict misogyny more than
the other two models.

Figure 2 shows the intersections and differences
in both false positives and false negatives by the
three models. There are more false positive than
false negative instances across all models, as ob-
served in Table 6. Indeed, the number of common
false positives by all models is almost 4 times as
high as the number of common false negative val-
ues. This indicates that the models tend towards

91

unitxt (202)

12

uniimg (227)6

multi (210)

24

11 56
123

(a) False positives.
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unitxt (141)

12

uniimg (62)6

multi (57)

10

11 11
29

(b) False negatives.

Figure 2: Venn diagrams representing the false positive
and false negative errors by the three top Multi, Unitxt
and Uniimg models during the testing stage.

over-predicting misogyny. Taking into account the
differences among the sets, Unitxt accounts for the
fewest false positive instances (Figure 2a), while it
accounts for the most false negative instances (Fig-
ure 2b). Therefore, in this specific multimodal task,
where we can be more lenient with false positives
than false negatives, a textual model does not seem
to be an optimal alternative.

Since the model does not allow for a great inter-
pretability of the results, we performed a manual
inspection of some interesting instances and the
potential reasons behind the errors when classify-
ing them. As Figure 2 shows, 132 instances are
misclassified by all three models: 123 are false pos-
itives and 29 are false negatives. We observe the
following trends after looking at the false negatives:

1. The level of misogyny is low or subjective, as
the meme is not directly referred to women
(e.g., Figure 3a) or misogyny is expressed in a
subtle way (e.g., Figure 3b implies the stereo-
type that women are complicated);

2. Real-world knowledge is required to under-
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(a) Instance 15846.

(b) Instance 16132.

(c) Instance 17028.

(d) Instance 16232.

Figure 3: Instances of Task A false negatives by all three
models

stand the meme (Figure 3c can be better un-
derstood if we know Sarah Jessica Parker and
the Twisted Sister band).

Figure 4: An example of false positive (instance 15094).

Figure 5: An example of meme properly labeled by text
models only (instance 15802).

3. The stance of the text with respect to the im-
age is relevant in order to convey the general
meaning (see Figure 3d);

Among the false positives, memes mostly con-
tain:

1. Compliments, which are often associated to
objectification (e.g. Fig. 4).

2. Images or phrases that often occur in misog-
ynous contents (e.g., women in underwear,
kitchen-related terms).

3. Identity terms (e.g., wife, women, girls), that
tend to co-occur with misogynous contents in
the training set.

We also performed an analysis on memes that
have been correctly classified by only one model.
Among the instances that only the textual model
got right, 11 were true positives and 56 true neg-
atives. True positive cases mostly share a strong
textual component in conveying misogyny, while
the image is either irrelevant, or it is used only to
make the sentence ironic (Fig. 5).

Among instances that only the visual model got
right, both true positives and true negatives are 11.
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Figure 6: An example of benevolent sexism that tends
to confuse the classifier.

Most true positives have a explicit visual compo-
nent. For instance, beaten women and texts justify-
ing an aggression or glorifying violence. Among
instances that only the multimodal model got right,
10 are true positive and 24 true negative. By observ-
ing the true positive instances, contrarily to what
is expected, misogyny is not always conveyed by
the integration of text and image, as in most of the
cases the text is actually dominant.

6.2 Analysis on Task B

We performed a manual inspection focusing on
the errors in predicting stereotyping and observed
a relatively large amount of compliments toward
women, which tend to confuse the classifier. In
particular, false negatives are often caused by the
presence of benevolent sexism (Glick and Fiske,
1997), which shows a subjectively positive attitude
towards women that conceals inferiority compared
to men, and it is often disguised as a compliment.
Figure 6 shows an example.

Now we analyse the label overlaps to determine
if our model captured the intersection of the classes.
We compare our predictions to the gold labels in
Table 2. The size of the intersection between stereo-
type and objectification is in the same order for
gold and predictions: 152 vs 118. The intersection
between cases of shaming and violence is practi-
cally null, which is well reflected in the model (2
vs 0). Less cases of both shaming and stereotyping
than expected are identified (32 vs 20). The same
applies to the combinations stereotyping–violence

(40 vs 31) and objectification–violence (38 vs 23).
The pair shaming–objectification tends to be over-
predicted (25 vs 40).

7 Conclusions

We presented our participation to the Multimedia
Automatic Misogyny Identification shared task. We
addressed two problems: spotting whether a meme
is misogynous and, if it is, what kind of misogyny
it expresses. We compared unimodal models (text
only and image only) with a multimodal model
based on Multimodal bi-Transformers. Our image-
only model performs better than the text-only one,
suggesting that the visual information might be
easier to capture than the textual one. Our mul-
timodal approach performs the best in both tasks.
The errors come from more false positives than
false negatives.

From our error analysis we observed that stereo-
typing and shaming are the most misclassified cat-
egories. This proves that more focus on subtle and
implicit forms of misogyny and sexism is needed.
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Abstract
This paper provides a comparison of different
deep learning methods for identifying misogy-
nous memes for SemEval-2022 Task 5: Multi-
media Automatic Misogyny Identification. In
this task, we experiment with architectures
in the identification of misogynous content in
memes by making use of text and image-based
information. The different deep learning meth-
ods compared in this paper are: (i) unimodal
image or text models (ii) fusion of unimodal
models (iii) multimodal transformers models
and (iv) transformers further pretrained on a
multimodal task. From our experiments, we
found pretrained multimodal transformer ar-
chitectures to strongly outperform the models
involving fusion of representation from both
the modalities.

1 Introduction

With the social media turning out to be a medium
for propagation of hate speech and other perils,
misogyny and sexism is incident upon women in
explicit and implicit ways. Although memes have
turned out to be a potent mechanism for exchang-
ing humorous messages, they have been turning out
to also be bearers of such malicious content. With
this motivation, the task of Multimedia Automatic
Misogyny Identification (MAMI) (Fersini et al.,
2022) was proposed with two subtasks: (1) deter-
mining whether a meme is misogynous as a binary
classification problem (2) finegrained misogyny
classification into categories of stereotype, sham-
ing, objectification and violence as a multilabel
problem. In our work, we have compared different
deep learning approaches for identifying misogyny
in memes and also further classifying them into
different kinds of misogyny.

We base our experiments on unimodal architec-
tures making use of only either the textual or the
image content in memes. The unimodal archi-
tectures were naturally superseded by their mul-
timodal counterparts, since they made use of both

the modalities in misogyny identification. Among
the multimodal architectures, we initially experi-
mented with simple fusion-based approaches which
involved combining the image and text representa-
tions. These experiments were followed by trying
out multimodal transformer architectures in which
we made use of MMBT (Kiela et al., 2019), ViL-
BERT (Lu et al., 2019) and VisualBERT (Li et al.,
2019). We used these architectures pretrained on
unimodal as well multimodal objectives. We found
VisualBERT and ViLBERT trained using multi-
modal objectives to perform competitively on the
task. In order to further improve the capability of
the models for misogynous content identification,
we tried out further pretraining the models on a
dataset for classifying hateful memes. This strategy
involving a task-adaptive further pretraining stage
turned out to further boost the performance of the
models showing the benefit obtained from larger
datasets for adapting models to a finegrained down-
stream task. Figure 1 shows the training stages of
such an architecture.

Our best model achieved a macro-F1 score of
0.712 for Subtask 1, while the best performing
model for Subtask 2 gave a weighted F1 of 0.706.

2 Related Work

Misogyny detection. Sexism and misogyny has
been a long-studied problem, with (Barreto and
Ellemers, 2005) and (Dardenne et al., 2007) bring-
ing out the differences in explicit (hostile) and
vieled (ambivalent) sexism, with the latter being
observed to be subtly undermining and perilous to
women. With misogynist remarks - a category of
hate speech - being prevalent on social media, the
dataset introduced by (Waseem and Hovy, 2016)
for hate speech detection on tweets includes sexism
as one of the categories in a multiclass problem. In
a dataset introduced specifically for misogyny iden-
tification on tweets, (Anzovino et al., 2018) also
design a taxonomy identifying different manifes-
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Figure 1: Stages of training for the model with best performance on misogyny identification

tations of sexism. Focusing on the differences in
hostile and benevolent sexism, (Jha and Mamidi,
2017) curated a dataset for classifying the misog-
yny content in a tweet between the two categories,
if the tweet is sexist in nature. Apart from detection
of directed hateful content from tweets, there has
been work on identifying categories of sexism from
personal accounts such as (Karlekar and Bansal,
2018). (Parikh et al., 2019) created a dataset hav-
ing 23 labeled categories of sexism from sexism
accounts without maintaining mutual exclusivity in
the categories and proposed a multi-task approach
involving three auxiliary tasks for the multilabel
classification in (Abburi et al., 2020).

Meme classification. The ubiquity of memes
on internet, presence of malicious / hateful content
in memes and the challenges involved in meme
understanding were discussed in (Sharma et al.,
2020). The work presented a new dataset and a
challenge for understanding emotions in memes
which involved subtasks for identifying the sen-
timent, humour category and scale (or intensity)
of the detected class. (Suryawanshi et al., 2020)
introduced a dataset for detection of offensive con-
tent in memes. A larger, challenging dataset was
introduced in (Kiela et al., 2020) by involving ’be-
nign confounders’ to force the multimodal architec-
tures to learn robust representations using both the
modalities. The work also introduces formidable
baselines with multimodally pretrained transformer
encoders. Among the top performing models on
this dataset, (Velioglu and Rose, 2020) perform an
ensemble of multiple trained VisualBERT models,
while ensembling was done in (Muennighoff, 2020)
on a set of five predictions from different trained
models, with the predictions for each model aver-
aged from 3-5 different runs.

3 Task and dataset overview

The task consists of two subtasks:

• Course-grained misogyny identification:
For this task, given a meme, we have to pre-
dict if a meme is misogynous in nature or not.

• Fine-grained misogyny identification:
Given that a meme is misogynous, this task
further identifies the kinds of misogyny
among potential overlapping categories such
as stereotype, shaming, objectification, and
violence.

The dataset for the task was provided by the work-
shop organizers. The training set consisted of
10000 memes, whereas the hidden test consisted
of 1000 memes. Each row in the dataset contained
a unique identifier, the path to the image file for
a corresponding meme, the text in the meme, and
the label values of misogyny, stereotype, shaming,
objectification, and violence.

4 Methodology

In the following section, we discuss our approaches
for misogyny detection. We discuss our models in
detail and provide a comparison between the mod-
els. We have explored unimodal models which use
just the text or image as the input. The unimodal
fusion models take the representation of the im-
age part of the textual part separately and combine
them to give the output. We have also exploited dif-
ferent pretrained multimodal transformers models.
We have also experimented with how to further pre-
training of these multimodal transformers models
affect the quality of the predictions.

4.1 Unimodal models
For unimodal models, we experimented with the
following models:

• Image-Grid: This is a unimodal image-based
classifier that uses convolutional features with
average pooling from ResNet-152 (He et al.,
2016) architecture.
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Setting Subtask 1 (Macro F1-
Score)

Subtask 2 (Weighted
F1-Score)

Unimodal-Image-Grid 0.601 0.557
Unimodal-Image-Region 0.606 0.582
Unimodal-Text-BERT 0.621 0.590
Unimodal-Text-RoBERTa 0.619 0.585
Concat-BERT 0.648 0.611
Late-Fusion 0.626 0.608
MMBT-Grid 0.651 0.625
MMBT-Region 0.657 0.642
VilBERT 0.687 0.671
VisualBERT 0.684 0.679
VilBERT CC 0.693 0.683
VisualBERT COCO 0.685 0.689
VilBERT HM 0.712 0.698
Visual BERT HM 0.706 0.702

Table 1: Results on the testing split for each subtask. Task 1 refers to course-grained identification of misogyny and
task 2 refers to the fine-grained identification ofthe types of misogyny.

• Image-Region In this unimodal image-based
classifier, features from Faster-RCNN (Ren
et al., 2015) with ResNeXt-152 (Xie et al.,
2016) are used as the backbone network and
are pretrained on the Visual Genome dataset
(Krishna et al., 2017).

• Text BERT: This unimodal text-based ap-
proach uses BERT embeddings (Devlin et al.,
2018) on the text given as part of the dataset.

• Text RoBERTa: Similar to the previous
model but it used RoBERTa embeddings (Liu
et al., 2019) instead of BERT.

4.2 Unimodal fusions

After taking unimodal representations, we have
used the following techniques to fuse the repre-
sentations to get the final representations before
passing to the classifier:

• Concat-BERT: In this multimodal approach,
an earlier fusion of the output of the uni-
modal ResNet-152 and BERT embeddings is
performed by concatenation, and an MLP is
trained for classification.

• Late Fusion: This is a simple multimodal ap-
proach where the output of ResNet-152 as in
Image-Grid and BERT-based models is taken
unimodally, and their mean is taken as the
final model representation.

4.3 Multimodal transformers
For more advanced models, we have used the fol-
lowing multimodal transformers models:

• MMBT-Grid: MMBT (Kiela et al., 2019)
is a multimodal supervised bitransformer ar-
chitecture consisting of individual unimodally
pretrained components trained to map multi-
modal image embeddings to text token space.
MMBT-Grid uses features from ResNet-152
for image embeddings.

• MMBT-Region: In this approach, the MMBT
transformer uses features from Faster-RCNN
as in Image-Region for image embeddings.

• ViLBERT: ViLBERT (Lu et al., 2019) is a
dual-stream multimodal transformer architec-
ture. Here, the VilBERT model without any
multimodal pretraining is used. It has BERT
initializations for the text stream and uses
Faster-RCNN pretrained on Visual Genome
dataset to extract image region features.

• Visual BERT: Visual BERT (Li et al., 2019)
is a multimodal single stream transformer
architecture in which the text and image
inputs are jointly processed by a stack of
BERT-based transformer layers. It uses Faster
RCNN for extracting image features.

4.4 Further pretrained models
From the models mentioned in the previous sub-
section, we have seen VilBERT and VisualBERT
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perform the best. We move forward with these
models to further pretrain them on relevant datasets
in a multimodal setting.

• ViLBERT CC: ViLBERT architecture used
here is pretrained multimodally on the Con-
ceptual Captions (CC) dataset (Sharma et al.,
2018) using two pretraining tasks - masked
multi-modal modelling (masking 15% of text
and image region inputs and reconstructing
them with unmasked inputs) and multi-modal
alignment prediction (given a pair of image
and text, determine if the text describes the
image).

• Visual BERT COCO: Visual BERT architec-
ture is pretrained multimodally on the Com-
mon Objects in Context (COCO) dataset (Lin
et al., 2014). The two tasks the model is pre-
trained on are masked language modeling with
an image (some part of the text is masked and
is to be predicted using image regions and un-
masked text) and sentence-image prediction
(given two captions for an image, while one
of them is the proper caption for the image,
determine if the same holds for the remaining
caption as well).

• VilBERT HM: For this architecture, we have
pretrained the VilBERT architecture on the
Hateful Memes dataset (Kiela et al., 2021)
with the hypothesis that it will provide better
representations given that it has been trained
on memes that are hateful in nature. It has
been pretrained on masked multi-modal mod-
eling and a new task of meme-caption predic-
tion(where given the image of the meme, the
task is to choose the correct text from a given
set of options).

• Visual BERT HM: Similar to the previous
architecture, we have pretrained the Visual
BERT model on the Hateful Memes dataset
on masked multi-modal modeling task and
meme caption prediction.

4.5 Final Setup
After the representation is obtained from any mod-
els above, it is passed through a multilayer percep-
tron classifier to predict the final label. For the
second subtask, we used a hierarchical level mod-
eling where the model would predict at first if a
meme is misogynous or not, and if it is misogynous,
it will perform further fine-grained classification.

4.6 Experimental details
We have used the pretrained models from the MMF
framework (Singh et al., 2020) by Facebook AI
Research for all of our experiments. We used an
80-20 split to split the dataset into training and val-
idation datasets with a random seed of 42 using
sklearn’s (Pedregosa et al., 2011) train_test_split
functionality. For the hyperparameters, we have
used the default hyperparameters of MMF. For sub-
task 1, we have reported macro F1 score and for
subtask 2, we have reported weighted F1.

5 Results

Table 1 contains all the results of our experiment.
It can be noted that we mostly used the default hy-
perparameters from the MMF framework and did
not perform rigorous hyperparameter tuning for our
experiments, so the model performances still be im-
proved with the search for optimal hyperparameters
using cross-validation. We analyze the results of
the approaches tried for each subtask. Among the
baselines, we saw the unimodal-text models per-
form better for both the subtasks than the unimodal-
image models. Among the unimodal-text models,
BERT performed better than RoBERTa. The fu-
sion models performed a bit better than the uni-
modal models for both the subtasks, with BERT
Concatenation performing significantly better than
late fusion in the first subtask. The multimodal
transformers models give a performance increase
over the fusion models, with VilBERT performing
the best for Subtask 1 and VisualBERT giving the
best performance for the second subtask. Among
the multimodal transformer architectures, the ones
pretrained with multimodal objectives turned out
to be better in performance than those trained us-
ing unimodal objectives. Given that VisualBERT
and VilBERT performed the best, we further pre-
trained them in a multimodal task-adaptive set-
ting. VilBERT pretrained on the HatefulMemes
dataset gave the best results for the first subtask,
whereas VisualBERT pretrained on the Hateful-
Memes dataset was our best model for the second
subtask.

6 Conclusion

In our worked, we have provided a compara-
tive analysis of architectures for solving the task
of misogyny identification. Although our best-
performing model did achieve a substantial im-
provement over the baselines, the scores still in-
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dicate scope for further improvement. This also
brings forth the challenging nature of the task in
itself. Furthermore, using ensemble models like
Vilio (Muennighoff, 2020) can result in better-
performing models which can be tried out in future
scope.
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Abstract

In this paper we describe our work towards
building a generic framework for both multi-
modal embedding and multi-label binary clas-
sification tasks, while participating in task 5
(Multimedia Automatic Misogyny Identifica-
tion) of SemEval 2022 competition.

Since pretraining deep models from scratch is
a resource and data hungry task, our approach
is based on three main strategies. We combine
different state-of-the-art architectures to cap-
ture a wide spectrum of semantic signals from
the multi-modal input. We employ a multi-
task learning scheme to be able to use multiple
datasets from the same knowledge domain to
help increase the model’s performance. We
also use multiple objectives to regularize and
fine tune different system components.

1 Introduction

In this paper, we present the system that we have
built to participate in SemEval 2022 task 5 (Fersini
et al., 2022), Multimedia Automatic Misogyny
Identification (MAMI) challenge. The task is tar-
geted at identification of misogynous memes by ba-
sically using the meme’s image and pre-extracted
English text content as input sources. The task is
divided into two main sub-tasks: Sub-task A is a
binary classification task where a meme should be
categorized either as misogynous or not misogy-
nous, Sub-task B is a multi-label binary classifica-
tion task, where the type of misogyny should be
recognized among the potential overlapping cat-
egories: stereotype, shaming, objectification and
violence. Generally, meme classification is a chal-
lenging task as memes are multi-modal, rely heav-
ily on implicit knowledge, and are subject to human
misinterpretation especially among different back-
grounds and cultures.

We have used transformer (Vaswani et al., 2017)
based architectures and took a transformer based

approach to combine them. Transformer based
architectures are achieving state-of-the-art perfor-
mance for Natural Language Processing and Com-
puter Vision related tasks. There are architectures
for language, vision, and language and vision com-
bined. There are also architectures for other modal-
ities however in MAMI’s scope, we are interested
in images and text only.

Pretraining a deep neural network and a trans-
former based architecture from scratch is a data
hungry and computation resources demanding task.
Especially in a multi-modal domain where input
can have multiple image and text modalities. The
literature is rich in a variety of architectures which
achieve competitive performance in different tasks
for different modalities. In our work, we took an
approach towards building a framework that would
allow us to combine different pretrained architec-
tures. With relatively few epochs and using rel-
atively less compute resources, our goal was to
build and train a classifier framework that could
harness the power of pretrained architectures as
backbones, using relatively limited resources: no
multiple GPUs for training and constrain the cost to
be relatively small, in the range of hundred dollars
in total.

We have assumed that using as many different
backbone architectures which are trained on differ-
ent tasks for different modalities can allow us to
capture a wide spectrum of semantic signals from
the input modalities. Then we just need to build
a classifier to learn the relationship between these
signals and the target classes.

We have also found and discuss below that
there are available text and image datasets for hate
speech, sexism and hateful memes which sound
related to this task and could be used to augment
MAMI’s dataset. Eventually, our goal was to com-
bine different datasets in a multi-task classifier.

In order to guide the model during training to-
wards the main objective, which is to minimize
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(a) Multi-modal shared transformer encoder (b) Uni-modal multi transformer encoders

Figure 1: Sequence embedding

the classification loss, we have employed different
auxiliary objectives. Breaking down the whole ar-
chitecture into components, each component has a
sub-target. We have assumed that if we could as-
sure that each component performs well on the sub-
target, then the whole system would perform better
on the main target. A component producing a clear
signal can facilitate the learning of the downstream
dependent components. This could increase model
performance in terms of either accuracy or conver-
gence speed. So, if we could formulate an objective
function for each component, we can linearly com-
bine them with the main objective function. This
helps fine tuning and regularizing the components
of the system.

We have built a generic classification frame-
work and applied it to both sub-tasks A and
B. During the evaluation phase of the com-
petition, we have achieved, for sub-task A, a
macro-average F1-Measure of 0.715, and for
sub-task B, a weighted-average F1-Measure of
0.698. During post-evaluation phase we have
achieved higher score for sub-task A of 0.761. Our
code is available at https://github.com/
ahmed-mahran/MAMI2022.

2 Background

Datasets: Besides MAMI dataset, there are many
datasets that could be used to train our model. The
input could be uni-modal as text only or image only,
or bi-modal as pairs of image and text. (Vidgen and
Derczynski, 2020) reviews 63 publicly available
training datasets and they have published a dataset
catalogue on a dedicated website 1. We have used

1hatespeechdata.com

the hateful meme dataset created by Facebook AI
(Kiela et al., 2020) which consists of 10K memes
labeled hateful or not.

Multi-modal frameworks: MMBT (Kiela et al.,
2019) concatenates, into a single sequence, linear
projection of ResNet (He et al., 2016) output for
image pooled to N different vectors, with BERT
(Devlin et al., 2018) tokens embeddings for text.
The sequence is fed into a transformer encoder, they
call it a bi-transformer, after adding positional em-
beddings and segment embeddings to distinguish
which part is image and which part is text. The
architecture is generic enough to use different im-
age encoders. As a variant of how we combine
signals from image and text, we extend the MMBT
architecture to combine more than two encoders
however that wasn’t our top performing variant.
MMCA (Wei et al., 2020) combines Faster R-CNN
(Ren et al., 2015) with BERT to compute two em-
bedding types for each modality: self-attention em-
bedding to capture intra-modality interactions, and
cross-attention embedding to capture both intra-
and inter-modality interactions.

3 System overview

3.1 Tokens embedding
At this stage, we encode each input modality into a
sequence of vectors in a unified dimension space.
We also generate a binary mask vector with length
equal to the sequence’s length to indicate which
part of the sequence the model should consider.
This produces the output at "Token Embedding"
and "Tokens Binary Mask" layers illustrated in fig-
ure 1. We can use different encoders per modality
and generate different sequence types to capture as
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Figure 2: Classifiers: (a) using pooled sequence embedding, (b) using the whole non-pooled sequence embedding.

many semantic signals as possible. For our setup,
we have tested CLIP (Radford et al., 2021) and
DETR (Carion et al., 2020) encoders for image
modality and BERT (Devlin et al., 2018) encoder
for text modality.

CLIP image embedding: We split the image
into 4 equal size patches (2× 2) then we use CLIP
(Radford et al., 2021) to encode the whole image
along with its 4 slices into a sequence of 5 vec-
tors. Then we project each vector into the model
hidden dimension space. In our experiments, we
have used CLIP model named "RN50x4" (which
uses as backbone ResNet-50 scaled up 4x using the
EfficientNet scaling rule (Tan and Le, 2019))2.

DETR image objects embedding: We use
DETR (Carion et al., 2020) 3 to encode the im-
age into a sequence of 100 image objects represen-
tations. DETR’s transformer decoder produces a
sequence of 100 possible object boxes representa-
tions that we use as objects embeddings. However,
not all of the objects are real objects as DETR can
produce a no-object prediction. So, we use DETR’s
classifier which is trained on the object detection
task to generate masks for no-objects. For each
box from the 100, the classifier produces 92 log-
its which correspond to 92 possible object labels.
We take the softmax of the 92 logits and mask out
the corresponding object box if the label with the
highest softmax probability is the no-object label.

2We have used OpenAI implemantion on https://
github.com/openai/CLIP

3We have used Huggingface Transformers implementation
of DETR

We fallback to another masking strategy if all the
100 boxes are masked out; we ignore the logit of
the no-object label and then take the softmax of the
rest labels to select 4 out of 100 boxes with highest
softmax probabilities. Similarly with CLIP out-
put, we project each vector into the model hidden
dimension space.

BERT text embedding: We use BERT (Devlin
et al., 2018) 4 pre-trained on hate speech (Mathew
et al., 2020) to tokenize input text and generate
tokens embeddings (for a maximum of 120 tokens).
We don’t project BERT’s embeddings as we use
its output space as the model’s hidden dimension
space (which has length of 768 dimensions).

3.2 Sequence embedding

At this stage, the model generates one combined
sequence of vectors using tokens embedding from
the tokens’ embedding stage. This is the output
in the "Sequence Embedding" layer illustrated in
figure 1. For the token embedding output, we add
token type embedding and positional embeddings
that encode the position of each token in the corre-
sponding input sequence per type then we apply a
layer normalization (Ba et al., 2016). Along with
input masks, the layer normalized sum of embed-
dings is fed to a multi-layer transformer encoder
stage to produce the final sequence embedding at
the "Sequence Embedding" layer in figure 1. The
output sequence has the same number and dimen-

4We have used Huggingface Transformers implementation
of BERT with weights from "Hate-speech-CNERG/bert-base-
uncased-hatexplain"
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sionality of the input tokens. We have two variants
for the transformer encoder stage:

Shared transformer encoder: The general ar-
chitecture of the shared transformer encoder vari-
ant is illustrated in Figure 1a. What distinguishes
this variant is that we use a shared multi-layer
transformer encoder to capture the intra- and inter-
modality interactions. Because of this, for each
input embedding type, we add token type embed-
ding which is the same for each input encoder to
distinguish which tokens are from which input en-
coder. In our setup, we have three token types;
that is one for each of: CLIP, DETR and BERT
encoders. We also append a special [SEP] token at
the end of each sequence type and we prepend to
the whole combined sequence a global and special
[CLS] token. We use the pre-trained BERT trans-
former encoder as the shared transformer encoder.

Multiple transformer encoders: The general
architecture of this variant is illustrated in Figure
1b. The difference here is that instead of using
one shared transformer encoder, we use a multi-
layer transformer encoder per token type. We still
add a token type embedding such that each trans-
former encoder learns its own token type param-
eters. We think we can remove this step however
we have not tested this. Also, in this variant we
don’t need to add the extra [SEP] token per type
and the global [CLS] token however we add a lo-
cal [CLS] and [SEP] tokens for BERT only. For
CLIP and DETR, we use PyTorch’s implementa-
tion of the transformer encoder which is described
in (Vaswani et al., 2017) with 8 heads and 6 lay-
ers but for BERT we keep it as in (Devlin et al.,
2018). Then the final output sequence is just the
concatenation of all sequences from each trans-
former encoder.

3.3 Classification

We have two modes of classification depending on
the sequence length of the output of the transformer
encoder stage. As shown in figure 2, we either use
the whole sequence of vectors or pool it to one
vector.

Multi-head MLP classifier: We use the pooled
sequence embedding as classifier input. In our
setup, we have used the first [CLS] token in the
shared transformer encoder variant. The classifier
is a two feed forward linear layers with a GELU
activation in between and a hidden size of 768. The
final layer produces number of logits equals to num-

ber of classes and we apply a sigmoid activation to
compute each binary label probability.

Transformer decoder with single-head shared
MLP classifier: Here the whole sequence embed-
ding along with the binary mask is fed into a multi-
head transformer decoder as a source sequence.
Then the target sequence is formed by a learnable
target class query embedding for each class in the
target classes. The transformer decoder learns how
each class interacts with each input modality signal
through the cross-attention mechanism between
the source and target sequences. Moreover, the
decoder learns the dependency among the target
classes through the self-attention mechanism for
the target sequence. The decoder output is then
fed into a single-head MLP classifier that shares
parameters for all classes such thatMLP (qi) is the
logit of label i using the corresponding class query
embedding, qi, from the decoder output. The MLP
classifier has the same architecture as the previous
one in terms of number of layers, type of activation
and hidden size, and similarly as well we compute
the binary label probability for each class. We use
PyTorch’s implementation of the transformer de-
coder which is described in (Vaswani et al., 2017)
with 8 heads and 6 layers.

3.4 Multi-task learning
In order to use more training data from other but
similar datasets, we have followed a multi-task
learning approach. For each dataset D, there is
a set of target labels L, we can define as many
tasks as the sets of labels in the power set P+(L)
(excluding the empty set) such that it is possible
to use the same label in more than one task. Each
task has a separate MLP classifier while all tasks
across the datasets share the rest of the parame-
ters including the learnable classes queries. During
training, each mini-batch contains data from only
one dataset and we compute the targets per task for
all the tasks of the dataset.

3.5 Multi-objective
For a training instance i, we use xi to refer to
the input regardless from its actual representation,
yi,c ∈ {0, 1} is the value of the target binary label
c, and θ is the set of learnable parameters.

Main objective: We use a binary cross entropy
to minimize the loss per label.

L0(i, c) = yi,c. log p(c|xi, θ)
+(1− yi,c). log(1− p(c|xi, θ))

(1)
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Algorithm 1 Multi-task learning

datasets← {D1, D2, ...}
tasksPerD ← {(D1, {T1, T2, ...}), ...}
labelsPerT ← {(T1, {l1, l2, ...})}
for epoch ∈ epochs do

for b ∈ mini-batches do
dataset← sample 1 from datasets
tasks← tasksPerD[dataset]
for task ∈ tasks do

learn b, task, labelsPerT [task]
end for

end for
end for

Token encoding projection alignment: We lin-
early project modal encoding into the hidden model
space (as described in section 3.1). In order to
preserve a similar structure of data points across
spaces, we impose a cosine similarity constraint
such that for any two input instances, xi and xj ,
the similarity, s(., .), between their encoding, f(.),
is the same as the similarity between the projection,
g(.), of their encoding. We apply this to all pairs in
each batch.

L1(i, j) = |s(f(xi), f(xj))
−s(g(f(xi)), g(f(xj)))|

(2)

Contrastive embedding loss: This is intended
at regularizing the embedding space of the MLP
classifier to make instances of dissimilar labels
more separable. For any two input instances, xi
and xj , we apply the embedding loss per class c on
the input, hl−1, of each layer l of the MLP classifier.

L2(i, j, c) =
1

2

∑

l

1− sc(yi, yj)sh(hl−1
i,c , h

l−1
j,c )

(3)

sc(yi, yj) = (2yi,c − 1)(2yj,c − 1) (4)

sc(., .) ∈ {−1, 1} is the labels similarity for class
c of two instances; −1 indicates dissimilar labels
while 1 indicates similar labels. sh(., .) ∈ [−1, 1]
is the cosine similarity of layer input when compar-
ing two instances. It is worth noting that in case of
the multi-head MLP classifier, hl−1

i,c is the same for
all classes. We also apply this loss to all pairs in
each batch. This loss encourages the transformer
encoder in case of the multi-head MLP classifier,

the decoder in case of the shared single head MLP
classifier, as well as the hidden layers of the MLP
classifier to produce embeddings with structures
that capture labels similarity such that instances
with the same label value get closer embeddings
than instances with different label value.

The overall loss per batch and task given a
dataset d:

Ldt =
1

NiN t
c

∑

i,c

L0(i, c)

+
1

Ni(Ni − 1)

∑

i ̸=j

L1(i, j)

+
1

Ni(Ni − 1)N t
c

∑

i ̸=j,c

L2(i, j, c)

(5)

The overall loss per batch for all tasks of the
dataset is the average task loss:

Ld =
1

Nd
t

∑

t

Ldt (6)

Ni is the batch size, Nd
t is the number of tasks for

dataset d, and N t
c is the number of classes for task

t.

4 Experimental setup

In addition to MAMI’s dataset, we have used Face-
book’s hateful memes dataset. We have set the
tasks configurations as shown in table 1.

Dataset Task Labels

MAMI

MAMI {misogynous, shaming , stereotype
, objectification, violence}

Task_A {misogynous}
Task_B {shaming, stereotype

, objectification, violence}
FBHM Hateful {hateful}

Table 1: Tasks labels configurations per dataset. FBHM
is short for Facebook Hateful Meme.

We have added the redundant task MAMI for the
MAMI dataset to make sure that the decoder learns
the dependency among all labels as Task_B’s labels
depend on Task_A’s label we wanted to make sure
that the model captures this dependency.

We have split both datasets into 80% train
and 20% dev sets using stratified sampling. We
have used the data provided at post-evaluation
period of the competition as the test set. We have
used a batch size of 16 and number of epochs
as 15. We have used MADGRAD (Defazio and
Jelassi, 2021) for optimization. Learning rate
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was set to 2 × 10−4 and we used a learning
rate linear scheduler with a warmup period 5.
Gradients are accumulated every 20 batches so
there was a total gradient accumulation steps of:
total number of batches/20 × number of epochs.
We have set the warmup period to:
total gradient accumulation steps/10. For all
parameters except biases and layer normalization
weights, we have used a weight decay of 5× 10−4.
We clip gradients to overall norm of 0.5. Our
implementation is PyTorch based and we have
used HuggingFace Transfomers implementation
for both BERT and DETR. We have run our
experiments on Google Colab Pro plus using one
Tesla P100 GPU. We didn’t perform any special
data preprocessing, just the requirements for each
backbone. Also, to make experiments quicker,
we didn’t perform any fine tuning for any of the
backbones and we pre-generated and stored each
backbone output instead of re-evaluating the same
data across epochs and experiments.

We used the official accuracy measures to score
how the model performs on each task. For the
single class tasks, we have used macro-average F1-
Measure and we called it scoreA. In particular, for
each class label (i.e. true and false) the correspond-
ing F1-Measure will be computed, and the final
score will be estimated as the arithmetic mean of
the two F1-Measures. For the multi class tasks, we
have used weighted-average F1-Measure and we
called it scoreB. In particular, the F1-Measure will
be computed for each label and then their average
will be weighted by support, i.e. the number of true
instances for each label.

5 Results

5.1 Ablations

We have the following system configurations 6

which would result in different architecture varia-
tions.

Transformer encoder (Xformer Enc) whether to
use shared transformer (Shared) or multi trans-
formers (Multi).

Encoder output pooling (Pooling) whether the
whole sequence is pooled using [CLS] embedding

5We used get_linear_schedule_with_warmup from Hug-
gingface Transformers.

6We give each item a short name in parenthesis to be able
to refer to corresponding items in experiments results tables
compactly.

([CLS]), this means we use the multi-head MLP
classifier and no decoder), or no pooling (No) or
only text tokens are pooled using text’s [CLS] token
(txt [CLS]), this means we use the decoder with
the shared single head MLP classifier.

Token encoding projection alignment (Proj
Align) whether to enable it (Yes) or not (No).

Contrastive embedding loss (Contrastive)
whether to enable it (Yes) or not (No).

Multi-task learning (Multi-task) whether to use
Facebook’s hateful meme dataset (Yes) or not (No).

Image encoders (Backbones) whether to use
CLIP only (CLIP), DETR only (DETR), or both
together (CLIP and DETR).

We plan experiments as tournament of rounds such
that in each round we test subset of the configura-
tions fixing the rest. Then we use the winning con-
figuration values for subsequent rounds. For each
experiment, we report the max score for Task_A
and Task_B on all splits. Appendix A contains
more details on scores distributions.

5.1.1 Round 1
At this round we compare transformer encoder and
encoder output pooling methods. We perform four
experiments with configurations and results sum-
maized in table 2. The winner of this round is the
multi-transformers encoders without output pool-
ing architecture variant.

Experiment 00 01 02 03
Xformer Enc Shared Shared Multi Multi
Pooling [CLS] No No txt [CLS]
Proj Algn No
Contrastive No
Multi-task No
Backbones CLIP and DETR
Score
Test - Task_A 0.6819 0.7226 0.7436 0.7329
Test - Task_B 0.5886 0.6422 0.6785 0.6772
Dev - Task_A 0.8395 0.8355 0.8564 0.8519
Dev - Task_B 0.6650 0.6933 0.7420 0.7310
Train-Task_A 0.9253 0.9121 0.9066 0.8998
Train-Task_B 0.7006 0.7242 0.7782 0.7647

Table 2: Experiments configurations for round 1 and
corresponding results.

5.1.2 Round 2
At this round, we test the significance of the multi-
objective approach. The configurations and corre-
sponding results are summarized in table 3. To-

684



ken encoding projection alignment makes improve-
ments on both tasks on the test split when enabled
alone. Also, contrastive embedding loss seems to
slightly improve Task_B. After performing statisti-
cal tests and comparing distributions of the scores,
we pick experiment 10 as the winner variant.

Experiment 02 10 12 13
Xformer Enc Multi
Pooling No
Proj Algn No Yes No Yes
Contrastive No No Yes Yes
Multi-task No
Backbones CLIP and DETR
Score
Test - Task_A 0.7436 0.7504 0.7358 0.7467
Test - Task_B 0.6785 0.6798 0.6823 0.6777
Dev - Task_A 0.8564 0.8535 0.8515 0.8535
Dev - Task_B 0.7420 0.7387 0.7371 0.7313
Train-Task_A 0.9066 0.8983 0.9090 0.8988
Train-Task_B 0.7782 0.7679 0.7676 0.7573

Table 3: Experiments configurations for round 2 and
corresponding results compared to best configurations
from round 1.

5.1.3 Round 3
At this round, we test the significance of the image
encoders backbones, namely: CLIP and DETR.
The configurations and corresponding results are
summarized in table 4. It seems that our use of
DETR was incompetent to CLIP.

Experiment 10 20 21
Xformer Enc Multi
Pooling No
Proj Algn Yes
Contrastive No
Multi-task No
Backbones CLIP and DETR CLIP DETR
Score
Test - Task_A 0.7504 0.7426 0.7010
Test - Task_B 0.6798 0.6865 0.6306
Dev - Task_A 0.8535 0.8560 0.7979
Dev - Task_B 0.7387 0.7347 0.6784
Train-Task_A 0.8983 0.8990 0.8186
Train-Task_B 0.7679 0.7628 0.6704

Table 4: Experiments configurations for round 3 and
corresponding results compared to best configurations
from round 2.

5.1.4 Round 4
At this round, we test the significance of the addi-
tional training data from Facebook’s hateful meme
dataset. The configurations and corresponding re-
sults are summarized in table 5. This time we train
for more 15 epochs (i.e. total 30 epochs). We can

notice a significant improvement when using more
training data from the external dataset.

Experiment 10 30
Xformer Enc Multi
Pooling No
Proj Algn Yes
Contrastive No
Multi-task No Yes
Backbones CLIP and DETR
Score
Test - Task_A 0.7504 0.7609
Test - Task_B 0.6798 0.6958
Dev - Task_A 0.8535 0.8502
Dev - Task_B 0.7387 0.7429
Train-Task_A 0.8983 0.9127
Train-Task_B 0.7679 0.7815

Table 5: Experiments configurations for round 4 and
corresponding results compared to best configurations
from round 2.

5.2 Visualizations
In figure 3, we show t-SNE projections of the trans-
former decoder output per class and the correspond-
ing class learnt input query embedding. We use
data from experiment 30 in section 5.1.4. It is in-
teresting that, for all classes, the class learnt query
embedding is positioned on the side with denser
positive labels. This indicates that the learnt class
queries can be thought of as centers of positive
labels.

In figure 4, we show average attention weights
per transformer decoder layer. Figure 4a illus-
trates the dependencies between each class and
other classes. As shown in the figure, numbers are
very close which indicates that each class depends
uniformly on other classes. Figure 4b shows the
average cross-attention weights between the source
and target sequences from the transformer decoder
layers and aggregated per input encoder. Clearly,
the model pays more attention to CLIP features,
and less attention to BERT text features, and the
least attention to DETR objects features. This con-
forms with results from round 3 in section 5.1.3.

6 Conclusion

In this paper, we propose a generic framework for
both multi-modal embedding and multi-label bi-
nary classification tasks. We combine and use as
backbones different architectures achieving state-
of-the-art in different or similar tasks on different
modalities to capture a wide spectrum of semantic
signals from the multi-modal input. By employing
a multi-task learning scheme, we are able to use
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Figure 3: t-SNE projections of transformer decoder output per class (small dots) and the corresponding class query
embedding (the biggest dot).

(a) Transformer decoder average self-attention weights

(b) Transformer decoder average source × target cross-attention weights. Source weights are aggregated per input encoder.

Figure 4: Attention weights visualization per transformer decoder layer. First input layer is on the left while last
output layer is on the right.

multiple datasets from the same knowledge domain
and increase the model’s performance. In addition
to that, we use multiple objectives to regularize and
fine tune the system components. We have carried
out experiments to verify our ideas and the results
show the significance of some of the ideas. As a
future work, we need to do more experiments with
different backbone architectures and more datasets.
We can also try more objectives and regularizations;
for instance, we can use our observation from fig-
ure 3 to make the decoder output for a positive
instance closer to the corresponding class query
embedding.
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Figure 5: Performance comparison on test split for Task_A and Task_B collected from evaluation phases during
model training epochs for different experiments described in 5.1. Tukey’s plots visualize a universal confidence
interval of scores mean on x-axis for each run on y-axis, any two runs can be compared for significance by looking
for overlap. Box plots summarize the distribution of scores on y-axis for each run on x-axis.
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Abstract 

In this paper we present our approach and 

system description on Task 5 A in MAMI: 

Multimedia Automatic Misogyny 

Identification. In our experiments we 

compared several architectures based on 

deep learning algorithms with various other 

approaches to binary classification using 

Transformers, combined with a nudity 

image detection algorithm to provide better 

results. With this approach, we achieved a 

test accuracy of 0.665. 

1 Introduction 

Misogyny is hatred or contempt for women. It is a 

form of sexism used to keep women at a lower 

social status than men, thus maintaining the 

societal roles of patriarchy. Misogyny has been 

widely practiced for thousands of years. It is 

reflected in art, literature, human societal 

structures, historical events, mythology, 

philosophy, and religion worldwide (Manne, 

2017). 

The Internet represents for many an extension of 

our offline interactions, and seemingly mundane 

everyday practices (e.g. participating in social 

media) form a significant part of our everyday 

experiences. Unfortunately, it is too common to see 

examples of harassment towards women and 

marginalized groups online within these 

experiences and practices (Drakett et al., 2018). 

    Women have a solid presence on the web, 

especially in picture-based web media like Twitter 

and Instagram: 78% of females utilize online media 

on numerous occasions each day, in contrast with 

65% of men.  

    A popular way of communicating via social 

media platforms are MEMEs. A meme is an image 

portrayed through pictorial content with overlaid 

text which is written a posteriori, with the 

fundamental objective of being entertaining and/or 

ironic. Even though most of memes are created 

with the goal of making amusing jokes, shortly 

after their standardization individuals began to use 

them to disseminate hate against women, leading to 

sexist and aggressive messages in internet 

environments that allow people to freely express 

sexism without the fear of retaliation. 

The detection of this disrespectful content is 

essential to eliminate it as soon as possible and stop 

spreading misogyny as a “joke”. 

In MAMI: Task 5, Track A (meme binary 

classification) (Fersini et al., 2022), participants 

must determine whether a meme (text + image) is 

misogynist or not. 

Meme sentiment-related tasks analysis is 

challenging, as memes are used created for various 

purposes, they are always evolving and often use 

sarcasm and humour. While misogyny and hate 

speech detection in text has been widely explored 

by the NLP community (Badjatiya et al., 2017). Its 

detection in images and text and how they correlate 

has not been explored in depth. 

In this field we used BERT (Devlin et al., 2018), 

RoBERTa (Liu et al., 2021) for training and 

classifying text, and nudenet tool for image 

classification (https://github.com/notAI-

tech/NudeNet).  

Our results show that combining text and image 

classification results are slightly better than using 

only one of the two methods. 

The rest of the paper is organized as follows. 

Section 2 contains a briefly description of the 

dataset and its structure, Section 3 features the 

analysis of some of the previous works related to 

our task. In section 4 we describe the different 
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models and algorithm used, and their 

configurations. Section 5 provides details about 

data and models setup, while Section 6 reports 

experimental results and the paper is concluded in 

Section 7. 

2 Background 

This paper is focused on subtask A: Binary 

classification. The corpus provided is composed of 

5000 1-value rows (misogyny) and 5000 0-value 

rows (not misogyny), so it is already well-balanced. 

Each row has the following format: 

 

file_name | misogynous | shaming | stereotype | 

objectification | violence | text transcription 

 

Where “file_name” is the .jpg link to the image, 

and “text transcription” is the text extracted from 

the image. 

For our binary classification task, we only need 

the fields “file_name”, “misogynous” and “text 

transcription” to train the models presented. For 

models that also used nudity recognition, a column 

“unsafe” was added later. 

The csv file used follows this structure: 

- file_name: “10.jpg” 

- misogynous: “1” 

- text transcription: “ROSES ARE RED, 

VIOLETS ARE BLUE IF YOU DON'T SAY 

YES, I'LL JUST RAPE YOU 

quickmeme.com” 

3 Related work 

Sentiment analysis of text is a very active research 

area that still faces multiple challenges such as 

irony and humour detection (Farías et al., 2016). In 

this area, the focus of the NLP community has 

increased towards detection of offensive language, 

aggression, hate-speech detection (Wei et al., 2021)  

and specifically misogyny, taking into account it 

can be expressed in a direct, explicit manner or an 

indirect, sarcastic manner, and even if this message 

is genered or not-gendered (Samghabadi et al., 

2020).  

    The analysis of misogyny in memes has already 

been done in a psychologic point of view (Drakett 

et al., 2018), but never in computational models. 

Multimodal analysis research has been extended 

during the last years, but the focus was mostly on 

Video and text or speech and text (Pozzi et al., 

2016). The specific multi-modality of memes in 

sentiment analysis has only been addressed 

recently by investigating their correlation with 

other comments in online discussions (French, 

2017). 

The growing usage of memes as an alternative 

medium of communication on social media has 

also recently drawn the attention of the online 

abuse research community. 

However, memes completely make sense only if 

one takes both text and image content into account. 

These modalities can also lead to totally different 

perceived sentiment when recombined. For 

example, a meme whose image is a scary clown 

and the text is “happy birthday” will have a very 

different sentiment from a meme with the same text 

but with an image of a funny clown. 

    Sabat et al. (2019) performed hate speech 

detection on memes and showed that images were 

more important than text for the prediction. 

In the other hand, Bonheme and Grzes (2020), 

investigated the relationship of text and image in 

sentiment analysis of memes, and found that 

images and text were uncorrelated. Fusion-based 

strategies did not show significant improvements 

and using one modality only (text or image) tends 

to lead to better results. 

4 System overview  

We focus on exploring different training techniques 

for text using BERT and RoBERTa, given their 

superior performance on a wide range of NLP 

tasks, while for image we used the python module 

nudenet. 

    Each text encoder, image classifier and training 

method used in our model are detailed below. 

4.1 Text Encoders 

BERT (Devlin et al., 2018): pretrained model 

BERT-base uncased, released by the authors, was 

used as embedding layer, tokenizer and classifier. It 

consists of 12 transformer layers, 12 self-attention 

heads per layer, and a hidden size of 768.   

RoBERTa (Liu et al., 2021): We use the 

RoBERTa-base model released by the authors. 

Like BERT, RoBERTa-base consists of 12 

transformer layers, 12 self-attention heads per 

layer, and a hidden size of 768.  

4.2 Image nudity classification 

As memes are mostly done as “joke” and tend to be 

ironical and use a very refined and deep text-image 

relationship. 
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    A similar approach to the one used by Messina et 

al. (2021) was applied, where one of the two 

modalities acts as the main one and the second 

intervenes to enrich the first (in our case, text will 

act as the main modality and image will be used 

just to enrich the results from the first one). 

The goal of this task was to detect misogyny, and 

we decided to use a Not Safe For Work (NSFW) 

image classifier.  

Nudenet is the classifier used for this task. It 

gives each image of our dataset an “unsafe” value 

from 0 (safe) to 1 (unsafe). The Neural Net for 

Nudity Classification is trained on 160,000 entirely 

auto-labelled (using classification heat maps and 

various other hybrid techniques) images. 

A NSFW image classifier was used for two main 

reasons. First, because image-only classification 

using Convolutional Neural Networks did not 

reached good results using the training data. We 

only obtained an accuracy of 0.52. Second, because 

most of NSFW images are misogynous, as it could 

be demonstrated by using only the Nudenet 

classifier, obtaining a value of 0.83 for precision in 

the positive (misogynous) class. 

4.3 Models 

Based on Convolutional Neural Networks (Konda 

et al., 2019),  BiLSTM Neural Networks (Zhou et 

al., 2016), and BERT Transformers (Devlin et al., 

2018), several models have been developed: (1) 

BiLSTM Neural Network with RoBERTa as 

embedding, (2) BiLSTM Neural Network with 

BERT as embedding, (3) BiLSTM Neural Network 

with BERT as embedding and nude detection, (4) 

1- Dimensional Convolutional Neural Network 

with BERT Tokenizer, and (5) BERT Transformer 

with nude detection.  

In our models, RoBERTa and BERT were used 

with word-embedding strategies, as they have an 

advantage over models like Word2Vec. Each word, 

under Word2Vec, has a fixed representation 

regardless of the context within which the word 

appears. Nevertheless, BERT produces word 

representations that are dynamically informed by 

the words around them (Shi and Lin 2019a). 

For example, given the two sentences “The man 

was director of a bank in his hometown.” and “The 

man went fishing by the bank of the river.”, 

Word2Vec would produce the same word 

embedding for the word “bank” in both sentences. 

However, BERT will create different word 

embedding for “bank” for each sentence. 

4.3.1 BiLSTM Neural Network with 

RoBERTa as embedding 

Long Short-Term Memory (LSTM), (Hochreiter 

and Schmidhuber, 1997) is a widely known 

recurrent neural network (RNN) architecture. We 

used Bidirectional LSTM  (Schuster and Paliwal, 

1997) models for our experiments. A Bidirectional 

LSTM (BiLSTM) layer processes the text both in 

the forward as well as backward direction and 

hence is known to provide better context 

understanding. 

Introduced by Facebook, the Robustly 

optimized BERT approach RoBERTa, is a 

retraining of BERT with an improved training 

methodology, 1000% more data and compute 

power (Shi and Lin, 2019b). 

    The RoBERTa model used to extract the word 

embedding layer for the BiLSTM Neural Network 

was RoBERTa-base uncased.  

4.3.2 BiLSTM Neural Network with BERT as 

embedding 

For this approach, a BERT-based model was used. 

In particular, we implemented the BERT-base 

uncased model. 

4.3.3 BiLSTM Neural Network with BERT as 

embedding + nude detection 

Python’s Nudenet module was used in every image 

of the given dataset to assign it a value of 

“unsafety” from 0 (safe) to 1 (unsafe). Then, if the 

text prediction is 1, the final prediction is set as 1, 

otherwise if the text prediction is 0 and the image 

unsafe value is greater than a threshold value, final 

prediction is set to 1. 

The best values for this threshold were the ones 

with the best accuracy classifying using with nudity 

in images. These threshold values were 0.45 and 

0.60. 

4.3.4 1-Dimensional Convolutional Neural 

Network with BERT as embedding + 

nude detection 

Convolutional neural networks (CNN) (Lecun et 

al., 1998) are originally designed to process and 

learn information from image features by applying 

convolution kernels and pooling techniques which 

are widely adopted for extracting stationary 

features; for instance, CNN has shown its 

adaptability in the field of text mining and NLP 

tasks. (Kim, 2014) reported series of experiments 
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with CNNs that achieve good results on sentence 

classification and sentiment analysis tasks. 

To improve this model classification, BERT-

base uncased model was used to create the word 

embedding layer. The nudity classification 

algorithm with a threshold of 0.45. was used to 

achieve better results. 

4.3.5 BERT Transformer with nude detection 

Bidirectional Encoder Representations from 

Transformers (BERT) is a transformer-based 

machine learning technique for natural language 

processing (NLP) pre-training developed by 

Devlin et al. (2018). BERT model is pre-trained 

from unlabeled data extracted from the 

BooksCorpus with 800M words and English 

Wikipedia with 2,500M words. 

    It uses Transformer, (Vaswani et al., 2017) an 

attention mechanism that learns contextual 

relations between words (or sub-words) in a text. In 

its vanilla form, Transformer includes two separate 

mechanisms — an encoder that reads the text input 

and a decoder that produces a prediction for the 

task. Since BERT’s goal is to generate a language 

model, only the encoder mechanism is necessary.  

Also, the nudity classification algorithm with a 

threshold of 0.45. was used to achieve better 

results. 

5 Experimental setup  

For each text transcription row in the corpus, a 

small preprocessing was applied. Every word was 

undercased, web pages’ links, hashtags, usernames, 

emojis, punctuation symbols, numbers, and words 

with length less than 2 characters were removed, as 

well as English stop words using nltk.corpus 

module (Sarica, 2021).  

    For all the experiments, we split the training 

dataset in two parts: 80% for training and 20% for 

validation using a stratify approach. 

    The parameters used in the training phase were: 

batch size of 32 and 5 epochs. 

6 Results  

Table 1 shows a summarization of the training and 

test results obtained for each one of the models in 

the evaluation phase. 

According to the official metrics (F1-score for 

the positive class), our results are all around 0.60 – 

0.65, being the best model BiLSTM Neural 

Network with BERT as embedding + nude 

detection, with a 0.665 F1-score. With this result, 

we obtained the 43 place in the ranking. 

As we expected, the model that obtained the best 

results during the training phase also obtained the 

best result in the evaluation phase. 

7 Conclusions 

In this paper, several approaches and systems 

descriptions on Task 5 (Subtask A) in SemEval 

2022: Multimedia Automatic Misogyny 

Identification are detailed. The main aim was to 

develop various deep learning models and check 

how multi-modality of text and image could help 

achieve better classification results.   

    Six different models were developed and 

BiLSTM Neural Network with BERT as 

embedding + nude detection (0.45 threshold) was 

the definitive one. After training and analyzing 

each model, we achieved an F1-score of 0.665 in 

Model 

Training phase Evaluation phase 

Accuracy F1 - Score F1 - Score 

BiLSTM Neural Network with RoBERTa as 

embedding 
0.793 0.799 0.607 

BiLSTM Neural Network with BERT as 

embedding 
0.810 0.832 0.652 

BiLSTM Neural Network with BERT as 

embedding + nude detection threshold 0.45 
0.837 0.840 0.665 

BiLSTM Neural Network with BERT as 

embedding + nude detection threshold 0.6 
0.835 0.838 0.663 

1-D Convolutional Neural Network with BERT 

as embedding + nude detection 
0.813 0.825 0.649 

BERT Transformers + nude detection 0.806 0.812 0.639 

Table 1:  Results obtained with the different models 
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the evaluation phase for class “1”. We can conclude 

that merging text and image classifiers improves 

the results in the task of misogyny detection in 

memes.  

In future works, we intend to improve our image 

classifiers models. Also, we want to use other 

pretrained models based on transformers. 
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Abstract

This paper describes INF-UFRGS submission
for SemEval-2022 Task 5 Multimodal Auto-
matic Misogyny Identification (MAMI). Un-
precedented levels of harassment came with
the ever-growing internet usage as a means
of worldwide communication. The goal of
MAMI is to improve the quality of existing
methods for misogyny identification, many of
which require dedicated personnel, hence the
need for automation. We experimented with
five existing models, including ViLBERT and
VisualBERT - both uni and multimodally pre-
trained - and MMBT. The datasets consist of
memes with captions in English. The re-
sults show that all models achieved Macro-F1
scores above 0.64. ViLBERT was the best per-
former with a score of 0.698.

1 Introduction

Social media and anonymity enable the spread
of hateful speech, which explains why misogyny
is prevalent and abundant on the internet. Not
only is it present, but also increasingly so, as con-
firmed by Farrell et al. (2019). The platforms that
contribute to the sharing of hateful content dedi-
cate a considerable amount of human effort in de-
tecting, analyzing, and eventually removing these
contents. The task is demanding due to the nature
of the posts, which are frequently not straightfor-
ward – they often contain irony and slang. Ad-
ditionally, the textual information needed to auto-
matically classify a post as misogynistic might be
part of an image, in the form of a meme. That
prevents sexist posts from being immediately de-
tected by algorithms that rely solely on textual in-
put.

In this paper, we describe the training and us-
age of five different multimodal models applied
to detecting misogynistic memes in the scope
of SemEval-2022 Task 5 Multimodal Automatic
Misogyny Identification (MAMI) (Fersini et al.,

2022). We explain the distinction between the
models and compare their performances in light
of differences in pretraining (unimodal or multi-
modal).

Among the five models, the one which achieved
the highest score was ViLBERT, reaching the 32nd

position on the leaderboard (out of 83 partici-
pants), with a score of 0.698. The one which per-
formed the worst was MMBT-Grid, with a score
of 0.649.

The remainder of this paper is organized as fol-
lows: Section 2 covers background and related
work. Section 3 presents an overview of our sys-
tem. The experimental setup is described in Sec-
tion 4. Section 5 presents our results. Then, Sec-
tion 6 concludes the paper.

2 Background and Related Work

One crucial aspect of this task is the multimodality
of inputs. Most of the time, a meme requires both
textual and visual information to be correctly un-
derstood. Not only because the punch line usually
comes in written form, but also because texts and
images often contradict each other for humouris-
tic purposes. Take for example Figure 1. The text
alone indicates a positive feeling towards an object
that makes sandwiches. The image, if one would
remove the caption, would show a woman. But
when taken into consideration simultaneously, it is
a sexist meme implying that women exist to make
men sandwiches.

We took part only in Subtask A, in which the
goal of the model is to take a meme such as the
one in Figure 1 as input and indicate whether it is
misogynistic or not.

The Hateful Memes Challenge (Kiela et al.,
2021) is similar to MAMI since both address
hateful multimodal contents. Participants in the
Hateful Memes Challenge received a dataset of
memes with visual as well as textual inputs and
had to predict whether the memes were hateful.
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Figure 1: Example of a meme from the MAMI dataset

MMF (Singh et al., 2020) is a multimodal frame-
work from Facebook AI Research and it imple-
ments state-of-the-art visual and language mod-
els, such as VisualBERT (Li et al., 2019), ViL-
BERT (Lu et al., 2019), M4C (Hu et al., 2020),
and Pythia (Jiang et al., 2018), among others.
MMF provides code and model implementations
for The Hateful Memes Challenge. Their work
served as the primary inspiration for our experi-
ments, in which we apply many of the same mod-
els to the Multimedia Automatic Misogyny Iden-
tification (MAMI) dataset.

3 System Overview

We used MMF (Singh et al., 2020) to train five
models on the MAMI dataset. These models can
be briefly described as follows.

1. MMBT-Grid is a supervised multimodal bi-
transformer that jointly finetunes unimodally
pretrained text and image encoders by pro-
jecting image embeddings to text token
space. Its inputs are the concatenation of tex-
tual embeddings and the final activations of
a ResNet after pooling – the downsampling
of dimensions – and positional and segment
encodings. The final activations are trans-
formed so that they fit the dimensions of the
transformers’ hidden layers.

2. ViLBERT and ViLBERT CC ViL-
BERT (Lu et al., 2019) consist of two

parallel models, one that operates over visual
inputs, and another that operates over textual
inputs. Both models operate similarly to
BERT, i.e., they are a series of transformer
blocks. The difference lies in the Co-
attentional Transformer Layers introduced
by the researchers. During the attention
calculation, they compute the usual Q, K,
and V matrices. However, the textual K
and V are passed to the visual multi-headed
attention block, and the visual K and V are
passed to the textual multi-headed attention
block. The rest of the transformer operations
proceed normally, causing multi-modal
features since each modality pays attention
to the other.

3. VisualBERT and VisualBERT COCO - Vi-
sualBERT extends BERT by modifying the
input it processes. Making use of features
extracted from Object Proposals – a set of
image regions likely to contain objects – the
model can capture the interaction between
text and image. The model does that by treat-
ing these features as usual BERT input to-
kens, appending them to the textual tokens.
That is, VisualBERT uses the self-attention
mechanism to align textual and visual ele-
ments implicitly.

Two versions of ViLBERT and VisualBERT
were used. The distinction between these two
versions lies not in the architecture, but rather in
how they were pretrained. The multimodally pre-
trained versions, ViLBERT CC and VisualBERT
COCO, are the official ones published by Lu et al.
(2019) and Li et al. (2019), respectively. The
unimodally pretrained versions are, as explained
by Kiela et al. (2021), multimodal models that
were unimodally pretrained (where, for example,
a pretrained BERT model and a pretrained ResNet
model are combined in some way).

4 Experimental Setup

The dataset used to train all models was the one
provided by the organization team. The data
has not been augmented or modified in any way.
Training data consists of 10,000 memes, trial data
has 100 memes, and validation data has 1,000
memes.

The MMF framework comes with implemen-
tations of state-of-the-art models, preconfigured
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with hyperparameters. In our experiments, the de-
fault configurations of the models were used. All
models share the same values for the main con-
figurations, such as 1e-5 for learning rate, 22,000
for maximum number of steps, 128 tokens at most
for text processing and, due to memory limita-
tions, one hyperparameter was set to a fixed value,
that is, models used batch sizes of 16 for train-
ing. Hyperparameter optimization could, there-
fore, be applied to the models to obtain better re-
sults. The configuration files are open to inspec-
tion and change, given that they are publicly avail-
able at Facebook Research’s Github repository1.
The specific commit that was used for this work is
available here2. The training process of all mod-
els, excluding MMBT-Grid, uses image features,
which were not included with the dataset supplied
by the organization team. We relied on a script
included in MMF to extract these features, using
ResNet-152.

The main evaluation metric used in the task and
during training is macro-F1. Here we also report
True Positive (TP), True Negative (TN), False Pos-
itive (FP), and False Negative (FN) Rates.

5 Results

In this section, we report on our experimental re-
sults organized around four questions.

5.1 What are the best and worst models?

The results obtained by each model can be seen in
Table 1. The best and worst-performing models
were, respectively, ViLBERT and MMBT-Grid,
with macro-F1 scores of 0.698 and 0.649. With
this score, ViLBERT ranked 32nd on Subtask A.
It is worth pointing out that they had very similar
values for TP-rate. MMBT-Grid achieved a value
of 0.866, despite being the worst-ranked among
all five models. That means it had a good perfor-
mance in identifying misogynistic memes. The
problem is evidenced by the TN and FP rates.
MMBT-Grid was the worst at classifying memes
that are not misogynistic, with a TN-rate of 0.463,
the lowest of all. It also has the highest FP rate of
0.537. Analyzing ViLBERT’s metrics, we can see
that what guaranteed it the first place among the

1https://github.com/facebookresearch/
mmf

2https://github.com/
facebookresearch/mmf/tree/
d31f8776f3bee53e7be722cb6d6c7ecf0827cc30/
mmf/configs

five models was the TP and FN rate, which were,
respectively, the highest and the lowest. Visual-
BERT COCO was the best at correctly classifying
the negative class (TN rate = 0.581), but it also
had, by far, the highest FN rate (0.21).

The differences in performance can not be ex-
plained by the usage of uni or multimodal pretrain-
ing. This is evidenced by the similarity between
scores obtained by unimodally pretrained models
(VisualBERT and ViLBERT) and that by multi-
modally pretrained models (VisualBERT COCO
and ViLBERT CC). Additionally, the mentioned
models share the same architecture (ViLBERT
with ViLBERT CC and VisualBERT with Visual-
BERT COCO), and so it can not be the explanation
for the differences in performance. However, what
seems to have impacted scores the most is the use
of image features during training, since MMBT-
Grid performs the worst.

5.2 Do multimodally pretrained models
perform better?

It is interesting to notice that there was no great
difference in performance between unimodally
and multimodally pretrained models, such as Vi-
sualBERT vs. VisualBERT COCO and ViLBERT
vs. ViLBERT CC. This finding is in line with
Kiela et al. (2021), who worked on the Hateful
Memes dataset. Nevertheless, while multimodally
pretrained models were slightly better on Hateful
Memes, here the unimodally pretrained version of
ViLBERT yielded slightly better results, but the
difference was not statistically significant (accord-
ing to a Wilcoxon signed-rank test).

5.3 Can combining classifiers improve
classification performance?

To answer this question we analyzed the predic-
tions of the five models for each instance on the
evaluation dataset. Our results have shown that:

• 86.89% of the instances were correctly pre-
dicted by at least one model;

• 77.58% of the instances were correctly pre-
dicted by at least two models;

• 69.67% of the instances were correctly pre-
dicted by at least three models;

• 61.76% of the instances were correctly pre-
dicted by at least four models;

• 47.95% of the instances were correctly pre-
dicted by all models.
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Model Macro-F1 TP TN FP FN
MMBT-Grid 0.649 0.866 0.463 0.537 0.134
VisualBERT 0.666 0.874 0.483 0.517 0.126
VisualBERT COCO 0.679 0.786 0.581 0.419 0.214
ViLBERT CC 0.697 0.836 0.571 0.429 0.164
ViLBERT 0.698 0.874 0.541 0.459 0.126

Table 1: Macro-F1 scores, true positive and negative rates, and false positives and negative rates for our models

This analysis suggests that, if we were to use
a simple majority voting system to determine the
predicted label for images, the obtained accuracy
score would be 69.67%, which does not surpass
the score achieved by ViLBERT alone. Addition-
ally, we tried combining the predictions of the
classifiers by averaging their output probabilities.
Similar to what we found with majority voting,
there were no performance improvements in rela-
tion to ViLBERT on its own.

5.4 How correlated are the models?

Table 2 shows the Pearson correlation coefficient
calculated for all pairs of models to measure their
level of agreement, i.e., how many images they
classified with the same label. We can see that
ViLBERT and ViLBERT CC have the highest cor-
relation coefficient, 0.78. We initially supposed
that the reason for their high similarity was that
they share the same architecture, but further anal-
ysis showed that VisualBERT and VisualBERT
COCO, the other models that also share architec-
tures, have low similarities. Therefore, the initial
hypothesis was wrong and we can assert that the
reason for the difference in similarity resides in the
pretraining modality, since that is the only distinc-
tion between the models. We see that MMBT-Grid
and ViLBERT have a correlation score of 0.61,
while the lowest score is between MMBT-Grid
and VisualBERT, 0.56. The fact that all correlation
scores can be classified between strong and mod-
erate explains why there were no gains in combin-
ing the models in an ensemble.

5.5 Is there any pattern in memes that were
erroneously classified?

We analyzed images that were wrongly classified
by all five models. They were, in total, 131 im-
ages. Through visual inspection, we were able to
identify a pattern in the captions. We noticed that
most false positives contained words like "girl",

"girls", "woman", and "women", while false neg-
atives did not present these words. To confirm
this, we examined the frequency of these words
in training and test datasets. The term "girl" ap-
peared in approximately 4.57% of not misogynous
memes in the training dataset, and in 6.37% of
misogynous memes, that is, 1.39 times more of-
ten. This proportion, however, is almost reversed
in the test dataset, in which the term appears in
11.1% of not misogynous memes, and only in
7.1% of misogynous memes, that is, 1.56 times
less frequently. This might explain the high num-
ber of wrong classifications for memes that con-
tain this word. For the term "women", training
dataset analysis shows that 8.27% of misogynous
memes had this word, while appearing in only 2%
of not misogynous memes, about 4.13 times less
often, while in the test dataset, 5.8% of misog-
ynous memes had it, and 2.4% of not misogy-
nous memes, that is, 2 times less. The change in
word frequency for this term might also have con-
tributed to misclassification.

6 Conclusion

In this paper, we described our submission to
SemEval-2022 Task 5. Using Hateful Memes and
MMF as inspiration, we wanted to replicate their
methods in a similar context. Although hateful
and misogynistic memes share some overlap, there
are important distinctions between them, regard-
ing different vocabulary, context, and targets (i.e.,
hate can be directed towards anyone, while misog-
yny cannot).

In our experiments, we trained five models and
confirmed that they reach similar performances in
this dataset as they do in Hateful Memes. Our best
model, ViLBERT, reached a F1 score of 0.698 and
ranked 32nd out of 83 on the leaderboard. We
showed that using a majority voting system with
all models would not be beneficial. The mod-
els could be further improved by hyper-parameter
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ViLBERT CC VisualBERT VisualBERT COCO MMBT-Grid ViLBERT
ViLBERT CC 1.00 0.66 0.58 0.61 0.78
VisualBERT 1.00 0.57 0.56 0.69
VisualBERT COCO 1.00 0.58 0.59
MMBT-Grid 1.00 0.61
ViLBERT 1.00

Table 2: Pearson correlation for each pair of models

tuning. We could also have experimented with
late/early fusion, which, as suggested by Hateful
Memes (Kiela et al., 2021), has an impact on per-
formance, and we leave this as future work.
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Abstract

Memes have become quite common in day-to-
day communications on social media platforms.
They often appear to be amusing, evoking and
attractive to audiences. However, some memes
containing malicious content can be harmful to
targeted groups. In this paper, we study misogy-
nous meme detection, a shared task in SemEval
2022 - Multimedia Automatic Misogyny Identi-
fication (MAMI). The challenge of misogynous
meme detection is to co-represent multi-modal
features. To tackle with this challenge, we pro-
pose a Multi-modal Multi-task Variational Au-
toEncoder (MMVAE) to learn an effective co-
representation of visual and textual features in
the latent space. Our goal is to automatically
determine if a meme contains misogynous in-
formation and then identify its fine-grained cat-
egory. Our model achieves F1 scores of 0.723
on the MAMI sub-task A and 0.634 on sub-task
B. We carry out comprehensive experiments on
our model’s architecture and show that our ap-
proach significantly outperforms several strong
uni-modal and multi-modal approaches. Our
code is released on github1.

1 Introduction

With the rapid development of social media, the
use of image-based memes has been growing. Peo-
ple use memes for various purposes, such as to
express humor (Velioglu and Rose, 2020), or to
attract greater attention. Enabling this, simple web-
sites that allow people to easily create new memes
have further seen their proliferation.

However, this easy composition has allowed
people to easily embed harmful messages within
memes, often circumventing more traditional text-
based moderation tools (Malmasi and Zampieri,
2017). This paper particularly focuses on misogy-
nous memes (i.e. hatred towards women) — see
Figure 1 for two examples. As some platforms may
choose to limit the sharing of such material, we

1https://github.com/MMVAE-project/MMVAE

argue it is vital to build tools that can automatically
identify misogynous memes at scale.

(a) A misogynous meme
with an uncorrelated image. (b) A misogynous meme

with a correlated image.

Figure 1: Examples of misogynous memes. In (a), the
embedded text is misogynous. In (b), both the image
and the embedded text are misogynous.

Many prior works have sought to analyze the
content of memes. Some have looked into meme
emotion analysis (Sharma et al., 2020; Smitha et al.,
2018), meme ecosystem measurements (Zannettou
et al., 2018) and meme auto-generation (Vyalla and
Udandarao, 2020). Past efforts have also shed light
on hateful meme detection (Kiela et al., 2020) or
offensive meme detection (Sabat et al., 2019) more
generally.

This paper builds on these prior works to auto-
matically detect misogynous meme content (Fersini
et al., 2022). This comes with several key chal-
lenges. First, a meme usually comes with both a
visual and a textual part. Sometimes the standalone
image or text is not necessarily hateful or toxic, but
when combined together, the semantic meaning
becomes harmful. To effectively understand the
semantic meaning of a meme, information encoded
in both modalities should be considered. Second,
different memes frequently have the same image,
but are embedded with different text (and thus have
different and even opposite meanings). This makes
reliance on image-hash lists ineffective. It is also
common that the image and text of a meme are
unrelated, as in Figure 1a. In this case, finding an
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accurate co-representation of both visual and tex-
tual features is vital. Finally, malicious information
contained in a meme can have granular labels and
even belong to multiple categories. Thus, it is often
necessary to devise a more nuanced taxonomy.

With the above challenges in mind, we propose
MMVAE: a pipeline to determine if a meme con-
tains misogynous information, and to identify its
fine-grained hateful labels accordingly. Specifi-
cally, our contributions are as follows:

1. We propose a Multi-modal Multi-task Vari-
ational AutoEncoder (MMVAE) that effec-
tively co-represents the textual and visual fea-
tures of the meme. We use this to predict if
a meme is misogynous/non-misogynous. We
further expand our model to predict more fine-
grained labels, e.g. shaming, violence, objec-
tification.

2. We evaluate our model on SemEval compe-
tition Task 5: Multimedia Automatic Misog-
yny Identification (Fersini et al., 2022). We
achieve an F1 score of 0.723 on sub-task A
and 0.634 on sub-task B.

3. We analyze the strengths and weaknesses of
our multi-modal approach by presenting a
text-based error analysis and case study. Our
model is better at identifying misogynous
memes with a high precision, yet less effec-
tive in determining the correct label for non-
misogynous memes.

2 Background

Our approach leverages multi-modal learning, pre-
trained model, variational autoencoder and multi-
task learning. Below, we provide a brief overview
of these concepts.

2.1 Multi-modal Feature Representation

We leverage multi-modal learning to co-represent
features from both image and text. Common multi-
modal features co-representation techniques (Zeng
et al., 2021) include fusion mechanism (early at
feature level (Su et al., 2020), or late at deci-
sion/scoring level (Poria et al., 2016)), tensor fac-
torization (Zadeh et al., 2017; Mai et al., 2019) and
complex attention mechanisms which can be fur-
ther classified as dot-product attention (Yu et al.,
2021), multi-head attention (Cao et al., 2021; Wu
et al., 2021), hierarchical attention (Pramanick

et al., 2021), attention on attention (Liu et al., 2021)
among others. These techniques have proven to be
effective in encoding multi-modal features. How-
ever, leveraging multi-modal features doesn’t al-
ways enhance the task performance. Hence, an-
other topic that has raised concern in multi-modal
learning is the uni-modal contribution analysis. A
straightforward approach (Hessel and Lee, 2020;
Frank et al., 2021) is to ablate cross-modal inputs
or interactions in order to evaluate the model’s per-
formance on uni-modal data. Zeng et al. (2021)
demonstrated that multi-modal models might not
achieve optimal performance because there are
noises contained in each modality.

2.2 Pre-trained Model
We adopt pre-trained models to embed the text and
image of a meme.

Usually trained on large dataset corpus, pre-
trained models have achieved state-of-the-art
(SOTA) performances on various Natural Lan-
guage Processing (NLP) and Computer Vision
(CV) benchmark tasks. Thus, they can be used as a
powerful embedding tool or be easily fine-tuned on
downstream tasks. Popular language pre-trained
models such as BERT (Devlin et al., 2019), LASER
(Artetxe and Schwenk, 2019) and LaBSE (Feng
et al., 2020) have constantly updated the SOTA per-
formance on downstream NLP tasks. Similarly, im-
age pre-trained models including ResNet (He et al.,
2016), VGG (Simonyan and Zisserman, 2015), and
Inception (Szegedy et al., 2016) have proved their
effectiveness in multiple tasks. Recently, there
has been increasing interest in pre-training multi-
modal models. Lu et al. (2019) proposed ViLBert,
which extends BERT to multi-modal two-stream
models that interacts through co-attentional trans-
former layers and can be easily transferred into per-
forming multiple visual-and-language tasks. Sim-
ilarly, LXMERT (Tan and Bansal, 2019) further
included a cross-modality encoder that captures
cross-modality relationships. Instead of implement-
ing two stream models, Su et al. (2020) input the
caption and image regions all together to the modi-
fied BERT model named VL-BERT. Radford et al.
(2021) jointly trained an image encoder and a text
encoder known as CLIP to match the image and its
corresponding caption by contrastive learning.

2.3 VAE Overview
We later use Variational AutoEncoder (VAE) to
fuse multi-modal features. Thus, here we introduce
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the basic structure and loss calculation of a VAE.
A VAE is an unsupervised approach for learning
a lower-dimensional feature representation from
unlabeled training data (Li et al., 2019a). The aim
of finding a representation in the latent space is to
capture meaningful factors of variation in the data
(Li et al., 2019a). Typically, a VAE consists of an
encoder and a decoder, which look "symmetrical"
in the model’s architecture. The encoder learns a
latent variable space where a latent variable z is
sampled from and input to the decoder for original
data reconstruction. Figure 2 shows the structure
of a simple VAE.

Figure 2: A simple VAE example.

Encoder. The encoder network of a VAE can have
various structures. For textual input, the common
structure is the Recurrent Neural Networks (RNN),
e.g. Bi-LSTM (Cheng et al., 2020). For image
input, the common encoder structure is the Convo-
lutional Neural Networks (CNN). Mathematically,
the encoder can be described as qφ(z|x), where φ
is the parameters of the encoder network. qφ(z|x)
stands for the probability distribution of latent vari-
able z given x.
Decoder. Generally, the decoder network of a VAE
is symmetrical to the encoder. It reconstructs the
input by sampling from the learned latent variable
space subject to a Gaussian distribution. The de-
coder can be described as pθ(x|z), where θ is the
parameters of the decoder network. pθ(x|z) stands
for the probability distribution of reconstructed x
given z.
Loss. In order to compute the loss of VAE in our
model, we first introduce how to compute the loss
of a general VAE. Since VAE models the prob-
abilistic generation of data {x(i)}, the goal is to
maximize the (log) data likelihood (Kingma and
Welling, 2014):

log pθ(x(i)) = DKL(qφ(z|x(i))||pθ(z|x(i)))
+L(θ,φ; x(i))

(1)

where θ and φ are parameters of the decoder
and encoder network respectively. The first KL
divergence term on the right hand side can’t be

computed explicitly but it is non-negative. The sec-
ond term is called the lower bound on the marginal
likelihood of datapoint i and can be rewritten as
(Kingma and Welling, 2014):

L(θ,φ; x(i)) = −DKL(qφ(z|x(i))||pθ(z))
+Eqφ(z|x(i))

[
log pθ(x(i)|z)

] (2)

Hence, to maximize the log likelihood, we only
need to maximize L(θ,φ; x(i)). To achieve that,
the KL divergence term in eq. 2 should be mini-
mized and the expected log likelihood of datapoint
i should be maximized (equivalent to minimizing
the expected reconstruction error).

2.4 Multi-task Learning
Our work leverages the concept of multi-task learn-
ing to learn fine-grained category labels of misogy-
nistic memes. According to Ruder (2017), as long
as a model is optimized by more than one loss func-
tions, it is doing multi-task learning. When the
tasks are relevant and the knowledge learned from
one task could benefit the learning of other tasks,
applying multi-task learning will have promising
performances (Caruana, 1997). Multi-task learn-
ing has been successfully applied in many NLP
tasks such as text classification (Cheng et al., 2020;
Khattar et al., 2019), sentiment analysis (Majumder
et al., 2019), neural machine translation (Niehues
and Cho, 2017), etc. However, the most common
issue of multi-task learning is the negative transfer
when the performance on single task is undermined.
Lee et al. (2016) avoids negative transfer by allow-
ing asymmetric transfer between tasks. Wu et al.
(2020) observes that misalignment between tasks
can cause negative transfer. Wu et al. (2019) pro-
posed a method to filter and select shared feature
to prevent adverse features being integrated into
certain tasks.

3 Problem Statement

The paper strives to build a classifier that can dis-
tinguish misogynous vs. non-misogynous memes.
We break this down into two sub-tasks:

• Sub-task A: Given a meme’s image I and its
corresponding text transcription T , we must
predict its binary (0/1) label on misogyny
(Fersini et al., 2022).

• Sub-task B: Given a meme’s image I and its
corresponding text transcription T , we must
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predict its binary (0/1) label on the following
classes: shaming, stereotype, objectification
and violence (Fersini et al., 2022), which are
types of misogyny.

Note, the meme’s image I has the embedded
text on it, and T is transcribed from the meme’s
embedded text.

4 Our Approach

As illustrated in Figure 3, our MMVAE model
consists of 3 components: (i) the Image/Text em-
bedding Module, (ii) the Variational AutoEncoder
Module and (iii) the Multi-Task Learning Module.
The embedding module turns the inputs into uni-
modal vector representations. After that, the VAE
module fuses multi-modal representations and gen-
erates a co-representation. Finally, the multi-task
learning module gives the label prediction. In this
section, we first introduce each part of our proposed
model, and then demonstrate how to put them all
together and jointly train the model.

4.1 Image/Text Embedding Module
In our pipeline, we first adopt two pre-trained mod-
els to embed the meme’s text and image (illus-
trated in Figure 3 left part). We directly input the
provided text transcription and meme’s image to
the pre-trained models to get embeddings as mod-
ule output. However, when using ResNet-50 and
BERT as pre-trained models, we apply data pre-
processing beforehand.
Image Embeddings. To obtain the meme’s image
embedding, we have experimented with 2 different
pre-trained models: ResNet-50 (He et al., 2016)
pre-trained on ImageNet (Deng et al., 2009) and
the multi-lingual version of OpenAI CLIP-ViT-B32
(Radford et al., 2021). When using ResNet-50 to
embed images, we transform the input images by
resizing it to 224×224, applying random rotation,
random horizontal flip, random crop and normal-
ization for data augmentation. We use the last fully
connected layer’s output as our image embedding.
When using CLIP to embed images, although we
have experimented with data transformation tech-
niques, our optimal performance is achieved by
directly embedding the raw image.
Text Embedding. To obtain the meme’s text
embeddings, we experiment with 4 different pre-
trained models: BERT for sentence classifica-
tion (Devlin et al., 2019), LASER (Artetxe and
Schwenk, 2019), LaBSE (Feng et al., 2020) and the

multi-lingual version of OpenAI CLIP-ViT-B32.
We set the maximum input sentence length to 512
tokens when using BERT while we directly input
the meme’s text to other pre-trained models.

4.2 Variational AutoEncoder (VAE) Module
The next module in our pipeline takes the em-
beddings as an input and finds a multi-modal co-
representation. We assume that there is an effective
multi-modal co-representation in the latent space
which can better capture the inter-relationship be-
tween text and image data.

In our pipeline, we leverage VAE to learn the
multi-modal co-representation (illustrated in Fig-
ure 3 middle part). The input to this module are the
embeddings generated from the pre-trained mod-
els, and the output is the reconstructed embeddings.
Yet what we need for later meme detection classi-
fiers is the latent variable generated from the VAE
encoders.
Encoders. We build a text encoder and an im-
age encoder to first learn the latent variables of
the text embedding and image embedding sepa-
rately. In our case, since the input embeddings
are already semantically meaningful, there is less
need to further extract semantic information using
complex and deep layers. Therefore, we decide to
use 1 fully connected layer for each modality as
the encoder structure. And then we concatenate
the learned latent variables to form a multi-modal
co-representation z in the latent space.
Decoders. Accordingly, we build a text decoder
and an image decoder to reconstruct the text em-
bedding and image embedding from the learned
multi-modal co-representation z. Our decoders
still consists of 1 fully connected layer, with the
number of output channels equal to the number of
input channels in the encoder network.
Losses. We calculate the reconstructed image em-
bedding loss Limg, the reconstructed text embed-
ding loss Ltxt (corresponding to the 2nd part of eq.
2) and the KL loss KLD (corresponding to the 1st
part of eq. 2) from the sampled latent variable z for
gradient descent. The reconstruction loss is calcu-
lated by L2 loss function (squared error). The KL
loss is calculated using the formula in Appendix B
of Kingma and Welling (2014).

4.3 Multi-task Learning
We leverage multi-tasking learning because we ex-
pect that learning the fine-grained hateful class la-
bels will benefit the misogyny meme detection and
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Figure 3: The architecture of our proposed Multi-modal Multi-task VAE (MMVAE) model. The upper part illustrates
the image/text embedding module and the VAE module from left to right. The lower part shows the multi-task
learning module.

vice versa. The input to this module is the latent
variable z (colored yellow in Figure 3) learned in
Section 4.2 and the output is label predictions on
each class.

Our model learns 5 tasks at the same time:
misogyny detection, shaming detection, stereotype
detection, objectification detection and violence de-
tection. The latter 4 classes are more specific types
of misogyny. Note, if a meme is misogynous, it
could fall into more than one specific misogyny
classes.

The architectures are the same across all the sub-
networks in our model as shown in Figure 3: 1 fully
connected layer followed by the softmax binary
classifier. Yet the sub-networks are independent -
the parameters are not shared.

Here the cross entropy loss function is used to
calculate the loss for each task:

Lt = −Ey∼Yt [y log yt + (1− y) log (1− yt)]
(3)

where y is the ground-truth label of data point x
in t detection (e.g. misogyny detection) and yt is
the predicted probability of x belonging to class t
(e.g. misogyny).

4.4 Putting It All Together

We have introduced each module in our MMVAE
and how to calculate their standalone losses. Next,
we introduce how to jointly train the model by
putting three modules together.

The total loss used to compute gradient descent
is composed of the reconstructed image error Limg,

reconstructed text error Ltxt, KL divergenceKLD,
and multi-task cross entropy losses Lt, where t ∈
{misogyny, shaming, stereotype, objectification, vi-
olence}. This can be expressed as:

Ltotal = λiLimg + λtLtxt + λklKLD +
∑

t

λtLt
(4)

where λs are used to adjust the learning focus,
so that we can direct the focus of learning to the
task we care more about. We calculate gradient
descent on Ltotal and back propagate it to update
model’s parameters.

5 Experimental Setup

In this section, we first introduce the Multime-
dia Automatic Misogyny Identification (MAMI)
dataset released by the task organizer (Fersini et al.,
2022) and then discuss our experimental settings.

5.1 Dataset

The MAMI dataset contains 10,000 memes in the
training set and 1,000 memes in the test set. Each
meme has an associated text transcription in En-
glish and labels on 5 classes. The label distributions
of given classes are not balanced and are summa-
rized in Table 1. Only in the misogyny class, the
labels are totally balanced. Detailed task descrip-
tions can be found in Section 3.

5.2 Experimental Settings

We have experimented with different latent variable
(z) sizes of 256, 512, and 1024. 512 has the best
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Class # Positive # Negative
Misogyny 5,000 5,000
Shaming 1,274 8,726
Stereotype 2,810 7,190
Objectification 2,202 7,798
Violence 953 9,047

Table 1: Number of positive labels and negative labels
in each class.

performance on the validation set. Hence, we set
the latent variable size to 512 during the evaluation
phase.

Different pre-trained models generate embed-
dings with different dimensions, D. In both en-
coders, we map the input embeddings’ dimension
from D to half of z’s dimension.

For the optimizer, we use the Adam optimizer
with weight decay set to 1e-5. The batch size is
set to 64. In addition, the initial learning rate is
1e-4 and divided by 4 every 8 training epochs. The
model is trained for 30 epochs in total with early
stopping.

We split the training set into the training and
validation set with a ratio of 9:1. We train our
model on 9,000 memes from the original training
set and test it on the rest of 1,000 memes to evaluate
our model’s performance.

5.3 Baselines

BERT (Devlin et al., 2019). As the text-only
baseline, we use BERT for sequence classification.
Here, only the text transcription is used for misog-
yny detection. BERT has achieved SOTA perfor-
mances on most NLP benchmark tasks. Therefore,
we consider it as a robust textual baseline model
for this task.
ResNet-50 (He et al., 2016). As the image-only
baseline, we use ResNet-50. Here, only the im-
age is used for misogyny detection. ResNet-50
has achieved SOTA performances on ImageNet, a
benchmark task in CV. Therefore, we consider it as
a robust image baseline model for this task.
CNN-Based VAE. We build an image-only VAE
model whose encoder and decoder are both com-
posed of 5 CNN layers. Here, only the meme image
is used for misogyny detection. This image-only
input model is used to compare with our MMVAE:
both of them are constructed based on VAE.

Note, we only experiment with BERT and
ResNet-50 with sub-task A because we directly

use the pre-trained model’s architecture without
incorporating multi-task learning into them.

6 Results and Analysis

In this section, we present our model’s perfor-
mances on both tasks, and give further analysis
on its strengths and weaknesses.

6.1 Evaluation Metrics
The main evaluation metric for both tasks is F1

score (macro-F1 for sub-task B), which calculates
the average of F1 for both labels:

F1 =
pos_F1 + neg_F1

2
(5)

We also extend it to include precision and recall
by calculating the average score similarly.

6.2 Results
Table 2 summarizes the performances of our model
and the baselines. The first group of models are uni-
modal. The second group of models share the same
architecture, MMVAE, but with different embed-
ding methods. Furthermore, MMVAEs used in the
third group come from the best performed model
of the second group, i.e. MMVAELASER+CLIP. In
the third group, we have tried a number of tech-
niques to mitigate the overfitting problem: adding
different dropout rates, concatenating the word em-
beddings generated by LASER and LaBSE, adding
one more liner layer to the text VAE encoder, and
introducing image transforms.

For sub-task A, the optimal F1 performance is
0.723, which is achieved by applying batch nor-
malization layers and set dropout = 0.2 after each
linear layer in the encoders and decoders of the
VAE. Among all the tweaks we apply to reduce
overfitting, introducing dropout is the most effec-
tive by which we get our top two F1 scores (0.723
and 0.714). Instead of dropping more parame-
ters, keeping 80% of them produces a better re-
sult (0.723).This might because the number of pa-
rameters in our model is not large, so excluding
more will harm the learning capability. We also see
a performance improvement to 0.712 by concate-
nating text embeddings from LASER and LaBSE,
which introduces more information, thereby reduc-
ing overfitting. The other two attempts fail to im-
prove the performance, the reason might be that
adding more layers doesn’t make the model more
generalizable and image transforms is not effective
when applying pre-trained models to embed.
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Model Sub-task A Sub-task B
Precision Recall F1 Precision Recall macro-F1

BERT 0.608 0.632 0.589 - - -
ResNet-50 0.635 0.656 0.622 - - -
CNN-VAE 0.526 0.550 0.462 0.514 0.545 0.469
MMVAEBERT+ResNet 0.640 0.653 0.632 0.543 0.590 0.532
MMVAEBERT+CLIP 0.707 0.752 0.693 0.586 0.633 0.589
MMVAELASER+CLIP 0.721 0.756 0.711 0.594 0.648 0.600
MMVAELaBSE+CLIP 0.707 0.751 0.694 0.578 0.686 0.575
MMVAECLIP+CLIP 0.712 0.760 0.698 0.587 0.658 0.592
MMVAE+dropout=0.5 0.724 0.759 0.714 0.606 0.656 0.616
MMVAE+dropout=0.2 0.730 0.756 0.723 0.613 0.647 0.622
MMVAE+concat 0.721 0.751 0.712 0.602 0.657 0.609
MMVAE+more layers 0.710 0.750 0.698 0.631 0.649 0.634
MMVAE+img transform 0.710 0.756 0.696 0.605 0.651 0.615

Table 2: Performance of our MMVAE model and variants on the test set.

For sub-task B, the optimal performance in F1 is
0.634, which is achieved by applying batch normal-
ization layers after each linear layer in the encoders
and decoders, and adding one more linear layer to
the text encoder in the VAE.

Our MMVAE’s best performance on sub-task A
is significantly higher than that of the uni-modal
baselines: 22.8% higher than the text-only BERT
baseline, and 16.2% higher than the image-only
ResNet-50 baseline. This confirms that our pro-
posed model has effectively learned from both tex-
tual and visual features.

Our constructed image-only CNN-based VAE
produces the least F1 score, probably because CNN
layers are less effective in capturing complex se-
mantic information contained in meme images.

6.3 Text-Based Error Analysis

We observe that on our randomly selected vali-
dation set (10% of memes from the training set),
MMVAE obtains nearly 0.87 as F1 score on sub-
task A. But on the test set, we see a 16.7% perfor-
mance drop. Thus, there is a large gap between our
model’s performance on the validation set and the
test set. We speculate that multiple factors could
cause the misclassifications, for instance, similari-
ties between images that are associated with differ-
ent text. For simplicity, here we only investigate the
impact of hateful text on the classification results.
We delay further investigations to future work.

To start, we compute the confusion matrix of
our best model: MMVAE+dropout=0.2, which is dis-
played in Figure 4. There are 500 misogynous

memes and 500 non-misogynous memes in the test
set. As a result, the number of false negative (56) is
much lower compared to the false positives (214).
Our model correctly classifies 88.8% of misogy-
nous memes yet only 57.2% of non-misogynous
memes.

Figure 4: Confusion matrix of MMVAE+dropout=0.2’s pre-
diction.

We conjecture that issues with performance may
be driven by the nature of hateful text. To analyze
this, we calculate the hateful scores on the memes’
text using the sentiment analysis toolkit in (Pérez
et al., 2021). Figure 5 presents boxplots showing
the scores. We observe that for true positives (TP)
and false negatives (FN), the hateful score distribu-
tions are similar, although the former’s 2nd quar-
tile is much higher. In contrast, we find that true
negatives (TN) contain less hateful text in memes
compared to false positives (FP), and the mean
score value is significantly different. Apparently,
non-misogynous memes tend to have lower hateful
scores for their text. Based on our analysis, we
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infer that our model is more confident in assign-
ing the correct non-misogynous label to a meme
with less hateful text content. Yet, when assigning
misogynous labels (although FNs have comparably
lower hateful scores), our model is less accurate.
As such, we cannot tell the decision boundary be-
tween FN and TP by simply looking at the hateful
messages contained in meme’s text.

Figure 5: Boxplots of hateful scores on true positives
(TP), false negatives (FN), true negatives (TN) and false
positives (FP). Green triangle indicates the mean value
of the given class. Blue and pink respectively refer
to misogynous and non-misogynous memes in ground-
truth.

Manual inspection on FPs suggests that the mis-
classification is potentially driven by several differ-
ent types of meme. The misogynous text is crossed
out in the left meme of Figure 6, but it’s still in-
cluded in the text transcription, which can be con-
fusing for the classifier. Similarly, although the
other meme in Figure 6 is not misogynous, it is
related to women. We suspect that the presence
of certain words associated with femininity e.g.
woman, girl, is a another determinate in the pre-
diction. We will test this hypothesis in our future
work.

(a) Hateful score: 0.017 (b) Hateful score: 0.086

Figure 6: Two examples of FPs, i.e. the ground-truth
labels are non-misogynous while the predicted labels
are misogynous.

7 Related Work

The misogynous meme detection task is novel,
but has similarities to other more general hate-
ful meme detection tasks. Related datasets has
been released on a number of shared hateful
meme detection/classification tasks (Kiela et al.,
2020; Mostafazadeh Davani et al., 2021). Most
of the prize-winning models adopted visual-and-
linguistic pre-trained models. Velioglu and Rose
(2020) utilized pre-trained VisualBERT (Li et al.,
2019b) to encode the meme image regions and cap-
tion all together. Sharif et al. (2021) and Zia et al.
(2021) leveraged visual and textual pre-trained
models to encode the meme image and the embed-
ded text respectively, and then learned multi-modal
co-representation through vector concatenation. In-
stead of concatenating the vectors, Pramanick et al.
(2021) applied self-attention to learn intra-modality
semantic alignments. Lippe et al. (2021) used an
ensemble of existing multi-modal pre-trained mod-
els based on UNITER (Chen et al., 2020). Zhu
(2020) showed that directly applying state-of-the-
art multi-modal models on hateful meme classifi-
cation won’t get the optimal performance. They
used various data pre-processing approaches to get
sufficient features, e.g. entity tags, as additional
inputs to the pre-trained models. Note, there have
also been studies of misogyny in uni-modal plat-
forms (Guest et al., 2021; Zeinert et al., 2021; Jiang
et al., 2022).

Our work differs from the above. Many of these
previous works directly leverage uni-modal em-
beddings produced by pre-trained models. They
then build a relatively simple model afterwards, of
which the learnt multi-modal features are not in-
tegrated. In contrast, we strive to overcome this
limitation via the co-representation of both textual
and image modalities. Moreover, we differ in that
we are focusing on misogynous meme detection,
rather than the broader topic of hateful meme de-
tection.

8 Conclusion

The spread of hateful memes targeting certain
groups has become an important problem on so-
cial media platforms. To mitigate the negative
consequences brought by misogynous memes, we
propose a Multi-modal Multi-task Variational Au-
toEncoder (VAE) to identify them and assign them
more fine-grained labels. Our model consists of
three main components: the Image/Text Embed-
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ding Module, the Variational AutoEncoder Mod-
ule, and the Multi-Task Learning Module. Our
model’s performance outperforms the state-of-the-
art unimodal baselines by 22.8% and 16.2%. It
effectively learns the co-representation of visual
and textual features, and is jointly trained on multi-
ple downstream classification tasks. In our future
work, we plan to integrate attention mechanism
into our model and carry out more comprehensive
statistical analysis on model’s results.
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Abstract

Women are influential online, especially in
image-based social media such as Twitter and
Instagram. However, many in the network en-
vironment contain gender discrimination and
aggressive information, which magnify gen-
der stereotypes and gender inequality. There-
fore, the filtering of illegal content such as gen-
der discrimination is essential to maintain a
healthy social network environment. In this
paper, we describe the system developed by
our team for SemEval-2022 Task 5: Multime-
dia Automatic Misogyny Identification. More
specifically, we introduce two novel systems to
analyze these posts: a multimodal multi-task
learning architecture that combines Bertweet
for text encoding with ResNet-18 (He et al.,
2016) for image representation, and a single-
flow transformer structure which combines text
embeddings from BERT-Embeddings and im-
age embeddings from several different modules
such as EfficientNet (Tan and Le, 2019) and
ResNet (He et al., 2016). In this manner, we
show that the information behind them can be
properly revealed. Our approach achieves good
performance on each of the two subtasks of the
current competition, ranking 12th for Subtask
A (0.746 macro F1-score), 10th for Subtask B
(0.706 macro F1-score) while exceeding the
official baseline results by high margins.

1 Introduction

Women are influential online, especially in image-
based social media such as Twitter and Instagram
: 78 percent of women use social media mul-
tiple times a day, compared with 65 percent of
men.(Elisabetta Fersini) However, although the In-
ternet has opened new opportunities for women,
systematic offline inequality and discrimination are
replicated in cyberspace in the form of offensive
content against them. The popular communication
tool in social media platforms is MEME. Memetics
is essentially an image, which is characterized by
the content of the image and the poster cover text

introduced by human beings. Its main goal is fun
or irony. Although most of them were created for a
joke, in a very short period of time, people began
to use them as a form of hatred against women,
and then magnified gender stereotypes and gender
inequality. Women are exposed to gender discrimi-
nation and aggressive information in the network
environment. Therefore, the filtering of illegal con-
tent such as gender discrimination is essential to
maintain a healthy social network environment.

In this paper, we describe the system developed
by our team for SemEval-2022 Task 5: Multimedia
Automatic Misogyny Identification. More specifi-
cally, we introduce two novel systems to analyze
these posts: a multimodal multi-task learning ar-
chitecture that combines Bertweet (Nguyen et al.,
2020) for text encoding with ResNet-18 (He et al.,
2016) for image representation, and a single-flow
transformer structure which combines text embed-
dings from BERT-Embeddings and image embed-
dings from several different modules such as Effi-
cientNet (Tan and Le, 2019) and ResNet (He et al.,
2016).

2 Related Work

Language Model Pre-training. The MLM-based
pre-training method used in BERT (Devlin et al.,
2019) opens up the pre-training paradigm of
language model based on Transformer structure.
RoBERTa (Liu et al., 2020) carefully measured the
influence of key hyperparameters and training data
size, and further enhanced the effect. SpanBERT
(Joshi et al., 2020) extends BERT by masking con-
tinuous random spans rather than random mark-
ers, and trains the span boundary representation
to predict the whole content of the shielded span
without relying on a single marker representation.
MacBERT (Cui et al., 2020) improved RoBERTa
in several aspects, especially using MLM as the
correction masking strategy (Mac). BERTweet
(Nguyen et al., 2020) is the first large-scale lan-
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guage model for English Tweets and produced bet-
ter performance results than the previous state-of-
the-art models on three Tweet NLP tasks: Part-of-
speech tagging, Named-entity recognition and text
classification.

Visual and Language Multimodal Learning.
Some studies explored cross-modal transmission
between images and text. Some ideas are related
to cross-model representation learning (Aytar et al.,
2017; Ngiam et al., 2011), aiming to generate repre-
sentations that effectively correlate different sensor
modes. Recently, several ideas have been proposed
to focus on the transformer backbone by improv-
ing the pre-training strategy rather than optimizing
the backbone structure. VideoBERT (Sun et al.,
2019) learns the bidirectional joint distribution of
visual and linguistic tag sequences, which are re-
spectively from the vector quantization of frame
data and the ready-made speech recognition output.
VisualBERT (Li et al., 2019) uses MLM to pre-
train specific tasks, which uses the same type ID
for language & visual input. VL-BERT (Su et al.,
2020) uses a simple Transformer model as the back-
bone, and uses a mixture of region of interest ( ROI
) and words in the image as input.

In addition, some ideas have become focused
on improving the transformer backbone network.
Unicoder-VL (Li et al., 2020) uses three pre-
training tasks, including mask language modeling
(MLM), mask object classification (MOC) and vi-
sual language matching (VLM), to learn the joint
representation of vision and language. ViLBERT
(Lu et al., 2019) extends the BERT architecture to
a multi-modal dual-flow model and processes it
in separate flows interacting through the common
attention converter layer

3 Task Description

The proposed task, i.e. Multimedia Automatic
Misogyny Identification (MAMI) consists in the
identification of misogynous memes, taking advan-
tage of both text and images available as source
of information. The task will be organized around
two main sub-tasks:

• Sub-task A: a basic task about misogynous
meme identification, where a meme should
be categorized either as misogynous or not
misogynous;

• Sub-task B: an advanced task, where the type
of misogyny should be recognized among po-

tential overlapping categories such as stereo-
type, shaming, objectification and violence.

4 Methodology

For this task, we have tried a variety of modeling
and optimization methods, which are described in
detail as follows.

4.1 Model design

We designed two kinds of multimodal model
schemes with different architectures : transformer
single-flow structure and double-tower structure.

Transformer Single-flow Structure. The
model of this structure only contains a set of longi-
tudinal stacks of transformer modules. For image
and text features, after their respective processing
and stitching, together as the input of the model, so
called single-stream transformer model. The advan-
tage of this model is that it can express image and
text cross-modal features in the same vector space,
which is equivalent to mapping multi-modal fea-
tures to single-modal vector representation space.
The prediction effect of single-flow model is very
dependent on pre-training. This work uses Visu-
alBERT (Li et al., 2019) pretraining weights on
COCO-VQA tasks. The text features directly use
BERT-base-uncased (Devlin et al., 2019) tokenizer
for word segmentation and post-vectorization. The
image features are vectorized by ResNet-152 (He
et al., 2016), EfficientNet-b2, EfficientNet-b4 and
EfficientNet-b7 models (Tan and Le, 2019) to im-
prove the richness of image feature expression. Fi-
nally, the image and the text vector are spliced
together as the input of the model.

Double-tower Structure. Different from single-
flow models, the double-tower model is actually
two parallel models. For images and text, each
builds a model structure and adds MLP to the out-
put side to parallel them for joint training. Al-
though the twin-tower structure cannot retain a
large amount of prior knowledge through pre-
training as the single-flow model does, nor can
it fully excavate the cross-modal interaction char-
acteristics as the twin-flow model does, the twin-
tower structure is less dependent on the amount of
training sample data, and is more flexible. Com-
pared with the single-flow and double-flow trans-
former structures, it is more suitable for this task.
Due to less training data, in order to avoid overfit-
ting, we choose a relatively simple network struc-
ture, image side feature representation model using
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Figure 1: An overview of the two model structures. Transformer single-flow structure on the left and double-tower
structure on the right.

ResNet-18 (He et al., 2016), text side feature repre-
sentation model using Bertweet.

Model Ensemble. In order to make full use
of the differences between models to achieve the
best prediction effect, we use the weighted average
method to obtain the final prediction results. The
method is as follows:

Ypred = α · Y1 + (1− α) · Y2 (1)

Where Ypred is the final prediction probability, Y1
is the single flow model prediction, Y2 is the double
tower model prediction, α = 0.1.

4.2 Training Framework
As shown in Fig 2, we use a three-stage training
framework consists of multi-task binary classifica-
tion for sub-task B, single-task binary classification
for sub-task A and post-processing.

Stage1: Multi-task binary classification. Sub-
task A is a single-task binary classification problem,
and sub-Task B is a multi-task binary classifica-
tion problem. We tried to define sub-Task B as a
single-task binary classification, so that the amount
of data becomes five times that of multi-task bi-
nary classification to expand the training samples.
However, the experimental results show that the
effect is basically the same as that of multi-task

binary classification. Therefore, we first define a
multi-task binary task and obtain the respective pre-
diction probabilities of the model for misogynous,
stereotype, shaming, objectification and violence.

Stage2: Single-task binary classification. For
sub-task A, we use external data from the memo-
tion task (Sharma et al., 2020; Mem) for the misog-
ynous binary classification. Although these data
predict different targets, they are homologous to
the task data. Through the analysis, it is found
that there is almost no gender discrimination in the
samples of ’Not Offensive’ and ’Slight Offensive’.
Therefore, this part of the external data is used to
expand the training set, which greatly improves the
prediction results of sub-task A. The reason why
external data is not used in multi-task stage is that
the proportion of positive samples in ’shaming’,
’stereotype’, ’objectification’ and ’violence’ tasks
is very low, and increasing the number of negative
samples will increase the prediction difficulty of
these fields, so only external data is used in this
stage.

Stage3: Post-processing. Through analysis, it
is found that when ’shaming’, ’stereotype’, ’ob-
jectification’ and ’violence’ are positive samples,
’misogynous’ must be positive samples. Due to the
higher F1 value predicted by ’misogynous’ in the
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Figure 2: An overview of the proposed three-stage training framework. Firstly, we only use the training data to
train the multi-task model and obtain the prediction probability of each task. Then, we use the external data to
expand the training data to train the single task model and obtain the probability of ’misogynous’. Finally, we use
the probability of ’misogynous’ to post-process other tasks and obtain the final prediction results.

second stage, the prediction results of ’shaming’,
’stereotype’, ’objectification’ and ’violence’ are cor-
rected by the prediction results of ’misogynous’ in
the second stage. We modify the prediction results
of samples ’shaming’, ’stereotype’, ’objectification’
and ’violence’ with ’misogynous’ prediction 0 to 0,
which will improve the prediction results.

5 Experiments

This section is organized as follows. First we intro-
duce the MAMI dataset (Elisabetta Fersini), then
we introduce the experimental setup in detail. Fi-
nally, we show the effectiveness of our proposed
method on MAMI datasets.

5.1 Datasets Analysis

The number of samples in the dataset is shown
in table 1. Sub-task A uses external data, so the
training data contains 10000 original samples and
14820 external data samples, and the predicted data
contains 1000 samples; sub-task B does not use
external data, so the training samples contain only
10000 original items and the predicted data also
contains 1000 samples.

In the original 10000 training samples, there are

Dataset Sub-task A Sub-task B
train 10000 10000
external-train 14820 0
test 1000 1000

Table 1: Datasets statistics.

Category Samples Percentage
misogynous 5000 50.0%
shaming 1274 12.7%
stereotype 2810 28.1%
objectification 2202 22.0%
violence 953 9.5%

Table 2: Datasets analysis.

five prediction labels, ’misogynous’, ’shaming’,
’stereotype’, ’objectification’ and ’violence’. Their
respective number and proportion of positive sam-
ples are shown in table 2.

5.2 Experiment Settings
We implement our model using Pytorch. Using a
workstation with an Intel Xeon processor, 64GB
of RAM and a Nvidia P40 GPU for training. We
apply AdamW as an optimization algorithm with

714



10% steps of warmup. For the hyperparameters,
we set epochs=10, batch size=64. We also set the
earlystop patience epoch as 3. We resize all images
to 256 × 256 RGB pixels, and set the maximum
cut length of text to 64. For the single-flow model,
learning rate is set to 5 × 10−5. For the double-
tower model, we use the sub-regional learning rate
strategy. The learning rate of text module is 5 ×
10−5, the learning rate of image module is 1 ×
10−4, and the learning rate of combined multi-layer
percetron (MLP) module is 1 × 10−3. We used
multi-label stratified k-fold method to split training
data into 5 folds.

Augmentation method used in image preprocess-
ing. In the field of computer vision, because the
image data have high dimensional characteristics,
it is necessary to expand the training data, and
usually do so. We use the following procedures
to expand. In the training phase, we use (i) ran-
dom resizing and cropping, (ii) random horizontal
flipping, and (iii) random vertical flipping. In the
inference phase, we use “five-crop inference” for
robust prediction. This is essentially an average
ensemble of the predictions on augmented images.

5.3 Experimental Results

Table 3 contains the results obtained from running
the experiments. It can be seen that the predic-
tion effect of single-flow model is worse than that
of double-tower model, because the prediction ef-
fect of single-flow model is very dependent on
pre-training. For the pre-training of single-stream
model, most of the current mainstream models such
as VisualBERT, UNITER (Chen et al., 2019) and
so on are based on ImageNet (Deng et al., 2009),
COCO (Lin et al., 2014) and other data sets for
graph-text matching pre-training. There are some
differences between these data sets and the scene
of this task : (i) Twitter images contain text, and
it is essential for emotional tendency expression,
while ImageNet, COCO and other data sets contain
almost no text ; (ii) The text of ImageNet, COCO
and other data sets is the semantic expression of the
image, and the text does not appear directly in the
image, but the text information in the twitter sample
is the text extracted from the image by OCR, which
can be said to be a subset of image features from
the feature information. The pre-training method
of image-text matching is not very suitable. These
reasons limit the prediction effect of the single-flow
transformer structure model to a certain extent. Al-

Method Sub-task A Sub-task B
organizers baseline 0.650 0.621
transformer single-flow 0.658 0.685
double-tower 0.684 0.706
model ensemble 0.682 0.707
post-processing 0.746 0.708

Table 3: Results on MAMI dataset.

though compared with baseline, the potential of the
model is still quite large. Sufficient training data
and appropriate pre-training task design can further
significantly improve the prediction results.In the
single model, the twin-tower model has the best
prediction results. Precisely because a particular
module of the model contains only prior knowledge
of a particular modality, it is more adaptable to dif-
ferent scenes. The cross-modal features are only
learned through the current task, and do not depend
on the prior knowledge. When the training data
are not sufficient for pre-training, this modeling
method can achieve the best results.

Benefit from the huge difference in the feature
representation of the two models, the difference of
prediction results between single-flow model and
double-tower model is very large, and better pre-
diction results can be obtained by simple weighted
average method. Finally, the model obtained by
subtask A is used to post-process other prediction
results, and the final best result is obtained.

5.4 Error Analysis

As shown in Table 4 and Fig 3, we select some
typical samples that can reflect the performance
of the methods for analysis. In Table 4, the first
two columns are the file name and the text recog-
nized in the image. SF, DT, ME and PP represent
the prediction results of transformer single-flow,
double-tower, model ensemble and post-processing
methods in Table 2 on the misogyny task, respec-
tively.

We can see that the transformer single-flow
method is more dependent on text information than
image. For some non-misogyny images, due to
some gender-biased words like "she", "cute girl"
and "sex", the transformer single-stream method
mispredicts misogyny images, and the double-
tower method can correctly distinguish them. For
some misogyny images, the single-flow method
fails to predict correctly because there is no misog-
yny tendency in the text.
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file name Text Transcription SF DT ME PP
Misidentified as misogyny under the influence of gender-biased words

16233.jpg SHE WONT CATCH YOU CHEATING ingtip.com IF YOU DONT CHEAT Opening
Men Tut-Thur Fri-Sal Sunday 1 0 0 0

15888.jpg when you ask a really cute girl out and she says yes 1 0 0 0
15458.jpg Me letting my girlfriend know how incredibly beautiful she is You’re breathtaking! 1 0 0 0
15567.jpg Girls on the stairs Boys on the stairs 1 0 0 0

15402.jpg GETS INVITED TO FIRST SEX PARTY 36 REALIZES IT FOR A BABY GENDER
REVEAL meme memegenerator.net 1 0 0 0

Misogyny samples that were not identified due to the absence of misogyny words in the text

16164.jpg TSBURGH Bat TEELERS DOTBALL $65 A WILD SNORLAX APPEARS!! THE
ULTRA BALLS Throw Them 0 1 1 1

15759.jpg IWILL... SCRATCH YOU WITH EVERYTHING I’VE GOT !! 0 1 1 1

15729.jpg WHEN IT’S 100 DEGREES @MAKEUPLOLZ BUT YOU STILL TRYNA APPLY
FOUNDATION 0 1 1 1

15036.jpg FRIEND ZONE LEVEL: INFINITY Virgin lvl over 9000 0 1 1 1
15963.jpg ONE TEQUILA, TWO TEQUILA, THREE TEQUILA... FLOOR 0 1 1 1
Indistinguishable misogyny samples that are difficult to identify only based on image or text
17013.jpg 1st year 3rd year 2nd year Final year 0 1 0 1

16085.jpg When you leave her house after 2 hours of just kissing When you leave her house after 2
hours of just kissing banana in ... 0 0 0 1

15178.jpg When you’ve been kissing for a half hour... Via MehsilyPre h.com After 30 mins of
nonstop make out session 0 0 0 1

15999.jpg When ur cleaning dishes and a chunk of food touches your hand @MARVY 1 0 0 1
15528.jpg CABE THIS IS WHAT ALL MEN NEED TO SURVIVE Meme Center 0 1 0 1
Misidentified as a misogyny sample because of humor

15952.jpg HEY BABE CAN YOU MAKE ME A SANDWICH? Hey babe can you make me a
sandwich? I should have bought the boat... 1 1 1 0

15502.jpg JUST BOUGHT A NEW GUITAR THEN SHE SAID: ARE YOU GOING TO SELL
THE OLD ONE? hengenerator.net 1 1 1 0

15795.jpg GIRLFRIEND OFFERS TO WATCH FOOTBALL WITH YOU COMMENTS ON THE
TEAM’S UGLY UNIFORMS 1 1 1 0

15460.jpg IT’S A BIT COLD OUT BETTER PUT A HAT ON 1 1 1 0
16146.jpg FOR MY NEXT TRICK ONEED YOUR FAVORITE SLIPPERS 0 1 1 0

Table 4: Error analysis of typical samples.

Figure 3: Error analysis of typical samples.
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Many samples of misogyny are very obscure and
do not tend to discriminate either from text or from
images alone, but there is a combination of discrim-
inatory hints that post-processing method is more
capable of detecting such samples. At the same
time, the post-processing method also calibrated
some samples that were mistakenly identified as
misogyny due to humor expression.

6 Conclusions and Future Works

In this paper, we describe the system developed by
our team for SemEval-2022 Task 5: Multimedia
Automatic Misogyny Identification. More specifi-
cally, we introduce two novel systems to analyze
these posts: a multimodal multi-task learning ar-
chitecture that combines Bertweet for text encod-
ing with ResNet-18 (He et al., 2016) for image
representation, and a single-flow transformer struc-
ture which combines text embeddings from BERT-
Embeddings and image embeddings from several
different modules such as EfficientNet (Tan and Le,
2019) and ResNet (He et al., 2016).In addition, we
also use the model fusion and the post-processing
method of prediction results, and improve the pre-
diction results.

In the future, we will try to get more unlabeled
sample data to pre-train the transformer single-flow
method more fully and look forward to getting
better multimodal methods in Twitter scenarios.
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Abstract

This paper describes the participation of the
University of Hildesheim at the SemEval task
5. The task deals with Multimedia Auto-
matic Misogyny Identification (MAMI). Hate-
ful memes need to be detected within a data
collection. For this task, we implemented six
models for text and image analysis and tested
the effectiveness of their combinations. A fu-
sion system implements a multi-modal trans-
former to integrate the embeddings of these
models. The best performing models included
BERT for the text of the meme, manually de-
rived associations for words in the memes and
a Faster R-CNN network for the image. We
evaluated the performance of our approach
also with the data of the Facebook Hateful
Memes challenge in order to analyze the gen-
eralisation capabilities of the approach.

1 Introduction

Hate in Social Media continues to be a societal
problem. The identification of problematic content
based on text has made progress, but the perfor-
mance is still not satisfying (MacAvaney et al.,
2019; Modha et al., 2020b). Visual content and
multi-modal construction on semantics is a reality
in social media today (Dancygier and Vandelanotte,
2017). Systems for realistic scenarios in social me-
dia platforms (e.g. (Modha et al., 2020a) require
image processing (Sai et al., 2022).

The Multimedia Automatic Misogyny Identifi-
cation (MAMI) Challenge (SemEval-2022 task 5)
is addressing this problem (Fersini et al., 2022).
MAMI provides a testbed for algorithms which are
capable of processing text and image of memes
in one system. The experiments described in this
paper measure the effectiveness of different models
and their combination into a fusion system. We
implemented a basic text classifier based on BERT
and an image processing system based on the Faster
R-CNN network. In addition, the generalization

capabilities between collections are tested. We con-
ducted the experiments with the MAMI dataset as
well as with the dataset provided by the Facebook
Memes Challenge (Kiela et al., 2021).

2 Previous Work

The detection of Hate Speech can be considered
part of Natural Language Processing. Current re-
search is driven by benchmark data and deep learn-
ing algorithms have shown to provide best perfor-
mance.

Data sets such as Offensive Language Detec-
tion in Spanish Variants (MeOffendEs@IberLEF
2021) (Plaza-del Arco et al., 2021) and DEtection
of TOXicity in comments In Spanish (DETOXIS)
(Gonzalo et al., 2021) focus on general concepts
of offensive content while other data sets are ded-
icated to more specific topics than general offen-
sive content. The SemEval 2019 Task-5 (Basile
et al., 2019) focused on the detection of hate speech
against immigrants and women in Spanish and En-
glish messages extracted from Twitter. Besides the
main binary task to detect hate speech, there was
a fine grained task to further classify into aggres-
sive attitude and the target harassed, to distinguish
whether a message contains incitement against an
individual rather than a group. The best perform-
ing system (Indurthi et al., 2019) trained a SVM
model with a RBF kernel using Google’s Universal
Sentence Encoder (Cer et al., 2018) as features.

The shared task HASOC (Modha et al., 2019)
created a large multilingual dataset for hate Speech
identification. The first HASOC track focused on
the identification of Hate Speech in Indo-European
languages (Hindi, English and German). HASOC
introduced a binary classification into problematic
content and other content.

While most data sets include English data, sev-
eral recent shared tasks have created new collec-
tions for other languages such as Greek (Pitenis
et al., 2020) and Turkish (Çöltekin, 2020). Spe-
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cific forms of Hate Speech based on the targeted
groups have also been analyzed automatically. For
this work, the detection of misogyny is especially
relevant. In the Automatic Misogyny Identifica-
tion (AMI) task at Evalita, a Twitter collection
of misogynous messages was assembled. Over-
all, 10.000 tweets were available and classified into
misogynous and non-misogynous tweets. They
were also further analyzed into more fine-grained
classes(Fersini et al., 2018). The second edition
of the Automatic Misogyny Identification (AMI)
task in 2020 followed up on binary classification.
It also included the prediction of aggressiveness
as a binary concept for the misogynous tweets and
provided a subtask for the analysis of bias in the
models (Fersini et al., 2020). Multi-modal process-
ing of text and image simultaneously has made
great progress recently. There are approaches for
late fusion which first analyze image and text and
combine the representations. Early fusion systems
process both text and image in parallel in order to
benefit from the dependencies. Systems like Im-
ageBERT (Qi et al., 2020) and Uniter (Chen et al.,
2020) have achieved promising results. Uniter re-
lates text and image parts to one another and tries
to capture their interaction.

3 Multimedia Datasets

The data for the SemEval-2022 task 5 (Multime-
dia Automatic Misogyny Identification, MAMI)
is described in the overview paper (Fersini et al.,
2022). The system presented here is aiming at a
binary classification. It did not use the fine-grained
classification on kinds of misogyny. In addition
and in order to observe how well the multimodal
system generalizes over similar datasets from simi-
lar tasks, we also processed the Facebook Hateful
Meme Challenge (HM) dataset (Kiela et al., 2021).
This dataset provides examples for hateful memes
in general and includes also other kinds of problem-
atic content than misogyny. However, because the
tasks are related a system might also work across
these two datasets. Table 1 gives an overview over
the two sets. Another multimodal dataset is avail-
able for English. Some 700 memes related to the
presidential election in the USA in 2016 were col-
lected and annotated (Suryawanshi et al., 2020).

4 System Description

Our system includes six single models. They were
all tested as classifiers and we explored several

Figure 1: Transformer encoding of meme texts

Figure 2: Examples for associations from the knowl-
edge graph

combinations in the experiments.

4.1 Text classification with BERT

The first system is processing the text sequence
associated with the meme (Devlin et al., 2019). We
used the the model bert-base-uncased 1. It creates
a transformer based presentation of the text. The
principle of BERT is illustrated in Figure 1.

4.2 Associations from Text

The association system includes semantic knowl-
edge to enrich the representation. The assumption
is that memes might often use words in another
meaning than the obvious one. Looking for associ-
ations could help to enrich the representation. The
associations might also be misleading. The associ-
ations were manually assembled into a knowledge
graph. They were extracted after looking at many
of the examples from the dataset and observing the
intended meaning of many tweets.

For all words in the text sequence, the system
looks for associated words in the knowledge graph.
For example, the token Obama is related to demo-
crat and to illegal (see figure 2). These relations
represent world knowledge and prejudice which
can be helpful for understanding the memes. A
similar approach to incorporate knowledge graphs
in classification systems has been taken by Liu et.
al. (Liu et al., 2020). The approach is illustrated in
Figure 3.

1https://huggingface.co/bert-base-uncased
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Feature HM MAMI
Number of memes 9.000 10.000
Number of hateful memes 3.300 5.000
Characters per text meme 62 101
Recognized objects per meme 2 2
Memes with recognized objects 7856 7777
Recognized associations per meme 2 2
Memes with recognized associations 3968 5419

Table 1: Dataset Statistics

Figure 3: Graph encoding

The tokens for the associations are extracted
from the BERT model and given the position en-
coding of the word from the original text. All as-
sociations found are used. If more associations are
found than the sequence length, then the last ones
are cut off.

4.3 Sentiment Analysis in Text

In the approach presented here, sentiment analysis
is used on the text of the meme. The rationale is
that highly emotional texts could indicate a ten-
dency toward hatefulness. Overall, six values are
collected. The system VADER suggested by Hutto
2 is used to obtain the first two values for the overall
sentiment and intensity (Hutto and Gilbert, 2014).
The third and fourth value record the maximum and
minimum values for sentiment for all tokens. The
method of Loria 3 was used to obtain a measure of
subjectivity and of sentiment.

2https://github.com/cjhutto/vaderSentiment
3https://textblob.readthedocs.io/

Figure 4: Object Detection for one meme

4.4 Faster R-CNN-Network

The first visual feature classifier is built with an
object recognition system. It uses a Faster R-CNN-
Network (Ren et al., 2017) as available online 4.
This system identifies interesting regions which
contain much information. The visual features of
these regions and their location embedding are fed
into a ResNet system. Only the N most likely ob-
jects are used. Layer normalization is applied to
obtain a final embedding. An example for a result
of the object recognition for the dataset is given in
figure 4.

4.5 Tile Approach for Image Analysis

A tile approach is splitting the image into 196 rect-
angular tiles of equal size. These are tiles are an-
alyzed by CNNs and processed as suggested by
(Dosovitskiy et al., 2021) and (Lin et al., 2021).
The resulting feature vector is associated with a

4https://pytorch.org/vision/stable/models.html,
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number indicating the position of the tile.
The ResNet architecture is used to obtain an em-

bedding of the entire image. The output embedding
is split in two parts of the same size which are used
for further processing (Huang et al., 2020).

5 Experiments

For combining the single classifiers, they are fed
into a fusion system. For that processing step, a
transformer is used. After a layer normalization
(Ba et al., 2016), all embedding values are con-
catenated and fed into a transformer. A sigmoid
function is used for the final prediction. First, the
models were tested individually. Then, combina-
tions were tested. For finding the optimal fusion
of the classifiers above, we applied Sequential For-
ward Selection (SFS) and Sequential Backward
Elimination (SBE). For all experiments, the models
were fully trained. Learning rates were adapted for
each underlying model so that models converging
faster did not overfit. Models with larger embed-
dings were assigned a higher dropout in the fusion
system.

For SFS, all systems were tested individually
first and the best system is used as the first com-
ponent of the combined system. Afterwards, SFS
iteratively adds further components. In each itera-
tion, the current version of the combined system is
extended by each individual system that is not part
of the combined system yet. The combination that
leads to the best improvement is taken as the new
best combination. SFS converges, when no further
improvement can be accomplished. SBE works
similar to SFS but starts with a combination of all
systems and iteratively detaches individual systems
from the combined system. The submitted result
was assigned the team name milan_kalkenings.

6 Results and Discussion

The main results refer to the training on the two
datasets. Furthermore, we used the two datasets
for training and testing respectively. These cross-
dataset experiments are reported in the subsequent
section.

6.1 Experiments within Datasets

First, the classification by each system individually
was tested. As Table 2 shows, the best performance
was given by the text classification system. It was
followed by the associations system which is an-
other system based on text analysis.

System AUC-ROC
Text 0.6617
Sentiment 0.5706
Associations 0.6588
Image 0.5958
Tiles 0.5633
Object detection 0.5607

Table 2: Results for each system

The SFS selection method for the SemEval task
5 (MAMI) led to the following optimal combina-
tion: text, objects and associations (0.8509 AUC-
ROC score). The SFS selection method for HM
led to the following optimal combination: text, sen-
timent, associations and tiles (0.7136 AUC-ROC
score). SBE led to the best performance for MAMI
with the following combination: text, sentiment,
associations and tiles (0.7136 AUC-ROC score).
For HM, SBE gave best performance for this set
of featues: text, associations and objects (0.8556
AUC-ROC score). The fusion led to improved
scores as compared to processing one single modal-
ity. It is obvious, that text based metrics are more
often in the optimal set.

Selection
method

Systems AUC-
ROC

SFS text, object de-
tection and as-
sociations

0.8509

SBE text, sentiment,
associations
and tiles

0.7136

Table 3: Results for fusion systems on the MAMI
dataset

After the optimal fusion of single systems was
determined, we obtained the performance on the
test data. Table 4 reports the experiments for the
optimal combination as well as for late fusion.

The HM dataset includes many benign con-
founders which either modify the text of a meme to

Experiment AUC-ROC Recall Precision
HM 0.7146 0.6134 0.5334
HMlate 0.7069 0.3131 0.6712
MAMI 0.8421 0.8217 0.7261
MAMIlate 0.846 0.8529 0.7321

Table 4: Results of experiments with the two datasets
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change its class or use the text of a hateful meme in
another image. These were introduced to make the
task more challenging (Kiela et al., 2021). Leav-
ing out these duplicates changes the performance
drastically. Leaving out the memes with identical
text increases the performance by some 10%. On
the contrary, leaving out the memes with identical
images decreases the performance by some 20%.
This shows again the impact of the text for this
task.

6.2 Experiments Across Datasets
Across datasets, we first trained a classifier for dis-
tinguishing between the two datasets. That turned
out to be fairly easy for the system (0.94 AUC-
ROC). It seems that there are inherent features in-
serted during data creation which make that distinc-
tion easy for systems. Pretraining with the other
dataset does not lead to a better performance over-
all. Only for the MAMI dataset, a performance
close to the best overall performance was achieved.

7 Conclusion

The experiments have shown that the identification
of hateful memes is still a challenging problem. In
our experiments, text features are the most bene-
ficial ones for the system. The influence of asso-
ciations in particular needs to be further analyzed.
First analysis seems to suggest that the number of
found associations has a correlation with the perfor-
mance for the problematic class. The performance
across the two datasets is not optimal. Further
datasets are needed to analyze the generalization
across different collections. In future work, we in-
tend to analyze the impact of each system for the
fusion in more detail. We also plan to experiment
whether training with a misogyny text dataset can
be beneficial for a multimodal system.
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Abstract

Everyday more users are using memes on so-
cial media platforms to convey a message with
text and image combined. Although there are
many fun and harmless memes being created
and posted, there are also ones that are hateful
and offensive to particular groups of people. In
this article present a novel approach based on
the CLIP (Radford et al., 2021) network to de-
tect misogynous memes and find out the types
of misogyny in that meme. We participated
in Task A and Task B of the Multimedia Au-
tomatic Misogyny Identification (MaMi) chal-
lenge (Fersini et al., 2022) and our best scores
are 0.694 and 0.681 respectively.

1 Introduction

In the past few years more and more people have
been using memes on social media platforms to
express their thoughts and sometimes their beliefs.
Although there are countless memes that are hu-
morous and fun without expressing hate towards
any certain group of people, there are also memes
that aim to attack people.

Misogynistic memes use a combination visual
and textual content to put down women and some
of them are so violent that can be triggering to
previous sexual abuse victims. That is why it would
be so useful if these instances could be identified
automatically.

One of the main challenges of this problem is
that the images of these memes come in various
forms. Also, the text on the memes adds occlusion
to the objects in the images which makes the im-
age understanding part of the problem even more
challenging.

To address these challenges, we present a novel
multi-modal classification approach based on CLIP
(Radford et al., 2021) to identify misogynistic
memes and also determine which 4 subcategories
of shaming, stereotype, objectification or violence
they belong to. CLIP is a multi-modal network

trained for object detection. We use a multi-
label classification method and detect misogynistic
memes and all the subcategories using one single
pipeline.

2 Related Work

There have been numerous researches conducted
to solve hateful speech detection online in the
past decade. Many of these approaches such as
(Samghabadi et al., 2020) and (Cao et al., 2020)
focus on only one modality which is text. More
recently, researchers such as (Gomez et al., 2020)
gathered multi-modal data-sets to be able to detect
those instances of hate that go undetected by using
only textual context.

Memes are also a form of multi-modal data that
are widely used to indirectly communicate some
meaning online. For the past few years, researchers
have tried to solve the problem of hateful meme
detection in various ways. In (Suryawanshi et al.,
2020) a small data-set was gathered and an ap-
proach based on VGG16 (Simonyan and Zisser-
man, 2014) neural network was proposed. In 2020
Facebook gathered a the Hateful Meme data-set
with 10,000 instances which was part of a Hateful
Meme Detection challenge (Kiela et al., 2020). The
winner of that challenge (Zhu, 2020) used an en-
semble of visual-linguistic models such as Visual-
Bert (Li et al., 2019) and Ernie-Vil (Yu et al., 2020)
and fine-tuned them to solve the problem.

3 Proposed Method

3.1 Data Description

The Multimedia Automatic Misogyny Identifica-
tion (MaMi) data-set which was gathered for Se-
mEval Task5 challenge (Fersini et al., 2022), con-
sists of 10,000 instances for training phase and
1000 instances for test. An example meme from
this dataset is shown in Figure 1. Each instance has
5 binary labels depicting if it is misogyny, shaming,
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stereotype, objectification and violence.
It is important to note that these subcategories

are not mutually exclusive, that is more than one
label can be 1 for each instance. So we are dealing
with a multi-label classification problem.

Label Training Data Test Data
Non-Misogynous 5000 500

Misogynous 5000 500
Shaming 1274 146

Stereotype 2810 350
Objectification 2202 348

Violence 958 153

Table 1: Training and Test Data-set Distributions

The challenge (Fersini et al., 2022) has two parts,
in Task A the goal in to detect the misogynous
memes. In the second part, Task B, the goal is to
determine the type of misogyny that was present.
We participated in both parts of the challenge using
a multi-label classification scheme.

3.2 Classification Pipeline

In our proposed model, the pre-trained multi-modal
object detection network CLIP has an important
role. CLIP was initially introduced as multi-modal
way of object detection. It was trained on 400,000
million pairs of images and text. It has proven to
be much more efficient than many other state-of-
the-art object detection techniques.(Radford et al.,
2021)

We use CLIP to encode the image and text sep-
arately and concatenate the features as can be see
in Figure 2 .The main idea is that there is a non-
linear function f(XI , XT ) between the image fea-
ture space XI and text feature space XT that will
help determine if an instance belongs to each one of
the 5 categories or not. To find out the parameters
of this non-linear function we create a feed-forward
neural network and feed the concatenated features
to that. The network has 5 output nodes, each for
one of the labels.

Before feeding the image input to the CLIP im-
age encoder we had to resize the image to 224x244
with 3 channels to match the input shape require-
ments. The text was also truncated to a sequence
of length 77 to be seamlessly used with the CLIP
tokenizer.

Additionally, we use Sigmoid layer as the ac-
tivation function because in contrast to softmax,
the probabilities of each instance belonging to a

class do not have to sum up to 1 and so they can
be independent of each other. Therefore, it is more
suitable for multi-label classification. After getting
the output of the pipeline, we determine the binary
value for the predictions based on a threshold of
0.5.

3.3 Training Process
As no validation data-set was provided, we ran-
domly split the 10,000 instances into 9000 for
training and 1000 for validation purposes. We
used binary cross-entropy loss function and used
Adam optimizer for the process. The optimal hyper-
parameters were found empirically with learning
rate of 0.001, batch size of 128 and the training
was done for 10 epochs.

At the end of each training epoch, the evaluation
metrics including precision, recall and F1-score
with macro averaging was calculated on the valida-
tion data-set. If a higher F1-score was found then
the state of the model was saved as the best state.

As CLIP comes with different options for image
feature extractions, we made sure to try two differ-
ent ones, Visual Transformer (ViT) (Dosovitskiy
et al., 2020) with 32x32 patches and Residual Net-
work(He et al., 2016) with 101 layers to see if they
have an impact on the classification results.

4 Evaluation and Results

4.1 Evaluation Metrics
All the submissions to the challenge were automat-
ically evaluated by a script that was programmed
by the organizers. After the challenge was over,
the script was released and we investigated how the
F1-scores for each task was calculated.

First the confusion matrix was calculated result-
ing in M =

( tp fp
fn tn

)
. Then, as shown in Equations

1 - 7, positive precision P+, positive recall R+,
negative precision P− and negative recall R− was
calculated separately and the final F1-score is the
average of positive F1-score and negative F1-score.

P+ =
tp

tp+ fp
(1)

R+ =
tp

tp+ fn
(2)

F1Score+ =
2× (P+ ×R+)

P+ +R+
(3)

P− =
tn

tn+ fn
(4)
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Figure 1: Sample number 152 of Training data which is Misogynous and Stereotype

Figure 2: Proposed Classification Pipeline

R− =
tn

tn+ fp
(5)

F1Score− =
2× (P− ×R−)
P− +R− (6)

F1Score =
F1Score+ + F1Score−

2
(7)

4.2 Experiments and Results
We conducted multiple experiments in the evalu-
ation phase of the challenge. We tried different
architectures for the feed forward network of our
pipeline to get the best results.

In our initial experiments we had more layers
in the feed forward network and did not include
dropout layer and batch normalization. As the
challenge progressed we realized that those mod-
els lacked in generalization, so we started using a
simpler architecture and added dropout and batch
normalization to get better results. Additionally,
we tried switching the image encoder and discov-
ered that using Resnet-101 based encoder results
in much better scores, especially in Task B.

4.3 Error Analysis

As can be seen in the Table 2 our best result sig-
nificantly outperforms all the baseline provided by
the organizers. As informed by the organizers, the
baseline models are grounded upon VGG-16 model
for image feature extraction and USE model for tex-
tual feature extraction. Our best model achieves
0.694 score in Task A and 0.681 in Task B. It uses
the pre-trained Resnet101 as the image encoder and
also has 200 nodes in the hidden layer of our feed
forward network.

5 Conclusion

In this paper we demonstrated how a successful
model such as CLIP can be used to detect misog-
ynous memes. We presented a novel architecture
based on that multi-modal model and used multi-
label training. We were able to achieve good results
using this approach.
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Our Models: Image Encoder - Feed Forward Network Task A
F1-score

Task B
F1-score

ViT/32 - (1024,200,10,5) 0.678 0.497
ViT/32 - (1024,200,10,5) Dropout = 0.2 0.682 0.513
ViT/32 - (1024,200,5) Dropout = 0.2 0.681 0.629
ViT/32 - (1024,200,5) Dropout = 0.2 + Batch Norm 0.687 0.633
ViT/32 - (1024,100,5) Dropout = 0.2 + Batch Norm 0.674 0.639
ViT/32 - (1024,400,5) Dropout = 0.2 + Batch Norm 0.687 0.617
Resnet101 - (1024,200,5) Dropout = 0.2 + Batch Norm 0.694 0.681
Resnet101 - (1024,400,5) Dropout = 0.2 + Batch Norm 0.659 0.694
Resnet101 - (1024,100,5) Dropout = 0.2 + Batch Norm 0.693 0.673
Baseline Models
Baseline Image 0.639 0.0
Baseline Text 0.640 0.0
Baseline Image-Text 0.543 0.0
Baseline Flat Multi-label 0.437 0.421
Baseline Hierarchical Multi-label 0.650 0.621

Table 2: Evaluation Results
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Abstract

This paper presents our submission to task 5
( Multimedia Automatic Misogyny Identifica-
tion) of the SemEval 2022 competition. The
purpose of the task is to identify given memes
as misogynistic or not and further label the
type of misogyny involved. In this paper, we
present our approach based on language pro-
cessing tools. We embed meme texts using
GloVe embeddings and classify misogyny us-
ing BERT model. Our model obtains an F1-
score of 66.24% and 63.5% in misogyny classi-
fication and misogyny labels, respectively.

1 Introduction

SemEval 2022 task 5 (Fersini et al., 2022) is a sen-
timent analysis task aimed at memes1, divided into
two subtasks of increasing complexity. Subtask A
is misogynous meme identification, i.e., whether
a meme should be categorized either as misogy-
nous or not misogynous; subtask B, on the other
hand, is a multi-label classification problem, i.e.,
classifying what kind of misogyny is involved in
the meme. A meme is usually intended to convey a
sarcastic message, but in a short time, people have
started to use them to deliver sexist messages in
an online environment. The anonymity of the in-
ternet tends to make them more aggressive. Such
an environment amplifies the offline world’s sexual
stereotyping and gender inequality.

Meme sentiment analysis is a challenging task
as often it relies on implicit themes or knowl-
edge and trending news at the time of the cre-
ation of the meme. Meme analysis has been
of growing interest for the NLP community.
Our approach also relies on various NLP-based
tools and the code to implement the paper is
available at https://github.com/gagansh7171/IITR-
CodeBusters .

∗These two authors contributed equally.
1The term meme used in this task refers to an idea or a

message conveyed via an image and embedded text.

The rest of the paper is organized as follows. In
Section 2 we briefly describe the details regard-
ing the datasets used. In Section 3 we describe
some recent related work conducted in the field of
meme classification. In Section 4 we describe and
define the models and baselines for the task. In sec-
tion 5 we describe the low-level details including
scoring parameters, pre-processing, libraries and
hyper-parameters used for the experimental setup.
In Section 6 we describe the results obtained and
some insight of why the models are performing the
way they performed. In section 7 we conclude the
paper.

2 Background

The dataset used for this task consists of a set of
10000 memes images whose text has already been
extracted. Each meme has already been labeled as
misogynous for subtask A and as shaming, stereo-
type, objectification ,and violence for subtask B.
The dataset is perfectly balanced in terms of clas-
sification of misogyny, i.e., precisely 50% of the
memes are misogynous and the rest 50% are not.
Of these 5000 misogynous memes -

• 1274 or 25.48% are labelled as shaming cate-
gory.

• 2810 or 56.2% are labelled as stereotype cate-
gory.

• 2202 or 44.04% are labelled as objectification
category.

• 953 or 19.06% are labelled as violence cate-
gory.

The data is provided as zip file of memes in image
format and a .csv file where the memes are labelled
according to the following structure (Fersini et al.,
2022).

• file_name: name of the file denoting the
meme
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• misogynous: a binary value (1/0) indicating
if the meme is misogynous or not. A meme
is misogynous if it conveys an offensive mes-
sage having as target a woman or a group of
women.

• shaming: a binary value (1/0) indicating if
the meme is denoting shaming. A shaming
meme aims at belittling women because of
some body characteristics.

• stereotype: a binary value (1/0) indicating if
the meme is denoting stereotype. A stereotyp-
ing meme aims at representing a fixed idea or
preconceived notion regarding women.

• objectification: a binary value (1/0) indicat-
ing if the meme is denoting objectification. A
meme that describes objectification represents
a woman like an object through over-analysis
of physical or sexual appeal or comparing
women to inanimate objects.

• violence: a binary value (1/0) indicating if
the meme is denoting violence. A violent
meme describes physical or verbal violence
or harassment represented by textual or visual
content.

• Text Transcription: transcription of the text
reported in the meme.

3 Related Work

Memes are essentially language of the internet but
such widespread use of memes had also made them
a target for spreading hateful and offensive mes-
sages by fringe web communities (Zannettou et al.,
2018). Many online communities accept sexism
and harassment in the name of humour in the form
of memes and has resulted in increased attraction
of attention from academics (Drakett et al., 2018).
Thus, memes had emerged as a multi-modal ex-
pression of online hate.

Research in the field of multi-modal sentiment
analysis has been mostly focused on video and
text or speech and text (Rao et al., 2021; Zadeh
et al., 2016). Sentiment analysis of memes was
conducted by French (2017) but it was based on
correlation of the meme and online discussion in
the comments.

Recent study for meme classification was done
by Zia et al. (2021) where hateful memes were clas-
sified based on the protected category they attacked

which were race, sex, religion, nationality, disabil-
ity. The study included usage of state-of-the-art
visual and textual representations to produce re-
spective embedding of the memes which were then
concatenated to train a logistic regression classifier
model. Facebook recently launched The Hateful
Memes Challenge to accelerate development in this
field (Facebook, 2020).

We follow a more humble approach of using
GloVe to embed text in the memes but tried models
more sophisticated than Logistic Regression Clas-
sifier for the classification. The study conducted by
Zia et al. (2021) reflects that better results emerge
when both text and image are considered. But
we do not consider the images for the challenge
and consider this challenge an opportunity to learn
about NLP first-hand.

4 System Overview

BERT2 model is a state-of-the-art model devel-
oped by the AI team at Google (Vaswani et al.,
2017). Traditional NLP models are unidirectional,
i.e., they read the text from left-to-right or right-
to-left. On the other hand, BERT is bidirectional,
understanding the correlation of a word with words
on both sides by reading the entire sequence of the
words at once. Google showed that this scheme
helps better understand the statement’s sentiment,
making this model the best fit for the task.

RoBERTa2 model is built on top of the BERT
model. It has the same architecture but differs in
terms of tokenizer and pre-training scheme, i.e.,
much larger mini-batches and learning rates are
used. The architecture similarity with the BERT
model makes this model suitable for this task.

Baseline scores are made available by the orga-
nizers and are mentioned in Table 1. We provide
additional baseline scores obtained by traditional
classification models as well for comparison with
the BERT and RoBERTa model. The different base-
line models used are Logistic Regression (LR)3, K
Nearest Neighbours (KNN)3, Random Forest (RF)3

and Multilayer Perceptron (MP)3.

5 Experimental Setup

The scoring parameters, pre-processing, language,
libraries and hyper-parameters used are mentioned
in this section for ease in reproduction.

2We use transformers 4.16.2 implementation of the model.
3We use Scikit-learn 1.0.2 implementation of the model.
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Model A B
Baseline_Image_Text 54.3% 0%

Baseline_Text 64% 0%
Baseline_Image 63.9% 0%

Baseline_Flat_Multilabel 43.7% 42.1%
Baseline_Hierarchical_M 65% 62%

Table 1: Baseline Scores obtained by SemEval Organiz-
ers.

5.1 Scoring parameters

Macro F1 score is used as a measure of perfor-
mance for the models for subtask A and weighted
average of F1 scores for each prediction category
for subtask B.

5.2 Pre-processing

The text is converted to lowercase before being
used for training. Each meme is vectorised using
GloVe embedding (Pennington et al., 2014).

Glove consists of word to vectors mapping and
these vectors come in various dimensions. We are
using 200-d vectors. For embedding one meme we
find out word-vectors for every word and calculate
an average of these vectors to finally calculate a
vector representation of a meme. Glove vectors
map words to a point in n-dimensional space where
words with similar meaning are closer to each other.
So taking average of these vectors should give us
a vector in this space which represent an average
gist of the message.

5.3 Language and libraries used

The experiment is conducted at Google Colab plat-
form using Python 3.7.2 as the programming lan-
guage. The packages are listed in Table 2

Package Version
Pandas 1.3.5
Jupyter 1.0.0
Keras 2.7.0

Tensorflow 2.7.0
Tensorflow-hub 0.12.0

Numpy 1.19.5
Transformers 4.16.2
Scikit-learn 1.0.2

Table 2: List of Python Packages used for the Experi-
ment.

5.4 Hyper-parameters of the models

This section details hyper-parameters for each
model.

K Nearest Neighbours 5 CPU jobs, other val-
ues are default from Scikit-learn (refer KNN).

Logistic Regression random seed of 42, solver
is liblinear, maximum iterations of 1000, 5 CPU
jobs, f1_macro scoring is used, refit is set to True,
other values are default from Scikit-learn (refer Lo-
gisticRegressionCV).

Multilayer Perceptron maximum iteration is
set to 200, other values are default from Scikit-
learn (refer MLPClassifier).

Random Forest 5 CPU jobs, bootstrap samples
are used while building trees, out-of-bag samples
are used to estimate the generalization score, 10
trees are used in the forest, all features are consid-
ered while looking for best split, other values are
default from Scikit-learn (refer RandomForestClas-
sifier).

BERT transformers based implementation of
BERT is used. Pretrained bert-base-uncased model
and tokenizer are used. Adam optimizer with 3e-6
learning rate, 1e-08 epsilon and 1.0 clipnorm as
parameters is used as the optimizer. Sparse Cate-
gorical Crossentropy with from_logits set to True
is used as loss function. Early stopping is done
with a patience value of 4 and minimum increment
of validation accuracy as 0.005. The model which
gave best result for validation set is restored before
training is complete. Other values are default from
Hugging-Face implementation (refer BERT).

RoBERTa transformers based implementation
of RoBERTa is used. Pretrained roberta-base
model and tokenizer are used. Rest of the parame-
ters are same as used in BERT model. Other values
are default from Hugging-Face implementation (re-
fer RoBERTa).

6 Results

Models are trained with 80% of data as training
data and 20% of data as validation data. The re-
sults obtained for subtask A and B are mentioned
in Table 3 and 4 respectively. The models’ hyper-
parameters were tuned for subtask A and were
reused for subtask B, hence training and valida-
tion scores are omitted in Table 4, instead score for
each classification category4 and final scores are
listed. Baseline results obtained by the SemEval

4These scores are obtained in post-evaluation phase after
the labels for test data were released by the organizers.
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Model Training Score Validation Score Subtask A
KNN 78.05% 64.27% 57.54%
LR 73.95% 71.03% 58.69%
MP 89.97% 71.32% 58.05%
RF 98.56% 61.97% 58.81%
BERT 87.26% 82.10% 66.24%

RoBERTa 88.63% 80.60% 60.80%

Table 3: Scores obtained for subtask A.

Model Misogynous Shaming Stereotype Objectification Violence Subtask B
KNN 57.54% 53.62% 58.24% 54.51% 56.38% 56.50%
LR 58.69% 53.35% 55.63% 51.52% 52.65% 55.17%
MP 58.06% 52.30% 54.50% 60.66% 62.66% 57.74%
RF 58.88% 48.01% 54.19% 45.04% 47.16% 52.30%
BERT 66.24% 64.06% 61.75% 65.20% 66.51% 64.76%

RoBERTa 60.80% 46.06% 62.10% 66.11% 53.36% 60.14%

Table 4: Scores obtained for subtask B.

Organizers are listed in Table 1 for comparison.
From the results we can see that Random Forest

model has high level of over-fitting as the score
difference of training and validation is highest in
this model.

The least difference in training and validation
score appears in Logistic Regression model but this
is mostly due to high level of under-fitting as the
least training score is obtained in this model.
BERT model provides the best results. The model
obtains a high training score and score difference
in training and validation is the least for this model.
The trend maintains in subtask B as well with the
model obtaining highest score.

Ranking phase - We submit our scores obtained
from BERT model for the leader board. The scores
obtained are 66.24% and 63.5%5 for subtask A and
B respectively. The ranks obtained for subtask A
and B are 47 and 34 respectively.

7 Conclusion

The results show that BERT model is the best
among those we tried for the given problem state-
ment. However, these results are obtained using
purely NLP based tools and techniques, the image
component of the memes is not considered. As dis-
cussed in the Background section, there is a scope
of improvement if we consider the images of the

5The score of 64.76% mentioned in the table is obtained
using the same model used in making the submission for
evaluation phase. This score is obtained post-evaluation with
test-labels being made public by the organizers.

memes as well for the classification.
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Abstract

With the growth of the internet, the use of so-
cial media based on images has drastically in-
creased like Twitter, Instagram, etc. In these
social media, women have a very high contri-
bution as of 75% women use social media mul-
tiple times compared to men which is only 65%
of men uses social media multiple times a day.
However, with this much contribution, it also
increases systematic inequality and discrimi-
nation offline is replicated in online spaces in
the form of MEMEs. A meme is essentially an
image characterized by pictorial content with
an overlaying text a posteriori introduced by
humans, with the main goal of being funny
and/or ironic. Although most of them are cre-
ated with the intent of making funny jokes,
in a short time people started to use them as
a form of hate and prejudice against women,
landing to sexist and aggressive messages in
online environments that subsequently amplify
the sexual stereotyping and gender inequality
of the offline world. This leads to the need
for automatic detection of Misogyny MEMEs.
Specifically, I described the model submitted
for the shared task on Multimedia Automatic
Misogyny Identification (MAMI (Fersini et al.,
2022)) and my team name is IIT DHANBAD
CODECHAMPS.

1 Introduction

With the growth of the internet, social media be-
comes a crucial part of everyone’s life. As every
coin has two side positive and negative, social me-
dia also comes with a number of problems. The
challenge of identifying misogyny (Srivastava et al.,
2017) in different social media specially in forms
of meme which contains both image and text is
very complicated. Misogyny meme highly affected
the life of women’s as its spread hate and preju-
dice behaviour against women’s. Social media like
twitter, Instagram, etc have handled by their own
ways. However, detecting such memes is highly
challenging. Due to this challenge, it attracts the

researcher’s attention. According to one social me-
dia Instagram, more than 1 million users shared
memes daily. So, with this huge amount of data
in social medias and internet it is impossible to
detect every misogyny meme by man power. So,
we need machine learning, deep learning and artifi-
cial intelligence techniques to detect automatically
misogyny memes in social media. In this paper, we
have explored various Machine Learning (ML) and
Deep Learning (DL) algorithms for misogyny iden-
tification in shared task MAMI (Fersini et al., 2022)
challenge and my team’s name is IIT DHANBAD
CODECHAMPS. As per requirement of MAMI,
I have submitted 4 runs for Subtask-A. My best
run in Subtask-A has achieved Macro-F1 score of
0.656.

2 Related Works

Many works related to automatic detection of
misogyny, hate, sexism on social media and web
have been proposed.
Abir Rahali (Rahali et al., 2021) proposed a ap-
proach for automatic misogyny detection in social
media using attention based bidirectional LSTM.
Endang Wahyu Pamungkas (Pamungkas et al.,
2020) proposed a method for Automatic Identifica-
tion of Misogyny in English and Italian Tweets at
EVALITA 2018 with a Multilingual Hate Lexicon.
Mario Anzovino, Elisabetta Fersini (Anzovino
et al., 2018) proposed a method for Automatic
Identification and Classification of Misogynistic
Language on Twitter. The main contribution of
this paper is two-fold: (1) a corpus of misogynous
tweets, labelled from different perspective and (2)
an exploratory investigation on NLP features and
ML models for detecting and classifying misogy-
nistic language.
Rachael Fulper (Fulper et al., 2014) proposed a
relation between misogynistic language in twitter
and sexual Violence. In their paper they consider
all 50 states in Washington DC.
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Lakes Goenaga, Aitziber (Goenaga et al., 2018)
Atutxa proposed a Automatic misogyny identifi-
cation using neural networks. In this paper they
focus on recurrent neural network (RNN) approach
using a Bidirectional Long Short Term Memory
(Bi-LSTM).

3 Task and Dataset Description

Here we have described the dataset and task
provided by Multimedia Automatic Misogyny
Identification (MAMI (Fersini et al., 2022))
challenge.
Multimedia Automatic Misogyny Identification
(MAMI) task is divided into two sub task. Sub-task
A: a basic task about misogynous meme identifica-
tion, where a meme should be categorized either as
misogynous or not misogynous (shown in Table 1).

Sub-task B: an advanced task, where the type of
misogyny should be recognized among potential
overlapping categories such as stereotype, shaming,
objectification and violence. e.g.

1026.jpg 10101 POV: You’re my wife made
with mematic

Figure 1: 1026.jpg

Here, 1026.jpg represent meme file name . Next
column contains 5 numbers of zeros and ones .
First numbers represent wheather meme is misogy-
nous . Second numbers represent wheather meme
is shaming . Third numbers represent wheather
meme is stereotype .Fourth numbers represent
wheather meme is objectification .Fifth numbers
represent wheather meme is violence . Next col-

umn represent Text Transcription of the meme.

4 Methodology

4.1 Text Preprocessing
First, we removed all the punctuations, numbers,
links and stop words. We have used lemmatization
for grouping together the different forms of a word
into a single word. NLTK wordnet (Loper and Bird,
2002) is used for lemmatization.

4.2 Feature Extraction
TfidfVectorizer (Kumar and Subba, 2020) is used
for converting the text into numerical features.
Pipeline 1 is used for doing TfidfVectorizer and
classification in pipelined manner. Tokenizer by
keras library is used for LSTM and Bert. For Lo-
gistic regression and SVM we have used TfidfVec-
torizer from scikit-learn library.

Models Proposed
For Subtask-A, we have submitted 4 runs based
on four different algorithms, namely- Logistic Re-
gression (Sammut and Webb, 2010), SVM (Noble,
2006), LSTM (Hochreiter and Schmidhuber, 1997),
Bert (Devlin et al., 2018) with different parameters
like batch size, epochs, number of perceptron etc.
We have used the scikit-learn library for logistic
regression based models and SVM (support vector
machines) models. Keras is used for LSTM and
BERT. We scored maximum F1 score 0.656 using
BERT. We have used the following value of param-
eters :-
1.For TfidfVectorizer, we have used mindf=20,
maxfeatures=2000 and maxdf=0.6 .
2. For LSTM and BERT, we have used batch size
= 2, epochs = 3 and number of layers = 2 .

5 Result and Discussions

The results of Subtask-A are represented in terms
of Macro-F1 (shown in Table 2). The best score as
Macro-F1 for Subtask-A we get is 0.656. Table
2 shows the score of our submissions based on
different algorithms on MAMI challenge official
ranking.
For Subtask-A BERT performs better than all other
models with the parameters batch size = 2 , epochs
= 3 , number of hidden layers = 2 and number of
perceptron’s is 128 in first layer and 64 in second
layer.

1shorturl.at/eqrFW
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file_name misogynous Text transcription
1.jpg 0 Milk Milk.zip
10000.jpg 0 MAN SEEKING WOMAN Ignad 18 O
1026.jpg 1 POV: You’re my wife made with mematic
10014.jpg 0 HOOKER MY DICK VIRGIN ME

Table 1: Categories of MEMEs with Examples for Subtask-A

Model F1 Score
BERT 0.656
Logistic 0.631
SVM 0.584
LSTM 0.651

Table 2: Result of Subtask-A based on different Models

6 Conclusions and Future Work

We have completed the task using various classifi-
cation algorithms and evaluated the performance of
different classification algorithms for Multimedia
Automatic Misogyny Identification (MAMI)
shared task. Our overall score is 0.656 for
subtask-A which were average as compared to
other submissions obtained in the Multimedia
Automatic Misogyny Identification (MAMI)
shared task. We look forward to experimenting
with different advance algorithm or neural network
models. Also, till now our algorithms works only
with text classification. We are looking forward
to work in text and image simultaneously for
better accuracy and classification. Also, fine
tuning the parameters of the algorithm can help in
improvement of the overall performance. We shall
be exploring these tasks in the coming days.
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Abstract
In this paper, we describe our submission
to the misogyny classification challenge at
SemEval-2022. We propose two models for
the two subtasks of the challenge: The first
uses joint image and text classification to clas-
sify memes as either misogynistic or not. This
model uses a majority voting ensemble struc-
ture built on traditional classifiers and addi-
tional image information such as age, gender
and nudity estimations. The second model
uses a RoBERTa classifier on the text tran-
scriptions to additionally identify the type of
problematic ideas the memes perpetuate. Our
submissions perform above all organizer sub-
mitted baselines. For binary misogyny clas-
sification, our system achieved the fifth place
on the leaderboard, with a macro F1-score of
0.665. For multi-label classification identify-
ing the type of misogyny, our model achieved
place 19 on the leaderboard, with a weighted
F1-score of 0.637.

1 Introduction

Even though women are as much present online as
men, some online spaces, such as microblogging
websites, are still male dominated. Misogynistic
jokes and memes are inevitably somewhat com-
mon in certain parts of the Internet and have the
potential to perpetuate harmful ideas about gender
or instill false ideas and expectations. Notably, the
way they are spread is often through various modal-
ities, most commonly visual and textual. Therefore,
it would be useful to have a system that could au-
tomatically detect if certain combinations of texts
and images are misogynistic or not. This is not a
trivial task however, since misogyny can manifest
in many different forms such as stereotyping, objec-
tifying or threatening violence against women. A
crucial difficulty in this multi-modal classification
task is also the interplay between text and image.
Some memes may appear harmless if only either

the image or text are viewed separately. The Multi-
media Automatic Misogyny Identification (MAMI)
challenge at SemEval-2022 (Fersini et al., 2022)
seeks to find solutions to solve this task.

We propose two models that automatically
detect English misogynistic memes and classify
the type of problematic ideas they perpetuate.1 For
simple binary misogyny detection, we created an
ensemble model that makes predictions based on
majority voting on two text-based and two image-
based classifiers using partly hand-crafted features
such as age, gender and nudity classification. For
task B we relied only on text information and used
a transformer based approach, creating a RoBERTa
model (Liu et al., 2019) that classifies the type of
misogyny that is perpetuated in the memes.

2 Background

Automatically identifying misogynistic texts has
been explored in the past. In 2020, this task was
proposed as an EVALITA shared task, using Italian
tweets (Fersini et al., 2022). So far, the research in
the area of misogyny detection has mostly focused
on pure text data from social media, specifically
Twitter (Anzovino et al., 2018; Frenda et al., 2019).
In the current multi-modal task however, competi-
tors were given the opportunity to explore classi-
fication using both visual and textual data given.
Singh et al. (2020) used a multi-modal multi-task
learning system with BERT (Devlin et al., 2018)
features to extract textual information and ResNet
features to handle image classification. A sim-
ilar approach proved to be useful in another re-
lated shared task, in which Tamil memes should
be identified as trolling or not (Suryawanshi and
Chakravarthi, 2021).

1The code is made available at https://github.
com/cicl-iscl/SemEval-2022_Multimedia_
Automatic_Misogyny_Identification.
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shaming THE FACE YOU MAKE WHEN TRUMP HAS THE CLASSY
FOREIGN CHICK AND YOU’RE MARRIED TO KERCHAK
imgrip.com

stereotype creator made native women beautiful, to hide all that crazy
objectification When my girlfriend is trying to have a serious conversation with

me TITTY
violence ROSES ARE RED, VIOLETS ARE BLUE IF YOU DON’T

SAY YES, I’LL JUST RAPE YOU quickmeme.com
shaming + stereotype CAN’T TELL IF THIS IS AN UGLY HIPPY CHICK OR

REALLY PRETTY HIPPY BOY quickmeme.com
stereotype + objectification Keeping your dishwasher clean will make it last longer Take

care of your appliances
objectification + violence inglip.com IS RAPING A PROSTITUTE A THEFT?

Table 1: Examples of text transcriptions that fit the four categories of misogyny and combinations of multiple
labels.

The provided data set includes both images and
text transcriptions of memes. The two subtasks
we participated in were structured as follows: In
subtask A, the memes should simply be identi-
fied as misogynous or not misogynous. Subtask
B posed a more advanced challenge, as memes
should additionally be classified as being part of
four overlapping categories. These categories spec-
ify the type of misogyny expressed in the meme:
stereotypes, shaming, objectification and violence.
Shaming memes will insult women’s appearance,
stereotypes perpetuate harmful ideas about (groups
of) women, objectification reduces women to their
sexuality or body and violence downplays or ad-
vocates for violence against women. Examples of
text transcriptions of these categories can be found
in Table 1. The dataset for training includes 10000
memes with all of these labels, with exactly half
of the memes being classified as misogynous and
half as harmless. 2810 memes in the training set
perpetuate stereotypes, 2202 objectification, 1274
shaming, and 953 violence. Many of the misogy-
nistic memes have therefore overlapping categories,
being classified as two or even three or all types of
misogynous.

3 Subtask A: Binary misogyny
classification

3.1 System Overview
For the binary classification of memes we experi-
mented with a number of classification algorithms
for both the image and the text transcriptions, as
well as with a variety of different features. We
decided to examine the benefits of an ensemble

model that uses more traditional forms of text clas-
sification, as optimized ensemble models have been
shown to perform well on similar tasks such as hate
speech detection (Van Thin et al., 2019). The result-
ing model consists of four estimators, as illustrated
in Figure 1.

The first set of classifiers are a multinomial naive
Bayes classifier and a separate Gradient boosting
classifier with tf-idf transformed vectors of the text
transcriptions found in the data set. Originally we
considered training the models on n-gram features,
as previous research has shown that they can be
useful to classify short texts (Buda and Bolonyai,
2020), but tf-idf vectors consistently performed
better. Similarly, we experimented with adding
more classifiers trained on tf-idf vectors, however,
performance stayed consistent or decreased, thus
we stayed with two.

Secondly, we introduce a Random forest classi-
fier trained on a variety of features pertaining to
the images themselves, rather than the text. The
features used are Hu moment invariants (Hu, 1962),
Haralick textures (Haralick et al., 1973) and image
histograms. All three features are expected to help
in gaining general insights into the image structure
of the meme: Hu moment invariants are used to
characterize the shape of an object in an image,
Haralick textures should provide information about
regions of interest, and the image histogram are
employed to gain information about the color dis-
tribution, as the former two features require images
to be converted into grayscale. To make all images
equivalent, they were re-scaled to 500x500 pixels.

Lastly, with this being a multi-modal classifica-
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Figure 1: Ensemble Model used for Subtask A.

tion task, we were interested in whether we can
extract additional information from the images/text
transcriptions that might be relevant to decide if a
meme is misogynistic or not. Thus, we enhanced
the data set with the following features:

• The number of men/women depicted in the
meme, as there might be a gender imbal-
ance relevant for the classification process in
combination with other features. Examining
the text transcriptions, ’women’ and ’woman’
were the first and third most used word in
misogynistic memes. It is not unreasonable to
assume that women are also more likely to be
featured in the corresponding images.

• For the same reason as above, we included
the average estimated age of all men/women
depicted in the meme.

• A binary nudity score, indicating whether an
image is sexually explicit or not. In the train-
ing data, 15.75% of the misogynistic and only
2.86% of the non-misogynistic memes were
sexually explicit.

• A sentiment score ranging from [-1, 1], indi-
cating the polarity of any given text. A score
of 1 indicates a positive statement, a score of
-1 a negative sentiment. Misogynistic memes
are usually hateful, so it can be assumed that
the are more likel to use negative language in
their texts.

All numerical scores retrieved from these fea-
tures were transformed into a vector representation

and used to train another multinomial naive Bayes
classifier.

Finally, we built an ensemble model, using a
majority voting rule, with all estimators created so
far. Said model was hyperparameter tuned using
a grid search, as well as cross-validated using five
folds.

3.2 Experimental Setup
To extract information about the number of
men/women and their estimated age, we made
use of the Facial Recognition API provided by
Face++.2 The nudity score was obtained from the
images using the NudeClassifier from NudeNet.3

The classifier returns probabilities whether an im-
age is sexually explicit or not. These probabil-
ities were then transformed into a binary label.
The sentiment was obtained using the TextBlob4

library and the polarity scores added to the data
set. The image features for the Random forest clas-
sifier were calculated through the opencv-python
library,5 whereas the tf-idf vectors, as well as the
model itself, was built with the scikit-sklearn li-
brary (Pedregosa et al., 2011).6

The model was hypertuned using a grid search
and a 5-fold cross-validation. The parameters for
the grid search can be found in Table 2. The tf-idf
vectors were tuned separately for the Multinomi-

2https://www.faceplusplus.com/
3https://github.com/notAI-tech/NudeNet
4https://github.com/sloria/textblob
5https://github.com/opencv/

opencv-python
6https://scikit-learn.org/stable/index.

html
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nalNB classifier and the GradientBoostingClassi-
fier. Similarly, the two MultinominalNB classifier
were tuned separately, one in combination with
the tf-idf vectors, and on in combination with the
gender, age, nudity, and sentiment features.

Grid search parameter settings
TfidfVectorizer

ngram range (1,1), (1,2), (1,3), (2,2), (2,3)
analyzer char, word

max features None, 5000, 10000
MultinominalNB

alpha 0.5, 1.0, 3.0
fit prior True, False

RandomForestClassifier
n estimators 100, 1000, 5000, 7000

GradientBoostingClassifier
n estimators 100, 1000, 5000, 7000

Table 2: Grid search parameters for ensemble model.
The final parameters are highlighted.

3.3 Results

Model Macro F1
(1) MultinominalNB (tf-idf) 0.626
(2) GradientBoosting + (1) 0.645 (+0.019)
(3) MultinomialNB (gender)
+ (2) 0.649 (+0.004)

(4) RandomForest + (3) 0.665 (+0.016)

Table 3: Gradual built-up of the ensemble model.

Our system for Subtask A achieved place 5 on
the leaderboard, with a macro F1 score of 0.665.
To make sure that each estimator of our ensem-
ble model actually improves the classification of
misogynistic memes, we gradually built it up and
run it against the test data. As can be seen from
the results in Table 3, both the GradientBoosting-
Classifier as well as the RandomForestClassifier
provide substantial performance gains compared to
the handcrafted gender, age, nudity, and sentiment
features.

While the nudity score seems to offer strong sup-
port on whether a meme is misogynistic or not,
the same cannot be said for the other handcrafted
features. Given the sentiment score, for example,
1119 out of 5000 misogynistic memes received a
negative sentiment score. Compared to 1103 non-
misogynistic memes that also received a negative
sentiment score, it seems likely that the score pro-

vides very little information for the classification
process. Similarly, a direct correlation cannot be
derived from the number of men/women or their
estimated average age. Because of that, it is likely
that they provide little information gain as well.
The ensemble model from Subtask A was able to
correctly classify instances of more explicit forms
of misogyny. Memes that include the word “rape”,
mention “cooking” or “cleaning”, show (exposed)
female body parts in the image or explicitly men-
tion them in the text are correctly identified as sex-
ist. When only one of these features is present, the
model produces false positives, for example harm-
less memes that feature women doing housework.
The memes the model was not able to identify as
misogynistic often do not feature human faces or
only represent them by minimalistic drawings, are
low quality, or have more subtle references to sexu-
ality that the nudity detection cannot identify (such
as handprints on breasts).

4 Subtask B: Multi-label classification of
misogyny types

Although the ensemble model performed reason-
ably well for Subtask A, performance was signifi-
cantly worse when using it for the extended misog-
ynistic labels introduced in Subtask B. Because
of this, we built and trained a different model in-
frastructure using a deep learning approach (which
performed worse than our ensemble model, when
applied to Subtask A).

4.1 System Overview

Subtask B is a multi-label classification task, so
each meme can be assigned to one or more cate-
gories. To capture the features which differentiate
those memes among different subtypes, we made
use of a multi-label model from the Simple Trans-
formers library,7 using text data only.

In this task, we have five distinct binary labels for
each data entry in the training set: misogyny, sham-
ing, stereotype, objectification, and violence. The
transformer-based model consists of a transformer
model plus a classification layer on top of it. The
main difference between this model and the binary
classification model is that, in this model, the clas-
sification layer has five output neurons, correspond-
ing to each out of the five labels in the training set.
For the transformer model, we chose a pretrained
RoBERTa model, which is imported by the Simple

7https://simpletransformers.ai/
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Misogyny (model A) Shaming Stereotype Objectification Violence

1 pred 0 pred 1 pred 0 pred 1 pred 0 pred 1 pred 0 pred 1 pred 0 pred

1 true 333 167 54 92 160 190 148 200 58 95
0 true 168 332 98 756 137 513 122 530 32 815

Table 4: Confusion matrices for all classification categories. Analysis was performed on the test set.

Transformer library from the Transformer library
(Wolf et al., 2020) that was developed by Hugging-
Face. It is based on the RoBERTa model proposed
by Liu et al. (2019).

RoBERTa removed the next sentence prediction
task from BERT (Liu et al., 2019) which is one of
the reasons why we chose RoBERTa over BERT,
as the majority of the text transcriptions of memes
in this task are consisting of either one or two sen-
tences. The other reason being, that RoBERTa was
trained on a larger dataset than BERT, thus more
likely to result in better predictions.

4.2 Experimental Setup

The SimpleTransformers library is designed with
the purpose of easily setting up a transformer
model. Transforming text into a suitable vector
representation is done automatically, and various
hyperparameters can be tuned to improve perfor-
mance. we set the threshold in our implementation
to 0.8. The model was trained for 20 epochs using
a GPU provided by the Kaggle notebook environ-
ment.8

4.3 Results

Our system achieved place 19 on the leaderboard,
with a macro F1 score of 0.637 using the above-
mentioned transformer-based model. We have also
experimented with other approaches like the Fast-
Text library9 which did not show better perfor-
mance on this multi-label classification task than
the transformer approach.

Compared to the true and false negatives in
the ensemble model’s prediction from Subtask A,
which are very balanced, the model for Subtask
B produces a lot more false negatives for the test
set(see Table 4). True and false positives and neg-
atives are very balanced in the ensemble model’s
predictions from Subtask A, as shown in Table 4.
The model for Subtask B on the other hand pro-
duces more false negatives than positives for all

8https://www.kaggle.com/docs/notebooks
9https://fasttext.cc//

categories except shaming. For this task, it would
be favorable if the model was stricter and produced
more false positives instead. The classifier per-
formed reasonably well, even without information
about the images. Still, some memes, especially in
the stereotype and objectification category, cannot
be understood to belong in that category without
this information. Only about a third of the pictures
(379 of 1000) are completely correctly identified
when it comes to the four categorization labels, but
731 have at least 3 labels matching. Only 9 sam-
ples in the test set were classified in a way that no
label matched the gold standard and 67 matched
less than 2.

5 Conclusion

In our experiments, we explored and compared dif-
ferent models for multi-modal analysis of misogy-
nistic memes. Surprisingly, ngram-models on both
word and character levels did not perform as well
as expected for this task. We discovered that en-
semble models using text and image information
can work well even if the text classifier uses simple
features such as tf-idf vectors. BERT based text
analysis performs better than the baselines, even
if image features are not included. We found that
an ensemble model can be improved through gradi-
ent boosting and adding information about nudity,
age, gender of depicted humans, and text sentiment.
In the future, it would be worth exploring how
well a similar ensemble model with an (additional)
BERT-classifier or other more powerful text clas-
sifier performs. For Subtask B, a RoBERTa-based
multi-label classification model showed its power
with purely text information. It would be interest-
ing to train it with a class of weights and different
threshold values. However, we were not able to
create a well-performing multi-modal model that
uses image information, which might be another
interesting direction for further studies.
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Abstract

In this manuscript we describe the participa-
tion of the UMUTeam on the MAMI shared
task proposed at SemEval 2022. This task is
concerning the identification of misogynous
content from a multi-modal perspective. Our
participation is grounded on the combination
of different feature sets within the same neural
network. Specifically, we combine linguistic
features with contextual transformers based on
text (BERT) and images (BEiT). Besides, we
also evaluate other ensemble learning strategies
and the usage of non-contextual pretrained em-
beddings. Although our results are limited, we
outperform all the baselines proposed, achiev-
ing position 36 in the binary classification task
with a macro F1-score of 0.687, and position
28 in the multi-label task of misogynous cate-
gorisation, with an macro F1-score of 0.663.

1 Introduction

This manuscript describes the participation of the
UMUTeam in the Multimedia Automatic Misogyny
Identification (MAMI) shared task (Fersini et al.,
2022), proposed at SemEval 2022. This shared-
task consists in the identification and categorisation
of misogynous content from a dataset composed
of memes (Dawkins and Davis, 2017). A meme
is essentially a pictorial content with an overlay-
ing text that pretends to be funny. However, some
of these memes are being used as a form of hate
against women, with sexist messages in online so-
cial networks that amplify misogynous traits such
as sexual stereotyping or gender inequality.

MAMI shared task proposes two challenges. A
binary classification task, in which each meme
should be labelled as misogynous or not misog-
ynous, and a multi-label classification task, to cate-
gorise different misogynous traits, namely shaming,
stereotype, objectification, and violence.

2 Background information

From the last years, the number of shared tasks
in workshops regarding hate-speech and misog-
yny detection are increasing. To name just but a
few, in Italian there is the EVALITA 2018 dataset
(Bosco et al., 2018); in Spanish, the AMI 2018
dataset (Fersini et al., 2018) and the EXIST dataset
(Rodríguez-Sánchez et al., 2021). In German, the
GermEval 2021 (Risch et al., 2021) dataset.

The common approaches for misogyny detection
and categorisation consists in the training of an au-
tomatic machine learning classifier. For example,
the authors of (Anzovino et al., 2018) compiled and
labelled a corpus from Twitter focused on misog-
ynous content, and evaluate several feature sets
and machine-learning models. In Spanish, a simi-
lar approach was conducted in (García-Díaz et al.,
2021), in which the authors released the Spanish
MisoCorpus 2020. This dataset is organised into
three splits: (1) VARW (Violence Against Relevant
Women), focused on aggressive messages on Twit-
ter to women who have gained social relevance; (2)
SELA (European Spanish vs that of Latin Amer-
ica), focused on distinguish between misogynistic
messages from Spain and Latin America; and (3)
DDSS (Discredit, Dominance, Sexual harassment
and Stereotype), focused on general traits related
to misogyny. The Spanish MisoCorpus 2020 is bal-
anced and contains 3841 misogynous documents,
annotated by three human annotators.

It is worth noting that our research group evalu-
ated of a set of hand-crafted linguistic and negation
features along with Spanish pre-trained contextual
and non-contextual embeddings for detecting hate-
speech (García-Díaz et al., 2022b). These work
included two datasets concerning misogyny and
sexist behaviour.
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3 Dataset

Table 1 depicts the dataset proposed by MAMI. For
the training and validation split, the labels were
balanced, with 5000 misogynist memes and 5000
safe memes that were manually annotated using
crowd sourcing platforms. Our first experiments
consider a balance between both labels. However,
during the final evaluation phase we suspect that
there was a strong imbalance among the labels.
As our first results were limited, we sub sampled
the dataset removing some misogynous documents
with less than 8 words. We are aware that there
are better techniques for handling class imbalance
but, due to time constraints, we could not evaluate
them.

Split Original dataset Subsampled
training 8000 6709
val 2000 1677
test 1000 1000
total 11000 9386

Table 1: Dataset statistics of the MAMI dataset. We
show the original distribution (left) and our sub sampled
distribution (right)

Table 2 depicts the label distribution per misog-
ynous trait for the second challenge. It should be
noticed that shaming and violence traits are the
traits with less instances, hinder their detection.

Split (OBJ) (SHA) (STE) (VIO)
training 1762 1020 2248 763
val 440 254 562 190
total 2202 1274 2810 953

Table 2: Misogynous trait distribution: Objectification
(OBJ), Shaming (SHA), Stereotype (STE), and Violence
(VIO)

4 Methodology

For solving the challenges proposed in MAMI,
we build a system which architecture is depicted
in Figure 1. It a nutshell, our system works as
follows. First, we select some of the documents
of the training MAMI dataset to create a custom
validation dataset. Next, we extract a subset of
language-independent linguistic features (LF), non-
contextual sentence (SE) and word embeddings
(WE) from fastText, the contextual word embed-
dings from BERT (BF), and the image embeddings

from BEiT (BI). Second, we train several neural
network models by performing an hyperparame-
ter tuning process. The models evaluated included
one model per feature set, and models based on
several feature sets together. Besides, we evaluate
two ensembles based on soft voting (mode) and
averaging all the probabilities (mean) of the neural
networks trained with each feature set. To handle
the multi-label challenge, we repeat this process
per trait. That is, we evaluate the problem as a
binary classification problem per trait.

Next, some insights of the feature sets involved
are given. As the memes are images with overlay-
ing text, this shared-task has a multi-modal per-
spective. Our proposal uses several feature sets
based on texts, and one for the images. First, we
use the UMUTextStats tool to obtain a set of rele-
vant psycho-linguistic features (LF). This tool has
already been used in studies related to misogyny,
such as (García-Díaz et al., 2021, 2022a). The LF
included low-level linguistic categories concern-
ing phonetics and syntax’s, and high-level features
related to semantics and pragmatics, including fea-
tures proper from figurative language (del Pilar
Salas-Zárate et al., 2020). Moreover, these kinds of
features have proven to be effective for performing
other automatic classification tasks such as irony
and satire identification (García-Díaz and Valencia-
García, 2022). As some of the dictionaries of
UMUTextStats are not translated to English, we se-
lect a subset of language-independent linguistic fea-
tures, based on linguistic metrics, Part-of-Speech
features and the usage of social media jargon. Sec-
ond, we extract sentence and word embeddings
using the pre-trained fastText model (Joulin et al.,
2016). Third, we use contextual sentence embed-
dings from BERT (Devlin et al., 2018), which sen-
tence embeddings are obtained in a similar manner
as described at S-BERT (Reimers and Gurevych,
2019). Forth, we use visual embeddings from BEiT
(Bao et al., 2021), which is a self-supervised model
trained with ImageNet-21k with more than 21000
labels. BEiT learns the embeddings images as a
sequence of fixed-size elements using relative po-
sition. This allows us to perform the classification
using a mean-pooling strategy from the final hid-
den states of the patches instead of placing a linear
layer on top of the final classification token. How-
ever, the suggested way to fine-tune the model for
performing downstream tasks is to attach a new
linear layer that uses the last hidden state of the
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Figure 1: System architecture proposed by the UMUTeam for solving the MAMI shared task

classification token as a representation of the whole
image.

To obtain the embeddings from BERT (for text)
and BeIT (for images) we conduct an hyperparam-
eter optimisation stage using RayTune (Bergstra
et al., 2013) with a Tree of Parzen Estimators (TPE)
to select the best combination of the hyperparame-
ters over 10 trials. The hyperparameters evaluated
and their interval range are: (1) weight decay (be-
tween 0 and .3), (2) training batch size ([8, 16]),
(3) warm-up steps ([0, 250, 500, 1000]), (4) num-
ber of training epochs ([1-5]), and (5) learning rate
(between 1e–5 and 5e–5).

Once all features are obtained, we train a neu-
ral network per feature set. The training of each
neural network is performed with hyperparame-
ter optimisation. Each training involved: (1) 20
shallow neural networks, that are multi-layer per-
ceptrons (MLP) composed by one or two hidden
layers with the same number of neurons per layer
connected with one activation function (linear,
ReLU, sigmoid, and tanh); (2) 5 deep-learning
networks, that are MLP between 3 and 8 hidden
layers, in which the neurons per layer are dis-
posed for each layer in different shapes, namely
brick, triangle, diamond, rhombus, and funnel, and
connected with an activation function (sigmoid,
tanh, SELU and ELU). The learning rate of the
deep-learning models is 10e-03 or 10e-04. Be-
sides, on the neural networks with the pre-trained
word embeddings from fastText (WE) we also eval-
uate 10 convolutional neural networks (CNN) and
10 bidirectional recurrent neural network layers

(BiLSTM). In all experiments, we evaluate two
batch sizes: 16 and 32. These small values were
selected because the training split was balanced,
and a dropout mechanism ([False, .1, .2,
.3]) for regularisation.

Apart of the neural networks trained with the fea-
ture sets separately, we evaluate different forms for
combining the strengths of each feature set in the
same system. The combination of the feature sets
is performed using two strategies: (1) knowledge
integration, in which each feature set is used as
input of the same neural network. For this, we train
another neural network repeating the hyperparame-
ter optimisation stage; and (2) ensemble learning,
in which the output of each neural network model
trained with a feature set is combined by averag-
ing the predictions or calculating the mode of the
predictions.

5 Results and discussion

Each system was evaluated using the custom vali-
dation split (see Section 3).

The results for the first challenge are depicted in
Table 3. Note that we remove some of the docu-
ments with fewer words to sub sample the dataset.
For that reason, our validation split contains 677
misogynous and 1000 non-misogynous documents.

As it can be observed in Table 3, the perfor-
mance of LF in isolation is limited. This fact is
not surprising because not all of the features from
UMUTextStats are available in English. For the rest
of the textual embeddings (SE, WE, and BF), BF
obtains the best results, with a macro F1-score of
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Feature set MIS N-MIS F1
LF 58.956 75.771 67.363
SE 73.286 80.860 77.073
WE 76.614 83.367 79.991
BF 79.690 87.306 83.498
BI 65.744 81.984 73.864
LF,BF,BI 80.277 87.549 83.913
LF,BF,BI (mode) 75.874 86.524 81.199
LF,BF,BI (mean) 76.853 85.183 81.018

Table 3: Results for the Task A with the custom vali-
dation split, reporting the F1-score of the misogynous
(MIS) and non-documents (N-MIS) and the macro F1-
score (F1).

83.498, outperforming the non-contextual sentence
and word embeddings from fastText (SE and WE).
Due of this, we decided to discard non-contextual
embeddings and use BERT for the knowledge inte-
gration strategy. The combination of LF, BF, and
BI in the same neural network outperformed the
results achieved by BF, increasing slightly the F1-
score of both labels and the macro f1-score. How-
ever, the ensemble learning strategy achieved lower
results for the F1-score of the misogynous label,
regardless of the strategy employed for combining
the predictions.

For the second challenge, the results with the
custom validation split are depicted in Table 4.
We report the F1-score of each binary model that
we train for each misogynous trait. Similar to the
first challenge, the results achieved by LF are lim-
ited, achieving results below 60% in all the traits.
Concerning non-contextual embeddings, the results
with WE are superior to SE for all traits, but infe-
rior compared to BF. In case of BI, it draws our
attention the high macro F1-score achieved in ob-
jectification and shaming, outperforming BF. How-
ever, their results are inferior to BF for stereotype
and violence. When LF is combined with BF and
BI embeddings within the same neural network, the
results are superior to the ones achieved separately,
except in shaming. However, the results achieved
with the ensemble learning strategy are quite lim-
ited, specially with the mean strategy. The result
obtained with the violence trait is especially strik-
ing. We observe that the resulting model achieved
a perfect recall over the violence class, which sug-
gests that this model is always predicting all tweets
as violence.

Table 5 depicts the official results for the first

challenge. We achieve position 36/83 with a macro
F1-score of 68.7. As it can be observed, our sub-
mission outperforms all the proposed baselines that
consisted in: (1) sentence embeddings from the
USE pre-trained model; (2) image features from
VGG-16; (3) a combination of deep image and
text representations based a shallow neural network
with a single layer. In addition, two baselines fo-
cused on the second challenge were also evaluated:
(4) a multi-label model, based on the concatenation
of deep image and text representations, for pre-
dicting simultaneously if a meme is misogynous
and the corresponding type; and (5) a hierarchical
multi-label model, based on text representations,
for predicting if a meme is misogynous or not and,
if misogynous, the corresponding type.

The best result for the first challenge is achieved
by the SRCB_roc team, with an F1-score of 83.4.
It is worth mentioning that, although there was a
restriction of the number of accounts available in
Codalab per team and user, the organisers of the
task are not able to control it. Nevertheless, in the
official leader board the second best result was also
achieved by the team SRCB_roc, with an F1-score
of 81.1. However, as the team name is the same, we
have removed this result from the table. Therefore,
for the official results we ask to the reader to check
the official results published in the overview of the
task.

For this first challenge we send different runs
and modify our strategy according to the results.
We also send some basic results to obtain some
baselines. For example, we achieved an macro F1-
score of 52.85 with LF. This result is more limited
than the ones achieved in the validation split. With
non contextual embeddings, SE and WE, the re-
sults are, respectively, 61.30 and 61.96 (vs 77.073
and 79.99 with the validation split), and 64.75 for
BF. Because of these results, we suspect that there
are relevant different between the training and test-
ing splits. Then, we examined carefully the testing
split but we could not find relevant differences so
we suspect to imbalanced as an possible explana-
tion of this problem. To confirm this, we send a
toy submission with a baseline consisting in all the
predictions as non-misogyny and we observed a
ratio similar to 1:3 between misogynous and non-
misogynous instances. Then, we reduced the train-
ing dataset and retrained all models in order to
make them stronger against class imbalance (see
Section 3). It is worth noting that our methods
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Feature set Objectification Shaming Stereotype Violence
LF 59.449 57.858 57.733 59.052
SE 66.983 66.479 70.923 66.730
WE 69.727 68.418 72.291 69.390
BF 72.849 68.452 73.785 67.815
BI 75.112 69.834 59.529 63.551
LF-BF-BI 76.911 68.957 73.855 69.457
LF,BF,BI (mode) 65.997 70.046 64.471 59.740
LF,BF,BI (mean) 45.465 66.330 45.577 8.680

Table 4: Results for the Task B with our custom validation split including the Macro F1-score for each misogynous
trait

Rank Team F1-score
1 SRCB_roc 83.4
2 DD-TIG 79.4
3 Beantown 77.8
36 UMUTeam 68.7
58 Baseline 1 65.0
61 Baseline 2 64.0
61 Baseline 3 63.9
79 Baseline 4 54.3
83 Baseline 5 43.7

Table 5: Official results for the Task A

already consider some good practises concerning
class imbalance, such as setting the initial bias,
adding class weights to the model, heavily weight
the few examples that are available

Finally, the official results for the second chal-
lange are depicted in Table 6. It can be observed
that our best result achieved a 66.3 of F1-score,
outperforming the two baselines proposed: (1) a
hierarchical multi-label model (baseline 1), based
on text representations, and (2) a multi-label model
(baseline 2), based on the concatenation of deep
image and text representations, for predicting the
corresponding misogynous type.

The best result was a F1-score of 73.1, with a
triple tier between teams SRCB_roc, TIBVA, and
PAFC. Our best proposal, however, achieved posi-
tion 28 in the official leader board, outperforming
all baselines.

6 Conclusions

In this paper the participation of the UMUTeam in
the MAMI shared task, concerning the identifica-
tion and categorisation of misogynous content in
memes, is described. Our approach for solving the
binary and multi-label classification tasks consisted

Rank Team F1-score
1 SRCB_roc 73.1
2 TIBVA 73.1
3 PAFC 73.1
28 UMUTeam 66.3
41 Baseline 1 62.1
48 Baseline 2 42.1

Table 6: Official results for the Task B

in the combination of a set of language-independent
linguistic features with contextual images and tex-
tual features obtained from the documents. Our
best result was achieved in the misogynous cate-
gorisation task, with an macro F1-score of 66.3,
reaching position 28 in the ranking.

We consider that the weakest point of our pro-
posal is that we have not handle class imbalance
in the testing dataset. However, we have evaluated
some strategies that have improve our results, as re-
ducing the number of instances and the application
of class weight. As further work, we will evaluate
data augmentation techniques, both for images and
for text in order to deal class imbalance.
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Abstract

This paper describes our system used in the
SemEval-2022 Task5 Multimedia Automatic
Misogyny Identification (MAMI). This task is
to use the provided text-image pairs to clas-
sify emotions. In this paper, We propose
a multi-label emotion classification model
based on pre-trained LXMERT. We use Faster-
RCNN to extract visual representation and
utilize LXMERT’s cross-attention for multi-
modal alignment. Then we use the Bilinear-
interaction layer to fuse these features. Our
experimental results surpass the F1 score of
baseline. For Sub-task A, our F1 score is 0.662
and Sub-task B’s F1 score is 0.633. The code
of this study is available on GitHub1.

1 Introduction

In social networks, meme is mainly used to ex-
press the emotion of netizen. It usually consists
of text and images. But at the same time, memes
also convey some negative emotions, such as neg-
ative comments about women. SemEval-2022
Task5: Multimedia Automatic Misogyny Identi-
fication (MAMI) (Fersini et al., 2022) focuses on
identifying whether meme conveys negative emo-
tions towards women.

• Sub-task A: a basic task about misogynous
meme identification, where a meme should
be categorized either as misogynous or not
misogynous;

• Sub-task B: an advanced task, where the type
of misogyny should be recognized among po-
tential overlapping categories such as stereo-
type, shaming, objectification, and violence.

Since the Transformer (Vaswani et al., 2017)
and BERT (Devlin et al., 2019) models were pro-
posed, researchers have begun to work on image

1https://github.com/HC-super/
SemEval-2022-Task-5

and text multi-modality work in recent years, in
addition to using one modality such as only im-
age or text. Nowadays, for multimodal models,
they can be divided into two categories, single-
stream model and dual-stream model. In the
single-stream model, language information and vi-
sion information are fused at the beginning and
directly input into the encoder. Some represen-
tative single-stream models include ImageBERT
(Qi et al., 2020), Unicoder VL (Li et al., 2020),
VL-BERT (Su et al., 2020), VisualBERT (Li et al.,
2019), etc. In the dual-stream model, in addition
to the LXMERT, we will introduce below, there
were ViLBert (Lu et al., 2019) and UNIMO (Li
et al., 2021), etc.

As for emotion recognition, in previous tasks,
there are also emotion classification tasks based
on multi-modal graphics and text, such as Zhu
et al. (2021) used text-CNN and ALBERT to Iden-
tify the persuasion skills of Meme. Peng et al.
(2020) used the adversarial learning of sentiment
word representations for sentiment analysis. A
tree-structured regional CNN-LSTM (Wang et al.,
2020) and dynamic routing in a tree-structured
LSTM (Wang et al., 2019) were used for dimen-
sional sentiment analysis. In previous SemEval
competitions, Tian et al. (2021) extracted hetero-
geneous visual representations (i.e., face features,
OCR features, and multimodal representations)
and explored various multimodal fusion strategies
to combine the textual and visual representations.
In addition, in multimodal analysis combining im-
ages and text, Yuan et al. (2020) proposed a par-
allel channel ensemble model combining BERT
embedding, BiLSTM, attention and CNN, and
ResNet for sentiment analysis of memes.

The main difficulty of multi-modality is how to
extract the two modalities’ features and express
the semantics more accurately, which involves the
representation of multi-modality, the alignment
between multi-modality, and the fusion of multi-
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Figure 1: Overview of the proposed model specifically shows the general structure of Faster R-CNN and the details
of the embedders.

modality. For the multi-modal task of text and im-
age, the previous practice is to input the text and
image into two different pre-training models for
processing the text and image modalities respec-
tively, and then concatenate the output features
and predict the emotion. However, this method
lacks the processing of the alignment relationship
between modalities. The proposed model consid-
ers the above three problems in the multi-modality
field. Inspired by LXMERT, we use it as the main
framework of our model. We use Faster R-CNN
(Ren et al., 2017) to extract image RoI features and
their position. For texts, we use BERT to extract
text embedding. Then our system uses LXMERT
(Tan and Bansal, 2019) to deal with the multi-
modal alignment of text and image. After when
two modalities are processed by LXMERT, we
use the learnable integration mechanism Bilinear-
interaction layer to fuse these features.

The remainder of this paper is organized as fol-
lows. In section 2, we described LXMERT and our
fusion method in detail. The experimental results
are presented in section 3. Finally, a conclusion is
drawn in section 4.

2 System Overview

Task A and Task B are very similar in model struc-
ture except for the output layer. Therefore, we in-

troduce the model we proposed as a whole. This
model can be divided into four parts. They are the
embedding layer for image and text preprocess-
ing, the encoder for multi-modal presentation and
alignment, the feature fusion layer, and the final
output layer. The proposed model is as shown in
Figure 2.

2.1 Embedding
For images, LXMERT does not simply use a con-
volutional neural network to output feature map
but uses (Anderson et al., 2018) to extract objects
from images. The image processing of LXMERT
is similar to text processing inspired by BERT.
The specific idea is to use Faster R-CNN to select
36 RoI (region of interest) boxes with high confi-
dence for each image and use these boxes as the
features of the image. Similar to the text process-
ing of BERT, the model also considers the position
of each box and embeds the corresponding posi-
tion. 36 objects are extracted by Faster R-CNN as
{o1, . . . , o36}. fj is the 2048 dimension RoI fea-
tures of oj , and pj is its position. As is shown in
figure 2, the processing of these variables is as fol-
lows:

f̂j = LayerNorm (WFfj + bF)

p̂j = LayerNorm (WPpj + bP)

vj =
(
f̂j + p̂j

)
/2

(1)
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where WF and WP are the trainable weights of
fully connected layer in matrix format. Moreover,
bF and bP are the bias of the layer. f̂j and p̂j are
the output of the layer-normalization.

For the text, sentences are converted into tokens
whose length is equal to the length of scent accord-
ing to the practice of WordPiece tokenizer (Wu
et al., 2016). For instance, when the length of the
sentence is n, the word tokens are {w1, ..., wn}.
Then wordwi and its index i (the absolute position
of wi) are projected to vectors by embedding sub-
layers.The specific structure of embedder is shown
in Figure 1. Then added to the index-aware word
embedding:

ŵi = WordEmbed (wi)

ûi = IdxEmbed (i)

hi = LayerNorm (ŵi + ûi)

(2)

The specific structure of embedder is shown in
Figure 1.

2.2 Attention layer

In this subsection, we will give a brief description
of the attention mechanism. The principle of the
attention mechanism is to give a request vector x
and its context vector yj , then, calculate the corre-
lation between x and each yj , and get a correlation
score. The correlation score used in LXMERT is
the dot product of vector x and vector yj . After
calculating the scores of all relevant context vec-
tors yj for x, LXMERT uses softmax to convert
each score into a probability αj to obtain the at-

tention distribution.

aj = score (x, yj)

αj = exp (aj) /
∑

k

exp (ak)
(3)

AttX→Y (x, {yj}) =
∑

j

αjyj (4)

The output of the layer is the weighted sum of all
probabilities with yi.

The self-attention layer in LXMERT is imple-
mented in a similar way to the attention layer, ex-
cept that the query vector x in self-attention comes
from the context-dependent vector yi.

2.3 Encoder
The processing of image modality and text modal-
ity is shown in Figure 2. After embedding two
modalities, LXMERT uses the two transformer
single-modality encoders. One is a text encoder
and another is an image encoder. Each layer in a
single-modality encoder contains a self-attention
(‘Self’) sub-layer and a feed-forward (‘FF’) sub-
layer, where the feed-forward sub-layer is further
composed of two fully-connected sub-layers. We
take NL and NR layers in the language encoder
and the object-relationship encoder, respectively.
We add a residual connection and layer normal-
ization (annotated by the ‘+’ sign in Figure 2)
after each sub-layer as in Transformer (Vaswani
et al., 2017). The features processed by a single-
modality encoder will be first sent to another en-
coder called the cross-modality layer. Its main
function is to align the features of the two modal-
ities. The bi-directional cross-attention sublayer
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Emotion category Number of label ‘1’ Overall proportion
misogynous 5000 50.00%

shaming 1274 12.74%
stereotype 2810 28.10%

objectification 2202 22.02%
violence 953 9.53%

Table 1: Training dataset label analysis.

contains two unidirectional cross-attention sub-
layers, one from image to text and the other from
text to the image. LXMERT stacks them Nx

times, the input of k-th layer is the output of the
previous(k − 1)-th layer. Similarly, the query and
context vectors are the outputs of the (k − 1)-th
layer. The method of processing the text features
hk−1i and the image features vk−1j in unidirectional
cross-attention sub-layers is as follows:

ĥk
i = CrossAttL→R

(
hk−1
i ,

{
vk−1
1 , . . . , vk−1

m

})

v̂kj = CrossAttR→L

(
vk−1
j ,

{
hk−1
1 , . . . , hk−1

n

}) (5)

where ĥki and v̂kj are the output of the cross-
attenton layer.

Then LXMERT further inputs the features pro-
cessed by the cross-modality sublayer to the self-
attention sublayer. This method aimed to further
construct the internal connection of each modality
after alignment. The specific treatment is:

h̃k
i = Self AttL→L

(
ĥk
i ,
{
ĥk
1 , . . . , ĥ

k
n

})

ṽkj = Self AttR→R

(
v̂kj ,
{
v̂k1 , . . . , v̂

k
m

}) (6)

ĥki , v̂kj then processed by self-attention to h̃ki and
ṽkj , which will be further input to an ‘FF’ sublayer,
connected through a residual, and input to the nor-
malization to obtain the final output hki , vkj . For
each text in the data, the model will generate a
Pooler output. We use the Pooler of each sentence
as the output of the text modality.

2.4 Fusion
The method of this layer is inspired by Sina’s
paper FiBiNET by Huang et al. (2019). After
LXMERT outputs two modality features, we need
to further process its output. The dimension of
image features is 36 × 768, while the dimen-
sion of text features is 768. To better integrate
the two modalities, we flatten the image features
and change its dimension to 768 through a feed-
forward layer. Then, each modality will be nor-
malized through layer normalization. Then, the

Image features

  =

W
Text features Fusion  features

Figure 3: Bilinear-interactive layer.

features of each modality are sent to the Bilinear-
interactive layer.

The idea of the Bilinear-interactive layer is as
shown in Figure 3. We establish a k-order square
matrixW , which is trainable. To fuse the informa-
tion of various modalities, 768-dimensional image
features will first inner product with W . Then, for
text features, we use Hadamard product to multi-
ply the previous matrix. We finally use the dropout
layer to improve the generalization ability of the
model.

2.5 Output layer
• Sub-task A: this task is a binary classification

task, so in the output layer, we use a shape
of 768 × 1 full connection layer and use sig-
moid as the activation function to process the
results.

• Sub-task B: this task is a multi-label classi-
fication task. Therefore, in the output layer,
we use a full connection layer whose shape
is 768 × 5. Since each label classification
is equivalent to binary classification, we use
sigmoid as the activation function to process
the results during output.

3 Experiments and Evaluation

3.1 Dataset
The task organizer provided 10000 pieces of data
for training, including meme images with image
serial numbers and text descriptions correspond-
ing to the image. In the training dataset, there
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are 10000 images and an excel table to record the
text corresponding to the images and supervise the
learning of the corresponding labels.

When analyzing the data, we found that differ-
ent labels account for different proportions in the
number of their respective classifications. For the
misogynous tag, both 0 and 1 categories account
for 50%, so the data sample tag is more balanced
for a supervision task. However, for the other four
labels such as sharing, the proportion of label 1 is
only 12.74%. Among 10000 samples, the label of
violence accounts for only 9.53%. Table 1 shows
the proportion of each label in the training dataset.
As shown in Table 1, we find that the proportion of
labels of different categories is very different, and
there is data imbalance. This will make the model
have a strong learning effect on a large classifica-
tion label and easy to classify. However, for the
low proportion of classification tags, it is difficult
to learn and classify.

Based on this, we use Focal loss by (He et al.,
2016) as the loss function of our model.

3.2 Experimental configuration
Our model is based on TensorFlow platform ver-
sion 2.5.0. The main model adopts LXMERT from
the Hugging Face transformers toolkit. We first
useUNC-NLP/LXMERT-base-uncased tokenizer-
Fast to process our text to embeddings, and we
also use UNC-NLP/LXMERT-base-uncased pre-
trained model as our base model LXMERT’s pre-
trained model. The Adam optimizer (Kingma and
Ba, 2015) was used to update all trainable param-
eters. The Hyper-parameters configuration used in
the model is shown in Table 2: We use Faster R-
CNN to extract features of images, which is based
on the paper by (Anderson et al., 2018). In this
task, we use an open-source docker image airsplay
/ bottom-up attention and use a Faster R-CNN pre-
training model based on ResNet101 to extract 36
RoI feature boxes and their corresponding posi-
tion.

3.3 Evaluation Metrics
Sub-task A Systems will be evaluated using
macro-average F1-score. In particular, for each
class label (i.e. misogynous and not misogy-
nous) the corresponding F1-score will be com-
puted, and the final score will be estimated as the
arithmetic mean of the two F1-score. Sub-task B
Systems will be evaluated using weighted-average
F1-score. In particular, the F1-score will be com-

Adam Optimizer config Value
Learning rate 5e-5
epsilon 1e-8
Focal loss config Value
alpha 0.25
gamma 3
batch size 16
epoch 20

Table 2: Hyper-parameters config.

Figure 4: The ablation experiment of the Focal loss for
different hyperparameter

puted for each label and then their average will be
weighted by support, i.e, the number of true in-
stances for each label.

precision =
TP

TP + FP

recall =
TP

TP + FN

(7)

TP is the number of true positives classified by the
model. FN is the number of false negatives classi-
fied by the model. FP is the number of false posi-
tives classified by the model.

F1-score =
2× precision × recall

precision + recall
(8)

F1-score is the harmonic average of recall and pre-
cision.

3.4 Hyperparametric selection
In this section, we mainly introduce the hyperpara-
metric selection of focal loss of the model. We
adjust the two hyperparameters γ and α of Focal
loss and train the model. In the training dataset,
we randomly take 90 % data for the training model
and the remaining 10 % as the test dataset to test
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Model Task A F1-score Task B F1-score
Only image(Base line) 0.639 N/A
Only text(Base line) 0.640 N/A

Only ELECTRA N/A 0.5454
Only ResNet N/A 0.4581

ELECRTA and ResNet with concatenate N/A 0.4816
ELECRTA and and ResNet with Fusion N/A 0.5041

Image and Text(Base line) 0.650 0.621
LXMERT without Fusion 0.655 0.629
LXMERT with Fusion 0.662 0.633

Table 3: Performance comparison of different models. As shown in the table, our proposed model achieves the
best results.

the performance of the model. The loss function
focal loss is modified based on the standard cross-
entropy loss.

This function can reduce the easy-to-classify
samples so that the model can more focus on the
samples that are difficult to classify in training. pt
in cross-entropy loss function reflects the recogni-
tion ability of the model to this sample (i.e. how
well the knowledge is mastered). We define pt is:

pt =

{
p if y = 1

1− p otherwise
(9)

The smaller the pt is, the more difficult it is to
classify, so contribution should be improved to the
loss function when calculating the loss. Therefore,
the specific method of Focal loss is to multiply a
weight with pt before the entropy loss function.
α is balancing factor,α ∈ [0, 1], γ is modulating
factor, γ ∈ [0, 5]. The Focal loss is as:

Focal_loss(pt) = −α(1− pt)γlog(pt) (10)

Thus, when α = 1, gamma = 0, focal loss
is similar to the cross-entropy loss function. By
changing the values of γ and α, we found that
when α = 0.25 and γ = 3, for sub-task B, the
weighted F1 score of our model reached 0.662 and
0.633. See Figure 4.

3.5 Model comparison

We compare our model to a baseline and a model
that combines two pre-trained models based on
ELECTRA (Clark et al., 2020) and ResNet-101
(Ren et al., 2017) in this section. ELECTRA deals
with text modality and ResNet is used to deal with
image modality. The methods of feature fusion are
compared with the Bilinear-interactive layer and

concatenate layer using direct concatenate. The
specific task is based on sub-task B. See Table 3
for details.

4 Conclusion

In this task, we design an image and text
multi-modality model based on LXMERT for
multi-modality representation and alignment, and
modality fusion based on the Bilinear-interaction
layer. Compared with the traditional method
of stitching two pre-training models for each
modality then concatenating two features to pre-
dict emotion, this model considers the representa-
tion, alignment, and fusion of multi-modality, and
achieves better results than the baseline method.

At the same time, we found that after adding
the Bilinear-interaction layer, the performance of
the model is better than using only feature con-
catenate. See Table 3. Meanwhile, when an-
alyzing the data, we found that the background
of the meme graph and some characters in the
graph were not used as the target input model by
Faster R-CNN, which may affect the accuracy of
the model. Meanwhile, the size of the meme im-
age is too small to include multiple targets, and
the target is relatively single, which may affect the
performance of the model.
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Abstract

The detection of offensive, hateful content on
social media is a challenging problem that af-
fects many online users on a daily basis. Hate-
ful content is often used to target a group
of people based on ethnicity, gender, religion
and other factors. The hate or contempt to-
ward women has been increasing on social
platforms. Misogynous content detection is
especially challenging when textual and visual
modalities are combined to form a single con-
text, e.g., an overlay text embedded on top of
an image, also known as meme. In this pa-
per, we present a multimodal architecture that
combines textual and visual features to detect
misogynous memes. The proposed architec-
ture is evaluated in the SemEval-2022 Task
5: MAMI - Multimedia Automatic Misogyny
Identification challenge under the team name
TIB-VA. We obtained the best result in the Task-
B where the challenge is to classify whether
a given document is misogynous and further
identify the following sub-classes: shaming,
stereotype, objectification, and violence.

1 Introduction

Detection of hate speech has become a fundamen-
tal problem for many social media platforms such
as Twitter, Facebook, and Instagram. There have
been many efforts by the research community and
companies to identify the applicability of advanced
solutions. In general, hate speech is defined as a
hateful language targeted at a group or individuals
based on specific characteristics such as religion,
ethnicity, origin, sexual orientation, gender, physi-
cal appearance, disability or disease. The hatred
or contempt expressed towards women has been
drastically increasing, as reported by Plan Interna-
tional (2020) and Vogels (2021). Detection of such
misogynous content requires large-scale automatic
solutions (Gasparini et al., 2018; Suryawanshi et al.,
2020; Menini et al., 2020) and comprehensive an-
notation processes (Zeinert et al., 2021).

The detection of hateful content has been mainly
studied from the textual perspective based on the
Computational Linguistics and Natural Language
Processing (NLP) fields. However, hateful content
on social media can be found in other forms, such
as videos, a combination of text and images, or
emoticons. Misogynous content detection is espe-
cially challenging when textual and visual modali-
ties are combined in a single context, e.g., an over-
lay text embedded on top of an image, also known
as meme. Recent efforts in multimodal representa-
tion learning (Lu et al., 2019; Radford et al., 2021)
pushed the boundaries of solving such problems
by combining visual and textual representations of
the given content. Several datasets have been pro-
posed using multimodal data (Gomez et al., 2020;
Kiela et al., 2020b; Sharma et al., 2020; Praman-
ick et al., 2021; Suryawanshi et al., 2020; Menini
et al., 2020) for various tasks related to hate speech.
Each dataset includes an image and correspond-
ing text, which is either an overlay text embed-
ded on an image or a separate accompanying text
such as tweet text. In contrast to existing datasets
based on memes (Kiela et al., 2020b; Sharma et al.,
2020; Pramanick et al., 2021; Suryawanshi et al.,
2020), the addressed task in this paper aims to iden-
tify misogyny in memes specifically. Among the
previously mentioned work, only the dataset from
Menini et al. (2020) is intended for misogyny de-
tection, in which the text is in the Italian language.
In terms of dataset size, the dataset by Gomez et al.
(2020) contains approximately 150,000 image-text
pairs, while other datasets have moderate sizes that
range between two and ten thousand image-text
pairs. Moreover, existing model architectures that
are evaluated on such benchmark datasets use a
combination of various textual and visual features
extracted from pre-trained visual and textual mod-
els (Kiela et al., 2020a).

The SemEval-2022 Task 5: MAMI - Multimedia
Automatic Misogyny Identification (Fersini et al.,
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Figure 1: Four data samples from MAMI - Multimedia Automatic Misogyny Identification with their corresponding
class labels. Misogynous samples have additional sub-classes from stereotype, shaming, objectification, and
violence.

2022)1 is a new challenge dataset that focuses on
identifying misogynous memes. The memes in this
dataset are composed of an image with an overlay
text. Some samples with their corresponding class
labels are shown in Figure 1. The dataset includes
two sub-tasks as described below.

• Task-A: a basic task about misogynous meme
identification, where a meme should be cate-
gorized either as misogynous or not misogy-
nous

• Task-B: an advanced task, where the type of
misogyny should be recognized among poten-
tial overlapping categories such as stereotype,
shaming, objectification and violence.

1https://competitions.codalab.org/
competitions/34175

In this paper, we present our model architec-
ture for which we submitted results under the team
name TIB-VA. The model architecture is based on
a neural model that uses pre-trained multimodal
features to encode visual and textual content and
combines them with an LSTM (Long-short Term
Memory) layer. Our proposed solution obtained
the best result (together with two other teams) on
the Task-B.

The remainder of the paper is structured as fol-
lows. In Section 2, we describe the proposed model
architecture. In Section 3, the experimental setup,
dataset details, as well as evaluations of the model
architecture are described in detail. Finally, Sec-
tion 4 concludes the paper and outlines areas for
future work.
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Figure 2: The model architecture that combines textual and visual features to output probabilities for Task-A
(misogynous) and Task-B (stereotype, shaming, objectification, violence). FC: Fully connected layer, σ: sigmoid
function.

2 Multimodal Architecture

Our model architecture is a neural model that uses
a CLIP (Radford et al., 2021) model to extract tex-
tual and visual feature representations, which is
pre-trained on over 400 million image-text pairs.
The goal is to investigate whether this model is ap-
plicable to identify misogynous content in memes
where both visual and textual content are consid-
ered. We used recently available ViT-L/14 variant of
CLIP. The tokens in the overlay text and the image
are fed into CLIP Text Encoder and CLIP Image
Encoder respectively. The text encoder outputs a
sequence of 768-dimensional vectors for each in-
put token. These token vectors are then fed into
an LSTM layer with a size of 256. This layer is
another essential part of the proposed architecture.
It learns the contextual relatedness among tokens
in the text by combining all token representations
extracted from the CLIP text encoder branch. The
output from the image encoder is fed into a fully-
connected layer with a size of 256. The output
from an LSTM layer for text and output from the
fully-connected layer for the image are fed into
separate dropout layers (dropout rate of 0.2), the
outputs are concatenated, and then fed into another
fully connected layer with a size of 256. The fi-
nal vector representation is then fed into separate
sigmoid functions for each task. For Task-A, the
sigmoid outputs a single value that indicates the
probability of misogyny. For Task-B, each sub-

class of misogyny (stereotype, shaming, violence,
objectification) has a separate sigmoid function that
outputs a probability value for the corresponding
class. The model architecture is shown in Figure 2.
The source code of the described model is shared
publicly with the community2.

3 Experimental Setup and Results

3.1 Dataset

The SemEval-2022 Task 5: MAMI - Multimedia
Automatic Misogyny Identification (Fersini et al.,
2022) aims at identifying misogynous memes by
taking into account both textual and visual content.
Samples from the dataset are given in Figure 1. The
dataset includes the overlay text extracted from an
image. The challenge is composed of two sub-
tasks. Task-A is about predicting whether a given
meme is misogynous or not. Task-B requires mod-
els to identify sub-classes of misogyny (stereotype,
shaming, violence, objectification) in cases where a
given meme is misogynous. The samples in Task-B
can have multiple labels where a meme can have a
single or all of the above sub-classes of misogyny.
The train and test splits have 10 000 and 1000 sam-
ples, respectively. The distribution of samples for
the corresponding two sub-tasks is given in Table 1.

2https://github.com/TIBHannover/
multimodal-misogyny-detection-mami-2022
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Splits Task-A Task-B Total
Misogynous NOT Shaming Objectification Violence Stereotype

Train 5000 5000 1274 2202 953 2810 10 000

Test 500 500 146 348 153 350 1000

Table 1: Distribution of samples in Task-A and Task-B for train and test splits in the MAMI - Multimedia Automatic
Misogyny Identification dataset.

3.2 Experimental Setup
Training Process: The model architecture is
trained using Adam optimizer (Kingma and Ba,
2015) with a learning rate of 1e-4, a batch size of
64 for maximum of 20 epochs. We decrease the
learning by half after every five epochs. We use
10% of the training split for validation to find the
optimal hyper-parameters.

Implementation: The model architecture is im-
plemented in Python using the PyTorch library.

Team Task-A Task-B
Ours (TIB-VA) 0.734 0.731
SRC-B 0.834 0.731
PAFC 0.755 0.731
DD-TIG 0.794 0.728
NLPros 0.771 0.720
R2D2 0.757 0.690

Table 2: Experimental results for the selected top-
performing teams on the MAMI dataset. The results
on Task-A and Task-B are Macro-F1 and Weighted F1
measures, respectively.

3.3 Results
The official evaluation results3 for the top-
performing teams are presented in Table 2. The
results on Task-A and Task-B are macro-averaged
F1 and weighted-average F1 measures, respectively.
Our model architecture (team TIB-VA) achieves the
best result (0.731) on Task-B along with other two
teams: SRC-B and PAFC. The SRC-B team has
the highest performance on Task-A. Our results on
Task-A are ten points below the best result from the
team SRC-B. Despite this gap in Task-A, our result
is still among the top 20 percentile of all submitted
results.

4 Conclusion

In this paper, we have presented a multimodal
model architecture that uses image and text fea-

3https://competitions.codalab.org/
competitions/34175#results

tures to detect misogynous memes. The proposed
solution is built on the pre-trained CLIP model
to extract features for encoding textual and visual
content. While the presented solution does not
yield top results on Task-A, it achieves the best
performance in Task-B for identifying sub-classes
of misogyny such as stereotype, shaming, objec-
tification, and violence. In future work, we will
explore the combination of multiple multimodal
features that measure different aspects of visual
content such as violence, nudity or specific objects
and scene-specific content.
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Abstract

This paper describes the multimodal deep learn-
ing system proposed for SemEval 2022 Task
5: MAMI - Multimedia Automatic Misogyny
Identification. We participated in both Sub-
tasks, i.e. Subtask A: Misogynous meme iden-
tification, and Subtask B: Identifying type of
misogyny among potential overlapping cate-
gories (stereotype, shaming, objectification, vi-
olence). The proposed architecture uses pre-
trained models as feature extractors for text
and images. We use these features to learn
multimodal representation using methods like
concatenation and scaled dot product atten-
tion. Classification layers are used on fused
features as per the subtask definition. We also
performed experiments using unimodal mod-
els for setting up comparative baselines. Our
best performing system achieved an F1 score
of 0.757 and was ranked 3rd in Subtask A. On
Subtask B, our system performed well with
an F1 score of 0.690 and was ranked 10th on
the leaderboard. We further show extensive
experiments using combinations of different
pre-trained models which will be helpful as
baselines for future work.

1 Introduction

Internet and social media sites have played an inte-
gral role in bringing people together by providing
a simple yet effective way of communication. Over
recent times, internet memes have become a pop-
ular choice for sharing sentiment on the internet.
A meme is an approach, concept, idea, or style
that spreads through social media within a society,
often to express a trend, topic, or significance rep-
resented by it (Peirson and Tolunay, 2018). Memes
shared on the internet are often harmless and used
to express humour; however, recent trends have
increased their usage to spread hate or cause social
unrest (Lippe et al., 2020). Hate speech and, in
particular, hate against women has seen an expo-
nential rise in social media platforms (Pamungkas

et al., 2020). Misogyny, a subset of hate-speech
(Safi Samghabadi et al., 2020), is defined as hate
or prejudice against women, which can be mani-
fested in numerous ways, including social exclu-
sion, sex discrimination, hostility, patriarchy, male
privilege, belittling of women, disenfranchisement
of women, violence against women, and sexual ob-
jectification(Anzovino et al., 2018). Women have
a strong presence online, particularly on Instagram
and Twitter. Women use social media multiple
times a day compared to men(Fersini et al., 2020).
This makes it extremely important to identify and
remove such content to make the internet safer for
women.

Efforts have been made to identify misogy-
nous textual content on social media (Anzovino
et al., 2018) (Fersini et al., 2018b) (Pamungkas
et al., 2020) (Hewitt et al., 2016), however, no ef-
forts have been made to identify the misogynous
content spanning multiple modalities like memes.
Memes are uniquely multimodal and convey in-
formation using images and text. The multimodal
nature of memes allows them to combine harmless
texts/images into misogynist memes when used to-
gether. This poses an exciting challenge as memes
require joint language and visual understanding
to infer their true meaning. SemEval 2022 Task
5: MAMI (Fersini et al., 2022) draws attention
to the problem of identifying misogynous memes
and further identifying the type of misogyny. The
task provides a dataset of misogynist memes and
its type. Both images and the corresponding text
was available as a source of information; the text
content of the provided dataset was in English.

Our proposed system for both subtasks uses
the late fusion of visual and textual features ob-
tained from pre-trained models. We use separate
pre-trained models for each modality, i.e. text
and image, and fuse the features to learn mul-
timodal representation for memes. We experi-
mented with simple concatenation of image and
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text features; and scaled dot product attention
(Vaswani et al., 2017), followed by a convolu-
tion layer to learn multimodal features. Once
multimodal features are learnt, we stack classifi-
cation layers on them as per the subtask require-
ments. We also performed extensive experiments
using a single modality (text/image) to set up com-
parative baselines. We used ViT (Vision Trans-
former) for image feature extraction. We experi-
mented with various PLMs for textual feature ex-
traction like Bidirectional Encoder Representations
from Transformers(BERT), Robustly Optimized
BERT Pretraining Approach(RoBERTa), MPNet,
and Decoding-enhanced BERT with disentangled
attention(DeBERTa).

The results of unimodal experiments showed
that text-only models had a superior performance
than image-only models. We experimented with
feature concatenation and scaler dot product atten-
tion for multimodal models. Feature concatenation
led to only minor performance gains. In case of
scaler dot product attention, choice of query(Q)
(Vaswani et al., 2017) turned out to be an essential
factor. Our experiments showed that image fea-
tures as query performed significantly well for all
models and outperformed all unimodal and concate-
nation baselines. Our best performing model was
a voting ensemble of attention based multimodal
models and achieved an F1 score of 0.757 with
a 3rd rank on the official leaderboard for Subtask
A. For Subtask B we used BERT and ViT based
attention model, which performed well, attaining
an F1 score of 0.690 and 10th rank on the leader-
board. Our code available at GitHub1 for method
replicability.

2 Background

Identifying misogynous content is critical to mak-
ing the internet accessible and safe for women. In
recent times there has been an exponential rise in
hateful content and, in particular, the phenomenon
of hate against women on social media (Pamungkas
et al., 2020) (Hewitt et al., 2016). There have
been previous attempts to identify hate/toxic con-
tent on social media platforms ((Zampieri et al.,
2020) (Zampieri et al., 2019) (Sharma et al., 2021a)
(Pavlopoulos et al., 2021) but none deal specifi-
cally with identifying the hate against women. The
first benchmark dataset to identify misogynous con-

1https://github.com/04mayukh/
R2D2-at-SemEval-2022-Task-5-MAMI

Type Misogynous Not misogynous Total
Train 4742 4758 9500

Validation 258 242 500
Test 500 500 1000

Table 1: Dataset Statistics for Subtask A

tent was proposed in (Anzovino et al., 2018). The
task and the papers of AMI@Evalita 2018 (Fersini
et al., 2018a) and AMI@IberEval2018 (Fersini
et al., 2018b) highlight the difficulties and barriers
involved in automatically identifying misogynist
content on social media. Workshop on Trolling,
Aggression and Cyberbullying (TRAC) shared task
(Kumar et al., 2020) contained a subtask to identify
gender-based identification of hateful content.

There has been a rise in multimodal content
over the internet in the form of memes. Most
efforts to identify toxic and misogynous content
consider only the textual content. Due to the rapid
increase of multimodal content, efforts have been
made to analyse it. Memotion analysis (Sharma
et al., 2020a) aimed to perform sentiment analysis
on internet memes. It involved identifying offen-
sive sentiment as part of its Subtasks. (Sharma
et al., 2020b) used a feature fusion model using
LSTMs, GRUs with attention and attained the best
results in identifying offensive memes. Hateful
memes challenge (Kiela et al., 2020) aimed to
study and identify the hateful nature of internet
memes. Analysing memes is an intrinsically dif-
ficult task as it requires multimodal reasoning ca-
pable of understanding textual and visual features.
The common strategy used in analysing memes
involved learning features for each modality and
then fusing the features to represent joint features.
Work done in (Pranesh and Shekhar, 2020) uses
the simple concatenation of text and visual features
for meme sentiment analysis. (Lippe et al., 2020)
used early fusion models like LXMERT (Tan and
Bansal, 2019), UNITER (Chen et al., 2020) uses
Transformer (Vaswani et al., 2017) architecture and
neural attention to learn joint representation.

Social media provides a platform for numerous
people to express and share their thoughts. Misog-
yny which can be simplified as hate or prejudice
against women, is on the rise in social media plat-
forms. Hence, it is crucial to identify and remove
such content from the internet. Attempts have been
made to identify hateful/toxic and misogynist con-
tent on the internet, but none focuses on multimodal
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Type Shame Stereotype Objectification Violence Total
Train 1271 2810 2201 953 5000

Validation 60 141 105 47 250
Test 146 350 348 153 1000

Table 2: Dataset Statistics for Subtask B

content like memes. SemEval 2022 Task 5: MAMI
- Multimedia Automatic Misogyny Identification
(Fersini et al., 2022) aims to study the misogynist
nature of memes and is divided into two subtasks
which we define as:

Subtask A: Given a labelled dataset D of internet
memes and their text, the objective of the task is to
learn a classification function that can predict if a
meme is misogynous or not.

Subtask B: Given a labelled dataset D of internet
memes and their text, the objective of the task is to
learn a multilabel classification function that can
predict the type of misogyny M for a given misog-
ynous meme, where M ∈ {stereotype, shaming,
objectification and violence}.

Dataset Statistics: The dataset for the task con-
sisted of internet memes and their textual con-
tent. For Subtask A, the memes were labelled as
misogynous/non-misogynous. Misogynous memes
from Subtask A were further labelled into the type
of misogyny. Subtask B involved recognising the
type of misogyny from overlapping categories like
stereotype, shaming, objectification, and violence.
We also split the provided dataset into train and val-
idation sets for training and evaluating the models
before using them to make predictions on the test
set. Table 1 and Table 2 show the dataset statistics
for Subtask A and Subtask B.

3 System Overview

3.1 Pre-trained Models:

Finetuning (Qiu et al., 2020) pre-trained language
models has become a popular approach in the deep
learning community (Sharma et al., 2021b). It
is a form of transfer learning that utilizes mod-
els trained on enormous amounts of unannotated
text data to learn general-purpose representations.
These models are then finetuned on downstream
tasks. In recent times there has been a rapid rise in
pre-trained models in Natural Language Processing
(NLP). The knowledge from these models can be
easily transferred to tasks where small amounts of
data are present, making them extremely useful.
The maximum of these PLMs like BERT (Devlin

et al., 2019), RoBERTa (Liu et al., 2019), MPNet
(Song et al., 2020), DeBERTa (He et al., 2021) are
based on transformers. Pre-trained models used in
computer vision mostly rely on convolutional net-
works. Architectures like classic ResNet (He et al.,
2016) have attained state of the art performance
in large scale image recognition tasks (Kolesnikov
et al., 2020) (Xie et al., 2020). Recently the trans-
former architecture has also been used in computer
vision and performs at par with convolutional net-
works (Touvron et al., 2021) (Dosovitskiy et al.,
2021) (Bao et al., 2022). The use of transform-
ers in computer vision has also led to multimodal
pre-trained models (Kim et al., 2021) (Li et al.,
2019) (Tan and Bansal, 2019). Pre-trained mod-
els provide an efficient and scalable way to use
large-scale learning to simple downstream tasks ef-
ficiently. Next, we describe the pre-trained models
used in our multimodal system.

3.2 Brief overview of Pre-trained models:

Vision Transformer (ViT): ViT (Dosovitskiy et al.,
2021) was proposed by Google and aimed to use
the transformer architecture with minimal changes
to computer vision tasks. Transformers use se-
quences to process data and cannot process grid-
structured data. The images in the transformer were
converted into smaller image patches and used as
sequences. Trainable positional encodings were
used to retain positional information of smaller
image patches. These positional encodings help
to learn the relationship between smaller image
patches. Finally, the whole model is pre-trained
as a classification task on the ImageNet dataset
(Russakovsky et al., 2015).

BERT: It stands for Bidirectional Encoder Repre-
sentations from Transformers (Devlin et al., 2019)
is a PLM based on the transformer architecture. It
is pre-trained on text corpus using Masked Lan-
guage Modelling (MLM) and Next Sentence Pre-
diction (NSP) objective.

RoBERTa: A Robustly Optimized BERT Pre-
training Approach (Liu et al., 2019) was developed
by Facebook. They used the BERT architecture
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with few modifications and obtained better perfor-
mance. They used dynamic masking in their pre-
training and removed the NSP objective. They also
trained the model using a larger batch size with
more data for longer durations.

MPNet: MPNet (Song et al., 2020) was pro-
posed by Microsoft. Most language models are pre-
trained using either MLM or permuted language
modelling objectives. MPNet makes the best of
both permuted language modelling and MLM. It
proposed a unified view of MLM and permuted lan-
guage modelling by splitting and rearranging the
tokens into predicted and non-predicted parts. It
uses MLM to see the positional information of com-
plete sentences and permuted language modelling
to model dependency among predicted tokens.

DeBERTa: DeBERTa stands for decoding-
enhanced BERT with disentangled attention (He
et al., 2021), was proposed by Microsoft and out-
performed human performance on the SuperGlue
benchmark (Wang et al., 2019). It used disentan-
gled attention where two vectors are used, one to
represent the content and the other to store the po-
sitional information. Attention weights are calcu-
lated using disentangled matrices on their content
and relative positions. It also uses an enhanced
mask decoder during pre-training to incorporate
absolute positions while predicting masked tokens.

3.3 Unimodal models (baselines):
Meme classification is an intrinsically complex
problem due to textual and visual cues. Memes
can convey a message using image, text, or both,
thus requiring textual, visual, and multimodal un-
derstanding. We first modelled misogyny detection
using purely unimodal approaches to form compar-
ative baselines as part of our experiments. BERT,
RoBERTa, MPNet, DeBERTa were used for meme
text classification, and ViT was used for meme im-
age classification. The unimodal baselines were
also helpful in understanding the predictive power
of text vs image features. We experimented with
unimodal models only for Subtask A.

3.4 Multimodal models:
The multimodal nature of memes makes it ex-
tremely difficult to understand their true meaning.
They may contain a combination of completely
different visual and textual content, which, when
joined, turn out to be misogynist in nature. To un-
derstand this multimodal nature of memes, we used
two different techniques to join visual and textual

representations to learn multimodal features, which
we will discuss next.

Feature concatenation: To learn jointly from
image and text features, we used late fusion to con-
catenate the features learnt by image and text pre-
trained models. Concatenated features are then fed
to the final classification layer to label the meme
as misogynistic (Subtask A) or identify the type
of misogyny (Subtask B). The image and text pre-
trained models are jointly finetuned with the classi-
fication layer using the classification objective.

Attention-based feature fusion: Attention has
been widely used in various NLP tasks. It forms
the critical component of transformer architecture.
The main idea behind attention is to learn repre-
sentation for a given feature based on its relative
relevance with respect to other features. We use the
same idea to learn joint image-text features using
attention mechanism. We use scaler dot product
attention (Vaswani et al., 2017) which uses con-
cept of queries(Q), keys(K), and values(V ) and is
defined as:

Attention(Q,K, V ) = softmax(QKT /
√
dk)V

where dimension of Q and K is (N, dk), dimen-
sion of V is (N, dv), andN is sequence length. The
output of the attention step has the dimension of
(N, dv), which represent the context vectors. The
language and vision models we used both utilised
transformer architecture. As we know, transform-
ers work with data sequences, which helped us get
highly localised feature representations, allowing
us to use attention to fuse visual and text features.
The features from pre-trained text models represent
the information corresponding to input tokens. The
visual features from ViT represent information cor-
responding toN×N patches from the input image.
We use the dot product attention defined above on
these set of features to learn the multimodal repre-
sentation.

Another essential aspect of scaler dot product
attention is the choice of query and key during
attention. In transformers, self-attention is calcu-
lated, which makes this choice trivial. However,
while using attention on visual and text features, it
is essential to note that attention is not commuta-
tive. Therefore, we performed experiments using
both visual and textual features as the query pa-
rameter in attention. The context vectors obtained
from the attention layer were then passed through
a one-dimensional convolution layer to learn final
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Figure 1: Architecture of our model using attention with image features as query.

multimodal features. These features were finally
flattened and fed to the final classification layers.
Figure 1 shows the architecture diagram of our
attention based multimodal model using image fea-
tures as query.

3.5 Classification layers and finetuning:
We finetuned the unimodal text models by stack-
ing a simple dense and batch normalisation layer
followed by a one-neuron classifier on top of fea-
tures learnt by pre-trained models. We used the
features from [CLS] token in the case of BERT
and RoBERTa and start the token(<s>) in the case
of MPNet and DeBERTa. For ViT we used the
[class] token, which is taken as image represen-
tation. We pass the joint visual and text features
through a batch normalisation and simple dense
layer followed by a one-neuron classifier for multi-
modal models. Visual and text models along with
concatenation/attention layer were wrapped into a
single model for finetuning multimodal models.

4 Experimental setup

4.1 Pre-processing images and texts
Text: We used the ekphrasis (Baziotis et al., 2017)
library for text pre-processing. It normalises time,
date, numbers to a standard format and corrects
misspelt words. Chatwords are commonly used in
memes, so we converted them into their full forms.
PLMs need text to be tokenised before it can be
fed to them. We used Hugging Face’s (Wolf et al.,
2020) implementation of Fast tokenisers2 for each
pre-trained model.

Image: Images need to be pre-processed before
being fed to ViT. We first resized the image to

2Hugging Face’s Fast Tokenizers

224 × 224. We also divided the pixel values by
255 to bring them within a range of 0-1. Finally,
the images were normalised using the mean and
standard deviation of 0.5 across all channels.

4.2 Task-wise model definition:

Subtask A: We experimented with unimodal and
multimodal techniques. Our unimodal baselines
used BERT, RoBERTa, MPNet, DeBERTa for text
and ViT for images. We extracted the features from
these models and passed them through a dense
layer with 32 neurons, followed by a batch nor-
malisation layer. Finally, we used a classification
layer with a single neuron and sigmoid activation
to label the input as misogynous/not misogynous.
For multimodal models, we experimented with con-
catenation as well as attention using BERT and ViT
initially. We passed the fused features through a
batch normalisation and dense layer consisting of
64 neurons, followed by a single neuron classifi-
cation and sigmoid activation. Further, we experi-
mented using a combination of RoBERTa, MPNet,
and DeBERTa with ViT using attention mechanism
(image features as query). The one-dimensional
convolution layer in multimodal models used 32
filters with a kernel size of 30 and stride 15.

Subtask B: We used only the multimodal models
using concatenation and attention to learn multi-
modal features. Subtask B was a multilabel task
where a misogynous meme could belong to more
than one category: stereotype, shaming, objectifi-
cation, and violence. We trained a single model to
classify the memes into the given categories. We
created a multi-branch model where each branch
tries to predict if meme belongs to one of the given
categories. The branch takes the independent text
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and visual features fused using simple concatena-
tion or a combination of attention and 1-D Con-
volution. The fused multimodal features for each
branch are then passed through a 32-neuron dense
layer, batch normalisation layer and finally through
a single neuron classification layer with sigmoid
activation.

4.3 Hyperparameters and training:

We developed our models using TensorFlow3,
Keras 4 (Chollet et al., 2015) and Hugging Face’s 5

implementation of transformer6 (Wolf et al., 2020)
models. The models were trained using GPU/TPU
on Google Colab. We fixed the sequence length
to 80 tokens across both subtasks for text modal-
ity. Sequences greater or shorter than 80 tokens
were accordingly truncated or padded. We used
their base versions for all PLMs; for ViT we used
the base model with the patch size of 16 × 16 and
input image size of 224× 224. Finetuning was
performed using Adam (Kingma and Ba, 2015)
optimiser against a binary cross-entropy loss. We
experimented with learning rates ranging from 2e-
5 to 5e-5 with a batch size of 128 for TPU and
16 for GPU. Finetuning was done for ten epochs,
and weights corresponding to the best results on
the validation set were used to make predictions on
the test set. For Subtask A, we finetuned the en-
tire dataset containing misogynous as well as non-
misogynous memes. For Subtask B, we trained the
model only on misogynous memes to identify the
type of misogyny. For evaluation on the test set,
we used a hierarchical approach where we made
predictions only on samples predicted as misogy-
nous from the best performing model on Subtask
A.

4.4 Evaluation metric:

Subtask A used the macro-averaged F1 score to
evaluate the model’s performance. F1 scores were
calculated individually for each class and then av-
eraged to give the Macro F1 score. For Subtask
B, the weighted-average F1 measure is used as the
evaluation metric. F1 scores are computed for each
label, and then the weighted average is computed
based on true instances belonging to each label
category.

3https://www.tensorflow.org/
4https://keras.io
5https://huggingface.co
6https://huggingface.co/transformers

Figure 2: Confusion Matrix for Subtask A (ensemble
model)

5 Results and Analysis

Table 3 and Table 4 contain the results of our mod-
els for Subtask A and Subtask B. In Subtask A our
best performing model was a voting ensemble of
attention (image as a query) models trained with
different seed values attaining an F1 score of 0.757
and was ranked 3rd on the leaderboard. Figure
2 shows the confusion matrix for our ensemble
model. In Subtask B we used a hierarchical model.
We made predictions only for samples classified
as misogynous by our best performing ensemble
model on Subtask A. Our BERT + ViT model using
attention (image as a query) performed best with
an F1 score of 0.690 and was ranked 10th on the
leaderboard.

Table 3 contains a comparative analysis of uni-
modal vs multimodal techniques we used as part
of our experiments for Subtask A. If we compare
unimodal models, we can see that text-based mod-
els have better performance than the image-based
models on both development and test sets. It points
to the possibility that text present in memes is a
prominent factor in identifying misogynous con-
tent. DeBERTa outperforms other models by a con-
siderable margin among text models, performing
almost equivalent to the multimodal concatenation
model. For multimodal models, we performed ini-
tial sets of experiments using BERT and ViT over
different methods of fusing the modalities. The
simple concatenation worked well and provided a
slight improvement when compared to unimodal
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Model Type Development Test
Precision* Recall* Precision Recall F1 Precision* Recall* Precision Recall F1

BERT

TEXT ONLY

.813 .831 .829 .830 .830 .618 .786 .662 .650 .643
RoBERTa .813 .792 .816 .815 .815 .657 .518 .630 .624 .620
MPNet .821 .835 .835 .836 .836 .645 .712 .662 .660 .659
DeBERTa .850 .792 .837 .834 .835 .665 .734 .684 .682 .6811
ViT IMAGE ONLY .792 .665 .744 .740 .737 .600 .820 .658 .637 .624
ViT + BERT Concatenation .860 .835 .858 .857 .857 .646 .852 .714 .692 .684
ViT + BERT Attention(QUERY-Text) .802 .659 .748 .743 .739 .618 .920 .731 .676 .655
ViT + BERT

Attention(QUERY-Image)

.921 .771 .857 .851 .848 .682 .836 .735 .723 .719
ViT + MPNet .930 .725 .846 .833 .829 .700 .822 .742 .734 .732
ViT + RoBERTa .928 .698 .836 .820 .814 .700 .822 .742 .735 .733
ViT + DeBERTa .949 .725 .857 .842 .837 .683 .824 .731 .721 .718
ENSEMBLE NA .771 .730 .758 .757 .757

Table 3: Experimental results on development and test set for Subtask A. Metrics for misogynist class are represented
using ∗ after the metric name.

Model Type F1 Stereotype F1 Shaming F1 Objectification F1 Violence F1 Weighted Avg.
Dev Test Dev Test Dev Test Dev Test Dev Test

BERT + ViT Concatenation .658 .652 .710 .636 .741 .695 .752 .722 .710 .672
BERT + ViT Attention (QUERY – Image) .648 .666 .663 .67 .745 .708 .747 .711 .696 .690

Table 4: Experimental results on development and test set for Subtask B.

techniques.

Our next set of experiments used scaler dot prod-
uct attention using BERT and ViT. As we can see
from the results, the choice of query(Q) played
a crucial role in calculating the multimodal fea-
tures using attention. BERT + ViT model using
text features as query performed poorly when com-
pared to concatenation and best performing textual
models. However, when we use the same archi-
tecture and change the query(Q) term to image
features, there is a significant gain that outperforms
all other models. The attention mechanism uses
queries(Q), keys(K) and values(V ) to calculate the
context vectors. We can observe from the formula
defined in section 3 that while the query(Q) and
key(K) is used to calculate attention weights, the
final features are a linear combination of attention
weights over the values(V ). Our experiments us-
ing unimodal models showed that textual features
perform better than visual features, almost as good
as concatenation based multimodal models. Using
image features as a query allows us to preserve
the textual features which are used as values(V )
while modelling the correlation between images
and text using query-key matching. This might be
one of the possible reasons for the better perfor-
mance of attention-based models with image fea-
tures as query. We performed further experiments
using only attention-based fusion with image fea-
tures as queries(Q). We used MPNet, RoBERTa,
and DeBERTa with ViT, which outperformed all
unimodal and multimodal baselines. For Subtask

B, we experimented with only concatenation and
attention methods and found that attention (image
as a query) performed better than concatenation.

6 Conclusion

This paper describes our approach for SemEval
2022 Task 5: MAMI - Multimedia Automatic
Misogyny Identification. We propose a dot prod-
uct attention-based mechanism for learning multi-
modal representation from independent text/image
features. Our work also describes a comprehen-
sive set of experiments using unimodal/multimodal
models using different pre-trained models. Our
system performed well, attaining 3rd rank on Sub-
task A and 10th in Subtask B. Our experiments
highlight the non-commutative nature of dot prod-
uct attention, with the choice of the query being a
critical design decision. Our results showed that
textual features dominate over image features in
multimodal understanding. In the future, we would
like to explore more on how attentions learn mul-
timodal features and further compare the role of
individual modalities in multimodal tasks.
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Abstract
This paper describes the multimodal late fu-
sion model proposed in the SemEval-2022
Multimedia Automatic Misogyny Identification
(MAMI) task. The main contribution of this
paper is the exploration of different late fusion
methods to boost the performance of the combi-
nation based on the Transformer-based model
and Convolutional Neural Networks (CNNs)
for text and image, respectively. Additionally,
our findings contribute to a better understand-
ing of the effects of different image prepro-
cessing methods for meme classification. We
achieve 0.636 F1-macro average score for the
binary sub-task A, and 0.632 F1-macro aver-
age score for the multi-label sub-task B. The
present findings might help solve the inequal-
ity and discrimination women suffer on social
media platforms.

1 Introduction

The proposed task, SemEval-2022 Task 5 Multi-
media Automatic Misogyny Identification (MAMI)
(Fersini et al., 2022) consists in the identification
of misogynous memes in English language, taking
advantage of both text and images available as a
source of information.

Overall, our proposed method consists of a
multimodal approach combining different features
(e.g., logits, probabilities, embeddings) of a text
Transformer-based model and an image CNN
model in a late fusion approach. This late fusion
step implies that both models are trained and fine-
tuned separately to the task. Then, the features

from each model are concatenated and jointly used
as input for a final classifier that combines their
knowledge to obtain a final prediction (see Figure
1). Different preprocessing steps, text and image
models, concatenated feature combinations, and
classifiers are explored to obtain the final multi-
modal architecture.

Our presented method has been developed for
sub-task A and B from the MAMI competition in-
dependently. sub-task A consists of misogynous
meme binary classification, where a meme should
be categorized either as misogynous or not misog-
ynous. On the other hand, sub-task B requires
a more detailed multi-label classification where
misogynous content should be recognized among
potential overlapping categories such as stereotype,
shaming, objectification, and violence.

It is noteworthy that our multimodal late fusion
method outperforms single models in both sub-
tasks, being more remarkable in complex sub-task
B. Similarly, considering that both sub-tasks share
the same data, the results of model evaluation on
both tasks show how the model trained on complex
sub-task B can achieve the same results as a model
trained only on binary sub-task A. Therefore, fu-
ture studies should investigate the complexity and
pruning of the required models.

This paper provides new insights into informa-
tion fusion for tackling multimodal tasks, present-
ing an in-depth exploration of different late fu-
sion approaches and image processing steps. The
presented work might help identify malicious be-

771



Image DL model

Text DL model

logits

probability

embeddings

Classifier

logits

probability

embeddings

Prediction

Meme

Image

Transcription

Figure 1: Summarized diagram of the late fusion multimodal system proposed for misogyny detection

haviours towards women on social media.

2 Background

Misogyny comprises every hateful and prejudicial
action against women, ranging from discrimina-
tion, objectification, violence and disdain affecting
women to all the types of manifested male superi-
ority like patriarchy, androcentrism and privilege
(Pamungkas et al., 2020). Misogynist posts rep-
resent one type of hate speech on Online Social
Networks, but it is complex to distinguish them
from other sorts of offensive discourses in an auto-
mated way (Shushkevich and Cardiff, 2019).

Whereas research shows a survey of methods for
misogyny recognition in text including traditional
methods and their ensembles and neural networks
(Shushkevich and Cardiff, 2019), studies reviewing
mysogyny in images are more scarce, and more
work can may be found under the generalization of
sexist content (Campisi et al., 2018; Fersini et al.,
2019) than under the particular topic of misogyny.

These sexist images can be in the form of memes,
multimedia content with a humorist goal composed
of photos and/or illustrations with some text on
it (Sabat et al., 2019). Furthermore, this initially
shows that sexist and also misogynist content on
social networks do not need just the isolated use
of image and text processing but the combination
of both. In fact, having images or texts on their
own may not lead to hateful speech and only their
mix is offensive (Sabat et al., 2019), underlining
the major necessity of architectures that encode the
global meaning of memes.

On the one hand, the latest advances in NLP
for text classification include the use of Transform-
ers, which has demonstrated to be successful in the

detection of misogyny (Samghabadi et al., 2020;
Aldana-Bobadilla et al., 2021). These distributional
models encode the meaning of texts in vectors that
also capture the context (Devlin et al., 2018). How-
ever, they may not be so optimal for the detection
of subclasses, for instance between the absence
and the implicit or sarcastic presence of aggressive-
ness (Samghabadi et al., 2020), or when the female
subject that is attacked is not present in the text
(Aldana-Bobadilla et al., 2021).

On the other hand, when images are also taken
into account, the use of Convolutional Neural Net-
works (CNNs) for images is still present (Gomez
et al., 2020) through image-based state-of-the-art
models such as VGG16, ResNet, DenseNet and
Inception. Specifically, VGG16 works by it-
self for the prediction of offensive memes and
succeeds when combined with different models
for the text inside them (LSTMs, BiLSTMs and
CNNs), which were later compared (Aman et al.,
2021), but when the comparison is among vision
models, depending on the dataset and the multi-
modal approach followed, ResNet50 can surpass
VGG16 and ResNet152 for VGCN-BERT com-
bined pipelines for hateful images detection (Vlad
et al., 2020), but Inception outperforms the F1-
scores from ResNet50 for multimodal approaches
with BiLSTMs for ’troll’ (sarcastic or offensive)
meme detection (Hossain et al., 2021), and just
using DenseNet alone for meme emotion recog-
nition can be even better than ResNet alone and
than either DenseNet or ResNet in image joining
forces with BERT for the textual features (Guo
et al., 2020). Alternative implementations for vi-
sion are Transformers such as VisualBERT, which
represents an architecture with image and text mod-
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els (Lippe et al., 2020) or CLIP, which predicts
the text that better describes the images (Zia et al.,
2021).

Recent research has shown that joining the prob-
abilities from the CNN classification and the out-
put statistical variables obtained after training a
successive classifier (Huertas-Tato et al., 2022) im-
proves the task. These results invite to use this
advance in information fusion for practical appli-
cations such as hateful images and, specifically,
misogynist memes. In line with this theoretical
framework, our work will concatenate the differ-
ent outputs (e.g, logits, probabilities, last hidden
embeddings) from CNN-based image classification
and from Transformers-based text classification to-
wards a better performance in MAMI.

3 System overview

As previously mentioned, our proposed approach
is depicted in Figure 1. This section details the
preprocessing steps, the text and image models em-
ployed, and the methodology followed to train the
final multimodal late fusion classifier that combines
different features.

3.1 Image Preprocessing

To rule out the possibility of text misleading the
image CNN model and to enhance its focus on
the image, three different preprocessing steps are
separately explored. Consequently, three different
image models are trained: (1) no preprocessing, (2)
blacking out, and (3) inpainting the text from the
image. These preprocessing methods make use of
EasyOCR1 and OpenCV (Bradski, 2000). Figure
2 illustrate some examples of the results of these
preprocessing steps. Additionally, an application
for applying the inpainting preprocessing to im-
ages has been publicly published with the aim of
contributing to the scientific community2.

3.2 Text Preprocessing

Ftfy package (Speer, 2019) was used as a prepro-
cessing step for fixing text and ensuring it is uni-
formly UTF-8 encoded. URLs, emojis, or other
native features present in the text are not modified
as we consider these characteristics crucial for this
task.

1https://github.com/JaidedAI/EasyOCR
2https://huggingface.co/spaces/Huertas97/Inpaint Me

Original Blacked	out Inpainted

Figure 2: Example of different image preprocessing
steps

3.3 Explored Models
According to the models employed, it is worth men-
tioning that different Transformer-based models
publicly available at Hugging Face (Wolf et al.,
2020) are evaluated as the textual model:

• bertweet-base (Nguyen et al., 2020): large-
scale language model pre-trained for English
Tweets based on RoBERTa (Liu et al., 2019)
pre-training procedure and BERT architecture
(Devlin et al., 2019).

• all-distilroberta-v13: pre-trained
distilroberta-base (Sanh et al., 2019)
model fine-tuned on a 1B sentence pairs
dataset using a contrastive learning objective.

• all-miniLM-L6-v24: pre-trained Microsoft
MiniLM (Wang et al., 2020) model fine-tuned
on a 1B sentence pairs dataset using a con-
trastive learning objective.

• twitter-roberta-base-offensive (Bar-
bieri et al., 2020): roberta-base model
trained on 58M tweets and finetuned for offen-
sive language identification with the TweetE-
val benchmark.

• twitter-xlm-roberta-base (Barbieri
et al., 2021): xlm-roberta-base model
trained on 198M multilingual tweets.

For image processing we have used CNNs,
which extract features with convolutional layers
and deduce knowledge with dense layer. We use

3https://huggingface.co/sentence-transformers/all-
distilroberta-v1

4https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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Optimization Hyperparameters Values

Text Model

learning rate min = 1e-6 , max = 1e-3
epochs min = 1, max = 10

weight decay min = 0 , max = 1
gradient accumulation steps min = 1 , max = 4

scheduler

constant schedule
constant schedule with warmup
linear schedule with warmup
cosine schedule with warmup
cosine with hard restarts schedule with warmup
polynomial decay schedule with warmup

optimizer AdamW
sliding window True, False
pos weigths* [2, 1, 1, 2], [2, 0.5, 0.5, 2], [1, 1, 1, 1]

Image Data
augmentation

shear range 0.1
zoom range 0.1

rotation range 45
width shift range 0.1
height shift range 0.1

horizontal flip True
brightness range 0.7-1.1

channel shift range 0.05

Image Model

optimizer Adam
learning rate 0,001

preprocess input True
pos weigths* [1,1,1,1], [1, 3.96, 1.78, 2.27, 5.25]

percentage of frozen layers 0.1, 0.3*

Auto-sklearn

time left for this task 60, 120, 500, 3600, 7200
memory limit 6072

exclude None
resampling strategy Cross Validation 5 folds

ensemble size 10

Table 1: Hyperparameters optimized during the development of the proposed approaches. *Only for multi-label
subtask B.

different architectures pretrained from state of the
art:

• VGG16 (Simonyan and Zisserman, 2014): it
is composed by a feed-forward set of units
and is the most straightforward without addi-
tional forward connections or auxiliary out-
puts. However this architecture has to adjust
lots of parameters.

• ResNet50 (He et al., 2016): The main advan-
tage of this architecture is the shortcut con-
nections, these links skip one or more layers,
aggregating their output to the outputs of the
stacked layers.

• DenseNet201 (Huang et al., 2017): Instead
of adding more layers to the architecture, it
increases the number of connections between
units, connecting every units with later ones.

• Inception v3 (Szegedy et al., 2016): it fac-
torises the convolution into smaller ones (that
can be asymmetric) to reduce the cost. More-
over, this architecture has an auxiliary classi-
fier between layers, that acts as regularizer.

• EfficientNetB0 (Tan and Le, 2019): This
architecture uses a compound coefficient to
scale all dimensions of depth, width and reso-
lution.
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Finally, the Auto-sklearn package (Feurer et al.,
2015, 2020) is used to automatically explore a wide
range of models and preprocessing approaches
available in scikit-learn and identify the best en-
semble configuration for the multimodal late fu-
sion step. We opted for this method because it
implements Bayesian Optimization for searching
the optimal pipeline configuration and Ensemble
Selection to choose the suitable model.

3.4 Multimodal late fusion approaches

From the text and image models, three features are
used for the late fusion step; the output of the ac-
tivation function from the last classification layer
(i.e., probabilities) and its input (i.e., logits), and
the vectorize output representation of the last hid-
den layer (i.e., embeddings). In order to develop
the final multimodal classification predictions, dif-
ferent late fusion approaches for combining these
features are considered.

Naive baseline approaches consist of averaging
or taking the maximum logit or probability val-
ues from both models for each class or label de-
pending on the sub-task. An advanced baseline
approach consists of finding the weights for each
model that will give the lowest mean square er-
ror (MSE) score between multimodal predictions
and real values using logits or probabilities. For
this purpose, Sequential Least Squares Program-
ming (SQLSP) from Scipy package (Virtanen et al.,
2020) is the optimization method used. Finally,
logits, probabilities or embeddings from both mod-
els are used as input in Bayesian Optimization for
searching the optimal pipeline configuration and
Ensemble Selection using Auto-sklearn.

4 Experimental Setup

As previously mentioned, both sub-tasks share the
same data and the official metric for system evalu-
ation, F1-macro averaged. The dataset consists of
10.000 memes and its corresponding text transcrip-
tions. To develop the proposed approach, balanced
data for sub-task A is split into 64% train, 16%
validation and 20% test in a stratified way using
scikit-learn package (Pedregosa et al., 2011) with
42 as random state. Regarding multi-label sub-task
B where the data is unbalanced, the data is split
into 64% train, 16% validation and 20% test using
the “iterative train test split” method from scikit-
multilearn package (Szymański and Kajdanowicz,
2018) to equally represent the different combina-

tion of overlapping labels in the splits.
To obtain the best results and avoid overfitting,

we optimized several hyperparameters. Table 1
summarizes the hyperparameters tuned for both
sub-tasks using their respective development sets.
The experiment tracking and the selected hyper-
parameter values are published in Weight and Bi-
ases56. The resulting model are openly available in
HuggingFace7.

5 Results

5.1 Sub-task A - Binary misogyny
classification

5.1.1 Image
Firstly, we analysed which of the three pre-
processing techniques performed best for this task,
where we observed that the images without pre-
processing showed the best results. Therefore,
all models were trained on this dataset. Table 2
shows performance from the five models, where the
best model is EfficientNetB0 which achieves
the highest F1 score.

Image Model F1 macro Avg
VGG16 0.5224
ResNet 0.6143

DenseNet 0.6608
EfficientNet 0.6825

Inception 0.6792

Table 2: Evaluation results of image models in the vali-
dation split of subtask A.

5.1.2 Text
The Trasnforme-based models results for valida-
tion split are shown in Table 3. As can be derived
from these results, bertweet-base model has the
best score and it is the one selected for the next
multimodal late fusion step.

5.1.3 Multimodal Late Fusion
As explained in 3.4 different late fusion methods
are explored. The best score is obtained using Auto-
sklearn and probabilities from both text and im-
age models as input data (see Table 4). The best
Auto-sklearn ensemble configuration is composed

5Tracking experiments W&B sub-task A
6Tracking experiments W&B sub-task B
7Multi-label sub-task B model in Hugging Face hub

775



Text Model F1 macro Avg
bertweet-base 0.8320
all-miniLM-L6-v2 0.8254
all-distilroberta-v1 0.8239
twitter-roberta-base-offensive 0.8082
twitter-xlm-roberta-base 0.7950

Table 3: Evaluation results of Transformer-based mod-
els in the validation split of subtask A.

Late Fusion Method F1 macro Avg
Avg Logit 0.7874
Avg Probs 0.8410
Max Logit 0.8425
Max Probs 0.8410

Weighted Avg Logit 0.8307
Weighted Avg Probs 0.8430
Auto-sklearn Logit 0.8400
Auto-sklearn Probs 0.8430
Auto-sklearn Embs 0.7890

Table 4: Evaluation results of multimodal late fusion
methods in the validation split of subtask A.

of three SGD classifiers 8.
These scores presented are remarkable, as logits

contain more information about the model’s deci-
sions, but the concatenation of probabilities as late
fusion input proves to be more useful for sub-task
A. This might be explained by the fact that logits
from different models have different distributions,
not being as useful as normalized inputs.

5.2 Sub-task B - Multi-label misogyny
classification

5.2.1 Image

In multilabel task the preprocessing is interesting.
The third technique, inpainting the text from the
images has better performance than the no prepro-
cessing, however, the difference between them is
low (as f1 score is 0.02) so it was decided to con-
tinue with the non-preprocessed images in order
to maintain the methodology of the sub-task A. In
this sub-task the best model is EfficientNetB0,
as in the first one, which reached the highest per-
formance.

8https://github.com/AIDA-UPM/AIDA-UPM-SemEval-
2022-Task-5-MAMI-

Image Model F1 macro Avg
VGG16 0.2626
ResNet 0.27734

DenseNet 0,2857
EfficientNet 0.3477

Table 5: Evaluation results of image models in the vali-
dation split of subtask B.

5.2.2 Text
As in sub-task A, bertweet-base model has the
best score and it is the one selected for the next
multimodal late fusion step (see Table 6).

Text Model F1 macro Avg
bertweet-base 0.5785
all-distilroberta-v1 0.5570
twitter-roberta-base-offensive 0.4666
twitter-xlm-roberta-base 0.4218
all-miniLM-L6-v2 0.2057

Table 6: Evaluation results of Transformer-based mod-
els in the validation split of subtask B.

5.2.3 Multimodal Late Fusion
As in sub-task A, Auto-sklearn and probabilities
from both text and image models as input data (see
Table 7) shows the best results. The Auto-sklearn
ensemble configuration is composed of Random
Forest MLP, and Naive Bayes classifiers.

It is interesting to note that in a more in-depth
analysis of the classification results performed by
the different fusion methods, the simplest (e.g., av-
erage, max) only learned to correctly separate the
majority label (misogynous or non-misogynous).
However, the models using Auto-sklearn did man-
age to also classify the less frequent labels.

Finally, we report our test competition results
along with the baseline results from the organizers
of the competition. For sub-task A, the baselines
are grounded a fine-tuned sentence embedding us-
ing the USE pre-trained model; fine-tuned image
classification model grounded on VGG-16; and a
concatenation of deep image and text representa-
tions using a single layer neural network. For sub-
task B, the baselines are grounded on a multi-label
model, based on the concatenation of deep image
and text representations; a hierarchical multi-label
model, based on text representations, for predicting
if a meme is misogynous or not and, if misogynous,
the corresponding type.
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Late Fusion Method F1 macro Avg
Avg Logit 0.4475
Avg Probs 0.2014
Max Logit 0.4289
Max Probs 0.3308

Weighted Avg Logit 0.4977
Weighted Avg Probs 0.1627
Auto-sklearn Logit 0.5411
Auto-sklearn Probs 0.5522
Auto-sklearn Embs 0.3897

Table 7: Evaluation results of multimodal late fusion
methods in the validation split of subtask B.

Subtask Method F1 macro
Avg

A

Our Late Fusion method 0.636
Baseline Text 0.640
Baseline Image 0.639
Baseline Image Text 0.543

B

Our Late Fusion method 0.632
Baseline Hierarchical M. 0.621
Baseline Flat Multilabel 0.421
Baseline Image Text 0.000
Baseline Text 0.000
Baseline Image 0.000

Table 8: Competition results

6 Conclusion

As a conclusion of the results obtained in the ex-
ploration and evaluation of models for the devel-
opment of the multimodal late information fusion
architecture, it is evident that the contribution be-
tween image and text is different, being the text
much more informative in both sub-tasks.

In the case of the image model, it is interesting
to note that the different proposed pre-processing
techniques do not seem to have a beneficial effect
on model training. Although further future analysis
is needed, one possible justification could be that
the information supplied by the text present in the
images provides valuable information rather than
noise in the CNN models.

Finally, it is also important to point out that in
sub-task A, the multimodal strategy is not as rele-
vant as expected as the baseline strategy that com-
bines image and text information and our approach
has the lowest scores in Table 8. A possible expla-
nation for the results obtained could be the differ-
ence distribution between train and test sets of the
competition, which would have facilitated overfit-
ting in the development of the models in sub-task
A. On the contrary, our method proves to be benefi-
cial in sub-task B. Therefore, this could reinforce
the idea of overfitting in sub-task A since sub-task
B is more complex and better results are obtained.
Following the same line, obtaining text models in
sub-task B that maintain sub-task A performance
supports future research exploring pruning tech-
niques to avoid this situation. Additionally, this
study provides a springboard for exploring the late
fusion methods applied in this work in different
modal problems and other domain scenarios, and
comparing them to an end-to-end deep classifier.

In general, our results from the presented mul-
timodal late fusion approach are encouraging to
counteract malicious misogynistic behavior against
women on social media.
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Abstract

This paper presents a deep learning system that
contends at SemEval-2022 Task 5. The goal is
to detect the existence of misogynous memes
in sub-task A. At the same time, the advanced
multi-label sub-task B categorizes the misog-
yny of misogynous memes into one of four
types: stereotype, shaming, objectification, and
violence. The Ensemble technique has been
used for three multi-modal deep learning mod-
els: two MMBT models and VisualBERT. Our
proposed system ranked 17th place out of 83
participant teams with an F1-score of 0.722 in
sub-task A, which shows a significant perfor-
mance improvement over the baseline model’s
F1-score of 0.65.

1 Introduction

Participating in online social networks (OSN) has
become more common nowadays, especially for
women, as 78 percent of them use social media
several times per day compared to 65 percent of
the men. Anyhow, hateful speech against women
did not stop until offline methods but also found
its way on the web using popular communication
tools such as memes. A meme is an online spread
of captioned pictures or GIFs meant to be funny
or critical to people or society. It has the most
humor characteristics on social network platforms.
However, in a short period, some minorities started
to develop memes aiming at gender discrimination,
inequality, and spreading hate against women.

Due to the growth of Artificial Intelligence (AI),
Natural Language Processing (NLP), and Com-
puter Vision (CV), the machine started to recognize
and understand languages and images more than
ever. Therefore, preventing hate speech and misog-
yny became more achievable by applying these
methodologies. This paperwork presents our partic-
ipation in SemEval-2022 Task 5 (Elisabetta Fersini,

2022) which aims to detect misogyny in memes. In
this study, MultiModal BiTransformers (MMBT)
(Kiela et al., 2019) and VisualBERT (Li et al., 2019)
have been used to build the proposed model by em-
ploying the ensemble technique. The proposed
model reaches an F1-score of 0.722 in sub-task A
depending on the provided 10K memes dataset and
without external datasets.

This paperwork is constructed as follows: Sec-
tion 2 presents the related work, followed by Sec-
tion 3, which clarifies the task description. Section
4 shows dataset details and preprocessing proce-
dures. Section 5 shows off the architecture of the
solution system. Finally, sections 6, 7, and 8 pro-
vide the experiments, results, and conclusion.

2 Related Work

Several researchers are attracted to detecting hate,
harm, sarcasm, and satire on Social media (Faraj
and Abdullah, 2021; Isaksen and Gambäck, 2020;
Watanabe et al., 2018). Internet Memes are consid-
ered one of the most popular ways to communicate
on all topics on social media. Since it is a global
issue and a world trend, many researchers have
started to compete in preventing harmful memes
from pervasion. This paperwork (Shang et al.,
2021) aimed to detect offensive analogy memes
to prevent this from spreading out. The focus was
here on images as it attracts more people and has
richer information than the text alone.

One competition from Facebook (Kiela et al.,
2021) aimed to detect hate speech in memes as it is
hard to be tackled by having humans checking out
every meme. From their vision, hate speech was
understood as "any communication that disparages
a target group of people based on some character-
istic such as race, color, ethnicity, gender, sexual
orientation, nationality, religion, or other character-
istics" (Levy et al., 2000). The dataset consisted of
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12540 memes, split between 7834 for non-hate and
4706 for harmful.

On the other hand, deep learning models have
been successfully applied to learning features for
single modalities: text (Abdullah and Shaikh, 2018;
Abedalla et al., 2019) and images (Abedalla et al.,
2021, 2020). Moreover, learning-based models
that combine elements from multiple modalities
are more robust in visual-linguistic tasks such as
detecting hateful memes (Sandulescu, 2020).

3 Task Description

The main objective of this task (Elisabetta Fersini,
2022) is the identification of misogynous memes.
Memes can be identified using text, images, or both.
Using both images and text surely produces better
results. The task is divided into two sub-tasks:

• Sub-task: This task aims to classify the meme
as either misogynous or not misogynous.

• Sub-task B: this is a multi-label task, and the
goal is to identify the type(s) of misogyny
in misogynous memes. Types of misogyny
are stereotypes, shaming, objectification, and
violence.

Although we did not use any external datasets,
it is allowed for participants to do so.

4 Dataset

4.1 Dataset Description
The training dataset provided by (Elisabetta Fersini,
2022) consists of 10,000 memes along with a file
containing the extracted text, image file names,
and five columns representing labels. The evalu-
ation dataset consists of 1,000 memes, provides
the extracted text and does not contain the labels.
Competitors are supposed to use the evaluation
dataset to produce and submit evaluation results.
Memes were gathered by searching on social me-
dia platforms, such as Twitter and Reddit, and
other meme creation and sharing websites, such
as 9GAG, Knowyourmeme, and Imgur.

4.2 Data Preprocessing
Regarding the extracted text of memes, it is consid-
ered clean, and there is not much pre-processing
required, but a lot of memes contain a web address
in the bottom-right corner, which might better be
removed. Also, Twitter hashtags and usernames are
removed. Furthermore, any unwanted non-English

Statistical Property Value
Maximum sentence length 325
Minimum. sentence length 2

Average sentence length 21.46
Standard deviation of sentence length 16.97

Table 1: Statistical properties of memes text

or non-understandable characters are removed. The
previously mentioned pre-processing steps provide
a slight performance improvement. Regarding the
images, no pre-processing is applied.

4.3 Data Analysis
The dataset contains 5,000 misogynous memes and
5,000 non-misogynous memes. Thus, the dataset
is perfectly balanced for sub-task (A). As shown
in Table 1, the longest sequence of memes text
is 325 words long, and the shortest sequence is
only two words long. The average sentence length
is 21.46, and the standard deviation of sentence
lengths is 16.97. The previous statistics indicate
that most sequences are nearly 2-38 words long,
and fewer sentences contain more than 38 words.
Therefore, the chosen threshold for sequence length
(maximum sequence length) is 64.

5 Systems Description

5.1 Text-based Model
The first approach uses pre-trained language mod-
els to identify misogynous memes based on text.
We ended up choosing RoBERTa (Liu et al., 2019)
as it is one of the state-of-the-art language mod-
els. Unfortunately, relying on text-only is not good
enough to classify memes robustly.

5.2 Image-based Model
The second approach uses pre-trained computer
vision models to identify misogynous memes based
on images. The chosen model is VGG (Simonyan
and Zisserman, 2014), it is one of the most popular
Convolutional Neural Network (CNN) models, and
the chosen variant is VGG-16 which consists of 16
layers. Unfortunately, similar to text, using images
only does not classify memes robustly.

5.3 Multimodal Models
As memes contain both text and images, it is rea-
sonable to use deep learning models that use both
text and images to produce more accurate and ro-
bust predictions.
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The first model used in our solution is Mul-
timodal Bi-Transformers (MMBT) (Kiela et al.,
2019). MMBT was developed based on the trans-
former architecture. It uses the attention modules
of the transformer to combine embeddings of dif-
ferent modalities (text and image in our case). The
key approach used in MMBT is to take the image
as an input, extract its features using a CNN model,
concatenate the generated features with the text
input tokens used in BERT (Devlin et al., 2018),
and feed the model with the text and image tokens.
We used ResNet-152 (He et al., 2016) as the CNN
model for feature extraction (image encoding) in
MMBT.

The second model in our solution is VisualBERT
(Li et al., 2019) which is built to fulfill a wide
range of vision and language tasks. It consists
of a stack of transformer layers similar to BERT
architecture to prepare embeddings for image-text
pairs. BERT tokenizer is used as a text encoder.
For images, a custom pre-trained object detector
must be used to extract regions and bounding boxes
fed to the model as visual embeddings. We used
Detectron2 (Wu et al., 2019) to generate the visual
embeddings using MaskRCNN+ResNet-101+FPN
model checkpoint.

As shown in Figure 1, The final model is con-
structed using the voting technique between two
MMBT models and the VisualBERT model. Both
MMBT models use ResNet-152 for image encod-
ing, but they differ slightly as one uses BERT-base-
uncased for the text while the other uses BERT-
large-uncased. It is worth mentioning that the two
MMBT models were trained using different ran-
dom seeds.

6 Experiments

Regarding sub-task A, we have experimented with
RoBERTa as it is one of the state-of-the-art lan-
guage models. We have used Huggingface (Wolf
et al., 2019) and Pytorch (Paszke et al., 2019) to
implement roberta-base. We chose a maximum
sequence length of 64. Following this, we have ex-
perimented with VGG-16, which is one of the most
popular pre-trained CNN models, and implemented
it using Keras (Chollet, 2015). We set the model to
expect images of size 300x300 and added a dropout
layer with a drop rate of 0.3, followed by a dense
layer. For RoBERTa and VGG-16, we split the pro-
vided dataset into training and validation datasets
with a validation split value of 0.1. Both RoBERTa

Model RoBERTa VGG-16 MMBT VisualBERT

Epochs 2
5

50
5
10

5
10

Batch
Size

32
64

32
64

16
32
64

32
64

Learning
Rate

2e-5
5e-5

0.001
1e-5
2e-5
5e-5

3e-5
5e-5

Weight
Decay 0 0

0.0001
0.001

0.001

Gradient
Acc.
Steps

1 1
1
2

1

Random
Seed 17 17

1337
17

42

Table 2: Hyper-parameters of all models for sub-task A.

and VGG-16 performed poorly, as memes classifi-
cation tasks require models that understand images
and text.

Subsequently, we have experimented with two
vision+language models: MMBT and VisualBERT.
Both of them were implemented using Hugging-
face and Pytorch. MMBT was experimented with
using ResNet-152 as image encoder and BERT
as text encoder. Two BERT variants were used:
BERT-base-uncased and BERT-base-large. Visual
embeddings for visualBERT were generated using
MaskRCNN+ResNet-101+FPN model checkpoint
from Detectron2. For MMBT and VisualBERT, we
used k-fold cross-validation with a k value of 5. In
other words, the training and validation datasets
consist of 8000 and 2000 memes, respectively, and
after each epoch, the validation dataset switches to
a completely different 2000 memes. This allows
the models to train on the entire dataset eventually.
In our experiments, MMBT outperformed Visual-
BERT. AdamW optimizer was used for all models.
Table 2 shows different sets of hyper-parameters
used for all previously mentioned models.
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Figure 1: The architecture of the final system for sub-task A. ŷ represents the final prediction after applying voting
technique between models. The pipeline also illustrates some pre-processing steps before modelling.

7 Results

The final results for sub-task A are produced us-
ing the ensemble technique between two MMBT
models trained using different random seeds and
VisualBERT. RoBERTa and VGG-16 were not in-
cluded in the final system as they performed poorly
compared to MMBT and VisualBERT. As shown in
Table 3, both MMBT models slightly outperformed
VisualBERT, but the latter still has a positive effect
on the final result after the ensemble.

Looking at Figure 2, which shows the confusion
matrix for the final results in Sub-task A, We can
see that the final system succeeded in predicting
359 non-misogynous memes and 363 misogynous
memes. The system also failed to identify 137
misogynous memes and mistakenly identified 141
non-misogynous memes as misogynous.

Model
MMBT
(ResNet +
Bert-base)

MMBT
(ResNet +
Bert-large)

VisualBERT Ensemble

Epochs 5 5 5 *
Batch
Size 32 32 32 *

Learning
Rate 1e-5 1e-5 5e-5 *

Weight
Decay 0 0 0.001 *

Gradient
Acc.
Steps

1 1 1 *

Random
Seed 1337 17 42 *

F1-Score 0.695 0.697 0.679 0.722

Table 3: Final experiments used in sub-task A. The
final F1-score of 0.722 is obtained by using ensemble
technique between the three models.

Figure 2: Confusion matrix for the final results in sub-
task A

8 Conclusion

This paper presented our deep learning system that
contended at SemEval-2022 Task 5. We experi-
mented with different deep learning models, start-
ing with the RoBERTa language model and the
VGG-16 CNN model. Subsequently, we exper-
imented with vision and language models, such
as MMBT and VisualBERT, which significantly
outperformed VGG-16 and RoBERTa. Using en-
semble technique between two MMBT models and
VisualBERT produced an F1-score of 0.7222 which
led to ranking 17th place in sub-task A.
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Abstract 

Misogynistic memes are rampant on social 

media, and often convey their messages 

using multimodal signals (e.g., images 

paired with derogatory text or captions). 

However, to date very few multimodal 

systems have been leveraged for the 

detection of misogynistic memes. Recently, 

researchers have turned to contrastive 

learning solutions for a variety of problems.  

Most notably, OpenAI’s CLIP model has 

served as an innovative solution for a 

variety of multimodal tasks. In this work, 

we experiment with contrastive learning to 

address the detection of misogynistic 

memes within the context of SemEval-2022 

Task 5. Although our model does not 

achieve top results, these experiments 

provide important exploratory findings for 

this task.  We conduct a detailed error 

analysis, revealing promising clues and 

offering a foundation for follow-up work.   

1 Introduction 

Hateful expressions on the Internet are 

widespread and mostly based on religion, gender, 

race, or physical attributes (Lippe et al., 2020). 

Such language exacerbates damaging societal 

problems such as racism, sexism, and other types 

of discrimination. In particular, misogynistic abuse 

has become very prevalent and poses a serious 

problem in cyberspace (Citron, 2014). Although 

extensive research on hate speech and misogyny 

has been conducted (Kumar et al., 2020), it has thus 

far centered on the analysis of text or images alone.  

Memes, or social media images that 

communicate messages through the creative use of 

imagery understood to carry specific rhetorical 

value among members of a community, are a 

common platform for misogyny and hateful 

expressions. Approximately 78% of women use 

image-based social media multiple times per day 

(compared to 65% of men) (Fersini et al., 2022), 

making exposure to this harmful content 

alarmingly common.  Classifying memes is 

challenging because of their multimodal interplay 

between image and text, as well as their region-

specific interpretation, and existing multimodal 

approaches do not perform very well in the 

classification of hateful memes (Kiela et al., 2020). 

The underlying goal of SemEval-2022 Task 5 was 

to address this research gap, tackling the challenge 

of identifying misogynistic memes using 

multimodal data by inviting researchers to 

experiment with a variety of approaches. 

Our team, UIC-NLP, investigated an adapted 

version of the Contrastive Language-Image Pre-

training (CLIP) technique recently established and 

applied with success to numerous other tasks 

(Radford et al., 2021; Conde and Turgutlu, 2021; 

Galatolo et al., 2021). Our model, recorded on the 

leaderboard in the 6th leaderboard cluster under the 

OpenReview username “Charicfc,” ranked 71st out 

of 83 participants and obtained an average F1 score 

of 0.62.  We analyze our model’s predictions and 

offer insights and recommendations for improving 

upon it in the future. 

2 Background 

2.1 SemEval-2022 Task 5 (MAMI) 

SemEval-2022 Task 5 was created to address the 

rise in the use of memes as a form of hate against 

women, which contributes to sexual stereotyping 

and gender inequality. The data used for this 

challenge is comprised of English-language memes 

collected from the web and manually annotated via 

crowdsourcing platforms. Each data sample has an 

image, its raw text in English (transcript), a binary 

annotation indicating the presence of misogyny, 

and (if applicable) the type of misogyny (shaming, 

objectification, stereotype, or violence). Our model 

addresses Subtask 1, which focuses on binary 

UIC-NLP at SemEval-2022 Task 5: Exploring Contrastive Learning for  

Multimodal Detection of Misogynistic Memes 
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classification of memes as misogynist or not 

misogynist. The output for a given sample is a 

confidence score for the predicted class.  Although 

no approaches have sought to perform multimodal 

detection of misogynistic memes to date, we 

review work on classifying misogynistic 

expressions in text and multimodal classification of 

hateful memes in the following sections.  

2.2 Identifying Misogyny in Text 

Previous approaches in the related IberEval 2018 

Automatic Misogyny Identification (AMI) task for 

misogyny detection in tweets (Fersini et al., 2018) 

leveraged statistical classification models, 

including variations of Support Vector Machines 

(SVM) (Nina-Alcocer, 2018; Pamungkas et al., 

2018). Other recent work towards identifying 

misogyny in text has leveraged CNNs, LSTMs, and 

combined representations from models like BERT 

(Basile et al., 2019; Parikh et al., 2021). Recently, 

the Evalita 2020 AMI challenge best results were 

obtained by ensembles of fine-tuned BERT models 

(Lees et al., 2020). 

2.3  Multimodal Classification of Hateful 

Memes 

Multimodal learning has recently gained attention 

due to the poor performance of existing (unimodal) 

models on multimodal tasks (Lippe et al., 2020), 

with most recent solutions (context aware) 

employing neural architectures such as  CNNs, 

RNNs, and Transformer-based attention models 

like BERT (Afridi et al., 2020; Modi and Parde, 

2019; Parde, 2020). Although existing work on 

hate speech detection has largely relied on text-

based features, this has gradually started to shift 

with the introduction of multimodal datasets (Lippe 

et al., 2020). In general, the focus has been shifted 

to BERT-based models (Afridi et al., 2020). In 

Facebook AI’s Hateful Memes Challenge (Kiela et 

al., 2021) the top two models involved an ensemble 

of four Transformer-based models (Zhu, 2020; 

Muennighoff. 2020). The third and fourth place 

used fine-tuned VisualBERT (Velioglu and Rose, 

2020) and UNITERT (Hossain et al., 2021) models. 

Aggarwal et al. (2021) extracted image features 

with a pretrained ResNet-152 model while passing 

the text data through Facebook's FastText encoder 

(Bojanowski et al., 2017), concatenating both 

feature vectors and passing them to a fully 

connected layer for classification.  Due to its 

novelty, few solutions to date have explored the use 

of CLIP in challenging scenarios such as 

misogynistic memes classification. For this work, 

we trained a version of CLIP resembling 

Shariatnia's (2021). 

3 System Overview  

Our system architecture is a variation of OpenAI’s 

CLIP model (Radford et al., 2021). We refer 

readers to the original paper for a detailed overview 

and illustrations of the architecture, and summarize 

it here. Inspired by the idea of usability and 

generality, CLIP uses a contrastive learning 

objective to build a joint visual-linguistic space for 

learning visual concepts from natural language 

supervision. We describe the various components 

of our architecture below.  

3.1 Encoders 

ResNet-50: OpenAI’s best CLIP performance was 

achieved using a pretrained encoder which the 

authors called ViT-L/14@336px. In our case, we 

experimented with several pretrained image 

encoders. Although Shariatnia (2021) used 

ResNet-50 by default, we also considered ViT-

B/16@224px, ViT-L/16@224px, and ViT-

L/16@384px (Dosovitskiy et al, 2020). 

Nonetheless, we empirically determined that 

ResNet-50 (He, 2016), a deep CNN trained on 

more than a million images from the ImageNet 

database with an objective of classifying images 

into 1000 categories, yielded the best performance. 

DistilBERT: OpenAI’s CLIP used a modified 

Transformer to encode text. We instead used a 

lighter version of BERT (Devlin et al., 2018) called 

DistilBERT (Sanh et al, 2019) which Shariatnia 

(2021) also uses.  BERT is a large Transformer-

based language model that has achieved strong 

performance in many NLP tasks, and DistilBERT 

uses a process known as knowledge distillation to 

reproduce its behavior by training a smaller model 

to replicate its probability distributions across class 

predictions.  

3.2 Learning Objective 

Radford et al. (2021) introduced contrastive 

objectives as a mechanism for learning multimodal 

representations from raw images and paired 

descriptions. In essence, the contrastive objective 

seeks to learn a multimodal embedding space 

where image embeddings and text embeddings are  

786



 

 

 

mapped to the same point if they describe the same 

thing, and different points otherwise. Cosine 

similarity is used to measure the distance between 

embeddings. Figure 1 shows the “logits” matrix 

obtained after applying the dot product between 

images and text embeddings. Each cell in the 

matrix (logits) is a measure of similarity between 

an image and a text caption in the dataset (𝑁2 

pairs). It is expected that cells along the diagonal 

(N pairs), which contain the similarity between an 

image and its actual text, are maximized. 

Simultaneously, the 𝑁2 −𝑁 incorrect pairs should 

be minimized. 

The targets for the images and texts where the 

similarities are maximum are obtained by 

computing dot products between embedding 

matrices. These are averaged and passed through a 

SoftMax, with the result being a target matrix 

where the diagonal is close to 1.0 and the other 

pairs are close to 0.0. The loss for images and texts 

is obtained by calculating the cross-entropy 

between the target and the logits matrix. 

3.3 Training Procedures 

The target output for the original CLIP model 

was the correct caption for an image. For example, 

one could input an image of a cat along with the 

captions: {“Image depicting a cat,” “Image 

depicting a dog”} with the expectation that it would 

return the correct caption. We refer readers to the 

original paper for further implementation details. 

We slightly modified this approach in our own 

model, such that the training text instead was the 

language content from the meme followed by the 

correct label. We separated the text and label using 

the [SEP] token as defined for BERT’s next-

sentence prediction objective. Therefore, we 

concatenated each instance with the following 

sentences depending on the example’s class:  

1. For class MISOGYNY: <text_1> + “[SEP] a 

misogynist meme” 

2. For class NOT MISOGYNY: <text_1> + 

“[SEP] a meme” 

When evaluating new samples using this 

architecture, each instance must be a paired image 

and text caption.  Thus, we created two versions of 

each text caption: one for class MISOGYNY, and 

one for class NOT MISOGYNY.  Figure 2 shows the 

procedure. The predicted label for the test instance 

was the one for which the model made its 

prediction with higher confidence. 

4 Experimental Setup 

4.1 Exploratory Analysis 

Prior to conducting our experiments, we performed 

preliminary descriptive analyses on the training 

data, comprising 10,000 memes (image + paired 

text content) with a total vocabulary of 12,611 

tokens. From these, 6,649 tokens only appear once. 

Figure 3 shows a word cloud for the 100 most 

frequent words in the corpus. Interestingly, we 

determined that the vocabulary for non-misogynist 

memes is much richer, including 9,285 compared 

to 7,348 unique words. We also observed that while 

the word “woman” is repeated 1,416 times in the 

misogyny class, it is repeated only 528 times in the 

not misogyny class. 

Aiming to find greater insights we computed the 

Pointwise Mutual Information (PMI) score for all 

words given each class. PMI is a feature scoring 

metric that can be used to estimate the association 

between a feature and a class (it has also 

traditionally been used to identify collocations in 

text). A close association indicates which features 

 

Figure 1. Learning stage. Adapted from Radford et 

al., 2021. 

 

 

Figure 2. Evaluation stage. Adapted from Radford 

et al., 2021. 
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(words) are more important for a class.  PMI is 

computed using the following formula: 

 
 

Table 1 shows the 15 words with the highest 

PMI for each class. As shown, despite its 

frequency, the word “woman” carries less value 

when measured via PMI. Some swear words are 

classified as important for the MISOGYNY class, but 

not the NOT MISOGYNY class. 

4.2 Preprocessing 

A large challenge in this task was that since the text 

content from memes was extracted with an OCR 

tool, it contained substantial noise. Therefore, we 

created the following preprocessing pipeline that 

we applied to all texts before training and 

evaluating: 

1. Case Normalization: All text was 

normalized by converting it to lowercase. 

2. Part of Speech (POS) Tagging: POS 

tags were assigned to each word. 

3. Proper Name Removal: Regular 

expressions were applied to convert some 

wordforms (e.g., urls) to generic tokens. 

4. Special Token Categorization: Words 

belonging to several word sets of interest, 

including celebrity names and profanity 

terms, were kept. 

5. Lemmatization: Words were converted 

to their base forms. 

6. Stopword Removal: Highly frequent 

words (e.g., “the”) were removed. 

7. Special Character Removal: Non-

alphabetical characters (e.g., digits or 

punctuation) were removed. 

 

Aspects of this preprocessing pipeline were 

similar to those reported by Cardoza (2022) and 

Kovács et al. (2020). POS tagging allowed us to 

target the “proper noun” and “other” tags. By 

excluding these tags, we resolved many lingering 

issues following application of regular expressions,  

such as remaining usernames and gibberish words. 

Removing specific instances of these terms aided 

the model in avoiding overfitting to superfluous 

names or unknown tokens that were irrelevant to 

the overarching task of recognizing misogyny. 

Since certain terms removed by our POS filtering 

may carry importance to the task (e.g., certain 

celebrity names or swear terms), we also searched 

for these terms in several predetermined word sets 

and kept them if and when they were found. 

4.3 Experimental Settings 

The training set provided by the task organizers 

was divided into training (80%) and validation 

(20%) sets of 8000 and 2000 examples 

respectively. We primarily adapted our 

hyperparameter settings from Shariatnia (2021), 

using AdamW (Loshchilov and Hutter, 2017) as 

our optimizer with an initial learning rate (LR) of 

1e-3 and a scheduler to reduce the LR on plateau. 

The batch size is left at 32 and the maximum 

number of epochs was set to 4. The model 

converges quickly, so this early stop helps to 

control overfitting. The learning rates for the image 

and text encoders were left at 1e-4 and 1e-5 

respectively. All of the texts were tokenized using 

the DistilBERT base model with a max number of 

tokens set to 200. We experimented with CLIP’s 

temperature hyperparameter, finding that the best 

results were achieved with a value of 1e-0.2. 

We selected the best epoch and the best hyper- 

parameters as measured by F1 score and accuracy. 

In the test set evaluation, Subtask 1 systems were 

evaluated using macro-averaged F1; thus, the final 

score is the mean of the F1 for the two classes. 

Figure 3: Word cloud of the 100 most frequent words 

in the corpus. Warning: This image includes language 

that may be offensive or upsetting. 

Misogynist  Non-Misogynist 

Token PMI  Token PMI 

dishwasher 0.660357 gold 0.591098 

sandwich 0.599215 house 0.587787 

rape 0.567609 cheat 0.470893 

feminist 0.560566 clean 0.457903 

fat 0.479573 call 0.456758 

feminism 0.478848 people 0.430466 

girl 0.453501 cook 0.407265 

bitch 0.425832 game 0.40027 

woman 0.403349 kid 0.394994 

always 0.291434 girlfriend 0.391106 

Table 1:  Top 15 PMI scores. Warning: This table 

includes language that may be offensive or upsetting. 
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5 Results  

During development we used the training data 

provided by the MAMI task. We divided it into 

training (90%) and test (10%) sets, and measured 

performance using F1, accuracy, precision, and 

recall on the 10% test set. We provide our results 

on the development data in Table 2. Once the 

official test set was released (Evaluation in Table 

2), we computed the same metrics on that set. The 

macro-averaged F1 as returned by the task 

organizers was 0.62, with the system ranking 71st 

in performance. 

5.1 Quantitative Analysis 

We briefly analyze our best models’ results on the 

test set for Subtask 1. In particular, we observe a 

fairly low recall for the NOT MISOGYNY class 

(0.43), indicating that the system may be struggling 

to capture all members of this likely more diverse 

class. As further highlighted in the confusion 

matrix in Figure 4, the model classifies 28.6% of 

the NOT MISOGYNIST memes as MISOGYNIST.  

Thus, most errors were false positives. 

5.2 Error Analysis 

When manually analyzing the misclassified 

instances, we observed that they were diverse, 

containing cartoons, animals, people, drawings, 

and more. Some images contained text that was 

unrelated to the caption, creating additional noise. 

Examples of these images are shown in Figure 5. 

Several recurring themes occurred among false 

positives and false negatives, which we summarize 

below: 

False Positives: Most images that were 

incorrectly classified as misogynistic were 

primarily dominated by one or more people. For 

images where humans were not present, the text 

often contained swear words or synonyms for 

“woman,” some of which were offensive although 

not employed with purposeful misogyny. 

False Negatives: Most images that were 

incorrectly classified as not misogynistic contained 

cartoons, animals, storyboards or non-explicitly 

sexist images, although women were occasionally 

present. 

To address these errors, we recommend actions 

leveraged in prior work for other tasks to improve 

the performance of future systems.  For instance, 

Lippe et al. (2020) upsampled their dataset as a 

solution for poor performance on text confounders. 

Although the dataset they used (Facebook’s 

Hateful Memes) was specially designed to 

introduce benign confounders, it might also work 

in this problem. Nozza et al., (2019) discuss biases 

introduced in the model by a set of identity terms 

that are frequently associated with the misogynistic 

class (e.g., “woman”). The authors propose to 

upsample the dataset with examples that have the 

identity terms for the alternate class.  

6 Conclusion and Future Work 

In this paper, we describe our system 

implementation for SemEval-2022 Task 5. Our 

Development 

 Precision Recall F1 

Non-Misogynist 0.66 0.71 0.68 

Misogynist 0.69 0.64 0.66 

Accuracy   0.67 

 

Evaluation 

 Precision Recall F1 

Non-Misogynist 0.73 0.43 0.54 

Misogynist 0.60 0.84 0.70 

Accuracy   0.64 

Table 2:  Results on the development (from training 

data) and evaluation (from test data). 

 

Development 

 
Evaluation 

 
Figure 4: Confusion matrices for the development 

and evaluation data. 
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model ranked 71st out of 83 participants’ teams on 

Subtask 1. We comprehensively investigate the use 

of a state-of-the-art multimodal contrastive 

learning approach for the classification of 

misogynistic memes. More experiments and tests 

should be done to improve the model's 

performance on this task. In particular, upsampling 

the dataset and addressing the possible biases 

caused by identity terms should be investigated.  

Finally, at an architectural level, our current system 

encodes images as one form of input and encodes 

paired text content and labels as another form of 

input, similarly to text encoding strategies used for 

unimodal sequence prediction tasks. Exploring 

joint encodings of image and paired text content as 

a single form of input, with only labels as the other 

form of input, may be an additional design avenue 

worth pursuing. Overall, it is our hope that this 

work motivates additional interest in contrastive 

learning solutions for multimodal misogynistic 

meme detection.  We make our source code 1 

available to other researchers to facilitate follow-up 

work by others. 
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Abstract

In recent years, there has been an upsurge in
a new form of entertainment medium called
memes. These memes although seemingly in-
nocuous have transcended the boundary of on-
line harassment against women and created an
unwanted bias against them. To help alleviate
this problem, we propose an early fusion model
for the prediction and identification of misog-
ynistic memes and their type in this paper for
which we participated in SemEval-2022 Task
5. The model receives as input meme image
with its text transcription with a target vector.
Given that a key challenge with this task is
the combination of different modalities to pre-
dict misogyny, our model relies on pre-trained
contextual representations from different state-
of-the-art transformer-based language models
and pre-trained image pre-trained models to get
an effective image representation. Our model
achieved competitive results on both SubTask-
A and SubTask-B with the other competing
teams and significantly outperforms the base-
lines.

1 Introduction

Meme culture in today’s virtual climate gives us a
variety of insight into the pop culture, general ide-
ology and linguistic conversational manner of the
generation. To understand the internet culture, it
becomes essential to study memes (Shifman, 2013)
and the impact it has on people on the internet.
Some of the most popular communication tools
on social media platforms are memes. Memes are
essentially images characterized by the content of
a picture overlaid with text that was introduced
by people with the main purpose of being inter-
esting and ironic. Women have a strong presence
online, especially on image-based social media like
Twitter, Snapchat, and Instagram. 78% of women
use social media several times a day, compared
to 65% of men (Fersini et al., 2022). While new
opportunities are being opened up for women on-

line, systematic inequality and discrimination are
being replicated offline from these online spaces in
the form of offensive content for women. Most of
them were created to make funny jokes, but soon
people began to use them as a form of hatred for
women, leading to sexist and offensive messages
in the online environment, and as a consequence,
the sexual stereotyping and gender inequality of
the offline world where sexuality stereotypes and
gender inequality have been strengthened. This
insensitive and obscene type of meme has a pro-
found effect on a person’s mental health and can
exhibit harmful effects on cognitive and emotional
processes leading to mental illnesses as shown in
Paciello et al. (2021).

In this work, we present team Poirot’s solution
to SemEval - 2022 Task 5 competition as described
in detail in Fersini et al. (2022). We focused our
efforts on our primary approach of building a Multi-
Modal module that uses features from both images
and text. Furthermore, in this paper, we provide
ablation studies on different modalities, relative
importance of the different modalities and some
training parameters, and show how by changing the
module parameters, the predictions on the misogy-
nistic identification of memes aggravates or allays.

2 Background

2.1 Task Description
The organisers have provided us with data tasked
with the identification of misogynous memes, tak-
ing advantage of both text and images available
as source of information. The task is comprised
around two main sub-tasks:

• Sub-Task A: first task about misogynous
meme identification, where a meme is catego-
rized in a binary format; either as misogynous
or not misogynous;

• Sub-Task B: second task, where the type of
misogyny is recognized among potential over-
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misogynous shaming stereotype objectification violence

1 0 1 0 0

Figure 1: Misogyny in meme

lapping categories such as stereotype, sham-
ing, objectification and violence as described
in (Fersini et al., 2022).

The sub-tasks are arranged in an increasing range
of difficulty. The competition is challenging, as
identifying the misogynous nature of a meme is
more complex in a multi-modal setting than per-
forming the same task only on textual data. For
memes, comprised of image and text information,
a multi-modal approach for understanding both vi-
sual and textual cues is needed. Also, in sub-task
B, the nature of problem difficulty is increased as
the type of misogyny has to be identified, which
can belong to multiple categories due to the nature
of the dataset.

2.2 Dataset
The datasets for the competition provided by the
task organisers are memes collected from the web
and manually annotated via crowdsourcing plat-
forms (Fersini et al., 2022). Each sample is sup-
ported by an image and the corresponding text tran-
scription (if it exists) on the image. An example of
the sample is given in Figure 1. The statistical in-
formation about the datasets can be found in Table
1.

Additionally, we provide a quick look into the
training dataset which has a significant data im-
balance for 4 of labels in a number of samples
belonging to each of the 4 given labels except the
label "misogynous". This imbalance affects the per-
formance of the models on the test set specially in
the case of multilabel prediction as not equal train-
ing instances are available for each of the classes.
The information about the number of samples be-
longing to each of the 5 classes for the training set
is given in Table 1. This dataset imbalance is dealt

with in section 3.3.

2.3 Evaluation Criteria

The teams’ performance is evaluated by the macro
F1 score for task A. For tasks B, the weighted
F1 score is computed for each subtask (misog-
ynous, shaming, stereotype, objectification, vio-
lence)(Fersini et al., 2022), and the average F1
score of these subtasks is used to rank the systems.

2.4 Related Work

Earlier, some other meme datasets have been cre-
ated like the dataset created in Oriol et al. (2019)
with the intention of automatically detecting hate
speech, and the hateful memes dataset by Facebook
(Kiela et al., 2020), which created a challenge set
for multimodal classification of hatred in memes.
Previous work encompassing categories like hate
speech, sexism, and toxicity detection in memes
has primarily been explored from a textual per-
spective using Natural Language Processing(NLP).
However, recent methods are aiming to use multi-
modal approaches to solve the issue at hand. VL-
BERT(Su et al., 2020) used the single-stream ar-
chitecture, where a single Transformer is applied
to both images and text. ViLBERT(Lu et al., 2019)
and LXMERT(Tan and Bansal, 2019) introduced a
two-stream architecture where two transformers are
applied to images and text independently and later
merged by a third transformer. ERNIE-ViL(Yu
et al., 2021) incorporates structured knowledge ob-
tained from scene graphs to learn joint representa-
tions of vision-language. Zia et al. (2021) presents
the multimodal pipeline based on pre-trained vi-
sual and textual representations for the shared task
involving the detection of hateful memes.

Set Number of Samples
Trial 100
Train 10000
Test 1000

Label Positive Samples
misogynous 5000
shaming 1274
stereotype 2810
objectification 2202
violence 953

Table 1: Dataset and Labels Information

794



א

B

B

B

top - M regions

C
on

ca
te

na
tio

n

L

Image Stream

BERT
Po

ol
in

g

Textual Stream

SentenceBert

L

Prediction

Feature Extraction Module 

Image

Text

 Navigator Network :א
B: Pre-Trained Backbone
L: Linear Layer 

Text Transcription : 
why is women's track
and field more popular

than women's
weightlifting? no

particular reason…

Sample

Figure 2: Overview of the binary model used for misogyny detection. The two modalities are passed simultaneously
through the Feature Extraction Module in two separate paths and trained together and finally fused together and
passed through a linear layer to get binary logits.

3 System Overview

The solution system comprises of 2 separate sys-
tems for both the sub-tasks. The approach can be
broadly divided into binary approach and multi-
label approach.

3.1 Binary Model

Broadly, the model consists of two modal infor-
mation streams, text and image. The proposed
approach leverages on multi-modal information
to provide the classification of a sample. We ex-
ploit text transcriptions written in natural language
jointly with visual information coming from the
meme image. In the initial stage the pipeline is
divided into two streams running in parallel which
on later stage is joint together. The outline of the
proposed architecture is shown in Figure 2. The
sub-modules are described below:

1. Image Features Extraction : This stream is
also separated into two sub-modules :

• pre-trained Representation Module : We
can use any backbone CNN base models
to learn the features of an image. For

our experimentation, we use ResNet-101
and ResNet-50 (He et al., 2016) as the
backbone B model. The rationale behind
choosing two separate backbone models
is to compare generalised image repre-
sentation as compared to domain-specific
image representation in this case where
outright misogyny in images can be de-
tected quickly by looking at nsfw content
in the image part of the meme. Thus if
the input image I ∈ Rd×d, where d =
224, the output of the feature extractor
would give us intermediate level features
κ ∈ RD, where D = 2048,

κ = B(I)

• Navigator Module : We use Navigator
Module from the NTS-net as described in
(Yang et al., 2018) model to decouple the
image into several parts. For an input im-
age, the image is fed into the Navigator
network to compute the informativeness
of all regions. It is fed to the naviga-
tor network, which extracts meaningful
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parts to separate top-M regions. The fea-
ture extractor extracts its deep feature
map for each of those parts. These fea-
tures are then concatenated C together:

κi = ℵ(I), i ∈ [0,M − 1]

fv = C(κ0, κ1, κ2, ...., κM−1) ∈ RM×D

2. Text Features Extraction: : The second
modality being the textual Stream, uses
the SentenceBERT model (Reimers and
Gurevych, 2019). SBert modifies the BERT
network using a combination of siamese
and triplet networks to derive semantically
meaningful embedding of sentences. As
a state of the art language model, BERT
has greatly influenced results in the text
classification task as shown in Minaee et al.
(2021), we use SentenceBert S model trained
on Siamese BERT networks. Thus we convert
the given text T transcription into features
vector ft. Formally :

ft = S(T ) ∈ RE

where E = 768.

The image extraction part and text extraction
part is clubbed together to form the Feature Ex-
traction Module. If Cmc is multimodal feature
concatenation logic, then,

F = Cmc(fv, ft)

This module outputs a feature vector of size N =
E + D features. These features are then passed
through a f (linear layer) to output logits which are
then passed on to σ function to generate predic-
tions.

ypred = σ(f(F ))

3.2 Multi-Label Model

The multi-label model, keeps the feature extracting
pipeline of the network in the binary model intact
while changing the final output method by using
Graph Neural Networks. The model consists of
two essential parts : (i) Feature Extraction Module
and (ii) Graph classification module. The overall
architecture of our model is explained in the Fig.
3.

1. Feature Extraction Module : Same as in
binary model 3.1

2. Graph Classification Module : A graph has
an effective message passing system, which
can be modelled to find the inter-dependency
of the labels amongst each other, and hence,
efficiently capture the semantic importance of
a label u1 depending on co-occurring label u2.
We represent each node of the graph input to
be a label, having the node features as GloVe
embedding having e features. Formally, we
use Graph Network to learn the multi-label
classification model to learn label representa-
tion:

Ln+1 = ϕ(Ln, A)

where Ln ∈ Ru×e represents class label rep-
resentation at nth graph layer, ϕ represents
the message passing network and A ∈ Ru×u

represents the adjacency matrix. Through
stacking multiple Graph Network Layers, we
model the complex inter-relationships among
classes.

Creation of Adjacency Matrix : We calcu-
late the label adjacency matrix A by mining
label co-occurrence patterns in the training
and trial dataset. Let the label matrix Lm ∈
Rns×u, where ns are the number of training
and trial samples. Then the co-occurrence
matrix

Acoo = LT
m × Lm ∈ Ru×u

To create the adjacency matrix from the co-
occurrence matrix and to remove the self node
loop from the graph, we create a vector Nu ∈
Ru, having

Nu[i] = Acoo[i][i]

Finally, the adjacency matrix A can be
constructed as:

Aij =

{
0 if i = j,
Acoo[i][j]
Nu[i]

otherwise

3.3 Multi-Label Classification Loss

We notice the imbalance present in data for differ-
ent classes which we can see in Table 1, but the
extent of imbalance is different for different labels.
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Feature Extraction Module 

Graph Classification Module 

Classifiers

Multi-Label Loss

Image

Text

Text Transcription : 
why is women's track
and field more popular

than women's
weightlifting? no

particular reason…

Sample

Figure 3: : The general architecture of our Multi-Modal-Multi-Label model. We use image features and text features
from the Feature Extraction (FE) which has a pre-trained ResNet, pre-trained sentence transformer SBert. The
features are passed through a 5-layer classifier stack generated from the Graph Classification Module which takes
input the label’s semantic information to generate the output multi-label prediction.

This knowledge can be passed to the neural net-
work in terms of class weights in order to penalize
adequately. Let ns be the number of samples in the
dataset. We calculate the weighted importance of a
class using the below equations:

Wp[i] =
Np[i]

ns
,Wn[i] =

Nn[i]

ns

where Np[i], is the number of positive samples for
class i andNn[i], is the number of negative samples
for class i.

−dl =Wp ∗y ∗ log(p)+Wn ∗ (1−y)∗ log(1−p)

where y is the ground truth and p is the predicted
output. The calculated weights are shown in table
2.

4 Experimental Setup

4.1 Baselines
We use the baseline provided by the task organisers
1 which depend on the Sub-Task and use a different
set of features for different tasks:

1. Sub-Task A: Misogynous Meme Identification
1https://github.com/MIND-Lab/MAMI

Weights

Label Positive (Wp) Negative (Wn)

misogynous 1.000 1.000
shaming 3.924 0.573
stereotype 1.779 0.695
objectification 2.270 0.641
violence 5.246 0.552

Table 2: Calculated weights for regularizing cross-
entropy loss in the custom loss function

• Baseline-Text: deep representation of
text, i.e. a fine-tuned sentence embed-
ding using the USE(Cer et al., 2018) pre-
trained model

• Baseline-Image: deep representation of
image content, i.e. based on a fine-tuned
image classification model grounded on
VGG-16(Liu and Deng, 2015).

• Baseline-IT: concatenation of deep im-
age and text representations, i.e. based a
single layer neural network.

2. Sub-Task B : Type of Misogynous Meme Iden-
tification
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• Baseline-Flat: a multi-label model,
based on the concatenation of deep im-
age and text representations, for predict-
ing simultaneously if a meme is misogy-
nous and the corresponding type

• Baseline-Hierarchical: a hierarchical
multi-label model, based on text repre-
sentations, for predicting if a meme is
misogynous or not and, if misogynous,
the corresponding type.

4.2 Hyperparameters and Implementation
Details

Before passing the text transcription to the text
stream, we apply some basic text preprocessing
to all our sentences. First, we normalize all the
sentences by converting all white-space characters
to spaces. Also, in the image stream, before pass-
ing the image to the navigator network, we resize
the image to size [224,224] for uniformity and per-
form random crops and flips before feeding it to
the network. When concatenating the image fea-
tures with textual features, we use a parameter λ to
combine the two together. The final feature vector
is formulated as following,

F = [(1− λ)× fv;λ× ft]

We adopt a 2-layer graph network for our best per-
forming system. For node features, we use the
300-Dimensional GloVe embeddings (Pennington
et al., 2014) trained on the Wikipedia Dataset. Ta-
ble 3 contains the list of general hyperparameters
we used. We implement the network based on Py-
Torch.

Parameter Name Value
Optimizer AdamW

Pre-Trained BERT LR 2e-4
Navigator Network LR 1e-3
Graph Learning Rate 1e-2
Graph Layer 1 Dim 512
Graph Layer 2 Dim 2048

λ (Concatenation Parameter) 0.7

Table 3: Major hyperparameters used

5 Results

Table 5 and 6 compares the macro and weighted
f1 scores of our best performing models on the
binary classification task and the multi-label task

Binary Multi-Label

Backbone Model λ fmacro
1 fweighted

1

ResNet-101imagenet 0.1 0.601 0.590
0.2 0.619 0.597
0.3 0.645 0.622
0.4 0.689 0.628
0.5 0.702 0.641
0.6 0.736 0.645
0.7 0.741 0.643
0.8 0.728 0.631
0.9 0.702 0.612

ResNet-50nsfw 0.1 0.611 0.591
0.2 0.620 0.595
0.3 0.691 0.612
0.4 0.703 0.632
0.5 0.736 0.634
0.6 0.749 0.635
0.7 0.759 0.632
0.8 0.734 0.623
0.9 0.698 0.601

Table 4: λ effect on model performance

respectively alongside the score achieved by the
baseline models. We also present several ablations
for the best performing models on λ parameter and
its effect on the final score achieved by the model.
The λ ablations can be found in Table 4.

ResNet-101imagenet uses the backbone B pre-
trained on the ImageNet dataset, while ResNet-
50nsfw2 model uses the backbone fine-tuned on
around 40GB of nsfw data. We divide our model
for multi-label classification according to different
types of loss used during the training stage.

SubTask-A

Model fmacro
1

Baseline-Text 0.640
Baseline-Image 0.639
Baseline-IT 0.543
Ours(ResNet-101imagenet) 0.751
Ours(ResNet-50nsfw) 0.759

Table 5: Comparing the fmacro
1 of our methods and the

baselines for binary classification task.

5.1 Task Results

Subtask-A: The results of the experiments for the
binary classification task can be seen in Table 5.

2https://github.com/emiliantolo/pytorch_nsfw_model
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SubTask-B

Model fweighted
1

Baseline-Flat 0.421
Baseline-Heirarchical 0.621

Ours(ResNet-101imagenet)
+ SM Loss 0.641

+ Custom Loss 0.645
Ours(ResNet-50nsfw)

+ SM Loss 0.632
+ Custom Loss 0.638

Table 6: Comparing the fweighted
1 of our methods

and the baselines for multi-label classification task.SM
Loss refers to multi-label SoftMargin loss

For Subtask-A, the models that used multi-model
training and an additional navigator network on
the image end outperformed the single modality
models and the simple multimodal concatenation
model. One of the major reasons for our model out-
performing the image-only baseline model could
be that the navigator network learns to recognise
relevant parts of the image as compared to passing
the complete image as one. Amongst the model
using ResNet backbone, the model fine-tuned on
nsfw had an edge over the model which had been
pre-trained on imagenet dataset. This can indicate
that there is an indicator of women’s image rep-
resentation with the meme being a misogynistic
one.

Subtask-B: The results of the experiments for
the multi-label classification task can be seen in
Table 6. For Subtask-B, the models that used graph
network to create independent classifiers and an ad-
ditional navigator network on the image end outper-
formed the models using the simple multi-modal
concatenation model with classification head and
the hierarchical multi-label model using text rep-
resentations. Amongst the model using ResNet
backbone, the model fine-tuned on nsfw dataset
performed poorer to the model which had been
pre-trained on imagenet dataset. This can be an
indicator that general feature representations are
perhaps more important for the identification of the
specificity of misogyny as compared to that of the
fine-tuned feature representations.

5.2 Ablation Studies

In this section, we perform ablation studies from
two different aspects, particularly including the

Multi-Label

Backbone Model Graph Depth fweighted
1

ResNet-101imagenet 2-layer 0.644
3-layer 0.644
4-layer 0.632
5-layer 0.628

ResNet-50nsfw 2-layer 0.641
3-layer 0.643
4-layer 0.629
5-layer 0.621

Table 7: Graph Network Depth effect on model perfor-
mance

sensitivity of the classification models to effects
of λ when concatenating the two different types of
modalities, visual and textual together, to determine
the relative importance of the two with respect to
each other, and the other being the depths of Graph
Classification Module which we use for the multi-
label classification model.

Effects of different threshold values λ : We
vary the values of the threshold concatenation pa-
rameter λ from 0.1 to 0.9 in steps of 0.1. λ = 0
corresponds to building the entire feature vector
from the visual stream while λ = 1 corresponds
to the entire information coming from the textual
stream. The results are shown in table 4, where the
performance of the two models based on ResNet-
101 backbone are compared pre-trained on two
different datasets. It can be observed that the tex-
tual stream information is of higher importance in
both the classification problem as the performance
boost is skewed for roughly λ = [0.6, 0.7]. It may
be due to the fact that in the images as well, a good
amount of information that is used to recognise the
misogyny of the meme is cognitively of the textual
nature, while the image content of the meme is
lesser in comparison to its textual counterpart. It
may also be that the image content is not of high
quality.

Effects of different depth of Graph Classifica-
tion Network: We vary the values of the number
of layers of the graph network from 2 to 5 and
observe its effect on the model performance. For
the two-layer model, the output dimensions of the
layers are 512, 2048, for the three-layer model, the
output dimensionalities are 512, 1024 and 2048
for the sequential layers, for the four-layer model,
the dimensionalities are 512, 1024, 1024 and 2048,
and for the five-layer model, the output dimensions
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are 512, 1024, 1024, 1024, 2048. As shown in
table 7, when the number of graph convolution lay-
ers increases, multi-label recognition performance
drops on both datasets. The possible reason for the
performance drop may be that when using more
GCN layers, the propagation between nodes will be
accumulated, which can result in over-smoothing.

Effects of using Custom Loss Function: We
compare the results for multi-label classification
with two types of losses : (i) MultiLabel Soft
Margin Loss (SM Loss); (ii) Custom Loss as de-
scribed in 3.3. From table 6, we can see that the
Custom Loss out performs the SM Loss in the
experimental runs.

The result can be explained by the fact that
weighted classes affect the loss value for positive
as well as negative labels.

(i) If the model predicts a positivity for the la-
bel which has a higher positive weightage the loss
value would increase, thereby forcing the model
to not favour one particular label. Similarly, when
the model predicts a negative value for a particu-
lar label that has a higher negative weightage, the
loss value would increase, forcing the model to not
favour negativity of a particular label.

(ii) If the model predicts a positivity for the la-
bel which has a lower positive weightage, the loss
value would decrease, thereby forcing the model to
predict favourably for that particular label. Simi-
larly, when the model predicts a negative value for
a particular label that has a lower negative weigh-
tage, the loss value would decrease, forcing the
model to favour the negativity of that particular
label.

6 Conclusion

We have described the systems developed by as to
solve the Multimedia Automatic Misogyny Iden-
tification challenge at Semeval 2022. In our best
performing submission for SubTask-A, we framed
the problem as a binary classification task and
used two separate streams of information simulta-
neously to identify misogyny, while for our model
for SubTask-B, we tried to find the semantic rela-
tion between the type of misogyny and their relative
importance to solve the problem for Multi-Label
classification. By making use of powerful, state-of-
the-art, pre-trained models for text and images, our
models were able to achieve a high F1 score for
both the tasks. Our best performing model ranked
3rd out of the 10 teams submissions on SubTask-A

and 22nd out of 30 team submissions on SubTask-
B.

As part of future work, we aim to explore alter-
nate approaches to model the multi-label dependen-
cies using Knowledge-Graph and GAT Networks.
Also, there seems to be a problem of oversmooth-
ing when increasing the depth of the Graph Clas-
sification Module, which we aim to resolve using
effective Normalization layers between the graph
layers.
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Abstract

iSarcasmEval is the first shared task to target
intended sarcasm detection: the data for this
task was provided and labelled by the authors
of the texts themselves. Such an approach min-
imises the downfalls of other methods to collect
sarcasm data, which rely on distant supervi-
sion or third-party annotations. The shared task
contains two languages, English and Arabic,
and three subtasks: sarcasm detection, sarcasm
category classification, and pairwise sarcasm
identification given a sarcastic sentence and
its non-sarcastic rephrase. The task received
submissions from 60 different teams, with the
sarcasm detection task being the most popu-
lar. Most of the participating teams utilised
pre-trained language models. In this paper, we
provide an overview of the task, data, and par-
ticipating teams.

1 Introduction

Sarcasm is a form of verbal irony that occurs when
there is a discrepancy between the literal and in-
tended meanings of an utterance. Through this
discrepancy, the speaker expresses their position
towards a prior proposition, often in the form of
surface contempt or derogation (Wilson, 2006).

Sarcasm is present on the social web and, due
to its nature, it can be disruptive of computational
systems that harness this data to perform tasks such
as sentiment analysis, opinion mining, author pro-
filing, and harassment detection (Liu, 2012; Rosen-
thal et al., 2014; Maynard and Greenwood, 2014;
Van Hee et al., 2018). In the context of SemEval,
in particular, Rosenthal et al. (2014) show a signifi-
cant drop in sentiment polarity classification perfor-
mance when processing sarcastic tweets, compared
to non-sarcastic ones. Such computational systems
are widely deployed in industry, driving marketing,
administration, and investment decisions (Medhat
et al., 2014). In the context of Arabic, Abu Farha
and Magdy (2021) show the effect of sarcasm on

Arabic sentiment analysis systems, where the per-
formance dropped significantly for the sarcastic
tweets. As such, it is imperative to devise models
for sarcasm detection.

Such models are usually built in a supervised
learning paradigm, relying on a dataset of texts
labelled as either sarcastic or non-sarcastic. Two
methods have typically been used to label texts for
sarcasm: distant supervision (Ptáček et al., 2014;
Khodak et al., 2018; Barbieri et al., 2014), where
texts are considered sarcastic if they meet prede-
fined criteria, such as including the tag #sarcasm;
or manual labelling (Filatova, 2012; Riloff et al.,
2013a; Abercrombie and Hovy, 2016), where texts
are presented to human annotators. However, as
argued by Oprea and Magdy (2020a), both meth-
ods could produce noisy labels, in terms of both
false positives, and false negatives. For instance,
when human annotators label texts, they are limited
by their subjective perception of sarcasm, which
might differ from the intention of the authors of
those texts.

In response, we suggest the current shared task,
iSarcasmEval1. We rely on a novel method of la-
belling texts for sarcasm, where the sarcastic na-
ture of texts is self-reported by the authors of those
texts. Our shared task is also novel in that it in-
cludes two languages, English and Arabic, and
includes three subtasks. The first subtask, covering
both languages, is sarcasm detection as commonly
understood: given a text, determine whether or
not it is sarcastic. Next, as the sarcastic texts in
our English dataset are also further labelled for
the ironic speech category that they represent out
of the categories specified by Leggitt and Gibbs
(2000), the second subtask is: given an English
text, determine which ironic speech category it rep-
resents, or whether it is non-sarcastic. Finally, for
both languages, we also ask authors to provide

1iSarcasmEval datasets are available at: https://
github.com/iabufarha/iSarcasmEval
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non-sarcastic rephrases of their sarcastic texts. As
such, the third subtask, covering both languages, is:
given a sarcastic text and its non-sarcastic rephrase,
identify the sarcastic text.

We discuss related work in dataset creation, and
related SemEval tasks, in Section 2. We introduce
the data labelling method, and present statistics
on the resulted datasets, in Section 3. We provide
details on the shared task in Section 4, and on the
submissions in Section 5.

2 Related Work

Most previous textual sarcasm detection datasets
have been annotated using a distant supervi-
sion method. In this approach, texts are con-
sidered sarcastic if they meet predefined criteria,
such as including specific tags (e.g. #sarcasm,
#irony) (Ptáček et al., 2014; Khodak et al., 2018),
or being generated by specific accounts (Barbieri
et al., 2014). However, this can lead to noisy labels
for several reasons. First, the tags may not mark
sarcasm, but may constitute the subject or object
of conversation, e.g. “there is so much #sarcasm
around!”. Second, the assumption that certain tags
always appear in conjunction with sarcasm, or that
certain accounts always generate sarcasm (Barbieri
et al., 2014), could lead to further false positives.
Third, considering those texts that do not meet the
criteria as non-sarcastic is a strong assumption that
can lead to false negatives.

Due to the issues outlined above, other work has
relied on manual labelling, where sarcasm labels
are provided by human annotators (Filatova, 2012;
Riloff et al., 2013a; Abercrombie and Hovy, 2016).
As such, the labels represent annotator perception,
which may actually differ from author intention.
Annotators might lack awareness of the contextual
devices that, as linguistic studies suggest (Grice,
1975; Sperber and Wilson, 1981; Utsumi, 2000),
could be essential for clarifying the sarcastic inten-
tion of the authors.

Previous shared tasks in sarcasm detec-
tion (Van Hee et al., 2018; Ghanem et al., 2019;
Ghosh and Muresan, 2020; Abu Farha et al., 2021)
present datasets annotated via the two methods dis-
cussed above. The potential noisy labels that these
methods can produce gives us reason to be con-
cerned about the effectiveness of models that were
trained on such datasets. Recently, (Shmueli et al.,
2020) proposed a third method, reactive super-
vision, which aims to collect sarcastic examples

based on the conversation dynamics, addressing
some of these issues by using statements such as
“I was being sarcastic” to automatically label texts.
However, this method relies on specific cues of
sarcasm which may lead to a sample that is biased
toward more confusing examples that required clar-
ification.

Further, the vast majority of sarcasm detection
work (Campbell and Katz, 2012; Riloff et al.,
2013b; Joshi et al., 2016; Wallace et al., 2015; Ra-
jadesingan et al., 2015; Bamman and Smith, 2015;
Amir et al., 2016; Hazarika et al., 2018; Oprea and
Magdy, 2019) has focused exclusively on the En-
glish language and, due to the sociocultural aspects
of sarcastic communication (Oprea and Magdy,
2020b), it is unclear if models trained on English
could generalise to other languages. To our knowl-
edge, the small amount of work on other languages
such as Arabic (Karoui et al., 2017; Ghanem et al.,
2019; Abbes et al., 2020; Abu-Farha and Magdy,
2020) relies on either manual labelling or distant
supervision. Representative of distant supervision
is the work of Karoui et al. (2017), who consider
Arabic equivalents of #sarcasm, such as # �éK
Q	m��,
# �èQ 	j�Ó, and #Z @ 	Qî �D�@, to collect sarcastic tweets.
Other work, (Abbes et al., 2020; Ghanem et al.,
2019; Abu-Farha and Magdy, 2020; Abu Farha
et al., 2021), used either manual labelling, or a
mix between manual labelling and distant supervi-
sion. When working with Arabic data, these two
labelling methods are even more problematic con-
sidering the large number of dialects of the lan-
guage that vary both across and within countries.
Relying on predefined tags in modern standard Ara-
bic (MSA), such as those specified above, can thus
lead to a plethora of false negatives. Similarly, the
third-party annotators might be unfamiliar with the
dialect of the texts they are annotating, resulting in
erroneous manual labels.

3 Dataset

3.1 Overview

In light of the issues raised in Section 2, we pro-
pose the current shared task for sarcasm detec-
tion. We introduce a new data collection method
where the sarcasm labels for texts are provided by
the authors themselves, thus eliminating labelling
proxies (in the form of predefined tags, or third-
party annotators). We use this method to collect
two datasets, one in English and one in Arabic.

803



Within each dataset, for each sarcastic text, we
also ask its author to rephrase the text to convey
the same intended message without using sarcasm.
Finally, for the English texts, we ask trained an-
notators to further label each text into one of the
categories of ironic speech defined by Leggitt and
Gibbs (2000): sarcasm, irony, satire, understate-
ment, overstatement, and rhetorical question. For
the Arabic dataset, we also include the dialect label
of the text. As such, in both datasets, each text has
at least the following information attached to it: (a)
a label specifying its sarcastic nature (sarcastic or
non-sarcastic), provided by its author; and (b) a
rephrase provided by its author that conveys the
same message non-sarcastically.

3.2 Data Collection

For both English and Arabic, the sarcasm labels
of texts, as well as their non-sarcastic rephrases,
are provided by the authors those texts. However,
the methods in which we reach authors, and how
their texts are sourced, differ slightly across the
two languages.

For English texts, we used the Prolific Aca-
demic platform2 to recruit native English speakers
who were Twitter users. We asked these partic-
ipants to provide links to one sarcastic and three
non-sarcastic tweets that they had posted in the past.
The tweet labels were, thus, implicitly specified by
the authors themselves in the process.

To collect Arabic texts, we were unable to find a
suitable number of native Arabic speakers through
Prolific Academic. Further, through our pilot study,
we found that asking for tweets directly resulted
in low quality data. Therefore, we used the Appen
crowdsourcing platform3 to recruit native Arabic
speakers, and instead of asking for previous tweets,
we asked the participants to write a short sarcas-
tic text on the spot. Through our pilot study, we
found this on-the-spot generation approach to re-
sult in high quality data. However, this methodol-
ogy only provided us with sarcastic examples. As
non-sarcastic examples, we used a subset of the
ArSarcasm-v2 dataset (Abu Farha et al., 2021),
mainly those tweets that were annotated as non-
sarcastic with 100% confidence, i.e. labelled non-
sarcastic by all annotators.

For each sarcastic text in both the English and
the Arabic datasets, we also asked participants to

2https://prolific.co
3https://appen.com

provide an explanation of why the text was sar-
castic, and a rephrase that would convey the same
message non-sarcastically. For Arabic, we also
collected the dialect label. We included five main
dialects: Modern Standard Arabic (MSA), Gulf,
Nile Basin, Levant, and North Africa.

While we asked participants to provide examples
of sarcastic texts, we found that the provided En-
glish texts that reflected a range of different ironic
speech categories, not just sarcasm. Therefore, in a
second annotation stage, we paid a trained annota-
tor to further label each English-language text with
the ironic speech categories that it reflected. We
adopted the categorisation presented by Leggitt and
Gibbs (2000): (1) sarcasm: contradicts the state
of affairs, is directed towards an addressee, and ex-
presses a critical attitude; (2) irony: contradicts the
state of affairs, may or may not be directed towards
an addressee, but if it is, is not obviously critical
towards that addressee; (3) satire: is directed to-
wards and addressee whom it appears to support,
but underneath it express disagreement, mocking,
contempt, or derogation; (4) understatement: does
not contradict the state of affairs, but undermines
its weight; (5) overstatement: does not contradict
the state of affairs, but assigns unrealistically high
weight to it; (6) rhetorical question: a question with
an implicated answer that contradicts the state of
affairs. Note that these categories are not mutually
exclusive. A text could belong to more than one
category, e.g. it could be both sarcastic, and an un-
derstatement. Regarding Arabic, we did not go the
next step to include the sarcasm categories. This
is because Arabic linguists had similar disagree-
ments regarding the differences between sarcasm
and irony (Andalib and Far Shirazi, 2019). Also,
it would have been a challenging task to recruit
linguists who are familiar with available dialects.

3.3 Test Sets
To construct our test sets, we employed, for both
languages, an approach similar to that used to col-
lect training data in Arabic. We chose this method
for collecting English test data due to restrictions
that were imposed on us by the Prolific Academic
crowdsourcing platform on the collection of tweets
that belonged directly to survey participants.

3.4 Quality Control
For English, we made sure all tweets were posted
at least 48 hours before the survey submission, and
came from the same account. Further, a trained an-
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Language Sarcastic text Unsarcastic rephrased

EN Gotta love people who follow you and unfollow because you don’t follow
them within in an hour or 2. Sorry I don’t stay on Twitter 24/7.

I dislike people who follow me, only to unfollow me when I don’t follow
back right away. I’m not on Twitter that much to follow right away.

AR H. QªË@ Q
	m 	̄ AK
 ½�̄C 	g@ úÎ« é<Ë @ , ��Q 	ªË@ 	áÓ �éºÖÞ� 	Y�® 	JK
 hC� YÒm× (Mo

Salah saves a fish from drowning. Amazing manners, you Arabs’ pride)

�éºÖÞ� ÉÒm�'
 hC� YÒm× (Mohammad Salah holds a fish)

Table 1: Examples of sarcastic tweets (tweet text) from our English and Arabic dataset along with the rephrase that
authors gave that convey the same meaning non-sarcastically (rephrased).

notator consulted all survey responses provided and
filtered out spurious sarcastic examples that were
either unlikely to reflect sarcasm, or had uninfor-
mative explanations as to why they were sarcastic.

For Arabic, the data collection was run multiple
times during a period of 8 months. In this stage,
we managed to collect around 2,000 sarcastic sen-
tences. After manual inspection, we noticed that a
large portion of the texts were not truly sarcastic,
or that the non-sarcastic phrasing was not informa-
tive. Thus, we hired native speakers for each of the
dialects to check texts for sarcasm, and to provide
or improve the non-sarcastic phrasing, if needed.

4 iSarcasmEval Details

4.1 Task Description

We formulate three subtasks:
• Subtask A - Sarcasm Detection: Given a

text, determine whether it is sarcastic or non-
sarcastic;

• Subtask B - Sarcasm Category Classifica-
tion: Given a text, determine which ironic
speech categories it belongs to, if any;

• Subtask C - Pairwise Sarcasm Identifica-
tion: Given a sarcastic text and its non-
sarcastic rephrase, i.e. two texts that convey
the same meaning, determine which is the sar-
castic one.

Subtasks A and C are suggested for both languages.
Subtask B is only suggested for English, as we
only have ironic speech category labels for English
texts.

4.2 iSarcasmEval dataset

The datasets for both languages are provided as a
list of texts. Each text is accompanied by a sar-
casm label, indicating whether or not it is sarcastic.
For sarcastic texts, there is a rephrase that conveys
the same message non-sarcastically. For English
sarcastic texts, there is a label specifying the cat-
egory of ironic speech that it reflects. For Arabic
texts, there is a label specifying the dialect. Table 1
shows a sample from our datasets, one in English,
and one in Arabic. For English, the training set

split total sarcastic non-sarcastic

train 3,103 745 2,358
test (subtask A) 1,400 200 1,200
test (subtask C) 400 200 200

Table 2: Statistics for the Arabic training set, and test
sets for subtasks A and C, as discussed in Section 4.2.

split total sarcastic non-sarcastic

train 4,335 867 3,468
test (subtask A) 1,400 200 1,200
test (subtask C) 400 200 200

Table 3: Statistics for the English training set, and test
sets for subtasks A and C, as discussed in Section 4.2.

contains 867 and 2,601 sarcastic and non-sarcastic
texts, respectively. Recall that each sarcastic text
has an associated non-sarcastic rephrase. These 867
rephrases can be used as additional non-sarcastic
examples. The division of sarcastic texts into ironic
speech categories in the training set is shown in Ta-
ble 4. There is a separate test set for each subtask.
As such, the test set for subtask A contains 200
sarcastic texts, and a total of 1,200 non-sarcastic
texts. The same texts, in the same arrangement,
constitute the test set for subtask B. The test set
for subtask C contains 200 sarcastic texts, along
with their 200 non-sarcastic rephrases. These are
presented as pairs, the task being to distinguish the
sarcastic text from its rephrase. This information
is summarised in Table 3 (training set, and test sets
for subtasks A and C); and in Table 4 (training set,
and test set for subtask B).

For Arabic, the training set contains 3,103 texts,
745 of which are sarcastic. Similar to English, the
sarcastic text have their non-sarcastic phrasing too.
The test sets are the same size as the English test
sets for both subtasks A and C. Table 2 provides
a summary of the Arabic dataset splits. Table 5
provides the distribution of the whole dataset over
the available dialects. It is noticeable that the ma-
jority of the sarcastic examples are in the Egyptian
dialect (Nile Basin). In the future, we hope to have
a higher coverage of the other dialects.
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split sarcasm irony satire underst. overst. rhet. quest.

train 713 155 25 10 40 101
test (subtask B) 180 20 49 1 10 11

Table 4: Statistics for the English training set, and test
set for subtask B, as discussed in Section 4.2.

dialect total sarcastic non-sarcastic

MSA 2,035 82 1,953
Nile Basin 2,072 827 1,245
Levant 322 76 246
Gulf 278 36 242
North Africa 195 124 71

Table 5: Distribution of the Arabic dataset over the
dialects.

4.3 Evaluation Metrics
The main evaluation metric for subtask A is the F1-
score of the sarcastic class, referred to as F sarcastic

1 .
It is computed as follows:

F sarcastic
1 = 2 · P

sarcastic ·Rsarcastic

P sarcastic +Rsarcastic
, (1)

Where P sarcastic, Rsarcastic are the precision and
recall with respect to the sarcastic class, respec-
tively.

For subtask B, the main evaluation metric is the
macro-F1 score over all the categories of ironic
speech:

F1 =
1

n

n∑

c=1

(F c
1 ) (2)

Where F c
1 represents the F1 score for the cth cate-

gory and n is the number of categories.
For subtask C, the main evaluation metric is ac-

curacy. This is appropriate since we have an equal
number of sarcastic and non-sarcastic examples.

Accuracy =
C

N
(3)

Where C is the total number of correct predictions
and N is the total number of pairs of text.

5 Participating Teams

5.1 Overview
The shared task saw the participation of 60 unique
teams. The most popular task was subtask A (sar-
casm detection) with 43 participants for English
and 32 for Arabic. Subtask B received 22 submis-
sions and subtask C received 16 submissions for
English and 13 for Arabic. The following sections
provide an overview of the top teams’ approaches.

5.2 Subtask A (Sarcasm Detection) - English

Table 6 shows the results for English. We created
two baseline models for subtask A. The first one
uses the BERT language model (Devlin et al., 2019)
to produce contextual representations of the input
text, and considers the embedding corresponding
to the [CLS] token as the aggregated representa-
tion of the input. Finally, this is provided to a
classification head whose output we interpret as
the probability that the input is sarcastic. We use
the implementation provided as part of the trans-
formers library Wolf et al. (2020), and initialise the
encoder with the bert-base-uncased check-
point published on the Huggingface model hub 4.
We fine-tune it for a maximum of 100 epochs, but
use early stopping regularisation with a patience of
3. We use a learning rate of 5e − 5, and clip the
norm of the gradients to 1. This results in a baseline
F sarcastic
1 of 0.348, listed as baseline-bert in Table 6.

The second baseline uses a support vector machine
(SVM), with a polynomial kernel of degree 3, to
classify tf-idf representations of input texts. This
results in a baseline F sarcastic

1 of 0.275, listed as
baseline-svm in Table 6. For both baselines, we
consider the rephrases as additional non-sarcastic
examples. In a preprocessing step, we remove all
hashtags and urls, and replace user handles with
the token @user.

As shown in Table 6, the team ranking first,
stce (Yuan et al., 2022), achieved an F sarcastic

1

of 0.605. They use an ensemble learning ap-
proach with a combination of hard and soft vot-
ing between three models, all based on the trans-
former architecture: RoBERTa (Liu et al., 2019),
initialised with the roberta-large checkpoint;
DeBERTa (He et al., 2021), initialised with the
deberta-v3-large checkpoint; and XLM-
RoBERTa (Conneau et al., 2020), initialised with
the xlm-roberta-large checkpoint. XLM-
RoBERTa is employed to make use of the Ara-
bic training data for informing the classification
of English texts. They experiment with several
strategies to achieve their results. First, in addi-
tion to the task dataset, they also consider public
datasets, including iSarcasm (Oprea and Magdy,
2020a), the dataset published by Van Hee et al.
(2018), and a sample of texts from the multimodal
sarcasm dataset 5. Second, they extract statistical

4https://huggingface.co
5https://github.com/headacheboy/data-of-multimodal-

sarcasm-detection
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and text features that they concatenate to the text
itself before providing it to the models above, such
as emoji and part-of-speech information. They also
use multi-sample dropout, contrastive loss func-
tions, and adversarial training.

The team ranking second, X-PuDu (Han et al.,
2022), achieved an F sarcastic

1 of 0.569. They en-
semble two transformer-based models: ERNIE-
M (Ouyang et al., 2021), and DeBERTa, mentioned
above. After providing the input text to the mod-
els, they consider the embedding corresponding to
the [CLS] token as the representation of the input,
which they provide to a classification head. The
final ensemble considers not just the individual ar-
chitectures above, but also the same architecture un-
der different hyperparameter configurations. Using
ERNIE-M, they train on both English and Arabic
at the same time.

The team ranking third, TUG-CIC (Aroye-
hun et al., 2022), achieved an F sarcastic

1 of 0.530.
They use the BERT model mentioned above,
but initialised with different BERTweet check-
points, which they fine-tune on the SPIRS sarcasm
dataset (Shmueli et al., 2020), before fine-tuning it
on the data provided here. They also apply label
smoothing.

5.3 Subtask A (Sarcasm Detection) - Arabic

As mentioned previously, the main metric for sub-
task A is the F-score of the sarcastic class. Table
7 shows the results for Arabic. The participating
teams made extensive use of Arabic pre-trained lan-
guage models such as MARBERT (Abdul-Mageed
et al., 2021). We created two baselines for this
task, the first is a Bert-based model and the other
is an SVM model. We fine-tuned MARBERT for 6
epochs with a learning rate of 5e-5. For the SVM
model, we used uni-gram features. Both models
were trained without the non-sarcastic phrasing.

As shown in the Table 7, the top team CS-UM6P
(El Mahdaouy et al., 2022a) achieved an F sarcastic

1

of 0.563. This team utilised a transformer en-
coder (MARBERT), attention layer, and a clas-
sifier. They applied the attention to the contextu-
alised embeddings. The classifier, which is com-
posed of one hidden layer, is fed the concatenation
of the pooled output of the encoder and the at-
tention’s output. The official submission was an
ensemble of two variants of this model that are
trained with and without the non-sarcastic rephras-
ing. AlexU-AL (Lotfy et al., 2022) achieved the

r Team Name Affiliation F sarcastic
1

1 stce PALI Inc., China 0.605
2 X-PuDu Baidu & Shanghai Pudong Development Bank, China 0.569
3 TUG-CIC TU Graz, Austria 0.530
4 Plumeria Indian Institute of Technology Kanpur, India 0.477
5 John Thomson University of Alberta, Canada 0.456
6 Naive Dalian University of Technology, China 0.452
7 MarSan_AI Part AI Research Center, Iran 0.434
8 LISACTeam Sidi Mohamed Ben Abdellah University, Morocco 0.429
9 LT3 Ghent University, Belgium 0.424
10 niksss - 0.402
11 Amobee - 0.401
12 YNU-HPCC Yunnan University, China 0.392
13 Dartmouth Dartmouth College, USA 0.386
14 underfined Ping An Life Insurance Company of China, China 0.383
15 CS-UM6P Mohammed VI Polytechnic University, Morocco 0.371
16 UTNLP University of Tehran, Iran 0.369
17 Jumana-Safa - 0.356
18 cnxup University of Chinese Academy of Sciences, China 0.351
- baseline-bert - 0.348
19 IISERB Brains Indian Institute of Science Education and Research, Bhopal, India 0.345
20 rematchka Cairo University, Egypt 0.341
21 R2D2 Vellore Institute of Technology, India 0.328
22 AMI_UofA University of Alberta, Canada 0.312
23 Amrita-CEN Amrita Vishwa Vidyapeetham, India 0.308
24 DUCS University of Delhi, India 0.307
25 Happy New Year - 0.276
- baseline-svm - 0.275
26 Sarcastic weeps FAST NUCES LHR, Pakistan 0.270
27 TechSSN Sri Sivasubramaniya Nadar College of Engineering, India 0.264
28 NULL Auburn University, USA 0.260
29 Cyborgs - 0.248
30 I2C Universidad de Huelva, Spain 0.245
31 MaChAmp IT University of Copenhagen, Denmark 0.241
32 ISD Stanford University, USA 0.240
33 SPDB - 0.215
34 xuyt3 - 0.215
35 MACHON Jerusalem College of Technology, Israel 0.215
36 FII_UAIC University of Iasi, Romania 0.207
37 connotation_clashers University of Tübingen, Germany 0.202
38 GetSmartMSEC Meenakshi Sundararajan Engineering College, Chennai, India 0.201
39 UoR-NCL University of Reading, UK 0.195
40 JCT Jerusalem College of Technology, Israel 0.184
41 UMUTeam Universidad de Murcia, Spain 0.180
42 MACHON Jerusalem College of Technology, Israel 0.168
43 NARD@KGP IIT Kharagpur, India 0.155

Table 6: Subtask A (English) results in descending order
according to the main metric (F sarcastic

1 ). The table shows
the teams’ names, rank, affiliation, and score.

second place with an F sarcastic
1 of 0.508. Their

model is similar to our baseline where the fine-
tuned MARBERT for text classification. The re-
sults are quite close to our baseline with a small dif-
ference that can be attributed to the choice of hyper-
parameters. The third team, remarchka (Abdel-
Salam, 2022), also used MARBERT in a similar
way to the baseline and AlexU-AL team. Their
results are quite close to the other two models with
F sarcastic
1 of 0.477. The other teams followed a sim-

ilar approach where they utilise one of the many
flavours of Arabic-specific models or the multi-
lingual ones. A few of the participants relied on
hand-engineered features along with conventional
classifiers such as SVM and Decision Trees.

5.4 Subtask B (Sarcasm Category
Classification)

Table 8 shows the results. We created two base-
line models for subtask B. The first baseline, listed
as baseline-majority in the table, always predicts
that the input reflects the ironic speech category
of sarcasm, and no other category. This was cho-
sen as it is dominant in the training set, as seen in
Table 4. As a second baseline, we use the BERT
language model to produce contextual representa-

807



r Team Name Affiliation F sarcastic
1

1 CS-UM6P Mohammed VI Polytechnic University, Morocco 0.563
2 AlexU-AL Alexandria University, Alexandria, Egypt 0.508
- baseline-bert - 0.480
3 rematchka Cairo University, Egypt 0.477
4 HIGH-TECH Team High Technology School, Morcco 0.468
5 Naive Dalian University of Technology, China 0.461
6 akaBERT Helwan University, Egypt 0.444
7 SarcasmDet Jordan University of Science and Technology 0.431
8 Alexa Open-Insights, Tarjamah 0.420
9 X-PuDu Baidu & Shanghai Pudong Development Bank, China 0.419
10 Plumeria Indian Institute of Technology Kanpur, India 0.407
11 niksss - 0.400
12 MaChAmp IT University of Copenhagen, Denmark 0.396
13 underfined Ping An Life Insurance Company of China, China 0.378
14 BFCAI Benha University 0.375
15 AM Alexandria University,Egypt 0.369
16 cnxup University of Chinese Academy of Sciences, China 0.367
17 stce PALI Inc., China 0.367
18 NULL Auburn University, USA 0.358
19 Dartmouth Dartmouth College, USA 0.350
20 Amrita-CEN Amrita Vishwa Vidyapeetham, India 0.349
21 YNU-HPCC Yunnan University, China 0.323
22 UMUTeam Universidad de Murcia, Spain 0.318
23 connotation_clashers University of Tübingen, Germany 0.301
24 LEV Jerusalem College of Technology, Israel 0.295
25 NARD@KGP IIT Kharagpur, India 0.281
26 JCT Jerusalem College of Technology, Israel 0.257
27 MACHON Jerusalem College of Technology, Israel 0.256
28 iaf7 - 0.229
29 TechSSN Sri Sivasubramaniya Nadar College of Engineering, India 0.229
30 Sarcastic weeps FAST NUCES LHR, Pakistan 0.192
31 MarSan_AI Part AI Research Center, Iran 0.188
- baseline-svm - 0.139
32 UoR-NCL University of Reading, UK 0.115

Table 7: Subtask A (Arabic) results in descending order
according to the main metric (F sarcastic

1 ). The table shows
the teams’ names, rank, affiliation, and score.

tions of the input text, and consider the [CLS] em-
bedding. We provide this to a classification head
with a 6-dimensional output, one corresponding
to each category of ironic speech. We apply the
sigmoid function to each unit in the classification
head, interpreting the output as the probability that
the input text reflects the ironic speech category
corresponding to that unit. We fine-tune the model
in a similar setting as we did for subtask A. This
results in a baseline macro F-score of 0.0431, listed
as baseline-bert in Table 86.

As shown in Table 8, the team ranking first,
PALI-NLP (Du et al., 2022), achieved a macro
F-score of 0.1630. They use an ensemble learning
approach, where the weight assigned to a model
corresponds to its performance on a validation set.
The models they consider are BERT, initialised
with the BERT-base checkpoint; RoBERTa, ini-
tialised with the RoBERTa-base checkpoint; and
BERTweet, initialised with the BERTweet-base
checkpoint. Models have a classification head at-
tached that inputs the embedding corresponding to
the [CLS] token. They also use adversarial training
and multi-sample dropout to improve generalisa-
tion.

The team ranking second, CS-UM6P (El Mah-

6The complete results are available in Table 11 in Ap-
pendix A. Those include the scores over each sarcasm cate-
gory.

r Team Name Affiliation macro F-score
1 PALI-NLP Ping An, China 0.1630
2 CS-UM6P Mohammed VI Polytechnic University, Morocco 0.0875
3 MaChAmp IT University of Copenhagen, Denmark 0.0851
4 Naive Dalian University of Technology, China 0.0809
5 X-PuDu Baidu & Shanghai Pudong Development Bank, China 0.0799
6 Plumeria Indian Institute of Technology Kanpur, India 0.0778
7 R2D2 Vellore Institute of Technology, India 0.0760
8 IISERB Brains Indian Institute of Science Education and Research, India 0.0751
9 MarSan_AI Part AI Research Center, Iran 0.0743
10 I2C Universidad de Huelva, Spain 0.0699
11 YNU-HPCC Yunnan University, China 0.0646
12 John Thomson University of Alberta, Canada 0.0601
13 AMI_UofA University of Alberta, Canada 0.0601
14 Dartmouth Dartmouth College, USA 0.0590
15 Amrita-CEN Amrita Vishwa Vidyapeetham, India 0.0567
16 rematchka Cairo University, Egypt 0.0560
17 TechSSN Sri Sivasubramaniya Nadar College of Engineering, India 0.0465
18 NARD@KGP IIT Kharagpur, India 0.0446
- baseline-bert - 0.0431
19 GetSmartMSEC Meenakshi Sundararajan Engineering College, Chennai, India 0.0387
20 niksss - 0.0380
- baseline-majority - 0.0380
21 Suhaib-Aburaidah - 0.0346
22 Sarcastic weeps FAST NUCES LHR, Pakistan 0.0313

Table 8: Subtask B results in descending order accord-
ing to the main metric (macro F-score). The table shows
the teams’ names, rank, affiliation, and score.

daouy et al., 2022b), achieved a macro F-score
of 0.0875. They use a model similar to GAN-
BERT (Croce et al., 2020). It uses a generator that,
conditioned on an ironic speech category, produces
fake embeddings from a random noise that would
resemble representations of examples from that
ironic speech category. A discriminator is trained
to recognise real examples from fake ones, while
the generator is trained to cause the discriminator
to classify fake examples as real. The discriminator
is also trained to classify the real examples as either
sarcastic, or non-sarcastic.

The team ranking third, MaChAmp, achieved
a macro F-score of 0.0851. They first we pre-
train a RemBERT (Chung et al., 2020) multi-task
model across all the tasks. Then, they re-train a
model for each task individually. They use the hy-
perparameters of MaChAmp v0.3(van der Goot
et al., 2021), which were finetuned on the xTREME
benchmark (Hu et al., 2020).

5.5 Subtask C (Pairwise Sarcasm
Identification) - English

Table 9 shows the results for English. We used base-
lines similar to those from subtask A, but modified
the input. Specifically, given a sarcastic text and its
rephrase, we produced two training examples. The
first was the concatenation of the sarcastic text and
the rephrase, in this order, separated by a [SEP]
token. This example had label 0, indicating the
position of the sarcastic text. The second exam-
ple was the concatenation of the rephrase and the
sarcastic text, in this order, and had label 1. The
first baseline, shown as baseline-bert in Table 9,
achieves an accuracy of 0.765, while the second
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r Team name Affiliation Accuracy
1 X-PuDu Baidu, China 0.870
2 Naive Dalian University of Technology, China 0.855
3 YNU-HPCC Yunnan University, China 0.805
4 Plumeria Indian Institute of Technology Kanpur, India 0.790
5 LISACTeam Sidi Mohamed Ben Abdellah University, Morocco 0.775
6 UTNLP University of Tehran, Iran 0.770
7 MarSan_AI Part AI Research Center, Iran 0.765
- baseline-bert - 0.765
8 R2D2 Vellore Institute of Technology, India 0.750
9 NARD@KGP IIT Kharagpur, India 0.735
10 rematchka Cairo University, Egypt 0.720
11 CS-UM6P Mohammed VI Polytechnic University, Morocco 0.695
12 Dartmouth Dartmouth College, USA 0.660
13 IISERB Brains Indian Institute of Science Education and Research, Bhopal, India 0.625
14 Sarcastic weeps FAST NUCES LHR, Pakistan 0.495
- baseline-svm - 0.495
15 GetSmartMSEC Meenakshi Sundararajan Engineering College, Chennai, India 0.340
16 MaChAmp IT University of Copenhagen, Denmark 0.250

Table 9: Subtask C (English) results in descending order
according to the main metric (accuracy). The table
shows the teams’ names, rank, affiliation, and score.

one, baseline-svm, achieves 0.495.
As shown in Table 9, the team ranking first,

X-PuDu (Han et al., 2022), achieved an accuracy
of 0.870. The same team ranked second for task A,
and the approach here is rather similar, except for
representing the input as we do above. The team
ranking second, Naive, achieved an accuracy of
0.855. They used a RoBERTa model, initialised
with the RoBERTa-large checkpoint, with a
classification head appended. The team ranking
third, YNU-HPCC (Zheng et al., 2022), achieved
an accuracy of 0.805. They also used a RoBERTa
model. They did not use any external datasets dur-
ing training. We suspect the difference in perfor-
mance between the second and third teams to be,
at least in part, the result of data preprocessing and
hyperparameter optimisation.

5.6 Subtask C (Pairwise Sarcasm
Identification) - Arabic

Table 10 shows the results of this task. To prepare
the baselines, we utilised the models from subtask
A. Since the task is to decide which text is sarcas-
tic out of the given pair, we ran the models from
subtask A on each sentence and chose the one that
had a higher probability of being sarcastic. The
top team, Naive (Zefeng et al., 2022), achieved
an accuracy of 0.930. They utilised the model cre-
ated for subtask A, where they would compare the
probabilities for each sentence and choose the one
with a higher probability. Their model in subtask A
relied on the voting of a 5 folds cross-validation of
a Bert model. High-Tech team (Hamza et al.,
2022) achieved the second place with an accuracy
of 0.885. They fine-tuned AraBERT (Antoun et al.,
2020) on the concatenation of the sarcastic sentence
and its non-sarcastic phrasing. The third team,
MarSan_AI (Najafi and Tavan, 2022), achieved

r Team Name Affiliation Accuracy
1 Naive Dalian University of Technology, China 0.930
2 HIGH-TECH Team High Technology School, Morocco 0.885
3 MarSan_AI Part AI Research Center, Iran 0.875
4 Plumeria Indian Institute of Technology Kanpur, India 0.870
5 X-PuDu Baidu & Shanghai Pudong Development Bank, China 0.840
6 rematchka Cairo University, Egypt 0.800
- baseline-bert - 0.800
7 CS-UM6P Mohammed VI Polytechnic University, Morocco 0.780
8 YNU-HPCC Yunnan University, China 0.755
9 AlexU-AL Alexandria University, Alexandria, Egypt 0.745
10 Dartmouth Dartmouth College, USA 0.680
11 NARD@KGP IIT Kharagpur, India 0.665
- baseline-svm - 0.585
12 Sarcastic weeps FAST NUCES LHR, Pakistan 0.465
13 MaChAmp IT University of Copenhagen, Denmark 0.200

Table 10: Subtask C (Arabic) results in descending
order according to the main metric (accuracy). The table
shows the teams’ names, rank, affiliation, and score.

an accuracy of 0.875. Their model consisted of a
T5 encoder (Raffel et al., 2020) followed by a trans-
former and Bi-LSTM, the output of the Bi-LSTM
is fed to an attention layer followed by a fully con-
nected layer. The final prediction is the softmax of
the output from the fully connected layer. The other
teams followed the same trend where they utilised
the models from subtask A for this task. Most of
these models are transformer-based models such as
MARBERT and AraBERT.

In general, it is noticeable that the results on
Arabic are slightly higher than the ones on English.
This can be due to the slight difference in the nature
of the data. As mentioned in Section 3.2, the En-
glish data are original tweets that the authors wrote
before our data collection process. The Arabic data
was collected on the fly, and therefore more likely
to contain clear signs of sarcasm as the authors
were specifically asked to provide new sarcastic
and non-sarcastic phrasings.

6 Conclusion

This paper provides an overview of SemEval-2022
task 6, iSarcasmEval, which targets intended sar-
casm detection. We provide an overview of the cur-
rent state of research on sarcasm detection focusing
on data collection methods. We introduce two new
datasets for sarcasm detection in English and Ara-
bic. The data was collected by asking people to
provide and label their own words as sarcastic or
not, hence intended sarcasm. iSarcasmEval con-
tains three subtasks: sarcasm detection, sarcasm
category classification, and sarcasm identification
given a pair of sentences. The task was quite pop-
ular with the participation of around 62 teams. In
this paper, we provide a high-level overview of the
approaches of top teams in each of the subtasks.
Transformer models were dominant in all subtasks.
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Detecting sarcasm in texts remains challenging;
detecting the ironic speech category even more so.
We hope our shared task will draw the attention of
the community towards these important tasks. We
suggest two main directions that future work could
consider.

First, in this shared task, sarcasm detection was
performed by solely mining lexical and pragmatic
cues from the texts being classified. However, the
sarcastic intention of the authors might be unclear
without reference to their previous utterances, and
their sociocultural background (Oprea and Magdy,
2020b). We suggest future datasets are needed
to provide access to such information, and future
models that account for it effectively.

Second, the low performance achieved by the
models on subtask B requires further investiga-
tion. First, alternative categorisations could be
considered. Second, the ironic speech category
labels should either be provided by the authors
themselves, to avoid any bias introduced by trained
annotators, or more emphasis should be placed on
annotator training and annotation guideline clar-
ity, to mitigate labelling noise that might indeed
account, at least in part, for the low performance
presented here. Finally, more effort is needed to
develop more effective models, likely making use
of information outside of the texts being classified,
including prior assumptions about the nature of
ironic speech, sociocultural information about the
authors, if available, as well as commonsense facts.
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Table 11 shows the complete results for subtask B.
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r Team Name Affiliation(s) macro F-score F1-Sarcasm F1-irony F1-satire F1-understatement F1-overstatement F1-rhetorical question
1 PALI-NLP Ping An, China 0.1630 0.4828 0.1863 0.0667 0.0000 0.0870 0.1556
2 CS-UM6P Mohammed VI Polytechnic University, Morocco 0.0875 0.2314 0.1622 0.0392 0.0000 0.0000 0.0923
3 MaChAmp IT University of Copenhagen, Denmark 0.0851 0.2404 0.0567 0.1379 0.0000 0.0000 0.0755
4 Naive Dalian University of Technology, China 0.0809 0.2370 0.1489 0.0000 0.0000 0.0000 0.0992
5 X-PuDu Baidu & Shanghai Pudong Development Bank, China 0.0799 0.2271 0.1685 0.0000 0.0000 0.0000 0.0840
6 Plumeria Indian Institute of Technology Kanpur, India 0.0778 0.2251 0.1266 0.0263 0.0000 0.0000 0.0889
7 R2D2 Vellore Institute of Technology, India 0.0760 0.2480 0.0323 0.1387 0.0034 0.0000 0.0339
8 IISERB Brains Indian Institute of Science Education and Research, India 0.0751 0.2294 0.0963 0.0833 0.0000 0.0000 0.0414
9 MarSan_AI Part AI Research Center, Iran 0.0743 0.1981 0.0653 0.0733 0.0000 0.0000 0.1091
10 I2C Universidad de Huelva, Spain 0.0699 0.2430 0.0485 0.0000 0.0000 0.0000 0.1280
11 YNU-HPCC Yunnan University, China 0.0646 0.2382 0.0577 0.0000 0.0000 0.0000 0.0920
12 John Thomson University of Alberta, Canada 0.0601 0.2039 0.1569 0.0000 0.0000 0.0000 0.0000
13 AMI_UofA University of Alberta, Canada 0.0601 0.2039 0.1569 0.0000 0.0000 0.0000 0.0000
14 Dartmouth Dartmouth College, USA 0.0590 0.2293 0.0202 0.0824 0.0000 0.0077 0.0143
15 Amrita-CEN Amrita Vishwa Vidyapeetham, India 0.0567 0.2180 0.0293 0.0461 0.0074 0.0245 0.0150
16 rematchka Cairo University, Egypt 0.0560 0.2251 0.0285 0.0664 0.0000 0.0161 0.0000
17 TechSSN Sri Sivasubramaniya Nadar College of Engineering, India 0.0465 0.2278 0.0282 0.0000 0.0000 0.0095 0.0137
18 NARD@KGP IIT Kharagpur, India 0.0446 0.2281 0.0282 0.0000 0.0000 0.0000 0.0112
- baseline-bert - 0.0431 0.3130 0.1667 0.0000 0.0000 0.0000 0.0597
19 GetSmartMSEC Meenakshi Sundararajan Engineering College, Chennai, India 0.0387 0.2321 0.0000 0.0000 0.0000 0.0000 0.0000
20 niksss - 0.0380 0.2278 0.0000 0.0000 0.0000 0.0000 0.0000
- baseline-majority - 0.0380 0.2279 0.0000 0.0000 0.0000 0.0000 0.0000
21 Suhaib-Aburaidah - 0.0346 0.2075 0.0000 0.0000 0.0000 0.0000 0.0000
22 Sarcastic weeps FAST NUCES LHR, Pakistan 0.0313 0.1538 0.0337 0.0000 0.0000 0.0000 0.0000

Table 11: Subtask B results in descending order according to the main metric (macro F-score). The table shows the
teams’ names, rank, affiliation, and score for each class.
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Abstract

This paper describes the method we utilized
in the SemEval-2022 Task 6 iSarcasmEval:
Intended Sarcasm Detection In English and
Arabic. Our system has achieved 1st in Sub-
taskB, which is to identify the categories of
intended sarcasm. The proposed system inte-
grates multiple BERT-based, RoBERTa-based
and BERTweet-based models with finetuning.
In this task, our contribution is listed as follow:
1) we reveal several large pre-trained models’
performance on tasks coping with the tweet-
like text. 2) Our methods prove that we can
still achieve excellent results in this particular
task without a complex classifier adopting some
proper training method. 3) we found there is
a hierarchical relationship of sarcasm types in
this task.

1 Introduction

Generally speaking, when we communicate
through natural language, the literal meaning of
the words is consistent with the meaning we want
to express. Sarcasm is a form of linguistic expres-
sion when this "congruence" is broken (Wilson,
2006).

Due to the inherent metaphorical nature and sub-
tle sentimental expression of this particular form of
language expression. The detection task related to
this kind of text, which is a negative expression of a
positive emotion or the positive expression of neg-
ative emotion, is extremely difficult for machines
(Yaghoobian et al., 2021). This sarcasm data also
weakens the detection modules that are widespread
in our society (Maynard and Greenwood, 2014).

Previous work shows that sarcasm often comes
with incongruity between expectation and reality
(Gibbs Jr et al., 1994). Many works attempt to
model this incongruity within the text (Tay et al.,
2018; Xiong et al., 2019). For multi-model data,
some works use the features from different modali-
ties (Schifanella et al., 2016; Cai et al., 2019), and

some works shows that inter-modality incongruity
is also an important feature for multi-modal sar-
casm detection (Pan et al., 2020).

The SemEval-2022 Task6 (Abu Farha et al.,
2022) is designed to detect sarcasm and sarcasm
types in twitter texts. In Subtask B, if a tweet is
not sarcastic, it should not be annotated with any
sarcasm label; if it is sarcastic, we need to detect
which sarcasm it is, and it could have different sar-
casm type at the same time. The main metric of
this task is the Macro-F1 score of all sarcasm types.

We design a simple and effective system for this
task. The system is based on a large-scale pre-
trained model based on bi-directional transformers
(Vaswani et al., 2017) and fine-tuned to obtain the
final output. First, we augmented the iSarcasm
dataset with additional datasets, and then we set an
appropriate learning rate for each layer and set the
model with an appropriate initialization state. Next,
we strengthen the model’s generalization ability
through adversarial training, multi-sample dropout
and other approaches. Finally, we use the [CLS]
token of the last layer of the encoder to perform
fine-tuning on the final training dataset and ensem-
ble them using the hierarchical way.

2 System Overview

                     

[CLS]               

                     

[SEP]                

                     

Query                

                     

Pretrained  Encoder                

                     
Linear                

                     
dropout                

                     
Output                

                 

6-layer                 
muti-sample

dropout            

Figure 1: The overall architecture
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Figure 1 shows our model architecture. This task
is a multi-label text classification task, so we follow
the common input format of BERT, that is, using
[CLS] and [SEP] as the starting and ending token
of the text. In addition to this, we applied data
cleaning to the text, replacing "@xxx" with <user>,
"#xxx" with <tag>, and "http:xxx" with <url>. It is
worth mentioning that we did not do any process-
ing on emojis because we think emojis may be an
important feature representing the gap between text
semantics and underlying sentiment. These actions
are done automatically by the tokenizer. The ob-
tained final token embedding, segment embedding
and position embedding constitute the input of the
pre-trained model encoder.

In the last layer of the pre-trained encoder, we
can acquire the representation of all tokens. In this
task, we only select the representation of the first
[CLS] token. After that, a layer-norm operation
and multi-sample dropout will be utilized on the
representation from the encoder. Finally, we use
BEC loss as our loss function.

2.1 Pretrained Model

Our submitted architecture integrates three pre-
trained language models of different architectures.

BERT-base(BERT) (Devlin et al., 2018): BERT
adopts the multi-layer bidirectional transformer en-
coder to obtain the representation of a query. In the
pre-training procedure, BERT conducts two differ-
ent pre-training objectives. 1. Masked language
modelling (MLM) objective. This task predicts a
masked token based on a randomly masked input.
2. Next sentence prediction (NSP) objective. The
goal of this task is to predict whether the second
sentence is the following sentence of the first one.

RoBERTa-base(RoBERTa) (Liu et al., 2019):
RoBERTa adopts the same model architecture as
BERT and improves the pre-training. It believes
that the pre-training of BERT is insufficient, so
RoBERTa executes pre-training using longer sen-
tences, more data, and a larger batch size than
BERT uses. The author also believes that the NSP
task of BERT is redundant and removed NSP from
pre-training. Meanwhile, the MLM task is im-
proved at the same time, and the token is dynami-
cally masked during the training process.

BERTweet-base(BERTweet) (Nguyen et al.,
2020): BERTweet follows the RoBERTa training
procedure, and it is the first large-scale pre-trained
language model that uses Twitter texts as a pre-

training corpus. Therefore, BERTweet has better
performance on tasks related to the tweet-like text.

2.2 Adversiral Training

We also incorporate adversarial training into the
training process. The objective of adversarial train-
ing is to improve the generalization of the model
by perturbing the embedding. For the calcula-
tion of this perturbation, we mainly implement
two different methods. The Fast Gradient Method
(FGM) calculates the disturbance at the moment
through the gradient (Miyato et al., 2016), while
the Projected Gradient Descent (PGD) executes
this process through more steps and additionally
adds spherical mapping to prevent the perturbation
from being too large (Madry et al., 2017). During
the training process, we adopt adversarial training
on both the embedding layer and the first layer of
the encoder.

2.3 Multi-sample Dropout

Dropout is a common and effective way to increase
the generalization of deep neural networks. It can
effectively reduce the overfitting of the model by ig-
noring some neurons in training according to a cer-
tain probability. The multi-sample dropout (Inoue,
2019) we use in this paper is an enhanced dropout
method. It goes through multiple dropout oper-
ations and averages the output obtained by each
dropout operation as the final output. In multi-
sample dropout, the weights of each dropout layer
and classifier layer will be shared, so multi-sample
dropout can achieve better results than the origi-
nal dropout and not bring a significant increase in
computational cost.

2.4 Contrastive Loss

Contrastive learning has drawn attention for its’
excellent performance. The main idea is to shorten
the distance between similar samples(in this task,
similar means having the same label) and separate
the samples that are not similar. In the SubtaskB,
we mainly implement supervised contrastive loss
(SupConLoss)(Khosla et al., 2020).

2.5 Ensemble method

For this task, we adopt a hierarchical model en-
semble approach. First, we give the models corre-
sponding voting weights based on the performance
of each model on the validation set. The weights
are calculated as the square root of the inverse of
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the model’s rank among all models. Then we con-
duct two votes, one for the first two labels (Sarcasm,
Irony) and one for the last four labels (Satire, un-
derstatement, overstatement, rhetorical question).
In this way, we get the final output.

3 Experimental Setup

3.1 Dataset
iSarcasm-2022. Dataset of SemEval-Task6, con-
sisting of tweets text and correspoding sacarsm
types. For tweets that are sarcasm, the sarcasm
type is given as annotated by language experts,
and a single tweet may contain one or more sar-
casm types. Along with the sarcastic tweets is the
"Rephrase" written by the same poster of the tweet.
"Rephrase" contains the same expressive meaning
as sarcastic tweets but without sarcasm.
iSarcasm (Oprea and Magdy, 2019). iSarcasm
dataset, consisting of tweets texts and correspoding
sacarsm types just like iSarcasm-2022. We only
leverage the sarcastic tweet which is identityfied as
sarcasm. The publisher of sarcastic tweets provides
the sarcasm type of iSacarsm. No "Rephrase" is
provided.

3.2 Training Details
We fine-tune the pre-train models with batch size
128, sequence length 64,multi-sample dropout of
0.4, threshold 0.2. We set peak learning rate 1e5 for
ten epochs and apply layer-wise learning rate De-
cay for each layer. We set AdamW and Lookahead
as our optimizer and set cosine warm-up during the
first 0.1 of the updates followed by a linear decay.
We conduct validation three times per epoch and
perform early stopping. We set the multi-sample
layer to six layers and adopt PGD on the embed-
ding and first encoder layers. The training is done
on NVidia V100 GPUs. All the F1 result is perfor-
mance on the test set.

4 Results

Our model performence is shown in Table 1

4.1 Pretrained Model Selection and Data
Analysis

We try three transformer-based pre-trained lan-
guage models in this task, BERT, RoBERTa and
BERTweet. From the Table 1 we can see that
although RoBERTa achieves better results than
BERT, they both perform far worse than BERTweet.
The possible reason is due to the difference in the

pre-training corpus. The dataset texts of this compe-
tition are all tweeted texts of users, and these texts
have linguistic features like hashtags and emoji,
making them significantly different from standard
texts. BERTweet conducts pre-training on tweet
texts while BERT and RoBERTa do not have such
settings, which leads to BERTweet being better
able to handle this particular type of data.

For the fine-tune dataset selection, we extend
the dataset provided by the organiser with an ad-
ditional 777 samples based on the competition re-
quirements that additional data could be used. By
analysing the dataset, we found that: 1) The com-
petition dataset reflects a long tail that Understate-
ment, Overstatement, and Rhetorical question are
pretty rare. 2) There is an apparent hierarchical
relationship between each label. We analysed the
combination of labels and found that six labels can
be categorised into primary labels (sarcasm, irony)
and secondary labels(satire, understatement, Over-
statement, rhetorical question). The hierarchical
relationship is presented in the Fig 2 . The standard
BEC loss and re-weighted BEC loss are tested in
this task. The result is shown in the Table 2. Mod-
els gain a significantly 10.37% increase in the test
set from 0.1417 to 0.1564 of macro-f1 score in the
latter setting. We used this system as our baseline.

4.2 Multi-sample Dropout
We experiment with four different multi-sample
dropout layer settings, ranging from 2 to 8 layers
and the result is shown in Tabel 3. We finally im-
plement 6-layer multi-sample dropout in this task,
which achieved 0.1578 in macro-f1 compared to
the 0.1564 of baseline.

4.3 Adversiral Training
Tabel 4 display the performance of different adver-
sarial training strategies. We conduct experiments
on two common used adversarial training methods
and test the effect of the adversarial rate. In the
end, we find that PGD is slightly better than FGM
as a whole. When the ratio is 0.5, PGD is opti-
mal as adversarial rate 0.5, which increases 1.98%
compared to the baseline. If combined with the op-
timal multi-sample dropout method, the model can
obtain 7.10% improvement, reaching a macro-f1
score of 0.1675.

4.4 Contrastive Loss
We experiment with SupCon loss. We can see the
result on Tabel 5. There is an indeed decrease when
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Model Macro-F1 F1-SCM F1-IRN F1-ST F1-UST F1-OST F1-RQ
BERT-base-uncased 0.0766 0.2605 0.0976 0.0000 0.0000 0.0000 0.1013
RoBERTa-base 0.0991 0.2921 0.1915 0.0000 0.0000 0.0000 0.1111
BERTtweet-base 0.1417 0.4749 0.2151 0.0000 0.0000 0.0000 0.1600
Our Baseline 0.1564 0.4760 0.1630 0.0667 0.0000 0.0976 0.1441
Our Submitted Model 0.1630 0.4828 0.1863 0.0667 0.0000 0.0870 0.1556
Our Best Model(single) 0.1675 0.4586 0.1854 0.1000 0.0000 0.0930 0.1682

Table 1: Performance of final result

Sarcasm            

                 

Satire           

                 

Understatement            

                 

overstatement            Rhetorical                 
Question           

Tier 1            

                 

Tier 2            

Irony            

Figure 2: The hirechical relationship of sarcasm types

Model(base) Loss Macro-F1
RoBERTa non-weighted 0.0991
RoBERTa re-weighted 0.1034
BERTweet non-weighted 0.1417
BERTweet(Base) re-weighted 0.1564

Table 2: Performance of different pre-trained models
applying non-weighted or re-weighted loss

Setting Macro-F1
Base 0.1564
Base+M-dropout 0.1578

Table 3: Performance of models applying multi-sample
dropout

Setting M-dropout Ad-rate Macro-F1
Base False 0 0.1564
Base+PGD False 0.5 0.1595
Base+FGM False 0.5 0.1593
Base True 0 0.1578
Base+PGD True 0.5 0.1675

Table 4: Performance of models applying different ad-
versarial training strategies

Setting M-dropout Macro-F1
Base False 0.1564
Base+SupCon False 0.1529
Base True 0.1578
Base+SupCon True 0.1670

Table 5: Performance of models applying SupCon loss

performing SupCon loss. However, when multi-
sample dropout is adopted along with SupCon loss,
it shows excellent results, an increase of 6.77%
compared to baseline. See Table 5 for performance
of contrastive loss applied.

5 Conclusion

We employ the large pre-trained models and fine-
tune them for sarcasm category discrimination. We
compare the performance of different pre-trained
models on Subtask B of SemEval-2022 Task 6.
The results show that the difference between the
pre-training corpus and the downstream task cor-
pus will significantly affect the performance of the
model. We find that the pre-trained model using
the default training settings performed poorly on
this task, and good model initialization and train-
ing strategies can help improve this situation. We
also find that there is a hierarchical relationship
between the types of sarcasm which we believe is
an important feature worth exploiting.
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Abstract

This paper describes the systematic approach
applied in "SemEval-2022 Task 6 (iSarcas-
mEval) : Intended Sarcasm Detection in En-
glish and Arabic". In particular, we illustrate
the proposed system in detail for SubTask-A
about determining a given text as sarcastic or
non-sarcastic in English. We start with the train-
ing data from the officially released data and
then experiment with different combinations of
public datasets to improve the model general-
ization. Additional experiments conducted on
the task demonstrate our strategies are effective
in completing the task. Different transformer-
based language models, as well as some popu-
lar plug-and-play proirs, are mixed into our sys-
tem to enhance the model’s robustness. Further-
more, statistical and lexical-based text features
are mined to improve the accuracy of the sar-
casm detection. Our final submission achieves
an F1-score for the sarcastic class of 0.6052 on
the official test set (the top 1 of the 43 teams in
"SubTask-A-English" on the leaderboard).

1 Introduction

Sarcasm is a sophisticated communication tech-
nique to express emotions, attitudes, feelings, and
evaluations. Sarcastic and ironic texts typically do
not contain words with negative polarity, hostile at-
titudes, or offensive in their literal sense, but rather
express the contradiction or opposite of the literal
meanings (Filik et al., 2016; Van Hee et al., 2018;
Reyes and Rosso, 2014; Verma et al., 2021). Sar-
casm detection can be considered a particular sen-
timent analysis task, applied to detect texts that are
intended to use some exaggeration, understatement,
or rhetoric content to express criticism or praise for
people or events. Many researchers have conducted
different deep learning methods (Poria et al., 2016;
Kumar et al., 2020; Zhang et al., 2019), traditional
machine learning method (Buschmeier et al., 2014;
Hernández-Farías et al., 2015; Yaghoobian et al.,
2021), and big data approaches (Bharti et al., 2016;

Sarsam et al., 2020; Ortega-Bueno et al., 2019)
to improve the accuracy of irony or sarcasm auto-
detection.

SemEval-2022 Task 6 (iSarcasmEval) is a sar-
casm detection task (Abu Farha et al., 2022). The
standard training dataset includes 3468 English
tweets and 3102 Arabic tweets. The English train-
ing dataset provides 862 sarcastic tweets along
with their non-sarcastic rephrases, while the Arabic
datasets provides 745 sarcastic samples. For the
English dataset, each sarcastic tweet is also labeled
as a fine-grained multi-class and multi-label ironic
tag such as satire, understatement, overstatement,
and rhetorical questions.

SubTask-A is a binary classification task to pre-
dict whether a given tweet is sarcastic or not.
Table 1 shows one sarcastic tweet and its non-
sarcastic version, and one non-sarcastic tweet from
the released dataset. We could notice that the raw
tweets are pretty noisy and contain user informa-
tion, URLs, hashtags, etc. Some of the sarcastic
tweets also contain sarcastic-related words such
as "irony" or "sarcastic" in their hashtags. Many
non-sarcastic tweets include confused, unfriendly
words or denial attitudes.

In this paper, we demonstrate the following con-
tributions: 1) The discrepancy in prediction perfor-
mance using different transformer-based language
models; 2) The improvement of adding the pub-
lic dataset and mining effective text features; 3)
The enhancement obtained by incorporating vari-
ous constrative learning loss functions; 4) Model
generalization is improved by incorporating the
multi-sample dropout layer into the output of pre-
trained language models. On Subtask-A, our sys-
tem achieves an F1 score for the sarcasm category
of 0.6052 and a Macro F1 score of 0.7675.

2 System Overview

The final submitted result is a contribution from var-
ious classification models using the voting mech-
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Sarcastic tweet
@PFTompkins Her family should definitely not seek mental health

guidance.
Sarcastic tweet rephrase They should seek guidance.

Non-sarcastic example
I wonder if it’s too late for me to re-enroll in University and relive it

all just one last time.

Table 1: Sarcastic and non-sarcastic tweet examples

anism. The outcome is a fusion of 15 predictions
trained using different transformer-based language
models, external datasets, text features, and deep
learning-based techniques such as constrastive loss,
adversarial training, multi-sample dropout, etc.

The proposed model is trained with a 5-fold
cross-validation with a randomly distributed seed.
The basic classification model is structured with a
multi-sample dropout layer after the pooling layer
of the pretrained model. RoBERTa-large, XLM-
RoBERTa-large and DeBERTa-v3-large are alter-
natively adopted in these 15 models. Models are
trained using the AdamW optimizer with a learn-
ing rate of 1e-05 in the fast gradient method. Four
dropout layers with a rate of 0.4 are picked in our
multi-sample dropout module. When we make
models based on DeBERTa-v3-large, we change
the dropout rate to 0.2, which has been suggested
by previous studies (He et al., 2020b, 2021).

The cross-entropy loss (LXent) is used as the
classification loss, and the additional XNET loss
(LNTXent) with a temperature of 0.2 is selected as
the metric learning loss in our system. Equation 1
shows the combination of two types of loss. The
weight parameter (w) used to balance the combina-
tion of multiple losses is set as 0.1.

Loss = (1− w)LXent + wLNTXent (1)

Additionally, three external datasets are added
to the official SemEval-2022 data in the proposed
models for further training. Text features are di-
rectly concatenated to the training texts in some
proposed models as well. The featuring mining,
text preprocessing, and the voting method are de-
scribed below. The scheme of data preparation,
training, and prediction processes is demonstrated
in Figure 1.

2.1 Pre-processor
The raw English tweets in the official training data
contain many noises such as misleading hashtags,
usernames, website links, and emojis in different

formats. We detected and replaced usernames and
links with special tokens. Additionally, we ex-
tended some common English abbreviations, such
as U, idk, omg, sry, etc. to full-spelled words to
keep the whole dataset in the same phase. However,
we intend to keep words with unusual capitaliza-
tion, wrong spelling, and repeated punctuation in
raw tweets since people sometimes prefer to ex-
press exaggeration and emphasis in this way.

2.2 External Data

Besides the officially released data, we trained the
model with three public datasets. The description
and the source for additional data are illustrated as
below.

(1) The iSarcasm 1 is a public dataset of English
tweets. Each tweet is labeled as either sarcastic or
non-sarcastic. Each sarcastic tweet is labeled with
a fine-grained ironic label as well. We obtained
2279 non-sarcastic and 563 sarcastic tweets using
the tweet API (Oprea and Magdy, 2020).

(2) The Multi-modal Sarcasm data 2 contains
33,859 images with descriptions where the sarcas-
tic and non-sarcastic text are uniformly distributed.
We used the text information only to train our classi-
fication model. In reality, we randomly took 10,000
texts out of the full dataset as the additional dataset.
This strategy can speed up the training process and
avoid the bias from a large number of additional
datasets as well.

(3) The dataset released by SemEval-2018 task3
3 is also considered in our training dataset (Van Hee
et al., 2018). The data format and the task descrip-
tion are pretty similar to our task. This dataset
contains 3800 tweets with uniform sarcastic/non-
sarcastic labels.

1https://github.com/silviu-oprea/
iSarcasm

2https://github.com/headacheboy/
data-of-multimodal-sarcasm-detection

3https://competitions.codalab.org/
competitions/17468
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Figure 1: Task experimental progress

2.3 Language Models
We have adopted the RoBERTa-large (Liu et al.,
2019) and DeBERTa-v3-large (He et al., 2020b,
2021) as the pretrained models from Hugging Face.
We also applied the XLM-RoBERTa-large (Con-
neau et al., 2019) as a pretrained model for the
dataset which includes the Arabic tweets during
training.

2.4 Feature Mining
Moreover, we mined different types of statistical
and lexical-based features that were previously
applied in irony detection. Additional text fea-
tures can improve the detection of sarcasm in
many related tasks (Hernández-Farías et al., 2015;
Yaghoobian et al., 2021). All the text features are
simply added to the preprocessed tweets using the
splitting token "< /s > < /s >". Figure 2 demon-
strates how we concatenate different features into
the original text.

Figure 2: Text and features concatenation

(1) Emoji is a prominent multi-model feature
that indicates human emotions after analyzing large
amounts of tweet data 4. On social media, emojis
with few characters can easily turn common text
into humorous, sarcastic, or ironic expressions.

(2) Parts-of-speech (POS) information is applied
as an important feature as well. It is worth men-
tioning that we mined the POS-based features from

4https://github.com/MathieuCliche/
Sarcasm_detector

the sarcastic tweets and their own rephrases in the
official SemEval-2022 dataset. A list of adjectives
and adverb words is generated by comparing the
differences between the sarcastic tweets and their
rephrased versions. For example, some words like
"really", "never", "actually", etc. can be considered
a symbol of sarcasm and express some contradic-
tory and criticized attitudes.

(3) We also notice that some misspelled words
(e.g., "so"->"soooo", "love"->"looove", "sure"-
>"sureeee") and capitalized words (not located at
the beginning of a sentence) can sometimes exag-
gerate the emotional expression. Those words are
detected and added to the tweets as additional text
features.

(4) Transitional words and words with negative
polarity are also considered as two potential sarcas-
tic features (Tayal et al., 2014). Transitional words
can express opposition or contradiction or indicate
different meanings in a same sentence, such as "on
the other hand" and "neverthelsess" 5. The polarity
of words or lexicon sometimes helps to identify the
level of praise or criticism of a text. For the polarity-
based feature, we adopted the AFINN dataset 6 (a
list of words labelled with a polarity valence) as a
reference.

2.5 Ensemble
The final submitted result is fused, utilizing the
voting-based mechanism, with the predictions of
15 pretrained models. Voting from different models
can usually hinder obvious mis-classifications from
a single model (Ruta and Gabrys, 2005; Zhang
et al., 2014). Hard voting and soft voting are
two classical voting methods in classification tasks.

5http://www.csun.edu/~hcpas003/
transwords.html;https://wordcounter.net/
blog/2016/07/19/101889_transition-words.
html

6http://github.com/abromberg/
sentiment_analysis/blob/master/AFINN/
AFINN-111.txt
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Hard voting directly fuses different ensembles by
picking the highest number of votes. The amount
of sarcasm and non-sarcasm votes from different
models directly determines the label of a test sam-
ple. Soft voting combines all ensembles by adding
the probabilities of each prediction and picking the
prediction with the highest probability summation.
The predicted label would be sarcasm when the
mean probability of the sarcasm category is greater
than our selected threshold of 0.5. We mixed the
hard and soft voting methods for the final submit-
ted prediction. The hard voting method is adopted
when the difference between the amount of sarcasm
and non-sarcasm is greater than 2. Otherwise, the
soft voting method is adopted.

3 Experimental Setup

Four major improvements in F1 score are given
by adding the public dataset, multi-sample dropout
layer, text features, and tuning the parameters in the
contrastive loss function. In this paper, we evaluate
different modules and tricks that are adopted in
our proposed model to show their effect on the
Semeval-2022 official dataset. Table 2 shows the
F1 scores for the competition blind test set based on
different pretrained models, strategies and datasets.

The DeBERTa-v3-large model outperforms
about 5% the other two pretrained models we used
in this task. Many other tasks show the outper-
formance of the DeBERTa model as well. De-
BERTa modes proposed two novel tricks to im-
prove the ability to solve many natural language
tasks. Compared with the BERT and RoBERTa
models, the disentangled attention mechanism is
applied to show each word in two vectors, which
represent its content and relative position. The
disentangled matrices are used to calculate the at-
tention weights between the word content and posi-
tion. An enhanced mask decoder is adopted to help
with model pre-training by using the absolute posi-
tion to predict the masked tokens. The DeBERTa
model also shows a big improvement in how well
the model generalizes when the virtual adversarial
training method is used.

Multi-sample dropout is a regularization tech-
nique which can accelerate training convergence
and improve the model generalization compared
to the network structure with a traditional dropout
layer (Inoue, 2019). Four dropout layers were ap-
plied to the pooling layer output from the pretrained
model. Table 2 shows that additional multi-sample

dropout layer provides a remarkable effect ( 4%
improvement on F1 score) on this classification
task.

Moreover, many effective adversarial training
and vitual adversarial training methods can im-
prove the model robustness and the regularization
on classification tasks (Madry et al., 2017; Miyato
et al., 2016; Goodfellow et al., 2014; Zhu et al.,
2019; Jiang et al., 2019; Qin et al., 2019; Shafahi
et al., 2019). In this task, we adopted Projected Gra-
dient Descent (PGD) and the Fast Gradient Method
(FGM) to implement the perturbation on sequence
embedding in this task (Madry et al., 2017; Miyato
et al., 2016). Table 2 shows a pretty similar F1
score for both methods. The FGM adds small per-
turbations to the embedding layers to enhance the
quality of word embedding. The submitted mod-
els are fused by models trained in the fast gradient
method, credited with its fast training converges
and fewer computation resources.

Additionally, the constrastive loss is considered
in our training progress. It maximizes the amount
of agreement between different augmented views
of the same dataset through adding a contrastive
loss in the latent space. (Hadsell et al., 2006; Chen
et al., 2020; He et al., 2020a). Many tasks are
competitively performed by adding contrastive loss
functions, such as triple margin loss, NPair loss,
InfoNCE loss, and SupCon loss (Sohn, 2016; Chen
et al., 2020; Van den Oord et al., 2018; He et al.,
2020a; Khosla et al., 2020). In this task, we con-
sidered the NTXent and SupCon losses as the addi-
tional contrastive loss. We added the selected con-
trastive loss to the cross-entropy loss to improve
the classification accuracy.

The effect of the contrastive temperature reflects
the attention of difficult samples. The smaller tem-
perature pays more attention to the separation of the
sample from the most similar one to it (Wang and
Liu, 2021). We tuned the contrastive temperature
in both NTXent and SupCon loss to train different
classification models. NTXent with a contrastive
temperature of 0.2 creates the best performance on
the competition blind test set according to Table 2.

Furthermore, the weighted voting on multiple
models with different pretrained models and ran-
dom seeds improves final performance on the com-
petition’s blind test set. Figure 3 shows the mini-
mum, mean, and maximum F1, precision and recall
scores for predictions from 15 single models. The
mixed voting method we applied for the final sub-
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Dataset
Pre-

trained
model

Adversarial
Training
method

Text
Features

Multi-
sample
dropout

Contrastive
loss/temp

F1 @
Sarcasm

Macro
F1

pgd False False NTXent/0.5 0.4125 0.6402
pgd False True NTXent/0.5 0.4582 0.6794
fgm False True NTXent/0.5 0.4691 0.6788
fgm False True SupCon/0.5 0.4788 0.6802
fgm False True SupCon/0.2 0.4813 0.6833
fgm True True NTXent/0.2 0.4862 0.6957

deberta-
v3-large

fgm False True NTXent/0.2 0.5370 0.7132

xlm-
roberta-

large
fgm False True NTXent/0.2 0.3871 0.6420

roberta-
large

fgm False True NTXent/0.2 0.5570 0.7374

deberta-
v3-large

fgm False True NTXent/0.2 0.5882 0.7445

xlm-
roberta-

large
fgm False True NTXent/0.2 0.5615 0.7409

xlm-
roberta-

large
fgm True True NTXent/0.2 0.6029 0.7676

SemEval2022(EN)

roberta-
large

SemEval2022
(EN+AR)

SemEval2022(EN)
+ Semeval2018

+ iSarcasm

SemEval2022(EN)
+ Semeval2018

+ iSarcasm
+ multi-model

SemEval2022
(EN+AR)

+ Semeval2018
+ iSarcasm

+ multi-model

Table 2: F1 scores using different strategies and datasets

mission has obtained the best performance.

Figure 3: Prediction results from single and fused mod-
els

4 Conclusion

According to the performance on the blind test set,
the proposed model with the highest F1 score in
the sarcastic category applied four layers of multi-
sample dropout with a rate of 0.4 following the
pooling layer outputting from the XLM-RoBERTa-
large model. The model is trained in the fast gradi-
ent method using the AdamW optimizer at a learn-
ing rate of 1e-05. The combination of the cross-
entropy and the NTX contrastive loss is applied
during the training process. Additionally, incorpo-
rating text features and data from other sources can
help improve the prediction’s accuracy.
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Abstract
Sarcasm refers to the use of words that have
different literal and intended meanings. It rep-
resents the usage of words that are opposite of
what is literally said, especially in order to in-
sult, mock, criticise or irritate someone. These
types of statements may be funny or amusing
to others but may hurt or annoy the person to-
wards whom it is intended. Identification of
sarcastic phrases from social media posts finds
its application in different domains like sen-
timent analysis, opinion mining, author pro-
filing and harassment detection. We have pro-
posed a model for the shared task iSarcasmEval
- Intended Sarcasm Detection in English and
Arabic by SemEval-2022 considering the lan-
guage English. The Subtask A and Subtask C
were implemented using a Convolutional Neu-
ral Network based classifier which makes use
of ELMo embeddings. The Subtask B was
implemented using Gaussian Naive Bayes clas-
sifier by extracting TF-IDF vectors. The pro-
posed models resulted in macro-F1 scores of
0.2012, 0.0387 and 0.2794 for sarcastic texts in
Subtasks A, B and C respectively.

1 Introduction

In the Internet era, specifying user comments,
views and opinions through social media has be-
come very common and these may not be speci-
fied directly and can include indirect phrases with
implicit meanings (Abu Farha and Magdy, 2020).
The posts may also represent undesirable charac-
teristics using positive words and they may not be
formal in nature. It is common to use abbreviations,
uncommon, ambiguous and multilingual words in
social media posts and no predefined structures are
explicitly defined for sarcastic messages (Sarsam
et al., 2020). So the identification of sarcastic posts
cannot be considered as a direct process. Exhaus-
tive understanding of the contextual meaning of the
posts is considered as an important factor in identi-
fying sarcastic posts. Sarcasm detection is consid-
ered as a challenging task associated with sentiment

analysis. Sarcasm detection also plays an important
role in analysing the voice of the customer based
on which major decisions will be taken.

Sarcasm requires some shared knowledge be-
tween speaker and audience and it is considered
as a profoundly contextual phenomenon. Using
sarcastic phrases in sentences is a common way
of ironic or satirical speech for the common man.
That being said, social media platforms, such as
Twitter, Facebook and YouTube contain millions of
tweets and comments that include sarcastic phrases,
thus making it a field of study under the domain of
NLP. For example, a user can change a supposedly
negative comment using positive words as in the
sentence, “It is awesome to go to bed at 3 am #not”.
In such cases it becomes important to ensure that
the right sentiment is drawn out of the sentence
through proper analysis (Vu et al., 2018).

The shared task iSarcasmEval was part of Se-
mEval 2022 (Abu Farha et al., 2022) and there were
three subtasks associated with it. Two of the sub-
tasks - Subtask A and Subtask B, were conducted
for both English and Arabic languages, while Sub-
task C only pertains to English. We as a team par-
ticipated in all the three subtasks associated with
the language English.

Subtask A: Sarcastic vs. Non-Sarcastic
The first subtask was a straightforward Binary

Classification problem, in which the model had to
predict whether a given phrase is sarcastic or not.
For example, “I work 40 hours a week for me to
be this poor.” is sarcastic, whereas “Her husband
is serving a three-year sentence for fraud.” is non-
sarcastic.

Subtask B: Different types of irony
The second subtask was a Multi-Label Classifica-

tion problem, where the aim was to identify which
type of irony a given sentence falls under from six
specific labels: sarcasm, irony, satire, understate-
ment, overstatement and rhetorical question.

Subtask C: Differentiation between sarcastic
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phrase and its rephrase
The final subtask is another Binary Classification

problem, wherein, given a sarcastic phrase and its
rephrase, the model needs to identify which of the
two is sarcastic. For example, the phrase “Taxes
are just the best and I cannot wait to pay more” is
sarcastic, whereas its rephrase - “I dislike paying
taxes.” is non-sarcastic (Goutte et al., 2014).

Considering all the three subtasks the training
of the proposed model was done using the training
data set provided for the corresponding task and
language. This model was then tested with a test-
ing data set provided by the shared task, based on
which the task was evaluated.

2 Related Works

Sarcasm detection can be posed as a text classi-
fication task in which the given text needs to be
identified as sarcastic or not. In simple systems it
could be considered as a binary classification task
where the presence of sarcasm is only detected. But
if the irony associated with the sarcastic message
needs to be identified then it is considered as a
multi label classification task. Different machine
learning and deep learning models could be used
for identifying sarcasm in text and it is not evident
that a particular algorithm provides the best result
for any data. The features of the data set like the
number of instances in the data set, distribution of
data in the training data set are important factors
on which the performance of the algorithm relies.
So it becomes necessary to analyse the data set, to
choose the model for implementing the classifica-
tion task.

It had been shown that Support Vector Machine
provided the best performance for sarcasm detec-
tion considering posts from twitter (Sarsam et al.,
2020). A combination of Convolutional Neural
Network (CNN) and SVM had also offered high
prediction accuracy. Even though feature rich SVM
model perform well, Avinash Kumar and et al. (Ku-
mar et al., 2020) had shown better performance by
combining multi-head attention mechanism with
bidirectional long-short memory (BiLSTM) to de-
tect sarcastic messages.

Use of deep learning models with BiLSTM to
detect sarcasm from Arabic texts had been illus-
trated by (Abu Farha and Magdy, 2020). A sar-
casm detector had been implemented by fine tuning
BERT and considering both affective and contex-
tual features (Babanejad et al., 2020). The fea-

tures of sarcastic text had been captured using a
multi-level memory network to take care of sen-
timent semantics and the contrast between it and
the situation in each sentence (Ren et al., 2020).
Different transformer-based language models were
used for sarcasm detection in Arabic language text
and had found that MARBERT and AraELECTRA
performed well and AraGPT2 had shown poor per-
formance (Abu Farha and Magdy, 2021).

Pre-trained transformer models when ensembled
with Recurrent Convolutional Neural Network to
form hybrid neural architecture to detect sarcas-
tic messages had resulted in better performance
when compared to other relevant state-of-the-art
methodologies (Potamias et al., 2020). A hybrid
model implemented using bidirectional long short-
term memory with a softmax attention layer and
convolution neural network when used for sarcasm
detection had resulted in better performance (Jain
et al., 2020). Sarcasm detection had been imple-
mented by taking into account the contextual infor-
mation using a dual channel Convolutional Neural
Network and the user’s expression habit had been
identified using attention mechanisms (Du et al.,
2022).

In addition to the above approaches, various
novel approaches like statistical approaches, graph
based approaches, fuzzy logic based approaches
and pseudo labelling approaches had been used for
identifying sarcastic messages. A complex-valued
fuzzy network had been used to identify the text
with sarcasm by leveraging the mathematical for-
malisms of quantum theory and fuzzy logic (Zhang
et al., 2021). Sarcasm detection had been imple-
mented by taking the contextual information of a
sentence into account in a sequential manner us-
ing the concept of pseudo-labeling (Kumar Jena
et al., 2020), (Kalaivani and Thenmozhi, 2020).
Long-range literal sentiment inconsistencies had
been taken into account in sarcasm detection by
constructing an affective graph and a dependency
graph for each sentence and had then used an Af-
fective Dependency Graph Convolutional Network
(ADGCN) framework for the classification process
(Lou et al., 2021). Statistical approach had been
proposed for sarcasm detection by combining TF-
IDF features with the important features related
to sentiments and punctuations that are identified
using chi-square test (Gupta et al., 2020).

Social media posts may have both text and im-
ages associated with it and identifying sarcasm in

828



Task Category Instances
Subtask A Sarcastic 867

Non Sarcastic 2601
Subtask B Sarcasm 713

Irony 155
Satire 25

Under Statement 10
Over Statement 40

Rhetorical question 101
Subtask C Rephrase 867

Table 1: Data Distribution

such case had been implemented using a multi-
modal framework using Coupled-Attention Net-
works (CANs) which captures and integrates infor-
mation from both text and image for the classifi-
cation task (Zhao et al., 2021). As the imbalanced
nature of the data set affects the performance of
the model oversampling had been done to convert
the data set into a balanced one and had shown
that SMOTE and BorderlineSMOTE–1 techniques
when used for oversampling had resulted in the im-
provement of performance (Banerjee et al., 2020).
It could be summarized from the related works that
identifying sarcasm from social media posts is an
emerging research area that requires more insights.
Different techniques like traditional machine learn-
ing models such as SVM and Random Forest, Con-
volutional Neural Network based models, Trans-
former models and Ensemble models could be used
for this purpose. It could be found that the perfor-
mance of the approach depends on the dataset on
which the model is being trained (Abdulraheem
et al., 2015). It is hard to identify a particular ap-
proach that can detect sarcastic messages under
any circumstances which provides the best perfor-
mance.

3 Data set

The data set that we used to implement sarcasm de-
tection was the training and the test dataset that was
provided by the organisers of the shared task. Each
instance of the training dataset had the following
informations attached to it:

1. Label specifying the sarcastic nature of the
text

2. Rephrase text that convey the same message
of the text non-sarcastically

3. Label specifying the category of ironic speech
which includes sarcasm, irony, satire, under-
statement, overstatement and rhetorical ques-
tion

There were 3468 instances in the training data set
of which 867 instances were under the sarcastic
category and remaining 2601 instances were under
the non sarcastic category. This shows the unbal-
anced nature of the data set. The test data had
1400 instances for which the predictions had to be
done using the proposed model. The distribution
of the data in the training dataset is shown in Table
1. As separate data set was not provided for the
evaluation purpose, under both category 80% of
the training data instances were used for training
purpose and 20% of the instances from the training
data set was used for the evaluation purpose.

4 System Description

The proposed methodology uses ELMo embedding
based Convolutional Neural Network model for
implementing the Subtasks A and C with an em-
bedding layer followed by two dense layers. The
Subtask B has been implemented using TF-IDF
based Gaussian Naive Bayes classifier.

4.1 ELMo Model

Figure 1: Architecture of ELMo Model

It stands for Embeddings from Language Mod-
els and is a novel way to represent words in vectors
or embeddings (Peters et al., 2018). In ELMo the
syntax and semantics of the word and the linguistic
context associated with it are modelled as a deep
contextualised word representation. Huge text cor-
pus had been used to pretrain the model and is
constructed using deep bidirectional models1. It
is implemented with 4096 units and the input em-
bedding transform using 2048 convolutional filters.

1https://allenai.org/allennlp/software/elmo
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Figure 2: Proposed Architecture

The context of the word usage forms the base for
the word representation. ELMo word representa-
tions take the entire input sentence into equation for
calculating the word embeddings. The architecture
of ELMo model2 is shown in Figure 1.

ELMo is a bidirectional language model. The
forward LM is a deep LSTM that goes over the
sequence from start to end to predict the token and
the backward LM is a deep LSTM that goes over
the sequence from end to start to predict the token.

Figure 3: Likelihood of Gaussian Naive Bayes

4.2 Gaussian Naive Bayes Classifier

It follows Gaussian Normal Distribution and is a
variant of Naive Bayes which are a group of super-
vised machine learning classification algorithms
based on the Bayes theorem. The concept of con-
ditional probability is used while using this for
the classification problem3. The likelihood of the
features in Gaussian Naive Bayes Classifier is rep-
resented by Figure 3. Predictions using this clas-
sifier is done by providing new input values for
the parameters which will result in an estimated

2https://andy-nguyen.medium.com/create-a-strong-text-
classification-with-the-help-from-elmo-e90809ba29da

3https://jakevdp.github.io/PythonDataScienceHandbook

probability by the Gaussian function.
The task of determining whether the given text is

sarcastic or non-sarcastic represents a binary classi-
fication problem, which is Subtask A. The task of
determining the sarcastic one from two texts that
convey the same meaning also represents a text clas-
sification problem which is the problem statement
associated with Subtask C. The proposed model
uses an ELMo model to implement the above two
tasks. Subtask B is a binary multi-label classifica-
tion task in which the correct ironic speech category
has to be identified from the given set of labels. Fig-
ure 2 shows the architecture of the proposed model.

The first step associated with all the subtasks
is to prepare the data set, which involves prepro-
cessing of the text within. This is carried out by
removing any escape sequences and stop words
associated with the text, generating the associated
tokens and lemmatizing the same. The idea behind
preprocessing is to remove the parts from the text
which do not contribute to the actual intent of the
text.

For implementing Subtask A and C which were
binary classification problem, the labels were nor-
malized by using a one hot encoding scheme,
which transformed the labels into a categorical
value for which embedding is done and the en-
coded labels are returned4. The encoded data is
used to train the model which is a Convolutional
Neural Network with an embedding layer followed
by two dense layers. The embedding layer gener-

4https://scikit-learn.org/stable/modules/generated
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Metric Score
F1-Sarcastic 0.2012
F-Score 0.5101
Precision 0.5137
Recall 0.5196
Accuracy 0.705

Table 2: Subtask A Scores

ates the ELMo embeddings which is implemented
with the help of tensorflow hub. The first dense
layer has 256 units and makes use of relu activation
function. The output is generated from the second
dense layer with two units as it performs Binary
Classification. The activation function used by the
last layer is softmax. As Subtask B involved multi
label classification, TF-IDF vectors were generated
for the input text and the classification was car-
ried out using a Gaussian Naive Bayes classifier5,
which uses the concept of Bayes theorem.

The training data set provided as a part of the
shared task was used for training the model. As a
separate data set was not provided for validation,
20% of the training instances were selected and
used for the evaluation process. Finally the testing
phase was implemented using the testing data set
provided for the shared task.

5 Results

The metrics that were considered for the evaluation
of all the three subtasks were precision, recall, ac-
curacy and macro-F1 score. Precision represents
the ratio of the number of correct positive results
to the number of positive results predicted by the
classifier. The recall measures the model’s ability
to detect positive samples. The higher the recall,
the more positive samples are detected. Classifi-
cation accuracy is the ratio of number of correct
predictions to the total number of input samples.
F1 score is an overall measure of a model’s accu-
racy that combines precision and recall. A high
F1 score means that the classification has resulted
with low number of false positives and low false
negatives. The proposed model resulted in an F1
score for sarcastic texts as 0.2012 based on which
Subtask A was evaluated and we were ranked 36
on the leaderboard. Table 2 shows the values that
were obtained for various metrics like precision,
accuracy and recall considering Subtask A.

Subtask B was evaluated based on the macro-F1
5https://scikit-learn.org/stable/modules/naivebayes.html

Metric Score
Macro F 0.0387
F1-Sarcasm 0.2321
F1-Irony 0.0000
F1-Satire 0.0000
F1-Understatement 0.0000
F1-Overstatement 0.0000
F1-Rhetorical Question 0.0000

Table 3: Subtask B Scores

Metric Score
Accuracy 0.3400
F-Score 0.2794

Table 4: Subtask C Scores

score of the model and the proposed model had
resulted in a macro-F1 score of 0.0387. We ranked
19 on the leaderboard under this category. Table 3
shows the F1 scores that were obtained for different
type of sarcastic texts like Irony, Satire, Understate-
ment, Overstatement and Rhetorical Question.

Accuracy was the metric that was used for the
evaluation of Subtask C, and our model achieved an
accuracy of 0.34 with rank 15 on the leaderboard.
The F1 score that we obtained for this subtask was
0.2794 and these are tabulated in Table 4.

6 Conclusions

Sarcasm detection has become an important area of
research as it is interlinked with different areas of
application that includes sentiment analysis, opin-
ion mining, offensive and hate speech detection.
Having this in mind SemEval-2022 had come up
with the task of Sarcasm detection which was repre-
sented by three subtasks namely sarcasm detection,
identifying the type of irony associated with the
sarcastic text and identifying whether the text or
its rephrase is sarcastic. We have applied ELMo
embedding based Convolutional Neural Network
model for implementing the binary Subtasks A and
C. Gaussian Naive Bayes classifier based on TF-
IDF vectors was used to implement Subtask B. All
the three subtasks were implemented considering
the language English. The performance of the mod-
els used, were not up to the mark and it is found
from the task overview that the transformer models
when applied over this tasks provides better results.

Dataset for sarcasm detection could be created
with contextual information which can help in ef-
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fectively detecting sarcasm. Usage of hybrid ap-
proaches where different machine learning and
deep learning models are combined can also facili-
tate efficient detection of sarcasm from text. Often
it could be observed that sarcasm is not in the text,
but could be detected from the intonation or facial
expression, which has made mulitmodal sarcasm
detection also as a promising research area.
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Abstract
This paper describes the submission of the team
Amrita_CEN to the shared task on iSarcasm
Eval: Intended Sarcasm Detection in English
and Arabic at SemEval 2022. The sarcasm de-
tection task was formulated as a classification
problem and modelled using machine learn-
ing classifiers. We used K-Nearest Neighbor
(KNN), Support Vector Machine (SVM), Naïve
Bayes, Logistic Regression, Decision Tree, and
the Random Forest ensemble method. In addi-
tion, the class imbalance problem in the dataset
was addressed using a feature engineering tech-
nique. We submitted the predictions by SVM,
Logistic Regression and Random Forest ensem-
ble based on the performance during training.

1 Introduction

Sarcasm is an ironic form showing a disparity be-
tween the actual and intended meaning of the text
affecting the decision-making process. These are
reflected in our day-to-day communication with
each other happening in social media forums. Twit-
ter exhibits rich sarcasm phenomena, thereby en-
couraging automatic sarcasm detection methods
and removing such tweet data. Due to the sociocul-
tural aspects of sarcastic communication, the major-
ity of the sarcasm detection work has been focused
only on the English language (Oprea and Magdy,
2020b), and only a limited amount of work was
done in other languages such as Arabic (El Mah-
daouy et al., 2021).

Identification of sarcastic comments from social
media contexts is essential since the author and
the receiver are at various places. Therefore, ex-
changing conversations may sometimes lead to a
negative meaning of the text that even the author
has not meant to convey. Moreover, the data stream
for sarcasm does not exhibit any static structure like
specific tags in the form of #sarcasm, and #irony
(Ptáček et al., 2014) (Khodak et al., 2018). This
event can lead to noisy labels due to several rea-
sons, as outlined by (Oprea and Magdy, 2020b).

Other works reported on the topic mainly depend
on manual labelling, provided with manually anno-
tated sarcasm labels. In (Oprea and Magdy, 2020b)
the authors pointed out that manual labelling rep-
resents the author annotation in contrast with the
intention of the authors.
The sarcasm prediction on Twitter that influences
Machine Intelligence is a challenging task (Khare
et al., 2022). It can be achieved with the help of
the Natural Language Processing (NLP) approach,
and many recent works on automatic sarcasm de-
tection have focused on Twitter data as it primarily
requires an understanding of the human expres-
sions, language, and emotions expressed via tex-
tual or non-textual content (Kumar et al., 2021).
Therefore, the goal of the SemEval shared task is
to facilitate the development of machine learning
models that can detect sarcasm from tweets. The
shared task consists of two subtasks:

• Subtask A: For a given text, determine
whether it is sarcastic or non-sarcastic.

• Subtask B (English only): A binary multi-
label classification task for a given a text, de-
termine which ironic speech category it be-
longs.

In this paper, we describe the machine learning
models designed for solving the problems given
in iSarcasm shared tasks (Abu Farha et al., 2022).
The performance of the models was evaluated us-
ing the F1-score. The models submitted achieved
the following scores: 0.4966 in English, 0.6127 in
Arabic and 0.0567 F1-score in subtasks A and B,
respectively.

2 Literature Review

The majority of the published works developed for
the text sarcasm detection used datasets that were
annotated using a weak supervision method, where
the texts were regarded as sarcastic only if they met
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preset criteria, including specific tags like sarcasm
and irony (Oprea and Magdy, 2020a) (Ptáček et al.,
2014) (Khodak et al., 2018). In (Oprea and Magdy,
2020b), S.V Opera and W Magdy reported that
labelling using a weak supervision method could
lead to noisy labels. Other works on this topic were
based on manual labelling, where the human an-
notators are given the role of labelling the texts
(Filatova, 2012) (Riloff et al., 2013) (Abercrom-
bie and Hovy, 2016). The disadvantage of such a
labelling procedure is that it represents the percep-
tion of the annotator, which may differ from the
author’s intention (Oprea and Magdy, 2020b).
In addition to the above-mentioned method, a sig-
nificant majority of works on sarcasm detection
were centered exclusively on the English language
(Oprea and Magdy, 2019) (Campbell and Katz,
2012) (Riloff et al., 2013) (Joshi et al., 2016) (Amir
et al., 2016) (Rajadesingan et al., 2015) (Bamman
and Smith, 2015). It is because of its sociocultural
aspects on sarcastic communication (Oprea and
Magdy, 2020b), leading to the uncertainty that, the
models trained on English could generalize to other
languages. All the reported works on sarcasm de-
tection in other languages such as Arabic (Karoui
et al., 2017) (Ghanem et al., 2019) (Abbes et al.,
2020) (Farha and Magdy, 2020) were relied on the
afore-mentioned labelling techniques.

3 Dataset and Task Description

The dataset comprises tweets in English and Arabic.
There are two subtasks in English and one in Ara-
bic. Tweets in the English dataset were categorized
into two: Sarcastic and Non-sarcastic. It contains
3,467 instances of tweets and ten columns con-
taining the attributes (id, tweet, sarcastic, rephrase,
sarcasm, irony, satire, understatement, overstate-
ment, rhetorical question). The objective of task-1
is to determine whether a given text is sarcastic
or not. Task-2 is a multi-label classification that
aims to classify a tweet into different ironic speech
categories, such as Sarcasm, Irony, Satire, Under-
statement, Overstatement, and Rhetorical questions.
The shared task-1 in Arabic focused on categoriz-
ing a tweet into sarcastic or non-sarcastic, similar
to task-1 in English. The Arabic dataset contains
2,601 instances of tweets and five attributes (id,
tweet, sarcastic, rephrase, dialect). Table 1 de-
scribes the datasets used for task-1 and task-2 in
English and task-1 in Arabic.

Figure 1: Workflow of the Model

4 System Overview

This section discusses the overview of the models
submitted to the shared tasks. The flow of the
model building is illustrated in Figure 1.

4.1 Data preprocessing

The shared task was provided with two kinds of
input

(a) Task-1: text file contain tweets provided with
its label, rephrased form and also the irony
of the same for both English and Arabic lan-
guage.

(b) Task-2: English text file considered for task 1
is used for irony identification in csv format.

The “Tweet” column from the datasets (Tasks 1
and 2) contains tweets, which must be preprocessed
before extracting features for model creation. The
preprocessing steps include tokenization, lemmati-
zation, stop word removal and represented tweets
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Dataset properties Task-1 English Task-2 English Task-1 Arabic
No. of rows 3,467 3,467 2,601
No. of classes 2 6 2
No. of words 22,623 22,623 38,885
Vocabulary size 5,509 5,509 16,226
Maximum tweet length 72 72 31

Table 1: Description of the dataset used for Task-1 and Taks-2 in English and Task-1 in Arabic

as vectors using the Term Frequency-Inverse Docu-
ment Frequency (TF-IDF) algorithm (HB et al.,
2016).The preprocessing of the tweets was car-
ried out by using the functions available in the
NLTK]1 library, whereas the sklearn TfidfVector-
izer() 2 helps to vectorize the tweets.

4.1.1 Tokenization
Tokenization is the first step that we executed in
preprocessing. Here, the tweet from the user is split
into tokens for the ease of feature extraction.

4.1.2 Lemmatization
Lemmatization refers to correctly identifying the
base form of a word and converting it into the mean-
ingful base form considering the context.

4.1.3 Stopword removal
Stop word removal is performed to remove the
most commonly occurring words in the tweet, such
as pronouns and articles. A similar operation was
performed on Arabic data by collecting a publicly
available stopword list.

4.2 Term Frequency-Inverse Document
Frequency (TF-IDF)

TF-IDF is a feature extraction method for vectoriz-
ing a sentence or tweet. The TF-IDF vector can be
obtained for a sentence by computing Equation 1
for each word in that sentence.

TF − IDF (t,D) = TF (t,D)× IDF (t) (1)

Where the Term Frequency

TF (t) =
N(t)

T
(2)

and Inverse Document Frequency

IDF (t) = log
n

df(t)
(3)

1https://www.nltk.org/
2https://scikit-learn.org/stable/modules/generated/sklear.

feature_extraction.text.TfidfVectorizer.html

where,
t is the word in a tweet, N(t) is the number of
times word t occurs in a document, T is the number
of words in a document, n is the total number of
sentences/tweets in the dataset, and df(t) is the
number of documents in which the term t appears.

4.3 SMOTE

SMOTE (Synthetic Minority Oversampling Tech-
nique) (Chawla et al., 2002) is an oversampling
method for solving the class imbalance problem in
the dataset. It resolves the problem by increasing
the number of data points in the minority class with
synthetically generated random data points. It is
achieved by randomly selecting one or more k near-
est neighbours of each minority class. The process
can be initiated using the following steps:

1. Given the minority class S, for each y ∈ S,
the nearest k-neighbours of y are obtained
using Euclidean distance of y and every other
elements in S.

2. Sampling rate T is given according to the pro-
portion of imbalance. For each y ∈ S, T
elements are selected randomly from nearest
k-neighbours. And the set S1 is made.

3. For every yk ∈ S1, k = 1, 2, 3..., T , the for-
mula for generating new example (y′)is,

y′ = y + rand(0, 1) ∗ |y − yk| (4)

The SMOTE algorithm was implemented using the
SMOTE function available in the imblearn Python
package3.

4.4 Model development

We utilized K-Nearest neighbour (KNN) (Guo
et al., 2003), Support Vector Machine (SVM) (So-
man et al., 2009), Naïve Bayes (Huang and Li,

3https://imbalanced-learn.org/stable/references/generated/
imblearn.over_sampling.SMOTE.html
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2011), Decision Tree (Priyam et al., 2013) and
Random Forest (Premjith et al., 2019) ensemble
method for developing the models for various sub-
tasks in iSarcasm. The procedures for model devel-
opment for different tasks are given in the following
subsections.

4.4.1 Sub task1: Sarcasm Identification
We built a binary classifier to determine whether the
given tweet is sarcastic or not. Therefore, for the
same purpose, we applied machine learning classi-
fiers to the processed train data. For English tweet
data, encouraging results were obtained by Deci-
sion tree and logistic regression. The decision tree
is a particular type of probability tree that makes
the decision about the process (Rahaman et al.,
2021), and Logistic Regression is used for predict-
ing the categorical dependent variable using a given
set of independent variables (Sarsam et al., 2020).
SVM and Random forest classifiers obtained the
best performance for Arabic data. The Random
Forest classifier reduces the bias due to overfit-
ting and class imbalance between tweets. Bouazizi
and Ohtsuki (Bouazizi and Ohtsuki, 2016) used
logistic regression to label the data as sarcastic or
non-sarcastic.

4.4.2 Sub task2: ironic speech category
Identification

A multi-label classifier was developed for this task
to determine the ironic speech category of the
tweets. We applied a multi labelled classifier strat-
egy with fitting one classifier per target, allowing
multiple target variable classifications. The primary
purpose behind this class is to extend estimators
enabling estimation of a series of target functions
mentioned in the dataset, which are trained using
a single predictor matrix to predict a series of re-
sponses. We implemented a classification model
using Logistic Regression, and a decision tree for
the same as mentioned above (Sarsam et al., 2020)-
(Rahaman et al., 2021).

4.5 Evaluation Metrics

The trained models were evaluated using macro
F1-score, Precision, Recall and Accuracy. Accu-
racy is given by the ratio of the total number of
correct predictions to the measure of total predic-
tions done by the model, regardless of correct or
incorrect predictions. Precision defines the actual
positive among the predicted positive. The recall is
a measure of the correctly classified total number

of positives. Moreover, F1-score is the harmonic
mean of precision and recall. Macro-average is
defined as the average of precision, recall, and F1-
score in different classes.

5 Experimental Setup

We implemented the models using Python version
3. The training data is split into train and val-
idation sets for confirming the best performing
model. In the Arabic sarcasm identification model
using the SVM classifier (subtask 1), we used a
range of gamma values (0.1, 1, 10, 100) and c reg-
ularization parameter values (0.1, 1, 10, 100) and
changed the kernel type to RBF, linear and poly-
nomial to see how the accuracy and F1-score vary.
In random forest classifier different, n_estimators
value (10, 100, 1000) and the maximum features
are given to sqrt, log2 to see the changes (Premjith
and Kp, 2020). The English tweet irony detection
model (subtask 2) is a multi-class classification
problem and implemented using a multioutput clas-
sifier set to multilabel.

The model performance was analyzed using
macro F1-score obtained using the sklearn met-
rics along with the accuracy, precision and recall
(Pedregosa et al., 2011) of the trained model.

6 Result

All the subtasks were evaluated on the macro-
average F1-scores of each information unit. We
fixed the best performing models by using cross-
validation. The Random Forest classifier and SVM
obtained the best F1-scores for English task 1 and
Arabic, respectively. In subtask 2, Logistic Re-
gression gave the higher F1-score. We were of-
ficially ranked 23rd in task1 English with an F1-
score of 0.4966 and accuracy of 56.71% using the
Random Forest classifier and ranked 20th in Ara-
bic with 0.6127 of F1-score and 79.21% accuracy
using SVM binary classifier. In subtask 2, we were
ranked 14th with a macro F1-score of 0.0567 using
the Logistic Regression model. The obtained result
from our model among all participating teams are
shown in table 2, 3 below.

7 Conclusion

This paper presents the submission of Amrita_CEN
towards the SemEval 2022 Task 6 competition
named " iSarcasmEval - Intended Sarcasm Detec-
tion in English and Arabic ". A total of six ma-
chine learning algorithms were used, including five
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Metrics Task-1 English Task-1 Arabic
F1-Sarcastic 0.3052 0.3490
F1-score 0.4966 0.6127
Precision 0.5550 0.6050
Recall 0.6121 0.6246
Accuracy 0.5671 0.7921

Table 2: Result for Subtask 1 English and Arabic

Metrics Task-2 English
Macro-average F-score 0.0567
F1-score Sarcasm 0.2180
F1-score irony 0.0293
F1-score satire 0.0461
F1-score understatement 0.0074
F1-score overstatement 0.0245
F1-score rhetorical question 0.0150

Table 3: Result for Subtask 2 English

classical ML models and one ensemble technique.
The class imbalance problems were dealt with by
oversampling technique called SMOTE, and for
evaluation, macro F1-score were considered for
both the subtasks. The model trained using Ran-
dom forest, SVM and logistic regression performed
well among the subtasks given, and the results were
submitted using the same.
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Abstract

This paper presents our proposed methods for
iSarcasmEval shared task. The shared task
consists of three different subtasks. We par-
ticipate in both subtask A and subtask C. The
purpose of the subtask A was to predict if a
text is sarcastic while the aim of subtask C
is to determine which text is sarcastic given
a sarcastic text and its non-sarcastic rephrase.
Both of the developed solutions used BERT
pre-trained models. The proposed models are
optimized on simple objectives and easy to
grasp. However, despite their simplicity our
methods ranked 4 and 2 in iSarcasmEval sub-
task A and subtask C for Arabic texts.

1 Introduction

Nowadays, social media users provide a huge
amount of text, images and videos. This large
amount of data contains useful information (users
ideas, opinions, events, etc) for various domains
such as stock predictions, marketing, or politics. In
order to benefit from these data, new fields of study
have been introduced including sentiment analysis,
opinion mining, author profiling, and harassment
detection (Liu, 2012; Rosenthal et al., 2014; May-
nard and Greenwood, 2014; Van Hee et al., 2018).
Natural Language Processing (NLP) algorithms are
used extensively in these fields to extract useful in-
formation. For instance, to determine whether a
given product has a positive or negative sentiment
in the market, we can apply NLP techniques to
analyse a list of twitter posts to infer a sentiment
about the product.

According to Oxford dictionary, sarcasm is “The
use of irony to mock or convey centempt”. Sarcastic
text convey negative implied sentiment, however
it can have positive, negative, or no surface senti-
ment. Sarcasm is commonly used in social media,
thus it introduces errors in various tasks such as
sentiment analysis and opinion mining. This is
explained in the work of Rosenthal et al. (2014),

it shows a significant drop in sentiment polarity
classification performance when processing sarcas-
tic tweets, compared to non-sarcastic ones. In this
context, the task iSarcasmEval: Intended Sarcasm
Detection In English and Arabic (Abu Farha et al.,
2022) is organized by SemEval 2022. The main
tasks consists of three subtask:

• Subtask A: Given a text, determine whether it
is sarcastic or non-sarcastic.

• SubTask B (English only): A binary multi-
label classification task. Given a text, deter-
mine which ironic speech category it belongs
to, if any.

• SubTask C: Given a sarcastic text and its non-
sarcastic rephrase, i.e. two texts that convey
the same meaning, determine which is the
sarcastic one.

In this paper, we describe our contribution to iS-
arcasmEval shared task, Arabic language only. For
subtask A, we built a BERT-based neural network
(Devlin et al., 2019; Antoun et al., 2020) classifier
to determine whether a tweet is sarcastic or not.

Figure 1: The train dataset distribution according to 4
classes including sarcastic texts that contains emojis,
sarcastic texts without emojis, non-sarcastic texts with
emojis, and non-sarcastic texts without emoji.
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Figure 2: Text preprocessing proposed by Alami et al. (2020).

Our model obtained the fourth best performance
in the subtask A. For subtask C, we built also a
BERT-based classifier to detect the sarcastic text
from two text that convey the same meaning. We
scored the second best performance in the subtask
C. The results are promising and there is much
room for improvement.

The rest of the paper is organized as follows:
Section 2 presents our method overview; Section
3 provides performance evaluation; Section 4 con-
cludes the paper and provides future work.

2 Method Overview

In this section, we first describe how we split data
to evaluate our models. Next, we explain prepro-
cessing steps. Next, we discuss our models for
each subtask, and the experimental setup we used.
We also provide illustrations and examples, when
necessary.

2.1 Dataset split

The organizers of iSarcasmEval provided Arabic
texts annotated with their sarcasm labels. The train
set contains 3102 samples where 75.98% (2357
samples) are non-sarcastic and 24.02% (745 sam-
ples) are sarcastic. The test set consists of 1400
samples. All the samples are annotated also with
their dialect. We build a validation set from train set
based on emojis. We first split the train data into 4

classes including sarcastic texts that contains emo-
jis, sarcastic texts without emojis, non-sarcastic
texts with emojis, and non-sarcastic texts without
emojis. Fig. 1 illustrates the distribution of this
4 classes in the train dataset. We notice that only
6.9% of train samples contain emojis while 20.86%
test samples include emojis. Considering this we
use 4 splits to validate our models:

• Split A: The validation set contains all the
sarcastic samples with emojis, 10% sarcastic
samples without emojis, 10% non-sarcastic
samples with emojis, and 10% non-sarcastic
samples without emojis.

• Split B: The validation set contains 50% sar-
castic samples with emojis, 10% sarcastic
samples without emojis, 10% non-sarcastic
samples with emojis, and 10% non-sarcastic
samples without emojis.

• Split C: The validation set does not contain
any sarcastic samples with emojis and con-
tains 10% sarcastic samples without emojis,
10% non-sarcastic samples with emojis, and
10% non-sarcastic samples without emojis.

• Split D: The validation set contains 20% of
train samples. We applied stratified split to
have the same distribution of classes as the
train set.
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Table 1: Performance evaluation of different models for sarcasm prediction

Split A Split B Split C Split D
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Score

AraBERTv02-twitter 84.76 64.10 72.99 76.92 73.53 75.19 75.00 82.76 78.69 78.66 86.58 82.43 77.32
CAMEL-MIX 86.67 66.67 75.36 78.95 66.18 72.00 74.24 84.48 79.03 77.07 81.21 79.08 76.36
AraBERTv02-twitter / Emojis 90.74 62.82 74.24 55.93 48.53 51.97 75.41 79.31 77.31 77.22 81.88 79.48 70.75

2.2 Preprocessing

Our preprocessing step consists of tokenization.
We apply the pre-trained BERT tokenizer which is
based on wordpiece model (Schuster and Nakajima,
2012). For comparison purposes, we applied the
same preprocessing process applied by Alami et al.
(2020). The main idea is to integrate the meaning
of emojis whitin the initial text. Fig. 2 presents the
preprocessing step used in (Alami et al., 2020).

2.3 SubTask A

The objective of this task is to predict whether a
text is sarcastic or not. We fin tune various BERT-
based models pre-trained with Arabic large corpora.
These models are used to extract valuable features
from raw text. These features are then used with a
softmax classifier to predict the label of the input
text. All models are optimized to minimize the
cross entropy loss.

2.4 SubTask C

The aim of this task is to predict the sarcastic text
given two texts with the same meaning. Like the
model used in subtask A, we fine tune BERT-based
models for this specific task. The input of these
models is the concatenation of the two texts sep-
arated by the special token [SEP]. Features are
extracted with BERT-based models, then a softmax
layer is applied to compute the probabilities of the
events: first text is sarcastic and second text is sar-
castic. All models are optimized to minimize the
cross entropy loss.

2.5 Experimental Setup

We implemented our models using HuggingFace
(Wolf et al., 2020). We used AraBERTv02-twitter
(Antoun et al., 2020) and CAMEL-Mix (Inoue
et al., 2021) as the pre-trained language models.
To train our models, we used a batch size of 8, a
learning rate 10−5. We used the AdamW optimizer
(Loshchilov and Hutter, 2017). We ran the experi-
ments on a Google colaboratory environment 1.

1https://colab.research.google.com/

3 Performance Evaluation

In this section, we present the performance of vari-
ous models trained on both subtasks A and C.

3.1 Subtask A

First, we compared the performances of two mod-
els: a model fine tuned with AraBERTv02-twitter
and a model fine tuned with CAMEL-MIX. Ta-
ble 1 shows the obtained results according to the
4 splits we previously discussed in subsection 2.1.
We compute the overall score of a model by averag-
ing all the f1 scores of the sarcastic class obtained
from different splits. The model fine tuned with
AraBERTv02-twitter scored the best results.

To investigate the impact of the substitution of
emojis with their meanings. We evaluated the
performances of a model based on AraBERTv02-
twitter and take as input text preprocessed as pro-
posed in Alami et al. (2020). Table 1 shows that
emojis processing didn’t improve the overall score.

Therefore, we submit the predictions obtained
using AraBERTv02-twitter with the test set. We
scored the fourth best score in the leaderboard
(46.84% f1 score for sarcastic class).

3.2 Subtask C

Since the AraBERTv02-twitter model obtained the
best result in subtask A, we trained the same base
model to predict the sarcastic text given two text
that convey the same meaning. We augmented the
dataset by applying a simple rule which consist of
switching the positions of the sarcastic text with the
non-sarcastic text and replace the label with 0. We
ranked 2 in the leaderboard with (88.5% accuracy).

4 Conclusion

We developed two methods for sarcasm prediction.
The first one aim to predict if a text is sarcastic
or not. This method is based on AraBERTv02-
twitter pretrained model which extract valuable
features from raw text. We achieved the fourth
top performance in the iSarcasmEval subtask A
for Arabic with a 46.84% f1 score for the sarcastic
class. The second model has the objective to detect
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the sarcastic text given two texts that convey the
same meaning. We trained a BERT-based model
that take as input two text and predict the sarcastic
one. We ranked 2 in the leaderboard with 88.5%
accuracy. In future work, we plan to improve the
performance of our models by using linguistic rules
and some external datasets.
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Abstract

Sarcasm is a form of figurative language where
the intended meaning of a sentence differs from
its literal meaning. This poses a serious chal-
lenge to several Natural Language Processing
(NLP) applications such as Sentiment Analysis,
Opinion Mining, and Author Profiling. In this
paper, we present our participating system to
the intended sarcasm detection task in English
and Arabic languages. Our system1 consists of
three deep learning-based models leveraging
two existing pre-trained language models for
Arabic and English. We have participated in
all sub-tasks. Our official submissions achieve
the best performance on sub-task A for Arabic
language and rank second in sub-task B. For
sub-task C, our system is ranked 7th and 11th
on Arabic and English datasets, respectively.

1 Introduction

Sarcasm is an important aspect of human natural
language. It is characterized by the occurrence
of a discrepancy between the intended and the lit-
eral meaning of utterance (Wilson, 2006). The
prevalence of this phenomenon may jeopardize the
performance of many NLP applications, such as
Sentiment Analysis, Opinion Mining, and Emo-
tion Detection, among others (Maynard and Green-
wood, 2014; Rosenthal et al., 2014; Van Hee et al.,
2018). Indeed, sarcasm detection has been the sub-
ject of many systematic investigation, where sev-
eral shared tasks have been organized and a number
of datasets have been introduced (Van Hee et al.,
2018; Ghanem et al., 2019; Ghosh et al., 2020;
Abu Farha et al., 2021). The existing datasets are
either labeled by a human annotator or using dis-
tant supervision signals such as the presence of
a set of predefined hashtags (Oprea and Magdy,
2020). However, these labeling methods might
be sub-optimal for intended sarcasm detection as

1The source code of our system is available at https:
//github.com/AbdelkaderMH/iSarcasmEval

the author’s sarcastic intent may differ from an
annotator’s perceived meaning (Oprea and Magdy,
2019, 2020). Besides, most existing research works
have focused on English language (Van Hee et al.,
2018; Ghosh et al., 2020), while few studies have
been introduced for other languages such as Arabic
(Ghanem et al., 2019; Abu Farha et al., 2021).

To overcome the aforementioned limitations,
Abu Farha et al. (2022) have organized the iSar-
casmEval shared task for intended sarcasm detec-
tion in English and Arabic languages. In contrast
to previous research work, the introduced dataset,
for intended sarcasm detection, is labeled by the
authors themselves. The authors are then asked
to provide non-sarcastic rephrases that covey the
same intended meaning of their sarcastic texts. Fur-
ther, the iSarcasmEval’s organizers have relied on
linguistic experts to categorize sarcastic texts into
sarcasm, irony, satire, understatement, overstate-
ment, and rhetorical questions (Leggitt and Gibbs,
2000).

In this paper, we present our participating sys-
tem to iSarcasmEval shared task (Abu Farha et al.,
2022). Our system rely on three transformer-based
deep learning models. In all our models, we use
existing Pre-trained Language Model (PLM) to en-
code the input text and apply a single attention
layer to the contextualized word embedding of
PLM (Barbieri et al., 2021; Abdul-Mageed et al.,
2021). For all our models, we use the same classi-
fier architecture composed of one hidden layer and
one classification layer. The classifier is fed with
the concatenation of the pooled output of the PLM
as well as the attention layer output. We model the
sub-task A as a binary classification (first model)
and as a multi-class classification (second model).
Motivated by the small size of the datasets and
similarly to GAN-BERT architecture (Croce et al.,
2020), the third model uses a conditional generator
that tries to generate fake samples that are similar
to the PLM’s embedding of the real input data. The
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discriminator of the third model is trained to dis-
criminate between fake and real samples as well as
classify the real ones correctly. For sub-task B, we
only employ the GAN based model (third model),
while for sub-task C, we utilize all models trained
on Task A and we compare the probabilities of the
sarcastic class of the left and the right text. We train
our models using several loss functions, including
the focal loss (Lin et al., 2017). Besides, for sub-
task A, we train our models with and without the
non-sarcastic rephrase texts.

For the official submissions, we employ hard
voting ensemble of our trained models. Our system
achieve promising results as we rank 1st, 15th, 2nd,
7th, and 11th on sub-task A AR, sub-task A EN,
sub-task B, sub-task C AR, and sub-task C EN,
respectively.

2 Background

2.1 Task description

The organizers of iSarcasmEval shared task have
provided training data and testing data for intended
sarcasm detection in English and Arabic languages
(Abu Farha et al., 2022). The datasets are collected
from Twitter and labeled for intended sarcasm de-
tection by the authors of the tweets. For English,
the training data consists of 3,468 samples out of
which 867 samples are sarcastic. For Arabic, the
training data contains 3,102 samples, where 745
samples are sarcastic. The organizers also pro-
vide the non-sarcastic rephrase of sarcastic texts
for both languages and the dialect of the given Ara-
bic tweets. The shared task consists of the flowing
sub-tasks:

• Sub-task A is a binary classification task,
where the aim is to determine if a tweet is
sarcastic or not. This sub-task consists of two
sub-tasks A EN and A AR. The test data con-
tains 1,400 for each language.

• Sub-task B is a multi-label classification task,
where the aim is to assign a given tweet into
the sarcasm, irony, satire, understatement,
overstatement, and rhetorical question cate-
gories of ironic speech (Leggitt and Gibbs,
2000). This task is provided for English lan-
guage only and the test data contains 1,400
samples.

• Sub-task C aims to identify the sarcastic
tweet and the non-sarcastic rephrase given two

texts that convey the same meaning. This sub-
task consists of two sub-tasks C EN and C AR.
The test sets of both languages consist of 200
samples.

2.2 Related work
In recent years, there has been a growing number of
research works focusing on fine-tuning the existing
PLMs on NLP tasks. These PLMs are based on
the transformer architecture and are trained using
self-supervised learning objectives such as Masked
Language Modeling (MLM) amongst others (De-
vlin et al., 2019). Several multilingual and mono-
lingual PLM variants are introduced (Devlin et al.,
2019; Conneau et al., 2020; Antoun et al., 2020).
For domain-specific data, domain adaptive fine-
tuning of existing PLMs using MLM or domain
adaptation have been shown to improve the perfor-
mance of NLP applications (Rietzler et al., 2020;
Barbieri et al., 2021; El Mekki et al., 2021a). Nev-
ertheless, when the domain-specific data is suf-
ficiently large, these transformers can be trained
from scratch (Abdul-Mageed et al., 2021; Inoue
et al., 2021).

For sarcasm detection, several research stud-
ies have been introduced based on fine-tuning
the existing PLMs for English and Arabic lan-
guages (Ghanem et al., 2019; Ghosh et al., 2020;
Abu Farha et al., 2021). El Mahdaouy et al. (2021)
have shown that incorporating attention layers on
top of the contextualized word embedding of the
PLM improves the performance of multi-task and
single-task learning models for both sarcasm detec-
tion and sentiment analysis in Arabic. The main
idea consists of classifying the input text based on
the concatenation of the PLM’s pooled output and
the output of the attention layer. This Architecture
has yielded promising results on other tasks such
as detecting and rating humor, lexical complexity
prediction, and fine-grained Arabic dialect iden-
tification (Essefar et al., 2021; El Mamoun et al.,
2021; El Mekki et al., 2021b).

Although transformer-based architectures have
shown state-of-the-art performance on many NLP
tasks, their task-specific fine-tuning requires a rea-
sonable amount of labeled data. Nevertheless, in
real-world applications, one may not always have
enough labeled training data. Motivated by the
performance of Semi-Supervised Generative Ad-
versarial Networks (SS-GAN) in computer vision
(Odena, 2016), Croce et al. (2020) have introduced
GAN-BERT. The latter extends BERT fine-tuning
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procedure by training a generator and a discrim-
inator. The generator is trained to generate fake
samples embeddings that are similar to the real in-
put text embeddings, whereas, the discriminator is
trained to detect fake examples and categorize the
real text inputs.

3 System overview

The submitted system to the iSarcasmEval shared
task relies on three transformer-based models for
intended sarcasm detection. In order to encode
the input text, we utilize the Twitter-XLM-Roberta-
base (Barbieri et al., 2021) and MARBERT (Abdul-
Mageed et al., 2021) for English and Arabic texts,
respectively. The former is a variant of XLM-
RoBERTa PLM that is adapted to Twitter data us-
ing MLM objective, while the latter is a variant
of BERT PLM that is pre-trained from scratch on
Arabic tweet corpora. In the following subsection,
we describe the components of our system.

3.1 Preprocessing
The tweet preprocessing component spaces out
emojis and substitutes user’s mention and URL
with their special tokens of the PLM’s tokenizer.
For Twitter-XLM-Roberta-base, URLs and user’s
mentions are replaced by ’http’ and ’@user’. For
MARBERT, they are replaced by ’user’ and ’url’
special tokens. To leverage the dialect informa-
tion for Arabic data, we replace the dialect string
with its full Arabic name and pass the input text to
MARBERT’s tokenizer as follows:

• [SEP] dialect [SEP] preprocessed text [SEP]

3.2 Deep Learning Models
Our three deep learning models are described as
follows:

• Model 1 consists of a transformer encoder,
one attention layer, and a classifier. Follow-
ing the work of (El Mahdaouy et al., 2021),
we apply attention to the contextualized word
embedding of the encoder. The classifier is
composed of one hidden layer and one clas-
sification layer for binary classification. The
classifier is fed with the concatenation of the
PLM’s pooled output and the attention layer’s
output.

• Model 2 is similar is to Model 1 and the task
is modeled as multi-class classification prob-
lem. In other words, the classification layer

 

 

Attention layer 

Concat 

Classifier 

Figure 1: The overall architecture of Model 1 and Model
2.

of this model consists of two hidden units.
Figure 1 illustrates the overall architecture of
Model 1 and Model 2.

• Model 3 is similar to GAN-BERT model
(Croce et al., 2020), whereas, we employ a
conditional generator that generates fake em-
beddings from a random noise and the class
category. The model 3 consits of three com-
ponents, a BERT-based encoder with an extra
attention layer on top of the contextualized
word embedding, a generator, and a discrim-
inator. The encoder represents the input sen-
tences using the CLS token embedding and
the output of the attention layer. The generator
is trained to fool the discriminator by gener-
ating fake embedding representations that are
similar to the input text embedding. It con-
sists of two hidden layers and one output layer.
Each hidden layer is flowed by a dropout layer
and the relu activation layer. The discrimina-
tor is trained to discriminate between fake
examples and real ones and to classify real
input texts into sarcastic and non-sarcastic la-
bels. The discriminator is also composed of
two hidden layers and one classification layer.
Similarly to the generator, the hidden layers
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are followed by one dropout layer and the relu
activation layer.

3.3 Training objectives

For training our models, we utilizes several loss
functions, including the Focal Loss (Lin et al.,
2017). The aim is to assess the performance of
the following training objectives under class imbal-
ance:

• For Model 1, we investigate the Binary Cross-
Entropy loss (BCE), the Weighted Binary
Cross-Entropy loss (W. BCE), and the Binary
Focal Loss (BFL). For the W. BCE loss, the
positive class weight is set to:

batch_size− positive_count
positive_count+ ϵ

• For Model 2 and 3, we investigate the Cross-
Entropy loss, the Weighted Cross-Entropy
loss (W. CE), and the Focal Loss (FL). For
the W. CE, the positive and the negative class
weights are computed as follows:
{
pos_weight = batch_size−positive_count

positive_count+ϵ

neg_weight = batch_size−negative_count
negative_count+ϵ

4 Experimental setup

All our models are implemented using the Py-
Torch2 framework and the open-source Transform-
ers3 libraries. Experiments are conducted on a Pow-
erEdge R740 Server having 44 cores Intel Xeon
Gold 6152 2.1GHz, a RAM of 384 GB, and a sin-
gle Nvidia Tesla V100 with 16GB of RAM. 20%
of the training set is used for the model validation.
All our models are trained using Adam optimizer
with a linear learning rate scheduler. Based on our
preliminary results, obtained on the validation set,
the learning rate, the number of epochs, and the
batch size are fixed to 1× 10−5, 10, and 16 respec-
tively. For the focal loss, the hyper-parameters γ
and α (the weight of the negative class) are set to
2 and 0.8 respectively. All models are evaluated
using the Accuracy as well as the macro averaged
Precision, Recall, and F1 measures. Besides, we
train our models with and without rephrase texts for
sub-task A. For sub-task B, our models are trained
on sarcastic tweets.

2https://pytorch.org/
3https://huggingface.co/transformers/

5 Results

In this section, we present the obtained results of
our models as well as our official submissions. It is
worth mentioning that for sub-task C, we employ
the trained models on sub-task A and we use their
output probabilities to discriminate between the sar-
castic text and the non-sarcastic rephrase. Besides,
for our official submissions, we use the hard vote
ensemble of our trained models. For each loss func-
tion, the best performance obtained is highlighted
in bold font, while the overall best performance for
each task is highlighted in bold-italic font.

5.1 Sub-task A

Table 1 summarizes the obtained results. The re-
sults show that training the models on tweets as
well as the non-sarcastic rephrases improve the
performance for both languages, especially Ara-
bic where an important performance increment is
yielded. Moreover, the performance of the evalu-
ated models depends on the employed loss function.
Although Model 1 and Model 2 are simple, they
achieve better results than the GAN-based model
(Model 3). The best performances on sub-task A
are obtained using Model 2 in conjunction with
the FL loss (0.6217) and Model 1 in conjunction
with BCE loss (0.3833) for Arabic and English re-
spectively. In our official submission, ensembling
the models that are trained with and without the
rephrase data harms the results. Our submitted sys-
tem achieves the best performance on Arabic and
ranked 15th on the English.

5.2 Sub-task B

Table 2 presents our obtained results for sub-task B.
Since we use the sarcastic tweets only for training,
we only train the Model 3. The results show that
the best performance is obtained using the BCE
loss. The FL and W. BCE loss functions have not
improved the results. This might be explained by
the fact that we did not tune the hyper-parameters
α and gamma of FL loss. Besides, in the W. BCE,
the positive classes are assigned larger importance
weights in comparison to the negative ones (see
Section 3.3). Our official submission yields the
second-best results on this sub-task.

5.3 Sub-task C

Table 3 summarizes the obtained results on sub-
task C test sets of Arabic and English languages.
In accordance with the results of sub-task A, the
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Table 1: The obtained results on the test set of sub-task A for both Arabic and English. For our non official
submissions, we report the macro F-1 score of the sarcastic class only.

Sub-Task A Arabic Sub-Task A English

Tweet only Tweet + rephrase Tweet only Tweet + rephrase

BCE/CE BFL/FL W. BCE/CE BCE BFL/FL W. BCE/CE BCE/CE BFL/FL W. BCE/CE BCE/CE BFL/FL W. BCE/CE

Model 1 0.5253 0.5621 0.4565 0.6135 0.5787 0.5793 0.3485 0.3605 0.3421 0.3833 0.3313 0.3714
Model 2 0.5307 0.4481 0.4892 0.5949 0.6217 0.5505 0.3574 0.3375 0.3144 0.3770 0.3619 0.3090
Model 3 0.56 0.5271 0.4937 0.5339 0.5488 0.5345 0.3470 0.3448 0.3478 0.3517 0.3517 0.3557

Official Submission Official Submission

Ensembling
F-1 sarcastic F-score Precision Recall Accuracy Rank F-1 sarcastic F-score Precision Recall Accuracy Rank

0.5632 0.7188 0.6948 0.8362 0.8050 1 0.3713 0.6171 0.6058 0.6458 0.7750 15

Table 2: The obtained results on the test set of sub-task B.

F-1 Macro F-1 sarcasm F-1 irony F-1 satire F-1 understatement F-1 overstatement F-1 rhetorical question

Model 3

BCE 0.0924 0.2331 0.1676 0.0530 0 0 0.1008
BFL 0.0877 0.2298 0.1733 0.025 0 0 0.0983
W. BCE 0.0681 0.2302 0.0705 0.0581 0 0 0.0501

Ensembling
Rank Official Submission

2 0.0875 0.2314 0.1622 0.0392 0 0 0.0923

Table 3: The obtained results on the test set of sub-task C for both Arabic and English. For our non-official
submissions, we report the accuracy score only.

Sub-Task C Arabic Sub-Task C English

Tweet only Tweet + rephrase Tweet only Tweet + rephrase

BCE/CE BFL/FL W. BCE/CE BCE FL W. BCE/CE BCE/CE BFL/FL W. BCE/CE BCE/CE BFL/FL W. BCE/CE

Model 1 0.68 0.69 0.61 0.815 0.82 0.83 0.69 0.68 0.67 0.695 0.7 0.685
Model 2 0.65 0.575 0.59 0.835 0.815 0.85 0.655 0.68 0.65 0.685 0.67 0.655
Model 3 0.67 0.68 0.685 0.835 0.815 0.835 0.655 0.68 0.625 0.71 0.685 0.685

Official Submission Official Submission

Ensembling
Accuracy F-1 Score Rank Accuracy F-1 Score Rank

0.7800 0.7688 7 0.6950 0.6481 11

models that are trained on the tweets and the non-
sarcastic rephrases yield better performances. The
best-obtained accuracy scores are 0.85 and 0.71 in
comparison to 0.78 and 0.69 obtained by our offi-
cial submission for Arabic and English respectively.
Hence, ensembling the models that are trained with
and without the rephrase data harms the perfor-
mance of our official submission. Our official sub-
mission is ranked 7th and 11th on Arabic and En-
glish respectively.

6 Conclusion

In this paper, we present our participating system in
the iSarcasmEval shared task for intended sarcasm
detection in English and Arabic. Our system relies
on three deep learning-based models that leverage
two existing pre-trained language models for Ara-
bic and English. We participate in all sub-tasks, in-
vestigate several training objectives, and we study
the impact of including non-sarcastic rephrase in
the training data. The results show that ensembling

models that are trained with and without rephrases
have a negative impact on the official results. Our
official submissions achieve the best performance
on sub-task A for the Arabic language and rank in
the second position on sub-task B.

Acknowledgments

Experiments presented in this paper were car-
ried out using the supercomputer Toubkal, sup-
ported by Mohammed VI Polytechnic Univer-
sity (https://www.um6p.ma), and facilities
of simlab-cluster HPC & IA platform.

References
Muhammad Abdul-Mageed, AbdelRahim Elmadany,

and El Moatez Billah Nagoudi. 2021. ARBERT &
MARBERT: Deep bidirectional transformers for Ara-
bic. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages

848



7088–7105, Online. Association for Computational
Linguistics.

Ibrahim Abu Farha, Silviu Oprea, Steven Wilson, and
Walid Magdy. 2022. SemEval-2022 Task 6: iSar-
casmEval, Intended Sarcasm Detection in English
and Arabic. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Ibrahim Abu Farha, Wajdi Zaghouani, and Walid Magdy.
2021. Overview of the WANLP 2021 shared task
on sarcasm and sentiment detection in Arabic. In
Proceedings of the Sixth Arabic Natural Language
Processing Workshop, pages 296–305, Kyiv, Ukraine
(Virtual). Association for Computational Linguistics.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.
AraBERT: Transformer-based model for Arabic lan-
guage understanding. In Proceedings of the 4th Work-
shop on Open-Source Arabic Corpora and Process-
ing Tools, with a Shared Task on Offensive Language
Detection, pages 9–15, Marseille, France. European
Language Resource Association.

Francesco Barbieri, Luis Espinosa-Anke, and Jose
Camacho-Collados. 2021. A Multilingual Lan-
guage Model Toolkit for Twitter. In arXiv preprint
arXiv:2104.12250.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Danilo Croce, Giuseppe Castellucci, and Roberto Basili.
2020. GAN-BERT: Generative adversarial learning
for robust text classification with a bunch of labeled
examples. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 2114–2119, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Abdelkader El Mahdaouy, Abdellah El Mekki, Kabil Es-
sefar, Nabil El Mamoun, Ismail Berrada, and Ahmed
Khoumsi. 2021. Deep multi-task model for sarcasm
detection and sentiment analysis in Arabic language.
In Proceedings of the Sixth Arabic Natural Language
Processing Workshop, pages 334–339, Kyiv, Ukraine
(Virtual). Association for Computational Linguistics.

Nabil El Mamoun, Abdelkader El Mahdaouy, Abdellah
El Mekki, Kabil Essefar, and Ismail Berrada. 2021.
CS-UM6P at SemEval-2021 task 1: A deep learning
model-based pre-trained transformer encoder for lex-
ical complexity. In Proceedings of the 15th Interna-
tional Workshop on Semantic Evaluation (SemEval-
2021), pages 585–589, Online. Association for Com-
putational Linguistics.

Abdellah El Mekki, Abdelkader El Mahdaouy, Ismail
Berrada, and Ahmed Khoumsi. 2021a. Domain adap-
tation for Arabic cross-domain and cross-dialect sen-
timent analysis from contextualized word embedding.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2824–2837, Online. Association for Computa-
tional Linguistics.

Abdellah El Mekki, Abdelkader El Mahdaouy, Kabil Es-
sefar, Nabil El Mamoun, Ismail Berrada, and Ahmed
Khoumsi. 2021b. BERT-based multi-task model for
country and province level MSA and dialectal Ara-
bic identification. In Proceedings of the Sixth Ara-
bic Natural Language Processing Workshop, pages
271–275, Kyiv, Ukraine (Virtual). Association for
Computational Linguistics.

Kabil Essefar, Abdellah El Mekki, Abdelkader El Mah-
daouy, Nabil El Mamoun, and Ismail Berrada. 2021.
CS-UM6P at SemEval-2021 task 7: Deep multi-task
learning model for detecting and rating humor and
offense. In Proceedings of the 15th International
Workshop on Semantic Evaluation (SemEval-2021),
pages 1135–1140, Online. Association for Computa-
tional Linguistics.

Bilal Ghanem, Jihen Karoui, Farah Benamara,
Véronique Moriceau, and Paolo Rosso. 2019. Idat
at fire2019: Overview of the track on irony detec-
tion in arabic tweets. In Proceedings of the 11th
Forum for Information Retrieval Evaluation, FIRE
’19, page 10–13, New York, NY, USA. Association
for Computing Machinery.

Debanjan Ghosh, Avijit Vajpayee, and Smaranda Mure-
san. 2020. A report on the 2020 sarcasm detection
shared task. In Proceedings of the Second Workshop
on Figurative Language Processing, pages 1–11, On-
line. Association for Computational Linguistics.

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda
Bouamor, and Nizar Habash. 2021. The interplay
of variant, size, and task type in Arabic pre-trained
language models. In Proceedings of the Sixth Arabic
Natural Language Processing Workshop, pages 92–
104, Kyiv, Ukraine (Virtual). Association for Compu-
tational Linguistics.

John S. Leggitt and Raymond W. Gibbs. 2000. Emo-
tional reactions to verbal irony. Discourse Processes,
29(1):1–24.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming
He, and Piotr Dollár. 2017. Focal loss for dense
object detection. CoRR, abs/1708.02002.

849



Diana Maynard and Mark Greenwood. 2014. Who
cares about sarcastic tweets? investigating the impact
of sarcasm on sentiment analysis. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC’14), pages 4238–
4243, Reykjavik, Iceland. European Language Re-
sources Association (ELRA).

Augustus Odena. 2016. Semi-supervised learning with
generative adversarial networks.

Silviu Oprea and Walid Magdy. 2019. Exploring author
context for detecting intended vs perceived sarcasm.
In Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 2854–
2859, Florence, Italy. Association for Computational
Linguistics.

Silviu Oprea and Walid Magdy. 2020. iSarcasm: A
dataset of intended sarcasm. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1279–1289, Online. Asso-
ciation for Computational Linguistics.

Alexander Rietzler, Sebastian Stabinger, Paul Opitz,
and Stefan Engl. 2020. Adapt or get left behind:
Domain adaptation through BERT language model
finetuning for aspect-target sentiment classification.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 4933–4941, Marseille,
France. European Language Resources Association.

Sara Rosenthal, Alan Ritter, Preslav Nakov, and Veselin
Stoyanov. 2014. SemEval-2014 task 9: Sentiment
analysis in Twitter. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014), pages 73–80, Dublin, Ireland. Association for
Computational Linguistics.

Cynthia Van Hee, Els Lefever, and Véronique Hoste.
2018. SemEval-2018 task 3: Irony detection in En-
glish tweets. In Proceedings of The 12th Interna-
tional Workshop on Semantic Evaluation, pages 39–
50, New Orleans, Louisiana. Association for Compu-
tational Linguistics.

Deirdre Wilson. 2006. The pragmatics of verbal irony:
Echo or pretence? Lingua, 116(10):1722–1743. Lan-
guage in Mind: A Tribute to Neil Smith on the Occa-
sion of his Retirement.

850



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 851 - 855
July 14-15, 2022 ©2022 Association for Computational Linguistics

TechSSN at SemEval-2022 Task 6: Intended Sarcasm Detection using
Transformer Models

Rajalakshmi Sivanaiah, Angel Deborah S, Sakaya Milton R,
Mirnalinee T T, Ramdhanush Venkatakrishnan
Department of Computer Science and Engineering
Sri Sivasubramaniya Nadar College of Engineering

Chennai - 603110, Tamil Nadu, India
{rajalakshmis, angeldeborahs}@ssn.edu.in,

{miltonrs, mirnalineett,ramdhanush2010105}@ssn.edu.in

Abstract

Irony detection in the social media is an up-
coming research which places a main role
in sentiment analysis and offensive languague
identification. Sarcasm is one form of irony
that is used to provide intended comments
against realism. This paper describes a method
to detect intended sarcasm in text (SemEval-
2022 Task 6). The TECHSSN team used Bidi-
rectional Encoder Representations from Trans-
formers (BERT) models and its variants to
classify the text as sarcastic or non-sarcastic
in English and Arabic languages. The data is
preprocessed and fed to the model for training.
The transformer models learn the weights dur-
ing the training phase from the given dataset
and predicts the output class labels for the un-
seen test data.

1 Introduction

Sarcasm is a form of verbal irony that occurs when
there is a discrepancy between the literal and in-
tended meanings of an utterance. This is often used
to express the opposite meaning of the words spo-
ken. This is used frequently while making fun of
someone or something, and is used in a variety of
contexts, like casual conversation, memes, or even
public speaking, to convey a variety of meanings,
providing a certain level of depth and sophistication
to the communication of the language.

Sarcasm is present in all overcontemporary so-
cial media networks and may reduce the efficiency
of systems that perform operations on these sarcas-
tic data such as sentiment analysis, opinion mining,
author profiling, and harassment detection (Liu,
2012; Rosenthal et al., 2014; Maynard and Green-
wood, 2014; Van Hee et al., 2018). It generates
misleading conclusions, due to its nature to imply
different meaning than what is intended on the sur-
face. Even in SemEval, (Rosenthal et al., 2014)
shows that there is a significant drop in system per-
formance when processing sarcastic text data, in

comparison to non-sarcastic data. These systems
are used in industry, driving marketing, adminis-
tration, and investment decisions (Medhat et al.,
2014). This clearly shows that developing mod-
els to find and detect sarcasm is becoming more
important by the day.

The iSarcasmEval Task 6 for SemEval 2022
(Abu Farha et al., 2022) is comprised of three Sub-
Tasks: To classify the input text as sarcastic or not,
in English (SubTaskA English) and Arabic (Sub-
Task A Arabic), and further classify sarcastic text
into categories (SubTask B), and given two phrases
with same meaning, identify the sarcastic one (Sub-
Task C English, SubTask C Arabic). Of these, the
TechSSN team has attempted to solve SubTaskA
English, SubTask A Arabic, and SubTask B.

2 Related Work

A lot of the previous sarcasm detection datasets
have been annotated using a weak supervision
method. In weak supervision, text data is clas-
sified as sarcastic only if it meets a certain set of
conditions that are decided upon prior to the collec-
tion and analysis of the data. This includes using
tags (e.g. #sarcasm, #irony) (Ptacek et al., 2014;
Khodak et al., 2018) to perform the above men-
tioned classification. However, this can result in
noisy labels for many reasons, as demonstrated by
(Oprea and Magdy, 2020).

Other work makes use of manual labelling,
where sarcasm labels are provided by human anno-
tators (Filatova, 2012; Riloff et al., 2013a; Aber-
crombie and Hovy, 2016). But, this can mean that
labels are subjective in nature, i.e. labels may re-
flect annotator perception, which may differ from
the meaning intended by the author, as pointed out
by (Oprea and Magdy, 2020).

Moreover, a lot of sarcasm detection work ap-
plies only to the English language and, because of
the socio-cultural aspects of sarcastic communica-
tion (Oprea and Magdy, 2020), it is doubtful that
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the models trained to detect sarcasm in the English
language could do the same task with the same
effectiveness on other languages such as Arabic
(where most of the sarcasm detection is carried out
using the above-mentioned weak supervision).

We have participated for irony and sarcasm de-
tection SemEval task in (Sivanaiah et al., 2018)
and used MultiLayer Perceptron model to find the
ironic and sarcastic tweets. We have used CNN,
RNN, LSTM, BERT and COLBERT models for
offensive language detection in earlier SemEval
workshop tasks (Sivanaiah et al., 2021), (Sivana-
iah et al., 2020), (Sivanaiah et al., 2019) in which
BERT models provides better results than other
machine learning and deep learning models.

3 Methodology

3.1 Dataset

We used the dataset provided by the organizers of
the Task to train and build the model. The dataset
has fields for sarcasm, irony, satire, understatement,
overstatement, rhetorical questioning, all of which
are binary, and other categories of sarcastic text,
along with a field for a non-sarcastic rephrase. It
contains about 3467 entries of which about 866 are
sarcastic and the rest are not sarcastic. The Arabic
dataset has fields for sarcasm, rephrased text, and
the regional dialect. It has about 3102 entries of
which about 746 entries are sarcastic and the rest
are not sarcastic. The test dataset entries for Task
A English is 1400, Task A Arabic is 1400, Task B
is 1616. In addition, the Task B dataset has fields
for sarcastic rating and regional dialect.

3.2 Data Pre-processing

First, the raw data is tokenized. This means that
each sentence is tokenized or split into sub-words
for the BERT model. This is done using thecom-
pute_input_arrays method that is available under
the BertTokenizer class. This method makes use of
a pre-trained ‘BERT-base-uncased’ model to tok-
enize the input sentences. The maximum sequence
length is set as 200 as BERT requires inputs to
be in a fixed size and shape. After trimming the
input, the pre-trained model combines segments
and creates appropriate masks for the given data.
The input representation for the model is shown in
Figure 1. The token embeddings, segmentation em-
beddings and position embeddings are summarized
together to form the input embeddings.

3.3 Models and training

We have used pre-trained models for each Sub-
task. We have used BERT and its modifications
such as Contextualized Late Interaction over BERT
(CoLBERT) (Khattab and Zaharia, 2020) and A
Robustly Optimized BERT Pretraining Approach
(RoBERTa) (Liu et al., 2019). BERT, simply put,
is a stack of encoders part of the transformer archi-
tecture. It uses attention on the decoder side, and
self-attention on the encoder side. Base BERT has
768 hidden units, 12 attention heads, and 110M pa-
rameters. Similarly, Large BERT has 1024 hidden
units, 16 attention heads, and 340M parameters.
The BERT model takes a classification token, fol-
lowed by a sequence of words as input. The input is
then passed through several layers of encoder stack
(12 in Base BERT, 24 in Large BERT). Each of the
many layers applies self-attention, sends the output
through a feedforward network of hidden layers,
and then sends the output to the next encoder layer.

The procedures for pretraining and finetuning
the model is shown in Figure 2. Same architecture
structure is used in pre-training anf fine-tuning,
differs only in the output layers. Both the encoder
and decoder stream tasks are initialized with the
same pre-trained model parameters. All parameters
are fine-tuned in tuning phase. [CLS] is a special
symbol added in front of every input example, and
[SEP] is a special separator token (e.g. separating
questions/answers).

RoBERTa is a modification to the original BERT,
and needs about the same amount of parameters
that Base BERT requires (110M). It takes more
training time than BERT, about 4-5 times more than
BERT, but can provide more accurate results and
predictions compared to BERT. CoLBERT is faster
than many other BERT-based models and uses a
pre-trained BERT model to handle late interactions.
The model is trained with the training data provided
by the organizers.

4 Results and Discussions

The test dataset was provided by the SemEval-2022
organizers and was given to different models for
each Subtask and the results are listed in Tables 1
to 3.

ColBERT model gives better accuracy for the
English language than Arabic. For subtask B we
have used multilabel classifier to predict the output.
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Figure 1: Input Representation – source:(Devlin et al., 2018)

Figure 2: Pretraining and Fine tuning BERT – source:(Devlin et al., 2018)

Models F1-Score Accuracy
BERT 0.2558 0.2936
ColBERT 0.2637 0.7407

Table 1: Subtask A - English Results

Models F1-Score Accuracy
BERT 0.2292 0.3707

Table 2: Subtask A - Arabic Results

5 Conclusion

It is obvious that the detection of sarcasm and its
various categories is important as it is pivotal in
computations like sentiment analysis, opinion min-
ing, author profiling, or harassment checking. This
can become increasingly difficult and tedious to
compute, as sarcasm is extremely subjective as its
nature itself is implying and contradictory, and the
amount of data to be analyzed is getting larger and
complex by the day. It is also a big step for Natural
Language Processing (NLP) as it can tremendously
help in the creation of more sophisticated virtual

Models F1-Macro
RoBERTa 0.0596

Table 3: Subtask B Results

assistants and chatbots, which can emulate conver-
sations that are closer to human interactions and
life-like.

SemEval-2022 Task 6 is comprised of three Sub-
Tasks of which the TechSSN team has participated
in Subtask A English, Subtask A Arabic and Sub-
task B. Deep learning models like BERT, RoBERT,
and CoLBERT were used to carry out the tasks suc-
cessfully. The team was able to obtain the 27th rank
in Task A – English, 29th rank in Task A – Arabic,
and 17th rank in Task B. Results show that BERT
based models perform better on average than other
conventional models like Logistic Regression De-
cision Tree, Support Vector Machines etc. Because
of BERT’s multilingual nature, sarcasm detection
can be carried out in other languages across the
globe. We would like to investigate further and
apply these models to other languages. The accu-
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racy could potentially be improved by using more
advanced and efficient pre-processing techniques.
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Abstract 

Sarcasm is often expressed through several 

verbal and non-verbal cues, e.g., a change 

of tone, overemphasis in a word, a drawn-

out syllable, or a straight looking face. Most 

of the recent work in sarcasm detection has 

been carried out on textual data. This paper 

describes how the problem proposed in 

Task 6: Intended Sarcasm Detection in 

English (Abu Arfa et al. 2022) has been 

solved. Specifically, we participated in 

Subtask B: a binary multi-label 

classification task, where it is necessary to 

determine whether a tweet belongs to an 

ironic speech category, if any. Several 

approaches (classic machine learning and 

deep learning algorithms) were developed. 

The final submission consisted of a BERT 

based model and a macro-F1 score of 

0.0699 was obtained.  

1 Introduction 

Existing social media analysis systems are limited 

by their inability to accurately detect and interpret 

figurative language. Sarcasm is often used by 

individuals to express opinions on complex matters 

and regarding specific targets (Carvalho et al. 

2009). 

Early computational models for verbal and irony 

and sarcasm detection have relied on shallow 

methods exploiting conditional token count 

regularities. But lexical clues alone are insufficient 

to discern sarcasm intent. Appreciating the context 

of expression is critical for this; even for humans 

(Wallace et al. 2014). Indeed, the exact same 

sentence can be interpreted as literal or sarcastic, 

depending on the speaker. Consider the sarcastic 

tweet in Figure 1 (ignoring for the moment the 

attached #sarcasm hashtag). Without knowing the 

author’s political inclination, it would be difficult 

to conclude with certainty whether the tweet was 

intended as sarcastic or not. 

  

 
 

 

 

This task is about the binary classification of 

tweets in English based on the category of ironic 

speech. As a Multilabel-Classification, a tweet can 

belong to multiple categories or none. This 

research is important because social networking 

sites have changed our lives in recent years. For 

companies, this social reality has turned into an 

obligation to set up communication and marketing 

channels through social networks. Besides, 

companies require feedback from consumers, 

through comments or messages that mark the 

acceptance or rejection of each of the proposals, 

products or services.  

For this competition 2 models/strategies were 

used:  

• The first model is a binary multilabel classifier 

using Bayesian networks. 

• The second model and final submit on the 

competition consisted of six different binary 

classifiers using BERT. In other words, one for 

each evaluable label: sarcasm, irony, satire, 
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Figure 1: An illustrative tweet. 
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understatement, overstatement and rhetorical 

question.  

 

In this task we have analysed the sarcastic 

behaviour of people on social networks, in this case 

twitter, and the ways in which people express it. 

The dataset proposed by the organization was very 

unbalanced, so we had to apply several data 

balancing techniques in order to achieve good 

results.  

The rest of this paper is organized as follows: in 

section 2 we explain the dataset, the meaning of the 

labels and data distribution. Therefore, we refer to 

other research that has helped us in our approach to 

this one. In section 3, several techniques and 

methods applied to our models to improve their 

performance and metrics are described. In section 

4 we explain the libraries used and their usefulness. 

Finally, in section 5, the scores obtained with our 

proposed approaches are presented. 

2 Background 

As mentioned above, this paper is focused on 

Subtask B: binary multilabel classification. The 

original dataset has 3467 tweets in English with a 

maximum size of 280 characters (tweet limit). As a 

matter of fact, only the first 867 tweets will be 

useful for our task because the rest of the tweets do 

not have the labels that we are going to work with. 

Furthermore, the columns “Unnamed:0”, 

“rephrase” and “sarcastic” have been removed 

because they are useless for our task perfomance.  

For a better analysis and understanding of the 

multiple labels that we have in our dataset it is 

important to mention the ironic speech exposed in 

(Leggitt and Gibbs 2000):  

 

1. Sarcasm: tweets that contradict the state of 

affairs and are critical towards an addressee 

2. Irony: tweets that contradict the state of affairs. 

but are not obviously critical towards an 

addressee. 

3. Satire: tweets that appear to support an 

addressee but contain underlying disagreement 

and mocking. 

4. Understatement: tweets that undermine the 

importance of the state of affairs they refer to 

5. Overstatement: tweets that describe the state of 

affairs in terms that are obviously exaggerated. 

6. Rhetorical question: tweets that include a 

question whose invited inference (implication) 

is obviously contradicting the state of affairs. 

In Figure 2, two samples of the dataset with the 

information used in our approaches can be seen.  

 

 
 

 

 

When it comes to the multiple labels (categories) 

of sarcasm, Table 1 shows the distribution of the 

tweets into these categories. As can be seen, the 

dataset is imbalanced so, in the next section, we 

explain how the dataset was balanced for a better 

performance.  

 

Category Number of tweets 

Sarcasm 713 

Irony 155 

Satire 25 

Understatement 10 

Overstatement 40 

Rhetorical question 101 

 

This challenge has been approached by different 

researchers. In (Davidov et al., 2010), experiments 

with semi-supervised sarcasm identification on a 

Twitter dataset (5.9 million tweets) were carried out 

using 50 Twitter tags and 15 emojis as sentiment 

labels. They used a 5-fold cross validation on their 

classifier getting a F1-score of 0.55.   

In addition, in (Tsur et al.,2010), they propose a 

semi supervised system for sarcasm recognition 

over 66,000 products reviews from Amazon. They 

used the same strategy as in the previous mention 

and obtained and F-score of 0.83 on the product 

reviews dataset. 

Table 1: Distribution of tweets in each category 

Figure 2: Example of two rows 
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More recently, other approaches have been 

developed to solve the task of sarcasm detection. In 

(Ashwita et al. 2021), the authors experimented by 

varying the amount of context used along with the 

response (text to be classified) and found that 

including the last utterance in the dialogue along 

with the response improved the performance of 

their system. 

In (Khatri, P, Pranav, y M, Dr. Anand Kumar 

2020), a model using machine learning techniques 

with BERT and GloVe embeddings to detect 

sarcasm in tweets was proposed. 

3 System Overview 

This section describes the two types of models that 

were submitted and the techniques and methods 

applied to each model to improve their 

performance and metrics. 

3.1 Data augmentation 

One of the main problems with the dataset is the 

small number of tweets to train our models (only 

867 tweets). To solve this, a data augmentation 

technique was applied. In particular, a synonym 

augmenter (Wordnet, English) (McCrae et al. 

2019) was used to create a new tweet but only 

swapping one random word by its synonym and 

keeping their labels. An example of this technique 

can be seen in Table 2. 

 

We suggest applying this technique only once 

because our model could overfitting the data and 

could yield overrated results of the metrics. 

3.2 External databases 

Another technique applied in the proposed models 

for the data augmentation was the manual insertion 

of tweets and labels (Oprea and Magdy 2019). 

Most of the tweets inserted belong to minority 

labels (we can see the minority classes on Table 1) 

such as satire, overstatement or understatement. 

Finally, once the new tweets were manually added, 

the dataset consisted of 904 tweets. 

3.3 Text Processing 

We have applied three versions of text processing 

to clean and simplify the text based on the work 

described in (Alzahrani and Jolonian 2021).  

Text processing v1.0: this is the most basic pre-

process. For this version, the following guidelines 

were applied:  

• Conversion of all characters to lowercase. 

• Extent of all possible contractions in English 

(e.g., what’s → what is). 

• Removal of emojis. 

• Removal of special characters. 

• Removal of multiple spaces between 

characters. 

Text processing v2.0: this is the intermediate 

version. In addition to the features described at 

v1.0, the following features were added:  

• Removal of emojis made from keyboard 

characters 

• Removal of mentions 

• Removal of links 

 

Text processing v3.0: this is the full version. In 

addition to the features presented in v2.0, a removal 

of stopwords in English was added. 

3.4 First model: Bayesian networks  

The first model that was developed involves the 

classic algorithm of Bayesian networks 

(Heckerman and Wellman  1995) to study the 

pattern of behavior that the categories of sarcasm 

may present in our dataset.  

We used a naive Bayes classifier (NBC) which 

assumes that the attributes are independent of each 

other. That is to say, the probability can be obtained 

by calculating the product of the individual 

conditional probabilities of each attribute given the 

class node as it can be seen on Figure 3. 

In this model, an input (a single tweet) is 

provided, and it returns a vector of size six (one for 

each tag) with the predicted label. 

Original tweet 
The quick brown fox 

jumps over the lazy dog 

New tweet 
The quick gray fox jumps 

over the lazy dog 

Table 2: Example of data augmentation 
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3.5 Second model: BERT  

Bidirectional Encoder Representations from 

Transformers (BERT) is a transformer-based 

machine learning technique for natural language 

processing (NLP) pretraining developed by 

(Devlin et al. 2018). BERT-base-uncased model is 

pretrained from unlabeled data extracted from 

BooksCorpus (Bandy and Vincent 2021) which 

have 800M of words and from English Wikipedia 

with 2,500M of words. 

BERT uses Transformers (Wolf et al. 2019) as an 

attention mechanism that learns contextual 

relations between words (or sub-words) within a 

text. Transformers includes two separate 

mechanisms: an encoder that reads the text input 

and a decoder that produces a prediction of the 

label. 

For this model, the binary relevance (BR) 

strategy (Luaces et al. 2012) was used, which splits 

the learning process of the dataset into a sets of 

binary classification tasks, in other words, one per 

label. The main disadvantage of this strategy is that 

BR ignores any label dependency and could fail in 

predicting some combination of labels that presents 

any dependency.  

We have trained our second model with a batch 

of 32 instances and 5 epochs. Figure 4 represents 

the strategy of this model.  

 

 

4 Experimental Setup 

To obtain the above models, some libraries were 

used: 

• For the data augmentation, the nltk library 

(Wang and Hu 2021, 1041-1049).  

• For padding the sequences of the inputs 

id’s, the keras library. 

• Sklearn library for the metrics and 

splitting the dataset (Hao and Ho 2019). 

• Pandas library for working with 

dataframes (Stepanek 2020). 

• Transformers library for everything 

related with BERT. 

For all the experiments, tweets were 

preprocessed and then they were randomly split 

using a stratified method (80% training and 20% 

testing). That means that the proportion of values 

in the samples produced is the same as the 

proportion of values provided for the parameter to 

stratify.  

During the training phase of the competition, we 

have only focused on the macro-F1 score as the key 

metric of the Subtask B. 

Figure 3: Steps followed on the first model Figure 4: Steps followed on the second model 
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5 Results 

Two submissions were sent using Bayesian 

Networks: the first one with the text processing 

v1.0 and the second one with the text processing 

v3.0. Table 3 shows the results obtained during the 

training phase.   

Regarding the final submission using BERT-

base-uncased, different approaches were used. 

Table 4 shows the results obtained during the 

training phase. The approaches were:  

• v1.0. Nothing extra applied 

• v2.0. Previous versions + Data 

Augmentation in minority class only.  

• v3.0. Previous versions + insert data of an 

external database. 

• v4.0. Previous versions + v2.0 of text 

processing. 

• v5.0. Previous version + v3.0 of text 

processing. 

Taking a look at Table 3 and Table 4, can be seen 

that in v3.0 of Table 4, the best macro F1-score is 

obtained. So that was our final submission. 

According to the official metrics, as was 

mentioned before, we achieved a macro F1-score 

of 0.0699 and we were ranked 10th among 22 teams 

that participated on this subtask. 

Analyzing our systems, we can state that the 

main problem found in the subtask was the lack of 

data towards unbalanced data at the dataset, which 

is why we have been constantly applying data 

augmentation on the minority classes and even 

inserting data from an external database. Applying 

these two techniques, a big improvement in the 

performance of our systems can be seen.  

Furthermore, our research shows that any kind 

of preprocessing technique is mostly useless 

because any character, capital letter, overextended 

word or symbol, could be the determining factor in 

recognizing ironic speech. 

6 Conclusion 

In this paper our approach to solve Task 6 

(iSarcasmEval) – Subtask B: Given a text, 

determine which ironic speech category it belongs 

to, if any; in English, has been described.  

Our best result was reached with a deep learning 

algorithm (BERT) model, with which we achieved 

a macro F1-score of 0.0699. We obtained the 10th 

position in the ranking. 

For future works, an improved version of our 

BERT model could be developed by training with 

a bigger dataset. It is also possible to look for new 

preprocessing techniques that enable the removal 

of information that is useless to the meaning of the 

tweet but still maintain the ironic speech patterns 

(if any).  
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Abstract
The intended sarcasm cannot be understood un-
til the listener observes that the text’s literal
meaning violates truthfulness. Consequently,
words and meanings play an essential role in
specifying sarcasm. Enriched feature extrac-
tion techniques were proposed to capture both
words and meanings in the contexts. Due to
the overlapping features in sarcastic and non-
sarcastic texts, a CNN model extracts local fea-
tures from the combined class-dependent sta-
tistical embedding of sarcastic texts with con-
textualized embedding. Another component
BiLSTM extracts long dependencies from com-
bined non-sarcastic statistical and contextual-
ized embeddings. This work combines a classi-
fier that uses the combined high-level features
of CNN and BiLSTM for sarcasm detection to
produce the final predictions. The experimen-
tal analysis presented in this paper shows the
effectiveness of the proposed method.

1 Introduction

Sarcasm detection is a specific case of sentiment
analysis where the focus is on detecting sarcasm in
text. Therefore, the task is to detect if a given text
is sarcastic or not. According to (Hacker, 2011),
sarcasm refers to the use of words that mean the
opposite of what you want to say, especially to in-
sult someone, show irritation, or provide humor.
However, (Oprea and Magdy, 2020; Wilson, 2006)
define sarcasm as a form of irony marked by a dis-
crepancy between the literal and intended meanings
of an utterance, through which the speaker usually
manifests a hostile, derogatory, or contemptuous
attitude. Generally, sarcasm tweets/texts are the
utterances of a positive statement with harmful in-
tent, and since the intent is hard to detect not only
for computers but also for humans, it has attracted

a considerable body of research in the natural lan-
guage processing field to study opinions given by
the users of online social media platforms such as
Twitter, Facebook, Reddit, and Instagram. In the
SemEval 2022 at Task 6: iSarcasmEval (Abu Farha
et al., 2022), the goal is to identify intended sar-
casm in both English and Arabic languages. This
task consists of 3 subtasks, and we will focus on
SubTask A defined as: SubTask A: Given a text,
determine whether it is sarcastic or non-sarcastic.

Since sarcasm is an utterance of a statement
with negative intent (e.g., He has the best taste
in music.”) and an admiring tone (e.g., ”She al-
ways makes dry jokes.”). We hypothesized that
contextualized representation might not be enough
to represent intent when considering the sentiment
analysis challenge. Therefore, we combined the
representation of stylistically statistical and con-
textualized word embeddings using deep neural
networks (DNNs) as a high-level feature extrac-
tor and classifier for the task. In this work, we
studied the effect of the combination of stylistic
and contextualized representation. The rest of the
article is organized as follows. We first describe
sarcasm studies in Section 2. Section 3 presents the
proposed methodology. Sections 4 and 5 describe
experimental setups and results. Moreover, in sec-
tion 6 we made the discussion. Finally, in section 7
we conclude the article.

2 Related Works

Sarcasm detection research has seen a significant
surge in interest in the past few years (Potamias
et al., 2020; González et al., 2020; Babanejad et al.,
2020; Gregory et al., 2020; Kumar et al., 2021;
Ahuja and Sharma, 2021). At early stages, most
works considered content as the only source for
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identifying sarcasm (Yaghoobian et al., 2021). To
differentiate between sarcasm and non-sarcasm
handcrafted rules and features have been applied
(Veale and Hao, 2010; Bharti et al., 2015; Riloff
et al., 2013). For instance, (Barbieri et al., 2014)
used seven sets of lexical features to detect sarcasm
by its inner structure. Frequency and Structure (i.e.,
length, punctuation, emoticons) are two examples
of sarcasm features. However, the model based
on these stylistic features shows promising results
but lacks external knowledge (i.e., common sense).
Our proposed method incorporates stylistic fea-
tures with XLM-RoBERTa model to cope with the
limitations of prior methods. Most recently, domi-
nant approaches are Context-based, utilizing back-
ground knowledge and contextual dependencies as
prior knowledge about the event mentioned in a sar-
castic context (Li et al., 2020; Agrawal et al., 2020;
Potamias et al., 2020). (Wallace et al., 2014) pro-
vided empirical evidence that to make judgments
concerning ironic intent annotators require addi-
tional contextual information. Hazarika et al. is one
of a few works that tried to capture the stylometric
and personality features of the users and used user
embeddings to encode stylometric and personality
features of users combined by a content-based fea-
ture extractor (i.e., CNN)(Hazarika et al., 2018).
This sarcasm detection model shows promising re-
sults on a large Reddit corpus. The improvement
in results by this work inspired us to investigate
the effectiveness of incorporating content-based
features for SemEval-2022 Task 6: iSarcasmEval,
but the problem we faced was the lack of data as-
signed to each user. As a result, instead of a users’
unique features, we investigate the stylometric fea-
tures of each class. In other words, we tried to find
general styles of users who tried to write sarcastic
texts by finding the distribution of their frequent
words and other features provided in section 3. Re-
sults provided in section 5 empirically demonstrate
the effectiveness of this incorporation. The effec-
tiveness of transfer learning has given rise to a
diversity of approaches, methodology, and prac-
tice, and they are also gaining attention in Sarcasm
detection. BERT, RoBERTa, and XLNet are ex-
amples that deliver significant improvements. For
example, (Potamias et al., 2020) proposed Recur-
rent CNN RoBERTa (RCNN-RoBERTa), which
obtained %79 on the SARC dataset. Based on its
effectiveness and multilingualism, we utilized the
RoBERTa model for this research.

3 Model Description

In this section, we describe the details of our pro-
posed deep learning model. The goal is to pre-
dict whether the given text is sarcastic or non-
sarcastic. Figure 1 depicts an overview of our pro-
posed method.

First, preprocessing (Appendix A.1) is applied
to the raw texts. Next, character-based lower di-
mensionality statistical embedding (Char-LDSE)
(Rangel et al., 2017; Giglou et al., 2021) captures
the stylistic information about sarcastic and non-
sarcastic data in form of class-dependent features
based on the term frequency of tokens in sarcastic
and non-sarcastic classes. The calculated LDSE
features for sarcastic class in combination with
contextualized representation are fed into Convo-
lutional Neural Networks (CNNs) (LeCun et al.,
1999) to extract local information of the texts. In
another setting, the LDSE for non-sarcastic class
in combination with contextualized representation
is fed into Bidirectional Long Short-Term Memory
(BiLSTM) (Schuster and Paliwal, 1997) to learn
the long-dependent information in the texts. The
features from CNN and BiLSTM layers combined
for enhancing the feature extraction ability of the
model. Extracted high-level features are fed into
the classifier. In the following, we describe each
component elaborately.

3.1 Representation

Preprocessed texts are fed into Char-LDSE and
contextualized representations. Where it outputs
an embedding for models.

Char-LDSE: First, a character n-gram matrix with
TFIDF weight is created. Using TFIDF matrix
the LDSE weighted probability of terms per class
was obtained. As a result, P (sarcastic) and
P (non − sarcastic) embeddings are calculated
for sarcastic and non-sarcastic, respectively. The
union of n-grams with TFIDF weighing on the
training set is applied to achieve the input matrix of
LDSE. We utilized character-level n-grams features
with an n-gram range of (2, 3), and word-level uni-
grams features for building input matrix to LDSE.
For English character-level and word-level settings,
and for Arabic, the only character-level setting is
applied. As a result, we obtain the following ma-
trix:
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W11 ... W1n β(iSC0)
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W(m−1)1 ... W(m−1)n β(iSC1)

Wm1 .... Wmn β(iSC1)




Where each row in the matrix M represents a
intended Sarcasm (iS) iSi, each column represents
vocabulary term T and Wij represents its TFIDF
weight and β represents the assigned class (C1 -
sarcastic, C0 - non-sarcastic) of the iS text. Also,
m and n represent the number of the training set
and vocabulary size, respectively. To obtain the
class-dependent term T weight embedding LDSE
the following LDSE(T, c) formula has been cal-
culated:

LDSE(T, c) =

∑
is∈β(iSc)/c=β(iSc)

Wis,T∑
is∈β(iSc)

Wis,T

∀is ∈ iS, c ∈ {C0, C1}

Next, we calculated LDSE for each class for term
T :

Psarcastic = LDSE(T, c)

Pnon−sarcastic = LDSE(T, c)

At the end, using Psarcastic and Pnon−sarcastic we
extract the following representations:

feat(Psarcastic) , feat(Pnon−sarcastic)

Where feat(P ) contains the set of features pre-
sented as followings:

feat(P ) = {max,min, std, avg,Q1, ..., Q100}

Where feat(P ) ∈ R104 is the class-dependent
LDSE features. Accordingly, max, min, std, and
avg are maximum, minimum, standard deviation,
and average of weights P , respectively. Moreover,
the {Q1, ..., Q100} is the Q-th quantile of P ’s.

Contextualized Embedding: The XLM-
RoBERTa (Conneau et al., 2020) is a pre-trained
language model with the Masked Language Mod-
eling (MLM) objective. The XLM-RoBERTa is a
multilingual version of RoBERTa (Liu et al., 2019),
which is pre-trained on 2.5TB of CommonCrawl
data containing 100 languages. The model learns
an inner representation of 100 languages that
can then be used to extract features useful for
downstream tasks. The function CE ∈ R768 is a
base version of contextualized XLM-RoBERTa
word embeddings. CE takes iS texts, uses
XLM-RoBERTa tokenizer and XLM-RoBERTa
model for word embedding generations.

CE(iS) := XLMRoBERTa(iS)

Concatenate Embeddings: In representations
combination, we took the following approach. For
CNN layer we combined feat(Psarcastic) with
CE(iS), and for BiLSTM layer we combined
feat(Pnon−sarcastic) with CE(iS). We obtained
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the following equations.

f : feat(Psarcastic)⊕ CE(iS)→ Ecnn

f : feat(Pnon−sarcastic)⊕ CE(iS)→ Ebilstm

Where Ecnn, Ebilstm ∈ R872, which will be the
inputs of CNN and BiLSTM models in feature
extraction module.

3.2 Feature Extraction

The CNN is applied on Ecnn and BiLSTM is ap-
plied on Ebilstm to extraction high-level features.
Next, outputs of CNN and BiLSTM models are
concatenated as an input to the classifier.
CNN Feature Extractor: CNN is a feature extrac-
tion technique with strong adaptability and is good
at mining data local characteristics. Our CNN’s
has architecture as follows:

1. Two CNN layer with Conv2D : conv2d →
maxpooling1d→ activation scheme.

2. Concatenate output of the two CNN layers:
Outcnn = Conv2D1 ⊕ Conv2D2.

3. Dropout layer.

WhereOutcnn ∈ R200 with output channel number
of 100 in both CNN layers. The first layer in CNN
uses a kernel size of (4, 872), padding of (2, 0),
and stride of 3. However, the second layer employs
a kernel size of (3, 872), padding of (1, 0), and
stride of 2. Next, for an activation function, the
Gaussian Error Linear Unit (GELU) (Hendrycks
and Gimpel, 2020) that nonlinearity weights inputs
by their percentile, rather than gates inputs by their
sign as in ReLUs (Agarap, 2019) is applied. It has
been used in most of the transformers.
BiLSTM Sequence Learner: For a better repre-
sentation of contextual information, single BiL-
STM layer was employed. The BiLSTM is com-
posed of two LSTM network that is capable of
reading input texts in both directions, forward and
backward. The forward LSTM processes infor-
mation from left to right, and backward LSTM
processes information vice versa and hidden state
can be shown as:

−→
h t = LSTM(Ebilstm,

−→
h t−1)

←−
h t = LSTM(Ebilstm,

←−
h t+1)

Next, output of BiLSTM can be summarized as fol-
lowing where the max-pooling is applied to output

ht to retrieves a maximum value of each feature in
the BiLSTM layer.

ht =
−→
h t ⊕

←−
h t

Outbilstm =MaxPool1d(ht)

Where Outbilstm ∈ R200.
Concatenate Features: As a final high-level fea-
ture, theOutcnn andOutbilstm outputs are concate-
nated as follows, Where Outcnn⊕bilstm ∈ R400.

Outcnn⊕bilstm = Outcnn ⊕Outbilstm

3.3 Classifier

The two fully connected layers use Outcnnbilstm
for classification objectives. The first layer takes
400 neurons as input and outputs 200 neurons.
Next, GELU activation is applied. Finally, the sec-
ond layer takes 200 neurons and outputs 2 neurons
(the prediction module).

4 Experimental Setup

Dataset: For sarcastic or non-sarcastic detection
tasks, the collected dataset where the sarcasm la-
bels for texts are provided by authors themselves,
thus eliminating labeling proxies. For hyperparam-
eter tuning and model selection we split the training
set into train and dev sets with a 10% split rate for
both English and Arabic languages. More infor-
mation about the datasets (train, dev, and test sets)
has been presented in Appendix A.2. The dataset
is highly imbalanced.
Training Setup: The preprocessing (Appendix
A.1) is applied to text, first. Next, using train
and dev sets we made hyperparameters tuning (Ap-
pendix A.3). Due to the imbalanced setting of
the data we made a data argumentation (Appendix
A.4) as one of our experiments. The experimental
design shows the positive effect of data augmen-
tation. More information about preprocessing, hy-
perparameter setting, and data augmentation are
described in the appendix section. As an evaluation
metric to this task (SubTask A of iSarcasmEval),
the main metrics for SubTask A is F1-score for the
sarcastic class.

5 Results

Main Quantitative Findings: The table 1 presents
the final results on the test set for English and Ara-
bic languages. The main quantitative findings are:
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Language Accuracy Precision Recall F1-Score F1-Sarcastic FP FN Rank
English 0.6136 0.5290 0.5558 0.4992 0.2599 436 105 28
Arabic 0.6671 0.5835 0.6600 0.5667 0.3581 396 70 18

Table 1: Evaluation results on test set for SubTask A.

• For English, the proposed model achieved
28th place among 43 teams, and 18th place
among 32 teams for the Arabic.

• According to type I error (FP), the model
for both languages wrongly predicts the high
rate of non-sarcastic samples as sarcastic data.
Regarding this phenomenon, the task suffers
from type I error mostly.

• For the English language, among 200 sarcas-
tic samples model captures 95 samples cor-
rectly, however, for the Arabic language, 130
samples were predicted correctly as sarcas-
tic. About 65% TPR (True Positive Rate) of
sarcastic samples in Arabic, but 47.5% of sar-
castic samples in English were detected. It
shows the task is more sensitive in English
rather than Arabic.

Quantitative Analysis: We have used experimenta-
tions on the dev set to conclude the CNN-BiLSTM
model as a final system for intended sarcasm de-
tection at iSarcasmEval. The experiments are pre-
sented in Appendix A.5, and the table 6 shows
experimental results. The quantitive analysis is
presented as follows:

• The character-based n-gram with an n-gram
range of (2, 3) was implemented as a baseline
representation with logistic regression, linear
SVM, and multi-layer perceptron (MLP) as
baseline models. The experimental results
on both English and Arabic languages show
neural networks (MLP) are performing well
on this task.

• The experimentation of LDSE + MLP shows
that stylistic representations are promising,
but they are not enough.

• To find a candidate representation in combi-
nation with LDSE, as a performance booster,
the XLM-RoBERTa masked language model
is been considered. The XLM-RoBERTa +
MLP shows that contextualized representation
is very capable.

• The Combination + MLP model is combined
LDSE and XLM-RoBERTa representation.
The achieved result is promising for Arabic

but it is 2% higher for English, this shows
stylistic features in combination with contex-
tualized representation perform well. The
more complex model may boost the perfor-
mance.

• The Proposed Model (1) uses preprocessing
followed by the enriched representation with
CNN-BiLSTM model. It is more capable than
Combination + MLP model.

• Due to the unequal class distribution in the
dataset, we employed weights in the cross-
entropy loss function. The Proposed Model
(2) results show its positive effects.

• We experimented with data augmentation
techniques (Appendix A.4) and discovered
that due to the word importance in achieving
high-quality features for LDSE, data augmen-
tation works more considerably well for this
task (Proposed Model (2) + Aug model).

• The data augmentation probability shifts show
the effects of LDSE representations (table 4).
And considering Proposed Model (2) and Pro-
posed Model (2) + Aug, We can observe that
data augmentation affects mostly the stylis-
tic features and results in boosting the perfor-
mance. It represents that high-level feature
extraction from a multi-space domain such as
LDSE and XLM-RoBERTa play an important
role in sarcasm detection.

6 Discussion

Type-1 Error: In either language, non-sarcastic
samples are predicted wrongly as sarcastic. Type-
1 error is the major source of error. Analysis of
English FP samples indicated that most of the sam-
ples were in response to a post or reply to another
person and indeed, with no information about the
text context nor the writer profile, this indicates a
lack of primordial clues for sarcasm detection. To
make an improvement in reducing the error two
approaches can be taken. First, consider more in-
formation about the text context such as the tread
or post. Second, using a finer feature representa-
tion, since the lack of primordial clues leads to
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low-quality features. Moreover, the analysis re-
vealed the following findings in the data which can
be taken into account to improve the results by re-
ducing the error (all of the findings come from the
analysis of 436 FP samples for the English test set).

• We have found that samples in the dataset may
be labeled wrongly as sarcasm so correcting
them may boost the performance (e.g ”10 dec
2021, 4:46 am, All in on $PYR (28,07$)” or

”pointing-downmedium-skin-tone-emoji this”)

• A few samples were in single words (e.g ”Rub-
bish”) which in a few cases such as ”pointing-
downmedium-skin-tone-emoji this” and ”Fol-
lowed” they didn’t convey any meaning, tack-
ling them in modelin could be more challeng-
ing since they don’t have enought information
for models.

• In a few cases preprocessing causes a low
quality text generation (e.g ”10 dec 2021,
4:46 am, All in on $PYR (28,07$)” will be
converted into ’dec am all in on” which is
less valuable for modeling).

• Sometimes, emojis make the text sarcasm, so
using them as features could be useful for
this task since most of the comments in FP
samples had emojis (almost 60% of them). In
the whole preprocessing we converted emojis
into texts, but in this way we thread the emojis
similar to text, however, threading them in a
different way may boost the performance.

Weighted Loss and TFIDF Data Augmentation
Improvements: According to table 6, and model
Proposed Model (2), adding weighted loss cross-
entropy increased results on the dev set by 1% in
English, and 2% in Arabic. Similar to weighted
loss cross-entropy, the model Proposed Model (2)
+Aug in table 6 shows TFIDF data augmentation
improved results on the dev set by 1% in English,
and 4% in Arabic. Overall, weighted loss cross-
entropy and TFIDF data augmentation together im-
proved results by 2% in English, and 6% in Arabic.
So using these techniques is promising in boosting
the sarcasm detection models.
Task Sensitiveness in Languages: We proposed a
class-dependent LDSE that considers character n-
grams in stylistic information calculations. Charac-
ter n-gram contains information on the more impor-
tant tokens and the less important ones as well. So

it captures the differences using token counts. How-
ever, The stress patterns of most Arabic dialects
are broadly similar and appear regularly. Changes
happen frequently in English, as word stress can
change the lexical variety and meaning of the word
(Watson et al., 2011). This affects both LDSE and
contextualized representation.

Because LDSE is doing a probability-based cal-
culation for tokens using a character n-gram matrix,
the similarity in dialects will lead to a high-quality
n-gram matrix in Arabic rather than English. Table
6 experimentation on the TFIDF matrix reveals this
fact precisely. Accordingly, as a result of changes
in the meaning, neural network feature extractors
may have found some variant features which leads
to misclassification (Type 1 error). The experimen-
tations with XLM-RoBERTa + MLP (table 6) show
that neural network models are performing better
on Arabic contextualized representation rather than
English. Experiments clearly show why this task
is more sensitive in the English language than in
Arabic.

7 Conclusion

This paper presented our approach for SemEval-
2022 Task 6: iSarcasmEval: Intended Sarcasm De-
tection In English and Arabic. We investigated this
problem by employing statistical and contextual-
ized representations with deep learning techniques.
We conducted the experimental and statistical anal-
ysis and presented the CNN-BiLSTM framework.
The proposed studies in this paper show that con-
sidering stylistic features with deep learning frame-
works is promising for intended sarcasm detection
in both English and Arabic languages.
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Dataset Sarcastic Non-Sarcastic Overall
English
Train 772 2349 3121
Dev 95 252 347
Test 200 1200 1400

Arabic
Train 678 2113 2791
Dev 67 244 311
Test 200 1200 1400

Table 2: English & Arabic dataset stats

A Appendices

A.1 Preprocessing
Text preprocessing is often the first step in the
pipeline of an NLP system. We consider the fol-
lowing preprocessing techniques to be applied to
an input text:

• Lowercasing
• Punctuation removal
• Special character removal
• Demojify1(converting emoji into texts)
• URL, #, @ removal
• Number removal

These preprocessing techniques were applied for
both English and Arabic languages.

A.2 Train, Dev, and Test Sets
Each text in the datasets has a label specifying its
sarcastic nature (sarcastic or non-sarcastic), pro-
vided by its author. The stats of the datasets are
presented in table 2.

A.3 Hyperparameter Setting
For training DNNs there are multiple hyperpa-
rameters to be fine tuned. Batch size, learning
rate, epoch, loss function, weight decay, dropout,
wighted loss, and optimizer. The hyperparameters
are described in the table 3 for both English and
Arabic languages.

A.4 Data Augmentation
Data augmentation is a way to generate synthetic
data for improving model performance without
manual effort. Since we are dealing with an im-
balanced binary classification problem and due to
the importance of terms likelihood in LDSE we
made a TFIDF data augmenter that learns the word

1https://pypi.org/project/demoji/

Parameter English Arabic
Batch Size 8 8

Learning Rate 0.001 0.001
Epoch 10 10

Loss Function CrossEntropy CrossEntropy
Weighted Loss Yes Yes

Optimizer Adam Adam
Weight Decay 1e-9 1e-8

Dropout 0.6 0.4

Table 3: Hyperparameter setting

English Arabic
Avg(Psarcastic) 0.244 0.148

Avg(Psarcastic)+Aug 0.327 0.213
Avg(Pnone−sarcastic) 0.756 0.852

Avg(Pnone−sarcastic)+Aug 0.673 0.787
LDSE tokens 17691 16941

LDSE tokens + Aug 17961 17073
sarcastic samples 772 678
synthetic samples 760 678

sarcastic samples + Aug 1532 1356
overall training data + Aug 3881 3469

Table 4: Data augmenter stats

preferences for samples in sarcastic class only, then
generates new synthetic samples. For generating
new samples we have followed the following steps:

1. Getting sarcastic samples from training data
for data augmentation.

2. Preprocessing selected samples.
3. Training TFIDF data augmenter using nlpaug

(Ma, 2019) a python library.
4. Augment sarcastic samples using data aug-

menter.
5. Generate new samples for sarcastic samples

only.

The overall stats of the data augmentation are
presented in the table 4. According to the mean
average probability of terms in sarcastic and non-
sarcastic, the data augmentation shifts the average
probabilities in both classes. Since we were us-
ing the same set of data for argumentation so we
observe the proper number of changes in tokens.
Samples from data augmenter for both languages
are presented in the table 5.

A.5 Experiments
The table 6 presents the experimental results for
hyperparameter tunings. According to the table
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ORG mentally i m hiding in the walk in
AUG mentally hiding jewelry the watto in
ORG i love hour panic attacks
AUG love limited spoiling attacks
ORG �é�A�P AîD
	̄ H. Y 	J�K

�é�A�J. Ë @ 	àñJ
ªË@
AUG 	�P


B@ H. Qå	�

�� H. Y	J�K
�é�A�J. Ë @ 	àñJ
ªË@

ORG . . . ��ðY	JªÓ 	á�
g. @Q 	®Ë @ ñK. @ ø 	P ÉÓA«
AUG . . . èQ�
 	«ð 	á�
g. @Q 	®Ë @ ÕË Aª�JÓ ��mÌ'@ ÉÓA«

Table 5: Data augmentation samples (ORG: original
sample, AUG: augmented sample)

Model English Arabic
TFIDF + LR 0.16 0.56
TFIDF + LinearSVM 0.31 0.63
TFIDF + MLP 0.32 0.62
LDSE + MLP 0.27 0.58
XLM-RoBERTa + MLP 0.40 0.72
Combination + MLP 0.42 0.72
Proposed Model (1) 0.44 0.74
Proposed Model (2) 0.45 0.76
Proposed Model (2) + Aug 0.46 0.80

Table 6: Experimental results on dev set (F1-sarcastic is
reported)

6, Combination + MLP refers to LDSE + XLM-
RoBERTa Representation, Proposed Model (1) is
the CNN-BiLSTM model and preprocessing, Pro-
posed Model (2) is model with preprocessing, and
weighted loss cross-entropy. Proposed Model (2) +
Aug is a model with preprocessing, weighted loss
cross-entropy and TFIDF data augmentation.
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Abstract

Sarcasm has gained notoriety for being difficult
to detect by machine learning systems due to
its figurative nature. In this paper, Bidirectional
Encoder Representations from Transformers
(BERT) model has been used with ensemble
loss made of cross-entropy loss and negative
log-likelihood loss to classify whether a given
sentence is in English and Arabic tweets are sar-
castic or not. From the results obtained in the
experiments, our proposed BERT with ensem-
ble loss achieved superior performance when
applied to English and Arabic test datasets. For
the validation dataset, our model performed
better on the Arabic dataset but failed to out-
perform the baseline method (made of BERT
with only a single loss function) when applied
on the English validation set.

1 Introduction

In recent times, Social media platforms such
as Twitter have turned out to be one of the
most influential media for the expression of
views, emotions, and information. To char-
acterize sarcasm on Twitter; (Parmar et al.,
2018) proposed the following: (a) strife be-
tween negative situation and positive senti-
ment, (b) strife between positive situation and
negative sentiment, (c) Tweet starts with an
interjection word, (d) likes and dislikes contra-
diction, (e) tweet conflicting ubiquitous facts,
(f) tweets with positive sentiment and antonym
pair, and (g) tweet contrasting facts that are
time-sensitive.

With a huge amount of content being
churned on social media and the need to ana-
lyze and detect sarcasm closely, text classifica-
tion methods have been widely introduced to
deal with these sophisticated tasks. Sarcasm
has been shown to pose a major difficulty for
sentiment analysis models (Liu, 2010), mainly

because sarcasm acts as a form of verbal irony
which enables the concealment of the true in-
tention of denigration and negativity under a
pretence of open a respectful representation
such as; “The only thing I got from college is
a caffeine addiction". As a result, the ability
to detect sarcasm is crucial for understanding
the real intents and beliefs of people (Maynard
and Greenwood, 2014).

To address these issues and limitations,
(Abu Farha et al., 2022) have organized the iS-
arcasmEval shared task for intended Sarcasm
Detection In English and Arabic where differ-
ent tweets in English and Arabic languages
have to be classified as either sarcastic or not.

Several models for detection of sarcasm
have been proposed in literature which incor-
porate statistical, machine learning, and rule-
based approaches but predominantly (Mandal
and Mahto, 2019). However, these techniques
are not able to effectively perceive the figura-
tive and ironic meaning of words (Joshi et al.,
2016). Also, these methods require manually
engineered features and are unable to under-
stand the patterns in passive voice sentences
(Bajwa and Choudhary, 2006). However, in-
stead of utilizing manually engineered features,
the incorporation of transformer models has
the ability to automatically learn the important
features.

In this paper, we present our participat-
ing system to the iSarcasmEval shared task
(Abu Farha et al., 2022). In this work, we
seek to apply a novel transformer-based ap-
proach to detect sarcastic statements in both
English and Arabic languages and propose a
novel approach to fine-tune the BERT model
for sarcasm detection of both Arabic and En-
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glish tweets using ensemble loss. BERT is
a model that is gaining increasing popularity
due to its outstanding performance for multiple
NLP tasks.

Recently, the language model called BERT
has been widely used in several tasks. The
pre-trained model can generate word/token
or sentence representations that are enriched
with prior knowledge. Then, they can be
fine-tuned specifically for many downstream
tasks such as sarcasm detection. The tradi-
tional BERT model only uses one loss func-
tion whilst our proposed model which com-
bines a cross-entropy loss with a negative log-
likelihood function leads to a better penaliza-
tion of incorrect predictions that the model
is confident about more than incorrect predic-
tions the model is less confident about. This
leads to better detection of sarcasm due to an
improved F-1 sarcastic.

One of the main contributions of this work
is the use of ensemble loss with BERT (Devlin
et al., 2019) to address the task of sarcasm
detection of tweets in both English and Arabic
languages with improved sarcasm detection
ability.

The rest of the paper is organized as follows:
The Related Work in section 2 discusses the
research works which are closely related to the
current study. Section 3 contains the system de-
scription part and highlights the description of
the proposed approach and its working method-
ology. The dataset used for experiment setup is
provided in the Experiments section in section
4, whilst the results and Discussion segment
can be found under section 4.1 and contains
the experimental results and the performance
metrics. The conclusion and future work for
this research work are all captured in section
5.

2 Related Work

The conversation aspect in sarcasm detection
was investigated by (Ghosh et al., 2017), and
sarcastic and non-sarcastic tweets were col-
lected to create a dataset for their experiments.
BERT, which is a transformer-based machine
learning model has been exploited to provide

a deep contextual representation of words and
used for sarcasm detection. They are pre-
trained language models and have been also
been widely utilized in many NLP domains.
These models have been proven to be effective
since they are enriched with knowledge from
the pre-training resources (Avvaru et al., 2020).
(Moores and Mago, 2022) recently surveyed
automated sarcastic detection on Twitter and
found out that there was a shift towards the use
of deep learning methods due to the benefit of
using a model with induced instead of discrete
features combined with the innovation of trans-
formers. BERT and GloVe embeddings were
combined with machine learning classifiers to
detect sarcasm in tweets in the work of (Kha-
tri and P, 2020). Semi-supervised techniques
were used by (Tsur et al., 2010) to detect sar-
casm Sentences in Online Product Reviews
whilst (Amir et al., 2016) also deployed the
use of automatic learning and exploiting word
embeddings to recognize sarcasm. Other ap-
proaches such as Bi-Directional Gated Recur-
rent Neural Network (Bi-Directional GRNU)
have also been used to detect sarcasm (Zhang
et al., 2016). Bert has been used with a crowd
layer on tweets with noisy labels to achieve
improved results (Osei-Brefo et al., 2021).

3 System description

For each sample in the English and Arabic
dataset, a tweeted text and a given token were
first concatenated in the following format:

[CLS] + Tweeted text + [SEP] sarcastic
sentence [SEP]

where ‘[CLS]’ token was added for classifi-
cation and two ‘[SEP]’ tokens were used to
identify the sarcastic nature of the tweet. Each
sentence was initially organized, after which
the ‘[CLS]‘ and ‘[SEP]‘ tokens were added to
their start and end. The tokenized sentence was
then truncated or padded to a maximum length
of 64. Each generated token was then mapped
to its individual IDs to create an attention mask
for each sentence. A hidden size of 768 was
utilized for the BERT, whilst 120 and 2 were
respectively used as the hidden size of the clas-
sifier and the number of labels. A one-layer
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feed-forward classifier was then instantiated
after which the last hidden state of the token
‘[CLS]‘, was extracted for classifying whether
a statement was sarcastic or not.

Binary Classification for detecting sarcasm
To fine-tune the models for sub-task A, a fully-
connected layer was added on top of the pooled
output (the sequence embedding from the pre-
trained model). This layer had an output size
of 2 with a softmax activation function which
outputs the probability of each class as either
1 or 0. For sub-task A, the baseline model
used was a Bert model with the same parame-
ters as our proposed model except that it was
made up of a single cross-entropy loss func-
tion. A cross-entropy loss and Negative log-
likelihood loss functions were combined in
different weights proportion to form the en-
semble loss used as a loss function for fine-
tuning. These proportional weight functions
were 0.8/0.2 and 0.2/0.8 for the cross-entropy
loss and Negative log-likelihood loss functions
respectively as can be seen in Tables 1 and 2 as
BERT Ensemble loss A and BERT Ensem-
ble loss B respectively. The final prediction
of each sentence was made by selecting the
class with the maximum probability. Due to
the difficulties inherent nature of detecting sar-
casm by machines, a higher threshold of about
70 % was used as the minimum probability
beyond which a tweet can be classified as be-
ing sarcastic for both the English and Arabic
datasets.

Ensemble loss function Two loss functions
were combined together in such a way that
the benefits derived from each loss function
were embedded in the model. These loss func-
tions were cross-entropy loss and negative log-
likelihood loss. The weights of these com-
binations were 0.8 to 0.2 and 0.2 to 0.8 for
BERT Ensemble loss A and BERT Ensemble
loss B respectively. On the other hand, the
Baseline model loss was made up of only the
cross-entropy loss.

4 Experiments

Experiments were conducted on the respec-
tive English and Arabic training and test sets
provided by the task organizers. The training
set of the English language had 3467 samples
whilst that of the Arabic language had 3120
data samples. During the development stage,
the training datasets were divided into 90%
and 10% splits sets respectively for the train-
ing and validation datasets. The test sets for
both languages on the other hand had a total
of 1,400 data samples used in the evaluation
phase.

All the models were fine-tuned by using the
Adam optimizer for 12 epochs with the batch
size 32 and the learning rate of 0.000005 and
0.000000001 as the default epsilon value. For
sub-task A, the models were evaluated by Ac-
curacy, Recall, false positives, F-1 sarcastic,
Accuracy, and F1-macro.

4.1 Results and Discussion
Table 1 shows the results of the baselines and
our approaches in both sub-task A using the
Validation dataset. Table 2 also shows the re-
sults obtained using the test data sets

Our proposed model with the ensemble loss
had different performance strengths on the val-
idation dataset and the test datasets. Their
relative performance also varied depending
on the particular Language they were applied
to. Among the 5 metrics used, the most ef-
fective metric that can be used to determine
how accurate a model is able to detect sarcastic
statements is the F-1 sarcastic metric. For the
validation dataset, the baseline model outper-
formed our proposed model in all the 5 metrics
used when applied to the English Language
dataset. For the Arabic dataset, our model out-
performed the baseline in all the other 3 met-
rics used with the exception of the false pos-
itive and f1-macro metrics where our model
could not outperform the baseline. It is worth
noting that our model had an F-1 sarcastic met-
ric of 83.53% when it was applied to the Ara-
bic language test dataset. For the test dataset,
our proposed model outperformed the baseline
model for both the English languages with an
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(a) Roc curve illustrating the perfor-
mance of the baseline Bert model on
test dataset English tweets

(b) Roc curve illustrating the perfor-
mance of the Bert model on validation
dataset English tweets

(c) Roc curve illustrating the perfor-
mance of the Bert model on Test
dataset Arabic tweets

Figure 1: Comparison of the proposed approach performance on on sub task A

(a) Roc curve illustrating the perfor-
mance of the Bert Ensemble loss
model on test dataset English tweets

(b) Roc curve illustrating the perfor-
mance of the baseline Bert model on
test dataset Arabic tweets

(c) Roc curve illustrating the perfor-
mance of the ensemble Bert model on
Test dataset Arabic tweets

Figure 2: Comparison of the proposed approach performance on on sub task A

Val set Model
Sub-task A

FP Recall F-1 sarcastic F1-macro Acc

English
Baseline 37.04 58.54 71.84 63.76 74.06
BERT Ensemble loss A 37.15 55.03 67.51 57 .00 72.33
BERT Ensemble loss B 42.43 54.87 58.82 41.48 70.89

Arabic
Baseline 23.60 64.92 83.35 77.75 83.28
BERT+ Ensemble loss A 25.61 65.75 83.53 77.41 83.92
BERT Ensemble loss B 26.82 61.62 64.61 42.94 75.24

Table 1: Results of validation dataset for sub-task A, where BERT+ Ensemble loss A and BERT+ Ensemble loss
B represents 80% /20% and 20% /80% combination of the cross entropy loss and negative log likelihood loss
respectively. Where FP represents False positives

Test set Model
Sub-task A

FP Recall F-1 sarcastic F1-macro Acc

English
Baseline 46.59 52.66 79.37 54.88 81.00
BERT Ensemble loss A 38.86 52.25 79.75 58.00 80.07
BERT Ensemble loss B 46.65 51.51 79.12 46.15 85.71

Arabic
Baseline 38.86 52.25 79.74 57.99 80.07
BERT+ Ensemble loss A 37.22 51.28 76.10 56.60 73.79
BERT+Ensemble loss B 40.13 52.61 79.12 46.15 85.71

Table 2: Results of Test dataset for sub-task A, where BERT+ Ensemble loss A and BERT+ Ensemble loss
B represents 80% /20% and 20% /80% combination of the cross entropy loss and negative log likelihood loss
respectively. Where FP represents False positives

874



F-1 sarcastic metric of 79.75% Its application
on the Arabic language test set yielded an F-
1 sarcastic metric of 79.12%, which was just
below the value obtained from the baseline
model which was 79.74%

Figures 1 and 2 show the Receiver Operat-
ing Characteristic (ROC) Curve of the differ-
ent models applied to the test and validation
data sets, which is a plot of the true positive
rates against false-positive rates. It graphically
shows and compares the performance of the
baseline model and our ensemble loss model
at all classification thresholds. It pictorially
shows the evaluation of the strength of a model;
with the bigger area under the curve indicating
superior model performance and the smaller
area under the curve signalling poorer model
classification performance respectively.

5 Conclusion

This work has proposed the use of ensemble
loss on the BERT model to detect whether a
given sentence in English or Arabic language
is sarcastic or not. The results indicate that the
use of our ensemble loss on the Bert Model ex-
hibits superior performance over the baseline
models when applied to the English and Ara-
bic test datasets. Future work will involve the
undertaking of further investigation to find the
optimal proportion of each combination that
yields the optimal results. It will also involve
the use of ensemble loss on Arabic-based Bert
models such as Ara-Bert and other Bert-Based
models to find their performance. Different
types of losses will also be investigated and
added to the ensemble loss portfolio in order to
explore the different types with superior perfor-
mance. Since the two language datasets used
were unbalanced in nature, future work will
also explore other data balancing techniques
to help improve the results of our model.
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Abstract 

In this paper we present our approach and 

system description on iSarcasmEval: a 

SemEval task for intended sarcasm 

detection on social networks. This derives 

from our participation in SubTask A: Given 

a text, determine whether it is sarcastic or 

non-sarcastic. In our approach to complete 

the task, a comparison of several machine 

learning and deep learning algorithms 

using two datasets was conducted. The 

model which obtained the highest values 

of F1-score was a BERT-base-cased 

model. With this one, an F1-score of 

0.2451 for the sarcastic class in the 

evaluation process was achieved. Finally, 

our team reached the 30th position. 

1 Introduction 

Sarcasm is a form of mockery intended to imply 

the opposite or to express displeasure. It can be 

classified as irony, satire, understatement, 

overstatement, rhetorical question and sarcasm 

itself. Social media platforms allow people to 

express themselves and speak about several 

different topics via text, emojis and multimedia. 

Many companies collect information about 

people’s opinions to aid in marketing decision-

making about their products. 

Sarcasm detection is relevant in data analysis 

because it can be wrongly interpreted due to its 

nature, becoming potentially harmful to different 

computational systems. For example, if a 

computer system understands the sentence “The 

only thing I got from college is a caffeine 

addiction”, its literal meaning would not be 

understood, as it refers to how stressful college 

can be.  

Defining a phrase as sarcastic is a really 

challenging task to solve for the text mining 

community because there are many details that 

need to be considered such as the writer’s 

personality and the sentence context. For instance, 

depending on the ideology of the person, “Trump, 

that respectful man” could be sarcastic or not. 

In iSarcasmEval: Task 6, SubTask A (Abu 

Farha et al. 2022) participants had to decide if a 

particular tweet includes a sarcastic connotation or 

not. 

2 Background 

Two sample datasets were used to train the model.  

 The first one was the original dataset without 

any preprocessing. This dataset is composed of 

3467 rows, with 2600 0-value rows (non-

sarcastic) and 867 1-value rows (sarcastic). 

The second sample dataset (Tweet – Rephrase) 

consists of a phrase and rephrase contrast in which 

the aim was to adequately learn the differences 

between a phrase with a sarcastic connotation and 

that same sentence expressing the same thing but 

in a literal way. This dataset is composed of 1734 

rows: 867 1-value rows and 867 0-value rows, 

where these last ones are rephrases related to each 

tweet taken as a 1-value row. 

So, these two datasets follow the same 

structure: 

- tweet: “See Brexit is going well” 

- sarcastic: “1” 

I2C at SemEval-2022 Task 6: 

Intended Sarcasm Detection on Social Networks with Deep Learning  
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In the second dataset, the column “rephrase” 

was added to the list of tweets. The rephrase 

example for the tweet below would be: 

- tweet: “Brexit really isn't going to plan.” 

- sarcastic: “0” 

 Table 1 shows some examples followed by 

both datasets. 

The issue of sarcasm detection has been 

addressed by various authors in recent years. In 

the last several years, researchers have been 

working on a technique to analyze social media 

data in order to identify possible undisclosed 

information so it can be useful to assess new 

patterns and make important decisions through it  

(Shah and Shah 2021, 247-259).  Sentiment 

analysis is also used for sarcasm detection (Suzuki 

et al. 2017), dividing a sentence into phrases and 

judging the situation and the sentiment separately. 

In (Verma, Shukla, and Shukla 2021), the 

authors present a review of methodologies and 

techniques of sarcasm detection. They concluded 

that deep learning is the most common technique 

to identify sarcasm.  

3 System overview 

In this section, the models used to solve the 

sarcasm detection issue will be described. 

Due to the nature of the problem, a decision 

was made not to carry out any preprocessing. The 

reason is that we think that sarcasm interpretation 

requires the original phrase to be considered in its 

entirety, so letter cases, emojis and punctuation 

were kept. 

3.1 Models 

A total of 30 models were used to train both 

datasets. In the first experiments, machine 

learning techniques such as LinearSVC, 

DecissionTrees and RandomForests using 

CountVectorizer and TFIDF (Pedregosa, Fabian 

and others 2011) were used. We also trained some 

deep learning techniques as LSTM Neural 

Networks  (Hochreiter and Schmidhuber 1997)  

and Transformers  (Vaswani et al. 2017).  

For LSTM Neural Network we implemented 

the LSTM Simple Neural Network and we used 

the BERT model (Devlin et al. 2018) for 

Transformers. 

In Table 2, the results of machine learning 

techniques mentioned before can be seen. 

3.1.1 BERT: Bidirectional Encoder 

Representations from Transformers 

BERT is designed to pretrain deep bidirectional 

representations from unlabeled text by jointly 

conditioning both the left and right contexts in all 

layers. As a result, the pretrained BERT model can 

be finetuned with just one additional output layer 

to create state-of-the-art models for a wide range 

of tasks, such as question-answering and language 

inference, without substantial task-specific 

architecture modifications. 

It uses Transformer, which is a simple network 

architecture based on attention mechanisms, 

dispensing with recurrence and convolutions 

entirely. 

There are two ways to read a sentence for 

BERT. On one hand we have BERT-base-cased, in 

which BERT differences between capital letters 

and uppercase letters and, on the other hand, 

BERT-base-uncased, which will take the sentence 

and make all single letters uncased. As mentioned 

above, we did not miniscule the text of the tweets 

Tweet sarcastic  

“Nice to be compared to a brick wall” 1 

“Not happy i have been compared to a brick wall” 0 

“Social Care for the young is basically a bath board and bed rest and your done” 1 

“Social care for the young is non existent” 0 

“I've been doing physics for 40 minutes I think I deserve a break” 1 

“I'm never going to get it all done at this rate” 0 

 

Table 1: Tweet examples 
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Dataset Model 

Metrics 

Accuracy 
F1-Score  

(class 1) 

Original dataset 

CountVectorizer 

LinearSVC 0.68 0.28 

DecissionTree 0.74 0.10 

RandomForest 0.74 - 

TFIDF 

LinearSVC 0.71            0.22 

DecissionTree 0.74 0.10 

RandomForest 0.74 - 

Tweet – Rephrase  

CountVectorizer 

LinearSVC 0.60 0.61 

DecissionTree 0.56 0.37 

RandomForest 0.65      0.61 

TFIDF 

LinearSVC 0.58 0.60 

DecissionTree 0.57 0.37 

RandomForest 0.61 0.61 

Table 2: Results obtained in training phase using machine learning techniques 

 

 

to preserve the sarcastic meaning of the sentence. 

Therefore, the BERT-base-cased was used. 

The BERT model was trained with a batch size 

of 32 instances and 5 epochs by using a 

training/validation split. 

3.1.2 LSTM Simple Neural Network 

Long Short-Term Memory (LSTM) is a well-

known recurrent neural network architecture. The 

most important feature of recurrent networks is 

their ability to persist introduction loops 

information in its diagram, so it can remember 

previous states and use this information in 

subsequent stages. 

In order to find better results, a pretrained word 

vector with a size of 200d was added to our 

model. GloVe (Pennington, Socher, and Manning 

2014) is a global log-bilinear regression model for 

the unsupervised learning of word representations 

that outperforms other models on word analogy, 

word similarity and named entity recognition 

tasks. 

For this approach, a batch size of 32 instances, 

and 10 epochs was used. Besides, we 

implemented an early stopping to improve the 

performance. 

4 Experimental setup 

Many libraries were imported to develop the 

experiments. Some of them are: “NumPy” (Harris 

et al. 2020)”, a fundamental package for scientific 

computing; “spaCy” (Honnibal and Montani 

2017), a library for advanced natural language 

processing; “NLTK” (Loper and Bird 2002), a 

tool-kit to work with human language 

information; “Keras” (Chollet 2015), a neural-

network library; “scikit-learn”, which contains 

simple and efficient tools for predictive data 

analysis and “Pandas” (McKinney 2010), used for 

manipulating data. 

 For all the experiments, the datasets were split 

using 80% to train and 20% to test. We use a 

stratify approach.  

 Finally, when the test dataset was released, the 

whole train dataset was used to train the final 

model through BERT-base-cased, which was the 

best algorithm to complete the task.  

The metrics obtained to evaluate our model are 

accuracy and F1-score. 

5 Results 

Table 3 shows the results obtained in our 

experiments during the training phase. The 

algorithm that reached the best results was BERT-

base-cased with the use of the Tweet - Rephrase 

dataset, obtaining a score of 0.86 accuracy and 

F1-score.  

Results shown in the leaderboard with the test 

dataset yielded a 0.2451 F1-score. Finally, our 

team reached the 30th position. 

6 Conclusions 

In this paper our approach to solve Task 6 

(iSarcasmEval) - SubTask A: Given a text, 
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determine whether it is sarcastic or non-sarcastic, 

in English, has been described. 

The main idea was to check models of deep 

learning algorithms such as BERT or LSTM 

Neural Network trained with the dataset Tweet – 

Rephrase. After training and analyzing each 

model and comparing deep learning with machine 

learning techniques, BERT-base-cased model 

obtained higher results F1-Score and accuracy.  

In the future, a BERT model will be trained 

using a larger corpus and more innovative 

techniques such as the application of sentiment 

analysis in broken-down sentences. 
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Dataset Model  

Metrics 

Accuracy 
F1-Score 

(class 1) 

Original dataset  

LSTM Simple Neural Network 0.65 0.38 

BERT-base-cased 0.72        0.43        

BERT-base-uncased 0.69        0.39 

Tweet – Rephrase  

LSTM Simple Neural Network 0.65 0.62 

BERT-base-cased 0.86        0.86        

BERT-base-uncased 0.84 0.84 

 

Table 3:  Results obtained in training phase using deep learning techniques 
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Abstract

This paper describes the systems submitted to
iSarcasm shared task. The aim of iSarcasm
is to identify the sarcastic contents in Arabic
and English text. Our team participated in iSar-
casm for the Arabic language. A multi-Layer
machine learning based model has been sub-
mitted for Arabic sarcasm detection. In this
model, a vector space TF-IDF has been used as
for feature representation. The submitted sys-
tem is simple and does not need any external
resources. The test results show encouraging
results.

1 Introduction

Analyzing social media becomes a crucial task, due
to the frequently usage of social media platforms.
Sarcasm detection, the conflict of using the verbal
meaning of a sentence and its intended meaning
(CLIFT, 1999; Lee and Katz, 1998), is an impor-
tant task. Sarcasm detection is a challenge, since
sarcastic contents are used to express the opposing
of what is being said. Recently sarcasm detection
has been studied from a computational perspec-
tive as one of classification problems that separates
sarcastic from non-sarcastic contents(Reyes et al.,
2013; Nayel et al., 2021).

Arabic is an important natural language having
an extensive number of speakers. The research in
Natural Language Processing (NLP) for Arabic is
continually increasing. However, there is still a
need to handle the complexity of NLP tasks in Ara-
bic. This complexity arises from various aspects,
such as orthography, morphology, dialects, short
vowels, and word order. Sarcasm detection in Ara-
bic is a particularly challenging task (Alayba et al.,
2018).

In this paper, we describe the system submitted
to the iSarcasm detection shared task(Abu Farha
et al., 2022). The shared task aims at detecting the
sarcasm contents in Arabic tweets. In this work, a
machine learning framework has been developed

and various machine learning algorithms have been
implemented. Term Frequency-Inverse Document
Frequency (TF-IDF) has been used as vector space
model for tweet representation. The rest of this
paper is organized as follows: in section 2, a back-
ground about sarcasm detection is given. Section
3 and section 4 overview the dataset and the sys-
tem respectively. Experimental setup and results
are given in section 5 and section 6 respectively.
Finally, section 7 concludes the proposed work and
suggests future work to be continued.

2 Background

The research work have been done on Arabic sar-
casm detection were mainly focused on creating
datasets and establish a baseline for each created
dataset (Ghanem et al., 2020). Karoui et al. (2017)
created a corpus of sarcastic Arabic tweets that are
related to politics. Distant supervision has been
used for the creation of corpus. The authors used
keywords that are like sarcastic contents in Arabic
to label the tweets as sarcastic tweets. They im-
plemented different machine learning algorithms
such as SVM, logistic regression, Naïve Bayes, and
other classifiers on the developed corpus.

An ensemble classifier of XGBoost, random for-
est and fully connected neural networks has been
designed by Khalifa and Hussein (2019). They
extracted a set of features that consists of senti-
ment and statistical features, in addition to word
n-grams, topic modelling features and word embed-
dings. Nayel et al. (2019) developed an ensemble-
based system for irony detection in Arabic Tweets.
A set of classification algorithms namely Random
forests, multinomial Naïve Bayes, linear, and SVM
classifiers have been used as base-classifiers. In
(Nayel et al., 2021), sarcasm detection has been
formulated as a binary classification problem and
SVM has been implemented.
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3 Dataset

A new data collection method has been introduced,
where the sarcasm labels for texts are provided by
the authors themselves. The author of each sar-
castic text rephrased the text to convey the same
intended message without using sarcasm. Leggitt
and Gibbs (2000) defined a set categories of ironic
speech namely; sarcasm, irony, satire, understate-
ment, overstatement, and rhetorical question. Lin-
guistic experts have been asked to further label
each text into one of these categories. Each text in
the Arabic dataset has the following information
attached to it:

• a label specifying the text dialect;

• a label specifying the nature of sarcasm (sar-
castic or non-sarcastic), provided by its au-
thor;

• a rephrase provided by its author that conveys
the same message non-sarcastically.

4 System Overview

In this section, we review the main structure of the
proposed model. The proposed system, as shown
in figure 1, consists of three phases namely; prepro-
cessing, feature extraction and training the classifi-
cation algorithms. Then, the resulted model used
to predict the unseen test data.

Figure 1: The structure of the proposed model

4.1 Preprocessing
The first stage of developing systems is preprocess-
ing, where unwanted and uninformative piece of

text has to be removed, it is also called text clean-
ing. We performed text cleaning by removing:

• special symbols, such as {+,−,=, $, ....};

• repeated characters such as ("hhhhhhhh" will
be normalized to "hh");

• non-Arabic words, such as English characters
or any other language;

• punctuations and Arabic diacritics.

4.2 Features Extraction
To prepare features to build classification model
and before feeding the text into the classifier and
after performing text cleaning, Term Frequency-
Inverse Document Frequency (TF-IDF) technique
was used to change over content to vectors and all
the algorithms to investigate the best performing
algorithm.

TF-IDF has been used to represent comments
as vectors. If <w1, w2, . . . , wk > are the tok-
enized words of a comment Tj , the vector asso-
ciated to the comment Tj will be represented as
<vj1, vj2, . . . , vjk> where vji is the weight of the
token wi in tweet Tj which is calculated as:-

vji = tfji ∗ log
(
N + 1

dfi + 1

)

where tfji is the total number of occurrences of
token wi in the comment Tj , dfi is the number of
comments in which the token wi occurs and N is
the total number of comment.

4.3 Methodology
We explored various classification algorithms as
well as ensemble approach by combining the output
of these classifiers (also known as base classifiers)
using hard voting. The base classifiers used in this
work are listed below:

• Support Vector Machines (SVMs)

• Random Forest (RF)

• K-Nearest Neighbours (KNN)

• Multinomial Naïve Bayes (M-NB)

• Multi-Layer Perceptron (MLP)

• Stochastic Gradient Descent (SGD)

• AdaBoost Classifier

• Voting Classifier
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Table 1: 5-fold Cross-Validation accuracy for all classi-
fiers in the training set

Classifier Accuracy STD
SVM-Linear 81.0% 0.055
SVM-RBF 76.6% 0.003
MNB 76.6% 0.005
SGD 80.0% 0.045
MLP 83.6% 0.045
RF 75.8% 0.056
KNN 79.7% 0.058
AdaBoost 75.2% 0.052
Voting 80.4% 0.043

5 Experimental Setup

For feature extraction phase we used unigram
model. For the purpose of training the model, we
have used 5-fold cross-validation technique to ad-
just the parameters.

The Scikit-Learn library implementation of clas-
sification algorithms were used in the training
phase. For SVM, two kernels have been tested:
linear kernel and RBF with two parameters γ = 2
and C = 1. While, for SGD classifier the loss func-
tion used was Hinge and the maximum iteration
was set at 10000 iterations.

The number of nodes in the hidden layer of MLP
was set at 20, logistic function was used as activa-
tion function and Adam solver was used. The max-
imum number of decision trees in random forests
is set at 300.

5.1 Evaluation Metrics

F1-score has been used to evaluate the performance
of all submissions. F1-score is a harmonic mean
of Precision (P) and Recall (R) and calculated as
follow:

F−score = 2 ∗ P ∗R
P +R

F1-score for the sarcastic class (F1-sarcastic) has
been used for final evaluation.

6 Results

The cross validation accuracy of all training clas-
sifiers for the training set is given in Table 1. It is
clear that MLP gives the best accuracy with mod-
erate Standard Deviation (STD) for the five folds
while development phase, so we decided to submit
the output of this classifier.

Table 2: Results of MLP classifier for the test set

Measure Value Rank
F-1 sarcastic 0.3746 14
F-score 0.6024 11
Precision (P) 0.5968 15
Recall (R) 0.6608 17
Accuracy 0.7329 8

Results for test set is given in Table 2. The re-
ported results show that, while training MLP gives
better accuracy among implemented machine learn-
ing classifiers. Also, it gives better rank in accuracy
for the unlabelled test set. While in other metrics,
the performance was not satisfied. This may re-
sulted because of using accuracy metric while com-
paring different classifiers in development phase.

A good suggestion is to use different evaluation
metrics while developing the system. In addition,
using different word representation models such
as word embeddings, which encompasses the se-
mantic meaning of words could improve the per-
formance. Complex models such as deep learning
models is promising, but the challenge in such mod-
els is the availability of suitable resources.

7 Conclusion

In this work, a classical machine learning frame-
work has been designed for sarcasm detection in
Arabic tweets. The proposed framework reported
reasonable results. The future work may include
applying complex framework such as deep learning
structure. In addition, word representation is very
important factor that can be used in different man-
ner such as word embeddings and transformers.
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Abstract

Due to the widespread usage of social media
sites and the enormous number of users who
utilize irony implicit words in most of their
tweets and posts, it has become necessary
to detect sarcasm, which strongly influences
understanding and analyzing the crowd’s
opinions. Detecting sarcasm is difficult due to
the nature of sarcastic tweets, which vary based
on the topic, region, the user’s attitude, culture,
terminologies, and other criteria. In addition to
these difficulties, detecting sarcasm in Arabic
has its challenges due to its complexities, such
as being morphologically rich, having many
different dialects, and having low resources.
In this research, we present our submission
of (iSarcasmEval) sub-task A of the shared
task on SemEval 2022. In Sub-task A; we
determine whether the tweets are sarcastic
or non-sarcastic. We implemented different
approaches based on Transformers. First, we
fine-tuned the AraBERT, MARABERT, and
AraELECTRA. One of the challenges that
faced us was that the data was not balanced.
Non-sarcastic data is much more than sarcastic.
We used data augmentation techniques to
balance the two classes, significantly affecting
the performance. The performance F1 score
of the three models was 87%, 90%, and 91%,
respectively. Then we boosted the three models
by developing an ensemble model based on
hard voting. The final performance F1 Score
was 93%.

1 Introduction

According to the Cambridge dictionary definition
of Sarcasm, it is the use of remarks that mean
the opposite of what they say, made to hurt some-
one’s feelings or humorously criticize something,
Like when you say Love this weather. (When the
weather is horrible).

Sarcasm detection is determining whether or not
a piece of text is sarcastic. Sarcasm is a significant

challenge for sentiment analysis systems. This is
because a sarcastic sentence usually contains an
implicit negative sentiment that is expressed with
positive expressions. This discrepancy between the
surface and intended sentiments creates a difficult
challenge for sentiment analysis systems.

Sarcasm detection is a difficult task for a variety
of reasons. First of all, there aren’t many labeled
data resources for sarcasm detection. Moreover,
any available texts that can be collected (for exam-
ple, Tweets) contain many issues, such as an evolv-
ing dictionary of slang words and abbreviations, so
it usually takes many hours for human annotators
to prepare the data for any potential use. Further-
more, the nature of sarcasm detection adds to the
task’s difficulty, as Sarcasm can be considered rela-
tive and varies significantly between people, and it
depends on many factors such as the topic, region,
time, the events surrounding the sentence, and the
readers/writers mentality and the; in other words, a
sentence that one person finds sarcastic may sound
normal to another. (Farha and Magdy, 2021)

In addition to these previous challenges, discov-
ering irony in the Arabic language has its own set of
challenges due to the complexities of the language,
such as being formally rich, different dialects, lack
of resources, and rapid development due to the
inclination of the Arabic language. The Arab citi-
zen makes fun of all his affairs, especially politics,
which uses many words and terms that are implicit
in it.

Transformers greatly assisted in significant ad-
vancements in NLP tasks. They are a new neural
network that does not employ convolution or re-
cursion. They instead use their attention to find
correlations between words in the text. Transform-
ers can process text in parallel, allowing them to
learn much faster than sequential methods. They
also outperform previous methods in terms of re-
sults.

Transformer-based language models have re-
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cently proven to be highly efficient at language
understanding, giving promising results across var-
ious NLP tasks and benchmark datasets. The lan-
guage modeling capability of these models aids
in capturing the literal meaning of context-heavy
texts. For Arabic NLP in particular, the best results
for sentiment analysis are currently achieved by
AraBERT, a language model proposed by (Antoun
et al., 2020).

Despite recent advances, detecting sarcasm re-
mains a difficult task because of implicit, indi-
rect phrasing and the symbolic nature of language.
When working with Twitter data, the task becomes
even more difficult because the social media posts
are often short and contain noise sources, code-
switching, and the use of nontraditional dialec-
tal variations. Furthermore, BERT-based models
have struggled with rare words, which are more
common in social media texts due to their infor-
mal nature and the prevalence of slang words. It
is difficult for language models like AraBERT,
which have been trained on structured corpora from
Wikipedia.(Hengle et al., 2021)

In this study, we tackle (iSarcasmEval) sub-task
A of the shared task on SemEval 2022.In SubTask
A; we determine whether the tweets are sarcastic or
non-sarcastic. We have proposed models based on
transformers to discover the sarcasm that transform-
ers have proven to excel in other NLP tasks such as
sentiment analysis. We summarize what has been
accomplished in this research in the following:

• Fine-tuning the state-of-the-art transformers-
based models such as AraBERT, AraELEC-
TRA, and MARBERT.

• One of the challenging problems in this task
is that the dataset is unbalanced, with 2357
non-sarcastic tweets and 745 sarcastic. We
solved this problem by using augmentation
and balancing the two classes.

• We proposed an ensemble model based on
hard voting between the three fine-tuned trans-
formers, and it outperforms each of them.

The following sections are organized as follows;
Section 2 presents the background, section 3 de-
scribes the task and dataset description, section 4
gives an overview of the proposed system, section
5 explores the results and discussion, and section
6 concludes and gives possible directions for the
future.

2 Background

There are few attempts to work on Arabic sarcasm.
The workshops in the field of Natural language pro-
cessing for the Arabic language revived the interest
in detecting sarcasm, as this workshop provided an-
notated datasets, which was considered a challeng-
ing obstacle in front of researchers. Such as the pre-
vious shared tasks on irony detection(Ghanem et al.,
2019) along with the participants’ submissions and
dialectal sarcasm datasets by (Abbes et al., 2020);
(Farha and Magdy, 2021);(Abu Farha et al., 2021).

This survey mainly focuses on the WANLP 2021
workshop and its shared task on sarcasm in Ara-
bic. This shared task seeks to promote and draw
attention to Arabic sarcasm detection, which is
critical for improving performance in other tasks
such as sentiment analysis. The dataset used in
this collaborative task, ArSarcasm-v2, comprises
15,548 tweets that have been labeled for sarcasm,
sentiment, and dialect. Subtask 1 on sarcasm de-
tection received 27 submissions. The majority of
approaches relied on using and fine-tuning pre-
trained language models like AraBERT and MAR-
BERT (Abdel-Salam, 2021); (Abuzayed and Al-
Khalifa, 2021); (Alharbi and Lee, 2021);(Bashmal
and AlZeer, 2021);(Faraj et al., 2021);(Gaanoun
and Benelallam, 2021);(Hengle et al., 2021);(Hu-
sain and Uzuner, 2021);(Israeli et al., 2021);(Naski
et al., 2021);(Wadhawan, 2021). Deep learning and
traditional machine learning approaches were used
by a few of the participants(Nayel et al., 2021).

The BhamNLP(Alharbi and Lee, 2021) team
was ranked best in the sarcasm detection task, with
an F1-Score 0.6225. They deployed a multi-task
learning architecture trained for sarcasm and sen-
timent classification in their approach. The model
is based on both a MARBERT and a CNN-LSTM
model, with each model’s output being concate-
nated and supplied to the final output layer. The
CNN-LSTM utilized both word and character em-
beddings.

3 Task And Dataset Description

In SemEval 2022 Task 6: iSarcasmEval (In-
tended Sarcasm Detection In English and Ara-
bic)(Abu Farha et al., 2022). The organizer of-
fered two datasets, Arabic and English. There are
three subtasks. SubTask A its aim is to determine
whether the given text is sarcastic or non-sarcastic;
SubTask B is applied in (English only): it aims to
determine which ironic speech category the given
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Figure 1: The distribution of the original dataset.

text belongs to, if an. It’s a binary multi-label clas-
sification task. SubTask C: it aims to determine
which text is the sarcastic one; if it is given two
texts that convey the same meaning,
we have to clarify that our proposed system is a
solution to Subtask A on the offered Arabic dataset.
The Arabic dataset consists of 3,102 tweets with
2357 non-sarcastic tweets and 745 sarcastic ones.
The test set contains 1400 tweets. It was released
without labels for evaluation purposes. The dataset
is provided with dialects and sarcasm labels. Ta-
ble 1 shows some statistics of the released training
set. Figure 1 shows the distribution of sarcastic and
non-sarcastic tweets. Table 2 shows a sample of
sarcastic and non-sarcastic tweets.

4 System Overview

The proposed model comprises two main phases:
Data augmentation and the Ensemble module, con-
sisting of three pre-trained transformers(AraBERT,
MARABERT, AraELCTRA) and the Voting mod-
ule, as shown in this Figure 2.

4.1 Data Augmentation

One of the challenging problems in this dataset is
its small size, and it’s unbalanced. The number of
non-sarcastic tweets is 2357, while sarcastic is 745.
We used data augmentation to balance the minority
classes, Sarcastic. We used the NLPAug tool for
augmentation. It is a python library based on non-
contextual embeddings like Glove, Word2Vec, etc.
And also for contextual embeddings like BERT
and RoBERTa. By inserting or replacing words
using word embedding, we used AraBERT for that
purpose. Tables 3 shows a sample of tweets before
and after augmentation.

4.2 Ensemble Module
This module consists of two phases. Firstly, apply
three of the state of art pre-trained transformers,
then use an ensemble hard voting technique.

(I) Transformer Based Models:
Deep learning methods have shown promis-
ing results in many machine learning domains,
including natural language processing, com-
puter vision and speech recognition. Due
to architectures inspired by the human brain,
deep learning techniques have recently outper-
formed traditional machine learning methods
in terms of performance. Most deep learn-
ing techniques in the context of NLP use
word vector representations to represent tex-
tual inputs (Mikolov et al., 2013a),(Mikolov
et al., 2013b). These traditional techniques
are being replaced by transformer-based tech-
niques and significantly improve most NLP
tasks, such as classification. As a result of the
pre-training process, transformer-based tech-
niques can generate efficient word embedding,
making them powerful language models.

• AraBERT (Antoun et al., 2020) Pre-
trained to handle Arabic text, AraBERT
is a language model that is inspired
by Google’s BERT architecture. Six
variants of the same model are avail-
able for experimentation: AraBERTv0.2-
base, AraBERTv1- base, AraBERTv0.1-
base, AraBERTv2-large, AraBERTv0.2-
large, and AraBERTv2-base.

• AraELECTRA
(Antoun et al., 2020) With reduced
computations for pre-training the
transformers, ELECTRA is a method
aimed toward the task of self-supervised
language representation learning. ELEC-
TRA models are inspired by the two
primary components of Generative
Adversarial Networks: generator and dis-
criminator. They aim at distinguishing
between real input tokens and fake ones.
These models have shown convincing
state-of-the-art results on Arabic QA
data.

• MARBERT
provided by (Abdul-mageed et al., 2020).
These models are based on the BERT-
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Table 1: Distribution of tweets among different dialects

SARCASTIC/DIALECT EGYPT GULF LEVANT MAGHREB MSA NILE TOTAL
NON-SARCASTIC 472 67 81 12 1470 255 2357
SARCASTIC 0 17 35 77 49 567 567

Table 2: Sample of tweets with Dialect and classified to sarcastic and non-sarcastic.

DIALECT SARCASTIC NON-SARCASTIC
Egypt - ú �æ�̄ñËX YmÌ èPñ» 	á�k@ øQå�ÖÏ @ ð øPðYË@ ú


	̄ I. «B 	á�k@ qJ
 ��Ë@ YÔg@
- Ahmed Al-Sheikh is the best player in the league and Al-Masry team is the best football so far.

Gulf ! �IJ
Ó ½� 	® 	K ø
 ñ�
�éJ
ª 	�ð 	Y 	gAÓ ú


	GA�JË @ ��K
Q 	®Ë @ H. PYÓ , A 	J �®K
Q 	®Ë PA��J 	KB@ ¼ðQ�.Ó 	Ë@ �èñÊg Q�
�J» úÎ	m��'

@ AÓ �é 	¢mÌ ½	J« é<Ë @ð ú
æ�@P ð ú


	æJ
« úÎ« AîD
	̄ ú
¾m
�'. ú
ÎË @

��AJ
« ú
×@P
�éJ
 	J 	«@

Congratulations to our team for wining , the coach of the another team didn’t take anyting expect the week breath Ramy Ayash song’s which is about on my eyes and my head I swear I will not let you it’s awesome
Levant ½J
Ê« ½j 	��
 éÊ�JÓ @Yg ú


	̄ AÓ ¼ZA 	JK. @ úÎ« ¼Qå�k 	á�
ÒÊ�ÖÏ @ ZAÓYK. hQ 	̄ 	áÓ É¿ 	áÓ Õ�®�J 	K @ é 	JÓ Õ�®�J 	K @ ÑêÊË @
There is no one like him laughs of you Oh God, take revenge on him, take revenge on everyone who rejoiced in the blood of Muslims

Magreb �ék. C�JË @ Y 	g éË �IËA�̄ �éÓ@Y 	gð �éÊK
ñ£ð ZA 	�J
K. �èYgñK. h. ð 	Q�� 	K �IJ
 	ªK. ñÖÏ ÈA�̄ Yg@ð 	á�
 	̄PA« AJ
�. J
Ë AK
 PY�®Ë@ hA£
Someone said to her mom: I wanted to marry a white woman and tall and serve me, she told him to take the refrigerator instade OH MY GOD, Libya, you know

MSA H. QªË@ Q
	m 	̄ AK
 ½�̄C 	g@ úÎ« é<Ë @ , ��Q 	ªË@ 	áÓ �éºÖÞ� 	Y�® 	JK
 	PQm× 	�AK
P ÐQêË @ ©¢�̄ Pñ	JË @ ((: YK
Yg. 	áÓ P@Q�®�J�B@ XA« Y�̄ Aë PA 	¢�J 	K @ Èñ£ ð �éJ. J
 	« YªK.

Riyad Mahrez saves a fish from drowning, may God bless your morals, the best arabian player After an absence and a long wait, stability has returned again :)) The light cut agine
Nile I. �
J.£

�é 	®� Éj�J 	K @ ÐñÊK. YK. �	m��� ¡J. 	� I. �
�̄ �ÒJ
K. é 	K AÓ 	P 	àA¿ �I�̄ñËX �éK
A 	ªË A 	K AªÓ ���
A« 	àA¿ ñË Bñ» @PX

The arrest of a person with a diploma who pretended to be a doctor without getting in faculty of medicine If Dracula had been living with us until now, his time would have been sucking a cane

Table 3: Sample of the original and augmented tweets.

Original Text Augmented Text
iJ
�AÖ

�ß ¨ñÓX ø
 X éÊJ
ÊË @ iJ
�AÖ
�ß ¨ñÓX ø
 X

éJ
 	Jk. é 	JÓ ©Ê¢J
K. ��Ó ð èYÊg. @X ¼PAJ.Ó Ñ«AK
 éJ
 	Jk. ©Ê¢J
K. ��Ó ð èYÊg. @X Ñ«AK

YÊK. AK
 YÊJ. Ë @ Pñ�J�X �	� éË 	á�
Ó �HAj ��Ë@ YÊK. AK
 YÊJ. Ë @ �	� éË �HAj ��Ë@

base and trained on a set of books and
news articles. AraBERT was trained on
66GB of text-only news articles. MAR-
BERT was trained on a larger dataset
(128 GB), 50% of which is tweets. The
variation in MARBERT’s training data
gives it the ability to handle better the
variations in colloquial Arabic, which is
very useful for sarcasm detection

(II) Voting Module: The three classifier outputs
are fed into the voting module based on hard
voting. It selects the majority prediction,
whether sarcastic or non-sarcastic. For exam-
ple, the ensemble module predicts sarcastic if
two models predicted sarcastic, as shown in
Figure 3.

5 Results and Discussion

5.1 Performance Evaluation Metrics
We used a variety of metrics to evaluate the pro-
posed model quality. To evaluate the model’s per-
formance, we have to compute its Accuracy, Recall,
Precision, and F1-Score. The equations for these
evolution metrics are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− Score = 2 ∗ Precision ∗Recall
Precision+Recall

(4)

5.2 Experimental Results

We applied two experiments, one without augmen-
tation and the other with augmentation. We split
the data into 60% for training, 20% for validation,
and 20% for testing.

• First experiment, After splitting, we fine-
tuned the three pre-trained transformers
AraBRT, MARBERT, AraELECTRA on the
original data and the ensemble model. The
results show that F1-Score for AraBERT, Ara-
ELECTRA, MARABERT, and the Ensemble
model were 74%, 69%, 77%, 77% respec-
tively. As shown in Table 4.

• Second experiment, after data augmentation,
and the number of tweets in sarcastic and
non-sarcastic are equal. Experiment 2 shows
that F1-Score for AraBERT, AraELECTRA,
MARABERT, and the Ensemble model were
87%, 90%, 91%, 93% respectively. As we
see in Table 5, there is an improvement
in the performance of ARAELECTRA,
MARABERT, and the Ensemble model.

The results show that our proposed model
ranked sixth on the official competition. F1-
score for sarcastic tweets is 0.4438, while F1-
score for non-sarcastic tweets is 0.6222.
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Figure 2: The proposed model architecture

Table 4: AraBert, MARBERT, ARAELECTRA, and Ensemble models on the original data.

Models Precision Recall Accuracy Macro-F1 score F1 sarcastic
ARABERT 83% 84% 88% 83% 74%
ARAELECTRA 84% 79% 87% 81% 69%
MARABERT 89% 83% 90% 86% 77%
ENSEMBLE 88% 84% 90% 85% 77%

Figure 3: Hard voting Module.

6 Conclusion

We presented our submission on the shared Sub-
task A on Arabic sarcasm detection iSarcasmEval
2022 to tackle the problem of detecting sarcasm in
Arabic. We explored different pre-trained models
based on BERT. We noticed that the performance
of AraELECTRA, MARABERT, and the Ensem-
ble model is greatly improved after data augmenta-
tion and balancing the sarcastic and non-sarcastic
tweets. The best submission model was the ensem-
ble model; it applies hard voting on the AraBERT,
MARABERT, and AraELCTRA. In the future, we
plan to improve the performance of the proposed
model by understanding and identifying which fea-
tures are essential that contribute to enhancing the
model prediction and troubleshooting unexpected
model outputs.
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Abstract

Sarcasm detection is an important task in Nat-
ural Language Understanding. Sarcasm is a
form of verbal irony that occurs when there is
a discrepancy between the literal and intended
meanings of an expression. In this paper, we
use the tweets of the Arabic dataset provided
by SemEval-2022 task 6 to train deep learn-
ing classifiers to solve the sub-tasks A and
C associated with the dataset. Sub-task A is
to determine if the tweet is sarcastic or not.
For sub-task C, given a sarcastic text and its
non-sarcastic rephrase, i.e. two texts that con-
vey the same meaning, determine which is the
sarcastic one. In our solution, we utilize fine-
tuned MARBERT (Abdul-Mageed et al., 2021)
model with an added single linear layer on
top for classification. The proposed solution
achieved 0.5076 F1-sarcastic in Arabic sub-task
A, accuracy of 0.7450 and F-score of 0.7442
in Arabic sub-task C. We achieved the 2nd and
the 9th places for Arabic sub-tasks A and C
respectively.

1 Introduction

Sarcasm is ubiquitous phenomenon on the social
web, and is difficult to be analysed automatically
and manually by humans because of its nature.
Sarcasm data can be very confusing to computer
systems which use it to perform tasks such as
sentiment analysis, opinion mining, author profil-
ing, and harassment detection (Liu, 2012; Rosen-
thal et al., 2014; Maynard and Greenwood, 2014;
Van Hee et al., 2018).

(Rosenthal et al., 2014) show that the senti-
ment polarity classification performance on non-
sarcastic tweets is much better than on sarcastic
ones, in the context of SemEval. Sentiment polar-
ity classification is used widely in industry, driv-
ing marketing, administration, and investment de-
cisions (Hassan Yousef et al., 2014). So it is impor-
tant to create models for sarcasm detection.

A comparatively small dataset is a challenge
we faced when working on the Arabic dataset that
makes it difficult to train complex models. We
used transfer learning to treat this issue. By using a
transfer learning, a pre-trained model for some task
on a large dataset can be used as a starting point in
another task which improves the performance. It is
used in a wide range of natural language processing
(NLP) tasks.

Word embeddings such as word2vec (Mikolov
et al., 2013), FastText (Joulin et al., 2016) and
Glove (Pennington et al., 2014) can be used to ini-
tialize vectors learnt form large dataset. Recently,
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2018) became the
most popular NLP approach to transfer learning.
Google AI Language team pretrained BERT model
and fine-tuned it for a large range of tasks, such as
question answering and language inference where
it achieved state-of-the-art performance. MAR-
BERT is built using the same network architec-
ture as BERTBase (Devlin et al., 2019), without
the next sentence prediction (NSP). MARBERT is
trained on a large Twitter dataset. Therefore, we
utilize fine-tuned MARBERT to solve this chal-
lenge.

This paper is organized as follows. In Section
2, we discuss relevant related works in sarcasm
detection. We describe our proposed system in
Section 3. The models implementation details are
explained in Section 4. Section 5 describes the
dataset for the shared task. Then we report and
analyze the evaluation results in Section 6. Finally,
we provide our conclusions in Section 7.

2 Related Work

A weak supervision and manual labelling methods
can be used for the annotation process. A weak
supervision method is to consider the texts sarcas-
tic, if they meet predefined criteria, like including
specific tags (e.g. #sarcasm, #irony) (Ptáček et al.,
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2014; Khodak et al., 2018). As pointed out by
(Oprea and Magdy, 2020), noisy labels can be in-
duced by this labelling method. Manual labelling is
collecting texts and presenting them to human an-
notators for labelling (Filatova, 2012; Riloff et al.,
2013; Abercrombie and Hovy, 2016). This can
lead to a problem when annotator perception dif-
fers from author intention, as further outlined by
(Oprea and Magdy, 2020).

Compared to English, only a few studies have
been made on Arabic sarcasm detection. Among
the studies completed in this area are research by
(Riloff et al., 2013; Oprea and Magdy, 2019; Joshi
et al., 2016; Bamman and Smith 2015; Campbell
and Katz, 2012; Amir et al., 2016; Hazarika et al.,
2018). (Oprea and Magdy, 2020) show the effect of
sociocultural variables on sarcasm communication
online, which makes the performance of models
trained on English unpredictable, if they are trained
on other languages. (Benamara et al., 2017; Abbes
et al., 2020; Abu Farha and Magdy, 2020) relay on
the two labelling methods mentioned above. Re-
cently, efforts have been made by (Abu Farha and
Magdy, 2020; Abu Farha et al., 2021 and Abbes
et al., 2020) to create standard datasets to support
sarcasm detection. In the SemEval-2022 Workshop,
a shared task (‘iSarcasmEval: Intended Sarcasm
Detection In English and Arabic’) (Abu Farha et al.,
2022) was organised to contribute to the develop-
ment of this area using a new labelling method that
avoids the limitations of previous labelling meth-
ods.

3 Proposed System

SemEval 2022 task 6 focuses on detecting sarcas-
tic tweets. The task supports Arabic and English
languages and we tackle the problem on Arabic
language. This task has three sub-tasks.

1. Sub-task A: Given a text, determine whether
it is sarcastic or non-sarcastic.

2. Sub-task B (English only): A binary multi-
label classification task. Given a text, deter-
mine which ironic speech category it belongs
to, if any.

3. Sub-task C: Given a sarcastic text and its non-
sarcastic rephrase, i.e. two texts that convey
the same meaning, determine which is the
sarcastic one.

We convert the input tweet to a fixed length se-
quence of words by padding shorter tweets and

Dialect Non-Sarcastic Sarcastic Total
MSA 1470 49 1519

Egypt/Nile 727 567 1294
Gulf 67 17 84

Levant 81 35 116
Magreb 12 77 89

Total 2357 745 3102

Table 1: Arabic dataset statistics for sarcasm detection
over the dialects.

truncating longer ones. Then each word is replaced
by its representation vector obtained from the pre-
trained word embeddings model.

A MARBERT model is fine-tuned for sub-task
A and then used for sub-tasks A and C. For sub-
tasks C, the input tweets are passed to the model
simultaneously and we consider the class of the
tweet with the higher predicted score. We perform
hyper parameters tuning to find the best parameters
configuration.

4 Data Description

As mentioned above, annotator perception may dif-
fer from author intention. To overcome this prob-
lem, the authors annotated the data themselves,
which is a new method to collect data introduced
by the task’s organisers.

Arabic and English datasets are collected using
this method. For each sarcastic text, they provide a
non-sarcastic rephrase to convey the same intended
message, for English and Arabic datasets. Even-
tually, for English dataset, linguistic experts label
each tweet to one of the ironic speech categories
outlined by (Leggitt and Gibbs, 2000): sarcasm,
irony, satire, understatement, overstatement, and
rhetorical question. The dialect label of the text is
included for the Arabic dataset.

Table 1 shows statistics of the Arabic training set,
where we can find that 24% of the data is sarcastic
(745 tweets). Most of the data is either in Modern
Standard Arabic (MSA) or the Egyptian/Nile di-
alects, while there are few examples of the Magreb
and Gulf dialects.

5 Implementation

We trained the proposed solution model using the
given Arabic dataset. We divided its training data
into 80% for training, 10% for validation and 10%
for testing. In this section, we discuss the details
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of the different deep learning models we built or
fine-tuned1.

For our solution, we fix the tweets length to 64
by truncating longer tweets and padding shorter
ones. This length is selected as the max value of
the Arabic training tweets lengths after tokeniza-
tion. After that each token in the input tweet is re-
placed with its vector representation obtained from
a pretrained word embeddings model. We used
pretrained MARBERT to initialize the words em-
beddings but these representations are then updated
during the training of the deep learning models.
The huggingface2 pytorch implementation includes
a set of interfaces designed for a variety of NLP
tasks. Though these interfaces are all built on top of
a trained BERT models, each has different top lay-
ers and output types designed to accomodate their
specific NLP task. We used BertForSequenceClas-
sification which is the normal MARBERT model
with an added single linear layer on top for classifi-
cation that we used as a sentence classifier.

5.1 MARBERT Model

Language models (LMs) exploiting self-supervised
learning such as BERT (Devlin et al., 2019) which
became a popular NLP approach to transfer learn-
ing. Transfer learning is used to reduce the time
of the training and provide a better performance.
This uses a pre-trained model as a starting point for
training. Monolingual LMs pre-trained with larger
vocabulary and bigger language-specific datasets
usually perform better than multilingual models
such as mBERT (Devlin et al., 2019; Virtanen et al.,
2019).

Arabic has a large number of diverse dialects.
Multilingual and Monolingual models such as
mBERT and AraBERT (Antoun et al., 2020), re-
spectively, are trained on mostly MSA datasets.
The Arabic dataset used in this task has multiple di-
alects. This motivated us to use MARBERT which
is trained on a large Twitter dataset (1B Arabic
tweets), which involves both MSA and diverse di-
alects. The authors used the same network archi-
tecture as BERTBase (Devlin et al., 2019) to build
the model, without the NSP objective which was
found not crucial for model performance (Liu et al.,
2019).

1The source code for the developed models can be
found through: https://github.com/AyaLotfy/
iSarcasmEval.

2https://huggingface.co/UBC-NLP/
MARBERT.

Metric Non-Sarcastic Sarcastic

Precision TN
TN+FP

TP
TP+FP

Recall TN
TN+FN

TP
TP+FN

Table 2: Precision and recall with respect to the sarcastic
and non-sarcastic classes.

6 Experiment Results

In this section we report and discuss the results
of the proposed solution when evaluated on our
testing data. Moreover, we show the results of our
submission to SemEval 2022 task 6 on Arabic data.

Our model ranked the second out of 32 partici-
pants for sub-task A and the 9th out of 13 partic-
ipants for sub-task C, SemEval 2022 task 6 (iSar-
casmEval: Intended Sarcasm Detection In English
and Arabic).

6.1 Results and Evaluation

We divided the training data into 80% for training,
10% for validation and 10% for testing. The official
evaluation metric for sub-task A was the F-score of
the sarcastic class (F1-sarcastic), the macro aver-
age of the F-score for sub-task B and the accuracy
for sub-task C. F1-sarcastic is calculated using the
following equation:

F1sarcastic = 2× P sarcastic ×Rsarcastic

P sarcastic +Rsarcastic

Where P sarcastic, Rsarcastic are the precision
and recall with respect to the sarcastic class. Table
2 presents the equations to calculate the precision
and recall with respect to the sarcastic and non-
sarcastic classes.

Table 3 presents the models’ performance for
sub-task A, the best result (0.9) was obtained by
BertForSequenceClassification, which is the nor-
mal MARBERT model with an added single linear
layer on top for classification that we used as a sen-
tence classifier. The proposed system has also been
submitted for the sub-task C, and was ranked the
9th out of 13 participants. For sub-task C, the input
tweets are passed to the model simultaneously and
we consider the class of the tweet with the higher
predicted score. We believe this result should be
studied as a future work by investigating different

893



Model F1-sarcastic
MARBERT 0.90

Table 3: Performance of the model using our testing set
for sub-task A on Arabic dataset.

Task Main Metric Result Rank
A F1-sarcastic 0.5076 2nd

C Accuracy 0.7450 9th

Table 4: Main metric results obtained by the proposed
model on the official test set for both sub-tasks A and C
on Arabic dataset.

setup settings and, more importantly, to analyse er-
rors on the test dataset. The model was fine-tuned
for 4 epochs using the initial learning rate 2e−06,
a batch size of 32, Adam weight decay optimizer
and cross-entropy loss function. As well, we built
other models but MARBERT outperforms them.
The submitted model achieved an F1-sarcastic of
0.5076 on the official testing set for sub-task A.

6.2 Submission Results

For both aforementioned sub-tasks, we (AlexU-AL
team) submitted the predicted classes based on the
MARBERT model. For sub-task A, the proposed
model achieved the second rank compared with the
other systems proposed by other 31 participants.
The submitted model achieved an F1-sarcastic of
0.5076 on the official testing set for sub-task A.
For sub-task C, the model achieved an F-Score of
0.7442 and an accuracy of 0.7450 on the official
testing set. Table 4 presents the official results
achieved by our proposed model on the official
testing set for sub-tasks A and C.

7 Conclusion

We used the fine-tuned MARBERT model in our
submissions to SemEval 2022 task 6. We partic-
ipated in the A and C sub-tasks for sarcasm de-
tection in Arabic tweets. Our proposed approach
is ranked the 2nd and the 9th in sub-tasks A and
C, respectively. For future work, we explore the
impact of building deeper neural networks with
multiple convolutions or recurrent layers applied
sequentially on the input text.
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Abstract

This paper describes the system used in
SemEval-2022 Task 6: Intended Sarcasm De-
tection in English and Arabic. Achieving 20th,
3rd places with 34& 47 F1-Sarcastic score for
task A, 16th place for task B with 0.0560 F1-
macro score, and 10, 6th places for task C with
72% and 80% accuracy on the leaderboard. A
voting classifier between either multiple differ-
ent BERT-based models or machine learning
models is proposed, as our final model. Multi-
ple key points have been extensively examined
to overcome the problem of the unbalance of
the dataset as: type of models, suitable archi-
tecture, augmentation, loss function, etc. In
addition to that, we present an analysis of our
results in this work, highlighting its strengths
and shortcomings.

1 Introduction

Sarcasm detection in any language text is hard for
many reasons. First Sarcasm is much more than
just written words. It is the tone, emphasis, experi-
ence, personal knowledge, and even facial expres-
sions and body language that convey the meaning.
When written into text such information is lost com-
pletely. Another reason is cultural references which
make it hard for non-natives to get. In addition, all
that is needed to show sarcasm is to be clear and
articulate and not be as sketchy and without for-
matting, punctuation, proper use of language as
texting might be for some people in their usual use
of such media. Sarcasm is widespread on the social
web and, by definition, may be extremely disrup-
tive to machine learning/ deep learning models that
use this data to perform tasks such as sentiment
analysis, opinion mining, author profiling, and ha-
rassment identification. Thus, sarcasm detection
might be the first crucial step in these systems. Sev-
eral methods have been proposed to detect sarcasm
in text as the recent shared-task for sarcasm detec-
tion in Arabic language (Abu Farha et al., 2021),

where several teams used pretrained language mod-
els such as AraBERT and MarBert (Wadhawan,
2021; Song et al., 2021; Naski et al., 2021; Faraj
et al., 2021; Abdel-Salam, 2021; Abuzayed and
Al-Khalifa, 2021). In some of the work proposed
in English language sarcasm detection involved
rule-based and statistical approaches using: (a) Un-
igrams and pragmatic features (for example emoti-
cons, etc.) (b) Sentiment and polarity estimation
(c) Extraction of common patterns (Nagwanshi and
Madhavan, 2014; Kumar et al., 2020; Bouazizi
and Ohtsuki, 2016). A Recent shared-task for En-
glish language (Ghosh et al., 2020), where several
methods has been proposed were based on pre-
trained model (i.e. BERT and RoBERTa) (Baruah
et al., 2020; A. and D., 2020; Amir et al., 2016;
Shangipour ataei et al., 2020).

In SemEval-2022 Task 6 (Abu Farha et al., 2022),
the goal is to determine if sarcasm is presented
in text or not, based on the text that is manually
labeled by the task organizers. The shared task
consists of three subtasks:

• Subtask A: this subtask is a binary classifi-
cation task, where the goal is to determine
whether is tweet is sarcastic or not, for the
English language and Arabic languages. The
official metric for this subtask is F1-Sarcastic.

• Subtask B: this subtask is a multi-label clas-
sification task where the goal is to determine
which ironic speech category the tweet be-
longs to (English only). There are 6 ironic
speech categories which are: irony, sarcasm,
satire, understatement, overstatement, and
rhetorical question. The official metric for
this subtask F1- Macro score

• Subtask C: the goal of this task is to determine
which text is more sarcastic given a pair of
texts. The official metric for this subtask is
accuracy.

This paper describes the system developed by the
rematchka team for SemEval-2022 Task 6. Given
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that a key challenge in this task is the limited size
of annotated data and the unbalanced distribution,
we follow best practices from recent work on en-
hancing model generalization and robustness and
propose a voting classifier model that leverages pre-
trained representations(i.e. BERT and RoBERTa).

The main contributions of our work are as fol-
lows:

1. Identifying appropriate loss functions to help
train Bert-Base models and Deep learning
models in presence of extremely unbalanced
datasets.

2. Investigating the importance of different lay-
ers in Bert-Base models. In addition, we
present an analysis of our results in this work,
highlighting its strengths and shortcomings.

Our code is made public and can be found here1.
The rest of the papers goes as follow: section 2
discusses the proposed methods, section 4 shows
experimental results, and section 5 concludes the
paper.

2 System Overview

In this section, we discuss our prepossessing tech-
niques, different hand-crafted features. We further
explore different training techniques using Bert
(Devlin et al., 2018), RoBERTa (Liu et al., 2019),
BertTweet (Nguyen et al., 2020), Deberta (He et al.,
2020), XLNet (Yang et al., 2019), and CANINE
(Clark et al., 2022) models for English Language,
and AraBert (Antoun et al., 2020), MarBert (Abdul-
Mageed et al., 2021) and QARiB (Abdelali et al.,
2021) models for Arabic Language. Moreover we
investigate machine learning based models.

2.1 Dataset

In subtasks A, B, and C of the English language the
dataset provided consisted of a total of 3468 man-
ually annotated tweets. As shown in table 2, for
subtask A English language, 867 of the total tweets
are labeled sarcastic while 2601 are labeled not
sarcastic. While in subtask A, C Arabic language
the dataset provided consisted of 3102 manually
annotated tweets. 745 of the total tweets are la-
beled sarcastic while 2357 are labeled not sarcastic.
Table 1 shows distribution of labels for subtask
B. For subtask B irony types: 713 out of the 867
sarcastic tweets are labeled sarcasm, 155 out of

1https://github.com/rematchka/Intende
d-Sarcasm-Detection-In-English-and-Arabi
c-for-extremly-unbalanced-datasets

867 are labeled irony, 25 out of 867 are labeled
satire, 10 out of 867 are labeled understatement,
40 are labeled overstatement and 101 are labeled
rhetorical-question.

2.2 Machine learning Based Approaches

The machine learning pipeline for subtask A and
subtask B goes as follows: given a tweet a set of
features are computed: lexical, syntactic, semantic,
pragmatic, and polarity feature representations.
These features are then fed to multiple models such
as SVM, Logistic Regression (LR), random forest,
boosting classifiers, and Xgboost for classification.

The Sarcastic tweets in the provided dataset are
categorized as sarcasm, irony, satire, overstatement,
rhetorical question, and understatement. It is cru-
cial to extract features that cover those classes.
For example, overstatement contains exaggerated
terms, one way to extract it is to calculate the
number of elongated punctuation or the number
of characters in the word. Therefore a large set of
hand-crafted features including lexical, syntactic,
semantic, pragmatic, and polarity features are used.

Lexical features our lexical features contains
word and character level n-grams. For word-level
we use 1-gram, and for character level we use 4-
gram, top 5000 n-grams are utilized based only
on the term frequency-inverse document frequency
(TF-IDF) values.

Syntactic features for syntactic features we use
Spacy to calculate the number of adjectives, ad-
verbs, nouns, pronouns, and verbs. In addition to
that, we calculated the count of NER words in the
tweet.

Sentiment & Polarity features sarcasm is used
to express annoyance or outrage about a bad cir-
cumstance. As a result, people employ exaggerated
and extremely positive terms to describe their neg-
ative condition (Yadollahi et al., 2017). Therefore
it is important to extract them. For polarity & sen-
timent estimation, each tweet is divided into two
parts. Then, for each part, its polarity and senti-
ment are calculated using NLTK Senti-WordNet
(Baccianella et al., 2010). In addition to that, the
overall polarity and sentiment for the whole tweet
are calculated. Furthermore, the number of positive
and negative sentiment words in a document, the
number, and the count of the longest run of posi-
tives/negatives are computed as described in (Joshi
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Task
Tweets Distribution

sarcastic irony satire understatement overstatement rhetorical-question
B 713 155 25 10 40 101

Total 867

Table 1: Dataset distribution for subtask B for English language

Language Number of Tweets
Task

A C

EN
Total Number 3468 1734
Number of Sar-
castic Tweets

867 867

Number of Non-
Sarcastic Tweets

2601 867

AR
Total Number 3102 1490
Number of Sar-
castic Tweets

745 745

Number of Non-
Sarcastic Tweets

3102 745

Table 2: Dataset distribution for subtask A and C for
English and Arabic language

et al., 2015).

Pragmatic features it is hard to detect sarcasm
in speech, as the word may have several meanings,
and also the text contains behavioral aspects such as
low tones, facial gestures, or exaggeration. These
forms can be translated into elongation, repetition,
and punctuation. To recognize such characteristics,
we extract a set of features known as punctuation-
related features. For each tweet, the following is
computed:

• Presence of emoji’s (González-Ibánez et al.,
2011)

• Count of number of question marks
• Count of number of colons
• Count of number of a dollar sign
• Count of the number of quotes.
• Count of the number of exclamation marks.
• Count of number of special characters
• Count of number of hashtags
• Count of number of mentions
• Rate of capitalization
• Mixed cases count
• Rate of punctuation

Although punctuation is not relevant in itself and
may not indicate whether the user is expressing
sarcasm or any other emotion, when paired with
other features, these attributes are anticipated to

provide value to the classification.

Semantic& other features semantic features
usually capture the conceptual relationship between
words. For this we extracted multiple semantic fea-
tures such as the presence of contradiction, interjec-
tions, the number of laughing expressions (Bouaz-
izi and Ohtsuki, 2016) and the number of specific
hashtags such as: ”irony", ”sarcasm", ”hypocrisy"
and ”seriously". In addition to these features, other
features are extracted as profanity count, topic mod-
eling, and the presence of a numeric mismatch.

2.3 BERT-based Models

Figure 1 and 2 show overall architecture for BERT-
based models used for most of the subtask A, sub-
task B and subtask C. The pipeline for training for
most of the models in subtasks A and B as shown
in figure 1 goes as follows, the input text is fed
to BERT-base models, and the output of arbitrary
4 layers is taken and fed to KimCNN. The out-
put is fed finally to the Fully connected layer (FC)
layer. 4 losses can be used to assess the model per-
formance F1-Cross-Entropy, Recall-Cross-Entropy,
Balanced loss, and Asymmetric loss.

2.4 Subtask A& B English language

One of the biggest challenges in this task was
the presence of an extremely unbalanced dataset.
Using the provided dataset without any external
dataset or modification of the widely used loss func-
tion as cross-entropy, hinge loss, etc leads to bad
model performance, where the model focuses only
on the majority class which was the Non-Sarcastic
class. Even data augmentation couldn’t boost per-
formance that much. In one of our early exper-
iments using RoBERTa model on the provided
dataset, the model could achieve 77% accuracy
and an F1-sarcastic score of zero. Therefore, in-
creasing the length of the dataset seemed crucial
at that point to allow better fine-tuning. NLPAug
(Ma, 2019) was used for augmentation. Spelling
augmentation and ContextualWordEmbsAug for
insertion and substitution using Bert and RoBERTa
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were used. Furthermore, SynonymAug and Contex-
tualWordEmbsForSentenceAug were used to make
the dataset balanced, resulting in a balanced dataset
where the number of non-sarcastic examples was
1560 and the number of sarcastic examples was
1040. Using this setting with RoBERTa model the
model performance improved having F1-sarcastic
27 and accuracy 73% on the dev set. However
augmentation didn’t work all the time, some aug-
mentation may lead to performance degrading or no
improvements as RandomWordAug and WordEm-
bsAug using google news. Another interesting key
point is that loss function does matter. Early exper-
iments using cross-entropy with any BERT-based
models achieved high accuracy however, achieved
a 0 F1-sarcastic score on the dev set. When using
loss functions that incorporate class imbalance the
model performance improved. In one of the ex-
periments conducted using Bert-Base uncased with
sigmoid focal cross-entropy without any augmen-
tation, the model performance improved reaching
a 32 F1-Sarcastic score on the dev set. Therefore,
we believe that there are 5 key points needed to be
adjusted in order to improve model performance
and recognition for the Sarcastic class:

• BERT-based models: which BERT-based
model to use and achieve high performance.

• Model architecture: it is crucial to adjust the
model architecture whether to use only the last
layers and feed it to the Fully connected layer
(FC), or whether to use the last n-layers from
the model and apply average pooling which is
then fed to FC layer, or feed output to Convo-
lution or LSTM layer then FC layer. Also if
important to choose which layer/s output will
be used.

• Augmentation: it is important to decide
whether to use augmentation to balance the
dataset (however it is debatable whether it’s
okay to use them or not since the original
dataset is manually labeled. Therefore aug-
mentation might produce new examples we
are not sure if it’s truly sarcastic or not), or
just down-sample the provided dataset by re-
moving some examples.

• Loss function: loss function plays a key role
in improving model performance. Therefore
choosing the appropriate one will hugely im-
pact the model performance to focus on both
classes. A good choices may be sigmoid focal
cross-entropy, recall-cross entropy loss (Tian

et al., 2020), Dice Loss (Li et al., 2019), Asym-
metric loss for multi-label classification and
multi-class classification (Ben-Baruch et al.,
2020), Distribution Balanced Loss (Wu et al.,
2020) and F1-cross-entropy loss (which we
believe is effective in our problem and pro-
pose).

• Data-Sampler: whether to use data-sampler in-
stead of using augmentation. However, in this
case, there are no examples removed from the
dataset. The sampler (Yang et al., 2021) just
makes sure that each batch fed to the model is
balanced.

4 out of the 5 key points were heavily investigated:
1) BERT-based models, 2) Loss functions 3) Differ-
ent architectures 4) Data-Sampler. For BERT-based
models. It turns out that BertTweet, Bert-Base Un-
cased, RoBERTa, were the best performing models.
Furthermore using multiple layers from the BERT-
based model improves model performance drasti-
cally by 5-15%. Moreover, sigmoid focal cross-
entropy, F1-cross-entropy, and also data-sampler
improve model performance by 4-10%. F1-cross-
entropy loss is denoted by this equation 1

c=C∑

c=1

−(1− F1c) ∗Nc ∗ log(Pc) (1)

, where c is the class number, F1c is the F1-Score
corresponding to specific class, Pc output of sig-
moid/softmax for specific class c. Similarly, the
recall-cross-entropy loss is denoted by this equa-
tion 2.

c=C∑

c=1

−(1−Recallc) ∗Nc ∗ log(Pc) (2)

2.5 Subtask A Arabic Language
For the Arabic language, multiple Bert-Base mod-
els were fine-tuned on the provided dataset as
AraBert, MarBert, and QARiB. Although the Ara-
bic dataset was also imbalanced the model fine-
tuning was easier. Without any modification to the
dataset or the loss function, these models could
achieve high performance on the dev set, unlike
the English language. This might indicate that it is
easier to detect sarcasm or find the sarcastic pattern
in the Arabic language than the English.

2.6 Subtask C English and Arabic Languages
Based on Analysis and Experiments conducted in
subtasks A & B, the following were investigated:
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A) several architectures were investigated including
the usage of the output of the last layer from Bert-
Base models only of the usage of multiple layers
from Bert-Base models. In addition to that, all
architecture was similar to the siamese network
where, the input to the model is both sarcastic and
non-sarcastic, and the loss function is calculated
based on the model prediction for both texts.

2.7 Final Recipe

In this subsection, we discuss the final models that
were used during the evaluation phase for all sub-
tasks.

2.7.1 subtask A English

A voter classifier is used based on different
approaches since the voter classifier is model-
agnostic, and can be tested on a variety of models
and tasks to ensure that our findings are general-
izable. 7 different approaches were used for the
final classification. The first Model was Berttweet,
where we used the output of the last four layers
and fed it into KimCNN (Chen, 2015) while us-
ing recall-cross-entropy loss and data-sampler. The
second model was Berttweet, where the input to the
model was the original dataset. The input is fed to
the model then the output of the last four layers is
extracted and fed to four LSTM layers. The output
of the four LSTM layers is fed into the FC layer.
F1-cross-entropy loss is used with a data sampler.
The third model is Bert-Base Uncased, where the
input to the model was the original dataset and
all hand-crafted features described in the previous
subsection. The input is fed to the model then the
output of the last four layers is extracted and fed to
four LSTM layers. The output of the four LSTM
layers is fed into the FC layer, the hand-crafted fea-
tures are fed into another FC layer then the output
of both is concatenated and fed to the last FC layer
with sigmoid activation. F1-cross-entropy loss is
used with a data sampler. For the fourth model,
the architecture is similar to the first model except
that Deberta model is used, and for the fifth model
RoBERTa model is used with the same architecture
and data-sampler as the first model but F1-cross-
entropy loss is used instead of recall-cross-entropy
loss. For the 6th and 7th models, linear SVM and
linear SVM bagging classifiers were used with all
of the set of hand-crafted features.

2.7.2 Subtask A Arabic
For this subtask, MarBert was used only. The input
was fed to the model then the output was fed into
FC layers. Cross-entropy loss was used.

2.7.3 Subtask B
The final model was a voting classifier between
5 models. The first and the second models were
based on BertTweet model with KimCNN. How-
ever, the first model was trained using Asymmetric
loss and the other model was trained using Distri-
bution Balanced Loss with data sampler. RoBERTa
model was used as the third model where the out-
put of the 6th, up t 9th layers, were fed to Kim-
CNN, and the model was trained using Asymmet-
ric loss. For the 4th and 5th models multi-output
linear SVM and multi-output linear SVM bagging
classifiers were used with all of the set of the hand-
crafted features.

2.7.4 subtask C English and Arabic
In the English subtask, the final model was vot-
ing classifiers between three models. The first
model was based on XLM-RoBERTa (Conneau
et al., 2019), where the output of the 6th, up t 9th
layers, were fed to KimCNN and the model was
trained using Margin ranking loss. For the sec-
ond and third models, RoBERTa model was used
with Margin ranking loss. However, for the second
model architecture, the output of the last layer of
RoBERTa was fed into FC layer, while for the third
model the output of the 6th, up to 9th layer was
fed to KimCNN. Similarly for the Arabic language
subtask, a voting classifier between three models
where used. The first and the second models were
based on Arabert and MarBert where the output of
the last layer was fed into FC layer, and the models
were trained using Margin ranking loss. For the
third layer, MarBert with KimCNN was utilized
with Margin ranking loss for training. The whole
training pipeline is demonstrated in figure 2. Since,
the target of the subtask is to determine, which
tweet is more sarcastic. During inference, both
tweets are fed into the final model and whoever has
a larger value is determined as a sarcastic tweet.

3 Experimental setup

Experiments were conducted via Python and Py-
Torch framework, running on Google Colab re-
sources, which are Nvidia Tesla P100-PCIE-16GB
GPU, Intel ® Xeon ® CPU @ 2.20 GHz, and
12GB RAM. We used 70%-10%-20% strategy for
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train-validation-test splits respectively for the train-
ing phase and 5-fold cross-validation during train-
ing. All of the presented models (submitted to the
leaderboard) were trained on the provided dataset
for the shared task only with no augmentation and
the same splitting criteria. If augmentation is used
in the dev-phase/test-phase, the following types of
augmentation were used: 1) Spelling augmenta-
tion and contextual Word embedding augmenta-
tion for insertion and substitution using BERT and
RoBERTa. 2) Synonym augmentation and contex-
tual word embedding for sentence augmentation.
Precision, recall, f-score (f1-sarcastic for subtask
A, and macro average f1-score for subtask B), and
accuracy (for subtask C) were used as evaluation
metrics. All BERT-based models were trained us-
ing an AdamW optimizer with an initial learning
rate of 0.001, weight decay rate of 0.0000001, and
cosine annealing learning rate scheduler with mini-
mum learning rate values of 0.0000001 and max-
imum temperature of 500. All the models were
fine-tuned for 3-5 epochs. Pre-processing wasn’t
conducted on the dataset. During inferences, an
ensemble of the 5 models is used (due to 5-fold
validation)and is referred to as 1 model during our
discussion.

4 Results

In this section, we discuss our main results during
the development and evaluation phases. In addition
to that failed cases analysis is discussed.

4.1 Results on Trial and Simulated Data

The evaluation was based on the train-test split cri-
teria on the provided dataset. Table 3 shows differ-
ent models’ performance on the dev-set, for subtask
A in the English language based on F1-sarcastic
and accuracy. Early experiments were based on
augmentation and Dice/cross-entropy loss. The per-
formance of the models started to increase when
using suitable architecture, multiple outputs from
BERT-based models, and a suitable loss function
that is sensitive for low classes. The difference be-
tween RoBERTa with dice loss and augmentation
and RoBERTa with KimCNN and F1-cross-entropy
is around 20 in F1-score. Surprisingly machine
learning models could achieve a good F1-Sarcastic
score. Table 7 shows different models performance
on the dev-set, for subtask B based on F1-macro.
The model performance is not high due to the small
size of the dataset. It can be seen that Distribu-

tion Balanced Loss and Asymmetric loss is a good
choice for unbalanced multi-label classification.
For subtask, A Arabic language MarBert could
achieve 89 F1-sarcastic while AraBert and QARiB
achieve 54 and 79 F1-sarcastic on dev-set. For sub-
task C English language XLM-RoBERTa KimCNN
could achieve 89% accuracy, while RoBERTa Kim-
CNn and RoBERTa could achieve 90% and 85% on
dev-set. For subtask C Arabic language, AraBert
could achieve 82%, while MarBert and MarBert
KimCNN could achieve 83% and 76% on dev-set.

4.2 Test Results

Tables 5, 4, 6, and 8 show the results of the pro-
posed models and the official model (Voting classi-
fier) that was used in the leaderboard. The voting
classifier model is our official submitted model. Ta-
ble 4 shows the results of our submitted model and
the performance of each individual model that is
used in the voting classifier. Table 8 shows the re-
sults of our submitted model (the voting classifier)
in both languages. In addition, the performance
of each model contributed to the voting classifier.
For subtask C, In the English language, the vot-
ing classifier is composed of XLM-RoBERTa and
RoBERTa with KimCNN and RoBERTa. For the
Arabic language, the voting classifier is composed
of MarBert, MarBert, and MarBert with KimCNN.
Table 5 shows the results of our submitted model
(the voting classifier). In addition to other models
that were described in the dev-phase. The final
voting classifier for subtask A English is composed
of Bagging SVM with feature engineering, SVM
with feature engineering, RoBERTa with KimCNN
and F1-Cross-Entropy, Deberta with KimCNN and
Recall-Cross-Entropy, BertTweet with KimCNN
and Recall-Cross-Entropy, BertTweet with LSTM
and F1-Cross-Entropy, Bert-Base-Uncased with
LSTM and feature engineering and Recall-Cross-
Entropy.

Our voting based classifier achieved 20th, while
MarBert achieved 3rd place for subtask A, voting
based classifier achieved 16th place for subtask B
and 10, 6th places for subtask C. For subtask C the
performance of the voting classifier and the other
models are similar to the dev-set. For subtask B
the voting classifier model performance was bad
compared to a single model. All the models failed
to detect over-statement in the test set. For subtask
A English languages the voting classifier model
performance was bad compared to a single model,
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this happened as the performance of machine learn-
ing models was bad on the test set. For subtask
A, Arabic language the model performance falls
below the performance observed on the dev-set.
Based on tables 3 and 5 it can be seen that suitable
architecture and loss aware function are the key to
better performance. In addition to that, it seems
that Augmentation has promising performance, and
might boost results significantly if integrated with
suitable architecture and loss function.

4.3 Error Analysis

In subtask A, the test-set contains 1400 examples,
200 of which are sarcastic, and 1200 of which are
non-sarcastic. For subtask1 English language, the
submitted model (Voting classifier) miss-classified
224 tweets as sarcastic and 113 as not-sarcastic. In
the misclassifications, there were numerous promi-
nent trends. Among the false negatives and false
positives in the samples (Most of the time), the
sarcasm and non-sarcasm communicated in many
cases could only be extrapolated via world knowl-
edge (for example:“Max Verstappen is such a clean
driver, he never makes dirty moves when racing."
and “This does not surprise me! Kat is a PR queen
"). Some of the false positives (detected as sarcasm
which is not) depend on the personality and the situ-
ation, which is in reality hard to detect is it a touch
of sarcasm or not (for example: “Brrrr it’s cold
outside...I love it!" and “What people?"). For the
Arabic language subtask A, Marbert miss-classified
324 tweet as sarcastic and 36 as not-sarcastic. Sim-
ilarly most the wrongly tweets miss-classified as
no-sarcastic was due to world knowledge (for ex-
ample: trasnalted as “fifi abdo the ideal mother"
). £db� ¨fy� Ty�A�m�� �¯�

Some of the miss-classified tweets as sarcastic
was related to personal life and personality (for ex-
ample: trasnslated as “The class who shouldn’t be
called/named" ). AhmF� r�Ð 	�§ ¯ ¨t�� T`�d��
In subtask B, the test-set contains 1400 examples,
180 are labeled sarcastic, 20 labeled irony, 49 la-
beled satire, 1 labeled under-statement, 10 labelled
over-statement, and 11 labelled rhetorical-question.
One the biggest problems that the dataset contained
alot of non-sarcastic tweets, which affected the
model prediction performance. A modification that
should have done was to enter the tweet to subtask
A models and then for the predicted sarcastic tweet
subtask B model should be used to determine the
type. In subtask C, the test-set contains 200 ex-

amples, 107 of them text 0 is more sarcastic than
text 1. The voting model miss-classified 52 as text
0 being sarcastic and 4 examples as text 1 being
more sarcastic. Some of the errors were a result of
unclear sarcasm as an example these two text“Brr!
It’s really cold outside today" and “I’m loving how
warm it is outside today". The more sarcastic text
is the second one, however, it’s hard to determine
whether the weather is hot or cold, to come to this
conclusion. Another common type of error is world
knowledge as an example: “Benioff and Weiss will
definitely go down in history for how terrible the
script they wrote for GOT S8 was." and “Benioff
and Weiss will definitely go down in history for
their amazing work on the script of GOT S8.". If
the model doesn’t have a knowledge about the TV
series and rating it’s hard to tell that the second on
is the sarcastic. In conclusion common error can
be classified to:

• World knowledge
• Personality
• Personal experiences.

Model F1-Saracstic
MarBert 0.4767

Table 6: Results for subtask A on the official test-set for
Arabic language.

5 Conclusion

In this paper, we have discussed our system sub-
mitted to the SemEval-2022 Task 6. our model
ranked 20th out of 43 participating teams in sub-
task A English language, 3rd out of 32 participating
teams in subtask A Arabic language, 16th out of
22 participating teams in subtask B, 10th out of
16 teams in subtask C English language, and 6th
out of 12 participating teams in subtask C Ara-
bic language. We proposed a voting classifier that
leverages fine-tuned, per-trained models. We pro-
posed the usage of the different loss functions in
each task to accommodate dataset imbalance and
improve model training. Overall we showed the
power of the loss function to improve model per-
formance without the need to access any external
dataset or to use any kind of augmentation. We
also investigated the main common error, which
disturbs model performance. In future efforts, we
plan to further improve our model to better handle
data-imbalance constraints and world knowledge
needed to improve model performance.
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Model Loss Function Augmentation Accuracy F1-
Sarcastic

Bert-Base-Uncased with KimCNN Recall-Cross-Entropy No 74% 38
Bert-Base-Uncased with LSTM and
Feature Engineering

Recall-CrossEntropy No 75% 41

Bert-Base-multilingual-uncased Dice Loss Yes 73% 32
Bert-Base-Uncased Dice Loss Yes 76% 35
Bert-Base-Uncased Cross-Entropy Yes 73% 38
RoBERTa CrossEntropy Yes 73% 27
RoBERTa with KimCNN F1-Cross-Entropy No 75% 43
BertTweet with KimCNN Recall-Cross-Entropy No 79% 57
BertTweet with LSTM F1-Cross-Entropy No 78% 54
CANNIE F1-Cross-Entropy No 77% 33
Deberta with KimCNN Recall-Cross-Entropy No 77% 43
SVM + Feature Engineering _ Yes 58% 38
SVM + Feature Engineering _ No 63% 40
Logistic regression + Feature Engi-
neering

_ Yes 57% 38

Logistic regression + Feature Engi-
neering

_ No 55% 37

Bagging SVM + Feature Engineering _ Yes 54% 34
Bagging SVM + Feature Engineering _ No 66% 40

Table 3: Results for subtask A on the dev-set for various models and techniques for English language.

Model Loss Func-
tion

F1-
Macro

F1-
Sarcasm

F1-
irony

F1-
satire

F1-
under-
statement

F1-over-
statement

F1-
rhetorical
question

RoBERTa +
KimCNN

Distribution
Balanced
Loss

0.09 0.23 0.04 0.18 0.00 0.02 0.09

RoBERTa +
KimCNN

Asymmetric
loss

0.09 0.23 0.04 0.17 0.00 0.02 0.09

BertTweet +
KimCNN

Asymmetric
loss

0.10 0.23 0.05 0.16 0.00 0.03 0.11

BertTweet +
KimCNN

Recall-
Cross-
Entropy

0.05 0.23 0.03 0.00 0.00 0.02 0.00

BertTweet +
KimCNN

Distribution
Balanced
Loss

0.12 0.23 0.11 0.17 0.00 0.06 0.11

SVM+ FE _ 0.07 0.20 0.03 0.09 0.01 0.02 0.09
Bagging
SVM + FE

_ 0.08 0.24 0.03 0.14 0.00 0.02 0.09

Voting _ 0.0560 0.2251 0.0285 0.0664 0.0000 0.0161 0.0000

Table 4: Results for subtask B on the official test-set for various models and techniques for English language. The
voting Classifier model is our official submitted model which is composed of the above models.
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Model Loss Function Augmentation Accuracy F1-
Sarcastic

Bert-Base-Uncased with KimCNN Recall-Cross-Entropy No 74% 28
Bert-Base-Uncased with LSTM and
Feature Engineering

Recall-Cross-Entropy No 76% 37

Bert-Base-Uncased Dice Loss Yes 79% 32
Bert-Base-Uncased Cross-Entropy Yes 74% 31
RoBERTa with KimCNN F1-Cross-Entropy No 73% 31
BertTweet with KimCNN Recall-Cross-Entropy No 76% 40
BertTweet with LSTM F1-Cross-Entropy No 75% 42
Deberta with KimCNN Recall-Cross-Entropy No 78% 32
SVM + Feature Engineering _ No 55% 21
Bagging SVM + Feature Engineering _ No 60% 18
Voting Classifier _ _ _ 34.05

Table 5: Results for subtask A on the official test-set for various models and techniques on English language. The
voting Classifier model is our official submitted model.

Model Loss Func-
tion

F1-
Macro

RoBERTa + KimCNN Distribution
Balanced
Loss

38

RoBERTa + KimCNN Asymmetric
loss

43

BertTweet + KimCNN Asymmetric
loss

44

BertTweet + KimCNN Recall-
CrossEntropy

21

BertTweet + KimCNN Distribution
Balanced
Loss

44

SVM+ FE _ 32
Bagging SVM + FE _ 37

Table 7: Results for subtask B on the dev-set for various
models and techniques for English language.

Figure 1: The overall architecture of our proposed
BERT-based system used for subtask A and B.

Model Language Accuracy
AraBert Ar 73
MarBert Ar 81
MarBert +
KimCNN

Ar 70

Voting Ar 80
XLM-
RoBERTa+
KimCNN

En 73

RoBERTa+
KimCNN

En 72

RoBERTa En 69
Voting En 72

Table 8: Results for subtask C on the official test-set for
various models and techniques For English and Arabic
language. The voting Classifier model is our official
submitted model.

Figure 2: The overall architecture of our proposed
BERT-based system used for subtask C.904



References
Kalaivani A. and Thenmozhi D. 2020. Sarcasm iden-

tification and detection in conversion context using
BERT. In Proceedings of the Second Workshop on
Figurative Language Processing, pages 72–76, On-
line. Association for Computational Linguistics.

Reem Abdel-Salam. 2021. WANLP 2021 shared-task:
Towards irony and sentiment detection in Arabic
tweets using multi-headed-LSTM-CNN-GRU and
MaRBERT. In Proceedings of the Sixth Arabic Natu-
ral Language Processing Workshop, pages 306–311,
Kyiv, Ukraine (Virtual). Association for Computa-
tional Linguistics.

Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Ka-
reem Darwish, and Younes Samih. 2021. Pre-training
bert on arabic tweets: Practical considerations.

Muhammad Abdul-Mageed, AbdelRahim Elmadany,
and El Moatez Billah Nagoudi. 2021. ARBERT &
MARBERT: Deep bidirectional transformers for Ara-
bic. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
7088–7105, Online. Association for Computational
Linguistics.

Ibrahim Abu Farha, Silviu Oprea, Steven Wilson, and
Walid Magdy. 2022. SemEval-2022 Task 6: iSar-
casmEval, Intended Sarcasm Detection in English
and Arabic. In Proceedings of the 16th International
Workshop on Semantic Evaluation (SemEval-2022).
Association for Computational Linguistics.

Ibrahim Abu Farha, Wajdi Zaghouani, and Walid Magdy.
2021. Overview of the WANLP 2021 shared task
on sarcasm and sentiment detection in Arabic. In
Proceedings of the Sixth Arabic Natural Language
Processing Workshop, pages 296–305, Kyiv, Ukraine
(Virtual). Association for Computational Linguistics.

Abeer Abuzayed and Hend Al-Khalifa. 2021. Sarcasm
and sentiment detection in arabic tweets using bert-
based models and data augmentation. In Proceedings
of the sixth Arabic natural language processing work-
shop, pages 312–317.

Silvio Amir, Byron C Wallace, Hao Lyu, and Paula
Carvalho Mário J Silva. 2016. Modelling context
with user embeddings for sarcasm detection in social
media. arXiv preprint arXiv:1607.00976.

Wissam Antoun, Fady Baly, and Hazem Hajj.
2020. Arabert: Transformer-based model for
arabic language understanding. arXiv preprint
arXiv:2003.00104.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: An enhanced lexi-
cal resource for sentiment analysis and opinion min-
ing. In Proceedings of the Seventh International
Conference on Language Resources and Evaluation
(LREC’10).

Arup Baruah, Kaushik Das, Ferdous Barbhuiya, and
Kuntal Dey. 2020. Context-aware sarcasm detection
using bert. In Proceedings of the Second Workshop
on Figurative Language Processing, pages 83–87.

Emanuel Ben-Baruch, Tal Ridnik, Nadav Zamir,
Asaf Noy, Itamar Friedman, Matan Protter, and
Lihi Zelnik-Manor. 2020. Asymmetric loss
for multi-label classification. arXiv preprint
arXiv:2009.14119.

Mondher Bouazizi and Tomoaki Otsuki Ohtsuki. 2016.
A pattern-based approach for sarcasm detection on
twitter. IEEE Access, 4:5477–5488.

Yahui Chen. 2015. Convolutional neural network for
sentence classification. Master’s thesis, University of
Waterloo.

Jonathan H Clark, Dan Garrette, Iulia Turc, and John
Wieting. 2022. Canine: Pre-training an efficient
tokenization-free encoder for language representa-
tion. Transactions of the Association for Computa-
tional Linguistics, 10:73–91.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Dalya Faraj, Dalya Faraj, and Malak Abdullah. 2021.
SarcasmDet at sarcasm detection task 2021 in Arabic
using AraBERT pretrained model. In Proceedings
of the Sixth Arabic Natural Language Processing
Workshop, pages 345–350, Kyiv, Ukraine (Virtual).
Association for Computational Linguistics.

Debanjan Ghosh, Avijit Vajpayee, and Smaranda Mure-
san. 2020. A report on the 2020 sarcasm detection
shared task. arXiv preprint arXiv:2005.05814.

Roberto González-Ibánez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
581–586.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity for
sarcasm detection. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 757–762.

905



Avinash Kumar, Vishnu Teja Narapareddy, Veerub-
hotla Aditya Srikanth, Aruna Malapati, and Lalita
Bhanu Murthy Neti. 2020. Sarcasm detection using
multi-head attention based bidirectional lstm. Ieee
Access, 8:6388–6397.

Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun
Liang, Fei Wu, and Jiwei Li. 2019. Dice loss
for data-imbalanced nlp tasks. arXiv preprint
arXiv:1911.02855.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Edward Ma. 2019. Nlp augmentation.
https://github.com/makcedward/nlpaug.

Prateek Nagwanshi and CE Veni Madhavan. 2014. Sar-
casm detection using sentiment and semantic features.
In KDIR, pages 418–424.

Malek Naski, Abir Messaoudi, Hatem Haddad, Moez
BenHajhmida, Chayma Fourati, and Aymen Ben El-
haj Mabrouk. 2021. iCompass at shared task on
sarcasm and sentiment detection in Arabic. In Pro-
ceedings of the Sixth Arabic Natural Language Pro-
cessing Workshop, pages 381–385, Kyiv, Ukraine
(Virtual). Association for Computational Linguistics.

Dat Quoc Nguyen, Thanh Vu, and Anh Tuan Nguyen.
2020. Bertweet: A pre-trained language model for
english tweets. arXiv preprint arXiv:2005.10200.

Taha Shangipour ataei, Soroush Javdan, and Behrouz
Minaei-Bidgoli. 2020. Applying transformers and
aspect-based sentiment analysis approaches on sar-
casm detection. In Proceedings of the Second Work-
shop on Figurative Language Processing, pages 67–
71, Online. Association for Computational Linguis-
tics.

Bingyan Song, Chunguang Pan, Shengguang Wang,
and Zhipeng Luo. 2021. DeepBlueAI at WANLP-
EACL2021 task 2: A deep ensemble-based method
for sarcasm and sentiment detection in Arabic. In
Proceedings of the Sixth Arabic Natural Language
Processing Workshop, pages 390–394, Kyiv, Ukraine
(Virtual). Association for Computational Linguistics.

Junjiao Tian, Niluthpol Chowdhury Mithun, Zachary
Seymour, Han-pang Chiu, and Zsolt Kira. 2020. Re-
call loss for imbalanced image classification and se-
mantic segmentation.

Anshul Wadhawan. 2021. Arabert and farasa seg-
mentation based approach for sarcasm and senti-
ment detection in arabic tweets. arXiv preprint
arXiv:2103.01679.

Tong Wu, Qingqiu Huang, Ziwei Liu, Yu Wang, and
Dahua Lin. 2020. Distribution-balanced loss for
multi-label classification in long-tailed datasets. In
European Conference on Computer Vision, pages
162–178. Springer.

Ali Yadollahi, Ameneh Gholipour Shahraki, and Os-
mar R Zaiane. 2017. Current state of text sentiment
analysis from opinion to emotion mining. ACM Com-
puting Surveys (CSUR), 50(2):1–33.

Ming Yang, Jihwan Bang, Jirka Borovec, Tobias, and
Davi Innovation. 2021. Imbalanced dataset sampler
using pytorch.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

906



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 907 - 911
July 14-15, 2022 ©2022 Association for Computational Linguistics

niksss at SemEval-2022 Task 6: Are Traditionally Pre-Trained Contextual
Embeddings Enough for Detecting Intended Sarcasm ?

Nikhil Singh
Manipal University Jaipur

nikhil3198@gmail.com

Abstract

This paper presents the 10th and 11th place sys-
tem for Subtask A - English and Subtask A -
Arabic respectively of the SemEval 2022 - Task
6. The purpose of the Subtask A was to classify
a given text sequence into sarcastic and non-
sarcastic. We also breifly cover our method
for Subtask B which performed subpar when
compared with most of the submissions on the
official leaderboard . All of the developed solu-
tions used a transformers based language model
for encoding the text sequences with necessary
changes of the pretrained weights and classifier
according to the language and subtask at hand .

1 Introduction

According to (Yaghoobian et al., 2021), "Sarcasm
detection is the task of identifying irony contain-
ing utterances in sentiment-bearing texts". Even
though sarcastic humor is present throughout social
media, it is hard for even humans to comprehend
it certainly as the reader doesn’t always perceive
it the same way the speaker intended with intri-
cate socio-psychological and cultural references.
With the way, current models for text representation
are trained like Word2Vec (Mikolov et al., 2013)
and Glove (Pennington et al., 2014), which have
the same representation for a particular word irre-
spective of the context they fail to incorporate the
meaning of sarcastic texts. Even though the recent
state-of-the-art language models provide contex-
tual embeddings for words, it still fails to tell the
sarcastic humor from normal as we explain later in
the paper.

There have been a lot of attempts at computa-
tionally automating sarcasm detection in the liter-
ature. Discernibly, the task of sarcasm detection
can be classified into content and context-based
methods. With features like Structural, morphosyn-
tactic and semantic ambiguity features (Reyes
et al., 2012),User mentions (replies), emoticons,
N-grams, dictionary- and, sentiment-lexicon-based

features(González-Ibáñez et al., 2011)) and fea-
tures based on word embedding similarity (Joshi
et al., 2016) coming inside content based method.
With the surge of seq2seq based model such
as BERT (Bidirectional Encoder Representations
from Transformers (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), and XLNet (Yang et al., 2019),
etc. have been heavily employed for sarcasm de-
tection in the literature. (Potamias et al., 2020)
proposed an R-CNN-RoBERTa which is a hybrid
model leveraging RoBERTa’s contextual embed-
ding into a recurrent convolutional neural network.
(Dadu and Pant, 2020) created an ensemble of
RoBERTa and ALBERT (Lan et al., 2019). Seeing
the success of pre-trained language model, we de-
cided to leverage the pre-trained contextual embed-
dings and transformers toward sarcasm detection.

While some of the previous textual sarcasm de-
tection datasets involved annotation via finding
some predefined criteria, such as including specific
tags (e.g. sarcasm, irony) (Ptácek et al., 2014) asso-
ciated with the text. Other datasets involved manual
labeling (Filatova, 2012) (Yang et al., 2016). How-
ever, the mentioned labeling techniques produced
noisy or uncertain labels which would further com-
promise the effectiveness of the models trained on
them. Further, most of the sarcasm detection work
has been done in the English language and it is
highly unlikely that the models trained on one lan-
guage would generalize well on other languages.

The purpose of SemEval-2022 Task 6 - In-
tended Sarcasm Detection in English and Arabic
(Abu Farha et al., 2022) is to advance the devel-
opment of automatic textual sarcasm detection by
providing a dataset which overcomes the problem
of noisy and uncertain labels by having the authors
provide the labels themselves. The shared task is
divided into three subtasks:

• SubTask A(English Arabic): Given a text,
determine whether it is sarcastic or non-
sarcastic;
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Figure 1: Model Architecture for Subtask A

• SubTask B (English only): A binary multi-
label classification task. Given a text, deter-
mine which ironic speech category it belongs
to, if any;

• SubTask C(English Arabic): Given a sarcastic
text and its non-sarcastic rephrase, i.e. two
texts that convey the same meaning, determine
which is the sarcastic one.

2 System Overview

Here, we describe the data pre-processing steps
along with the models for each subtask, and the
experimental setup for the system. We provide an
overview of the system in Figure 1.

2.1 Data

Manually examining the provided dataset, it was
found that the datapoints were mostly from so-
cial media. Hence, basic text denoising steps
such as user-handle removal, number removal, de-
emojifying and repeating punctuation were handled
for all three subtasks.

2.2 SubTask A

For this task the participating teams had to develop
a system which, given a text, determines whether it
is sarcastic or non-sarcastic. We develop a binary

sequence classifier as shown in Figure 1. It com-
prises of a roberta base model as the text encoder
with weights taken from cardiffnlp/twitter-roberta-
base-sentiment(Barbieri et al., 2020) for English
and AraBERT (Antoun et al., 2020) for Arabic.
Both of these models are hosted on the Hugging-
Face library 1 .

The detailed steps involved in this experiment is
present below.

• The pre-processed data comprising of cleaned
text sequences is tokenized using a Bert-
Tokenizer from Huggingface and is passed
through the model mentioned above to em-
bed it into a 768 dimensional feature vector
containing the syntactical information of the
input string.

• The feature vector is then passed through a
dropout layer to increase the regularization
which in-turn increases the generalizability of
the model.

• The model was trained in a supervised manner
in a binary classification regime for 5 Epochs
with a batch size of 32. Rest of the Hyper-
parameters are shown in Table 1. A seed value
of 42 to keep the model deterministic.

• The model took approximately 45 minutes to
train on Nvidia’s P100 GPU with a memory
of 16Gb.

• The complete experiment was done on Google
Colab Pro.

2.3 SubTask B

For this subtask the participants were required to
determine which ironic speech category the given
input text belongs to. We treated this problem as a
multilabel classification with the same encoder as
subtask A but with a multilabel classifier instead
of a binary classifier to capture the dependency of
one sarcasm type on other. We trained this model
using a Label Ranking average precision loss for
3 Epochs, with a batch size of 4 and rest of the
parameters same as Subtask A for English. Sim-
ple Transformers3 was used to do the development.
The model was trained on Google colab and it took

1https://huggingface.co/
3https://github.com/ThilinaRajapakse/

simpletransformers
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Parameter Value
Max sequence Length 96
Batch Size 16
Learning rate 2e-5
Weight decay Linear
Momentum 0.9
Optimizer AdamW 2

Epochs 5
Loss Cross Entropy
Parameter Value
Max sequence Length 64
Batch Size 16
Learning rate 2e-5
Weight decay Linear
Momentum 0.9
Optimizer AdamW
Epochs 5
Loss Cross Entropy

Table 1: Experimental Setup for Subtask A

Parameter Value
Max sequence Length 96
Batch Size 4
Learning rate 1e-5
Epochs 3
Loss LRAP 4

Table 2: Experimental Setup for Subtask B

around 35 minutes to finish the training. The Exper-
iment setup has been shown in Table 2 in a concise
manner.

3 Results

3.1 Subtask A

All the submitted systems for Subtask A were eval-
uated using the five metrics that are, Accuracy, Pre-
cision, Recall, F1 score, and F1 score of the sar-
castic class. However, the ranking of the systems
was determined using the F1 score of the sarcastic
class. We were officially ranked 10th in Subtask
A - English and 11th in Subtask A - Arabic. With
an F1 score of 40.16% for English and 40% for
Arabic. The rest of the metrics are shown in Table
3.

3.2 Subtask B

The submitted systems for Subtask B were evalu-
ated using the F1 scores of the respective classes
in the dataset. The ranking was determined by the

Macro F1 score. We ranked at position 22 with a
Macro F1 score of 0.0380. The rest of the scores
are present in Table 3.

4 Error Analysis

After examining the predictions from the submitted
model, we saw that the model struggled signifi-
cantly in classifying the text sequences to sarcastic
type. We inferred that, even though we put less
weight on the non-sarcastic class during the loss
computation, the model overfitted to the abundant
class of non-sarcastic text sequences with a ratio
of roughly around 3:1 between the two classes for
both Engligh and Arabic tasks. We also noted that
individual hyper-parameters had significant roles
in the performance of the model. Training different
models with different hyper-parameters and ensem-
bling them together showed a significant increase in
performance in the post evaluation period. For Sub-
task B, the main reason for the poor performance
of our model and most submitted models on the
leaderboard, is the inter-class difference between
individual sarcasm types is very low.Which in-turn
confuses the model and the output probability is
roughly close to each other.

5 Conclusion

We developed a system to classify sarcastic text
from non-sarcastic text using contextualized em-
beddings from a language model which didn’t have
any prior information about what the fundamental
concepts of sarcasm. It inculcates language un-
derstanding through self-supervised training tech-
niques namely, masked words prediction and next
sentence prediction. However, sarcasm doesn’t
work in the same way as declarative, exclamatory,
imperative, and interrogatory sentences. These
were the major type of sentences used for pre-
training the language models.

In future work, we plan to use a seq2seq based
encoder-decoder model for instilling knowledge of
sarcasm in the already available seq2seq models
like T5 (Raffel et al., 2019). Wherein we’ll use
data similar to what was provided in SubTask C
and train a seq2seq model with input as the sar-
castic text and the model will learn to paraphrase
that input sentence into a non-sarcastic sentence as
output.
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Language F-1 score Precision Recall Accuracy
English 0.6353 0.6215 0.6683 0.7850
Arabic 0.5800 0.6083 0.7167 0.6571

Table 3: Other Metrics for Subtask A
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Abstract

This paper introduces the result of Team Dart-
mouth’s experiments on each of the five sub-
tasks for the detection of sarcasm in En-
glish and Arabic tweets. This detection
was framed as a classification problem, and
our contributions are threefold: we devel-
oped an English binary classifier system with
RoBERTaBASE, an Arabic binary classifier with
XLM-RoBERTaBASE, and an English multil-
abel classifier with BERTBASE. Preprocessing
steps are taken with labeled input data prior to
tokenization, such as extracting and appending
verbs/adjectives or representative/significant
keywords to the end of an input tweet to help
the models better understand and generalize
sarcasm detection. We also discuss the results
of simple data augmentation techniques to im-
prove the quality of the given training dataset
as well as an alternative approach to the ques-
tion of multilabel sequence classification. Ul-
timately, our systems place us in the top 14
participants for each of the five subtasks.

1 Introduction

Sarcasm is a form of irony that occurs when there
is a discrepancy between the literal and intended
meanings of a text or utterance. This discrepancy
typically manifests itself in the form of dislike,
contempt, or derogation. Furthermore, sarcasm can
be divided into multiple types: general sarcasm,
irony, satire, understatement, overstatement, and
rhetorical question.

This task concerns itself with the detection of
sarcasm in online tweets (Abu Farha et al., 2022).
This is an important issue to solve because the na-
ture of sarcasm can interfere with the effectiveness
of natural language processing models, particularly
when conducting sentiment analysis, opinion min-
ing, or other emotion-based tasks. Machine learn-
ing models deployed for such business use cases

can be negatively impacted when processing sar-
castic texts and provide inaccurate results, thereby
harming an organization’s bottom line. Therefore,
it is critical that machine learning models be devel-
oped that can understand how to detect, ingest, and
truly understand sarcasm.

This paper discusses how to identify sarcastic
tweets in binary and multi-label classification con-
texts for both English and Arabic, as directed by
SemEval-2022 Task 6 (Abu Farha et al., 2022).
There are five subtasks: general sarcasm detection
in standalone English and Arabic tweets (Task A),
identification of sarcastic category in an English
tweet (Task B), and identification of the sarcastic
tweet in an English/Arabic pair of tweets (Task C).

Our experiments show that pre-trained trans-
former models demonstrate a strong ability of solv-
ing most of the subtasks of this challenge. Specif-
ically, we fine-tune a RoBERTaBASE model to de-
tect the presence of sarcasm in tweets for the En-
glish components of Tasks A and C. For the Ara-
bic version of Tasks A and C, we apply an XLM-
RoBERTaBASE model. For Task B, which is framed
as a multilabel sequence classification problem,
after experimenting with several RoBERTa and
BERT models, we report the performance of a
BERTBASE model which is fine-tuned to detect the
categories of sarcasm in English tweets, if any.

While these models perform reasonably well in
the evaluations, the imbalanced distributions of la-
bels and poor annotation quality for some instances
introduce unexpected noise to the fine-tuning pro-
cess of these models and harm their performance
in the evaluations. Despite our effort to augment
unrepresented classes in the training data, simple
data augmentation approaches do not show clear
positive effects on the models’ performance. More
advanced data augmentation methods could be tried
to trigger notable performance improvements on
the challenge test dataset.
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2 Approaches

As mentioned above, there are three systems de-
signed for the five subtasks. We discuss the model
architecture, input processing, and other key ele-
ments for each of the systems below.

2.1 RoBERTa for Binary Classification

The English component for Tasks A and C require
us to distinguish whether a tweet is sarcastic, either
as a standalone text (Task A) or in comparison to
another tweet (Task C). Both of these tasks were
framed as binary classification problems and our
solution leveraged the RoBERTa model (Figure 1)
from Facebook AI to achieve this by producing rich
feature representations from the inputs.

In particular, RoBERTa builds upon the Bidirec-
tional Encoder Representations from Transform-
ers (BERT) by modifying some key hyperparame-
ters, training with much larger learning rates and
batches, and removing BERT’s next-sentence pre-
training objective (Liu et al., 2019). Critically, this
allows RoBERTa to improve on the masked lan-
guage modeling objective and allows for better
task performance down the road. The RoBERTa
base is composed of 12-layers, 768-hidden, 12 self-
attention heads, and 125M parameters.

Processing each input tweet first began with
changing sarcasm labels from 1 (sarcastic) to 0.8
and 0 (non-sarcastic) to 0.2, although the 0.2 was
eventually changed back to 0. This was to account
for random noise in the dataset and for training
examples that were of lesser quality than others.

The next step was tweet normalization: among
other things, this included replacing hyperlinks,
user tags, and emojis with a standardized token
("@URL" for hyperlinks and "@USER" for user
tags, for example). Furthermore, contracted words
were separated out to extract the key token. This
was to ensure the model did not learn from random,
irrelevant noise found in hyperlinks or user tags.

Before passing each normalized tweet into the
tokenizer, however, we first extracted all verbs and
adjectives from the original tweet (Sequence A)
and strung them together with whitespace to create
a new string (Sequence B). In turn, those verbs and
adjectives were replaced with the <mask> token
in the original tweet. This was executed in an at-
tempt to help the model better learn the relationship
between a tweet’s sarcastic presence and any avail-
able verbs or adjectives in it. These two sequences
were then joined together with separator tag </s>

and fed into the tokenizer as a single sequence.
Padding tokens were added to make each in-

put the same length for the RoBERTa model. The
maximum length used for this system was 256. Al-
though the longest string of tokens from the avail-
able training dataset was 111, we set it to 256 for
the sake of safety. This ensured that all tensor
inputs were set to equal the maximum sequence
length used for batched parallelized training. This
meant the ultimate input passed into the tokenizer
looked like Table 1, where <s> is the classifier
token, </s> is the separator token, <pad> is the
padding token, Seq-A contains <mask> tokens
where its adjectives and verbs originally were, and
Seq-B is a string of all verbs and adjectives from
the original tweet.

Input <s>Seq-A</s>Seq-B<pad><pad>

Table 1: A sample input for encoding.

A sequence classification head containing a lin-
ear layer was applied on top of the final hidden-
states output, with a label prediction of 1 denoting
a sarcastic tweet and 0 denoting a non-sarcastic
tweet. For standalone tweets (Task A), the thresh-
old to pass a tweet as sarcastic was set to 0.40,
where tweets with a score higher than that were
marked as sarcastic while those underneath this
threshold were not. For determining which of two
tweets is sarcastic (Task C), the tweet with the
highest absolute score, regardless of its relation to
a threshold, was marked as sarcastic.

Figure 1: The RoBERTa model architecture.
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2.2 XLM-RoBERTa for Binary Classification

The Arabic subtask for Tasks A and C require us
to distinguish whether a tweet is sarcastic, either
as a standalone text (Task A) or in comparison to
another tweet (Task C). We framed these as binary
classification problems and leveraged the XLM-
RoBERTaBASE model, which is a multi-lingual ver-
sion of the RoBERTa model and is pre-trained on
2.5TB of filtered CommonCrawl data containing
100 languages (Conneau et al., 2019). It is com-
posed of 12-layers, 768 hidden, 8 self-attention
heads, and 125M parameters.

In preprocessing each input Arabic tweet, we
began by changing the sarcasm confidence labels
from 1 to 0.8. This was again executed to account
for random noise as well as subpar training data ex-
amples that did not encapsulate sarcastic qualities
nearly as well as others.

Regular tweet normalization does not apply to
Arabic. Certain qualities in the written form of
Arabic, such as diacritization, further complicate
this matter. The same word in two different dia-
critizations can have meanings that are seemingly
completely unrelated (Alkhatib, 2017). This in-
troduces difficulty in extracting the true semantic
meaning of a text in Arabic.

We therefore relied on CAMeL Tools, a Python
library designed for the Arabic language to execute
dediacritization and remove any non-essential com-
ponents from the input texts (Obeid et al., 2020).
Further normalization was also conducted with
functions from this specialized library, such as re-
moving orthographic ambiguity.

After processing input tweets, the technique of
extracting verbs and adjectives to form a secondary
sequence was utilized. As in the first approach,
the extracted verbs and adjectives were replaced
with <mask> tokens in the original input tweet,
and this was prepended to the secondary sequence
of verbs and adjectives using a </s> separator to-
ken. This combined sequence was then fed into the
XLM-RoBERTa’s tokenizer to be encoded. In this
particular case, a specialized part-of-speech tagger
was used from CAMeL Tools to identify and ex-
tract each input tweet’s set of verbs and adjectives.

During tokenization, padding tokens were added
to the right to make all the tensor inputs of uniform
length. Although the longest examined length of
any tweet was 143, we utilized 256 to account for
any unexpected inputs.

The final element of this system was a sequence

classification head containing a linear layer that
was applied on top of the final hidden-states output
with a label of 1 predicting sarcasm and a label of
0 predicting otherwise. For detection of sarcasm
in standalone Arabic tweets (Task A), those with
a score that exceeded our threshold of 0.40 were
marked as sarcastic while others were not. For de-
termining the sarcastic tweet in a pair of tweets
(Task C), the tweet with the highest absolute score,
regardless of whether it exceeded Task A’s thresh-
old of 0.40, was marked as sarcastic, while the
other tweet was not.

2.3 BERT Base for Multilabel Classification

Task B required us to distinguish which category
of sarcasm an English tweet belonged to, of which
there are six: general sarcasm, irony, satire, un-
derstatement, overstatement, and rhetorical ques-
tion. A tweet can belong to none, one, or multiple
categories. We framed this task as a multilabel
sequence classification problem and we leveraged
the BERTBASE model (see Figure 2 for a high-level
architecture visual). It is composed of 12-layers,
768-hidden, 12 self-attention heads, and 110M pa-
rameters (Devlin et al., 2018).

Multi Label 
Output 

0W---

Sentence 1 

BERT 

Sentence 2 

Tok 

M 

sarcasm, irony, satire, understatement, 
overstatement, rhetorical question{ {=>

Figure 2: The BERT model architecture modified to
reflect multilabel output.

Each tweet was first normalized following the
steps outlined in the first approach. This included
”demojifying” any present emojis and standard-
izing any present hyperlinks and user tags with
"@URL" and "@USER". Before feeding the tweet
into the tokenizer, however, we utilized an ap-
proach to improve the model’s understanding of
the keywords that might point towards a particular
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Data Augmented Results Scores
Weighted Recall Weighted Precision Macro-F1 Score

Baseline (No Augmentation) 0.549 0.091 0.156
Category Duplication 0.642 0.089 0.156
Manual Sentence Generation 0.561 0.093 0.159
GPT-3 Sentence Generation 0.552 0.082 0.151

Table 2: A summary of the performance of data-augmented systems for multilabel classification. The highest
performing technique is bolded for weighted recall, weighted precision, and macro F1 score.

category of sarcasm. A TF-IDF vectorizer was used
to extract the 15 most significant and representative
keywords across sentences of each category. Then,
for each input training tweet, all the keywords as-
sociated with the categories of sarcasm the tweet
belonged to were strung together to create a sec-
ondary sequence (Sequence B) that was appended
to the original input tweet (Sequence A) and sep-
arated with a separator token (</s>). This com-
bined sequence was then fed into the BERTBASE
tokenizer as a whole. This was done in an attempt
to help the model be able to better seek out key
phrases and words that might indicate a tweet’s
categorization as sarcastic, ironic, satirical, etc.

After training the multilabel classifier and gener-
ating six predictions for a tweet’s likelihood of cat-
egorization in each of the six sarcastic categories,
the tweet would be marked as valid for a category
if its score was greater than 0.30. This was a rela-
tively low threshold that we felt was necessary to
account for the similarities across tweets belonging
to different categories of satire. Furthermore, we
needed to compensate for the lack of training data
in categories like satire, understatement, and over-
statement, which had 25, 10, and 40 training ex-
amples, respectively. By setting a lower threshold,
we are able to ensure that we are not prohibitively
preventing classifying any tweets as satire, under-
statement, overstatement, or any other category.

2.3.1 Data Augmentation

To support our efforts for multilabel classification,
we explored three data augmentation techniques.

Our first technique was simply duplicating the
satire, understatement, and overstatement cate-
gories to double the quantity of sentences in each of
those categories. This involved copying and pasting
each sentence back into the category to hopefully
strengthen the model’s understanding of sarcastic
keywords, phrases, and qualities. We observed no
meaningful improvement in results.

The second technique involved the manual gen-
eration of sentences to expand the dataset. As
mentioned before, a TF-IDF vectorizer was used
to extract the 15 most relevant and representative
keywords for sentences across each category. See
Figure 2 for some example keywords extracted
through this technique. Using basic sentence tem-
plates, new training data examples were created
with keywords for each satirical category being
substituted into various parts of each new train-
ing datapoint. 30-40 new training examples were
created for each of the satire, understatement, and
overstatement categories. However, this effort did
not yield meaningful or significant improvement in
results.

Sarcasm ”just”, ”like”, ”really”

Understatement ”good”, ”like”, ”sorta”

Overstatement ”hate”, ”love”, ”worst”

Table 3: A subset of keywords observed as the most
representative for sarcasm and under/over-statements
through a TF-IDF vectorizer.

A final technique involved utilizing GPT-3 for
generating new sentences. A prompt like ”Gener-
ate 10 sarcastic sentences” or ”Create 15 rhetorical
questions” was provided to the model, however it
was observed that the produced sentences were par-
ticularly repetitive with little variance in structure
or style. The difference between most sentences
produced by the model was a simple substitution
in topic, object, or subject, especially as we asked
the model to produce an increasing number of new
sentences. A lack of training data to properly fine-
tune the GPT-3 model was likely an issue here, and
this technique was eventually dropped.

Results for each of these techniques are provided
in Table 2, with the highest performing technique
bolded for each metric. As observed, while most
techniques seemed to perform better than the base-
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line, the improvements are marginal and unreliable.

2.3.2 Additional Techniques
It is worth noting that another system was explored
to conduct multilabel classification. Specifically,
we attempted to create 6 binary classifiers (one for
each category of sarcasm) with the intent of aggre-
gating results across all binary classifiers to mimic
a multilabel classifier’s output. This, however, was
complicated by the severe lack of training exam-
ples for some categories as well as issues with com-
putational capacity and consumption on Google
Colab Pro. This system was eventually dropped
in favor of a single multilabel classifier built with
BERTBASE, as described earlier.

3 Experimental Setup

3.1 Dataset

The task provided two training data files, one for
English and another for Arabic. In each case, the
task organizers provided the sarcasm labels for
each tweet themselves. This avoided the need to
rely on existing proxies like predefined tags or third-
party labelers (Abu Farha et al., 2022).

Within the English training file, there are nine
pieces of information: the tweet, a 0/1 value for
the presence of sarcasm, a non-sarcastic rephrase of
that tweet, and a 0/1 value for each of the various
sarcasm subtypes (general sarcasm, irony, satire,
understatement, overstatement, and rhetorical ques-
tion). This dataset contained 3466 training exam-
ples, of which 866 were sarcastic and the remain-
ing 2600 were not. These 866 examples are further
split into multiple labels as follows: 713 for sar-
casm, 155 for irony, 25 for satire, 10 for understate-
ment, 40 for overstatement, and 101 for rhetorical
question. The underresourced nature of categories
like satire, understatement, and overstatement in-
troduced challenges for our multilabel classifier
system in extracting and understanding the key
characteristics belonging to those categories. It
is worth noting that data quality is, at times, ques-
tionable, with training examples such as ”whoop
diddy scoop poop” adding random noise into an
already scarce dataset.

Within the Arabic training file, there are four
pieces of information: the tweet, a 0/1 value for
the presence of sarcasm, a non-sarcastic rephrase
of the tweet, and a dialect label for that particular
tweet (e.g. Nile, Maghreb). This training file con-
tained 3102 training examples, of which 745 were

sarcastic and the remaining 2357 were not.

3.2 Evaluation Metric

For both the English and Arabic binary classifi-
cation approaches, a confusion matrix was pro-
duced to determine accuracy, precision, recall, and
F-1 scores. For the multilabel classification task,
weighted precision/recall for each category as well
as macro F-1 scores were utilized.

3.3 Implementation Details

All three systems were developed with the PyTorch
framework, HuggingFace’s transformers library for
the BERT, RoBERTa, and XLM-RoBERTa mod-
els, and Google Colab Pro using a single Tesla
P100-PCIE-16GB GPU. For Tasks A and C, the
English and Arabic binary classifiers trained for
those problems shared the same hyperparameters:
training and validation batch sizes of 16, a max-
imum sequence length of 256, 6 training epochs,
and an AdamW optimizer with a learning rate of
3e-5 and epsilon value of 1e-8. For Task B, the En-
glish multilabel classifier’s training policy utilized
the following hyperparameter values: training and
validation batch sizes of 16, a maximum sequence
length of 256, 4 training epochs, and an AdamW
optimizer with a learning rate of 1e-05 and epsilon
value of 1e-12. All other hyperparameter values
were set to their defaults according to the Hugging-
Face implementation. It should also be noted that
for all systems, a random seed was set for the sake
of reproducibility.

4 Experimental Results

Team Dartmouth received the following ranks:

• Task A (English): 13th place

• Task A (Arabic): 9th place

• Task B: 14th place

• Task C (English): 12th place

• Task C (Arabic): 10th place

Table 4 on the following page displays a tabular
summary of all official scores received on each of
the five subtasks, which vary from accuracy and
precision to recall and macro F1 scores. As ob-
served, our best performing system for binary clas-
sification was the English classifier developed for
Task A, whereas our worst performing for binary
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Binary Classification Tasks Scores
F-1 Sarcastic F1-Score Precision Recall Accuracy

Task A (English) 0.386 0.635 0.625 0.648 0.804
Task A (Arabic) 0.350 0.529 0.581 0.665 0.597
Task C (English) - 0.659 - - 0.660
Task C (Arabic) - 0.679 - - 0.680

Multilabel Scores
Macro F1 F1-Sarcasm F1-Irony F1-Satire F1-Under F1-Over F1-Rhet-Q

Task B 0.0590 0.2293 0.0202 0.0824 0.0000 0.0077 0.0143

Table 4: A tabular summarization of the performance of all three systems across all five subtasks, reporting various
metrics including accuracy, precision, recall, and regular/macro F-1 scores. Experiments revealed that further data
augmentation did not improve the scores of any system.

Figure 3: A confusion matrix of the English binary
classifier developed for Tasks A and C.

Figure 4: A confusion matrix of the Arabic binary clas-
sifier developed for Tasks A and C.

classification was the Arabic classifier also devel-
oped for Task A. For the multilabel classification
task, macro F-1 as well as weighted categorical
scores are provided.

Confusion matrices displaying our best develop-
ment metrics are provided in Figures 3 and 4. This
reveals insights into the relatively imbalanced split
of the training dataset, creating issues which were
further compounded by the overall small number
of training examples.

4.1 Case Study: Task A (English)

It’s worth exploring Task A (English) in greater
detail to understand the elements that factored into
our model’s scores. To begin, it should be noted
that certain inputs in the test dataset for this subtask
were sometimes single tweets like ”Followed” or
”Pinball!”, while other tweets were random noise,
such as the following:

”20:00 GMT:

Temp: 13.7°C,

Wind: SSW, 3 mph (ave), 8 mph (gust),

Humidity: 92

Rain (hourly) 0.0 mm,

Pressure: 1017 hPa, rising slowly.”

The prevalence of random noise such as the
above in the test set can make it somewhat chal-
lenging for the model at hand to be able to relate
the test input to what it has learned. There’s very
little context to learn from in one-word tweets like
the ones mentioned, and this may bias the model to-
wards marking such tweets as non-sarcastic, when
in reality they may be sarcastic (e.g. perhaps the
one-word tweet was a sarcastic remark towards an-
other tweet). Granted, this is the nature of text in
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short-form online social forums like Twitter, but
it does contribute to a concrete decrease in model
performance.

Furthermore, our technique of masking verbs
and adjectives in the original tweet while simul-
taneously stringing those verbs and adjectives to-
gether into a second sequence to be fed into the
tokenizer alongside the tweet input may have over-
fit the model towards certain words and phrases
from the training dataset. While this may have
been helpful in identifying sarcastic tweets which
did include those words, it may also have caused
the model to overlook other sarcastic sentences that
did not include them in the test dataset.

As such, random noise, poor quality, and cer-
tain learning techniques may have been factors in
contributing to the scores received by our binary
and multilabel classification systems. The same
observations apply to Tasks A and C in Arabic as
well as Task B. In particular, our technique of ex-
tracting and appending the top 15 words for each
category a tweet belongs to may have inadvertently
overfit the model to overlook other textual signals
that indicate a tweet’s sarcastic categorization in
preference for certain words and phrases.

5 Conclusion and Future Work

In this paper, we have described three binary and
multilabel sequence classification systems using
the BERT, RoBERTa, and XLM-RoBERTa ar-
chitectures from HuggingFace for the detection
of sarcasm in English and Arabic tweets. We
found that additional work to augment the train-
ing data with duplication of sentences and manu-
ally/automatically synthesizing new sarcastic sen-
tences did not improve the results of the model.
Furthermore, challenges were observed with the
multilabel classifier in learning to extract the key
characteristics that categorize a tweet as a distinct
example of satire, understatement, or overstatement
– categories which were generally underresourced
in the training dataset.

Further investigation could include implement-
ing six binary classifiers instead of a single multil-
abel sequence classifier for Task B. Given enough
training time, data, and resources, it could certainly
be the case that aggregating results across special-
ized binary classifiers provide more concrete re-
sults than what has been produced. In particular,
this may allow each of the binary classifiers to more
deeply learn the unique characteristics, keywords,

and structure of the sarcastic sentences it ingests.
It would also be interesting to see how the re-

sults across all three systems change with sufficient
training data, with perhaps tens of thousands of
more valid examples that can allow the models to
truly capture the essence of sarcasm across a wide
and varied set of training examples.
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(Liu et al., 2019) (Conneau et al., 2019)
(Abu Farha et al., 2022) (Obeid et al., 2020)
(Alkhatib, 2017) (Devlin et al., 2018)
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Abstract

Robust sarcasm detection is critical for creat-
ing artificial systems that can effectively per-
form sentiment analysis in written text. In this
work, we investigate AI approaches to identi-
fying whether a text is sarcastic or not as part
of SemEval-2022 Task 6. We focus on creating
systems for Task A, where we experiment with
lightweight statistical classification approaches
trained on both GloVe features and manually-
selected features. Additionally, we investigate
fine-tuning the transformer model BERT. Our
final system for Task A is an Extreme Gradient
Boosting Classifier (XGB Classifier) trained on
manually-engineered features. Our final sys-
tem achieved an F1-score of 0.2403 on Subtask
A and was ranked 32 of 43.

1 Introduction

Sarcasm is the use of irony–which communicates
the opposite of what is said–to humorous and de-
risive effect (Bouazizi and Ohtsuki, 2016). On the
web, sarcasm is ubiquitous–not least because so-
cial media users often apply sarcasm to incorporate
a sardonic sense into their statements (Hancock,
2004). This poses a substantial challenge to artifi-
cial systems evaluating tasks including sentiment
analysis (Liu and Zhang, 2012). It is already a chal-
lenge enough for human annotators to determine
what is intended to be taken at face-value or not
in context-lacking text; it is even more difficult for
NLP systems to distinguish between what should
be taken literally and what is sarcastic.

Task 6 of SemEval-2022 (Abu Farha et al., 2022)
provides an environment to build systems to ap-
proach these challenges. In particular, Subtask A

in Task 6 (Table 1) of SemEval-2022 tests the abil-
ity of automated systems to determine whether
a text is sarcastic or non-sarcastic. We investi-
gate whether lightweight models (which use few
computational resources) are able to effectively
identify sarcastic speech; we also experiment with
fine-tuned Transformer-based models to identify
whether larger models perform better.

2 Dataset

In Subtask A, we train our models on the official
SemEval-2022 Task 6 English training set, which
was curated from a set of tweets. Each sentence
(examples in Table 6) has been annotated for sar-
casm status by the text authors themselves, with 1
denoting a sarcastic text and 0, a non-sarcastic text.

Task Description Metric

A Determine whether a given F1,
text is sarcastic or non-sarcastic. sarcastic-class

Table 1: Subtask A overview.

2.1 Train-test Split

The dataset has a total of 4868 examples, with 3468
being part of the training set, and 1400 being part
of the test set. In total, there are 867 sarcastic and
2601 non-sarcastic texts in the training set. As the
testing set labels were not provided until after the
competition, we created our own validation set with
a 75 : 25 train : test split. Thus, our train set has
2774 examples and our test set has 693 examples.
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Feature Description LR Coefficient

POL Words referring to political leaders (e.g. "Boris," "Trump"). 0.127
GAY The word "gay." 0.008

BANG The character "!". -0.067
AT The character "@". 0.005

DEFINITELY The word "definitely." 0.035
PLEADING FACE The pleading face emoji. 0.136

EMOJI The grinning face emoji. 0.095
HASH The character "#". -0.095

THANK The word "thank." 0.008
HAHA The word "haha." 0.095

Table 2: Manual features for sarcasm detection.

Model F1 Sarcastic F-score Precision Recall Accuracy

XGBClassifier 0.2403 0.1332 0.3651 0.4792 0.1464

Table 3: Official test set performance of our best-performing lightweight model (XGBClassifier trained with manual
features) on Subtask A (binary classification). LR coefficient represents the linear regression coefficient value for
the given feature.

3 Methods

3.1 Subtask A: Sarcasm Detection
This subtask examines whether a given text is sar-
castic, and we investigate using the following mod-
els. Our lightweight machine learning models
were implemented using the Scikit-learn library
(Pedregosa et al., 2011):

• Logistic Regression is a supervised learning
algorithm that predicts a binary outcome using
a logistic function.

• GaussianNB is a type of Naive Bayes algo-
rithm used for continuous data that follows a
normal distribution (Qiu et al., 2020).

• SVM is a non-probabilistic binary linear su-
pervised learning algorithm that can be used
for classification and regression (Yu and Kim,
2012).

• AdaBoostClassifier is a meta-algorithm that
assigns higher weights to incorrectly classified
samples to improve the following classifiers
(Solomatine and Shrestha, 2004).

• XGBClassifier stands for eXtreme Gradient
Boosting Classifier and is a decision tree
based algorithm that uses gradient boosting
methods to avoid overfitting (Kumar et al.,
2021).

• BERT is a transformer based algorithm that
uses masked language modeling. We fine-
tune BERT–an approach commonly used in
tasks such as sentiment prediction–which was
pretrained on language modelling and next-
sentence prediction tasks. In particular, we
use BERT base cased, BERT large cased,
BERT base uncased, and BERT large uncased
(Devlin et al., 2018).

3.2 Results

On the unofficial evaluation set, XGBClassifier per-
formed the best compared to other models. On the
official evaluation set, we achieve a F1-score of
0.2403. We were ranked 32 out of 43. Our official
and unofficial results are listed in Table 3 and Ta-
ble 4 respectively. The hyperparameters that we
used for all models trained on manual features is
included in Table 5.

4 Conclusion

Our models were trained to determine whether texts
were sarcastic or not. For the most part, our mod-
els struggled to detect sarcasm in text—-as was
expected, given that the task was quite challeng-
ing even for humans. We find that the models that
achieve the highest degree of success in detect-
ing sarcasm were GaussianNB and XGBClassifier
models.
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Model Features positive-class F1 Accuracy Normalize

LogisticRegression Manual 0.44 0.34 True
LogisticRegression GloVe 0.09 0.71 False
GaussianNB Manual 0.43 0.34 True
GaussianNB GloVe 0.42 0.47 False
SVM Manual 0.30 0.63 True
SVM GloVe 0.08 0.72 False
AdaBoostClassifier Manual 0.06 0.72 False
AdaBoostClassifier GloVe 0.23 0.68 False
XGBClassifer Manual 0.45 0.32 False
XGBClassifier Glove 0.38 0.59 False

BERT base cased – 0.32 0.63 False
BERT large cased – 0.14 0.50 False
BERT base uncased – 0.40 0.75 False
BERT large uncased – 0.26 0.63 False

Table 4: Unofficial validation set performances of candidate models. For this task, the highest-performing lightweight
model is XGBClassifier and the highest-performing transformer model is BERT base uncased.

We also find that using manual features, as listed
in Table 2, is a fruitful approach to determining
the sarcasm status of a sentence. In particular, we
preprocess the data by identifying the number of
instances of characters or words described in each
feature category, then train our models on these
summed feature values. Our top-scoring classifiers
yielded substantially greater postive-class F1 scores
with manual features than with automatic GloVe
features. That being said, it should be noted that
using these manual features also lowered the ac-
curacy greatly, which indicates a tradeoff between
F1 score and accuracy due to the extreme class
imbalance of the dataset.

Finally, fine-tuning BERT achieves reasonable
results while detecting sarcasm. However, this
method is still inferior to a lightweight approach.

Overall, our best model, the XGBClassifier with
manually engineered features, did not perform
significantly better than the Logistic Regression
model. Our results demonstrate that boosting al-
gorithms can predict sarcasm in text to a moderate
degree of success.
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Model Hyperparameter Task 1a

GaussianNB priors 0.025, 0.975
var_smoothing 1e-09

SVM class_weight balanced
C 1.0
kernel rbf
degree 50

AdaBoostClassifier base_estimator max_depth = 1
class_weight = {0: 0.1, 1: 0.9}

nestimators 50
learning_rate 1.0
loss linear

XGBClassifier nestimators 100
max_depth 5
eta 0.3
min_child_weight 1
booster gbtree

Table 5: Hyperparameters for best-performing Manual models.

Sentence Sarcastic

yeah your girl is fine but does she pass 1
out while giving blood

just impulse bought a mandolin and in 3-5 0
buisness days i will impulse learn some jigs

Table 6: Examples that are sarcastic and not sarcastic, respectively.
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Abstract

The paper describes our submission to
SemEval-2022 Task 6 on sarcasm detection
and its five subtasks for English and Arabic.
Sarcasm conveys a meaning which contradicts
the literal meaning, and it is mainly found on
social networks. It has a significant role in un-
derstanding the intention of the user. For detect-
ing sarcasm, we used deep learning techniques
based on transformers due to its success in the
field of Natural Language Processing (NLP)
without the need for feature engineering. The
datasets were taken from tweets. We created
new datasets by augmenting with external data
or by using word embeddings and repetition
of instances. Experiments were done on the
datasets with different types of preprocessing
because it is crucial in this task. The rank of
our team was consistent across four subtasks
(fourth rank in three subtasks and sixth rank in
one subtask); whereas other teams might be in
the top ranks for some subtasks but rank dras-
tically less in other subtasks. This implies the
robustness and stability of the models and the
techniques we used.

1 Introduction

Sarcasm is a figurative language where speakers
or writers usually mean the contrary of what they
say. Recognizing whether a speaker or writer is
sarcastic is essential to downstream applications
to understand the sentiments, opinions, and beliefs
correctly (Ghosh et al., 2020). Sarcasm is ubiqui-
tous on the social media text and, due to its nature,
can be highly divisive of computational systems
that perform tasks on that kind of data such as sen-
timent analysis, opinion mining, and harassment
detection (Van Hee et al., 2018; Bing, 2012; Rosen-
thal et al., 2014; Maynard and Greenwood, 2014).

Our team Plumeria participated in SemEval 2022
task 6 (Abu Farha et al., 2022) in all its subtasks
on English and Arabic. Previous shared tasks

*These authors contributed equally to this work

on sarcasm detection (Hee et al., 2018; Ghanem
et al., 2019; Ghosh et al., 2020; Abu Farha et al.,
2021) have only two subtasks; one is sarcasm detec-
tion and another is predicting the type of sarcasm.
However, in SemEval 2022 task 6 (Abu Farha
et al., 2022) organizers formulate three subtasks for
both languages following the methods described in
(Oprea and Magdy, 2020).

Using the two datasets for English and Arabic,
organizers formulate three subtasks as follows:

• Subtask A (English and Arabic): It is a bi-
nary classification subtask where submitted
systems have to predict whether a tweet is
sarcastic or not.

• Subtask B (for English only): It is a multi-
label classification subtask where submitted
systems have to predict one or more labels out
of six ironic-speech labels: sarcasm, irony,
satire, understatement, overstatement, and
rhetorical question.

• Subtask C (English and Arabic): It is a bi-
nary classification subtask. Given two texts, a
sarcastic tweet and its non-sarcastic rephrase
which conveys the same meaning, submitted
systems have to predict which text is the sar-
castic one.

In this shared task, our submitted systems primar-
ily focused on the transformer based approaches
because of their success in the field of NLP. The
multi-head attention mechanism in transformers
captures the relations between the words in a sen-
tence which helps in identifying sarcasm. More-
over, to capture long-term dependencies between
words, especially the contradicting ones, we used a
hierarchical network by stacking a BiLSTM layer
on top of a transformer. In order to emphasize the
important tokens afterwards, we tried adding a dot-
product attention layer to give different weights to
the tokens. For prediction, the final information
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are passed to a fully connected layer followed by a
linear layer with a softmax activation function for
classification (i.e. subtask A and C) or a sigmoid
activation function for multi-label classification (i.e.
subtask B).

The major constraint of a neural network is that
they need lots of data for training to give satisfac-
tory results. In addition, if the dataset is imbalanced
with few instances of a class, this can result in poor
results for detecting instances that belong to the
class. This motivates us to create biased datasets,
towards the concerned class/label, from existing
datasets by increasing the number of instances of
such a class/label. A detailed explanation of dataset
creation is in section 3. We also illustrate the com-
position of created datasets in each subtask and the
performance of the models on them.

The rank of our team was consistent across most
subtasks (fourth rank in three subtasks, sixth rank
in one subtask, and tenth rank in one subtask);
unlike many teams which scored high in one or
two subtasks but scored considerably less in other
subtasks. This shows that the robustness and the
consistency of our methods. The biased datasets
were crucial for subtask A and subtask B, while
augmenting a dataset plays a key role in subtask C.
We released the codes and datasets for all subtasks
via GitHub1.

The paper is organized as follows. Section 2 lists
some abbreviations used across the paper. Section
3 shows the datasets we used for fine-tuning the
models. In Section 4 we list the preprocessing
types applied on the datasets. The experiments and
results are presented in section 5, and the analysis
of the results is presented in section 6. This is
followed by a conclusion in section 7.

2 Abbreviations

The following abbreviations were used frequently,
and are shown in Table 1.

3 Datasets

The organizers provided datasets for English and
Arabic. Regardless of the dataset, these are the
fields in each row of a dataset:

• Tweet: a text specifying a tweet. This field is
for all subtasks.

• Sarcastic: a binary field specifying whether
a tweet is sarcastic or not. This field is for

1https://github.com/mosab-shaheen/
iSarcasm-SemEval-2022-Task-6

Full Form Abbreviation
Language Lang
Sarcastic S

Non-Sarcastic NS
English En
Arabic Ar

External Ext
True Positive TP
False Positive FP
True Negative TN
False Negative FN

Table 1: Abbreviations used in the paper.

subtask A.

• Rephrase: a text specifying a non-sarcastic
rephrase of a sarcastic tweet. This field is for
subtask C.

• Sarcasm, Irony, Satire, Understatement,
Overstatement, and Rhetorical question
(English only): These binary fields are the
labels of a sarcastic tweet. These fields are for
subtask B.

• Dialect (Arabic only): a text specifying the
dialect of a tweet from one of five dialects:
Modern Standard Arabic (MSA), Egyptian,
Levantine, Maghrebi, and Gulf. This field is
for subtask A and C.

In the following sections we will describe the
datasets given by the organizers, other available
datasets, and augmented datasets.

3.1 Datasets Given by Organisers (Original)
The organizers released two training datasets for
Arabic and English to train the systems on them for
all subtasks. Later on, they released a test dataset
for each subtask. We called these datasets "orig-
inal" datasets as they are the official datasets for
the subtasks. Information about the distribution of
sarcastic and non-sarcastic tweets is presented in
Appendix A.7 in Table 27 and Figure 6. Further-
more, information about sarcastic labels for subtask
B is presented in Appendix A.7 in Table 28 and
Figure 7.

3.2 Other Available Datasets (External)
The datasets in this section are not the offi-
cial datasets and thus we called them "external"
datasets. However, we used these datasets for sub-
task A and subtask B as they are created for similar
subtasks.
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Datasets Downloaded Using Twitter API: Ini-
tially the organizers provided the participants with
train and test datasets which covered subtask A and
subtask B for English only (later on the original
datasets explained in subsection 3.1 were released
instead). However, they provided the tweet ID
instead of the tweet text and they asked the partici-
pants to download the tweet text using the Twitter
API2 and the tweet ID. Therefore, we downloaded
the tweet texts we found for these two datasets. We
were able to download 2841 tweets for training and
713 tweets for testing as shown in Table 27. The
distribution of the tweets over the sarcastic labels
is presented in Table 28.

Datasets of SemEval-2018 Task 3: These
datasets are on same subtasks of subtask A and
subtask B but for SemEval 2018 (Hee et al., 2018).
We used the dataset for subtask A which has emo-
jis and sarcasm hashtags. The datasets are avail-
able for download in this link3. More information
about the distribution of sarcastic and non-sarcastic
tweets is presented in Table 27.

ArSarcasm-v2 Dataset: It contains train and
test datasets for sarcasm detection in Arabic
(Abu Farha et al., 2021). Each row contains a tweet,
sarcastic class, sentiment, and dialect. The datasets
are available for download in this link4. More in-
formation about the distribution of sarcastic and
non-sarcastic tweets is presented in Table 27.

3.3 Augmented Datasets
In addition to the original and external datasets,
we created more datasets with more number of
instances using the following methods:

1. Augmenting an original dataset with ex-
ternal datasets: We added instances to an
original dataset from the matching external
datasets either to balance it or just to augment
it, and we filtered out the NAN entries .

2. Augmenting a dataset using word embed-
dings: For word embeddings we used Gensim
library5 together with GloVe word vectors6

trained on two billion tweets with 100 dimen-
sion word vectors (glove-twitter-100). To cre-
ate new instances in a dataset, we took a copy
of one instance in the dataset and replaced up
to four keywords in a tweet (or its rephrase)

2developer.twitter.com/en/docs/api-reference-index
3SemEval2018-Task3 Dataset
4ArSarcasm-v2
5Gensim Library
6GloVe Word Vectors

by replacing each keyword with one of the top
three similar words according to the similarity
between the corresponding word vectors, then
we added the copied modified instance to the
dataset and we repeated the process for other
instances till we reached the required number
of instances.

3. Augmenting a dataset by repeating in-
stances: We repeated instances from a dataset
mostly to balance the classes/labels in a
dataset.

The final datasets used for each subtask is ex-
plained in the dedicated section for it.

4 Preprocessing

• Type I: no preprocessing

• Type II: Emotion icons were converted to
their string text using the "emoji" Python
library. Then, URLs were converted to
"HTTPURL" token, also every mention in a
tweet was converted to "@USER" token using
regular expressions. These conversions was
done because the BERTweet model (we will
talk about it later) was pre-trained on tweets
after these conversions.

• Type III: same as in Type II besides convert-
ing the smiley face codes e.g. ":-)" and ":)"
to one of three values (smiley, sad, and play-
ful). More than two successive occurrences
of any punctuation like in "why?!!!!" were
removed, then we removed more than two
successive occurrences of same character like
in "Superrrr" which can be found frequently
in tweets. Moreover, a contraction (e.g. "isn’t
and "’cause") was replaced with its full form
(e.g. "is not" and "because").

• Type IV: same as in Type III besides stem-
ming and stop-word removal. For English
we used WordNet lemmatizer and for Arabic
we used ISRI stemmer. The NLTK Python
library7 was used for this purpose.

5 Approaches and Results for Subtasks

5.1 Conventions

In the following tables, if a table cell is highlighted
with a light brown color, it means the score is

7NLTK Python Library
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among the best results, in the corresponding sec-
tion of the table, on the validation dataset; whereas
the one with brown color is the highest score. Fur-
thermore, if a cell is highlighted with a green color,
it means that the score is our final submission score
(released by the organizers) in the subtask on the
test dataset; whereas the one with blue color is the
score of a submitted model but not the final one (a
team can have multiple submissions).

5.2 Subtask A (English)

5.2.1 Datasets
• Original: The train split of the original

dataset for English in Table 27 is splitted into
train and validation datasets as shown in Table
2.

• External: As the measure for this task is F1-
score for the sarcastic class, thus we created
datasets which are biased towards the sarcastic
class as shown in Table 29 in Appendix A.7.

Dataset Total S% NS%
Original Train 2080 25 75
Original Val 1388 25 75

Table 2: Original datasets for subtask A (English) with
the total number of tweets and the percentage of sarcas-
tic (S%) and non-sarcastic (NS%) tweets.

5.2.2 Approaches
We primarily focused on the transformer based
models. Since the task is a binary classification
on tweets, the excellent choice to start with is
BERTweet-base8 and BERTweet-large9 (Nguyen
et al., 2020), a pre-trained language model on
845M English Tweets. Likewise, we tried the
ELECTRA10 (Clark et al., 2020) replaced token
detection model (a pre-training task in which the
model learns to distinguish real input tokens). In
ELECTRA model, some tokens in the input are
replaced with sample tokens instead of masking
the tokens as in BERT. Moreover, we used a hierar-
chical network by passing the input tokens to the
BERT model, then each token embedding is passed
to a Bi-LSTM layer either with or without attention.
The architecture of the BERT model, ELECTRA
model, and hierarchical network is shown in Ap-
pendix A.3, A.4, and A.1 respectively. The final

8HuggingFace Bertweet-Base
9HuggingFace Bertweet-Large

10HuggingFace Electra Large Discriminator

layer of each model was a linear layer with softmax
activation function and we used the cross entropy
loss function.

Note: We ran several experiments on all the ap-
proaches of this subtask with different datasets and
preprocessing types. We also experimented with
different learning rates, epochs, and loss functions
to verify which one is performing best.

5.2.3 Results

Metric: The main metric is F1-score for the sarcas-
tic class.

BERT: We used BERTweet-large in the follow-
ing experiments, as it gave better performance than
BERTweet-base, on the original train dataset shown
in Table 2. We experimented with different learn-
ing rates and preprocessing types, and ran for 5
epochs. The results are shown in Table 3.

Learning
Rate Type Val Test

I 0.0057 0.0293
II 0.5017 0.457
III 0 0

2 e - 6

IV 0 0
I 0.3786 0.5068
II 0.5552 0.4874
III 0.5405 0.4972

3 e - 6

IV 0 0
I 0.5585 0.4981
II 0.4926 0.4717
III 0.5407 0.4772

4 e - 6

IV 0 0
I 0.5275 0.4724
II 0.5655 0.4841
III 0 0

5 e - 6

IV 0 0

Table 3: F1-score of the BERT model for subtask A
(English) on original datasets.

From these experiments we found that Type II
preprocessing is performing better than other types
and same applies for the learning rate 4e-6. We con-
ducted similar experiments on the external datasets
in Table 29 in Appendix A.7 and we found simi-
lar results. We tried using the cross entropy loss
function with and without weights on the external
datasets using the same learning rate, preprocess-
ing type, and number of epochs. We got our best
result on the B4 dataset with weighted loss func-
tion which was our final submission score for this
subtask. The results are shown in Table 4.
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Loss1: Without
Weights

Loss2: W1=1/#NS,
W2=1/#SBiased

Val Test Val Test
B0 0.5784 0.4487 0.5944 0.4519
B1 0.5714 0.4548 0.5738 0.479
B2 0.5767 0.465 0.5951 0.4917
B3 0.601 0.4626 0.5931 0.4817
B4 0.5954 0.4727 0.6025 0.4769
B5 0.5874 0.5142 0.5803 0.5008
B6 0.5858 0.4791 0.5624 0.4884
B7 0.5957 0.5016 0.5637 0.5034
B8 0.584 0.492 0.5814 0.5
B9 0.5723 0.487 0.5554 0.49

Table 4: F1-score of the BERT model for subtask A
(English) on external datasets.

We used 5 epochs and 4e-6 learning rate because
they gave the best results as shown in Appendix
A.5.

The official scores and leader-board ranks of the
teams for subtask A (English) are shown in Table
5.

Rank User F-1 sarcastic
1 stce 0.6052
2 emma 0.5691
3 saroyehun 0.5295
4 ShubhamKumarNigam 0.4769

Table 5: Scores and leader-board ranks for subtask A
(English).

ELECTRA: We used the ELECTRA model on
the external datasets with Type II preprocessing,
6e-6 learning rate, and 5 epochs as they were per-
forming the best as shown in Table 6.

Biased Val Test
B0 0.5525 0.4684
B1 0.4002 0.25
B2 0.5738 0.4762
B3 0.4002 0.25
B4 0.5756 0.4879
B5 0.4002 0.25
B6 0.5468 0.4642
B7 0.5702 0.4789
B8 0.479 0.5073
B9 0.4002 0.25

Table 6: F1-score of the ELECTRA model for subtask
A (English) on external datasets.

BERT+BiLSTM with and without attention:
The results we got using this architecture were not
deterministic (i.e. they change when re-running the

experiment and they may become better or worse
than the results of BERT alone) and thus we did not
use this model for the official submission. More
details about the results of the model can be found
in Appendix A.6.

5.3 Subtask A (Arabic)
5.3.1 Datasets
Original: The train split of the original dataset
for Arabic in Table 27 is splitted into train and
validation datasets as shown in Table 7.

Dataset Total S% NS%
Original Train 1861 24 76
Original Val 1241 24 76

Table 7: Original datasets for subtask A (Arabic).

External: Same as in subtask A (English), we
created datasets which are biased towards the sar-
castic class as shown in Table 30 in Appendix A.7.

5.3.2 Approaches
The approaches used here are similar to subtask A
(English) except for the used transformers. Since
the data is in the Arabic language, we tried some
models from The Computational Approaches to
Modeling Language (CAMeL) research lab 11.
They majorly focused on Arabic and Arabic di-
alect processing, machine translation, text analysis,
and dialogue systems.

The models are available on the Hugging Face
library. CAMeLBERT is a collection of BERT
models pre-trained on Arabic texts with different
sizes and variants (Inoue et al., 2021). They re-
leased pre-trained language models for Modern
Standard Arabic (MSA), dialectal Arabic (DA),
and classical Arabic (CA). We tried CAMeLBERT-
DA and CAMeLBERT-Mix for sarcasm detection.
Likewise, we tried the AraBERT v2 which is a pre-
trained BERT based on Google’s BERT architec-
ture for Arabic Language Understanding12 (Antoun
et al.).

5.3.3 Results
Metric: The main metric is F1-score for the sarcas-
tic class.

BERT: We used CAMeLBERT-Mix in the fol-
lowing experiments as it performed the best among
other BERT models. We applied it on the external
datasets with non-weighted cross entropy loss func-
tion, 5 epochs, and 2e-5 learning rate because they

11HuggingFace CAMeL-Lab
12HuggingFace Bert-Base-Arabert-v02
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gave the best results, which included our final sub-
mission score for this subtask, as shown in Table
8.

Biased Val Test
B0 0.7168 0.3438
B1 0.7025 0.4163
B2 0.7131 0.4071
B3 0.6804 0.4335
B4 0.7015 0.4186
B5 0.6927 0.4332
B6 0.7012 0.4048
B7 0.7124 0.4365
B8 0.6731 0.4589
B9 0.7094 0.4589

Table 8: F1-score of the BERT model for subtask A
(Arabic) on external datasets.

BERT+BiLSTM+Attention: We used attention
with BiLSTM on top of BERT model. The re-
sults also were not deterministic. However, the
best results for this architecture occurred when us-
ing 5 epochs and 9e-6 learning rate on B3 and B9
datasets as shown in Table 9.

Biased Hidden
State Size Val Test

B3 50 0.6849 0.4234
B9 1000 0.7123 0.4693

Table 9: F1-score of the BERT+BiLSTM+Attention
model for subtask A (Arabic).

The official scores and leader-board ranks of the
teams for subtask A (Arabic) are shown in Table
10.

Rank User F-1 sarcastic
1 Abdelkader 0.5632
2 Aya 0.5076
3 rematchka 0.4767
10 ShubhamKumarNigam 0.4072

Table 10: Scores and leader-board ranks for subtask A
(Arabic).

5.4 Subtask B

5.4.1 Datasets
Original: The train split of the original dataset for
English in Table 28 in Appendix A.7 is splitted into
train and validation datasets as shown in Table 11.

External: The original and external datasets
presented in Table 28 in Appendix A.7 (without

Sarcasm Irony Satire
Dataset Total Under-

statement
Over-

statement
Rhetorical
question

67.60% 15.10% 2.60%Original
Train

606
1% 3.50% 10.20%
70% 14.20% 1.90%Original

Val
261

1% 4.50% 8.40%

Table 11: Original datasets for subtask B (English).

the validation dataset) were added together to form
a new dataset (Ext-NB). Then the resulting dataset
was balanced either by using word embeddings
(Ext-UW) or by repeating instances (Ext-UR). We
created a dataset (Ext-EB) to give more importance
to the labels of low number of instances by
repeating the instances of these labels up to the
limits specified by these heuristic formulas:
#irony=#sarcasm*(1+1/sqrt(#irony)) (1)
#satire=#sarcasm*(1+2/sqrt(#satire)) (2)
#understatement=#sarcasm*(1+3/sqrt(understatement)) (3)
#overstatement=#sarcasm*(1+1.5/sqrt(overstatement)) (4)
#rhetorical=#sarcasm*(1+1.2/sqrt(#rhetorical)) (5)

The datasets are shown in Table 31 in Appendix
A.7.

5.4.2 Approaches

This subtask primarily focused on BERTweet-large.
As it is a multi labeling subtask, we used sigmoid as
the activation function in the last layer and binary
cross entropy as the loss function.

5.4.3 Results

Metric: The main metric is Macro-F1 score.
BERT: We used BERTweet-large in the follow-

ing experiments on the external datasets using 5
epochs, 6e-6 learning rate, and Type II preprocess-
ing. The results are shown in Table 12 which in-
cluded our final submission score for this subtask.

Dataset Val Test
Ext-NB 0.1513 0.038
Ext-UW 0.318 0.0716
Ext-UR 0.3412 0.076
Ext-EB 0.4152 0.0778

Table 12: Macro-F1 score of the BERT model for sub-
task B (English) on external datasets.

The official scores and leader-board ranks of the
teams for subtask B (English) are shown in Table
13.
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Rank User macro F1-score
1 Duxy 0.163
2 Abdelkader 0.0875
3 robvanderg 0.0851
6 ShubhamKumarNigam 0.0778

Table 13: Scores and leader-board ranks for subtask B
(English).

5.5 Subtask C (English)

5.5.1 Datasets
Original: The train split of the original dataset for
English in Table 27 in Appendix A.7 is splitted
into train and validation datasets. As we do not
have external datasets here, so we augmented the
train split once with word embeddings (Original-
Embedding) and once with repetition (Original-
Repetition). We swapped between the tweet and
its rephrase for half of the instances together with
flipping the value of the sarcastic field, so that the
model will be able to learn. Otherwise, it may
always predict the first text as the sarcastic tweet
and the second one as its non-sarcastic rephrase.
The datasets are shown in Table 14.

Dataset Total
Original-Train 606

Original-Validation 261
Original-Embedding 1606
Original-Repetition 1606

Table 14: Original datasets for subtask C (English).

5.5.2 Approaches
Organizers provide a sarcastic text, and its non-
sarcastic rephrase, i.e., two texts convey the same
meaning. Since the input format changed in this
subtask, we input both texts together to the BERT
model as one text separating them by the sepa-
rating token. We focused on transformers which
are trained on question-answering tasks. We tried
BERT models trained on the Stanford Question
Answering Dataset (SQuAD) dataset (Rajpurkar
et al., 2018). SQuAD is a reading comprehension
dataset consisting of questions posed by crowd-
workers on a set of Wikipedia articles.

We took models from the Hugging Face library;
one is BERT large model (cased)13, trained on
whole word masking, and fine-tuned on the SQuAD
dataset. Another is BERT base model (uncased)14,

13HuggingFace Bert-Large-Cased-Whole-Word-Masking-
Finetuned-Squad

14HuggingFace Bert-Base-Uncased-Squad2

trained on Masked language modeling (MLM), and
fine-tuned on the SQuAD dataset.

5.5.3 Results
Metric: The main metric is the accuracy.

BERT: We used BERT large model (cased) on
the original datasets, because it gave better results
compared to the other models, using 15 epochs,
8e-6 learning rate, and the cross entropy as the loss
function. The results are shown in Table 15. We
did our submission using Type I preprocessing as
it gave the best result on the validation dataset.

Dataset Type Val Test
I 0.951 0.79
II 0.9395 0.8
III 0.9193 0.83

Original-
Training

IV 0.9135 0.79
I 0.9454 0.83
II 0.9385 0.8
III 0.9366 0.82

Original-
Embedding

IV 0.8588 0.72
I 0.9395 0.8
II 0.9222 0.815
III 0.9078 0.8

Original-
Repetition

IV 0.9078 0.68

Table 15: Accuracy of the BERT model for subtask C
(English) on original datasets.

The official scores and leader-board ranks of the
teams for subtask C (English) are shown in Table
16.

Rank User Accuracy
1 emma 0.87
2 lizefeng 0.855
3 leon14138 0.805
4 ShubhamKumarNigam 0.79

Table 16: Scores and leader-board ranks for subtask C
(English).

5.6 Subtask C (Arabic)
5.6.1 Datasets
Original: The datasets were generated in the same
way as in subtask C (Engligh) and are shown in
Table 17

5.6.2 Approaches
The approached used here are similar to subtask C
(English) except for the used transformers. Since
the data is in the Arabic language, we took a couple
of models from the Hugging Face library like the
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Dataset Total
Original-Train 521

Original-Validation 224
Original-Embedding 1521
Original-Repetition 1521

Table 17: Original datasets for subtask C (Arabic).

multilingual model mBERT base (cased), trained
on the Question Answering (QA) dataset in seven
languages and fine-tuned on the combination of
XQuAD (Artetxe et al., 2020) and MLQA (Lewis
et al., 2020) datasets. We compared their perfor-
mance to the CAMeLBERT-Mix model.

5.6.3 Results
Metric: The main metric is the accuracy.

BERT: We used CAMeLBERT-Mix model, be-
cause it gave better results among the other models,
on the original datasets using 5 epochs, 3e-5 learn-
ing rate, and the cross entropy as the loss function.
The results are shown in Table 18. We used Type
II preprocessing for submitting the results as it is
the best performing.

Dataset Type Val Test
I 0.6242 0.5
II 0.6242 0.5
III 0.6711 0.72

Original-
Train

IV 0.3758 0.5
I 0.8792 0.825
II 0.8792 0.845
III 0.8691 0.845

Original-
Embedding

IV 0.7517 0.71
I 0.8993 0.855
II 0.9262 0.87
III 0.8658 0.86

Original-
Repetition

IV 0.6409 0.705

Table 18: Accuracy of BERT model for subtask C (Ara-
bic) on original datasets.

The official scores and leader-board ranks of the
teams for subtask C (Arabic) is shown in Table 19.

Rank User Accuracy
1 lizefeng 0.93
2 AlamiHamza 0.885
3 maryam.najafi 0.875
4 ShubhamKumarNigam 0.87

Table 19: Scores and leader-board ranks for subtask C
(Arabic).

6 Analysis

6.1 Subtask A

English: There are 1400 instances in the test set
out of which our model correctly classified 1060
instances (TP=155 and TN=905). There are bigger
number of misclassified negative (NS) instances
(FP=295) than the number of misclassified positive
(S) instances (FN=45) and these are reflected in the
precision (34.44) and the recall (77.5). This can
be due to the fact that our model was trained on
B4 dataset (59% S and 41% NS) taking F1-score
for the sarcastic class as the metric for evaluation.
This made the model focus more on identifying
the positive instances sacrificing the considerable
number of misclassified negative instances.

We dived into the details to see when the model
predicted well and when it could not predict prop-
erly. We found that the majority of tweets which
have specific punctuation marks like the exclama-
tion mark were classified correctly. Short tweets
were not classified properly which can be due to the
insufficient information present in the tweets for
classification. Interestingly, the existence of emojis
highly increased the recall but not the F1 score and
this is because sarcastic tweets can be easily rec-
ognized from their emojis but this does not apply
on non-sarcastic ones. Also, tweets which include
opposite emotions tend to be more sarcastic and
to give better F1-score. Moreover, we found that
tweets which contain misspellings or that need hu-
man knowledge to interpret can cause misclassifica-
tion. Examples of all previous cases are presented
in Table 20.

Arabic: There are 1400 instances in the test set
out of which our model correctly classified 903
instances (TP=170 and TN=733). There are bigger
number of misclassified negative (NS) instances
(FP=467) than the number of misclassified positive
(S) instances (FN=30) and these are reflected in the
precision (26.69) and the recall (85). The number
of instances which contain exclamation marks are
less compared to English, and short tweets also
were not classified properly for the same reason.
Tweets that contain emojis were classified poorly
and this is because we used Type II preprocessing
which converted the emojis to text similar to the
preprocessing of the model we used for English
"BERTweet-large" and unlike the preprocessing
of the model we used for Arabic "CAMeLBERT-
Mix".
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Example Prediction
Exclamation Mark

So you think the vaccine is a bad idea then. Glad you have that PHD in immunology! TP
So many error codes in R today! TN

Short Tweets
Probably Jude mate FP

Having the worst time on holiday FN
Opposite Emotions

Don’t you just love Monday mornings, they are even better when its freezing cold and you have
an uncooperative child too! TP

Emojis
Wow, can’t wait to go into ANOTHER lockdown TP

it doesn’t need a consultation. Just ban it FP
Human Knowledge

Max Verstappen is such a clean driver, he never makes dirty moves when racing. FN
Misspelling

Boris has to bring in these restrictions he is dammed if he does and dammed
if he doesn’t. I live Boris.

FP

Table 20: Examples of the cases where tweets were classified correctly and incorrectly in subtask A (English).

6.2 Subtask B

Since the train and test datasets contain a very small
number of instances of the understatement and over-
statement tweets; therefore, the model could not
identify any of them and the scores of them were
zeros as shown in Table 21. For other labels, the
model has far higher recall scores than precision
scores which means the model performed well at
identifying instances that belong to particular labels
at the cost of mislabeling many instances.

Precision Recall F1-score Support
sarcasm 0.1335 0.8333 0.2301 180

irony 0.0708 0.75 0.1293 20
satire 0.0345 0.0204 0.0256 49
under-

statement 0 0 0 1

over-
statement 0 0 0 10

rhetorical_
question 0.061 0.4545 0.1075 11

Table 21: Performance analysis for subtask B.

6.3 Subtask C

The model performed well in this subtask for both
English and Arabic as shown in Table 22. This
can be attributed to the nature of the task where
the sarcastic tweet and its non-sarcastic rephrase
of same meaning are given, besides the ability of
the model to extract the relevant information for
classification.

Precision Recall F1-score Support
English

non_
sarcastic 0.7576 0.8065 0.7812 93

sarcastic 0.8218 0.7757 0.7981 107
Arabic

non_
sarcastic 0.8936 0.84 0.866 100

sarcastic 0.8491 0.9 0.8738 100

Table 22: Performance analysis for subtask C.

7 Conclusion

The paper describes our participation in SemEval-
2022 Task 6. The models used for sarcasm detec-
tion were mainly stand-alone transformers. In addi-
tion to this, we ran other experiments by stacking
a BiLSTM layer with or without attention mecha-
nism on top of the transformers. We created new
datasets for each subtask by augmenting with ex-
ternal datasets, word embedding, or repetition. Our
results shows that the augmented datasets enhanced
the results for most subtasks. Moreover, we found
that the fine-tuned stand-alone transformers gave
the best results especially with Type II preprocess-
ing. We also showed the enhancement when using
a weighted loss function and the effect of using
different learning-rates, epochs, and preprocessing
types. We gave analysis of the performance of the
models for each subtask, and revealed the possible
cases that might have enhanced or deteriorated the
performance. Finally, the rank of our team is con-
sistent across most of the subtasks (the fourth rank)
which shows the robustness of the used techniques.
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A Appendix

A.1 Hierarchical Architecture
Figure 1 shows a hierarchical network based on
a transformer. The input tokens are passed to the
transformer, then the output token embeddings are
passed to a Bi-LSTM layer which can be with or
without attention mechanism.

A.2 Sarcasm Types Description
1. Sarcasm: tweets that contradict the state of

affairs and are critical towards an addressee.
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Transformer

BiLSTM

Attention

Classifier

Figure 1: Hierarchical architecture.

2. Irony: tweets that contradict the state of af-
fairs but are not obviously critical towards an
addressee.

3. Satire: tweets that appear to support an ad-
dressee, but contain underlying disagreement
and mocking.

4. Understatement: tweets that undermine the
importance of the state of affairs they refer to.

5. Overstatement: tweets that describe the state
of affairs in obviously exaggerated terms.

6. Rhetorical question: tweets that include a
question whose invited inference (implicature)
is obviously contradicting the state of affairs.

A.3 BERT Classification Architecture
Figure 2 shows the BERT-base classification ar-
chitecture15. From the output of the final (12th)
transformer, only the first embedding (correspond-
ing to the [CLS] token) is used by a classifier.

A.4 ELECTRA:- Replaced Token Detection
ELECTRA (Efficiently Learning an Encoder that
Classifies Token Replacement Accurately) (Clark
et al., 2020) replaces the MLM of BERT with Re-
placed Token Detection (RTD), which looks to be
more efficient and produces better results. In BERT,
the input is replaced by some tokens with [MASK]

15BERT Fine-Tuning Tutorial with PyTorch by Chris Mc-
Cormick and Nick Ryan

Figure 2: BERT classification architecture.

and then a model is trained to reconstruct the origi-
nal tokens.

In ELECTRA, instead of masking the input, the
adopted approach corrupts it by replacing some in-
put tokens with plausible alternatives sampled from
a small generator network. Then, instead of train-
ing a model that predicts the original tokens, a dis-
criminative model is trained that predicts whether
each token in the corrupted input was replaced by
a generator sample or not.

This approach trains two neural networks, a gen-
erator and a discriminator. Each one primarily con-
sists of an encoder (e.g., a transformer network)
that maps a sequence of input tokens into a se-
quence of contextualized vector representations.
The discriminator then predicts whether it’s fake
by analyzing its data distribution.

A.5 Effect of Learning Rates and Epochs in
Subtask A (English)

In Subtask A (English), we fine-tuned the BERT
model on the B4 dataset with different learning
rates and epochs as shown in Table 23 and Table 24
respectively. As shown in tables the best learning
rate was 4e-6 and the best number of epochs was 5.

A.6 Performance of BERT+BiLSTM with and
without Attention in Subtask A (English)

BERT+BiLSTM: The best results we got using
this architecture were on the B4 dataset with 4e-
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Val Test Learning Rate
0.4002 0.25 1 e - 5
0.5871 0.4558 9 e - 6
0.5913 0.4639 8 e - 6
0.4002 0.25 7 e - 6
0.4002 0.25 6 e - 6
0.5952 0.4883 5 e - 6
0.6025 0.4769 4 e - 6
0.5798 0.475 3 e - 6
0.5644 0.4724 2 e - 6
0.6012 0.5017 1 e - 6
0.4002 0.25 9 e - 7
0.4002 0.25 8 e - 7

Table 23: The effect of learning rates on the perfor-
mance of the BERT model on the B4 dataset with
weighted loss function using F1-score.

Val Test Epochs
0.5282 0.5304 1
0.5877 0.5092 3
0.6025 0.4769 5
0.6019 0.4647 7
0.5856 0.457 10
0.6017 0.5099 13
0.594 0.475 15
0.575 0.4943 17
0.5882 0.4675 20
0.5938 0.4633 23
0.575 0.4926 25

Table 24: The effect of epochs on performance of the
BERT model on the B4 dataset with weighted loss func-
tion using F1-score.

6 learning rate, 10 epochs, and 50 LSTM hidden
state size. Table 25 shows the results using same
hyperparameters but with different hidden state
sizes.

BERT+BiLSTM+Attention: The best results
we got using this architecture were on the B3
dataset with 4e-6 learning rate, 5 epochs, and 600
LSTM hidden state size. Table 26 shows the re-
sults using same hyperparameters but with different
hidden state sizes.

A.7 More Information about the Datasets:

Total number of tweets and percentage of sarcastic
and non-sarcastic tweets in each dataset for subtask
A is shown in Table 27, and the total number of
tweets and percentage of sarcastic labels in each
dataset for subtask B is shown in Table 28.

External datasets for subtask A (English) is

Hidden
State Size Val Test

50 0.6027 0.4741
100 0.5882 0.4765
300 0.5813 0.4627
600 0.561 0.4702
900 0.5831 0.4516

Table 25: F1-score of the BERT+BiLSTM model for
SubTask A (English) on the B4 dataset.

Hidden State
Size Val Test

50 0.5726 0.4685
100 0.5978 0.468
300 0.5935 0.4627
600 0.6087 0.4625
900 0.5777 0.4618

Table 26: F1-score of the BERT+BiLSTM+Attention
model for SubTask A (English) on B3 dataset.

Dataset Split Lang Total S% NS%
Original Train En 3468 25 75
Original Train Ar 3102 24 76
Original Test En 1400 14.3 85.7
Original Test Ar 1400 14.3 85.7
Twitter API Train En 2841 16.8 83.2
Twitter API Test En 713 16.8 83.2
SemEval 2018 Train En 3834 49.8 50.2
ArSarcasm-v2 Train Ar 12548 17.3 82.7
ArSarcasm-v2 Test Ar 3000 27.4 72.6

Table 27: Total number of tweets and percentage of
sarcastic and non-sarcastic tweets in each dataset for
subtask A.

shown in Table 29, for subtask A (Arabic) is shown
in Table 30, and for subtask B (English) is shown
in Table 31.

Density of the number of words in tweets and
their rephrases in the original datasets is shown in
Figure 3 for English and in Figure 4 for Arabic.

In addition to this, information about dialects for
Arabic subtasks is presented in Figure 5 and Table
32.

Information about the distribution of sarcastic
and non-sarcastic tweets in the original datasets is
presented in Figure 6.

Information about sarcastic labels, for subTask
B, in the original datasets is shown in Figure 7.
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Sarcasm% Irony% Satire%
Dataset Split Total Under-

statement%
Over-

statement%
Rhetorical
question%

68.3 14.8 2.4
Train 867

1 3.8 9.7
66.4 7.4 18.1

Original
Test 1400

0.4 3.7 4
41.5 30.6 10.9

Train 477
1 8.2 7.8

41.7 33.3 11.7
Twitter

API
Test 120

3.3 6.7 3.3

Table 28: Total number of tweets and percentage of
sarcastic labels in each dataset for subtask B.

Figure 3: Density of the number of words in the original
English train (top) and test (bottom) datasets.

Figure 4: Density of the number of words in the original
Arabic train (top) and test (bottom) datasets.

Figure 5: Percentage of dialects of tweets in the original
Arabic train (top) and test (bottom) datasets.

Figure 6: Percentage of sarcastic and non-sarcastic
tweets in the original English and Arabic train (top)
and test (bottom) datasets.

Figure 7: Percentage of tweets under each sarcastic
label in the original English train (top) and test (bottom)
datasets.
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Dataset Contributing
Datasets

Additional Non
Sarcastic Tweets
from SemEval

2018-Train

Total S% NS%

B0 0 4578 66 34
B1 145 4723 64 36
B2 290 4868 62 38
B3 435 5013 60 40
B4 580 5158 59 41
B5 725 5303 57 43
B6 870 5448 55 45
B7 1015 5593 54 46
B8 1160 5738 53 47
B9

Original Train +
Twitter API Train
(only sarcastic) +
Twitter API Test
(only sarcastic) +

SemEval 2018 Train
(1911 sarcastic)

1305 5883 51 49

Table 29: External datasets for subtask A (English).

Dataset Contributing
Datasets

Additional Non
Sarcastic Tweets

from ArSarcasm-v2
Train

Total S% NS%

B0 0 4850 71 29
B1 202 5052 68 32
B2 404 5254 65 35
B3 606 5456 63 37
B4 808 5658 61 39
B5 1010 5860 59 41
B6 1212 6062 57 43
B7 1414 6264 55 45
B8 1616 6466 53 47
B9

Original Train +
ArSarcasm-v2 Test
(only sarcastic) +

ArSarcasm-v2 Train
(2168 sarcastic)

1818 6668 52 48

Table 30: External datasets for subtask A (Arabic).

Sarcasm Under-
statement

Irony Over-
statementDataset Balanced Contributing

Datasets Total

Satire Rhetorical
question

55.90% 1.20%
22.30% 5.50%Ext-NB Not Balanced 1203
6.40% 8.70%
16.50% 16.60%
16.50% 16.80%Ext-UW

Using Word
Embedding

4336
16.60% 17%
16.50% 16.60%
16.50% 16.80%Ext-UR

Using
Repetition

4336
16.60% 16.90%

15% 18.80%
15.80% 17%Ext-EB Not Balanced

Original
Train +

Twitter API
Train +

Twitter API
Test

5314
16.70% 16.80%

Table 31: External datasets for subtask B (English).
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Dataset Split Total MSA Eygptian Levantine Maghrebi Gulf
Train 3102 49 41.7 3.7 2.9 2.7

Original
Test 1400 34.4 37.1 12 3.9 12.6
Train 12548 68.2 21.2 5 0.3 5.1

ArSarcasm-v2
Test 3000 77.4 10.2 1.6 0.1 10.7

Table 32: Distribution of tweets over dialects in Arabic Datasets.
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Abstract
This paper describes the system and the re-
sulted models submitted by our team "IISERB
Brains" to SemEval-2022 Task 6 competition.
We participated in the three sub-tasks for En-
glish language datasets. Our submitted models
use BERT-based classifiers along with data aug-
mentation. We ranked 19th out of 43 teams
for sub-task A, 8th rank out of 22 teams for
sub-task B, and 13th rank out of 16 teams
for sub-task C. In this paper, we describe de-
tails of our submissions, related evaluation and
additional experiments conducted post the ter-
mination of the shared task. Our code and used
additional resources are present in GitHub1 for
reproducibility. Authors with equal contribu-
tions are marked by *.

1 Introduction

Sarcasm in spoken or written form is a type of
verbal irony that indicates the difference between
the literal and intended meanings of an utterance
(Joshi et al., 2017). While many people use it as
a bitter remark to mock or ridicule a target(Patro
et al., 2019), some also use it as a joke to amuse
others(Joshi et al., 2015a). Sarcasm often used
together or interchangeably with other ironic cat-
egories, is considered an essential component of
human communication. A large portion of the web
and social media text is sarcastic, which creates
a challenge for traditional natural language pro-
cessing (NLP) tasks like sentiment classification,
opinion mining, harassment detection, author pro-
filing etc. Since these systems are deployed widely
across various industries, administration, data an-
alysts etc, designing a robust sarcasm detecting
component would help the downstream tasks sub-
stantially. The SemEval-2022 task 6(Abu Farha
et al., 2022) identifies some of the challenges per-
sisting till now, particularly in English and Arabic

1https://github.com/manojmahan/iSarca
smEval-Intended-Sarcasm-Detection-In-Eng
lish-main

texts. Our team participated in the tasks floated
for the English language under the name "IISERB
Brains". The organizers have floated three sub-
tasks: (i)Sub-task A to detect whether a given text
is sarcastic, (ii)Sub-task B to identify which ironic
category the sarcastic tweet belongs to, and (iii)
Sub-task C to given two pieces of text, identify the
sarcastic one.

In this paper, we report the details of our par-
ticipating systems and their performance on the
evaluation data. The paper also contains details of
additional experiments that were a part of our par-
ticipation in the shared task. The paper is organised
as follows. Section 2 describes past work related to
the sub-tasks, while section 3 presents the dataset
and task details. Following that, Section 4 reports
the details of our systems followed by experiments
and results in Section 5. Finally, in section 6, we
conclude the paper with a summary of the overall
results.

With our submitted systems, we obtained the
19th rank out of 43 teams for sub-task A, 8th
rank out of 22 teams for sub-task B, and 13th
rank out of 16 teams for sub-task C. Our code is
made public to ensure the reproducibility of our
results.

2 Related Work

Sarcasm has been an interesting research topic
for computational linguists for a long time(Joshi
et al., 2017; Pilling et al., 2017). Researchers
have studied the topic from depth(sarcasm
sub-categories, linguistic nuances etc.) and
breadth (multi-modal sarcasm(Castro et al., 2019a),
multi-lingual sarcasm (Liu et al., 2021; Bansal
et al.), sarcasm targets (Patro et al., 2019), etc). A
considerable amount of work has been reported
on the task ’sarcasm detection’ itself. This task
particularly deals with identifying whether a given
text is sarcastic. The sub-task A proposed by the
organizers also belongs to this task.
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While the traditional approaches have used
feature-based machine learning models, recent
approaches mostly relied on deep-neural models to
report state of art performance. Lexical features
like emoticons, special characters, word-patterns
have always been preferred features along with
semantic features like parts-of-speech tags, con-
trasting sentiments etc(Davidov et al., 2010)(Veale
and Hao, 2010) (Riloff et al., 2013)(Joshi et al.,
2015b)(Ghosh et al., 2018) in traditional ap-
proaches. Deep-neural methods, on the other
hand, learn latent features for the same task.
They rely on architectures like RNNs, CNNs,
transformers etc. In their models (Joshi et al., 2017;
Pilling et al., 2017; Tay et al., 2018; Tarunesh
et al., 2021; Jaiswal, 2020). Pre-trained language
models like BERT, RoBERTa, XLNet etc, have
been extensively used as token-encoders in these
models.

Identifying sarcastic intention has always been
a challenging task, even humans sometimes have
difficulties. Recently, researchers have started fo-
cusing on contextual information such as author
context (Ghosh et al., 2020), multi-modal con-
text (Ghosh et al., 2020), eye-tracking information
(Govindan et al., 2018), or conversation context
(Ghosh et al., 2020; Srivastava et al., 2020) to cap-
ture it. The sub-task A is related to shared tasks in
the domain of figurative analysis such as a SemEval
task on irony detection in Twitter that focuses on
the utterances in isolation.

3 Background

3.1 Dataset details

We used the English dataset provided by the task
organizers(Abu Farha et al., 2022). It has 3468
English tweets. It has 867 sarcastic and 2601 non-
sarcastic tweets, which indicates that the dataset is
highly unbalanced. For each sarcastic tweet, the or-
ganizers have also provided the ironic sub-classes
to which the tweet belongs. The sub-classes are
sarcasm, irony, satire, understatement, overstate-
ment, and rhetorical question. Also, there are many
tweets with multiple labels assigned to them. The
distribution of tweets over their labels are shown in
Table 1.

Several sarcasm detection datasets are often an-
notated by a person who is not the author of a piece
of text. However, in this dataset, the sarcastic la-
bel of each tweet is marked by its author. This

Labels |N|
Non-sarcastic 2601
Only-sarcasm 568
Only-irony 122
Sarcasm and irony 1
Sarcasm and satire 21
Sarcasm and overstatement 31
Sarcasm and understatement 6
Sarcasm and rhetorical questions 86
Irony and satire 4
Irony and overstatement 9
Irony and understatement 4
Irony and rhetorical question 15
Understatement and rhetorical
question

2

Irony, understatement and rhetor-
ical question

1

Sarcasm, understatement and
rhetorical question

1

Total 3468

Table 1: Label-wise distribution of tweets. |N| refers to
the sample size

makes the dataset unique in terms of capturing the
sarcastic intention of the tweet-author(s). Addi-
tionally, for each sarcastic tweet, the organizers
have asked the authors to rephrase the tweet-text to
convey the same message without using sarcasm.
However, the organizers have relied on linguistic
experts to annotate the sub-categories. Experts re-
ferred Leggitt and Gibbs (2000) for the definitions
of sub-categories.

3.2 Task details:

Based on the dataset they have released, the task
organizers have formulated three challenges as sub-
tasks. The details of the sub-tasks are,

• Sub-task A: Given a text, determine whether
it is sarcastic or non-sarcastic;

• Sub-task B: This sub-task is designed for par-
ticularly English dataset. It is a binary multi-
label classification task. Here, given a text,
we have to determine which ironic speech cat-
egory it belongs to, if any;

• Sub-task C: Given a sarcastic text and its non-
sarcastic rephrase, i.e. two texts that convey
the same meaning, determine which of the
two is the sarcastic.
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For all of the three sub-tasks, the organizers have
informed us that precision, recall, accuracy, and
macro-F1 of the participating models will be re-
ported. According to them the main metrics of
evaluation for the sub-task A is the F1-score for the
sarcastic class. Similarly, for sub-task B and sub-
task C, it is the macro-F1 score and the accuracy,
respectively.

4 System overview

4.1 Additional resources
As shown in Table 1, the dataset is highly unbal-
anced, and the sample size is small. To mitigate
this issue, we considered additional publicly avail-
able datasets published earlier for a similar task
with some synthetically generated text. The details
of such datasets are following,

• SemEval-2018 task 3: We used the training
and test data provided by SemEval-2018 task
on irony detection (Van Hee et al., 2018) as an
additional resource for training of our models.

• MUStARD: We used the textual part of the
multi-modal sarcasm detection dataset pro-
vided by Castro et al. (2019b) as an additional
resource for training of our models.

• FigLang 2020 Sarcasm: We used the sar-
casm dataset2 released as a part of shared task
of FigLang2020 3 workshop as additional data
for training of our models.

Augmentation: For increasing the instances
labeled with sub-categories in the train data
provided by the task organizers, we performed
data augmentation using the python NLPAUG
library4. NLPAUG applies a set of transfor-
mations to textual datasets in order to create
augmented data for deep learning models that
rely on high volumes of data. We took sar-
castic tweets given by organizers used the
word-replacement procedure provided by NL-
PAUG to synthesize three additional tweets
from each input tweet. We used ’distilbert-
base-uncased’5 contextual embedding as the
input embedding for this process.

2https://github.com/EducationalTestin
gService/sarcasm/releases

3https://sites.google.com/view/figlan
g2020/home

4https://nlpaug.readthedocs.io/en/lat
est/overview/overview.html

5https://huggingface.co/distilbert-ba
se-uncased

Source |N|
SemEval-2022 Task 6 3468

SemEval-2018 Task 3 training 3398
SemEval-2018 Task 3 test 780

MUStARD 690
FigLang20 Sarcasm 9400

Data Augmentation (867x3) 2601

Table 2: Basic statistics of additional sources. |N| refers
to the sample size.

The statistical distribution of additional re-
sources is shown in Table 2. After elimination of
the duplicates, the final dataset had 19986 tweets.

4.2 Data preprocessing
We followed the following preprocesing steps for
every instance in our dataset.

• Case conversion: We converted the dataset
into lowercase except for those words in
which the whole word is in uppercase.

• Stop-word removal: We removed all stop-
words as they contain low information. We
did this using python NLTK library 6.

• Data cleaning: We did basic data cleaning
which include removal of links, punctuation
marks, floating point(.) characters and user-
name. However, we did not apply stemming
and lemmatization techniques because we
believe they will distort the meaning of in-
stances.

• Special Tokens: We added special tokens at
the starting and ending of the instances as
required by different tokenizers for respective
transformer based models.

4.3 Model description
We relied on Transformer-based architectures to
design our models for all sub-tasks since Trans-
formers are regarded as state-of-the-art in NLP. We
built our models using Hugging Face’s Transformer
library. They support generic transformer based ar-
chitectures with the ability to seamlessly initialize
the tokens with different pre-trained embeddings.

• Sub-task A: For this sub-task, we deployed
the binary classifier versions of different trans-
former based architectures provided by the

6https://www.nltk.org/
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Hugging Face transformer library. We par-
ticularly experimented with BERT(Devlin
et al., 2019), RoBERTa(Liu et al., 2019), XL-
Net(Yang et al., 2019) and DistilBERT(Sanh
et al., 2019) architectures. Apart from initial-
izing the tokens with respective pre-trained
embeddings, we fine-tuned the last layers of
the models according to our training data. Fur-
ther, we added the non-sarcastic versions of
867 sarcastic tweets given by the organizers
to the training set.

• Sub-task B: Here, instead of using a multi-
label classifier, we used six binary classifier
versions of the transformer based architectures
provided by the same Hugging Face library.
As in the previous sub-task, here we have also
experimented with BERT, RoBERTa, XLNet,
and DistilBERT architectures. We constructed
training data( refer Table 6) for label-wise
models to fine-tune it. We merged the predic-
tions of all six models to get the final predic-
tion labels.

• Sub-task C: We formulated this sub-task as a
parallel combination of two sub-task A mod-
els. We considered the same architecture for
both parallel sub-components in all of our ex-
periments.

5 Experiments and results

5.1 Sub-task A
For this sub-task, in addition to the data given by
the organizers, we considered the other datasets
as mentioned in Table 2. We applied the pre-
processing(details in section 4.2) steps before send-
ing them to the respective tokenizers of the con-
sidered architectures. The tokens are initialized
by respective pre-trained embeddings. The dataset
is divided into three parts i.e. training, validation
and test set with a ratio of 0.7:0.2:0.1 for the pa-
rameter and hyper-parameter tuning. We generated
the predictions for the unlabeled data provided by
the organizers and submitted them in the codalab
submission site7 for evaluation. As the organizers
have later released the labels for their evaluation
data, we can compare all our models by ourselves
too. The performance of our models for the eval-
uation data is reported in Table 3. The number
of epochs for which the models are trained are

7https://codalab.lisn.upsaclay.fr/com
petitions/1340

different for different models. We trained until
our models started over-fitting. Note that the best
performing result reported in the table is different
from that we have submitted in the codalab site.
We experimented with our models even after the
evaluation period and the results in Table 3 show
the best performance we have achieved till date.
The models submitted as a part of competition is
reported in Table 5. The hyper-parameters for all
models are reported in Table 4.

5.2 Sub-task B

As stated in the previous section, for this sub-task
we considered separate binary classifiers for each
label. The sample size of the datasets created for
individual classifiers are shown in Table 6. Note
that we did not include the non-sarcastic tweets
provided by the organizers in our new datasets.
Rather, we added the synthetic tweets generated
by the nlpaug library (see section 4.1) to amplify
the label for which it is created. We didn’t gen-
erate any additional synthetic text for the dataset
corresponds to ’sarcasm’ label as it is the domi-
nant class in the provided ’sarcastic’ data. Thus,
the dataset created for the binary classification of
’sarcasm’ class has the original 867 sarcasic tweets.
In other label-specific datasets we increased the
corresponding label tweets with the help of nlpaug
library. As stated in section 4.1, we did this by
generating three similar texts for each tweet tagged
with the considered label. Thus, the newly created
label-specific datasets have different sample size
as shown in Table 6. We fine-tuned BERT model
for each category of ironic speech. The organiz-
ers have evaluated sub-task B based on macro-F1
score. The results are reported in Table 7.

5.3 Sub-task C

As reported in Section 4.3, we formulated the task
as two parallel combination of sub-task A mod-
els. The considered same model across the parallel
sub-components. The accuracy(evaluating measure
considered by the organizers) of different models
are reported in Table 8. As we can infer, BERT
based fine tuned model performed best on the eval-
uation data among all with an accuracy of 0.62.

6 Conclusion

In this paper, we discussed our models for different
sub-tasks proposed by SemEval 2022 task 6 orga-
nizers for the English dataset. We experimented
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Model Precision Recall F-1 score F-1 sarcastic accuracy
DistilBERT 0.57 0.64 0.53 0.34 0.62

XlNet 0.63 0.61 0.62 0.34 0.82
BERT 0.60 0.69 0.60 0.39 0.70

RoBERTa 0.70 0.68 0.69 0.47 0.86

Table 3: Performance measures of our models submitted for sub-task A

Model Learning-rate MAX_SEQ_LEN BATCH_SIZE EPOCHS
RoBERTa 2e-6 256 16 10

BERT 2e-5 128 32 3
Xlnet 2e-5 128 32 4

DistilBERT 5e-5 1213 16 5

Table 4: Hyper-parameters of our models.

SubTask A
Model F1
BERT 0.34

SubTask B
Model Macro-F1
BERT 0.0751

SubTask C
Model Accuracy
BERT 0.62

Table 5: Performance of our submitted models for the
three tasks.

with Transformer architectures with different pre-
trained language models in our submitted systems.

With our submitted models, our team "IISERB
Brains", obtained the 19th rank out of 43 teams
on sub-task A, 8th rank out of 22 teams on sub-
task B and 13th rank out of 16 teams in sub-task
C. All of our code and links to considered data are
uploaded in GitHub8 for reproduciblity.
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Abstract
We investigated the influence of contradictory
connotations of words or phrases occurring in
sarcastic statements, causing those statements
to convey the opposite of their literal meaning.
Our approach was to perform a sentiment anal-
ysis in order to capture potential opposite sen-
timents within one sentence and use its results
as additional information for a further classi-
fier extracting general text features, testing this
for a Convolutional Neural Network, as well as
for a Support Vector Machine classifier, respec-
tively.

We found that a more complex and sophisti-
cated implementation of the sentiment analysis
than just classifying the sentences as positive
or negative is necessary, since our implemen-
tation showed a worse performance in both ap-
proaches than the respective classifier without
using any sentiment analysis.

1 Introduction

According to Cambridge dictionary, sarcasm is de-
fined as the use of remarks that mean the opposite
of what they say, in order to hurt someone’s feel-
ings or to criticize something in a humorous way.
While detecting sarcasm can be very difficult even
beyond the text level, it is a real challenge to detect
sarcasm in textual data. When having conversa-
tions in person, it is easier for people to detect
sarcasm because they have additional information
in form of the speaker’s emphasis of words, his
facial expressions and body gestures. All of this
information is not available in written language.
Yet, detecting sarcasm from text becomes more and
more important, since everyday life nowadays takes
place on social media platforms to a large extent,
unfortunately including things like hate speech in
order to offend people. Sarcasm is often used as a
tool for that (Frenda, 2018), so operators need ways
to detect and remove offensive material expressed
in a sarcastic way in large amounts of messages
and posts released by millions of people every day.

The shared task (described in Abu Farha et al.,
2022) consisted of three sub tasks:

• Sub task A: Determining if a given input text
is sarcastic or not

• Sub task B: Determining if a given input text
belongs to a ironic speech category and if so,
to which one exactly

• Sub task C: Given two input texts, one be-
ing sarcastic and the other one being its non-
sarcastic rephrase, determining which is the
sarcastic one

We only participated in sub task A of the shared
task. Our strategy was to additionally perform a
sentiment analysis on the given text data, using
the contradictory nature of a sarcastic statement,
between the actual utterance and its true mean-
ing/intent. For example in the sentence "I love how
ill i became last night. . . ", a sentiment analysis
might recognize the clash of connotations between
the positive connotated word "love" and the nega-
tive connotated fact of "being ill". Van Hee et al.
(2018) also mentioned the inversing effect of using
irony (a form of sarcasm) in a sentence on the over-
all sentiment of that sentence and even included
this notion in form of a class called "Verbal irony
by means of a polarity contrast" in one of their sub
tasks of the task they provided for the SemEval
competition in 2018.

In an earlier work described in Poria et al.
(2017) a similar approach to our strategy was used,
combining several Convolutional Neural Networks
(CNNs), pre-trained on recognizing and classifying
sentiment, emotion and personality features respec-
tively, with a Support Vector Machine classifier for
classification only. However, for the best of our
knowledge there was no earlier work investigating
the impact of sentiment analysis on sarcasm detec-
tion for linear models. Inspired by the previously
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mentioned work, we combined the result of our sen-
timent analysis with all other features subtracted
from the given text and investigated the influence
of sentiment analysis on the final sarcasm detec-
tion for both a linear model, as well as for a Deep
Learning model, also comparing the performance
of both approaches.

2 Training Data

According to sub task A, our system should classify
an input text as either sarcastic, or non-sarcastic.
If, for example, the string "I love how it rains for
the seventh day in a row" was fed as input to our
system, the output would be either "1" (sarcastic),
or “0” (non-sarcastic). As training data, two col-
lections of tweets were given, one in English and
one in Arabic. In table 1 you can see the amount of
sarcastic and non-sarcastic tweets in both datasets.

English Arabic
total amount of tweets 3468 3102
sarcastic 867 745
non-sarcastic 2601 2357

Table 1: Amount of sarcastic and non-sarcastic tweets
in training data

3 System Overview and Experimental
Setup

Both approaches we decided to test for solving the
task were implemented in Python 3.8. In terms of
sentiment analysis we decided to focus on English,
for which we tested each of those approaches both
combined with a sentiment analysis and without it.
The predictions contained in our official submis-
sion were created by our Deep Learning model not
being combined with sentiment analysis, for both
English and Arabic.

3.1 Official Submission
We chose to build a CNN as a Deep Learning
Model for sarcasm detection. CNNs are several
layers of convolutions with non-linear activation
functions like ReLU (Brownlee, 2019) or tanh ap-
plied to the results.

3.1.1 Preprocessing
All tweets were split into a sarcastic and a non-
sarcastic tweet collection. We used the tokenizer
class from Keras library (Chollet et al., 2015),
which allows vectorization of a text corpus, by

turning each text into a sequence of integers, while
calculating the maximum number of words to keep
based on their frequency. In addition, we split the
training data into training set (80%) and validation
set (20%) for hyperparameter optimization. We
were setting each tweet a length, and padding or
truncating it, based on the length of 100 words,
respectively.

3.1.2 Training
In our model, we converted words to vocabulary
indices. We did not use pre-trained embeddings.
Instead, the embedding was done by the embedding
layer of our model. In total, 6 layers were used,
which are described in table 2.

name of layer parameters
vocab_size=8879,

embedding embedding_dim=32,
input_length=100

filters=128,
convolution 1D kernel_size=3,

activation= “relu”
pooling 1D -

Dense units=100
activation=“relu”

Dense units=32
activation=“relu”

Dense units=1
activation=“sigmoid”

Table 2: Description of the model’s architecture

We compiled the model using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.01. The loss function for the optimizer was
Binary Cross Entropy, which compares each of the
predicted probabilities to the actual class labels
which can be either 0 or 1. For the tuning, random
search was used to find the optimal hyperparame-
ters. This method sets up a grid of hyperparameter
values and selects random combinations. We tuned
the parameters with the respective values as shown
in table 3.

In total, 5 different hyperparameter settings were
tried by our random search.

3.1.3 Evaluation
According to the official metrics, which was F1-
score for the sarcastic class, our CNN trained on
the English data scored 0.2024, unweighted mean
precision being 0.5016 and unweighted mean re-
call being 0.5029. All in all, our CNN achieved a
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Description Name Values
learning rate of
the optimization
algorithm

learning_rate 0.01, 0.001,
0.0001

length of the
convolution
window

kernel_size 3, 5

size of the dense
layer

units 32-128
(interval: 16)

number of
convolution
units

filters 32-256
(interval: 32)

Table 3: Hyperparameters and values to which the ran-
dom search was applied

bad rank (37/43). The CNN trained on the Arabic
training data achieved a F1-score of 0.3013, a un-
weighted mean precision score of 0.5647 and the
unweighted mean recall was 0.5954. It ranked 23rd
of 32 total submissions.

3.2 CNN Influenced by Sentiment Analysis

The preprocessing used for the CNN we combined
with the sentiment analysis is the same as for the
CNN which created our official submission.

3.2.1 Sentiment Analysis & Transfer Learning
We implemented sentiment analysis for sarcasm de-
tection, used as a "transfer learning" method. The
sentiment analysis assigns each tweet a label of ei-
ther being "positive" or "negative". The sentiment
analysis dataset we used was the IMDB movie re-
view sentiment classification dataset of Keras. It
consists of 25000 movie reviews, labeled as 1 ("pos-
itive") or 0 ("negative"). We split it into a training
set consisting of 20000 of the reviews and a test set
containing 5000 reviews.

First, we trained our CNN model on the training
set for sentiment analysis. We saved the weights
and then trained the model on the sarcasm detection
training set that we created previously. It is impor-
tant to note that the sentiment analysis scores were
used in a way that although the model labeled each
sentence as a float number between 0 to 1. The
final labels (0 or 1) were given to each sentence
according to its proximity to 0.5.

3.2.2 Training
In order to get a more fine-tuned model for the com-
bination with the sentiment analysis, we changed
the model’s architecture. The reason for this

change is a result that another random search,
which we conducted after we applied the trans-
fer learning, picked for our combined model. The
same hyperparameters and values were tested as in
our first random search described in section 3.1.2.
We changed the hyperparameters accordingly, lead-
ing to the architecture depicted in table 4.

name of layer parameters
vocab_size=88584,

embedding embedding_dim=32,
input_length=100

filters=128,
convolution 1D kernel_size=3,

activation=“relu”
kernel_regularizer=l2(0.001)

dropout rate=0.1
filters=128,

convolution 1D kernel_size=3,
activation=“relu”

kernel_regularizer=l2(0.001)
dropout rate=0.1

pooling 1D -
dropout rate=0.1

units=32
Dense activation=“relu”

kernel_regularizer=l2(0.001)
dropout rate=0.1

units=1
Dense activation=“sigmoid”

kernel_regularizer=l2(0.001)

Table 4: Description of the model’s architecture for the
transfer learning

3.2.3 Evaluation
Our CNN which was influenced by the sentiment
analysis performed worse than the CNN on its own.
The F1 score on the sarcastic class was 0.1679. Un-
weighted mean precision was 0.5109, unweighted
mean recall 0.5117.

3.3 Comparing Results of both CNN’s

Comparing the scores of both the CNNs shows that
the CNN augmented by the sentiment analysis per-
formed worse than the CNN on its own, as shown
in table 5.

3.4 Linear Model Approach

In the following subsections we discuss our linear
model based approach. The preprocessing steps, as
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model f1-score precision
(unweighted

mean)

recall
(unweighted

mean)
CNN without

transfer learning of 0.2024 0.5016 0.5029
sentiment analysis

CNN including

transfer learning of 0.1679 0.5109 0.5117
sentiment analysis

Table 5: Both CNN model’s scores on the English test
set

well as the implementation of sentiment analysis
differ from what we did in our Deep Learning based
approach.

3.4.1 Preprocessing
One challenge we were confronted with was a huge
amount of data imbalance. The English data con-
sisted of only 25% sarcastic tweets, the Arabic
data also of around 24%, while the rest of the data
was non-sarcastic, respectively. To account for this
in our linear model approach, in each language re-
spectively, first, all tweets were split into a sarcastic
and a non-sarcastic tweet collection. After shuf-
fling both collections, we chose 867 tweets each,
i.e all sarcastic tweets were used, for the further
training process. We put 694 tweets each (80%)
into the training set, while keeping the other 173
tweets (20%) of each category as held-out data for
testing. This way, we had a guaranteed sarcastic/
non-sarcastic ratio of 50% each to avoid bias due
to the previously mentioned imbalance. After shuf-
fling both the training set and the test set again, we
obtained our final datasets.

3.4.2 Feature Extraction
We extracted the features from our training data by
using a simple count vectorizer, while applying tf-
idf weighting, both as implemented in scikit-learn
(Pedregosa et al., 2011). The vectorizer consid-
ered word n-grams from unigrams up to 4-grams.
This feature extraction process was used in the grid
search we performed for choosing a linear classi-
fier as described in section 3.4.3, as well as for
training both with and without sentiment analysis,
described in section 3.4.5.

3.4.3 Model Choice
For the linear model approach we chose three dif-
ferent linear models and performed a grid search on
them, trying to optimize F1-score for the sarcastic

class on a held-out dataset (20% of all training data,
see Section 3.4.1), to find the best hyperparameter
settings for fitting on our training data. The three
models chosen were a Naive Bayes Classifier, a
Support Vector Machine model and a Random For-
est classifier. The following hyperparameters of the
respective models were included in the grid search:

• For Naive Bayes Classifier:

Description Name Values
Parameter for
add-k smoothing

alpha 0.1, 1.0, 2.0, 5.0,
10.0, 20.0, 50.0,
100.0

• For Support Vector Machine

Description Name Values
Probability estimates
for classification

probability True, False

Kernel type kernel linear, poly,
rbf, sigmoid

Kernel coefficient gamma scale, auto
Degree of the
polynomial kernel
function

degree 0-6
(interval: 1)

• For Random Forest Classifier:

Description Name Values
Number of
decision trees in
the forest

n_estimators 10, 20,
50, 100,
200, 300,
400, 500

Minimum number
of samples needed
to split a node
(make a decision)

min_samples_split 3, 5, 10,
20, 30, 50

Maximum depth
of a tree

max_depth None, 3,
5, 15, 25,
50, 100

Maximum number
of features
considered when
looking for each
split

max_features 3, 5, 10,
20

The F1-score of the sarcastic class was calcu-
lated using cross-validation. Features of the used
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training data during the grid search were extracted
as described in section 3.4.2. Both the grid search
and the classifiers were implemented via scikit-
learn. We chose the classifier which achieved the
highest F1-score for the sarcastic class with its
best hyperparameter settings respectively, obtained
from the previously mentioned grid search. This
classifier was the Naive Bayes Classifier. However,
after making predictions on the organizer‘s test
data, we decided to finally use the Support Vector
Machine model, since almost all test instances were
classified sarcastic by the Naive Bayes Classifier,
while the predictions made by the Support Vector
Machine model were mixed and seemed more rea-
sonable. The best hyperparameter setting found
for the Support Vector Machine classifier were its
default values for all possible hyperparameters, as
defined in scikit-learn.

3.4.4 Sentiment Analysis
To implement the sentiment analysis for English
we used a pre-trained model from the Flair NLP
library (Akbik et al., 2019). Flair is a NLP frame-
work providing a lot of different models for several
common NLP tasks, including sentiment analysis.
We can feed an input text to the pre-trained Flair
model to get a classification for the text being posi-
tive or negative, as well as a score indicating how
confident the model was about the classification
between 0.5 and 1.0.

Our idea for how to use this result to help us
solve the task at hand was to feed each input sen-
tence into the Flair model and obtain a sentiment
prediction, "positive" or "negative", together with
the model’s confidence score. We then assign one
of six categories to the respective sentence. We
created three categories, each resembling a certain
range of the model’s confidence score for both the
positive and negative class. Thus, we obtained the
following six categories:

confidence
score

classified
"positive"

classified
"negative"

> 0.95 very positive very negative
0.75 - 0.95 quite positive quite negative
< 0.75 rather positive rather negative

Depending on the sentence’s category we then
created a one-hot encoded vector. For example, if
a sentence would be categorized as very positive,
the respective vector would be "[1 0 0 0 0 0]", with
each integer resembling one of the categories and

its value showing if it is the sentence’s category (1)
or not (0).

Applying this to each input sentence results in
a matrix, which we attached in the training pro-
cess (see section 3.4.5) to the feature matrix that
was created by our feature extraction described in
section 3.4.2.

3.4.5 Training
For training in both cases (with and without senti-
ment analysis), we preprocessed our training data
as described in section 3.4.1 and obtained our fea-
ture matrix as described in section 3.4.2.

For training with sentiment analysis, we attached
the sentiment matrix, obtained in the process de-
scribed in section 3.4.4, horizontally. That means
the first row of the sentiment matrix was appended
to the first row of the feature matrix etc. such
that the final matrix resembles all input sentences
of the training set (rows) with all extracted fea-
tures, including the result of our sentiment analysis
(columns).

To get our final predictions we fit our Support
Vector Machine classifier on our respective feature
matrix, depending on training with or without sen-
timent analysis.

3.4.6 Results
The linear model trained without the input of our
sentiment analysis scored 0.2738 according to the
official metrics, which was F1-score for the sar-
castic class. The model trained with the input of
the sentiment analysis scored only 0.2721, so the
model influenced by the sentiment analysis per-
formed slightly worse.

model f1-score precision
(unweighted

mean)

recall
(unweighted

mean)
SVM with

sentiment analysis 0.2721 0.5318 0.564
SVM without

sentiment analysis 0.2738 0.5336 0.5673

Table 6: Scores of the linear model with and without
sentiment analysis for the English test set

4 Conclusions

The Support Vector Machine model (SVM) per-
formed better than the CNN both when sentiment
analysis was included, as well as on its own. The
SVM without sentiment analysis also showed the
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highest F1 score of all four tested models. How-
ever, in general our results show that our ways of
implementing sentiment analysis even had a neg-
ative impact on the classification for sarcasm on
both systems.

One reason for the bad performance of the senti-
ment analysis could have been that we performed
the sentiment analysis on the input sentences as
a whole for both training and classifying. In or-
der to recognize a contradiction within one sen-
tence, as explained in Section 1, improvements
might be achieved if the sentence is split in sev-
eral sub parts and sentiment analysis is performed
on those parts. This way, positive and negative
classifications with high confidence scores might
be observed, clearly indicating the aforementioned
clash of connotations. Potential challenges that
could come up in that case are to determine where
to split the sentences exactly, or deciding which
parts of even the sub parts the sentiment analysis
should be performed on, since not all word types
convey sentiment (e.g. stop words could be consid-
ered neutral). To account for this, alternatively to
our approaches, a sentiment lexicon could be used
to calculate scores on sub parts of sentences.

Even without splitting the input sentences, we
could have implemented our idea better for both ap-
proaches. For example, for the Deep Learning ap-
proach, sentiment analysis datasets might be more
useful, if their genre is the same or closer to our
training data. An additional way to adjust our im-
plementation for this approach would be to shift
our decision boundary, classifying sentences con-
tradictory, if output values of the sigmoid function
between for example 0.35 and 0.65 can be observed,
since clearly positive and negative sub parts might
lead to a rather neutral sentiment in total.

Similarly, for the linear model approach we
could have weighted the "rather positive" and the
"rather negative" category as more important, com-
pared to the more extreme categories.
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Abstract

We present our systems and findings for the
iSarcasmEval: Intended Sarcasm Detection In
English and Arabic at SEMEVAL 2022. Specif-
ically we take part in the Subtask A for the
English language. The task aims to determine
whether a text from social media (a tweet) is
sarcastic or not. We model the problem us-
ing knowledge sources, a pre-trained language
model on sentiment/emotion data and a dataset
focused on intended sarcasm. Our submission
ranked third place among 43 teams. In addi-
tion, we show a brief error analysis of our best
model to investigate challenging examples for
detecting sarcasm.

1 Introduction

According to the Freedictionary1, sarcasm is a cut-
ting statement to express contempt or ridicule, of-
ten using words to convey a meaning that is the
opposite of their literal or actual meaning.

Due to its ambiguous nature, sarcasm plays an
important role for resolution of several NLP tasks,
such as Sentiment Analysis (Liu et al., 2010; Joshi
et al., 2017; Maynard and Greenwood, 2014), Hate
speech (Frenda et al., 2022), disagreement clas-
sification (Ghosh et al., 2021), Opinion Mining
(Kannangara, 2018) among others. One example
of benefits of modeling sarcasm is presented by
Bouazizi and Ohtsuki (2015) about the use of sar-
castic tweets to improve Sentiment Analysis.

In this work we present our submission to iSar-
casmEval at Semeval-2022 for subtask A (Given
a text, determine whether it is sarcastic or non-
sarcastic). Our solution system is at the top three
teams among 43 teams. The proposed approach
uses the pre-trained language model well informed
of this task, because it uses sentiment/emotion data

1https://www.thefreedictionary.com/

and we enhanced it with a dataset about intended
sarcasm texts.

The rest of the document goes as follows: Sec-
tion 2 overviews some related works about sarcasm
detection tasks. In Section 3, we give a detailed de-
scription of our conducted experiments, including
the dataset used. Section 4 summarizes our results
and offers an interpretation to our findings. Finally,
Section 5 presents our conclusion, contributions
and future work.

2 Related works

Beside the importance of detecting sarcasm for
industry applications related to understanding com-
ments on social networks or commercial products
reviews (Yavanoglu et al., 2018), sarcasm detection
has received great attention from the NLP commu-
nity, influencing the creation of diverse approaches,
benchmark datasets and evaluation methods.

The methods for modeling sarcasm range from
rule-based system and statistical approaches by ex-
ploiting handcrafted features using traditional ma-
chine learning (Joshi et al., 2015; Wicana et al.,
2017) to modern techniques using deep learning
architectures together with word embeddings and
pretrained language models (Mehndiratta and Soni,
2019; Srivastava et al., 2020; Wang et al., 2021).

Previous attempts for benchmarking sarcasm
detection were proposed by "SemEval-2018 Task
3: Irony Detection"2, ALTA Shared Task 20193,
FigLang 20204 and WANLP 20215. They crafted
their datasets either using weak supervision tech-

2https://competitions.codalab.org/
competitions/17468

3http://www.alta.asn.au/events/
sharedtask2019/description.html

4https://sites.google.com/view/
figlang2020/shared-tasks

5https://sites.google.com/view/
wanlp2021
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niques like scraping tweets having the #irony, #sar-
casm hashtags, or by manual labeling from third
party annotators, which leads to several shortcom-
ings as exposed in Oprea and Magdy (2020), in-
stead the dataset used in this work (iSarcasm) was
crafted by asking the authors themselves to provide
the sarcastic/non-sarcastic labeling for their tweets.

Training validation
Sarcastic 867 86
Non-Sarcastic 2601 259
Total examples 3468 345

Table 1: Number of classes in train and validation splits

3 Experiments

Our experiments aim to determine whether a given
text is intended to be sarcastic or non-sarcastic. The
metric for ranking systems on the competition is
the F1-score for the sarcastic class (positive label)
only.

Datasets. As part of the iSarcasm shared task
(Abu Farha et al., 2022), the organizers provide
training and test datasets for English and Arabic,
however, we only participated in the English track.
Table 1 displays the number of samples and the
distribution over sarcastic and non-sarcastic texts
for train and validation splits. As observed sarcastic
texts roughly account for the 25% of data in each
split.

In addition to the iSarcasmEval dataset, we also
employed the SPIRS dataset6 which is a collection
of sarcastic and non-sarcastic tweet ids (15,000
for each category) gathered using “reactive super-
vision”, a new data capturing method (Shmueli
et al., 2020). From SPIRS only intended and neg-
ative examples were considered which amount to
15,950 and 1,773 examples in the training and de-
velopment splits, respectively. Therefore, tweets
perceived as sarcastic were discarded, since per-
ceived sarcasm accounts for a related but different
task.

Pre-processing steps. We perform minimal pre-
processing which includes conversion of user men-
tions and links to @USER and URL, respectively.
Also, consecutive whitespaces are normalized to a

6https://github.com/bshmueli/SPIRS

single occurrence and punctuation marks are sur-
rounded with a single space character.

Our approach. Our approach is informed by
insights from the literature on the effectiveness
of sentiment/emotion information for sarcasm de-
tection. Additionally, the creators of the SPIRS
dataset also provided perspectives (intended vs.
perceived) for their heuristically-labeled sarcasm
dataset. Building on these, we examine the effect
of these two knowledge sources on the sarcasm de-
tection task. Specifically, we combine pre-training
on sentiment/emotion with a second pre-training
step on the intended sarcasm subset of the SPIRS
dataset. In the final step, we fine-tune the pre-
trained model on the dataset provided for the shared
task.

Pre-trained models. We employed four publicly
available pre-trained models from the Huggingface
model hub. The models namely: BERTweet-base7,
BERTweet-sentiment8, BERTweet-emotion9, and
BERTweet-large10 are trained on twitter data using
masked language modeling as well as sentiment
and emotion detection where applicable.

Training details/hyperparameters. We use the
adapter-transformers library for the experiments.
We add a classification layer (consisting of two
dense layers) on top of the pooled output of the last
transformer layer and optimize this layer jointly
with the pre-trained layers. We optimize the model
using Adamw with a batch size of 64 on a single
Nvidia V100 GPU (32GB) and a maximum learn-
ing rate of 1e-5. We use a warmup ratio of 0.1
and set the maximum number of epochs to 15 with
earlystopping on the validation performance met-
ric (F1) using a patience of 5 evaluation runs. We
evaluate the performance of the model every 20
steps on the validation set. Furthermore, we em-
ploy three regularization techniques: weight decay
with a factor of 0.01, dropout applied to the pooled
output of the last transformer layer with a probabil-
ity of 0.2, and label smoothing with a factor of 0.1.

7https://huggingface.co/vinai/
bertweet-base

8https://huggingface.co/cardiffnlp/
bertweet-base-sentiment

9https://huggingface.co/cardiffnlp/
bertweet-base-emotion

10https://huggingface.co/vinai/
bertweet-large
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Model Validation Test
P R F1 P R F1

BERTweet-emotion-spirs 0.515 0.581 0.546 0.323 0.710 0.444
BERTweet-sentiment-spirs 0.545 0.558 0.552 0.330 0.705 0.450
BERTweet-spirs 0.526 0.593 0.557 0.349 0.710 0.468
BERTweet-large-spirs 0.667 0.558 0.608 0.412 0.740 0.530

Post-evaluation runs*

BERTweet 0.573 0.547 0.560 0.395 0.680 0.500
BERTweet-emotion 0.529 0.535 0.532 0.378 0.630 0.473
BERTweet-sentiment 0.527 0.570 0.547 0.348 0.675 0.459
BERTweet-large 0.690 0.570 0.624 0.420 0.735 0.535
BERTweet-irony 0.581 0.581 0.581 0.399 0.665 0.499
BERTweet-irony-spirs 0.515 0.581 0.546 0.323 0.710 0.444

Table 2: Performance scores on the validation and test sets (All metrics are for the sarcastic class).
*Suggested by one of the reviewers for completeness and better comparison.

Case Example Explanation
Not enough context to determine the intention
of the phrase(s)

- JUSTICE HAS BEEN DONE .
- i ’ ve never had protected sex
- i’m dying

Chances are that the required context are on
other parts of the post, e.g. in the comments

Common sense or Knowledge of real world is
required

Mad how many cars they make now without
indicators [happy-emoji]

It is not that new cars had a design without in-
dicators, it is just that for many reasons, some
people refuse to use them, and that make other
drivers angry because of the difficulties while
driving.

Common sense or Knowledge of real world is
required

Vaccinated this morning . Not sure it ’ s
worked - still committed to Apple and no extra
autism detected . Bloody science .

Those ’secondary effects’ are not even related
with vaccines; it seems that the user is just
joking with that concept.

Common sense or Knowledge of real world is
required

hello to all three of my followers, this is my
big return to twitter

People who are familiar with Twitter knows
that having three followers is not actually im-
pressive. Instead this author is making fun of
it.

Sentiment contradiction between key words
and emojis

- I hate it here [happy emoji]
- Headaches that last all day nonstop [happy
emoji]
- @ user thanks for shutting down the only
Disney Store in northeastern Ohio . The other
two stores went out of business yrs ago . It ’
s not the same with shipping costs online not
to mention LE doll sales are an absolute night-
mare online . So unbelievably disappointing .
[sad emoji]

Not all examples use positive emoji to end
sarcastic messages. Here, the contradiction
lies in the pair thanks-[sad emoji]

Table 3: Error analysis of model predictions on the validation set
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Figure 1: Confusion matrix for the best model predictions on the validation set

4 Results and error analysis

Our system ranks third on the leaderboard for
the competition with an F1-score for the sarcas-
tic class (positive label) of 0.530. The performance
scores for our submissions on the validation and
test sets are in Table 2. The BERTweet-large model
achieved the best score out of our four submis-
sions. It seems that pre-training on sentiment or
emotion detection is not beneficial in our experi-
mental settings. This observation can be confirmed
in our post-evaluation runs where the BERTweet-
base model shows superior performance (up to 5
F1 points on the test set) when compared to the
same model that has been further pre-trained on
sentiment or emotion detection task. Further inves-
tigation of this observation is required to identify
alternative approaches to incorporate these sources
of information for transformer-based models. Fig-
ure 1 shows the confusion matrix of the predictions
made by our best model on the validation set.

As for error analysis, we use the validation set to
identify possible explanations for why the model
fails at predicting correctly positive labels (sarcas-
tic tweets). Table 3 shows three cases as challenges

for detecting sarcasm, which are usually hard to
overcome in many NLP tasks as well.

These results show that still modern language
model techniques struggle to grasp the pragmatics
of messages expressed in social media, which are
particularly difficult.

5 Conclusion

We present our systems for the task of sarcasm
detection using a variety of knowledge sources
that explore the capabilities of pre-trained language
models to understand pragmatic phenomena such
as sarcasm. We found that although these knowl-
edge sources help to shed light over the sarcasm
detection task, still more external knowledge would
be required to correctly classify difficult cases that
require a deeper understanding of real world con-
text.

Based on our analysis, we plan to further exam-
ine the impact of including say emoji modelling
to measure its influence, especially over cases that
show a contradiction on expressed sentiments.
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Abstract

In this paper, we (a YNU-HPCC team) describe
the system we built in the SemEval-2022 com-
petition. As participants in Task 6 (titled “iSar-
casmEval: Intended Sarcasm Detection In En-
glish and Arabic”), we implement the sentiment
system for all three subtasks in English and
Arabic. All subtasks involve the detection of
sarcasm (binary and multilabel classification)
and the determination of the sarcastic text loca-
tion (sentence pair classification). Our system
primarily applies the sequence classification
model of a bidirectional encoder representation
from a transformer (BERT). The BERT is used
to extract sentence information from both direc-
tions for downstream classification tasks. A sin-
gle basic model is used for single-sentence and
sentence-pair binary classification tasks. For
the multilabel task, the Label-Powerset method
and binary cross-entropy loss function with
weights are used. Our system exhibits com-
petitive performance, obtaining 12/43 (21/32),
11/22, and 3/16 (8/13) rankings in the three
official rankings for English (Arabic).

1 Introduction

Satirical text is a rhetorical device for implicitly
expressing emotions by using words that are con-
trary to the actual intention to achieve a satirical or
humorous linguistic effect. The true semantics of
satirical texts cannot be directly inferred from the
text vocabulary, and contradictions exist between
their literal meaning and the true intention. There-
fore, the detection of sarcasm and its sentiment
discrimination are more challenging in natural lan-
guage processing (NLP) problems.

Task 6 in the SemEval-2022 competition is a sar-
casm detection task that consists of three subtasks
(Abu Farha et al., 2022).

• Subtask A: Detect sarcastic meaning from a
given tweet.

• Subtask B: Identify the tweet as “no sarcasm”
or one or more of the six given sarcastic
speech categories.

• Subtask C: Determine the position of the satir-
ical text from the given tweets and their non-
satirical restatements (0 means the first sen-
tence is satirical, and 1 means the second sen-
tence is satirical).

In previous sarcasm detection tasks, researchers
used supervised learning methods based on the
support vector machines and logistic regression
(González-Ibáñez et al., 2011) to study ironic and
non-ironic tweets that directly express positive and
negative views. However, these traditional machine
learning methods cannot mine the deep semantic
information hidden in the text. Relying only on the
surface semantic information can easily result in
an incorrect judgment regarding irony. In contrast,
deep learning methods show excellent results in
deep semantic mining. By using the context in-
formation of the text to be detected (Bamman and
Smith, 2015), we can further mine the behavior
information of social users. We can achieve better
performance by using a bidirectional recurrent neu-
ral network to capture the syntactic and semantic in-
formation of the target tweet text and the automatic
learning features of historical tweets related to the
target tweet for sarcasm detection (Zhang et al.,
2016). The convolutional long-term and short-term
memory network (CNN-LSTM-DNN) (Ghosh and
Veale, 2016) achieved remarkable results.

In this paper, we propose a deep learning system
for Task 6 in SemEval-2022, titled “iSarcasmEval:
Intended Sarcasm Detection In English and Ara-
bic.” We use a pre-trained bidirectional encoder
representation from a transformer (BERT) (De-
vlin et al., 2019) sequence classification model as
the base model. For single-sentence and sentence-
pair binary classification tasks, we use fine-tuning
methods on a basic model. We employ the Label-
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Powerset (Nazmi et al., 2020) approach and train
the basic model by applying a binary cross-entropy
loss function with weights for the multi-label task.
The contributions of this study are as follows.

• For the sentiment analysis problem, we pro-
pose a basic model using a pre-trained BERT
sequence classification model.

• The use of a binary cross-entropy loss func-
tion with weights is more advantageous for
performing multi-label classification with un-
even label distribution task.

• Fine-tuning on multilingual datasets (Pires
et al., 2019) leads to a significant improve-
ment in the scores of prediction results.

The remainder of this paper is organized as fol-
lows. In Section 2, we describe the proposed sys-
tem and model in detail. The experiments and
results are discussed in Section 3. Finally, conclu-
sions are presented in Section 4.

2 System Description

The general structure of our system consists of four
modules, described as follows.
Input layer. In this layer, we build text-processing
tools to perform pre-processing of text and embed-
ding of words. A large amount of useless informa-
tion in the given text, such as user (@user), URL
(http://ie.com), and escape symbols (\s, \j, etc.), in-
creases the computational effort and complexity of
a model. We remove the useless information in ad-
vance by using regular expressions and convert all
words to lowercase, without breaking the structure
of hashtags (#hashtag). We believe that the search
and tagging of these tweets depends mainly on their
hashtags (Peng et al., 2018). The preservation of
the hashtag structure improves the accuracy of sar-
casm detection. Tokenizers provided by Hugging-
Face1 are used to process information such as punc-
tuation, emoticons, non-English (or non-Arabic)
letters, numbers, and hashtags (#hashtag) that are
still present in the text and to rapidly perform word
separation. Tokenizers can also perform word em-
bedding using continuous low-dimensional vectors
to represent word features (Mikolov et al., 2013).
In this layer, we obtain the sequence of representa-
tions to be used as inputs to the subsequent mod-
ules.

1https://huggingface.co/.

Context encoder. Devlin et al. proposed a new nat-
ural language representation model named BERT
in 2018, which successfully achieved state-of-the-
art results in 11 NLP tasks, winning a plethora of
accolades from the NLP community. The model is
based on a bidirectional transformer for large-scale
pre-training and can be fine-tuned by users to han-
dle different text-processing tasks. One variant of
the BERT is RoBERTa (Liu et al., 2019), which
enhances the effect of the BERT by improving its
pre-training method without affecting the structure
of the BERT. Unlike the BERT static mask ap-
proach, RoBERTa uses dynamic masks, where the
tokens masked for each sequence are changed in
different epochs of training. RoBERTa removes the
NSP task and uses the FULL-SENTENCES train-
ing approach. RoBERTa also uses a larger mini-
batch, more data, and larger number of sentences.
Therefore, the RoBERTa-pretrained model yields
better results. In this module, we mainly use the
pre-trained BERT model and its variant RoBERTa
model to complete the contextual encoder.
Fully connected layer. Fully connected networks
are used for downstream classification tasks.
Output layer. The output of the fully connected
layer is processed to complete the label prediction.
Different tasks require different processing meth-
ods.

The details of each subtask in each module are
discussed in the following.

2.1 Subtask A: Sentence Classification

The first part of this task was to extract semantic
information from a given tweet text. We termed this
sentence classification (Dao et al., 2020), where we
predict whether a sentence is sarcastic. For this
purpose, our approach generated 768-dimensional
word embeddings for each word in a sentence by
using a pre-trained BERT model. We selected the
first token (i.e., “[CLS]”) of the sentence into the
sequence classification because it integrated the
semantic information of the entire sentence. The
word embeddings obtained from the previous step
were then connected to a fully connected layer,
which transformed the 768-dimensional input into
two-dimensional values. These values were then
fed into Softmax to calculate the probability that
the sentence is sarcastic. Finally, the probability
results were fed into argmax to form labels; in
our experimental setup, 1 indicated sarcasm and 0
indicated non-sarcasm. The model architecture is
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Figure 1: System of binary classification for sentence

Table 1: Quantity of labels by category in English
dataset.

Category Quantity
sarcasm 713

irony 155
satire 25

understatement 10
overstatement 40

rhetorical_question 101

illustrated in Figure 1.

2.2 Subtask B: Multi-Label Classification
This task was also a sentence classification task,
with the difference being that it involved the pre-
diction of multiple binary targets simultaneously
based on a given input. For the upstream task of
sentence information extraction, we used the pre-
trained BERT model. For the downstream classi-
fication task, we used the Label-Powerset method
(Tsoumakas et al., 2011), which sets the number
of labels to the number of output neurons in the
network. We can directly apply an arbitrary binary
classification loss function to the neural network
model, and the model can simultaneously output
all targets. At this point, we only need to train
one model; the training time is shorter, and the
network can also learn the relevance of different
labels through the output neurons. We counted the
number of various types of labels in the English
dataset ( Table 1) and discovered that the number
of labels is dozens of times different. To solve
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Figure 2: Multi-label classification system for sentence

the problem of label imbalance, we appropriately
added a network layer to improve the classification
effect. We employed the RELU activation function
for fast computation between two linear layers to
boost the sparsity of the simultaneous network and
reduce the interdependence of parameters to allevi-
ate the overfitting problem. In addition, we utilized
a binary cross-loss function with weights to focus
the model on the sparse labels, as stated in Section
2.4.

We selected the values generated by the afore-
mentioned work into sigmoid and mapped their
range to (0, 1) to reply to the confidence level of
each label. We set a threshold of θ = 0.5, and when
the predicted value was greater than or equal to
θ, we considered that the prediction contained this
label; otherwise, it did not. The model architecture
is shown in Figure 2.

2.3 Subtask C: Sentence-Pair Classification

This task is a sentence pair classification task, sim-
ilar to subtask A, but with two sentences as the
input. In the input layer, in addition to the work
done in Subtask A, we must split the two sentence
representations using the “[SEP]” token. The in-
puts are then passed to the pre-trained BERT model
to obtain the “[CLS]” token, which integrates the
semantic information of the entire sentence. The
subsequent model structure was the same as that
for Subtask A. The “[CLS]” token is passed to the
subsequent module to obtain the location label of
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Figure 3: System of binary classification for sentence
pair

the sarcastic text, with 0 indicating sentence A and
1 indicating sentence B. The model architecture is
illustrated in Figure 3.

2.4 Training and Hyper-parameters
We used a binary cross-entropy loss function for
subtasks A and C and a binary cross-entropy loss
function with weights for subtask B to train the
model. For the sample imbalance between labels
in the multilabel classification task of subtask B,
we introduced parameter wi. We increased the
attention of the system to scarce labels by assigning
higher weights to labels that appear less frequently.
For batch data D(x, y) containing N samples with
M labels per sample, the loss function is calculated
as follows:

loss =
1

N

N∑

n=1

ln, (1)

ln =
1

M

M∑

i=1

lin, (2)

where lin is the loss corresponding to the i-th label
of the n-th sample.

ln
i = −wi[y

i
n·log σ(xin)+(1−yin)·log(1−σ(xin))]

(3)
where σ is the sigmoid function. wi is the weight
parameter of the i-th label, which is calculated from
the i-th label number, Labeli, by applying the fol-
lowing equation.

wi =

∑
Label

Labeli
(4)

For all the subtasks, we used the AdamW
(Loshchilov and Hutter, 2019) optimizer to train
the model with a batch size of 16.

Hyperparameters. The dimensionality (d) of the
word embedding was 100, learning rate was 2e-5,
weight decay was 0.01, and dropout ratio was 0.1
for all layers in all models.

3 Experimental

Datasets. The datasets used were the English
dataset (3467 data) and Arabic dataset (2602 data)
provided by the competition, with no other external
corpus. Only one dataset in English was used for
subtask B, except for subtasks A and C, in which
two sub-datasets were used. We thank the organiz-
ers for their contributions to the data.
Evaluation Metrics. The main evaluation metrics
are as follows:

• SubTask A: F1-score for the sarcastic class.

• SubTask B: Macro-F1 score.

• SubTask C: Accuracy.

Implementation Details. To solve the data imbal-
ance problem, we sampled the data selected for
training such that the number of 0/1 tags was as
similar as possible. For the sentence pair classifi-
cation task, we take the tweet text in the dataset
as sentence A and the rephrase text as sentence B,
and assign label 0. After switching the positions
of tweet text and rephrase text, we assign label 1.
We divided the training data into a training set and
a development set at a ratio of 8:2. We trained
our models on the training set, evaluated the pre-
dictions on the development set using evaluation
measures, and saved the models with the highest
evaluation scores during the process. We used the
Pytorch framework provided by the Huggingface
library for the pre-trained BERT model and bert-
base-multilingual-uncased and roberta-base for the
binary classification, multi-label classification, and
sentence pair classification included in this task.
Results and Analysis. Tables 2, 3, and 4 present
comparative results for each task. The bolded
scores are those assessed by participating in the
competition leaderboard. On the competition
leaderboard, our system ranked 12/43 (21/32) in
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Table 2: Comparable results of experiments for subtask
A.

Model Fine-tune Test F1

bert-base-
multilingual-
uncased

English
English

0.306
English+Arabic 0.285

Arabic
Arabic

0.202
English+Arabic 0.245

roberta-
base

English English 0.392
Arabic Arabic 0.323

Table 3: Comparable results of experiments for subtask
B.

Model Loss Macro-F1
6-binary BCE 0.0702

bert-base-
multilingual-
uncased

BCE 0.0672
BCEwithWeight 0.0795

Dice 0.0379
Focal 0.0646

Table 4: Comparable results of experiments for subtask
C.

Model Fine-tune Test Acc

bert-base-
multilingual-
uncased

English
English

0.815
English+Arabic 0.805

Arabic
Arabic

0.5
English+Arabic 0.755

roberta-
base

English English 0.860
Arabic Arabic 0.5

English (Arabic) in Task A, 11/22 in Task B, and
3/16 (8/13) in Task C.

As shown in the tables, our approach achieves
significant results. This is mainly because the
BERT model is a multilayer bidirectional trans-
former encoder that can be integrated into vari-
ous NLP downstream tasks and obtains the best
results. In addition, the training results using the
roberta-base model are significantly better, indicat-
ing that the pre-training approach of the BERT can
be improved. Moreover, fine-tuning with multi-
ple languages significantly improved the training
results, particularly for Arabic. As revealed in Ta-
ble 4, fine-tuning the model on the Arabic dataset
individually shows worse results, which may be
due to the fact that very little information is ex-
tracted from the Arabic dataset only. In the fu-
ture, we can improve the method of fine-tuning in
multiple-language datasets by balancing the vectors
of different languages to improve the model effect.

For multi-label classification, the Label-Powerset
method is not as effective as stand-alone dichoto-
mous classifier training; however, combined with
a dichotomous cross-entropy loss function with
weights, the results can be slightly improved while
saving a lot of training time.

4 Conclusion

In this paper, we describe a deep learning model for
the sentiment analysis task in the SemEval-2022
competition (Task 6: iSarcasmEval: Intended Sar-
casm Detection In English and Arabic). A BERT
sequence classification model was used as the base
model. The final submitted system performed ad-
mirably and ranked third in one of the rankings.
However, there is still considerable potential for
improvement. Therefore, in future investigations,
we will attempt to extend this model with improved
capabilities to achieve better outcomes.
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Abstract

Sarcasm is a term that refers to the use of words
to mock, irritate, or amuse someone. It is com-
monly used on social media. The metaphorical
and creative nature of sarcasm presents a signif-
icant difficulty for sentiment analysis systems
based on affective computing. The methodol-
ogy and results of our team, UTNLP, in the
SemEval-2022 shared task 6 on sarcasm detec-
tion are presented in this paper. We put differ-
ent models, and data augmentation approaches
to the test and report on which one works best.
The tests begin with traditional machine learn-
ing models and progress to transformer-based
and attention-based models. We employed data
augmentation based on data mutation and data
generation. Using RoBERTa and mutation-
based data augmentation, our best approach
achieved an F1-sarcastic of 0.38 in the competi-
tion’s evaluation phase. After the competition,
we fixed our model’s flaws and achieved an
F1-sarcastic of 0.414.

1 Introduction

Billions of internet users use social networks not
only to stay in touch with friends, meet new peo-
ple, and share user-generated content but also to
express their opinions on a wide range of topics
using a variety of methods such as posting com-
ments, videos, photos, etc. with specific groups of
people (Tungthamthiti et al., 2016). In these plat-
forms, users could submit information on whatever
topic they wanted, with no restrictions on the sort
of content they may share. The lack of constraints
and individuals’ anonymity on these networks led
to humorous sarcastic texts.

Because sarcasm indicates sentiment, detecting
sarcasm in a text is critical for anticipating the
text’s accurate sentiment, making sarcasm detec-
tion a valuable tool with multiple applications in
domains such as security, health, services, prod-
uct evaluations, and sales. Sarcasm detection is an

∗equal contribution

essential aspect of creative language comprehen-
sion (Veale et al., 2019) and online opinion mining
(Kannangara, 2018). Even for humans, identifying
sarcasm is difficult due to heavily contextualized
expressions (Walker et al., 2012). There are few
labeled data resources for sarcasm detection. Any
available texts that can be collected (for example,
Tweets) contain many issues, such as an evolving
dictionary of slang words and abbreviations, requir-
ing many hours of human annotation to prepare
the data for any potential use. Furthermore, the
nature of sarcasm identification adds to the task’s
difficulty, as sarcasm may be considered relative
and varies significantly across people, depending
on a variety of criteria such as the context, area,
time, and events surrounding the statement.

In an attempt to solve this issue, we participated
in SemEval-2022 shared task 6 (Abu Farha et al.,
2022), which aims to recognize whether a tweet is
sarcastic or not. Our contributions are as follows:

1. We experiment with simple machine learning
models like Support Vector Machine (SVM)
and various word encodings.

2. To discover the optimum data preprocessing
method, we tested the effect of various data
preprocessing.

3. We put several data augmentation techniques
to the test.

4. On our best dataset, we evaluated Long Short
Term Memory (LSTM) based models, Bidi-
rectional Encoder Representations from Trans-
formers (BERT) based models, and attention-
based models. Different neural network
topologies are compared, and the model with
the highest performance is reported.

With RoBERTa (A Robustly Optimized BERT
Pretraining Approach), no preprocessing, and
mutation-based data augmentation, our top result
gets an F1-sarcastic of 0.38. However, we obtain
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better outcomes, with a 0.414 F1-sarcastic after
fixing the problems of our proposed method.

The rest of this paper is organized as follows.
In Section 2, we discuss the related work, Section
3 introduces the dataset. In Sections 4 and 5, we
present our methodology and results, respectively.
Finally Section 6 concludes the paper.

2 Related Work

We give a quick review of previous works on sar-
casm detection in this part, followed by works on
data augmentation.

2.1 Sarcasm Detection on Twitter

Sarcasm detection has been represented as a bi-
nary classification issue, with most tweets labeled
with specific hashtags (e.g., #sarcasm, #sarcastic)
being considered sarcastic. Many techniques in
various languages have been proposed using this
framework.

In (Davidov et al., 2010), Semi-supervised sar-
casm detection experiments were done using a
Twitter dataset (5.9 million tweets) and 66,000
Amazon product evaluations. On the product re-
view dataset, they acquired an F-measure of 0.83.
On the Twitter dataset, they obtained an F-measure
of 0.55 using 5-fold cross-validation on their k-
Nearest Neighbor (kNN) like classifier.

(González-Ibánez et al., 2011) used 900 mes-
sages from Twitter sorted into three groups (sarcas-
tic, positive sentiment, and negative sentiment). To
find sarcastic tweets, they utilized the hashtags #sar-
casm and #sarcastic. SVM with Sequential Mini-
mum Optimization (SMO) and logistic regression
were employed as classifiers. The best accuracy for
the sarcastic class was 0.65.

(Reyes et al., 2012) presented elements to cap-
ture ambiguity, polarity, unexpectedness, and emo-
tive situations in figurative language. F1-sarcastic
of 0.65 was the best result in categorizing irony and
general tweets.

The representativeness and significance of con-
ceptual elements have been investigated in (Reyes
et al., 2013). Punctuation marks, emoticons, quo-
tations, capitalized words, lexicon-based features,
character n-grams, skip-grams, and polarity skip-
grams are all examples of these characteristics.
Each of the four categories (irony, comedy, educa-
tion, and politics) in their corpus has 10,000 tweets.
Using the Naive Bayes and decision trees algo-
rithms, they evaluated two distributional scenarios:

balanced distribution and unbalanced distribution
(25% ironic tweets and 75% tweets from the three
non-ironic categories). The decision trees classi-
fied the balanced distribution with an F1-sarcastic
of 0.72 and the unbalanced distribution with an
F1-sarcastic of 0.53.

One sort of sarcasm identified by (Riloff et al.,
2013) is the difference between a good mood and
a bad scenario. Using a bootstrapping approach,
the authors gathered collections of positive sen-
timent phrases and negative circumstance words
from sarcastic tweets. They suggested a method for
classifying tweets as sarcastic if they contain a pos-
itive predictive close to a negative context phrase.
They used a SVM classifier using unigrams and
bigrams as features to evaluate a human-annotated
dataset of 3000 tweets (23% sarcastic), getting an
F1-sarcastic of 0.48. The F1-sarcastic of the hybrid
strategy, which combined the findings of the SVM
classifier with their baseline method, was 0.51.

(Lukin and Walker, 2017) used bootstrapping,
syntactic patterns, and a high precision classifier
to classify sarcasm and nastiness in online chats.
On their snark dataset, they got an F1-sarcastic of
0.57.

In (Oprea and Magdy, 2019), LSTM, Att-LSTM,
CNN, SIARN, MIARN, 3CNN, and Dense-LSTM
models were used to assess the task dataset that was
introduced in (Oprea and Magdy, 2019), which is
an unbalanced dataset and labeled by the tweets’
writers. Using Multi-Dimension Intra-Attention
(MIARN) (Tay et al., 2018) Network, they could
get an F-score of 0.364.

In (Guo et al., 2021), the Latent Optimized Ad-
versarial Neural Transfer (LOANT) model was sug-
gested as a novel latent-optimized adversarial neu-
ral transfer model for cross-domain sarcasm detec-
tion. LOANT surpasses classical adversarial neu-
ral transfer, multitask learning, and meta-learning
baselines using stochastic gradient descent (SGD)
with a one-step look-ahead and sets a new state-of-
the-art F-score of 0.4101 on the iSarcasm dataset.

2.2 Data Augmentation

Natural Language Processing(NLP) encompasses
a wide range of tasks, from text categorization to
question answering, but no matter what you do, the
quantity of data you have to train your model has a
significant influence on the model’s performance.
Using the data you already have, data augmenta-
tion techniques are used to produce extra, synthetic
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data. Augmentation techniques are widely used in
computer vision applications, but they may also be
used in natural language processing.

In the instance of Twitter, (Van Hee et al., 2018)
and (Ilić et al., 2018) found that adding more data
from the same domain did not improve the per-
formance for recognizing sarcasm and irony. Al-
though their result is not general for all sarcasm
detection tasks and the result of data augmentation
depends on the data and augmentation method.

(Lee et al., 2020)’s idea is to make a new data-
point out of the context sequence [c1, c2„ cn] and
label it "NOT SARCASM." The sequence could
not be identified as "SARCASM" without the an-
swer [r1]. They believe that the newly created
negative samples will aid the model in focusing on
the link between the response [r1] and its contexts
[c1, c2, cn]. They also create positive samples us-
ing back-translation procedures(Berard et al., 2019;
Zheng et al., 2019) in French, Spanish, and Dutch
to balance out the quantity of negative examples.

In (Feng et al., 2020) different data augmentation
methods were tested on Yelp Reviews dataset(Yel,
2014) for GPT-2 generative model(Radford et al.,
2019). They used "Random Insertion, Deletion, &
Swap", "Semantic Text Exchange (STE)", "Syn-
thetic Noise", and "Keyword Replacement". They
showed in some case data augmentation could help
them to reach better performance.

This paper is the first to look at generative-based
and mutation-based data augmentation strategies
in sarcasm detection.

3 Dataset

We mostly used the iSarcasm (Oprea and Magdy,
2019) dataset in this study. In specific experiments,
we integrated the primary dataset with various sec-
ondary datasets, including the Sarcasm Headlines
Dataset (Misra and Arora, 2019) and Sentiment140
dataset (Go et al., 2009) to increase the quantity of
data and compensate for the lack of sarcastic data.
For each dataset, the details are further discussed.
It is worthy to mention that all of the supplemen-
tary datasets we included had a negative impact
on our model’s performance. We believe this was
the result of a different data gathering method. Be-
cause to the differing labeling process and domain,
the distribution diverged from that of iSarcasm. As
a result, the following sections are solely depen-
dent on the iSarcasm dataset, with no other datasets
being used.

3.1 Main Task Dataset: iSarcasm

According to (Oprea and Magdy, 2019), the sar-
casm labeling using hashtags to build datasets cap-
tures just the sarcasm that the annotators were able
to detect, leaving out the intended sarcasm. When
the author intends for the content to be sarcastic, it
is called intended sarcasm. The iSarcasm dataset
includes 4484 tweets: 3707 non-sarcastic and 777
sarcastic. Because some tweets had been erased,
we only had access to 3469 tweets for the job. The
unbalanced dataset and the scarcity of sarcastic
data were two of the most significant issues we
encountered. Table 1 displays some of the dataset’s
annotated remarks.

3.2 Sarcasm Headlines Dataset

Sarcasm Headlines Dataset (Misra and Arora,
2019; Misra and Grover, 2021) was gathered from
two news websites. It is beneficial since it over-
comes the constraints of Twitter datasets due to
noise. As the second edition of this dataset in-
cludes more data and a greater variety of data than
the first version, we chose the second version.

3.3 Sentiment140 Dataset

We needed to compensate for the limited data to
train our model successfully. As a result, we chose
the sentiment140 dataset (Go et al., 2009) because
it has a large quantity of data and is based on Twit-
ter. The sentiment tweet message is labeled using
an automated classification approach in this dataset.
The accuracy is more than 80% when using a ma-
chine learning algorithm.

4 Methodology

In this study we examined and analyzed various
models and data augmentation strategies for sar-
casm detection. First, we go through data augmen-
tation methods; then, we discuss the structure and
hyperparameters of these models in this section.
The codes of all models are available on GitHub1.

4.1 Data Augmentation

4.1.1 Generator-based
For this augmentation method, we used GPT-2
(Radford et al., 2019) generative model to generate
4000 tweets for both sarcastic and non-sarcastic
classes. Then we selected 2000 tweets of each

1https://github.com/AmirAbaskohi/SemEval2022-Task6-
Sarcasm-Detection
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Table 1: Example of Sarcastic and Non-Sarcastic tweets.

Tweet Sarcastic Sarcasm Type

Oh my goodness. It’s the first week of the
summer holidays and @name has found Sarcastic [’Sarcasm’]

his recorder Give.Me.Strength.
90% of adulthood is just refilling your @name pitcher. Sarcastic [’Irony’, ’overstatement’]

True bliss is laying in an ice
cold bath during the hottest part of the year Non-Sarcastic []

Figure 1: Effect of shuffling, word elimination, and
replacing with synonyms on a tweet sample.

class randomly to increase dataset quantity and
have more sarcastic samples.

4.1.2 Mutation-based
We used three distinct ways to change the data in
this method: eliminating, replacing with synonyms,
and shuffling. These processes were used in the
following order: shuffling, deleting, and replacing.
The removal and replacement were carried out sys-
tematically. We used the words’ roots to create a
synonym dictionary. Synonym dictionary is cre-
ated by scarping the Thesaurus website2. When a
term was chosen to be swapped with its synonyms,
we chose one of the synonyms randomly (Figure
1). We tried each combination of these processes
to find the best data augmentation combination (a
total of seven).

4.2 Models

4.2.1 Support Vector Machine (SVM)
We utilized SVM to discover the optimal ap-
proaches for dataset preprocessing and word em-
beddings. For data augmentation, we employed
both generator-based and mutation-based methods.
We also put other data preprocessing approaches to
the test, such as link removal, emoji removal, stop
word removal, stemming, and lemmatizing. We
utilized TF-IDF, Word2Vec (Mikolov et al., 2013),

2https://www.thesaurus.com

and BERT (Devlin et al., 2018) for word embed-
ding. We found that using a regularization value
of 10 and a Radial Basis Function (RBF) kernel,
BERT word embedding, and no data preprocessing
will give us the best results.

4.2.2 LSTM-based Methods

We begin with the intuition that a memory model
can help us reach a better result. So we started
with Long Short Term Memory (LSTM) model
(Hochreiter and Schmidhuber, 1997). We used one
LSTM layer followed by time distributed dense
layer. We repeated these two layers one more time,
and then we used another LSTM layer followed
by two dense layers. This model and all of the
following models in this section were trained in 10
epochs.

In addition, we used Bidirectional Long Short
Term Memory (BLSTM). Using bidirectional will
run the inputs in two directions, one from past to
future and the other from future to past. We used
one BLSTM layer for this network, followed by a
time-distributed dense layer. We repeated these two
layers one more time, and then we used another
BLSTM layer followed by two dense layers.

Furthermore, we combined LSTM and BLSTM
with Convolutional Neural Networks (CNNs).
CNN layers for feature extraction on input data
are paired with LSTM to facilitate sequence pre-
diction in the CNN-LSTM architecture. Although
this model is often employed for video datasets,
(Rehman et al., 2019) demonstrated that it could
perform better in sentiment analysis tasks. We used
three 1D convolutional layers followed by a 1D
global max-pooling layer for the convolutional part.
We used these layers at the end of LSTM-based
networks.
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4.2.3 BERT-based Methods

The use of bidirectional training of transformer and
a prominent attention mode for language model-
ing is BERT’s fundamental technological break-
through (Devlin et al., 2018). The researchers de-
scribe a new Masked Language Model (MLM) ap-
proach that permits bidirectional training in pre-
viously tricky models. They found that bidirec-
tionally trained language models can have a better
understanding of language context and flow than
unidirectional ones.

Robustly Optimized BERT or RoBERTa has a
nearly identical architecture to BERT, however, the
researchers made some minor adjustments to its
architecture and training technique to enhance the
results on BERT architecture (Liu et al., 2019).

We used both RoBERTa with twitter-roberta-
base, which has been trained on near 58 million
tweets and finetuned for sentiment analysis with the
TweetEval benchmark and BERT with bert-base
from Huggingface (Wolf et al., 2019). For both
models, we employed five epochs, batch size of 32,
500 warmup steps, and a weight decay of 0.01.

4.2.4 Attention-based Methods

One of the most important achievements in deep
learning research in the recent decade is the at-
tention mechanism (Vaswani et al., 2017). The
Encoder-Decoder model’s restriction of encoding
the input sequence to one fixed-length vector to
decode each output time step is addressed via an
attention mechanism. This difficulty is thought
to be more prevalent when decoding extended se-
quences.

We start with the assumption that if a model with
an attention layer is trained to identify sarcasm at
the sentence level, the sarcastic words will be the
ones the attention layer learns to value. As a result,
we added an attention layer to our LSTM-based and
BERT-based models. The results will be discussed
further.

4.2.5 Google’s T5

Google’s T5 (Raffel et al., 2019) text-to-text model
outperformed the human baseline on the GLUE,
SQuAD, and CNN/Daily Mail datasets and earned
a remarkable 88.9 on the SuperGLUE language
benchmark.

We fine-tuned T5 for our problem and dataset by
giving the sarcastic label the target and the tweets
as the source. We used two epochs, batch size of 4,

Figure 2: Fine-tuning T5 model for sarcasm detection
problem.

Table 2: F1-sarcastic and accuracy for different data
augmentation methods on SVM model with BERT word
embedding and no preprocessing.

Data Augmentation F1-sarcastic Accuracy

Shuffling 0.305 0.7471
Shuffling + Replacing 0.301 0.741
Shuffling + Removing 0.306 0.747

Removing 0.301 0.747
GPT-2 0.292 0.675

512 tokenization max length, Adam epsilon of 1e-
8, word decay of 0, no warmup steps, and learning
rate of 3e-4 (Figure 2)3.

5 Results

In this section we report the results of our models
introduced in Section 4.

It’s important to note that after the competition,
we discovered that none of our preprocessing strate-
gies improved the performance of our model. So
we were able to get an F1-sarcastic of 0.414 with-
out using any preprocessing methods, which was
0.034 higher than our performance in the competi-
tion, which was based on the best combination of
preprocessing methods.

5.1 Support Vector Machine (SVM)
The optimum augmentation technique, preprocess-
ing method, and word embedding were all deter-
mined using the SVM model. Without any augmen-
tation, BERT obtained the greatest F1-sarcastic
of 0.2862, compared to 0.2541 and 0.0924 for
Word2Vec and TF-IDF, respectively.

We have also looked at several ways of data aug-
mentation. The F1-sarcastics for shuffling with
replacing words, only word elimination, just shuf-
fling, and shuffling with word elimination were the
highest in the mutation-based augmentation (Ta-
ble 2). We also tried these data augmentation and

3We were not able to test a larger version of the model
with better hyperparameters due to resource constraints
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Table 3: Best results for each model using iSarcasm
dataset and mutation-based data augmentation.

Model F1-sarcastic Accuracy

SVM 0.3064 0.7478
LSTM-based 0.2751 0.7251
BERT-based 0.414 0.8634

Attention-based 0.2959 0.7793
Google’s T5 0.4038 0.8124

GPT-2 data augmentation on RoBERTa because
the results were close, and we found that merely
word removal was the best data augmentation. The
following results are based on no data preprocess-
ing, BERT word embedding, and mutation-based
data augmentation utilizing only word removal.

5.2 LSTM-based Methods

LSTM obtained an F1-sarcastic of 0.2176 us-
ing BERT word embeddings, mutation-based data
augmentation, and no preprocessing, whereas
BLSTM’s F1-sarcastic was 0.2439 using BERT
word embeddings, mutation-based data augmenta-
tion, and no preprocessing. By adding CNN layers,
the F1-sarcastic of the LSTM was increased to
0.2453, and the BLSTM was increased to 0.2751.
The CNN model’s F1-sarcastic was 0.2263.

5.3 BERT-based Methods

We employed a mutation-based data augmentation
approach with no preprocessing for BERT-based
procedures. We got an F1-sarcastic of 0.323 using
BERT. We achieved our best result with RoBERTa
with an F1-sarcastic of 0.414, which was better
than LOANT (Guo et al., 2021) model on the same
dataset.

5.4 Attention-based Methods

Adding attention layers to this job was not help-
ful, and it decreased our models’ performance.
RoBERTa’s F1-sarcastic dropped to 0.2959 using
the attention layer. LSTM model with the atten-
tion layer earned an F1-sarcastic of 0.2145. The
F1-sarcastic of BLSTM with attention layer was
0.2336.

5.5 Google’s T5

Based on the hyperparameters listed in the Section
4, our F1-sarcastic for this model is 0.4038. How-
ever, we believe that we may get better results by

increasing the tokenization max length, increasing
the batch size, and utilizing the t5-large pre-trained
model.

6 Conclusion

In this study, we reviewed and contrasted a number
of sarcasm detection methods. To improve the per-
formance of our model, we experimented with two
different types of augmentation. In the job of sar-
casm detection, we observed that mutation-based
data augmentation can assist us in achieving better
results than generative-based data augmentation.
Additionally, we tested with other deep-learning
techniques, including RNN and BERT-based mod-
els. Our best system, an ensemble model, has an
F1-sarcastic of 0.414.
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Abstract
The “iSarcasmEval - Intended Sarcasm Detec-
tion in English and Arabic” task at the Se-
mEval 2022 competition focuses on detecting
and rating the distinction between intended
and perceived sarcasm in the context of tex-
tual sarcasm detection, as well as the level of
irony contained in these texts. In the context
of SemEval, we present a binary classification
method which classifies the text as sarcastic
or non-sarcastic (task A, for English) based on
five classical machine learning approaches by
trying to train the models based on this dataset
solely (i.e., no other datasets have been used).
This process indicates low performance com-
pared to previously studied datasets, which in-
dicates that the previous ones might be biased.

1 Introduction

One of the most challenging tasks facing natural
language processing (NLP) is the automatic figura-
tive language detection (Gifu Daniela, Samson Mi-
hai, 2021), (C. Van Hee, E. Lefever, and V. Hoste,
2018), such as humor, sarcasm or irony. In gen-
eral, this way of expressing takes advantage of
linguistic elements in order to project complex and
explainable meanings. In this paper, we investigate
the binary classification models for figurative lan-
guage, as is sarcasm (Dan Alexandru and Daniela

Gı̂fu, 2020). In general, it is omnipresent on the
public space, being disruptive of computational sys-
tems that harness this data to perform tasks such
as opinion mining and sentiment analysis in elec-
tions (Gı̂fu, Daniela, 2010). The political actors
themselves introduce a specific language based on
sarcasm or irony, making their message analysis
very challenging (Reyes, Antonio and Rosso, Paolo
and Buscaldi, Davide, 2012). In order to identify
the figurative meaning of a specific message, it is
required to encode each sentence separately. The
research question guiding this paper is what are
the most efficient sarcasm detection algorithms?
We propose an approach based on three classi-
cal machine learning (ML) approaches by trying
to train the models based on this dataset solely
(i.e., no other datasets have been used). Further-
more, we experimented with architectures rang-
ing from Naı̈ve Bayes (multinomial, complement
and bernoulli variants), Support Vector Machines
(SVMs with linear, polynomial and RBF kernels) to
Logistic Regression which we tried to train using
only the dataset provided by the SemEval-2022
Task 6 competition (Ibrahim Abu Farha, Silviu
Oprea, Steven Wilson, and Walid Magdy, 2022).
The rest of the paper is organized as follows: sec-
tion 2 briefly presents studies related to sarcasm
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detection, section 3 presents the dataset, the re-
quired pre-processing and plausible methods for
it, section 4 resumes the results of the conducted
experiments, with their interpretations, followed by
section 5 with the conclusions.

2 Related work

This topic is a widely researched subject in re-
cent years, evidenced in this competition at sev-
eral workshops (e.g., SemEval-2017 Task 4: Us-
ing Sarcasm Detection for Enhancing Sentiment
Classification and Quantification or SemEval-2018
Task 3: Irony Detection in English Tweets). Such
a competition is challenging, especially since the
problem of labeled data is time consuming and not
cheap. Moreover, the automatic sarcasm detection
depends on the annotation process, which always
introduce some biases to the data. For the binary
task, as in this case, there are many computational
models to solve it or to capture the (actual) sar-
casm or subcategories of it (John S. Leggitt and
Raymond W. Gibbs Jr. , 2000) (Silviu Oprea and
Walid Magdy, 2020). Thus, work on this topic
was never followed by high results, as this prob-
lem is still debatable and text classification even
for humans is very controversial and biased. It is
a task that can be considered as sentiment anal-
ysis for which most of the authors used LSTM
(Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio, 2014), (Zichao Yang, Diyi Yang, Chris
Dyer, Xiaodong He, Alex Smola, and Eduard Hovy,
2016) or CNN (Yi Tay, Anh Tuan Luu, Siu Che-
ung Hui, and Jian Su, 2018) and (Tao Shen, Tianyi
Zhou, Guodong Long, Jing Jiang, Shirui Pan, and
Chengqi Zhang, 2018). New approaches concen-
trate on using attention-based methods (Joshi et al.,
2017), in particular transformer architectures such
as BERT (Devlin, Jacob and Chang, Ming-Wei
and Lee, Kenton and Toutanova, Kristina, 2018),
RoBERTa, spanBERT (Amardeep Kumar, Vivek
Anand, 2020) etc. These transformers are pre-
trained on unlabeled data to be later fine-tuned for
a variety of tasks like single sentence classification,
sentence pair classification, etc. to understand role
of context for sarcasm detection. Here, we used
five machine learning approaches by trying to train
the models based on this dataset solely (i.e., no
other datasets have been used).

3 Dataset and Methods

This section is focused on two issues: Twitter
dataset in English and two types of methods for
classification task, both binary and multi-class. For
the first type, we mostly tried classical machine
learning approaches that resulted in satisfactory
outcomes when evaluated on the training set. On
the second one, a RNN with a few GRU layers
was the architectural choice. At this moment, the
results were modest, probably due to the lack of
to much data (it is empirically known that neural
networks require a high volume of data to work
properly)

3.1 Dataset

The dataset that this competition provided consists
of 3468 samples. Each sample is made of a short
tweet and 8 binary columns which specify whether
or not the text belongs to a certain class. The target
column in the binary classification case is ”sar-
castic” while the other 7 (sarcasm, irony, satire,
understatement, overstatement, rhetorical question,
ambiguity) compose the outputs for the multi-class
scenario. At a first glance, we can clearly see that
the data is heavily unbalanced. However, this is
pretty standard and conforms to the reality where,
for example, only a few people are sarcastic, ironic
or satirical and so on. Sure, data imputation meth-
ods could have been useful (for example, replacing
the words of each text with the corresponding syn-
onyms and adding the new texts to the dataset or
doing some sort of oversampling on the positive
label texts that are heavily lacking in examples) to
make the set a little bit bigger but we chose to just
stick to what was given! In the following picture
(Figure 1), you can see a bar-chart of how the out-
put column labels are distributed across the dataset.

One big inconvenience that we observed is the
presence of many 0s in the target columns. This is
difficult to solve since replacing nans with certain
labels is not tractable. In the end, we went forward
with the missing values. Before getting into the
proper implementation details, we want to present
an image of the overall architecture (Figure 2) so
that every step is clear right from the start. The
right arrows in the image define transitions from
one step to another. A step title is written inside
a cloud and the boxes under it are nothing but its
definitory operations.
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Figure 1: Bar charts of the labels distribution. The Y
axis represents the counts for each value that the labels
take.

Figure 2: The architecture is made out of 4 parts. The
separation between them is made through arrows.

3.2 Methods

3.2.1 Pre-processing

Before talking about the machine learning models,
we will explain the pre-processing step that had
to be done in order to ”clear” the data. First, we
lowered all the training texts and tokenized them
into words. Since many compound words could
exist (e.g. ”state-of-the-art” or ”equality”; note that
these are not actual words from the set) the natural
thing to do is to split them by space. After that, for
each sample, we are left with lists of words only,
hence getting rid of the non alphanumeric words
is advisable (the punctuation marks do not add
any real value to our task). Another requirement
is the lemmatization of the words. We want the
root forms of our words in order not to consider
multiple derivations of the same word as different
(e.g. ”goes” should be the same with ”go”, ”going”
or ”gone” and so on). Now, as a final touch, we
eliminate the stopwords (the stopwords list is taken
from the corpus class of the nltk library) since they
don’t add any value to our models. We also built a
vocabulary which contains all the unique words of

the corpus and this will help us when constructing
the numerical representations. Given the processed
texts, we can start the well known one hot, doc-
term and tf-idf encodings. For each one of them,
we define a matrix where the rows represent the
indexes of the texts and the columns are nothing
but the words from our vocabulary. In the case
of one-hot representation, one cell is either 1 or
0, noting the apppearance of a word (column) in
the text (row). Alternatively, doc-term counts the
number of appearances of a word in a text while
tf-idf is built on top of doc-term and gives some
scores according to the frequencies of the terms.
All of these encodings were used with different
machine learning methods.

3.2.2 Classical Machine Learning
Approaches

As a first approach to classification we tried
bayesian methods. We chose them because they
are fast to build and have low variance. As another
plus, the performance is very good with both small
training sets, as well as big ones. Having a reputa-
tion as a bad estimator, but a decent classifier, we
decided that it’s a good starting point (please note
that the previous statements can be deducted from
the books (Tom M. Mitchell, 1997), the Bayesian
Learning Chapter and (Christopher Bishop, 2006),
the Graphical Models chapter). Throughout time,
NB has been the most used one when it comes to
NLP tasks and we thought that our numerical rep-
resentations could work very well on it. Bernoulli
Naı̈ve Bayes (BNB), Multinomial Naı̈ve Bayes
(MNB) and Complement Naı̈ve Bayes (CNB) are
the options we have through the scikit-learn library.
BNB deals with binary features, hence one-hot en-
coding is the only choice here. Multinomial Naı̈ve
Bayes works with word counts or word scores,
therefore doc-term and tf-idf representations are
the way to go in this direction. As a last resort, we
also tried a CNB because, according to the scikit
documentation (Complement Naive Bayes docu-
mentation of scikit), CNB is an adaptation of the
standard MNB algorithm that is particularly suited
for imbalanced data sets, just like ours. The inven-
tors of CNB show empirically that the parameter
estimates for CNB are more stable than those for
MNB. Further, CNB regularly outperforms MNB
(often by a considerable margin) on text classifi-
cation tasks (Jason D. M. Rennie, Lawrence Shih,
Jaime Teevan, David R. Karger). It is well known
that logistic regression is the discriminative corre-
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spondent of Naı̈ve Bayes. Moreover, if the condi-
tional independence supposition of NB is true and
the amount of training data tends to infinite, the
2 models should give similar results. Therefore,
we tried to fit a logistic regression on our data to
check the previous statement (these statements are
based on the Generative and discriminative clas-
sifiers (Tom M. Mitchell) book chapter). Mov-
ing onto the next level, support vector machines
(SVMs) come into play. Considering that each nu-
merical representation has lots of features (words)
and only a few lines (samples), the dual form is
preferred, since the complexity is O(rows) (rows
are the number of samples). Besides this, we work
with the soft-margin SVM because it allows us to
avoid overfitting through the slack variable. When
it comes to kernels, we had 3 options. The first one
we chose is the linear kernel (a.k.a the ”no kernel”)
because in a very high dimensional space as ours,
it’s plausible to find a good separating hyperplane.
After that, we decided to try a polynomial kernel
as well. This one maps our data into a higher di-
mension, hoping to find a better suited hyperplane.
The degrees used were 2 and 3 and we compared
the results with the previous model. In the end,
the RBF kernel seemed to be the natural step for-
ward because it’s the only one that is guaranteed
to find a separating hyperplane by mapping the
features into an infinite dimensional space. The
hyper-parameters gamma and C (the weight of the
slack variables) were chosen with a randomized
grid search (no specific random seed, we just used
the scikit default option) with cross validation. In
other words, different values from 2 exponential
distributions have been generated to each hyper-
parameter and then, a SVM was applied. The one
that gave the best results at cross validation was
kept.

3.2.3 Deep Learning Approaches
Even though it was not the main target of the
project, we chose to take a closer look at the other
classes of the dataset and fit a neural network that
could be the starting point of some future work.
On the multi-class classification, as we’ve said, we
fitted a RNN. However, this was not a classic RNN,
since those lose to much early information. To me-
diate this problem, we thought that GRU hidden
layers (HL) are a good option. Moreover, due to
the lack of data, we had to stick to a number of 3
hidden layers only. Each one of them has 10 neu-
rons. The output layer is, of course, a 7 neurons

dense layer with softmax activation. To avoid over-
fitting, we also added a dropout of 10% on each
HL. When it comes to the input layer, the situation
is a bit different. Given that each text sample has
a different number of words, some padding had to
be done. Therefore, we calculated the length of
the longest words sequence sample and padded the
rest of the samples with 0 until we would obtain
that maximum length for each training observation.
The last requirement was a word2vec matrix where
the indexes represent a word and the columns are
the dimensions of our numerical mappings. This
number of dimensions was chosen by us to be 5
because we don’t have that many words. To speed
up the training process, a batch normalization layer
was used immediately after the input layer. The
results were not the best, as we will see in the next
section. We definitely needed more training data.

4 Results and Interpretations

We would like to make it clear that the results
have been obtained on the training set here, since
we didn’t have a test set available at the time we
were working on the project. Moreover, the results
should be viewed with caution since the models
have been trained on a small sized data set that has
not to many samples, hence not to many words. A
big problem arises: what do we do when the future
testing samples don’t contain words we’ve seen
before? To answer this, one could simply drop the
unseen words and focus on those seen only. Mov-
ing on, the main metrics we have used throughout
the project are: recall, precision, F-score, balanced
accuracy, accuracy and the ROC graph. It’s worth
noticing that the metrics have been evaluated on all
the numerical representations we have mentioned
before. We will start with the Naı̈ve Bayes algo-
rithms since these were the ones that surprisingly
produced the best results (Table 1).

Bear in mind that the results have obtained on a
multinomial variant with doc-term numerical repre-
sentation. We can clearly see that there is a dif-
ference between the accuracy and the balanced
accuracy of 8%. This is quite a big percentage,
but not as big as other models resulted. Of course,
the standard accuracy is not very relevant since the
data is imbalanced, hence one should pay attention
to the balanced accuracy more. When it comes
to precision and recall on the negative labels (i.e.,
the not sarcastic texts), the system is very precised.
Both a high sensitivity and high precision are what
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you would normally want from a system. In other
words, the non-sarcastic texts are very well classi-
fied. On the positive labels, although not as big, the
rate on recall and precision maintains at a strong
above 80% percentage. Judging by the F-scores,
we are pleased with the result, however, as we’ve
said in the previous chapter, Naı̈ve Bayes is a good
classifier, but a bad estimator, so even though the
results are great, the independence supposition in
this case is very general and wide and tricks the
statistical principles. The results for the rest of the
other NB variants are given in Table 2 and Table 3.

Moving on to logistic regression, we can see that
the results are really far away from NB. Therefore,
we can definitely say that the Naı̈ve Bayes inde-
pendence supposition here is strongly untrue. We
can see that the recall on the positive labels is very
small, but the precision is almost close to 100%.
In other words, among all the texts that are posi-
tive in reality, only a small percentage of them are
classified as positive, but those that are predicted
positive, are done so with very high certainty. So,
we could say that someone who is interested in
getting a very precised sarcastic prediction should
choose this model. Also, an interesting observation
that we can draw from all the analysed algorithm
results is that a high recall on the positive class
leads to a high precision on the negative class and
alternatively a high precision on the positive class
leads to a high recall on the negative class (Table
4).

The support vector machines are the ones that
behaved the most poorly among the tried models.
This is somehow weird since most of the articles
out there indicate SVMs as the best option for bi-
nary classification in NLP when having little data.
As mentioned before, we tried different kernel vari-
ants, but nothing good came up, unfortunately.

The polynomial kernel seems to have given the
best results, but these are weak. Table 5 and Table 6
are associated to the linear and polynomial variants.
Judging by the F-scores and balanced accuracy,
we can easily conclude that the bayesian methods
are behaving way better. What we found to be
very curious is the fact that the randomized grid
search didn’t give any good SVM, even after 200
iterations and generous exponential distributions
for ”C” and ”gamma” hyper-parameters. For this
reason, we chose to skip showing the results for
the RBF kernel. In the end, we will look at the
ROC curve (Figure 9) that sums up all the models

Figure 3: ROC curve

that we fitted in our project. Again, the curve with
the highest area under it is the Multinomial Naı̈ve
Bayes one. The other curves just seem to overlap,
firmly bellow the best one!

5 Conclusion

For sarcasm classification task (binary or multi-
class), a small dataset is a really challenging. The
classical machine learning approaches we have pre-
sented so far cannot answer convenient to it. This
lack of data is a big downside because it means that
not many words are numerically encoded, hence
having the same vocabulary on a testing set is ab-
solutely mandatory. In practice, it is very rarely.
We may conclude that the best model is the Multi-
nomial Naı̈ve Bayes one, but again, it is not guar-
anteed that it has not overfitted the training data.
In the future, some more attention could be payed
to the neural network if data imputation is done
and the dataset reaches a reasonable number of
samples.
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Precision Recall F1-Score Support Overall
0 0.90 0.99 0.94 2601 -

1 0.97 0.66 0.78 867 -

balanced accuracy - - - 3468 0.8254

accuracy - - - 3468 0.9094

macro avg 0.93 0.83 0.86 3468 -

weighted avg 0.92 0.91 0.90 3468 -

Table 1: Multinomial NB with doc-term encoding

Precision Recall F1-Score Support Overall
0 0.89 0.99 0.94 2601 -

1 0.98 0.65 0.78 867 -

balanced accuracy - - - 3468 0.8208

accuracy - - - 3468 0.9077

macro avg 0.93 0.82 0.86 3468 -

weighted avg 0.91 0.91 0.90 3468 -

Table 2: Multinomial NB with one hot encoding

Precision Recall F1-Score Support Overall
0 0.76 1.00 0.87 2601 -

1 1.00 0.07 0.13 867 -

balanced accuracy - - - 3468 0.5340

accuracy - - - 3468 0.7670

macro avg 0.88 0.53 0.50 3468 -

weighted avg 0.82 0.77 0.68 3468 -

Table 3: Multinomial NB with tf-idf encoding

Precision Recall F1-Score Support Overall
0 0.96 1.00 0.98 2601 -

1 0.99 0.87 0.93 867 -

balanced accuracy - - - 3468 0.9323

accuracy - - - 3468 0.9653

macro avg 0.98 0.93 0.95 3468 -

weighted avg 0.97 0.97 0.96 3468 -

Table 4: Logistic Regression Results

Precision Recall F1-Score Support Overall
0 0.85 1.00 0.92 2601 -

1 1.00 0.49 0.66 867 -

balanced accuracy - - - 3468 0.7452

accuracy - - - 3468 0.8722

macro avg 0.93 0.75 0.79 3468 -

weighted avg 0.89 0.87 0.86 3468 -

Table 5: SVM with linear kernel results
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Precision Recall F1-Score Support Overall
0 0.87 1.00 0.93 2601 -

1 1.00 0.54 0.70 867 -

balanced accuracy - - - 3468 0.7710

accuracy - - - 3468 0.8855

macro avg 0.93 0.77 0.82 3468 -

weighted avg 0.90 0.89 0.87 3468 -

Table 6: SVM with polynomial kernel results
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Abstract

The paper describes SemEval-2022’s shared
task "Intended Sarcasm Detection in English
and Arabic." This task includes English and
Arabic tweets with sarcasm and non-sarcasm
samples and irony speech labels. The first
two subtasks predict whether a text is sarcas-
tic and the ironic category the sarcasm sam-
ple belongs to. The third one is to find the
sarcastic sample from a sarcastic sample and
its non-sarcastic paraphrase. Deep neural net-
works have recently achieved highly compet-
itive performance in many tasks. Combining
deep learning with language models has also re-
sulted in acceptable accuracy. Inspired by this,
we propose a novel deep learning model on top
of language models. On top of T5, the architec-
ture uses an encoder module of the transformer,
followed by LSTM and attention to utilizing
past and future information, concentrating on
informative tokens. Due to the success of the
proposed model, we used the same architecture
with a few modifications to the output layer in
all three subtasks.

1 Introduction

Sarcasm is a sophisticated form of expression that
implicitly conveys the content of a sentence. Au-
tomated sarcasm detection focuses mainly on the
lexical, syntactic, and semantic levels of text analy-
sis Hazarika et al. (2018).

Natural language understanding(NLU), dialogue
systems, and text mining can benefit from sarcasm
detection. Arguably, the most challenging part of
sarcasm is its rarity, infrequency, difficulty in de-
tecting, and ambiguity in meaning. Sarcasm, for
instance, can imply a negative meaning with the
use of positive words. For example, "Taxes are
just the best, and I cannot wait to pay more

" a sarcastic sentence that uses positive words
but carries a negative meaning of "I dislike pay-
ing taxes." As a result, detecting sarcasm poses a

∗Equal contribution. Listing order is random.

challenging task due to the nature of sarcastic texts,
which are influenced by several factors, such as
context, region, and mentality.

A sarcasm detection algorithm goes beyond sen-
timent analysis, and instead of looking at sentiment
in a sample, it focuses on sarcasm. The purpose
of this field is to identify whether a given text is
sarcastic or not.

Recently, it has been shown that neural language
models trained on unstructured text can implic-
itly store and retrieve knowledge. Studies have re-
vealed that the Text-To-Text Transfer Transformer
(T5) architecture Raffel et al. (2019) can achieve
high performance for various NLP applications.
An essential step in creating NLP models is choos-
ing an appropriate embedding vector. In this re-
search, the T5 and Multilingual T5 (MT5) (Xue
et al., 2020) Encoder module for English and Ara-
bic was implemented, respectively. Our task is
comprised of three Subtasks:

• Subtask A: Predict the sarcastic nature (sar-
castic or non-sarcastic) of a sample.

• Subtask B: Determine which one of the irony
speech categories the sample belongs to.

• Subtask C: Given two samples, determine
which one is sarcastic.

There are insufficient instances in the dataset for
this task, particularly the low number of sarcastic
instances which make deep learning models unsuit-
able for extracting text features. Fine-tunning the
language model on two large open-source datasets
in English and Arabic is the key to solving this chal-
lenge. A fine-tuning step may provide the model
with valuable awareness of task context. For the
English task, the dataset of 4,484 tweets named
iSarcasm (Oprea and Magdy, 2019) was selected,
while for the Arabic task, the dataset of 10,547
tweets Farha and Magdy (2020) was chosen.
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This research uses the t5 language model as a
word embedding layer to design the sarcasm detec-
tion model. After T5, the encoder module of the
transformer, the Long Short Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) layer, and
scaled dot-product attention (Vaswani et al., 2017)
were implemented sequentially for extracting the
informative knowledge. Lastly, the model was fed
an output from max-pooling. The same model has
implemented all three subtasks, changing the input
and output layer types.

To participate in Task 6 of SemEval-2022
Abu Farha et al. (2022), we submitted the results
of 5 subtasks. The ranking of our model in subtask
A ranked 7th in English and 31st1 in Arabic. Our
model placed 9th out of 22 teams in subtask B. In
subtask C, our model placed 7th out of 16 teams
in English and 3rd out of 13 teams in Arabic. Our
code is available at GitHub2 for researchers.

The remaining of this paper is organized as fol-
lows: Section 2 reviews related work. Section 3
describes both tasks and provided dataset. Section
4 presents the theoretical background of the pro-
posed neural model. Implementation details are
provided in Section 5, while experiments and re-
sults are presented in Section 6. Section 7 presents
both quantitative and qualitative error analysis. Sec-
tion 8 contains paper conclusions.

2 Background

It is pointed out in Javdan et al. (2020) that sarcasm
can alter the meaning of a phrase, making opin-
ion analysis error-prone. Subsequently, a model
by BERT and aspect-based sentiment analysis is
employed to address the issue. Based on the con-
text dialogue sequence, this system can determine
whether a response is sarcastic or not, with an F1-
score of 0.73 on Twitter.

In Dadu and Pant (2020), as in Javdan et al.
(2020), the researcher used two Reddit and Twit-
ter datasets and applied Roberta-large to detect
sarcasm in both datasets. González-Ibánez et al.
(2011) investigates lexical (like uni-grams and
dictionary-based) and pragmatic (like positive or
negative emotions) features and compares the per-
formance of machine learning techniques and hu-
man judges.

1There was an error in submitting this subtask. In the
results section, we provide the true results of the proposed
model for subtask A .

2https://github.com/MarSanTeam/
Sarcasm_Detection

Since the meaning of sarcasm differs for each
individual and may lead to misunderstandings in
everyday communications, Hazarika et al. (2018)
claims that user embedding can encode the stylistic
and personality attributes of users, and combined
with Convolutional Neural Networks (CNNs) (Le-
Cun et al., 1999) that extracts localized information,
the results are reasonable.

Kumar et al. (2020) introduce a binary classifi-
cation deep learning model for sarcasm detection.
Kumar et al. use Bi-LSTM and Multi-Head Atten-
tion Mechanism to obtain sentence embedding and
classify input text with a softmax layer.

RoBERTa network architecture is utilized in
Potamias et al. (2020) to map words onto a rich
embedding space efficiently. To improve RoBERTa
performance and capture temporal reliance infor-
mation, use the RCNN network.

3 Task Description

Task 6 of SemEval-2022 presents a Sarcasm Detec-
tion dataset in English and Arabic.

Statistical information on the number of samples
in the train, dev, and test data is shown in Table 1.
Since there was no official dev set at the evaluation
phase, we randomly selected 10% of the dataset as
the dev data.

Dataset train dev test
Subtask A (English) 3121 347 1400
Subtask A (Arabic) 2792 310 1400

Subtask B 780 87 1400
Subtask C (English) 780 87 200
Subtask C (Arabic) 670 76 200

Table 1: Statistical information of datasets

A description of the subtasks is provided in the
following sections.

3.1 Subtask A

In this subtask, the model should determine the
sarcastic or non-sarcastic nature of the text. Arabic
and English texts can be submitted for this subtask.

Figure 1 shows the distribution of sarcastic and
non-sarcastic classes in subtask A. There is an im-
balance with this data, as only 25% of the samples
are categorized as sarcasm, making the training
process more challenging.
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Figure 1: Label distribution in Subtask A

3.2 Subtask B

This subtask is a multi-label binary classification
task.

Ideally, the model should predict which category
of ironic speech (sarcasm, irony, satire, understate-
ment, overstatement, and rhetorical question) input
data falls into. In this subtask, all data is available
in English only.

Figure 2 illustrates how irony speech categories
(sarcasm, satire, understatement, overstatement,
and rhetorical questions) have been distributed. A
high percentage of samples are labeled sarcasm,
and the lowest, with 10 samples, is for understate-
ment.

Figure 2: Label distribution in Subtask B

3.3 Subtask C

As part of subtask C, a sarcastic text and its non-
sarcastic paraphrase is given to the model. The
proposed model should determine which one is
sarcastic.

In this Subtask, we have 867 samples in English
and 745 samples in Arabic.

4 System overview

Contextual features can be extracted very effi-
ciently with pre-trained language models. In NLP

tasks, T5 has proven to be an efficient encoder-
decoder framework. Using the encoder layers
within the T5 language model, we can fine-tune
pre-trained encoder-decoder T5 models efficiently
for classification and regression tasks. Pre-trained
models ease fine-tuning downstream tasks by re-
ducing the reliance on large task-specific training
datasets. Their results can be further enhanced if
other deep learning architectures, such as LSTM,
CNN, and attention, are applied on top of them
(Tavan et al., 2021).

The framework we developed uses the encoder
module of T5 and Transformer, Bi-LSTM layer,
and scaled dot-product attention to determine
whether a text is sarcastic. Also, we apply the
same architecture to subtasks B and C but make
some changes to the output and input layers, respec-
tively. The proposed model architecture is shown
in Figure3.

As part of subtasks A and B, the model gets
a sequence of S = {s1, s2, s3, ..., sN}, where sn
is the nth token of input text. In subtask C, the
inputs are sequence of P = {p1, p2, p3, ..., pI},
and Q = {q1, q2, q3, ..., qJ}, where pj is the jth
token of the first text and qI is the ith token of the
second. The input sequence S = {P,< /s >,Q}
are the final inputs for subtask C.

Subtask A estimates a sarcastic label based on
the probability distribution of Pr(y|S). Within sub-
task B, the model estimates the probability distri-
bution Pr(y|S) for each category of ironic speech.
Finally, subtask C estimates the probability distri-
bution Pr(y|P,Q), predicting whether P indicates
sarcasm or Q.

4.1 Word Representation

To obtain vector representations of input tokens,
the T5 encoder is used. As mentioned, this model
can obtain a contextualized embedding vector for
each token in the input text by fine-tuning the T5
encoder.

4.2 Encoder Architecture

The encoder module of the transformer and a Bi-
LSTM layer are used sequentially on top of the T5
encoder to extract the contextualized feature.

As a way to extract the relation between tokens,
the encoder architecture used in the transformer
Vaswani et al. (2017) employs a multi-head atten-
tion mechanism. This capability of multi-head at-
tention allows the model to extract relationships
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between input tokens, which can help identify sar-
casm context.

Sarcasm detection can be enhanced by identify-
ing contradictions and long-term dependencies in

S1 S2 S3 Sn

T5 Encoder

Multi-Head
Attention

Add & Norm

Feed 
Forward

... 

LSTM

Add & Norm

LSTM

LSTM

LSTM

LSTM

LSTM

... LSTM

LSTM

Q

Scaled Dot Product

Softmax

Mask

Matmul

K V
W

VWK

W
Q

Max Pooling

Fully Connected Layer

Figure 3: proposed model

a sentence. This information can not be extracted
properly from the transformer encoder because of
its structure. The challenge can be tackled by using
the RNNs layer to extract temporal information and
long-term dependencies. Using a Bi-LSTM layer,
this can be done in long sequences. The output
vector of the encoder layer is calculated by con-
catenating the Bi-LSTM layer and the transformer
encoder output.

4.3 Attention Module
In Bi-LSTM networks, close words are more likely
to be correlated with the extracted attribute than
words located farther away. In order to extract rich
features, scaled dot-product attention assigns dif-
ferent weights to each token. Each token is given
a weight based on its importance and relation to
a class. Hence, attention can determine the rele-
vance and importance of tokens to identify the label
correctly. The scaled dot-product attention above
the encoder layer enables the model to capture the
importance and relationship between tokens regard-
less of their distance. The attention module consists
of the following components:

WQ
i ,W

K
i ,W

V
i ∈ Rdmodel×dk

Q = XWQ,K = XWK , V = XWV (1)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

Among which WQ, WK , and WV are trainable
parameters. The input vector X is multiplied by
the matrices Q, K, and V in order to create three
matrices Q, K, and V . To prevent the dot-product
between Q and K from getting too large, the dot-
product between Q and K is divided by

√
dk.

4.4 Prediction Module
To accurately predict sarcasm in a text by utilizing
the most relevant and informative extracted fea-
tures, a fully connected layer with a tanh activity
function was first employed. The general represen-
tation is then obtained using a max-pooling layer
from the same dimensions of different tokens. The
max-pooling modules formulate in Equation 2.

Z =Max([h1, ..., hl]) (2)

Finally, to determine the probabilities of the la-
bels, the softmax classification method is used. The
module is a simple softmax classifier that gener-
ates probabilities of distributions based on input
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features. A softmax classifier is used to predict a
label ŷ from a set of discrete classes(sarcastic or
not-sarcastic) for an input sequence S. The softmax
classifier takes R as input:

P (y | Z)=softmax(WR+b) (3)

ŷ = argmaxP (y | Z) (4)

We used six softmax layers to predict the label
of each input text in subtask B. The difference
between the implementation of the proposed model
in single label and multi-label is shown in Figure
4.

Softmax LayerSoftmax LayerSoftmax LayerSoftmax LayerSoftmax LayerSoftmax LayerSoftmax Layer

Features extracted
from model

(a) Multi Label

Softmax Layer

Features extracted
from model

(b) Single Label

Figure 4: Outline of utput layer used in subtasks.

5 Experimental Setup

In this section, we first describe data pre-processing.
Following that, we discuss the implementation de-
tails.

Pre-processing Data analysis revealed some
samples containing URLs and user mentions. Due
to the possibility of these items confusing the
model in identifying the correct label, these items
were removed in the pre-processing phase. Tokens
such as punctuation and emojis were not removed
since they could be excellent indicators of sarcasm.

Implementation Details PyTorch was used to
implement the model, and we trained it on Nvidia
V100 GPUs. Each subtask’s hyper-parameters
were tuned using the development set. The AdamW
optimizer with the learning rate of 2e -5 is used to
train the network using the back-propagation algo-
rithm. A training method of early stopping with
the patience of 5 and monitoring validation loss of
sarcastic class in min mode is used. As for regular-
ization, we evaluate the effect of the dropout on the
transformer encoder and the Bi-LSTM layer; the
model has a better performance when the dropout
rate is set as 0.2, 0.3 respectively.

Each subtask has a batch size of 32. The number
of attention heads in the transformer encoder is

eight, and the hidden size in the Position-wise feed-
forward Layer is 2048. One layer of Bi-LSTM
with 128 LSTM units was used. Over the first fully
connected layer, we applied tanh, and the output
size of this layer was 256. In the case of data
imbalance, the cross-entropy loss can be used with
class weights. The maximum length used in T5
and MT5 tokenizers is 100. Other parameters are
randomly initialized.

6 Results

This section reviews the different baselines and
compares them with the proposed model. Due to
the success of language models in recent years, we
have evaluated different language models to select
the most appropriate language model.

Since there was no official test data at the eval-
uation phase, experiments were conducted on the
dev set to select the best architecture. Finally, the
performance of the models on the test data is also
evaluated.

6.1 Subtask A

Subtask A was evaluated on the F1-score of the
sarcastic class. Table 2 Shows the results for sub-
task A. As can be seen, BERT, T5, and RoBERTa
have been evaluated to determine the most appropri-
ate language model. The T5-large and MT5-large
achieve a score of 49.47% and 71.53%, respec-
tively, outperforming other language models. It
could be caused by the differences in objective
learning among the models. In addition, it is worth
noting that the BERT-based models predict masked
words from the vocabulary and are auto-encoding
models, while the T5 uses a text-to-text framework
for training, and it is an auto-regressive model.

Table 3 shows the results of implementing the
deep learning model. Since T5-large and MT5-
large performed well in the initial experiments,
they were subsequently used in subtask A. Adding
transformer encoders help increase the F1-score on
the sarcastic class in subtask A by capturing and
focusing the most informative data on top of the
language model. In English and Arabic, there was
an increase in the F1-score using the transformer
encoder due to the presence of multi-head attention
in the transformer and the ability of this module to
extract the dependencies.

Combining a Bi-LSTM layer results in a higher
F1-score. This increase is due to the ability of the
recurrent network to extract temporal information
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Model Dev Test
sarcastic non-sarcastic sarcastic non-sarcastic

Subtask A (English)
T5-base 42.29 82.45 25.33 76.29
T5-large 49.47 81.05 32.85 75.89

BERT-base 45.89 76.55 31.40 73.40
RoBERTa-base 26.41 83.46 9.34 86.99
RoBERTa-large 39.64 85.92 25.12 88.59

Subtask A (Arabic)
MT5-base 67.88 89.64 29.12 56.85
MT5-large 71.53 87.23 31.89 65.33

MBERT-base 58.89 76.55 24.40 73.40
XLM-RoBERTa-base 58.70 89.80 29.16 63.32
XLM-RoBERTa-large 63.93 86.52 27.87 42.67

Table 2: subtask A: Evaluation result of Language models

Model Dev Test
sarcastic non-sarcastic sarcastic non-sarcastic

Subtask A (English)
T5-large + Transformer 52.41 81.36 33.68 75.26

T5-large + Transformer + Bi-LSTM 52.55 79.49 34.85 77.89
T5-large + Transformer + Bi-LSTM + Attention 55.11 84.48 40.31 84.53

T5-large + Transformer + Bi-LSTM + Attention + fc (ours) 57.18 87.43 42.51 83.76
ours + finetune T5 58.89 88.39 43.42(7) 84.31

Subtask A (Arabic)
MT5-large + Transformer 72.16 88.94 33.42 55.12

MT5-large + Transformer + Bi-LSTM 73.98 88.14 33.64 56.28
MT5-large + Transformer + Bi-LSTM + Attention 75.16 86.98 34.06 55.47

MT5-large + Transformer + Bi-LSTM + Attention + fc (ours) 75.87 90.34 31.88 53. 76
ours + finetune MT5 (Error in submission) 76.29 91.76 18.79(31) 34.38

ours + finetune MT5 (True result) 76.29 91.76 32.24 54. 43

Table 3: subtask A: Baseline results. Our rank is shown in parentheses.

and long-term dependencies. Next, adding scaled
dot-product attention improved the F1-score in En-
glish and Arabic, reaching 55.11% and 75.16%
on the sarcastic class, respectively. A scaled
dot-product attention module could improve the
model’s accuracy by detecting dependencies be-
tween words, which is mainly helpful in assisting
the Bi-LSTM architecture in identifying spatially
spaced apart words.

Finally, as mentioned before, we have also fine-
tuned T5 and MT5 on two large datasets in English
and Arabic, owing to the deficient number of sam-
ples. Using this method, the F1-scores obtained
in English and Arabic have reached 58.89% and
76.29%. An improvement in the F1-score can be
achieved by the task awareness of the language
model.

6.2 Subtask B

The results of different models for subtask B are
shown in Table 4. The evaluation metric in this
subtask is macro F1-score. As a result of the ex-
periments, it was found that RoBERTa achieves a
macro F1-score of 11.34% on test data, which is the

highest F1-score. Due to the nature of multi-label
binary classification, each of the six classes in this
subtask is classified by a separate classifier within
the same architecture as subtask A. Our T5-based
implemented model in the competition achieved
the rank of 9 and F1-score of 7.43%.

Model Dev Test
T5-base 12.41 2.41
T5-large 19.68 5.34
Bert-base 18.07 5.76

RoBERTa-base 22.01 11.34
RoBERTa-large 21.28 9.94

ours in competition 24.67 7.43(9)

Table 4: Subtask B: Evaluation result of Language mod-
els. Our rank is shown in parentheses.

6.3 Subtask C

Several experiments were performed to select the
most appropriate language model for subtask C.
Table 5 shows the results of implementing different
models on English and Arabic. For this subtask,
the evaluation metric is accuracy. Among the tested
language models, on dev, the T5 and MT5 reach
the highest accuracy among other language models.
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For this reason, these models have been used in
subsequent experiments. The results of language
models are shown in Table 5.

Model Dev Test
Subtask C (English)

T5-base 92.24 72.57
T5-large 90.95 69.43
Bert-base 77.01 68.18

RoBERTa-base 82.75 68.86
RoBERTa-large 49.42 47.27

Subtask C (Arabic)
MT5-base 53.33 52.75
MT5-large 88.19 78.64
MBert-base 80.64 69.83

XLM-RoBERTa-base 45.12 49.73
XLM-RoBERTa-large 45.33 50.16

Table 5: Subtask C: Evaluation result of Language mod-
els

In Table 6, the model that was developed in
this research is implemented, and the results are
shown. To compete in English, the T5-large lan-
guage model and its combination with the proposed
deep network architecture have been used and we
have reached an accuracy of 76.50%, 87.50% in
English and Arabic, respectively.

Model Dev Test
Subtask C (English)

T5-base + Transformer 93.10 73.86
T5-base + Transformer + 94.25 76.64Bi-LSTM
T5-base + Transformer + 95.34 77.13Bi-LSTM + Attention
T5-base + Transformer +

92.55 79.32Bi-LSTM + Attention + fc
(ours)

T5-Larg + Transformer +
93.10 76.50(9)Bi-LSTM + Attention + fc

(ours in competition)
Subtask C (Arabic)

MT5-large + Transformer 88.99 81.38
MT5-large + Transformer 91.25 83.18+ Bi-LSTM

MT5-large + Transformer + 92.34 86.32Bi-LSTM + Attention
MT5-large + Transformer +

96.55 87.50(3)Bi-LSTM + Attention + fc
(ours in competition)

Table 6: Subtask C: Proposed model result. Our rank is
shown in parentheses.

7 Error And Performance Analysis

In this section, we analyze the performance of sev-
eral components of our system. This section will
examine our model’s ability to correctly label sam-
ples in sarcastic or non-sarcastic contexts.

7.1 Subtask A

There are 1400 samples in the English test set.
The model correctly identified 924 samples as non-
sarcasm, which means True Negative (TN), and
correctly identified 132 samples as sarcasm, known
as True Positive(TP). Despite this, 68 sarcasm sam-
ples were incorrectly predicted as non-sarcasm, re-
sulting in False Negatives(FN). Lastly, the False
Positive(FP) value is very high. There were 276
input samples in this case that were incorrectly
predicted as sarcasm samples. According to the
results, since about 75% of the data is the negative
sample, Data imbalance leads to an FP error rate of
about 276 among all predictions.

Error analysis Some samples of post-evaluation
on the model’s output were examined, in Table 7.
According to studies, the most significant effect on
the accurate prediction of sarcasm samples is ob-
tained from sentiment and emoji in samples (Type
A, B). According to the implemented architecture,
the model is more robust for long samples. How-
ever, in very short samples (Type C), weaknesses
in the estimation are observed.

In addition to analyzing the strengths of the
model and the factors that affected them, this sec-
tion also examined its weaknesses in predicting
the sample and the factors that affected them. As
mentioned, a major reason is the short length of the
input sample. Another reason could be the pres-
ence of misspellings (Type D) in the data and the
unfamiliarity of the model with the incorrect word.
A major reason for the error in estimation can be
found in the absence of sentiment and emotion in
the text and the fact that the sample is completely
based on "human knowledge" (Type E).

As a result, the model has weaknesses in short,
humane, and emotionless examples.

7.2 Subtask B

Detailed model results on test data for each label
are presented in Table 8. Since the dataset only
included one sample of the "understatement" class,
the model could not correctly identify the sample’s
label. The "overstatement" class contains only ten
samples, and due to its scarcity and complexity, the
model could not predict any of these, so the F1-
score on the "understatement" and "overstatement"
classes is 0.

Among the remaining 4 classes, the recall value
is much higher than the precision of the model,
which indicates that the model performed well at
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Sample Prediction type
Type A: Emoji

Love it when someone with no mask chooses to sit next to me on the bus... TP
Weathers wonderful today! TP

Type B: Sentiment
Wow the Prime Minister is so good at the telling the truth TP

You on your best behaviour is me on my worst TP
It makes me feel a lot safer knowing the MET Police don’t investigate crimes after they happen. TP

Yeah, feeding children sweets before bedtime is an awesome way of getting lots of sleep TP
I swear stupid people were put on this earth to test my anger management skills TP

Type C: Short samples
Proof of unjustified victimisation! FP

Rubbish FP
Type D: Misspellings

if you listen carefully, you can hear me not carig FP
Type E: Human Speech

Masks work, that’s why we don’t have to wear them in pubs but do in shops! FP
Boris Johnson is a great leader and all his team stick to the covid rules rules FP

I was waiting at the bus stop when the driver pulled up and said you waiting for a bus? FPI said no mate im waiting for a plane. He drove off.

Table 7: subtask A: Result analysis

Class Number of samples TP FP FN TN Precision Recall F1-Score
sarcasm 180 102 748 78 472 12.00 56.67 19.81(19)

irony 20 13 365 7 1015 3.44 65.00 6.53(8)
satire 49 7 135 42 1216 4.93 14.29 7.33(5)

understatement 1 0 10 1 1389 0 0 0(3)
overstatement 10 0 203 10 1187 0 0 0(6)

rhetorical-question 11 9 145 2 1244 5.84 81.82 10.91(3)

Table 8: Subtask B: Error analysis. Our rank is shown in parentheses.

identifying samples that belong to each class. The
precision value is very low, which indicates that
a significant number of positive predictions are
incorrectly categorized as positive.

7.3 Subtask C
Table 9 provides detailed information results for
English test data. According to the three evalua-
tion metrics, the model performed well in distin-
guishing sarcasm samples from non-sarcasm para-
phrases.

We have decided not to explain further in this
section due to the model’s acceptable performance
and space limitation.

Sarcasm-id Precision Recall F1-Score
0 79.82 81.31 80.56
1 78.02 76.34 77.17

Table 9: Subtask C: Error analysis

8 Conclusion

We implement a novel deep learning approach
based on language models. The last hidden state of
T5 is used as an embedding layer in this architec-
ture. On top of this layer, a bidirectional LSTM is

used to extract future and past contexts as represen-
tations of the input text. LSTM output is processed
using an attention mechanism, which focuses more
on the valuable tokens to predict.

The main challenge in this study was that there
were not enough samples in the dataset. To solve
this, we fine-tuned the T5 language model with
other large open-source datasets to have a language
model that had a pre-awareness of the task and a
higher accuracy. This fine-tuned language model
was then used as an embedding representation in
our deep architecture.

To evaluate the performance of the developed
model and find the best language model, many
experiments were conducted. The experimental
results show that the T5 language model covers a
reasonable range of results and is most appropriate
for our architecture.

The same architecture was used in all three sub-
tasks, as mentioned earlier. Due to the multi-label
nature of subtask B, six separate classifiers were
used instead of one to produce the output. We
identified specific sarcasm challenges through er-
ror analysis, creating immediate future tasks.

As a final point, our architecture has already
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been created for English and Arabic, but it could
be easily extended to other languages.
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Abstract

This paper describes the approach developed
by the LT3 team in the Intended Sarcasm De-
tection task at SemEval-2022 Task 6. We con-
sidered the binary classification subtask A for
English data. The presented system is based
on the fuzzy-rough nearest neighbor classifi-
cation method using various text embedding
techniques. Our solution reached 9th place in
the official leader-board for English subtask A.

1 Introduction

Sarcasm (or irony) can be defined as a trope or figu-
rative language use whose actual meaning is differ-
ent from what is literally enunciated (Chandler and
Munday, 2011). The task of sarcasm detection can
be connected with various challenges in the Natural
Language Processing (NLP) field, from sentiment
analysis to hate speech detection. However, this
task is more complicated by its nature. Even for
a human, sarcasm detection could be a challeng-
ing issue. It can be represented in different shapes,
with voice, gestures, mimic, etc. So, text alone may
not be sufficient to detect whether a given utterance
is sarcastic or not. It makes the labeling of such
datasets quite complicated (Ghanem et al., 2020).

The SemEval competition is an annual event
that provides a set of challenges for researchers in
different aspects of the NLP field. This year we
participated in SemEval-2022 Task 6 called “iSar-
casmEval" that considers sarcasm detection in two
languages: English and Arabic (Abu Farha et al.,
2022). We tackled subtask A for English, where for
a given text, we should determine whether it is sar-
castic. As described by the authors of the dataset,
text writers provided the labels by themselves to
exclude subjective labeling. The dataset contains
text, its binary label for subtask A (sarcastic or not),

a non-ironical rephrase of the provided text with
an explanation of why is it sarcastic for subtask C
(we did not use it in our experiments), and a set
of binary classes for six types of sarcasm (irony,
satire, rhetorical question, etc.) for subtask B. We
note that the size of the non-irony class for subtask
A is three times bigger than the size of the irony
class (2,601 instances and 867 instances).

A task related to sarcasm detection is emotion de-
tection issue, which we considered in our previous
papers. In (Kaminska et al., 2021b) and (Kamin-
ska et al., 2021a), we addressed the intensity task
provided by SemEval-2018 Task 1 (Mohammad
et al., 2018). Our first paper used the weighted k
Nearest Neighbor (wkNN) classification approach
with corresponding text cleaning and embedding
steps. In the second paper, we tuned the prepro-
cessing steps and, instead of wkNN, we consid-
ered the Fuzzy-Rough Nearest Neighbor (FRNN)
classification model with Ordered Weighted Aver-
age (OWA) operators ((Jensen and Cornelis, 2011),
(Vluymans et al., 2019), (Lenz et al., 2019)). The
final approach has the shape of an ensemble of
FRNN models based on several strong embedding
techniques. The solution described in this paper is
based on the methodology presented in (Kaminska
et al., 2021a), but it is fine-tuned for the iSarcas-
mEval dataset and task. Our code is provided at
the GitHub repository1.

The remainder of this paper has the following
parts: in Section 2 we provide a step-by-step de-
scription of our system, including text preprocess-
ing and the used embedding methods, the classifi-
cation model and its ensemble, and the evaluation
metric. In Section 3 we provide results obtained
by cross-validation, and identify the best setup ap-

1https://github.com/olha-kaminska/
frnn_emotion_detection/tree/iSarcasmEval
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plied on the test data. It also provides an error
analysis of the output and post-competition experi-
ments for model improvement. Section 4 presents
conclusions and future steps.

2 System Description

Figure 1 gives an overview of our full method,
which encompasses the following steps: we em-
bed the raw text with the Twitter-roBERTa-base for
Irony Detection model (Barbieri et al., 2020), then
we use the output vectors in the OWA-FRNN clas-
sification method to obtain a prediction of classes.

Figure 1: Schematical overview of our architecture.

2.1 Text preprocessing

We manually explored part of the provided dataset
and concluded that it has attributes of regular so-
cial media posts, like tweets, including user tags,
emojis, hashtags, etc. Hence, the first step in our ex-
periments was text preprocessing before we applied
text embedding techniques. Initially, we considered
three options: no preprocessing, basic cleaning,
and extra stop-words removal.

The basic cleaning included deleting the "#" sym-
bol before hashtags and emojis transformation. We
did not delete the text of hashtags because it could
contain important information about the whole text.
Similarly, we kept emojis but replaced them with
textual descriptions provided by "emoji" package2.

2https://pypi.org/project/emoji/

The third approach of text preprocessing involves
the same steps, additionally deleting the stop-words
using the "NLTK" package3.

We tried all three text preprocessing setups for
each text embedding technique in order to detect
the most suitable for each.

2.2 Embedding methods

As a next step of text preparation before classi-
fication we investigate different text embedding
methods. This technique represents a fragment
of text (symbol, word, collocation, sentence, or
even paragraph) as a vector (or a set of them). The
obtained vector corresponds to the actual text in
multi-dimensional vector space with the idea that
neighboring vectors represent similar text pieces.

Embedding techniques came a long way from
simple bag-of-words and pre-trained dictionaries
in a word-vector format to the current state-of-the-
art transformer-based solutions and context-based
language models. In our method, we explored var-
ious types of text embedding techniques: vocabu-
lary Word2Vec from Gensim package4, sentiment-
based DeepMoji5, Universal Sentence Encoder
(USE) by the TensorFlow6, Bidirectional Encoder
Representations from Transformers (BERT), as pro-
posed by (Devlin et al., 2019) and two methods
related to BERT - Sentence-BERT (SBERT) by
(Reimers and Gurevych, 2019) and the Twitter-
roBERTa-based model for irony recognition pre-
sented by (Barbieri et al., 2020). As we will see in
Section 3.1, the latter performed much better than
the others, hence we will describe it in more detail.

The robustly optimized BERT pre-training ap-
proach (roBERTa) is comparable to the original
BERT model but has a few training technique and
architecture differences. In (Barbieri et al., 2020),
the authors described several roBERTa-based mod-
els for different tasks, for example, hate speech
recognition and emotion detection. We considered
the one for irony classification7 that was trained on
nearly 58M tweets and fine-tuned on the dataset
from Subtask A of the SemEval2018 challenge for
Irony Detection presented by (Van Hee et al., 2018).

3https://pypi.org/project/nltk/
4https://radimrehurek.com/gensim/

models/word2vec.html
5https://deepmoji.mit.edu/
6https://www.tensorflow.org/hub/

tutorials/semantic_similarity_with_tf_
hub_universal_encoder

7https://huggingface.co/cardiffnlp/
twitter-roberta-base-irony
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This model can perform classification directly, but
instead we used it to extract tweets’ weights from
the inner model’s layer as their embedding vectors.
We will discuss this further in Section 2.3.

2.3 OWA-FRNN classifier

Most state-of-the-art approaches for tasks such as
irony detection belong to the deep learning fam-
ily, and therefore remain black-box solutions. Our
idea was to try a more explainable technique based
on the Fuzzy-Rough Nearest Neighbor (FRNN)
method that already showed promising results in
our previous work (Kaminska et al., 2021a).

The FRNN classification model was introduced
in (Jensen and Cornelis, 2011). It is an instance-
based approach that uses lower (L) and upper (U )
fuzzy-rough approximations inside the classifica-
tion process. In (Vluymans et al., 2019) and (Lenz
et al., 2019), FRNN extensions were described
based on the Ordered Weighted Average (OWA)
operators with the aim of making the method more
robust. OWA operators are used to define the mem-
bership of a data instance to the lower and upper
approximation through an aggregation process.

We will use the following notation: V is the
set of OWA aggregation values, where v(i) is the
ith largest element of the set V ; the weight vec-
tor is denoted as −→W = ⟨w1, w2, ..., w|V |⟩, where

(∀i)(wi ∈ [0, 1]) and
∑|V |

i=1wi = 1. Then, we will
have the following formula for the OWA operator:

OWA−→
W

(V ) =

|V |∑

i=1

(wiv(i)) (1)

We used additive OWA operators (Vluymans
et al., 2019), as they performed the best in our pre-
vious paper. They are linearly increasing for lower
and linearly decreasing for upper approximations.
Additive weights are presented by the Formulas (2)
and (3), where p denotes the length of the vector
(p > 1).

−→
W

add

L = ⟨ 2

p(p+ 1)
,

4

p(p+ 1)
, ...,

2(p− 1)

p(p+ 1)
,

2

p+ 1
⟩

(2)
−→
W

add

U = ⟨ 2

p+ 1
,
2(p− 1)

p(p+ 1)
, ...,

4

p(p+ 1)
,

2

p(p+ 1)
⟩

(3)
OWA-FRNN assigns a test instance y to the class

C with the highest sum of C(y) and C(y):

C(y) = OWA−→
WL

{1−R(x, y) | x ∈ X \ C}) (4)

C(y) = OWA−→
W U

{R(x, y) | x ∈ C}) (5)

Here, R(x, y) corresponds to the similarity be-
tween vectors x and y. In our experiments, we
used cosine similarity:

cos_similarity(A,B) =
1 + cos(A,B)

2
. (6)

Where cos(A,B) is the cosine distance between
elements A and B:

cos(A,B) =
A ·B

||A|| × ||B|| (7)

For our setup, A and B denote tweet embedding
vectors,A·B is their scalar product, and ||A|| is the
vector norm of A. We considered similarity instead
of distance because Formula (6) provides values
that fit our classification method: 0 for opposite
vectors and 1 for identical ones.

One more parameter that we need for Formulas
(4) and (5) is k - the number of nearest neighbors
of test instance y. The difference between k in
Formulas (4) and (5) is that for the first, it corre-
sponds to the amount of training samples that are
y’s neighbors outside class C and for the second
- those inside class C. The parameter k is used to
limit the calculations and, just as for wkNN, there
are no general rules on how to choose it. Hence, we
will tune this parameter for each model separately.

We used the OWA-FRNN approach as the pri-
mary classification technique, with a Python imple-
mentation8 provided by (Lenz et al., 2020).

2.4 Ensembles
To improve our results, we considered the usage
of models’ ensembles. The ensemble combines
several classification models’ outputs to provide the
final prediction. The idea behind it is to improve
the performance of a single model by combining it
with other models to fuse their advantages.

We tuned the best setup for each embedding
method separately (with parameters as text prepro-
cessing and a number of neighbors k) and then
united them in an ensemble. As a combination
method for models outputs, or in other words, “a

8https://github.com/oulenz/
fuzzy-rough-learn
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voting function", we used the mean. We tuned the
set of the models used in the ensemble to prevent
weak models from decreasing the final score. All
obtained results are presented in Section 3.

2.5 Evaluation

To compare different approaches on the train data,
we used a 5-fold cross-validation technique by split-
ting the provided dataset into train and test data
with an 80/20 ratio.

As an evaluation metric for predicted labels and
actual labels, we used the F1-score (Formula (8))
calculated for the sarcastic class, as was suggested
by the competition organizers.

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

, (8)

where by Precision we mean the fraction of accu-
rately predicted sarcastic labels from all predicted
test labels, and by Recall we refer to the fraction
of accurately predicted sarcastic labels from all ac-
tual sarcastic test labels. The highest value of the
F1-score corresponds to the best model.

3 Results

This section consists of several parts. In Subsection
3.1 we provide an overview of our experiments, us-
ing cross-validation on the train data to identify
the best model for irony detection and evaluate its
result for test data. In Subsection 3.2, we describe
error analysis and illustrate the explainability of
our approach. We also performed additional experi-
ments after the competition was finished and labels
for the test data released to improve our scores and
present this process in Subsection 3.3.

3.1 The best setup

Firstly, we evaluated the OWA-FRNN classifica-
tion model on each embedding method separately
by tuning the number of neighbors k and text pre-
processing techniques. The best setup for each
embedding method with the best parameters and
corresponding F1-score for the sarcastic class is
shown in Table 1.

Table 1 lists all methods in decreasing order by
F1-score. The best result was obtained with the
roBERTa-based model with a noticeable gap for
the next method - DeepMoji. It can be seen that
for almost all embedding techniques, the value of
k is equal to 5, whereas for text preprocessing, no
particular pattern was observed.

Table 1: Cross-validation best F1-scores for different
embedding methods and corresponding setups.

Method Text k F1 sarcastic

roBERTa raw 5 0.3722
DeepMoji cleaned 5 0.3157
USE raw 5 0.2808

BERT cleaned,
no stop-words 5 0.2351

Word2Vec cleaned,
no stop-words 5 0.2050

SBERT raw 7 0.1618

Table 2: Cross-validation F1-scores for ensembles of
embedding methods.

Embeddings F1-score

All six 0.0995
TOP-5 0.1866
TOP-4 0.1317
TOP-3 0.2941
TOP-2 0.1866

Secondly, we combined different embedding
methods with their best setups as an ensemble. We
calculated the mean for all embedding methods,
then for the top-5 (excluding the weakest one -
SBERT), top-4 (excluding Word2Vec and SBERT),
and so on, until the single top model roBERTa is
left. The results are presented in Table 2.

From Table 2 we can see that ensembles pro-
vided lower scores than single models. The stand-
alone roBERTa performed better than in ensem-
bles with others, which could already be expected
from Table 1, where the gap between the roBERTa
method and the rest is remarkable.

Hence, we can conclude that the best setup has
the following components: no text preprocess-
ing, roBERTa-based embedding technique for vec-
tors extraction, and an OWA-FRNN classification
model with a number of neighbors k = 5. This
setup was applied to the test dataset.

We calculated labels for the test data using this
setup and submitted them to the competition to
obtain F1-score = 0.4242 for the sarcastic class,
leading to a 9th place in the leader-board. Mean-
while, we received higher places for some other
metrics: 7th place for averaged F-score = 0.6552
and precision = 0.6422, and 8th place for accuracy
= 0.8100.
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3.2 Error analysis

For the error analysis, we could rely on the fact
that the OWA-FRNN classifier we experimented
with has the advantage of being more explainable
compared to many other black box approaches. In
our case, we mean that we can trace back the test
instance and see which five instances from the train
data determined its class.

Initially, we traced back several correctly pre-
dicted test tweets to see if it was possible to notice
any patterns. For example, for the sarcastic test
tweet “So the Scottish Government want people to
get their booster shots so badly that the website
doesn’t even work", we got four sarcastic training
neighbors out of five. Four neighbors were con-
nected to the health topic and contained colloca-
tions such as “mental health", “health insurance",

“covid vaccine", and “healthcare". The fifth neigh-
bor was about emails that could be connected to

“website" word from the test tweet. From this sam-
ple, we could conclude that having a common topic
is an important feature for neighbors detection and
our model deals well with it, as we also noticed
from exploring other test samples.

As for wrong predictions, we also found an illus-
trative example for the sarcastic test tweet: “Some-
times I lay in bed and think about how today will
be the day I make my life better. Exercise, drinking
water, eating healthy. Then I wake up." It has four
training neighbors about daily routine and lifestyle
with mostly non-sarcastic labels, leading to the
wrong prediction. For example, the closest training
neighbor “me: I’m gonna wash my hair and shave
my legs! Me instead: I’m gonna dissociate in the
shower for 45 minutes" looks pretty similar to the
test sample but has a non-sarcastic label. Here,
we could highlight again the difficulty of sarcasm
dataset labeling and how subjective it could be.

In general, we can see that topic could be a
strong feature. However, the same concept could
have different meanings in different topics (for ex-
ample, “temperature" in weather or fever). Also,
some neighbors have the same emojis as a test in-
stance that can give a hint about emojis importance.

3.3 Model improvements

After the test labels were released, we experi-
mented with more setups to improve our final F1-
score.

First, we used other values of the parameter k
that showed mediocre results on cross-validation to

see how they perform on the test data. For example,
we observed that for k = 17, we receive an F1-
score with cross-validation equal to 0.3408, which
is lower than our best setup. However, on the test
data, this value of k provided us an F1-score equal
to 0.5, which is more than what we got in the leader-
board and would lead us to fourth place.

Secondly, we considered the usage of the
weighted k Nearest Neighbors (wkNN) algorithm
(Dudani, 1976). This approach is close to OWA-
FRNN, and we already worked with it in our previ-
ous paper (Kaminska et al., 2021b) for the emotion
detection task. The wkNN works with k closest
neighbors and puts weights based not on the OWA
operator but on the neighbors’ distances. As a sim-
ilarity function, we used cosine again.

To test the wkNN method, we applied it inside
our best setup - roBERTa-based embedding vectors
obtained from the raw tweets and k = 5. We got
an F1-score for the sarcastic class of 0.3569 with
cross-validation and 0.4299 for the test data. We
can see a minor improvement for the test data, com-
pared to our final scores from the leader-board.We
also checked this setup for k = 17 and obtained
a sarcastic F1-score for cross-validation equal to
0.2790 and 0.4969 for the test data. It would also
top us up to the fourth place, and so in general, we
can see that results for the OWA-FRNN and the
wkNN methods in our setups are pretty close.

4 Conclusion & Future Work

In this paper, we presented our model for the iS-
arcasmEval competition. Our solution uses the
instance-based classification method OWA-FRNN
and a roBERTa-based model for Irony Recogni-
tion as an embedding method. We fine-tuned the
best setup on the train data with cross-validation
and obtained the ninth place on the test data in the
competition leader-board.

Our approach is explainable in a way that we
can trace back the test instance and find the train-
ing instances that determined the predicted class to
explore some patterns. For example, we observe
the significance of the tweet topic and even of par-
ticular keywords.

In the future, the provided solution may be im-
proved by additional text preprocessing techniques
or roBERTa-based model fine-tuning using addi-
tional datasets.
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Abstract

In this paper, we present our system and find-
ings for SemEval-2022 Task 6 - iSarcasmEval:
Intended Sarcasm Detection in English. The
main objective of this task was to identify
sarcastic tweets. This task was challenging
mainly due to (1) the small training dataset that
contains only 3468 tweets and (2) the imbal-
anced class distribution (25% sarcastic and 75%
non-sarcastic). Our submitted model (ranked
eighth on Sub-Task A and fifth on Sub-Task
C) consists of a Transformer-based approach
(BERTweet model).

1 Introduction

The Cambridge Dictionary 1 defines sarcasm as
"the use of remarks that clearly mean the opposite
of what they say, made in order to hurt someone’s
feelings or to criticize something in a humorous
way."

Due to the Web openness, sarcastic content
becomes very frequent in social media and e-
commerce platforms, which may cause misunder-
standings. Furthermore, identifying such content
is a very challenging task even for humans (Farias
and Rosso, 2017). Also, it could impact some nat-
ural language processing tasks such as sentiment
analysis (Farias and Rosso, 2017; Do et al., 2019;
Tubishat et al., 2018; Balazs and Velásquez, 2016;
Maynard and Greenwood, 2014; Ptáček et al., 2014;
Bouazizi and Otsuki Ohtsuki, 2016; Ren et al.,
2018).

We introduce the following example: "The movie
was enjoyable to the point that I clapped because
it is finished." For an opinion mining system, this
sentence could be considered positive. However,
the author expresses a negative judgment against
the movie since the expression "I clapped because
it is finished" means that it was boring.

∗contributed equally
1https://dictionary.cambridge.org/fr/

dictionnaire/anglais/sarcasm

For this reason, SemEval 2022 set up Task 6:
iSarcasmEval - Intended Sarcasm Detection in
English and Arabic to detect sarcastic and non-
sarcastic tweets (Abu Farha et al., 2022). Our
submitted system consisted of a pre-trained trans-
former model for English Tweets named BERTweet
(Nguyen et al., 2020), secured 8th and 5th positions
respectively on Sub-Task A and Sub-Task C leader-
board.

The rest of the paper is structured in the follow-
ing manner: Section 2 provides the data structure
and the main objective of each Sub-Task. Section
3 describes our system. Section 4 details the ex-
periments. And finally, Section 5 concludes this
paper.

2 Task Description

The organizers of this task introduced two tweet
datasets for both English and Arabic languages that
contain:

• a label specifying whether a tweet is sarcastic
or non-sarcastic, provided by its author.

• a non-sarcastic rephrase of a sarcastic tweet
provided by its author.

• a label specifying the category of ironic
speech that it reflects, provided by a linguistic
expert (English only).

• a label specifying the dialect (Arabic only).

This task consists mainly of three sub-tasks for
the English dataset and two sub-tasks for the Ara-
bic dataset where Sub-Task A aims at determining
whether a tweet is sarcastic or non-sarcastic, Sub-
Task B, which is available for English only, is a
binary multi-label classification task that intends to
determine which ironic speech category a sarcas-
tic tweet belongs to if any, and finally, Sub-Task
C that takes two inputs: a sarcastic tweet and its
non-sarcastic rephrase, and focuses on identifying
the sarcastic one between them.
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3 System Description

In this section, we describe our proposed system
that tackles Sub-Task A and Sub-Task C English.

3.1 Sub-Task A

In order to tackle Sub-Task A, we adopted a
transformer-based (Vaswani et al., 2017) approach
that consists of fine-tuning BERTweet 2, which is
a language model pre-trained on 850M English
Tweets, and it has the same architecture as BERT-
base (Devlin et al., 2019), as well as it is was trained
using the RoBERTa pre-training procedure (Liu
et al., 2019).

Before feeding the training data to BERTweet
model, we preprocessed them by removing URLs
and then replacing emojis with their English tex-
tual meaning (Alami et al., 2020) using BERTweet
demojizer 3. Figure 1 depicts the Tweets prepro-
cessing pipeline.

After the preprocessing phase, we fine-tuned
BERTweet model on the training dataset that con-
tains 3468 tweets (867 sarcastic tweets and 2601
non-sarcastic tweets).

3.2 Sub-Task C

The same model of Sub-Task A was used to handle
Sub-Task C by feeding two texts to the BERTWeet
model that was already fine-tuned on the training
dataset. The text with the highest probability of
being sarcastic is considered the sarcastic one.

4 Experimental Results

We experimented our model on the SemEval 2022
Task 6: iSarcasmEval - Intended Sarcasm De-
tection in English Sub-Task A and Sub-Task C
datasets. All our experiments have been conducted
in Google Colab environment4, The following li-
braries: Transformers - Hugging Face5 (Wolf et al.,
2020), Scikit-Learn6 (Pedregosa et al., 2011), and
Keras7 were used to train and to asses the perfor-
mance of our model.

2https://github.com/VinAIResearch/
BERTweet

3https://huggingface.co/transformers/
v4.4.2/_modules/transformers/models/
bertweet/tokenization_bertweet.html

4https://colab.research.google.com/
5https://huggingface.co/docs/transformers/index
6https://scikit-learn.org/stable/
7https://keras.io/

4.1 Datasets
Since we have participated in Sub-Task A and Sub-
Task C for English, we will only describe the En-
glish dataset. The training set contains 867 sarcas-
tic tweets and 2601 non-sarcastic tweets, the test
set of Sub-Task A contains 200 sarcastic tweets
and 1200 non-sarcastic tweets, and the test set of
Sub-Task C contains 200 sarcastic tweets and their
rephrases. Figure 2 depicts the class distribution of
the English tweets in the training and test set for
Sub-Task A.

4.2 Evaluation Metric
To evaluate the performance of the submitted re-
sults, the organizers adopted the F1-score for the
sarcastic class as the main metric for Sub-Task A
as well as the accuracy for Sub-Task C. The F1-
score and accuracy are computed in the following
manner where Psarcastic and Rsarcastic are respec-
tively the precision and recall of the sarcastic class,
and TP , TN , FP and FN are respectively the
true positive, true negative, false positive and false
negative.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Psarcastic =
TPsarcastic

TPsarcastic + FPsarcastic
(2)

Rsarcastic =
TPsarcastic

TPsarcastic + FNsarcastic
(3)

F1sarcastic =
2× Psarcastic ×Rsarcastic

Psarcastic +Rsarcastic
(4)

4.3 Experimental Settings
During the fine-tuning of BERTWeet model, we
set the hyper-parameters as follows: 10−5 as the
learning rate, 15 epochs, 128 as the max sequence
length, and 32 as batch size. The same settings
were adopted for DistilBERT (Sanh et al., 2019)
and BERT base uncased. Table 1 summarizes the
hyperparameters settings of BERTWeet model.

For the Bidirectional Long Short-Term Memory
(Bi-LSTM) (Hochreiter and Schmidhuber, 1997)
and Bidirectional Gated Recurrent Unit (Bi-GRU)
(Cho et al., 2014), we set 10 epochs, 128 as the
max sequence length, and 16 as batch size.
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Figure 1: Tweets preprocessing

Figure 2: Class distribution of the English tweets in the training and test set for Sub-Task A

Hyperparameters Settings
Learning rate 10−5

Batch size 32
Epochs 15
Max sequence length 128

Optimizer
Adam
(Kingma and Ba, 2015)

Loss Cross-Entropy

Table 1: Hyperparameters settings for BERTWeet model
in the experiments

4.4 System Performance
We evaluated various models on Sub-Task A test
set including Linear Support Vector Classification

(LinearSVC) (Boser et al., 1992), Logistic Regres-
sion, Multinomial Naive Bayes (MultinomialNB),
Bi-LSTM, Bi-GRU, DistilBERT, BERT base un-
cased, RoBERTa base, and BERTweet base. We
picked the combination of unigrams, bigrams, and
trigrams of token counts as features for LinearSVC,
Logistic Regression, and MultinomialNB since this
combination delivered the best results in terms of
the F-1 sarcastic metric.

For non-transformer-based models, we prepro-
cessed the data by removing stop words and special
characters. For transformer-based models, two ap-
proaches were adopted during the evaluation phase.
In the first approach, we preprocessed the data as
described in Figure 1. In the second one, we fine-
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tuned the model without applying any preprocess-
ing to the data. Table 2 depicts the obtained results
of various models on Sub-Task A - English.

We can see from Table 2 that BERTweet base
model achieved the best results in detecting sar-
castic tweets succeeded by RoBERTa base. Sur-
prisingly, LinearSVC achieved better results than
BERT base and DistilBERT.

We evaluated various models on Sub-Task C
test set including LinearSVC, Logistic Regression,
MultinomialNB, Bi-LSTM, Bi-GRU, RoBERTa
base, and BERTweet base. Table 3 depicts the
obtained results of various models on Sub-Task C -
English. We mention that the same preprocessing
approaches applied on Sub-Task A tweets were
applied on Sub-Task C test set.

According to the reported results in Table 3, we
can see that BERTweet base model achieved the
best results succeeded by RoBERTa base. More-
over, we notice that traditional machine learning
approaches such as LinearSVC, Logistic Regres-
sion, and MultinomialNB outperformed Recurrent
Neural Networks: Bi-LSTM and Bi-GRU.

5 Conclusion

In this paper, we described our approach for tack-
ling Sub-Task A and Sub-Task C of SemEval 2022
Task 6: iSarcasmEval - Intended Sarcasm Detec-
tion in English. Our submitted system consisted of
a pre-trained transformer model for English Tweets
named BERTweet, secured 8th and 5th positions
respectively on Sub-Task A and Sub-Task C leader-
board.

Since the top-ranked system for the English Sub-
Task A scored about 0.6052 F1-score for the sar-
castic class, future studies and works will focus on
improving the performance of sarcasm detection
tasks by adopting other approaches such as data
augmentation and oversampling.
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Sub-Task A - English

Model F1-sarcastic F1-score Precision Recall Accuracy
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Table 2: The obtained results of various models on Sub-Task A - English test set

Sub-Task C - English

Model F1-score Precision Recall Accuracy
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RoBERTa base (with preprocessing) 0.7177 0.7172 0.7188 0.7200

RoBERTa base (without preprocessing) 0.7186 0.7186 0.7186 0.7200

BERTweet base (with preprocessing)

(Official Submission)
0.7737 0.7735 0.7740 0.7750

BERTweet base (without preprocessing) 0.7585 0.7581 0.7589 0.7600

Table 3: The obtained results of various models on Sub-Task C - English test set
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Abstract
Detecting sarcasm and verbal irony from peo-
ple’s subjective statements is crucial to under-
standing their intended meanings and real sen-
timents and positions in social scenarios. This
paper describes the X-PuDu system that partic-
ipated in SemEval-2022 Task 6, iSarcasmEval
- Intended Sarcasm Detection in English and
Arabic, which aims at detecting intended sar-
casm in various settings of natural language un-
derstanding. Our solution finetunes pre-trained
language models, such as ERNIE-M and De-
BERTa, under the multilingual settings to rec-
ognize the irony from Arabic and English texts.
Our system ranked second out of 43, and ninth
out of 32 in Task A: one-sentence detection
in English and Arabic; fifth out of 22 in Task
B: binary multi-label classification in English;
first out of 16, and fifth out of 13 in Task C:
sentence-pair detection in English and Arabic.

1 Introduction

Sarcasm is the use of language that typically signi-
fies the opposite to mock or convey contempt. As
a narrow research field in natural language process-
ing (NLP), sarcasm detection is a particular case in
the spectrum of sentiment analysis, with important
implications for a slew of NLP tasks, such as sen-
timent analysis, opinion mining, author profiling,
and harassment detection. In the textual data, these
tonal and gestural clues like heaving tonal stress
and rolling of the eyes are missing, making it more
difficult for machines.

The sarcastic intention of human annotators
has potentially hindered the training and evalu-
ation process in detecting the genuine emotions
and positions of the natural language. Thus, this
task (Abu Farha et al., 2022) adopted a novel
data collection method (Oprea and Magdy, 2020),
where authors themselves label the training sam-
ples. For sarcastic texts, the authors also rephrase
them into non-sarcastic ones. Then, linguistic ex-
perts further checked the scathing pieces and la-

beled them into sub-categories of sarcasm defined
by (Leggitt and Gibbs, 2000): sarcasm, irony, satire,
understatement, overstatement, and rhetorical ques-
tion.

This SemEval task requires the identification of
sarcasm in either one sentence or sentence pairs in
various language settings, which consists of three
subtasks:

(1) Task A (English and Arabic): Given a text,
determine whether it is sarcastic or non-
sarcastic;

(2) Task B (English only): A binary multi-label
classification task. Given a text, determine
which ironic speech category it belongs to, if
any;

(3) Task C (English and Arabic): Given a sarcas-
tic text and its non-sarcastic rephrase, i.e. two
texts that convey the same meaning, determine
which is the sarcastic one.

Our method employed various multilingual or
mono-lingual pre-trained language models, such as
ERNIE-M (Ouyang et al., 2020) and DeBERTa (He
et al., 2021) to address each component of this
task, with a bunch of fine-tuning and ensemble
techniques. Our system finally achieved

• 2nd out of 43 and 9th out of 32 in English and
Arabic subtasks in Task A;

• 5th out of 22 in Task B;

• 1st out of 16 and 5th out of 13 in English and
Arabic subtasks in Task C.

2 Previous Work

After detecting sarcasm in the speech was firstly
proposed in (Tepperman et al., 2006), sarcasm de-
tection has attracted extensive attention in the NLP
community. Afterward, sarcasm detection in the
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Sent1 Sent2

Task A
English:  I want to see Drew Locy cry. 
 Arabic:   بغنیلا وبدئلا وغیر بحبك مابئلا  رامي عیاش 

Task B
English:  6 more hours and then a whoppingly
massive 2 days off work!

Task C 
English: Trying to know all this history tonight is
gonna kill me. [SEP] Trying to know all this
history is going to be a challenge. 
 Arabic:  ایة المھلبیة دي یصحبي [SEP] ما ھذا الجمال

C
lassifier

Softmax

Softmax

Sigmoid

Figure 1: Fine-tuning pre-trained models on the iSarcasmEval data.

text has been extended to a broad range of data
forms in social media, such as tweets, comments,
and TV dialogues, due to their public availability.
Sarcasm detection spanned several approaches like
rule-based, supervised, and semi-supervised (Joshi
et al., 2016) methods, resulting in further develop-
ment for automatic sarcasm detection. Rule-based
methods mainly rely on linguistic information, and
their classification accuracy is often not very high
due to the presence of noisy data. Most previous
work on sarcasm detection based on supervised ma-
chine learning tends to rely on different types of fea-
tures, including sentence length, the number of cap-
italized words, punctuation (Davidov et al., 2010),
pragmatic factors such as emoticons (González-
Ibáñez et al., 2011), turn-level sentiment lexicon
(Wilson et al., 2005), sarcasm markers (Ghosh and
Muresan, 2018), and so on. Meanwhile, neural
models have been applied to this task, relying on
semantic relatedness (Amir et al., 2016) and neural
intra-attention mechanism to capture the sarcasm
(Tay et al., 2018) and thus reducing feature engi-
neering efforts.

Recently, pre-trained language models such as
BERT (Devlin et al., 2018), ERNIE (Sun et al.,
2019), and GPT-3 (Brown et al., 2020), have set the
new state-of-the-art in a wide range of NLP bench-
marks, such as GLUE (Wang et al., 2018). Kha-
tri et al. (2020) evaluated the performance of pre-
trained model using feature-based and fine-tuning
methods on irony detection in English tweets, find-
ing the latter is better. Meanwhile, there is also a
surge of applying pre-trained models in sarcasm
detection (Dadu and Pant, 2020; Potamias et al.,
2020; Javdan et al., 2020). Our system explored the
multilingual and monolingual pre-trained language
models to testify their fine-tuning performance on
English and Arabic sarcasm detection tasks.

3 Approach

3.1 Pre-trained Language Models

We adopt pretrain-then-finetune paradigm for bet-
ter leveraging the performance of large-scale pre-
trained models. As illustrated in Figure 1, for all
tasks, we utilize pre-trained models to extract the in-
put representations, followed by a fully-connected
feed-forward layer and a softmax/sigmoid activa-
tion after the [CLS] token for prediction. For
sub-task A and B that input samples only contain
one sentence, we directly fine-tune the pre-trained
Transformers. For sub-tasks with two sentences,
i.e., sub-task C, we employ the multi-layer pre-
trained Transformer blocks as the cross-encoder by
concatenating sentence pairs and separating them
with a [SEP] token.

 I want to see Drew Locy cry.

 بغنیلا وبدئلا وغیر بحبك مابئلا  رامي عیاش  

ده فاكر نفسھ باشا و بیھ كمان 

الحدیث قیاس فیھ الفضة و فیھ النحاس 

 See Brexit is going well 

Transform
er

0

0 

1

1

1 

Figure 2: Multilingual learning on Task A. “0/1” indi-
cate the non-sarcastic and sarcastic class.

3.2 Multilingual Learning

By observing that subtasks in task A and task C,
we found that both subtasks in Task A and C are
for the same objective but in different languages,
i.e., Arabic and English. Therefore, we adopt mul-
tilingual learning method by simultaneously fine-
tuning the pre-trained models on both Arabic and
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Trying to know all this history tonight is
gonna kill me. [SEP] Trying to know all this

history is going to be a challenge.

 ما ھذا الجمال [SEP] ایة المھلبیة دي یصحبي

ده فاكر نفسھ باشا و بیھ [SEP] ده مغرور و شایف نفسھ علىالناس
 كمان

gaslight gatekeep girl boss [SEP]  I do not gaslight,
gatekeep, or am a girl boss.

Transform
er

0

0

1

1

Figure 3: Multilingual learning on Task C. “0/1” indi-
cate the first or second sentence belongs to sarcasm.

English training data based on multilingual pre-
trained models, i.e., ERNIE-M. Specifically, we
combine both tasks in Task A or C as a single task,
that is, training on Arabic and English sarcasm de-
tection within the same subtask at the same time.
As shown in Figure 2, we combine the one-sentence
binary sarcasm detection subtasks in English and
Arabic together and fine-tune the multilingual pre-
trained models in one forward pass. Similarly, as
illustrated in Figure 3, we conduct the identical set-
tings for Task C. We found that this approach can
achieve obvious performance gain on some specific
settings and will discuss it in Secion 4.5.

3.3 Ensemble Learning

Considering the limited training data, we split the
training data into k-fold with disparate random
seeds, selecting one out of k data blocks for evalu-
ation and using the rest k − 1 for data training, as
shown in Figure 4. Then, we choose the optimal
model evaluated on various folds and random seeds.
Finally, we apply ensemble techniques by averag-
ing all outputs of test sets using optimal models.

Test Train

......

Fold-1

Fold-2

Fold-(k-1)

Fold-k

Figure 4: Illustration of ensemble learning. Ei indicates
the prediction of the i-th model on the test set.

4 Experiments

4.1 Task Description

4.1.1 Task A: Binary Sarcasm Detection
The first task is binary text classification: given a
tweet sample, the system needs to predict whether
it is sarcastic or non-sarcastic. The following ex-
amples respectively present a sarcastic and non-
sarcastic tweet.

(1) The only thing I got from
college is a caffeine
addiction. (#sarcastic)

(2) I want to see Drew Lock cry.
(#non-sarcastic)

Example 1 is a sarcastic tweet where the author’s
true intention is "College is really hard, expensive,
and exhausting, and I often wonder if the degree is
worth the stress."

4.1.2 Task B: Multi-label Sarcasm Detection
The second task is a multi-label classifi-
cation task, where the system requires to
predict multiple categories out of six labels,
such as #Sarcasm, #Irony, #Satire,
#Understatement, #Overstatement,
and #Rhetorical_question. The fol-
lowing examples provide examples for multiple
sub-categories:

(1) Falling asleep at your laptop
is always fun. (#Sarcastic)

(2) Wow Bdubs can bench press 150
kilometers. (#Irony)

(3) Lil Pump is the Nelson Mandela
of our generation. (#Satire

#Sarcastic)

(4) Lucky for 2nd placed Brentford
that there’s no stand out
team like Leeds this year,
or they might have no chance
of winning the league.
(#Understatement #Sarcastic)

(5) 6 more hours and then a
whoppingly massive 2days off
work! wowzers! (#Overstatement

#Irony)
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(6) wait what the fuck
that solo yolo is mad?
(#Rhetorical_question #Sarcastic)

In the above examples, the types of sarcasm
are subdivided into six categories. #Sarcasm,
which is an ironic remark meant to mock by saying
something different than what the speaker really
means. For example, in example 1, the speaker
hates falling asleep on his laptop. #Irony is when
something happens that is the opposite of what
was expected. As shown in example 2, the fact
is that Bdubs cannot bench press 150 kilometers.
#Satire is a type of wit that is meant to mock
human vices or mistakes, often through hyperbole,
understatement and sarcasm, as shown in Example
3. #Understatement is often a way of being
critical. In example 4, because Norwich is the
standout this year, Brentford cannot win the league.
#Overstatement is an act of stating something
more profound than it actually is, to make the point
more serious, important, or beautiful. In example 5,
a whoppingly massive two days off work means re-
gret, and the genuine emotion ought not to require
overstatement. #Rhetorical_question is a
question that is asked even if the person doing the
asking knows what the answer is. The solos in
example 6 was truly expressed to be awful.

4.1.3 Task C: Binary Irony Classification on
Two Sentences

The third subtask is binary classification: given a
sarcastic tweet and its non-sarcastic rephrase (i.e.,
two tweets that convey the same meaning), the
system needs to predict the sarcastic one. The
following examples present a sarcastic sentence
and its non-sarcastic paraphrase.

(1) Trying to know all this
history tonight is gonna kill
me. (#Sarcastic)

(2) Trying to know all this
history is going to be be a
challenge. (#Rephrase)

4.2 Evaluation Metrics
For these three sub-tasks, standard evaluation met-
rics including accuracy and F1 score are used to
evaluate the participating system, calculated as fol-
lows:

accuracy =
TP + TN

TP + FP + TN + FN
(1)

Task #Instances #Metric
Task A 1400 F1-score
Task B 1400 Macro-F1 score
Task C 200 accuracy

Table 1: Summary of official test set in SemEval-2022
Task6.

Class Label #Instances
sarcastic 867
non-sarcastic 2601
total 3468

Table 2: Satirical and non-satirical categories in training
data.

precision =
TP

TP + FP
(2)

recall =
TP

TP + FN
(3)

F1 = 2 · precision · recall
precision+ recall

(4)

where TP, FP, TN, FN represent true positive,
false positive, true negative, and false negative, re-
spectively.

As shown in Table 1, task A, B and C use the
F1-score for the sarcastic class, the Macro-F1 score
over all classes, and accuracy, respectively. The
Macro-F1 score implies that all class labels have
equal weights in the final score.

4.3 Data

The detailed statistics of the sarcasm detection
dataset are summarized in Table 2 and 3. As shown
in Table 2, the training data are shown to be imbal-
anced, with 867 positive samples vs. 2601 negative
ones. We only remove extra spaces, tabs, and line
breaks for pre-processing. All emojis that contain
emotional factors in training texts are kept without
any change.

Multi-class Label #Instances
sarcasm 713
irony 155
satire 25
understatement 10
overstatement 40
rhetorical_question 101

Table 3: Six satirical sub-categories in Task B.
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4.4 Experiment Details

Due to the long-tailed nature of training data,
we tried to use outside data1 for data augmenta-
tion. Particularly, we merge the classes of “figura-
tive”“irony” in the exta data into a “sarcasm” class,
but found it of no benefit. We conjecture that this
is due to manual annotators’ subjective intention
can give the same samples various interpretations
and therefore introduce some noise.

Still, the training data is relatively small and
insufficient to achieve an unbiased performance
estimate with a random train/test split. Instead, we
use a k-fold cross-validation procedure (k = 10),
a common model evaluation scheme in machine
learning. The k-fold cross-validation procedure
involves splitting the training dataset into k folds.
In which k − 1 folds are used to train a model,
and the rest one fold is used as the evaluation set.
Finally, the final output of k models is the mean of
these runs.

For English tasks, we compare ERNIE-
M (Ouyang et al., 2020) and DeBERTa (He et al.,
2021) as the pre-trained workhorse, while for Ara-
bic tasks, we only consider ERNIE-M. We use the
AdamW optimizer (Loshchilov and Hutter, 2017)
and weight decay of 0.01. We warm up the learning
rate for the first 10% of the update to a peak value
of 1e-5 and 5e-6, respectively, and then linearly
decay it afterward. We also use dropout (Srivastava
et al., 2014) with a rate of 0.15 to prevent overfit-
ting. We adopt a total batch size of 64 by running
gradient accumulation on each GPU device with a
step size of 8 and a batch size of 1, sharded across
8 NVIDIA V100 GPU chips. Our final solution is
to ensemble all the model results obtained using
a 10-fold cross-validation strategy with different
learning rates (1e-5 and 5e-6) and training epochs
(20 and 30), respectively.

4.5 Results

Table 4 compares the final performance on the of-
ficial test set of task A,B,C under proposed model
settings. It is obvious that DeBERTa outperforms
ERNIE-M on English task since it is pre-trained
only on English corpus. As to the multilingual
learning in Task A and C, we observe the signifi-
cant performance gain (i.e., +6 absolute percentage
point on F1 measure) on Task C while find it on par
with monolingual fine-tuning on Task A. We guess

1https://www.kaggle.com/c/gse002/data?
select=test.csv

Task Lang
ERNIE-M
(multilingual)

ERNIE-M
(monolingual)

DeBERTa Rank

Task A
en 36.75 38.46 56.91(∗) 2/43
ar 40.36 41.87(∗) - 9/32

Task B en N/A - 7.99(∗) 5/22

Task C
en 82.50 75.00 87.00 (∗) 1/16
ar 90.50 84.00(∗) - 5/13

Table 4: Official test-set performance under various
experimental settings. The “ERNIE-M (multilingual)”
column indicates the performance of multilingual learn-
ing in Task A and C. Scores with asterisk indicate final
submitted results. The official evaluation metrics for
Task A,B,C are F1-score, macro F1-score, and accuracy,
respectively.

this is because Task C are given two sentences for
comparison, which is more straightforward than
Task A (single sentence) to capture the ironic pat-
tern for sarcasm detection. Due to the time limit,
we only submit the monolingual fine-tuning results
of ERNIE-M (i.e., 84% acc.), which ranks 5th out
of 13 in the Arabic subtask of Task C. Instead,
the performance of our multilingual learning can
achieve 2nd in Task C (Arabic). We contend that
it would be worthwhile further exploring multilin-
gual learning methods in various language settings
in the future.

5 Conclusion

We present our system that participated in Se-
mEval Task 6 and employ the multilingual learning
method to train the English and Arabic tasks jointly.
We empirically find that it confers benefits in spe-
cific scenarios and outranks the monolingual pre-
trained models on Arabic tasks. However, we do
not adopt other Arabic-specific pre-trained models,
which is also worth comparing. In the future, it is
a promising direction to explore different sarcasm
detection approaches under multilingual settings.
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Abstract

This paper describes the participation of team
DUCS at SemEval 2022 Task 6: iSarcasmEval
- Intended Sarcasm Detection in English and
Arabic. Team DUCS participated in SubTask
A of iSarcasmEval which was to determine if
the given English text was sarcastic or not. In
this work, emojis were utilized to capture how
they contributed to the sarcastic nature of a text.
It is observed that emojis can augment or re-
verse the polarity of a given statement. Thus
sentiment polarities and intensities of emojis,
as well as those of text, were computed to de-
termine sarcasm. Use of capitalization, word
repetition, and use of punctuation marks like ’!’
were factored in as sentiment intensifiers. An
NLP augmenter was used to tackle the imbal-
anced nature of the sarcasm dataset. Several
architectures comprising of various ML and DL
classifiers, and transformer models like BERT
and Multimodal BERT were experimented with.
It was observed that Multimodal BERT outper-
formed other architectures tested and achieved
an F1-score of 30.71%. The key takeaway of
this study was that sarcastic texts are usually
positive sentences. In general emojis with pos-
itive polarity are used more than those with
negative polarities in sarcastic texts.

1 Introduction

According to the Collins Dictionary 1

"Sarcasm is speech or writing which
actually means the opposite of what it
seems to say".

Fox Tree et al. (2020) report that sarcasm is chal-
lenging to identify, even for humans. People often
use gestures like rolling of eyes or heavy tonal
stress to express sarcasm (Pandey et al., 2019), in
speech or in-person communication. Intonation

1https://www.collinsdictionary.com/dictionary/english/sarcasm

and stress in speech, too, are strong indicators of
sarcasm (Castro et al., 2019). Also, the context in
the form of shared knowledge between the speaker
and the audience can be leveraged to detect sar-
casm (Amir et al., 2016). But most of the time
the tone or the context is missing in text data, es-
pecially tweet data. Some users attempt to use
capitalization like "OH YEAH" or repetitions like
"woowww" to indicate tonal intensity. But, most
of the time these cues are not enough, especially in
absence of context to gauge sarcasm. This makes
sarcasm detection a challenging task.
In this work, team DUCS participated in SemEval
2022 Task 6 : iSarcasmEval Subtask A, (Abu Farha
et al., 2022), to determine if the given text is sarcas-
tic or not. The English text training dataset contains
3468 sentences. Each text is labeled as sarcastic or
non-sarcastic by the text-author. Of the 3468 sen-
tences 867 are sarcastic and 2601 are non-sarcastic.
In the dataset corresponding to a sarcastic text, a
rephrased non-sarcastic version has also been pro-
vided. These sarcastic texts are labeled as one of
sarcasm, irony, satire, understatement, overstate-
ment, and rhetorical question. These ironic speech
categories are determined by a linguist expert. The
target task is to determine whether a text is sarcas-
tic or not on the Test dataset which contains 1400
sentences.
For sarcasm detection in the above-discussed
dataset, an attempt was made to derive cues from
the text itself. It is observed that in real scenarios,
the absence of labels by users like #not or #sarcasm
or any other contextual information makes sar-
casm detection challenging (Chaudhari and Chan-
dankhede, 2017). Thus, in this work, the authors
attempted to use the information available in the
text itself. Emoji occurrences in the text are cap-
tured to study their impact in discerning sarcasm.
Sentiment intensity and polarity of both the emojis
and the text were computed to train the classifiers
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for sarcasm classification.
This paper is organized as follows. Section 2 dis-
cusses related work in sarcasm detection. In Sec-
tion 3, System Overview, the proposed approach to
incorporate polarity and intensity of emojis along
with text sentiment polarity and intensity is dis-
cussed. Section 4, describes the Experimental
Setup and the data augmentation approach used for
the given dataset. The results of the experiments
conducted are reported in Section 5. In the last sec-
tion Conclusion, the key takeaways and learnings
are discussed.

2 Related work

The sarcastic nature of the text can deceive classi-
fiers as well as humans, given it conveys the op-
posite of what it means. Many researchers have
attempted to use text sentiment and emojis for sar-
casm detection.
Subramanian et al. (2019) use word and emoji
embeddings simultaneously to train deep learning
models with attention layer for sarcasm detection.
Pamungkas and Patti (2018) utilize structural fea-
tures and affective features of tweets for irony de-
tection. Structural features include the presence
of hashtags, links, emojis, quotes, etc. The counts
of mentions, exclamations, upper-case, intensifiers,
links, along with the counts of verbs, nouns, and ad-
jectives are also used along with the use various af-
fective resources to capture sentiment polarity and
emotions. Lemmens et al. (2020) used an ensemble
approach with LSTM for representing emojis and
hashtags, CNN-LSTM for representation of cases,
stop-words, punctuation, and sentiments. MLP
was trained with Facebook’s InferSent embeddings
(Conneau et al., 2017) while SVM was trained with
emotion and stylometric features. A decision tree
with Adaboost served as the base estimator for the
ensemble. This ensemble was used to predict sar-
casm on the conversational text where context was
available. Sundararajan and Palanisamy (2020) pro-
pose a rule-based classifier with an ensemble of 20
different features. They observed that the features
based on sentiment can predict sarcasm better in
combination with contradictory features.
In most work so far researchers have tried to cap-
ture sentiment and linguistic features to identify
sarcasm. A few researchers have attempted to in-
clude emojis in sarcasm classification. But, how
the usage of emojis with text impacts or conveys
sarcasm is yet to be explored in depth. It needs to

be studied how frequent is sentiment incongruence
of emojis in the text they are used with and can the
polarity of emojis and text help deduce sarcasm.
Hence in this work, the authors focus on these fea-
tures - emoji sentiment and text sentiment as well
as their polarities to understand how this combina-
tion impacts sarcasm. This approach is discussed
in the next section.

3 System overview

In the given dataset, situational context is not avail-
able. Although linguistic markers are provided,
they may not be available in real scenarios, eg when
the users post on social media. In the absence of
context, it is important to take into account other
factors that may point to sarcasm. For instance, the
surface sentiment of a text is often used in many
sarcasm classifiers (Joshi et al., 2016). Sulis et al.
(2016), report that most often sarcasm is used with
an apparently positive statement to produce a neg-
ative impact. It is noted that the users may use
intensity in the form of capitalization, repeated let-
ters, etc. to express sarcasm (Chaudhari and Chan-
dankhede, 2017). In this work, to identify sarcasm,
the sentiment polarity of the text and intensity in
the form of sentiment score was incorporated for
the sarcasm classification task. Intensity as a fea-
ture is used as it may help capture intonation or
stress a user may want to express.
It has been reported that features like emojis can
augment as well as alter the sentiment polarity
(Grover, 2021).
Pamungkas and Patti (2018) observed that emoji in-
congruity with the text may help improve the irony
classification. Thus, this work investigates whether
in sarcastic texts users use in-congruent emojis with
the text to express sarcasm. And whether the use
of emojis in the text helps in detecting sarcasm?

Data preparation The text dataset was cleaned
to remove URLs as they do not contribute to the
text sentiment. Most text preprocessing approaches
in sentiment classification convert characters to
lower case, reduce repeating letters, and perform
lemmatization. To compute the sentiment score
and polarities, special care was taken to not remove
repetition of letters, capitalization or punctuation as
they may serve as intensifiers. These special usages
can later be removed during the experimentation
while training the classifiers.

1006



Emoji extraction In the next step, the emojis are
separated from text. The training dataset for this
task contained 672 text sentences with emojis of
which 195 were sarcastic. The demoji 1.1.0 Python
package 2, is used for emoji extraction.

Text sentiment polarity and intensity To evalu-
ate intensity or the sentiment score of the text and
text polarity the VADER sentiment analyzer (Hutto
and Gilbert, 2014), available in Python’s natural
language toolkit is employed. VADER is observed
to work better in the language used by the users on
social media (Illia et al., 2021), (Bonta and Janard-
han, 2019). Users tend to communicate informally,
using slang, abbreviations, capitalization and punc-
tuation marks, etc. on social media. VADER can
capture these components while computing senti-
ment polarity and sentiment scores. The compound
scores provided by VADER are used as the senti-
ment score. If the compound score is ≤ -0.5 the
sentiment polarity is considered negative, between
(-0.5, 0.5), the polarity is considered as neutral,
while the score ≥ = 0.5 is considered to be posi-
tive.

Emoji sentiment polarity As discussed above,
since emojis are known to contribute to text senti-
ment and in many cases, they may even reverse the
sentiment polarity, the emojis extracted for each
text are stored separately in the list. A total of 672
texts have emojis in the provided dataset.
For extracting emoji sentiment, Emoji Sentiment
Ranking (Novak et al., 2015) is employed. Emoji
Sentiment Ranking gives the sentiment score of the
emojis.
A text may contain numerous emojis which is an
indicator of both the context as well as associated
emotion with the text. For example, a single emoji
used several times with a text may be considered
as a sentiment intensifier. Thus, all the emojis in
the text were considered while computing emoji
polarity and emoji sentiment score.
Emoji sentiment scores were captured for all emo-
jis. If an emoji did not appear in the Emoji Senti-
ment Ranking, it was demojized using the emoji
1.6.3 Python package3. Demojizing here means re-
placing the emojis with their Unicode Consortium
description in English, (Unicode, 2022). These
emoji descriptions are passed to the VADER sen-
timent analyzer to compute the sentiment score of

2https://pypi.org/project/demoji/
3https://pypi.org/project/emoji/

the emojis. Again the compound score provided by
VADER is used to compute the final score. Scores
of all the emojis are then added to compute the total
emoji score for all the emoji scores associated with
the text. These emojis are then normalized as done
in VADER and corresponding emoji polarities are
computed.

normalizedScore =
score√

score2 + α
(1)

where default value of α is 15.
Each text with emojis is labeled with the computed
emoji score and emoji polarity. For the text with
no emojis, the emoji sentiment score is assigned to
zero, and polarity is assigned as neutral.
For example if the text is "@AsdaServiceTeam
imagine your delivery being 2 hours late, and imag-
ine calling up your service team only for them to
hang up at 10pm, coincidentally the same time the
office closes. But it’s okay, my £3 delivery fee is

being refunded though ". The VADER text
score is computed as 0.2263 with "+" text polarity.
The VADER emoji sentiment score is computed
as 0.0150371002692231 with "+" emoji polarity.
The prepared dataset with the derived features of
text sentiment scores, text polarity, emoji sentiment
score, and emoji polarity is now used to train the
different classifiers discussed in the next section.

4 Experimental setup

For sarcasm detection, this work employs various
machine and deep learning classifiers. The pro-
posed set up is also tested with transformer models
like BERT and Multimodal BERT.
First, the text is cleaned to remove stop words,
newlines, and spaces. The cleaned text is then
converted to lower case and then tokenized to pre-
pare for loading the word embeddings. Pre-trained
GloVe embeddings, (Pennington et al., 2014) of
100 dimensions are used to represent the tokenized
text.
80% of the dataset was used for training while the
remaining 20% was used for validation.

Data augmentation This dataset was highly
imbalanced with 867 sarcastic and 2601 non-
sarcastic texts, i.e. (3:1 ratio for non-sarcastic:
sarcastic texts). So the dataset was augmented to
improve this ratio of sarcastic and non-sarcastic
texts. The sarcastic texts were oversampled with
nlpaug python library 4 for text augmentation.

4https://nlpaug.readthedocs.io/en/latest/index.html
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The contextual BERT embeddings were used to
synthesize new texts from existing texts in the
dataset. Two different augmented datasets were
created. In the first augmented dataset (Aug1
Training Set), each sarcastic text was synthesized
once to create one more text. In this set, the
ratio of non-sarcastic: sarcastic texts was 2:1. In
the next augmented dataset (Aug2 Training Set),
each sarcastic text was synthesized to create two
more texts, thus resulting in the ratio of 1:1 for
non-sarcastic to sarcastic texts.
For example, if the tweet was, "See Brexit is going
well". Then in the first augmented text (Aug1
Training Set) the original tweet (mentioned above)
was retained and a synthesized tweet in the form
"can see brexit negotiations is going extremely
well" was added to the dataset. This was done
for every sarcastic tweet, making the ratio of
non-sarcastic:sarcastic texts as 2:1.
In the Aug2 Training Set) the number of syn-
thesized texts was increased to two. So two
synthesized tweets apart from the original tweet
were appended to the dataset making the ratio of
non-sarcastic:sarcastic as 1:1.
The computed sentiment polarity, text sentiment
score, emoji sentiment polarity, and emoji senti-
ment score were replicated from the original texts
in the synthesized texts.

Model architecture The different architectures
experimented with are as follows:

• Gaussian Naive Bayes (Perez et al., 2006)

• Support Vector Machine with Linear Kernel
(Wang, 2005)

• Logistic Regression (Wright, 1995)

• Sequential model with 1 dense fully con-
nected layer (Sutskever et al., 2014)

• LSTM with Adadelta optimiser, 128 batch
size, run over 10 epochs (Sundermeyer et al.,
2012)

• Bi-LSTM (Graves and Schmidhuber, 2005)
with Adadelta optimiser, 128 batch size, run
over 10 epochs

• BERT (Devlin et al., 2018) with the learning
rate of 1e-5, batch size 32 run over 4 epochs
with the base uncased classifier

• Multimodal BERT with the batch size 32 run
over 6 epochs with the base uncased classifier

5 Results

This section reports the results of various classifiers
on which the proposed approach was tested with.
The original training set (Original Training Set)
provided for the competition is an imbalanced
dataset contains 2601 non-sarcastic and 867
sarcastic texts. The training set augmented with
1X sarcastic tweets (Aug1 Training Set) contains
1734 sarcastic and 2601 non-sarcastic texts. 867
sarcastic texts were synthesized to create 867
more sarcastic texts, resulting in a total of 1734
sarcastic texts. The training set augmented with 2X
sarcastic tweets (Aug2 Training Set) contains 2601
sarcastic and 2601 non-sarcastic texts. In this set,
each of the 867 sarcastic texts were synthesized
twice. Hence the total number of sarcastic texts
were 867(original) and 1734(each original tweet
synthesized twice).
Validation-F1 reports F1 score (%) that were
obtained during the validation. Results obtained on
the test dataset, (Abu Farha et al., 2022), provided
during the competition are reported in Test-F1.
The results of models trained without sentiment
scores and polarities on the original training set in
Table 1, training set augmented with 1X sarcastic
tweets in Table 2, and training set augmented with
2X sarcastic tweets in Table 3 are reported.

Classifier Validation-F1 Test-F1
Gaussian Naive Bayes 25.87 14.52
Logistic Regression 7.03 5.45
SVM 7.11 4.65
Sequential 44.09 24.53
LSTM 44 25
Bi-LSTM 44 25
BERT 77.56 22.46

Table 1: Original Training Set without Sentiment
Scores and Polarities

The results of models trained with text and emoji
sentiment scores and their respective polarities on
Original, Aug1, and Aug2 are reported in 4, 5, 6
respectively.

The Multimodal BERT trained with 1736 sarcas-
tic and 2601 non-sarcastic sentences was eventu-
ally used to determine sarcastic text in the test data.
With this work the authors achieved an overall F1-
Score of 30.71% on the test dataset and was ranked
24 out of the 43 participating teams.
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Classifier Validation-F1 Test-F1
Gaussian Naive Bayes 50.73 19.39
Logistic Regression 19.13 16.18
SVM 19.5 16.42
Sequential 56.48 24.53
LSTM 56.48 25
Bi-LSTM 56.48 24.53
BERT 64 23.94

Table 2: Aug1 Training Set without Sentiment Scores
and Polarities

Classifier Validation-F1 Test-F1
Gaussian Naive Bayes 59.04 16.58
Logistic Regression 61.4 22.5
SVM 61.57 22.58
Sequential 66.71 25
LSTM 66.71 25
Bi-LSTM 66.71 25
BERT 64 23.94

Table 3: Aug2 Training Set without Sentiment Scores
and Polarities

It was observed that in general, models trained with
sentiment scores of text and emojis alongwith their
polarities performed better than those trained only
with text
Figure 1 shows the distribution of emojis across
sarcastic text in the train and test dataset. From
Figure 1 of iSarcasmEval dataset

• It is observed that sarcastic texts mostly have
emojis with positive polarity.

• Sarcastic texts generally demonstrate positive
sentiment.

Some other observations noted during the experi-
ments are reported as follows.

• Sarcastic text when augmented twice results
in overfitting and results are not satisfactory
on the test set. The best F1-score on the test
dataset is achieved when each sarcastic text is
augmented once.

Classifier Validation-F1 Test-F1
Gaussian Naive Bayes 21.3 15.72
Logistic Regression 6.41 2.84
SVM 6.52 2.87
Sequential 37.57 24.53
LSTM 47.03 28.47
Bi-LSTM 47.03 28.48
BERT 35.29 23.28
MultiModal BERT 50.00 25.12

Table 4: Original Training Set with Text and Emoji
Sentiment Scores and Polarities

Classifier Validation-F1 Test-F1
Gaussian Naive Bayes 32.0 18.5
Logistic Regression 17.56 11.11
SVM 17.53 10.89
Sequential 56.75 24.52
LSTM 40.73 28.49
Bi-LSTM 40.51 28.49
BERT 73.184 29.27
MultiModal BERT 75.22 30.71

Table 5: Aug1 Training Set with Text and Emoji Senti-
ment Scores and Polarities

Classifier Validation-F1 Test-F1
Gaussian Naive Bayes 57.51 20.93
Logistic Regression 54.3 20.62
SVM 54.77 20.75
Sequential 64.26 24.52
LSTM 49.82 28.50
Bi-LSTM 49.82 28.50
BERT 78.36 24.31
MultiModal BERT 81.22 24.69

Table 6: Aug2 Training Set with Text and Emoji Senti-
ment Scores and Polarities

• Overall the Multi-modal BERT, which can
handle tabular data, performs the best.

• Models trained with sentiment scores and po-
larities of text and emojis performed slightly
better than those trained with only text.

• In the test dataset only 18 sarcastic sentences
had emojis.

• F1-score on test dataset for text with emojis
was found to be 21.05% while that of text with-
out emojis was 31.02%. This performance
may be improved if more sentences with emo-
jis are available.

6 Conclusion

In this work, the authors took their first steps in
understanding how the sentiment of emojis along-
with the text sentiment helps in detecting sarcasm.
Since sarcasm is difficult to detect without context,
authors attempted to uncover information implicit
in the text. For this the intensity and polarity of
both the available emojis and the text itself were
used to identify sarcasm.
It was observed that sarcastic texts generally have
positive polarity. Sarcastic texts employed emojis
with positive polarities more than the negative emo-
jis. This information can be used further to improve
results of sarcasm classification. The given dataset
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Figure 1: Distribiution of Emojis in Sarcastic Text in
Train and Test Datasets of iSarcasmEval

had relatively fewer texts with emojis, thus, more
work is required to fully capitalize on the proposed
approach. This motivates the authors to explore
more sarcasm datasets with emojis to exhaustively
study the impact of emojis in identifying sarcasm.
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Abstract

In this manuscript we detail the participation
of the UMUTeam in the iSarcasm shared task
(SemEval-2022). This shared task is related
to the identification of sarcasm in English and
Arabic documents. Our team achieve in the
first challenge, a binary classification task, a F1
score of the sarcastic class of 17.97 for English
and 31.75 for Arabic. For the second challenge,
a multi-label classification, our results are not
recorded due to an unknown problem. There-
fore, we report the results of each sarcastic
mechanism with the validation split. For our
proposal, several neural networks that combine
language-independent linguistic features with
pre-trained embeddings are trained. The em-
beddings are based on different schemes, such
as word and sentence embeddings, and contex-
tual and non-contextual embeddings. Besides,
we evaluate different techniques for the inte-
gration of the feature sets, such as ensemble
learning and knowledge integration. In general,
our best results are achieved using the knowl-
edge integration strategy.

1 Introduction

Sarcasm is a form of rhetorical device based on
biting humour to disarm an opponent during a di-
alog (Wilson, 2006). On the Web and, specially
in social networks and opinion forums, sarcasm is
very popular because it is funny to read and helps
to stimulate the viral phenomenon of social media
content (Peng et al., 2019). As sarcasm usually re-
lies on figurative language and wordplay, in which
words diverts from their conventional meaning, sar-
castic statements hinder the ability of automatic
classification tasks to perform sentiment analysis,
hate-speech detection, or author analysis among
other tasks.

From a Natural Language Processing (NLP) per-
spective, sarcasm, among other forms of figura-
tive speech, such as irony or satire, has been ex-

∗Corresponding author

plored in (del Pilar Salas-Zárate et al., 2020). In
this work, the authors explored what stands out the
most discriminant features for satire and irony de-
tection. The authors identified a total of 25 feature
sets. Apart from lexicon-based features and word-
n-grams features, such as unigrams or bigrams,
the authors identified style features, sentiment and
emotional features, pragmatic features, and punc-
tuation features, to name a few. Our proposal
for solving sarcasm detection includes language-
independent feature sets extracted with a custom
tool, UMUTextStats (García-Díaz et al., 2021;
García-Díaz and Valencia-García, 2022; García-
Díaz et al., 2022a,b).

In this work, we describe the participation of
the UMUTeam at SemEval 2022 task 6, concern-
ing sarcasm identification in Arabic and English
(Abu Farha et al., 2022). In this edition, three chal-
lenges are proposed. The first one is a binary classi-
fication problem to determine whether a document
is sarcastic or not. This challenge is for English
and Arabic. The second challenge is available only
in English, and consists in a multi-label classifica-
tion task discerning among different types of ironic
speech. Finally, the last challenge consists of the
identification of a sarcastic document between it-
self and a non-sarcastic rephrase, but with the same
meaning. Our team attemted to participate in the
first and second challenge. We achieve a F1 score
of the sarcastic class of 17.97% for English, and
31.75% for Arabic in the first challenge. However,
our results are not considered in the official leader
board for the second challenge due to an unknown
error. Therefore, we report the results for the sec-
ond challenge with the validation split of dataset.

2 Dataset

The dataset proposed at iSarcasm 2022 was anno-
tated by the authors themselves. Besides, each au-
thor was asked to rephrase their sarcastic texts with-
out the usage of sarcasm. Finally, some linguistic
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Split English Arabic
training 2774 2800
val 694 700
test 1400 1400
total 4868 4900

Table 1: Corpus statistics by split and language for the
first challenge in English and Arabic

Trait Training Validation
irony 130 25
overstatement 35 5
rhetorical question 81 20
sarcasm 565 148
satire 19 6
understatement 9 1

Table 2: Corpus statistics per sarcastic mechanism (sub-
task 2, English)

experts were asked to perform the multi-label anno-
tations based on the following ironic speech labels:
sarcasm, irony, satire, understatement, overstate-
ment, and rhetorical question (Leggitt and Gibbs,
2000).

The statistics of the dataset concerning the first
challenge are shown in Table 1. There is a signif-
icant imbalance between the labels. The relation-
ship between the sarcasm and non-sarcasm texts
is a 1:3 for English and 1:6 for Arabic. The statis-
tics concerning the second challenge are shown
in Table 2. There are 713 documents annotated
as sarcasm, 155 as irony, 101 as rhetorical ques-
tions, 40 as overstatement, 25 as satire, and 10 as
understatement.

From the training set, we select a 20% of in-
stances to build the validation set using stratified
sampling, in order to keep the balance.

3 System architecture

Figure 1 depicts the architecture of our proposal.
Basically, we build two systems: one for English
and one for Arabic, so we could apply different pre-
processing techniques and apply language-specific
pretrained embeddings. In a nutshell, this pipeline
can be described as follows. First, is the preprocess-
ing step module. For both languages, we ensure
that the dataset does not contains hyperlinks, hash-
tags, quotations or emojis. Plus, for the English
dataset we expand acronyms. Second, is the data-
splitter, to divide the iSarcasm dataset into training
and validation. As there was a strong imbalance in

the dataset, we keep this imbalance in both splits.
Third, is the feature extraction module, for extract-
ing the language-independent linguistic features
and the sentence embeddings. Forth, is the training
of several neural networks using hyperparameter
selection. Finally, is the feature integration module,
in which we evaluate ensemble learning and knowl-
edge integration in order to combine the results of
each neural network.

Next, the feature extraction module is described.
The first feature set is a subset of language-
independent linguistic features (LF) from UMU-
TextStats. This feature sets includes Part-of-Speech
(PoS) features and stylometric features concern-
ing several linguistic metrics such as Type To-
ken Ratio (TTR), punctuation symbols and cor-
pus length. The second and third feature sets are,
respectively, non-contextual word and sentence em-
beddings from FastText (Mikolov et al., 2018). For
this, we use the Arabic and English pretrained mod-
els. The word embeddings allow to evaluate convo-
lutional and recurrent neural network architectures,
apart from multi-layer perceptrons that suitable for
feature sets of fixed size. The forth feature set is
contextual sentence embeddings. We use BERT
(Devlin et al., 2018) for English, and Arabic BERT
(Safaya et al., 2020) for Arabic. To extract these
embeddings, we applied a similar method as de-
scribed at (Reimers and Gurevych, 2019). Before
extracting the sentence embeddings, we used Ray-
Tune (Bergstra et al., 2013) to fine tune BERT and
Arabic BERT. For this, we used Tree of Parzen
Estimators (TPE) to select the best hyperparame-
ters from a total of 10 trials. The hyperparameters
evaluated are: (1) the weight decay (between 0
and 0.3); (2) two training batch sizes: 8 and 16
(we were limited to the GPU); (3) four warm-up
steps: 0, 250, 500, 1000; (4) the number of training
epochs, between 1 and 5; and (5) a learning rate
between 1e–5 and 5e–5.

Once the feature sets are extracted, the next step
in the pipeline is the training of the neural networks.
We train a neural network per feature set and a neu-
ral network combining all the feature sets, using
a knowledge integration strategy. Each training
is performed with an hyperparameter optimisation
stage. This evaluation includes 20 shallow neu-
ral networks, in which one or two hidden layers
are stacked and that contains the same number of
neurons. For the shallow neural networks we eval-
uate the following activation functions: (linear,
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Figure 1: System architecture for solving the iSarcasm 2022 shared tasks

ReLU, sigmoid, and tanh). We also evaluate
5 deep-learning networks, composed from 3 to 8
hidden layers, in which the number of neurons per
layer are arranged different shapes (brick, triangle,
diamond, rhombus, and funnel). The activation
functions evaluated for the deep-learning networks
are the sigmoid, tanh, SELU and ELU. We also
adjust the learning rate to evaluate 10e-03 or
10e-04. As commented above, the word embed-
dings from fastText allow us to evaluate 10 convo-
lutional and 10 bidirectional recurrent neural net-
works. As the dataset was heavily imbalanced, we
evaluate large batch sizes, so in all the experiments,
we evaluate large batch sizes: 128, 256, and 512.
We apply these large batch sizes for ensuring all
batches contains sufficient number of instances of
both classes. In addition, we apply regularisation
by using a dropout mechanism ([False, .1,
.2, .3]).

Besides, we evaluate two ensemble learning
strategies to combine all the features. One method
consisting of hard voting the labels predicted by
each model (mode) and another method consisting
of averaging the probabilities of the label of each
model (mean).

It is worth mentioning that one of the tasks of
English language is a multi-label problem. To solve
it, we trained several binary classification models,
one per ironic speech label.

4 Results and validation

During the development stage, we evaluate our
models with a custom validation split. The results

for the first task are depicted in Table 3, both for
English and Arabic. We can observe that there is a
strong difference between the results of the English
and the Arabic datasets.

First, in case of English, we can observe that the
results for identifying sarcasm (F1-pos) are limited,
reaching a F1-score of 45.82% with the knowledge
integration strategy. We focus on this metric be-
cause the validation split is unbalanced, containing
173 sarcastic documents and 521 non-sarcastic doc-
uments. The results of the LF are limited in case of
English. LF are based mostly on stylometric and
PoS features, which are not enough for the correct
identification of sarcasm in English. Moreover, the
results concerning the sarcasm label achieved with
the non-contextual word embeddings (WE) are sim-
ilar to the ones achieved with the LF (40.10% vs
40.08%), both slightly worse than non-contextual
sentence embeddings (SE, 42.27%). The results
achieved with transformers (BF) are the best re-
sults achieved with the feature sets evaluated in
isolation (F1-pos of 45.10%). When combining the
results, we observe that we achieve slightly supe-
rior results by the knowledgte integration approach,
improving to a F1-pos of 45.82%. However, the re-
sults are more limited with the the ensemble strate-
gies, achieving the lower results of 38.06% (mode)
and 37.96% (mean). The identification of the non-
sarcasm label (F1-neg) is more similar (and even
slightly superior) compared with the rest of the
strategies.

Second, in case of Arabic, we observe astonish-
ing results for all feature sets. We reviewed the
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English Arabic
Strategy F1-neg F1-pos F1-score F1-neg F1-pos F1-score
LF 67.92 40.08 54.00 98.14 90.00 94.07
SE 73.21 42.27 57.74 97.99 88.35 93.17
WE 76.68 40.10 58.39 98.07 89.00 93.53
BF 82.40 45.10 63.75 99.08 94.69 96.88
LF-SE-WE-BF (K.I.) 83.57 45.82 64.69 99.08 94.69 96.88
LF-SE-WE-BF (mode) 83.71 38.06 60.89 99.17 95.05 97.11
LF-SE-WE-BF (mean) 78.84 37.96 58.40 96.71 81.86 89.28

Table 3: Results for the custom validation split in the first challenge for English and Arabic. We show F1-neg
for non-sarcasm, F1-pos for sarcasm, and the macro F1-score (F1-score) for the neural networks evaluated with a
feature set, and the combinations of features by using knowledge integration and two ensemble learning strategies.

dataset in order to find duplicates but we could not
identify a relevant number of them. The identifica-
tion of a large number of duplicates could indicate
that some of the instances of the training split were
present in our custom dataset. In this case and due
to our lack of understanding of Arabic, we could
not identify in the validation split the high perfor-
mance achieved. After the competition, the ground
truth labels of the test set were released for the de-
velopment of the working notes. We observed that
the results with the test split are more limited. For
example, the F1-score falls from 94.07% with LF
with the custom validation split to 33.82% with the
official test split. The drop in the results cannot be
explained by class imbalance, as we performed a
stratified split in order to build the validation split.
In fact, our validation split has 102 sarcasm docu-
ments whereas the rest (598) are non-sarcasm. The
official test contains 1400 documents, 200 labelled
as sarcasm whereas the rest were labelled as non-
sarcasm. The results achieved with the rest of the
feature sets SE, WE, and BF are in the same line,
achieving the best result with a macro F1-score of
44.85% with the knowledge integration strategy.

Next, we report the results achieved for each trait
separately in Table 4. This table reports the over-
all macro F1-score. The limited results achieved
are caused by the strong imbalance among the val-
idation split. From a total of 694 samples of the
validation split of the English dataset, there are 25
samples of irony, 5 of overstatement, 20 rhetorical
questions, 148 based on pure sarcasm, 6 based on
satire, and 1 for understatement. These results indi-
cate that one of the main drawbacks of our proposal
is related to handle class imbalance, as the majority
of the neural networks developed does not behave
better than a random classifier. Moreover, some

surprising results are achieved for the rhetorical
questions and understatements, with the ensemble
strategy of averaging the probabilities (mean).

Concerning the official results, we achieved very
limited results for the binary classification chal-
lenge in English, achieving position 41 with a F1-
score of the sarcastic class of 17.97% (see Table
5). The best result was achieved by user stce with a
F1-score over the sarcastic label of 60.52%, which
indicates that our system is far from the best re-
sults. The average F1-score of the sarcastic label of
the rest of the participants is 32% with a standard
deviation of 11.24%.

The results achieved with the Arabic dataset for
the binary classification were better, with a F1-
score of the sarcastic label of 31.75%, reaching
position 22 of a total of 32 participants. (see Table
6). In this case, the best result was achieved by
user Abdelkader with an F1-score over the sarcas-
tic label of 56.32%. The average F1-score of the
sarcastic label of the rest of the participants is 35%
with a standard deviation of 10.04%.

5 Conclusions and further research lines

In this working notes we have described the partic-
ipation of the UMUTeam in the iSarcasm shared
task of SemEval 2022. In this shared task, the
participants were required to solve a binary and
a multi-label classification task regarding sarcasm
identification in English and Arabic. We achieved
a F1 score of the sarcastic class of 17.97% for En-
glish, and 31.75% for Arabic in the first challenge.

After sending the official results, we received
the annotated test set. Although we are happy with
our participation in this shared task, as we have
evaluated some of our methods, such as a subset
of language-independent feature sets in Arabic, we
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Strategy F1-trait-1 F1-trait-2 F1-trait-3 F1-trait-4 F1-trait-5 F1-trait-6
LF 52.39 66.52 68.18 56.30 55.46 49.96
SE 52.85 64.10 60.34 58.23 64.10 49.96
WE 57.50 52.79 63.96 56.41 60.86 49.96
BF 56.96 69.78 67.25 62.84 56.71 49.96
LF-SE-WE-BF (K.I.) 56.47 60.86 71.10 62.60 62.28 49.96
LF-SE-WE-BF (mode) 57.50 66.52 64.12 61.96 49.78 49.96
LF-SE-WE-BF (mean) 51.35 50.12 6.50 54.01 42.15 0.14

Table 4: Macro F1-score of the custom validation split in the second challenge. The traits are, number from 1 to 6,
irony, overstatement, rhetorical question, sarcasm, satire, and understatement

Rank User/Team F1-sarcastic
1 stce 60.52
2 emma 52.95
3 saroyehun 52.95
41 UMUTeam 17.97
42 Matan 16.84
43 abhayshukla9 15.53

Table 5: Results for the first challenge (English)

Rank User/Team F1-sarcastic
1 Abdelkader 56.32
2 Aya 50.76
3 rematchka 47.67
22 UMUTeam 31.75
23 Pat275 30.13
43 Matan 29.51

Table 6: Results for the first challenge (Arabic)

are aware that our results are limited. Our prelim-
inary experiments with the official annotated test
suggests that our major weakness is the class im-
balance. As we already include some techniques
to address this problem, as weighting the classes
and evaluating larger batch sizes, we will explore
methods for performing data-augmentation and try
to increase the performance of our models.
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Abstract

This paper describes our system used for Se-
mEval 2022 Task 6: iSarcasmEval: Intended
Sarcasm Detection in English and Arabic. We
participated in all subtasks based on only En-
glish datasets. Pre-trained Language Models
(PLMs) have become a de-facto approach for
most natural language processing tasks. In our
work, we evaluate the performance of these
models for identifying sarcasm. For Subtask
A and Subtask B, we used simple finetun-
ing on PLMs. For Subtask C, we propose
a Siamese network architecture trained using
a combination of cross-entropy and distance-
maximisation loss. Our model was ranked 7th

in Subtask B, 8th in Subtask C (English), and
performed well in Subtask A (English). In our
work, we also present the comparative perfor-
mance of different PLMs for each Subtask.

1 Introduction

Sarcasm, a form of figurative speech, allows people
to express contempt or mock using irony. The irony
is used to communicate the opposite of the intended
meaning to express humour or mock something.
Sarcasm plays an essential role in people’s daily
conversation and finds its use across social media to
express thoughts. Recently, social media has drawn
in millions of users around the world. Owing to
its figurative nature, sarcasm poses a significant
challenge to systems performing sentiment anal-
ysis on these social media platforms. Therefore,
it is essential to design and develop systems that
efficiently identify sarcasm. The most challeng-
ing aspect of sarcasm is the different socio-cultural
backgrounds of people who drive it. Therefore,
sarcasm intended by the author may not always
be perceived by the audience from different back-
grounds. Most datasets on sarcasm detection are
collected using predefined criteria or human anno-
tators (Oprea and Magdy, 2020). This is a sub-
optimal approach that may not always capture the

sarcasm intended by the author leading to noise
in the models trained on it. SemEval 2022 Task
6: iSarcasmEval: Intended Sarcasm Detection in
English and Arabic (Abu Farha et al., 2022) draws
attention to the problem of identifying sarcasm us-
ing a dataset of intended sarcasm.

Our proposed approach for Subtask A and Sub-
task B approach uses a classification objective to
finetune PLMs. PLMs learn semantic and syntac-
tic features via training on large amounts of a text
corpus. This information is used in downstream
tasks by simply finetuning task-specific datasets.
PLMs have shown remarkable performance on
such downstream tasks using the simple finetun-
ing approach (Sharma et al., 2021b). We extend the
same idea to identify sarcasm (Subtask A) and iden-
tify the type of irony (Subtask B). Subtask C aimed
at identifying sarcastic text from its non-sarcastic
counterpart. We propose a Siamese network-based
architecture using PLMs trained on a combina-
tion of cross-entropy and distance-maximisation
loss. The classification objective(cross-entropy)
identifies the sarcastic/non-sarcastic text, while the
distance-maximisation loss maximises the distance
between sarcastic/non-sarcastic features learnt by
the model during training. We experimented with
different PLMs, namely BERT, RoBERTa, MPNet,
DeBERTa, to present a comparative study of their
performance for the task of sarcasm detection.

Our final submissions for Subtask A and Sub-
task B used finetuning on MPNet, while we used
an ELECTRA-based model for Subtask C. Our
proposed system performed well in Subtask B and
Subtask C(English), attaining a 7th and 8th rank,
respectively on the official leaderboard and per-
formed well in Subtask A. Our experiments show
that all PLMs had almost similar performance with
slight variation in results. The overall scores were
low for Subtask A and Subtask B, indicating that
sarcasm detection and identifying the type of irony
is a difficult task for PLMs. However, Subtask C
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results show that the models can efficiently differen-
tiate between a sarcastic text and its non-sarcastic
rephrase. Our code available at GitHub1 for method
replicability.

2 Background

Identifying sarcasm is an essential task in Natural
Language Processing (NLP). Owing to its figura-
tive nature, it affects the performance of sentiment
analysis systems whose performance have signif-
icantly improved over the years (Rosenthal et al.,
2017) (Sharma et al., 2021a). In social media, sar-
casm is mainly used for humour but can hide hate-
ful content, making the identification of sarcasm a
vital topic. Methods to deal with sarcasm detection
can be separated into two categories, i.e. content-
based models and context-based models (Hazarika
et al., 2018). Text-based models model the problem
as a classification task using pragmatic and lexical
features to identify sarcasm. (Riloff et al., 2013)
shows sarcasm is expressed as a combination of
positive sentiment words and negative situations.
Work done in(Joshi et al., 2015) uses the concept
of context incongruity for sarcasm detection. Con-
textual methods use information about the text and
the context in which the text is used. (Khattri et al.,
2015) uses the sentiment of the tweet as well as the
history of the author’s previous tweets on similar
topics to identify sarcasm. Work done in (Wallace
et al., 2015) uses nouns and sentiments presented
in a forum towards irony/sarcasm detection. (Haz-
arika et al., 2018) worked on using both content
as well as contextual information for identifying
sarcasm. (Castro et al., 2019) presents work done
to identify sarcasm from TV shows in a multimodal
setting. (Sharma et al., 2020) used a multimodal
feature fusion model using attention (Bahdanau
et al., 2016) for identifying sarcasm in internet
memes. (Felbo et al., 2017) use models trained on
emoji using distant supervision to identify senti-
ment, sarcasm, and emotion. Another challenge in
sarcasm detection is the availability of data. Due to
the highly subjective nature of sarcasm, it is chal-
lenging to collect high-quality data. (Oprea and
Magdy, 2020) tries to solve this problem by intro-
ducing a dataset of intended sarcasm where the sar-
castic data is labelled by the authors removing any
noise or ambiguity in labels. The subjective and
figurative nature of sarcasm makes it a formidable

1https://github.com/04mayukh/
R2D2-at-SemEval-2022-Task-6-iSarcasmEval

task, and it poses a challenge for affective systems
performing sentiment analysis (Satapathy et al.,
2017). Therefore, the task of sarcasm detection is
essential to advance state-of-the-art sentiment anal-
ysis systems. Moreover, most datasets for sarcasm
detection contain much noise and are sub-optimal
in capturing the sarcasm intended by the author
of the text. SemEval 2022 Task 6: iSarcasmEval:
Intended Sarcasm Detection In English and Arabic
(Abu Farha et al., 2022) aims to use a dataset of
intended sarcasm for identifying sarcasm in text.
The task has three subtasks which we define as:

Subtask A (English and Arabic): Given a
labelled dataset D of texts, the task aims to
learn a classification function that can identify
sarcastic/non-sarcastic texts.

Subtask B (English only): For a given labelled
dataset D of texts, the objective of the task is
to learn a multilabel classification function that
can predict the type of irony I where I ∈ { Sar-
casm, Irony, Satire, Understatement, Overstate-
ment, Rhetorical }.

Subtask C (English and Arabic): Given a dataset
D of sarcastic texts and their non-sarcastic rephrase,
i.e. both texts convey the same meaning, the objec-
tive of the task is to learn a classification function
that can identify the sarcastic text from its non-
sarcastic rephrase.

Our team participated in Subtask A(English),
Subtask B, and Subtask C(English).

Dataset statistics: Table 1 and Table 2 con-
tain the dataset statistics for all Subtasks (English).
Dataset statistics for Subtask A and Subtask B show
a clear data imbalance problem. To overcome the
class imbalance, we used sklearn to compute class
weights which are defined as: Let X be the vector
containing counts of each class Xi where i ∈ X
and N be the total number of samples. Then the
weights for each class were given as: weighti =
N/(length(X) * Xi) where length function com-
putes the number of classes in vector X. There was
no imbalance for Subtask C for each sarcastic sam-
ple, the corresponding non-sarcastic rephrase was
given.

3 System overview

3.1 Pre-trained language models (PLMs):

NLP, a diverse field, contains an array of tasks,
but most datasets for these tasks contain only a
few hundred or thousand human labelled samples.
This makes training large models for these tasks
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Type Sarcasm Irony Satire Understatement Overstatement Rhetorical Total
Train 677 147 24 9 38 94 823

Validation 147 8 1 1 2 7 44
Test 180 20 49 1 10 11 1400

Table 1: Dataset statistics for SubTask B.

Subtask A (English) Subtask C (English)
Type Sarcastic Not Sarcastic Total Sarcastic/Rephrase
Train 794 2327 3121 780

Validation 73 274 347 87
Test 200 1200 1400 1400

Table 2: Dataset statistics for Subtask A and Subtask C.

a challenging task. Transfer learning using GloVe
(Pennington et al., 2014) and FastText (Bojanowski
et al., 2017) is one of the popular choices for solv-
ing this problem. Most recently, researchers came
up with a method called pre-training (Qiu et al.,
2020), which involves training general-purpose
models from unannotated text data. This allows
models to learn syntactic and semantic features in
the text in an unsupervised setting. Transformer
architecture proposed in (Vaswani et al., 2017) is
the most common choice for training PLMs. These
models can be finetuned on various downstream
tasks using task-specific datasets. Finetuning al-
lows models to adapt to small task-specific datasets
easily and shows promising results (Sharma et al.,
2021b). Next, we provide a summary of PLMs
used in our approach.

3.2 Brief overview of used PLMs:

BERT: It is a bidirectional language model devel-
oped by Google that uses transformers. BERT (De-
vlin et al., 2019) stands for Bidirectional Encoder
Representation using Transformer. It uses the auto-
encoding modelling technique. It uses Masked
Language Modelling (MLM) and the Next Sen-
tence Prediction (NSP) objective for pre-training
the model.

RoBERTa: A Robustly Optimized BERT Pre-
training Approach was proposed by Facebook in
(Liu et al., 2019) and used the BERT architec-
ture with slight modifications to improve its per-
formance. They replaced MLM with dynamic
masking and removed the NSP objective during
pre-training. They also found that BERT was un-
dertrained, so they trained the model for longer
durations with more data and bigger batch size.
RoBERTa outperformed BERT on several down-

stream tasks.
ELECTRA: It was inspired by generative adver-

sarial networks and introduced a new pre-training
objective called Replaced Token Detection (RTD)
(Clark et al., 2020). Unlike MLM, which intro-
duces <MASK> tokens, ELECTRA replaces spe-
cific tokens with plausible fakes. The pre-training
objective is to identify if the given token is replaced
or the original one. Unlike BERT, where only
prediction for the masked token is done, replaced
token detection objective is applied to all tokens
in ELECTRA, making RTD more efficient than
MLM.

MPNet: It was proposed by Microsoft in (Song
et al., 2020) and uses a combination of auto-
regressive and auto-encoding strategies for pre-
training. It solves the problem of MLM in BERT
and permuted language modelling in XLNet (Yang
et al., 2019) and achieves better performance. It
models dependency between tokens using per-
muted language modelling (vs MLM in BERT) and
uses the auxiliary position information to allow the
model to see complete sentence reducing position
discrepancy (vs permuted language modelling in
XLNet). Thus, it uses a combination of masked lan-
guage modelling and permuted language modelling
to jointly model the dependency among predicted
tokens and use positional information of complete
sentences.

3.3 Finetuning (Subtask A and Subtask B):

For Subtask A and Subtask B, we finetuned the
pre-trained models defined above. Subtask A was
a binary classification task. We added a simple
classification head on top of PLMs for Subtask A.
It consisted of a 64-neuron dense layer followed
by a batch normalisation layer and a final 1-neuron
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Figure 1: Overview of our Siamese network architecture for Subtask C.

layer with sigmoid activation. Subtask B was a
multilabel task aimed at identifying the type of
irony. We used a multi-branch model using features
from the PLMs, with each branch trying to identify
one of the given categories of irony. We used the
same classification head for each branch defined in
Subtask A.

3.4 Siamese Network (Subtask C):

The goal of Subtask C was to identify a sarcas-
tic text from its non-sarcastic rephrase. We use a
model based on Siamese network trained using a
combination of cross-entropy and distance maximi-
sation loss. Figure 1 shows our Siamese network
architecture. A Siamese neural network comprises
twin networks that can accept distinct inputs. These
twin networks share the same weights, which is
known as weight tying (Koch, 2015). Weight tying
ensures that the features generated for distinct input
are in the same feature space because each network
calculates the same function. We use the PLMs to
define the twin network of our Siamese architec-
ture. We use the twin network to generate features
corresponding to sarcastic text and its non-sarcastic
rephrase. Next, these features are separated into
two different branches, which we define as:

Distance Maximisation (Similarity branch):
Since we want to separate the sarcastic text from
its non-sarcastic rephrase, we want to maximise the
distance between their features learned by the twin
network. We merge the features generated from the
twin network using Euclidean distance. It is then
passed through a single neuron layer with sigmoid
activation, which helps to normalise the distance
within a known range of 0-1. We maximise this
distance using the distance maximisation loss func-
tion, which we define as: Let di be the output from

the final layer(1-neuron with sigmoid activation),
then the loss function L is defined as:

Li = (max[1− di, 0])2

and L =
∑
Li for i belongs to N (Total sam-

ples). This ensures that sarcastic/non-sarcastic texts
with similar meanings learn different sets of fea-
tures.

Classification Branch: The primary role of this
branch is to classify the generated features as
sarcastic/non-sarcastic. It contains two classifica-
tion heads, each using features generated from the
twin network. The classification head comprises a
64-neuron dense layer followed by a batch normali-
sation layer and a final 1-neuron classification layer
with sigmoid activation. Each head independently
classifies the features from the respective outputs
of the twin network. The classification head with
the best performance on the development set was
used for making predictions on the test set.

4 Experimental Setup

Text pre-processing: The text was first passed
through a pre-processing pipeline to remove noise
and normalize into standard features. We removed
any website names in the text as they add noise
to the data. We also found certain chat words like
LOL (laugh out loud) present in the data and con-
verted them into their respective full forms. Emojis
are converted to their actual meanings. We used
the emoji2 library for emoji conversion. Lastly, we
used ekphrasis (Baziotis et al., 2017) to normalize
date, numbers to a standard format and perform
spelling correction. PLMs require the text to be
tokenized as part of pre-processing step. We use

2https://github.com/carpedm20/emoji/
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Model Sarcasm Irony Satire Understatement Overstatement Rhetorical Macro-F1
MPNet* .248 .032 .139 .003 .0 .034 .076
BERT .219 .042 .126 .0 .031 .022 .074
RoBERTa .256 .060 .086 .0 .014 .118 .089
ELECTRA .232 .037 .080 .0 .015 .023 .064

Table 3: Test set results(F1 score) for different PLMs using simple finetuning on Subtask B. (MPNet* was used
for the official submission and has been highlighted in bold). The underlined score respresent the best performing
models for each sarcasm category.

Subtask A Subtask C
Model F1 Sarcastic F1 Macro Accuracy F1 Macro Accuracy
ELECTRA* .330 .541 .637 .741 .750
BERT .323 .522 .605 .763 .765
RoBERTa .324 .523 .606 .716 .720
MPNet∼ .3276 .5265 .610 .728 .735

Table 4: Test set results for Subtask A and Subtask C. Our final submission for Subtask A was done using MPNet∼
and for Subtask C using ELECTRA*. We have highlighted the official submissions in bold and underlined the
individual best metrics across different PLMs.

hugging face’s implementation of Fast tokenizers3

for each pre-trained model. Sequence length was
fixed to 70 tokens. Samples greater/smaller than
the defined length were truncated or padded.

Data preparation for Siamese network (Subtask
C): The dataset for Subtask C consisted of sarcastic
texts and their rephrase. We rearranged this data to
make sure the input to the Siamese network con-
tains samples in the form of (sarcastic, rephrase)
and (rephrase, sarcastic). This is important because
the classification layers on top of the Siamese net-
work are used to make predictions on the inputs
of the twin network independently using two clas-
sification heads. If we do not rearrange the data,
each of the two heads will learn to simply predict
the output as always sarcastic and non-sarcastic,
thereby not learning from training data.

Finetuning: Our approach for all subtasks in-
volves finetuning PLMs and using their features.
We used features of [CLS] token for BERT, ELEC-
TRA and start token (<s>) features for MPNet and
RoBERTa. These features are then passed to fur-
ther layers of models as per the architecture we
defined above.

Hyperparameters and Training: We developed
our models on Keras4 (Chollet et al., 2015) and
used Hugging Face’s5 implementation of trans-
former6(Wolf et al., 2020) models. Finetuning was

3Hugging Face’s Fast Tokenizers
4https://keras.io
5https://huggingface.co
6https://huggingface.co/transformers

performed on Colab using TPUs. For finetuning
we used Adam (Kingma and Ba, 2015) optimiser.
We experimented with learning rates ranging from
2e-5 to 5e-5. For Subtask A and Subtask B, we
used a binary cross-entropy loss. For Subtask C,
we used a binary cross-entropy loss on the classifi-
cation branch and distance maximization objective
on the similarity branch. We finetuned the mod-
els for ten epochs and used the weights with the
best performance on the development set to make
predictions on the test set.

Evaluation metric: Subtask A uses the F1 score
of the sarcastic class as an evaluation metric. For
Subtask B, the macro averaged F1 score is the offi-
cial metric, while for Subtask C, accuracy is used
as the evaluation metric.

5 Results

Table 3 and Table 4 describe the results of our ex-
periments using different pre-trained models. Our
official submission for the task used MPNet for
Subtask A, Subtask B and ELECTRA for Subtask
C. Our system was ranked 7th in Subtask B, attain-
ing a macro F1 score of 0.076 with the highest F1
score for satire and second highest score for sar-
casm and understatement category. Our Siamese
architecture-based system also performed well, at-
taining accuracy of 75% and ranked 8th on the
leaderboard for Subtask C.

We performed experiments using BERT,
RoBERTa, MPNet, and ELECTRA during the
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evaluation phase. We evaluated these models
using the validation set, and the model with the
best performance was used to make a submission
on the test data. Table 3 and Tabel 4 summarise
results using different pre-trained models. We
have highlighted the official test submissions
in bold while underlined the best performing
metric across different models. Subtask A results
show that all PLMs have similar performance for
sarcasm detection. They perform well, but there is
considerable scope for improvement. PLMs are
trained on general text corpus making it difficult
for them to understand figurative content like
sarcasm. For Subtask B, RoBERTa performs
better than other PLMs. Results for Subtask B
show that it is comparatively easy to identify
sarcasm and satire compared to other types of
irony, which have very low performance on
evaluation metrics. Another reason for this could
be the high imbalance in the dataset, making it
difficult for models to identify different types of
irony. For Subtask C, all models have similar
performance with slight variations. The models
perform significantly better on evaluation metrics
when compared to Subtask A and Subtask B,
indicating that models can distinguish between
sarcastic and non-sarcastic content having similar
meanings.

6 Conclusion

This paper describes our proposed model used for
SemEval 2022 Task 6: iSarcasmEval: Intended Sar-
casm Detection In English and Arabic. Different
PLMs were used to do a comparative analysis of
their performance for the sarcasm detection task.
Our fine-tuning approach worked well for Subtask
B, with the best score for satire and second-best
performance for the sarcasm and understatement
category. For Subtask C, we proposed a novel
Siamese network architecture to identify sarcastic
content from it’s non-sarcastic rephrase. It per-
formed well, attaining 8th rank on the leaderboard.
Our comparative analysis shows that sarcasm de-
tection is a difficult task for the PLMs, and there
is scope for further improvements, which we will
take up in future works.
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Abstract

This paper presents solution systems for task 6
at SemEval2022, iSarcasmEval: Intended Sar-
casm Detection In English and Arabic. The
shared task 6 consists of three sub-task. We
participated in subtask A for both languages,
Arabic and English. The goal of subtask A is to
predict if a tweet would be considered sarcastic
or not. The proposed solution SarcasmDet has
been developed using the state-of-the-art Ara-
bic and English pre-trained models AraBERT,
MARBERT, BERT, and RoBERTa with ensem-
ble techniques. The paper describes the Sarcas-
mDet architecture with the fine-tuning of the
best hyperparameter that led to this superior
system. Our model ranked seventh out of 32
teams in subtask A- Arabic with an f1-sarcastic
of 0.4305 and Seventeen out of 42 teams with
f1-sarcastic 0.3561. However, we built another
model to score f-1 sarcastic with 0.43 in En-
glish after the deadline. Both Models (Arabic
and English scored 0.43 as f-1 sarcastic with
ranking seventh).

1 Introduction

In recent years, sarcasm has received remarkable
research attention due to its importance and extraor-
dinary impact on society, especially with the sig-
nificant increase in its use in social media (Ghosh
et al., 2020; Van Hee et al., 2018; Faraj and Abdul-
lah, 2021). However, sarcasm is saying something,
and what is meant is the opposite. Adding to the dif-
ficulty of detecting sarcasm is that all the words in
the sentence are positive, but the intended meaning
is just the opposite (Channon et al., 2005). There-
fore, the detection of sarcasm depends mainly on
the general meaning of the sentence, which makes
us move away from traditional methods and use
artificial intelligence, especially natural language
processing.

Natural Language Processing (NLP) is a branch
of artificial intelligence that gives machines the
ability to read and understand the meanings of hu-

mans (Nadkarni et al., 2011). As a result, ma-
chines became able to understand the underlying
meanings of words and not just rely on keywords.
Moreover, it helps reveal forms of speech, such
as emotion analysis, humor, ridicule, abuse, etc
(Abujaber et al., 2021; Qarqaz et al., 2021).

Task 6 at SemEval-2022, "iSarcasmEval: In-
tended Sarcasm Detection In English and Arabic"
(Abu Farha et al., 2022) suggested three main sub-
tasks in both Arabic and English languages: Sub-
Task A is a binary classification problem that deter-
mines whether a tweet is sarcastic or not, SubTask
B is a multi-label classification problem which de-
termines the category of tweets sarcastic if it is
found in English only, SubTask C is two sentences,
one sarcastic and the other paraphrased to be non-
sarcastic, define which one is sarcastic.

We only participated in subtask A. Our solu-
tion combines four state-of-the-art pre-trained NLP
models: AraBERT and MARBERT for Arabic and
BERT and RoBERTa for English. SarcasmDet
placed seventh out of 32 teams in the subtask A-
Arabic and seventh (after the competition deadline)
out of 42 teams. We have experimented with the
pre-trained language models with different hyper-
parameters using the simple transformers library. It
is worth mentioning that using the ensemble tech-
nique has increased our score remarkably.

The paper is constructed as follows: Section 2
provides the related works. Section 3 describes the
shared task and the provided dataset. Section 4
describes our system solution. Section 5 shows our
experiments. Section 6 provides the results, and
finally, the conclusion is in Section 7.

2 Related Work

Sarcastic texts over social media are among the
most researched issues of importance for sentiment
analysis. Authors of (Rajadesingan et al., 2015)
proposed Sarcasm Classification Using a Behav-
ioral modeling Approach. They investigate users’
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past tweets and use psychological studies to bet-
ter sarcasm detection of tweets. They used three
models to perform their evaluation (Logistic Re-
gression (LR) Decision Tree (DT) and support vec-
tor machine (SVM)). The evaluation is performed
on a dataset obtained from Twitter and provided
on Kaggle with 9104 sarcastic tweets. They used
different class distributions (1:1, 10:90, and 20:80)
and 10-fold cross-validation techniques. The best
performance was obtained from the LR model and
class distribution (1:1) with 83.46% accuracy. In
2016, researchers of (Bouazizi and Ohtsuki, 2016)
provided pattern-based features approach to detect
sarcasm expressions posted on Twitter which ex-
tracted with the hashtag sarcasm. They applied four
models (Random Forest (RF), SVM, K-Nearest
Neighbour (KNN), and Max-Entropy (Max.Ent.))
on three different balanced datasets with different
sizes (1000, 2256, and 6000 instances). RF model
outperformed the rest with 81.3% in terms of F1-
score. In this paper (Pawar and Bhingarkar, 2020),
researchers almost did the same work; they used
the Pattern-based approach and the same classifiers
(RF, SVM, and KNN). The used dataset consists of
9104 sarcastic tweets. RF outperforms the rest in
accuracy and F1-score with 81% and 79%, respec-
tively.

The focus on detecting sarcasm in Arabic has
emerged in recent years, and researchers have
become increasingly interested in this field. In
(Karoui et al., 2017), the authors were among the
beginning people to supply a dataset to detect sar-
casm in Arabic. First, they collected the dataset
from Twitter of the Arabic tweets with different
Arabic dialects, such as the Egyptian, Syrian, and
Saudi dialects. Then, they cleaned the dataset,
5,479 tweets, including 1733 irony, and added four
features for each tweet: surface, sentiment, shifter,
and internal context features. Finally, they applied
several machine learning algorithms, and experi-
ments showed that the Random Forest classifier
achieved a high accuracy of 72.76% for detecting
sarcasm in Arabic tweets.

On the other hand, another dataset is provided
for sarcasm in Arabic by (Farha and Magdy, 2020).
This dataset contains three topics: sarcasm, sen-
timent, and dialect labels include 10,547 rows of
tweets where 16% are sarcastic tweets. The re-
searchers applied a Bidirectional LSTM deep learn-
ing approach (biLSTM) to achieve an F1-score of
0.46, which indicates the difficulty of detecting

sarcasm in the Arabic language.
The researchers in (Faraj and Abdullah, 2021)

participated in the WANLP 2021 Shared Task
for subtask 1 (Sarcasm Detection) competition.
First, they used the AraSarcasm-v2 dataset and
then cleaned data by using NLTK library (Bird,
2006), such as normalized and removed emojis,
links, and Html tags. Next, they implemented sev-
eral pre-trained models such as AraBERt, multilin-
gual BERT cased and uncased, and XLM-Roberta.
Their solution, called SarcasmDet, is based on fine-
tuning of the large AraBERT and base AraBERT,
and they got first place with an accuracy of 0.7830
and fourth place with f1-sarcastic 0.5989.

3 Task and Data Description

In Shared Task on SemEval 2022 - Task 6 (iSar-
casmEval): Intended Sarcasm Detection In English
and Arabic (Abu Farha et al., 2022), has three sub-
tasks in two languages: Arabic and English, and
each task solves different requirements. We partici-
pated in SubTask A: a binary classification problem
that determined whether a tweet contains sarcasm
or not.

The dataset consists of nine columns: the tweet,
the rephrase, sarcastic, which defines whether the
tweet is sarcastic or non-sarcastic, irony, stair, un-
derstatement, overstatement, and the rhetorical
question. The last five columns are the type of
sarcasm contained in the tweets. Moreover, the
dataset contains 3467 non-null rows. Regarding our
task, a binary sarcasm classification of the tweets,
the tweet, and the sarcasm are the only required
columns to solve the task. Table 1 shows a sample
of the utilized dataset in English subtask A.

Table 1: Sample of English data

Tweet Sarcastic

The only thing I got from college
is a caffeine addiction 1

I love it when professors draw a
big questionmark next to my answer
on an exam becauseI’m always like
yeah I don’t either

1

The population spike in Chicago in
9 months is about to be ridiculous 0

You’d think in the second to last English
classof the year my prof would stop
calling meSean

0

The data is highly imbalanced as there are 2600
tweets classified as non-sarcastic and 867 as sarcas-
tic.
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id tweet Sarcastic rephrase dialect
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æ.j��
 ø
 X

�éJ
J. ÊêÖÏ @ �éK
 @ 1 ÈAÒm.Ì'@ @
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2805 é<Ë @ ¨Qå�� Õ �æ 	̄ ÈYªË@ Yg. ð AÒ 	JK


@ 0 NaN msa

Table 2: sample from the training Arabic dataset

The Arabic training dataset contains 3102 tweets
and five columns: id, tweet, sarcastic, rephrase, and
dialect. They have categorized the text into sarcas-
tic or non-sarcastic based on the author himself.
Table 2 shows an example of training the Arabic
dataset for subtask A- Arabic. The Arabic dataset
in subtask A- Arabic is imbalanced due to class
sarcasm and a clear difference between sarcastic
and non-sarcasm tweets. The number of sarcastic
tweets was 745, and the number of non-sarcastic
tweets was 2357.

4 SarcasmDet Description

Texts are sequential, so they must be trained by
models supporting data in which the order of its
features is an important factor. Transformers are
deep learning techniques that utilize the idea of
self-attention mechanism (Potamias et al., 2020).
In this work, two transformer-based pre-trained
models are fine-tuned to achieve the requirements
of the sarcasm detection task for each language.
The two models are the BERT and the RoBERTa
for English, where we combined two pre-trained
models, AraBERT and MARBERT, for Arabic.

Subtask A - English Figure 1 shows the archi-
tecture of the proposed model for English. The
ensemble technique is adopted by performing a
weighted sum for the predictions of BERT and
RoBERTa. One BERT machine with weight one
and four RoBERTa machines, each with weight
one, is deployed except for one machine with a
weight of 0.5.

Regarding the BERT model, the dataset is to-
kenized by a pre-defined tokenizer of the model.
The BERT model originally consists of 12 layers,
the first ten layers are chosen to be untrainable
and the last two layers to be trainable. Moreover,
the model is trained using a batch size equal to 6
and the number of epochs equal to 3. As to the
RoBERTa model, the dataset is tokenized using its
pre-defined tokenizer. The layers are fine-tuned.
The first nine layers are untrainable, the last three
layers are trainable, and the model is trained using
a batch size equal to 12 and the number of epochs

equal to 3.

Figure 1: Architecture of SarcasmDet-English

Subtask A - Arabic The ensemble is a tech-
nique of combining several different models in the
prediction process. In addition, we used hard vot-
ing that depends on the highest vote from all the
model predictions. We combined two pre-trained
models, AraBERT and MARBERT. The Arabic
pre-trained model called AraBERT (Antoun et al.).
AraBert is a pre-trained model that focuses directly
on the Arabic language, and it is based on the BERT
architecture (Devlin et al., 2018). There are two
versions of AraBERT(v01 and v02). The first ver-
sion, AraBERT-v01, was trained on 77M sentences,
with a size of 23GB and 2.7B of words. The sec-
ond version, AraBERT-v02, was trained on 200M
sentences with 77GB and 8.6B words. MARBERT
(Abdul-Mageed et al., 2020) is also based on the
BERT architecture without the next sentence pre-
diction and focuses on Dialectal Arabic and MSA.

In SarcasmDet, tweets are fed to the AraBERT
and MARBERT. Next, we added the final layer,
which is fine-tuning with the best hyperparameters
as shown in table 3 to classify the Arabic tweet
into a sarcastic tweet or not. Then we applied the
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Figure 2: Architecture of SarcasmDet-Arabic

hard voting technique to select the final label in all
tweets, as shown in Figure 2.

Model LR Epoch Batch Size
large-arabertv2 2e-5 5 8

marbert 1e-5 5 8

Table 3: Best the hyperparameter that we used in our
models

5 Experiments

5.1 English

Unfortunately, the number of sarcastic sentences is
much smaller than the number of the non-sarcastic
ones, so using the accuracy to evaluate the model
performance is not a good choice. Thus, the metric
used to describe the version of the model is the
F1-Score. F1-score is the harmonic mean of the
precision and the recall. It is the average of the
model’s ability to find all sarcastic sentences and
how accurate it is when classifying sentences as
sarcastic.

The transformer-based models, BERT and
RoBERTa, are trained using different hyperparam-
eters. Table 4 and Table 5 show the results of the
models with different fine-tuning.

Table 4: Result of Bert Model

BERT Parameters
Results
F1-sarcastic

Batch size: 6
Number of epochs: 3
Number of trainable layers:4

0.38

Batch size: 6
Number of epochs: 3
Number of trainable layers:1

0.35

Batch size: 6
Number of epochs: 3
Number of trainable layers:2

0.39

Table 5: Result of RoBert Model

RoBERTa Parameters
Results
f1-sarcastic

Batch size: 6
Number of epochs: 3
Number of trainable layers:3

0.36

Batch size: 4
Number of epochs: 2
Number of trainable layers:4

0.29

Batch size: 7
Number of epochs: 3
Number of trainable layers:4

0.37

5.2 Arabic

We have experimented with fine-tuning for two pre-
trained models: AraBERT and MARBERT with
different hyperparameters. Also, we attempted to
increase the dataset using the augmentation tech-
nique with the ArSarcasm-v2 dataset to improve
the results. We used the data set after the increment
and fed the tweet to AraBERT and MARBERT,
then fine-tune with hyperparameters to classify the
Arabic tweet into a sarcastic tweet or not. table 6
shows the hyper-parameters we have used in our
experiments for the tested models.All of the mod-
els have been implemented using the HuggingFace
library and SimpleTransforner pre-trained package.

6 Results

6.1 English

The model achieved a recall value equal to 0.37,
a precision value equal to .51, and an F1-Score
equal to 0.43. Table 7 shows the parameters and
the results of the BERT model, RoBERTa model,
and the ensemble model. It is noteworthy that the
higher F1-Score in the SemEval competition in
subtask A of task 6 is 0.6052, and the seventh rank
is 0.4342. So the proposed architecture results,
which is 0.4322, are equivalent to the eighth rank
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Experiment Model LR Epoch Batch Size
1 large-arabertv2 1e-5 5 8
2 large-arabertv2 2e-5 5 8
3 large-arabertv02 2e-5 5 8
4 marbert 2e-5 5 8
5 marbert 1e-5 5 8
6 large-arabertv2 2e-5 5 8
7 marbert 1e-5 5 8

Table 6: all the hyper-parameter that we used in our experiments

in the competition.

Table 7: Best Parameters of BERT, RoBERTa and En-
sembling.

Model Parameters Results
(F1-Score)

BERT
Batch size: 6
Number of epochs: 3
Number of trainable layers: 2

.39

RoBERTa
Batch size: 12
Number of epochs: 3
Number of trainable layers: 3

.41

Ensemble
BERT model with weight :13
RoBERTa models with weight:11
RoBERTa with weight : .5

.43

6.2 Arabic
First, we applied AraBERT and MARBERT with
different finetuning. AraBERT outperformed on
MARBERT with a score of an f1-sarcastic 0.4255.
Then, we augmentation the dataset and applied
AraBERT and MARBERT, in this case, MAR-
BERT outperformed AraBERT with a score of
an f1-sarcastic 0.4065, although the data size in-
creased, this did not lead to an improvement in the
results, the best result was for ARABERT using
Arabic data for the task. But SarcasmDet using
the ensemble technique specifically hard vote sig-
nificantly outperformed both AraBERT and MAR-
BERT with an f1-sarcastic score of 0.4304, Table
table 8 shows the organizers’ final result and ta-
ble table 9 shows all experiments that we have
implemented.

7 Conclusion

Sarcasm is an influential issue in human life,
whether written or spoken. However, sarcasm de-
tection in texts is a challenging task. This paper
presented our model SarcasmDet for solving sub-
task A- English and Arabic in task6 at SemEval
2021 - iSarcasmEval: Intended Sarcasm Detection
in English and Arabic. SarcasmDet is based on the

fine-tuning of two pre-trained NLP models for each
language and then applied ensemble technique to
improve the model. The models trained on a dataset
obtained from a competition SemEval 2022 sub-
task A of task 6. For English subtask A, the dataset
consists of 3467 records, 866 of them are sarcastic,
and the rest are non-sarcastic. The results showed
that the RoBERTa model outperformed the BERT
model, where the Ensembling technique outper-
formed both in the f1-sarcastic score, which was
0.43. On the other hand, the Arabic dataset consists
of 8K tweets divided into training and testing sets.
Our solution SarcasmDet is ranked 7th out of 32
teams with an f1-sarcastic score of 0.4305.
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 Abstract 

In this paper, we describe our submissions 

to SemEval-2022 contest. We tackled 

subtask 6-A - “iSarcasmEval: Intended 

Sarcasm Detection In English and Arabic 

– Binary Classification". We developed 

different models for two languages: 

English and Arabic. We applied 4 

supervised machine learning methods, 6 

preprocessing methods for English and 3 

for Arabic, and 3 oversampling methods. 

Our best submitted model for the English 

test dataset was an SVC model that 

balanced the dataset using SMOTE and 

removed stop words. For the Arabic test 

dataset, our best submitted model was an 

SVC model that preprocessed removed 

longation. 

1 Introduction 

The rapid development of various types of social 

networks allows the development of increasingly 

offensive language in general and sarcasm in 

particular. Sarcasm is the use of words that mean 

the opposite of what you want to say especially to 

insult someone, show irritation, or be funny1. 

Sarcastic language can harm individuals or 

groups of people and may cause harmful effects 

on society. Thus, it is important to develop high-

quality systems capable of detecting sarcastic 

expressions automatically. 

Sarcasm detection is a difficult task not only for 

a computer but even for a human being. High-

quality performance of this task requires 

understanding the context of the situation, the 

relevant culture, and in some cases the specific 

                                                 
1 www.merriam-webster.com. Retrieved 9-Feb-2022. 

issue or people involved in this situation 

(Maynard and Greenwood, 2014). 

Moreover, the noisy nature of social media 

texts especially Twitter messages make the 

detection task even harder. Therefore, it is an 

interesting and challenging task to detect sarcasm 

using supervised machine learning (ML) methods 

and natural language processing (NLP) tools. 

Furthermore, Rosenthal et al. (2014) show a 

significant drop in sentiment polarity 

classification performance when processing 

sarcastic tweets, compared to non-sarcastic ones. 

In this paper, we describe our research and 

participation in subtask 6-A for sarcasm detection 

in tweets written in two languages: English and 

Arabic. The full description of task 6 in general 

and 6-A in particular including the datasets 

and  the participating teams is given in Abu Farha 

et al. (2022). 

The structure of the rest of the paper is as 

follows. Section 2 introduces a background 

concerning sarcasm detection, text preprocessing, 

and text classification with imbalanced classes. 

Section 3 describes subtask 6-A and its datasets. 

In Section 4, we present the submitted models and 

their experimental results. Section 5 summarizes 

and suggests ideas for future research. 

2 Related Research 

Most prior textual sarcasm detection datasets 

have been annotated by using either manual 

labeling or a weak supervision method. In the first 

approach, sarcasm labels are provided by human 

annotators (e.g., Filatova, 2012; Riloff et al., 

2013; Abercrombie and Hovy, 2016). However, 

such labels represent annotator perception, which 
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may differ from the author intention, as further 

pointed out by Oprea and Magdy (2020). 

In the second approach, texts are labeled as 

sarcastic if they meet predefined criteria, e.g., 

including specific tags (e.g. #irony, #sarcastic, 

#sarcasm) (Ptáček et al., 2014; Khodak et al., 

2018). However, this method can lead to noisy 

labels because of various reasons (Oprea and 

Magdy, 2020). 

To overcome these disadvantages, Oprea and 

Magdy (2019) introduced another method. In 

their method, the sarcasm labels for texts are 

provided by the authors themselves. 

Most of the sarcasm detection studies are in the 

English language (Campbell and Katz, 2012; 

Riloff et al., 2013; Bamman and Smith, 2015; 

Rajadesingan et al., 2015; Wallace et al., 2015; 

Amir et al., 2016; Joshi et al., 2016; Hazarika et 

al., 2018; Oprea and Magdy, 2019). 

There are also some studies in Arabic (Karoui 

et al., 2017; Ghanem et al.,2019; Abbes et al., 

2020; Abu-Farha and Magdy, 2020). 

For more information about various issues 

concerning sarcasm detection please refer to 

survey papers such as Joshi et al. (2017), Sarsam 

et al. (2020), Verma et al. (2021), and Moores and 

Mago (2022). 

2.1 Text preprocessing 

Text preprocessing is an important step in many 

NLP domains such as ML, sentiment analysis, 

text mining, and text classification (TC). In text 

documents in general and in social text documents 

in particular, it is common to find various types of 

noise, e.g., typos, emojis, slang, HTML tags, 

spelling mistakes, and repetitive letters. Analysis 

of text that has not been carefully cleaned or 

preprocessed might lead to misleading results. 

Not all of the preprocessing types are 

considered effective for TC tasks. For instance, 

HaCohen-Kerner et al. (2008) demonstrated that 

the use of word unigrams including stop words 

leads to improved results compared to the results 

obtained using word unigrams excluding stop 

words. 

HaCohen-Kerner et al. (2019) investigated the 

impact of all possible combinations of six 

preprocessing methods (spelling correction, 

HTML tag removal, converting uppercase letters 

into lowercase letters, punctuation mark removal, 

reduction of repeated characters, and stopword 

removal) on TC in three benchmark mental 

disorder datasets. In another study, HaCohen-

Kerner et al. (2020) explored the influence of 

various combinations of the same six basic 

preprocessing methods mentioned in the previous 

paragraph on TC in four general benchmark text 

corpora using a bag-of-words representation. The 

general conclusion was that it is always advisable 

to perform an extensive and systematic variety of 

preprocessing methods, combined with TC 

experiments because this contributes to 

improving TC accuracy. 

2.2 Text classification with imbalanced 

classes  

The problem of TC with imbalanced classes is 

that there are too few examples of the minority 

class to effectively learn a good predictive TC 

model. There are various methods to cope with 

this problem. The main idea is to change the 

dataset until a more balanced distribution is 

reached. Two well-known sampling methods that 

enable such a change are oversampling and 

undersampling. Random oversampling means 

randomly duplicating examples in the minority 

class. Random undersampling means randomly 

deleting examples in the majority class. 

An additional frequent method is to generate 

synthetic samples which means randomly 

sampling the attributes from instances in the 

minority class. There are several algorithms that 

support the generation of synthetic samples. The 

most popular is called the Synthetic Minority 

Oversampling Technique (SMOTE) (Chawla, 

2002). This method is an oversampling method 

that creates synthetic samples from the minor 

class instead of creating copies. This method 

selects two or more similar instances and perturbs 

an instance one attribute at a time by a random 

amount within the difference to the similar 

instances. We used also two other oversampling 

methods BorderlineSMOTE and ADASYN that 

work similarly. 

Readers interested in expanding and deepening 

the topic of solutions to TC with imbalanced 

classes are referred to the following articles 

(Chawla et al., 2002; He and Ma, 2013; 

Krawczyk, 2016; Brownlee, 2020, Shaikh et al., 

2021). 

 

    3 Task and Datasets Description 

Tables 1-4 present various statistical details about 

the training and test sets for English and Arabic. 
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The analysis of the details presented in Tables 

1 and 2 show that the training and test sets for 

English are highly imbalanced, with a ratio of 

about 25:75 and 14:86 (non-sarcastic:sarcastic), 

respectively. We tried to balance the dataset in our 

experiments using the oversampling methods that 

we have mentioned above. 

The analysis of the details presented in Tables 

3 and 4 show a similar picture. The training and 

test sets for Arabic are highly imbalanced, with a 

ratio of about 39:61 and 14:86 (non-

sarcastic:sarcastic), respectively. Also, for 

Arabic, we tried to balance the dataset in our 

experiments using the oversampling methods that 

we have mentioned above. Both for English and 

Arabic, the test datasets are even more 

imbalanced than the compatible training datasets. 

4 The Submitted Models and Experimental 

Results 

We applied 4 supervised ML methods on the 

training datasets: Random Forest (RF), Support 

Vector Classifier (SVC), Logistic regression 

(LR), and Decision Tree (DT). 

RF is an ensemble learning method for 

classification and regression (Breiman, 2001). 

Ensemble methods use multiple learning 

algorithms to obtain improved predictive 

performance compared to what can be obtained 

from any of the constituent learning algorithms. 

RF operates by constructing a multitude 

of decision trees at training time and outputting 

classification for the case at hand. RF combines 

Breiman's “bagging” (Bootstrap aggregating) 

idea in Breiman (1996) and a random selection of 

features introduced by Ho (1995) to construct a 

forest of decision trees. 

SVC is a variant of the support vector machine 

(SVM) ML method (Cortes and Vapnik, 1995) 

implemented in SciKit-Learn. SVC uses LibSVM 

(Chang & Lin, 2011), which is a fast 

implementation of the SVM method. SVM 

classifies vectors in a feature space into one of 

two sets, given training data. It operates by 

constructing the optimal hyperplane dividing the 

two sets, either in the original feature space or in 

higher dimensional kernel space. 

LR (Cox, 1958; Hosmer et al., 2013) is a linear 

classification model. It is known also as 

maximum entropy regression (MaxEnt), logit 

regression, and the log-linear classifier. In this 

model, the probabilities describing the possible 

outcome of a single trial are modeled using a 

logistic function. 

DT (Song and Ying, 2015) is a flowchart-like 

structure method in which each internal node 

represents a "test" on an attribute (e.g. whether a 

  Sarcastic Not sarcastic Total 

Documents 867 2,600 3,467 

% Docs 25.008% 74.992% 100% 

words 15,863 49,432 65,295 

characters 86,932 275,172 362,104 

avg word per doc 18.296 19.012 18.8333 

avg chars per doc 100.267 105.835 104.443 

words std 10.235 11.595 11.275 

chars std 57.545 65.504 63.653 

Table 1: details of the training set for English. 

 

   Sarcastic Not sarcastic Total 

Documents 200 1,200 1,400 

% Docs 14.286% 85.714% 100% 

words 4,455 18,505 22,960 

characters 23,828 99,024 122,852 

avg word per doc 22.275 15.42 16.4 

avg chars per doc 119.14 82.52 87.751 

words std 12.687 8.861 9.800 

chars std 66.224 48.322 52.841 

Table 2: details of the test set for English. 

 
  Sarcastic Not sarcastic Total 

Documents 1,490 2,357 3,847 

% Docs 38.732% 61.268% 100% 

words 6,370 36,119 42,489 

characters 32,858 205,286 238,144 

avg word per doc 8.55 15.324 13.697 

avg chars per doc 44.104 87.096 76.771 

words std 3.924 6.428 6.593 

chars std 21.166 36.797 38.389 

Table 3: details of the training set for Arabic. 

  Sarcastic Not sarcastic Total 

Documents 200 1,200 1,400 

% Docs 14.286% 85.714% 100% 

words 1,454 7,545 8,999 

characters 7,430 37,772 45,202 

avg word per 

doc 

7.27 6.287 6.427 

avg chars per 

doc 

37.15 31.476 32.287 

words std 4.190 3.574 3.685 

chars std 22.094 19.64 20.107 

Table 4: details of the test set for Arabic. 
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coin flip comes up heads or tails), each branch 

represents the outcome of the test, and each leaf 

node represents a class label (decision taken after 

computing all attributes). 

These ML methods were applied using the 

following tools and information sources:  

● The Python 3.7.3 programming language2. 

● Scikit-learn – a Python library for ML 

methods3. 

● Numpy – a Python library that provides fast 

algebraic calculous processing, especially for 

multidimensional objects4. 
 

We applied six preprocessing methods for 

English:  

1. change to lower-case 

2. stop words removal 

3. numbers removal 

4. emojis removal 

5. HTML tags removal 

6. punctuations removal 

                                                 
2 https://www.python.org/downloads/release/python-

373/ 
3 https://scikit-learn.org/stable/index.html 
4 https://numpy.org 

For Arabic we applied three preprocessing 

methods: 

1. punctuations removal  

2. Tashkeel removal5 

3. longation removal6,7 

We applied three oversampling methods to 

balance the data: 

4. SMOTE 

5. BorderlineSMOTE 

6. ADASYN 
 

Tables 5 and 6 present the F1-scores over the 

PCL class of our models for English and Arabic, 

respectively. The analysis of the details presented 

in Tables 5 and 6 show that there is a big impact 

on the longation in the Arabic language, and 

removing it improved the models. In the English 

language, we do not see a specific preprocess 

method that is the most effective method  (mark 

in bold – the three highest results in each language 

for different number of word unigrams).  

5 https://github.com/motazsaad/process-arabic-text 
6 https://github.com/bakrianoo/aravec 
7 https://medium.com/analytics-vidhya/sentiment-

analysis-of-arabic-text-data-tweets-4e96c8da892b 

Tf-idf balance method model Train test preprocessing 

methods 

F1-score 

500 SMOTE SVC 70-30 SW, LC 0.413 

SMOTE SVC 80-20 SW, LC, Only words 0.413 

ADASYN LR 70-30 SW 0.412 

1000 BorderlineSMOTE LR 80-20 SW, LC, Only words 0.433 

ADASYN SVC 70-30 NONE 0.425 

BorderlineSMOTE SVC 80-20 SW, LC, Only words 0.424 

2000 ADASYN SVC 80-20 Only words 0.429 

SMOTE SVC 80-20 SW, LC, Only words 0.410 

BorderlineSMOTE LR 80-20 SW 0.407 

3000 BorderlineSMOTE LR 80-20 SW, LC 0.407 

BorderlineSMOTE SVC 80-20 SW, LC 0.403 

ADASYN LR 80-20 SW, LC 0.402 

4000 ADASYN LR 70-30 SW, LC 0.410 

SMOTE SVC 80-20 SW, Only words 0.408 

BorderlineSMOTE SVC 80-20 SW, LC, Only words 0.401 

5000 SMOTE LR 80-20 NONE 0.401 

BorderlineSMOTE LR 70-30 LC 0.4 

SMOTE SVC 80-20 SW 0.39 

Table 5: F1-scores over the PCL class of our models for English. 
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Table 7 presents the F1-Scores over the PCL 

class of our best models for English and Arabic 

that were submitted to the competition. The F1-

scorer over the PCL class on the training dataset 

of our best model for English and Arabic were 

0.4183 and 0.6791 respectively while the F1-

scores over the PCL class on the test dataset of our 

best model were only 0.215 and 0.29515 

respectively.  

Possible explanations might be: (1) The 

training dataset is different in its balance rate than 

the balance rate of the competition test datasets 

and (2) the content of a relatively high number of 

Tweeter messages in the competition test dataset 

are fundamentally different from the content of 

the Twitter messages in the training dataset. 

5 Summary and Future Research 

In this paper, we describe our models and 

submissions to subtask 6-A of SemEval-2022: 

sarcasm detection in Twitter messages written in 

English and Arabic using preprocessing methods 

and word n-grams. 

Language Model 

name and 

split mode 

ML 

Method 

Applied text 

preprocessing and 

oversampling 

methods 

F1-score over 

the PCL class 

on the training 

dataset 

F1-score over 

the PCL class 

on the test 

dataset 

Place in the 

competition 

English Ilan_SVC 

80-20 

SVC Balance with 

SMOTE, removed 

stop words 

0.418 0.215 33-35 

Arabic 

 

Matan_SVC 

80-20 

SVC No balance 

method, removed 

longation 

0.679 0.295 24 

 

Table 7: F1-scores over the PCL class of our best models for English and Arabic 

that were submitted to the competition. 

 

Tf-idf balance method model Train test preprocessing 

methods 

F1-score 

500 BorderlineSMOTE LR 80-20 RL 0.690 

ADASYN SVC 80-20 RL 0.682 

NONE SVC 80-20 RL 0.679 

1000 ADASYN LR 80-20 RT, RL 0.679 

NONE SVC 80-20 RL 0.679 

NONE SVC 80-20 RP, RL 0.672 

2000 ADASYN LR 80-20 RL 0.698 

ADASYN SVC 80-20 RL 0.685 

NONE SVC 80-20 RL 0.679 

3000 NONE SVC 80-20 RL 0.679 

NONE SVC 80-20 RP, RL 0.672 

NONE SVC 80-20 RT, RL 0.670 

4000 SMOTE LR 80-20 RT, RL 0.679 

NONE SVC 80-20 RL 0.679 

ADASYN SVC 80-20 RP, RT 0.676 

5000 NONE SVC 80-20 RL 0.679 

NONE SVC 80-20 RP, RL 0.672 

NONE SVC 80-20 RT, RL 0.670 

Table 6: F1-scores over the PCL class of our models for Arabic. 
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We applied 4 supervised ML methods, 6 

preprocessing methods for English and 3 for 

Arabic, and 3 oversampling methods.  

Our best submitted model for the English test 

dataset was an SVC model that balanced the 

dataset using SMOTE and removed stop words. 

For the Arabic test dataset, our best submitted 

model was an SVC model that preprocessed 

longation removal. 

There are various ideas for future research that 

are connected to the nature of Twitter messages 

as follows: (1) the use of skip character n-

grams because they serve as generalized n-

grams that allow us to overcome problems such as 

noise and sparse data (HaCohen-Kerner et al., 

2017), which are common to Twitter messages 

and (2) Many Twitter messages contain 

acronyms. Acronym disambiguation might 

enable better classification (HaCohen-Kerner et 

al., 2010A). 

Another idea that may lead to better 

classification is to use additional feature sets such 

as stylistic feature sets (HaCohen-Kerner et al., 

2010B). 
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Abstract

We describe SemEval-2022 Task 7, a shared
task on rating the plausibility of clarifications
in English-language instructional texts. The
dataset for this task consists of manually clar-
ified how-to guides for which we generated
alternative clarifications and collected human
plausibility judgements.1 The task of partici-
pating systems was to automatically determine
the plausibility of a clarification in the respec-
tive context. In total, 21 participants took part
in this task, with the best system achieving an
accuracy of 68.9%. This report summarizes
the results and findings from 8 teams and their
system descriptions. Finally, we show in an ad-
ditional evaluation that predictions by the top
participating team make it possible to identify
contexts with multiple plausible clarifications
with an accuracy of 75.2%.

1 Introduction

Understanding texts in natural language requires
that both explicit text components as well as im-
plicit references and relationships are interpreted
correctly. This applies in particular to instructional
texts, which demand a clear understanding of in-
dividual instruction steps in order to reach the de-
sired goal. Possible uncertainties should therefore
already be clarified in the text. In principle, such
clarifications can also be generated automatically.
In that case, however, it will be necessary to inves-
tigate the circumstances under which a clarification
is plausible and unambiguous.

As a first step towards such an investigation, this
shared task evaluates the ability of NLP systems to
distinguish between plausible and implausible clar-
ifications of an instruction. Inspired by the success
of previous cloze-based evaluations (see Section 2),
we set up our task as a cloze task, in which clarifi-
cations are presented as fillers and systems have to

1The task data is available at https://github.com/
acidAnn/claire.

Choose a Hair Salon

(1) Check ratings of different salons.
(2) Visit the salon’s website.
(3) Call ∅ and ask questions.

✓ the salon ✗ a friend
✓ the number ✗ your stylist
✓ the owner

Table 1: Simplified example from a pilot study: the top
shows a sentence (3) and shortened version of its dis-
course context (1–2). In the clarified version of this sen-
tence, the phrase the salon was inserted. Other phrases
shown in the bottom part are automatically generated
fillers, annotated as plausible (✓) or implausible (✗).

identify which fillers plausibly fit in a given context
(see Table 1). Our focus in this task is on differ-
ent types of referring expressions that are either
underspecified or not realized explicitly at all, and
we consider possible clarifications in the form of
additional specification or explicitation.

Research in linguistics and psychology has
shown that individuals use language differently
(Pennebaker and King, 1999; Heylighen and De-
waele, 2002). In particular when it comes to im-
plicit and underspecified language, individual dif-
ferences can also lead to different interpretations
(Scholman and Demberg, 2017; Poesio et al., 2019).
As a result, worst case scenarios include medical
instructions being followed incorrectly or news be-
ing passed on inaccurately. In view of the fact that
language is inherently ambiguous, however, it is
neither sensible nor expedient to produce clarifi-
cations for all occurrences of underspecification.
Avoiding worst-case scenarios therefore goes be-
yond ranking individual clarifications by plausibil-
ity and must take into account whether multiple
(incompatible) clarifications are perceived as plau-
sible, thus reflecting possible misunderstandings.

We discuss our task and data in more detail in
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Sections 3 and 4, respectively. The participating
teams are summarized in Section 5 and their results
on the task and additional evaluations in Section 6.

2 Related Work

Cloze tasks have become a standard framework for
evaluating various discourse-level phenomena in
NLP. Some prominent examples include the narra-
tive cloze test (Chambers and Jurafsky, 2008), the
story cloze test (Mostafazadeh et al., 2016), and the
LAMBADA word prediction task (Paperno et al.,
2016). In these tasks, NLP systems are required to
make a prediction about the filler of a cloze that is
most likely to continue the discourse. However, it
is not always clear whether exactly one likely filler
exists. Evaluations typically circumvent this issue
by requiring systems only to distinguish between
a correct and an incorrect filler, or by evaluating
predictions only with a relative measure. Both of
these options ignore the more general challenge
that multiple fillers can be plausible. Our shared
task addresses this challenge explicitly, by requir-
ing systems to classify different clarifying fillers
as either plausible or implausible. This is a natural
extension of previous cloze tasks to discourse con-
texts in which multiple interpretations are plausible.
This extension makes it possible to evaluate in how
far NLP systems can reflect cases of underspecifi-
cation and uncertainty as well as possible sources
of misunderstanding.

Our task is based on manual text revisions that
can be traced through revision histories and by
which possible needs for clarification can be identi-
fied. Thus, the task follows a number of existing re-
search contributions that deal with text revisions. A
number of previous works examine reasons for and
types of revisions in, for example, Wikipedia (Bron-
ner and Monz, 2012; Daxenberger and Gurevych,
2012; Yang et al., 2017; Faruqui et al., 2018) and
the essay-based corpus ArgRewrite (Zhang and Lit-
man, 2015, 2016; Afrin and Litman, 2019; Kashefi
et al., 2022). In this work, we use revision histories
of instructional texts because clarifications seem
particularly relevant in this domain.

The starting point of our task is the data set wik-
iHowToImprove (Anthonio et al., 2020), which
comprises revision histories of more than 250,000
how-to guides from the online platform wikiHow.2

In our own previous work, we investigated the ex-
tent to which these histories are useful for exam-

2www.wikihow.org

ining textual improvements (Anthonio and Roth,
2020), predicting revision requirements (Bhat et al.,
2020), modeling cases of lexical vagueness (Deb-
nath and Roth, 2021), and resolving implicit refer-
ences (Anthonio and Roth, 2021). The last two
studies in particular have shown that wikiHow-
ToImprove is well suited as a resource for studying
clarifications of semantic phenomena. We describe
one of these studies and how we build upon it in
more detail in Section 3.

3 Task and Background

The general idea of the present shared task is to use
revisions of English-language instructional texts
as a basis to identify potential clarifications and to
rate them regarding their plausibility. We assume
that at least certain cases of clarifying revisions
follow patterns that can be recognized automati-
cally, by comparing the text before/after revision.
An example of such a pattern is the insertion of a
nominal phrase mentioned in context that makes an
implicit reference explicit (see Table 1). We con-
sider additional patterns as part of this shared task
(see Section 4), but only consider cases of insertion
for simplicity.

The focus on insertions allows us to consider
clarifications as solutions to a cloze test, since the
revision always fills in a text segment that previ-
ously was not present. Compared to previous cloze
tasks, we do not assume that the revision observed
is always unique and plausible. Instead, we also
consider alternative clarification options and obtain
plausibility judgments for all options.

As background, we first summarize findings
from a pilot study that we conducted before set-
ting up the present task (§3.1). Based on this, we
then describe the settings of the shared task (§3.2).

3.1 Pilot Study

In our pilot study (Anthonio and Roth, 2021), we
constructed a dataset of implicit references and
potential clarifications in three steps: (1) heuris-
tically identifying insertions of nominal phrases
mentioned in the previous context, (2) automati-
cally generating alternative clarifications using gen-
erative language modeling (GPT; Radford et al.,
2018), and (3) collecting human plausibility judge-
ments for each clarification option.

The first step of our pilot showed that it is pos-
sible to extract about 6,000 relevant clarifications
from the revisions in wikiHowToImprove. We fur-
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ther found that most noisy instances can be filtered
by the application of linguistic constraints and that
remaining cases can be identified during the man-
ual verification in the final step. In the second step,
we found GPT to produce completions for many
sentences that seem sensible on the surface level.
Using our best strategy, namely re-ranking based
on paragraph-level perplexity, the best sequence
generated by the model was identical to the human-
inserted clarification in over 56% of cases, and
the clarification appeared in the top-10 generated
sequences in 78% of cases.

A crucial finding in the third step was that the
annotator indicated a preference for the human-
inserted clarification in most cases (68%), but dif-
ferent, model-generated clarifications were judged
as equally good in many cases (24%). In some
cases, the annotator actually preferred a generated
clarification over the human-edited insertion (8%).

The framework for the shared task is strongly
motivated by the finding that alternative clarifica-
tions, generated by a computational model, can be
as good or even better than human-produced clari-
fications. In some cases, we simply found different
verbalizations of the same proposition. In other
cases, like examples (a) and (b) below, we found
plausible alternatives that are not fully compatible
semantically.

(a) Call the salon and ask questions.

(b) Call each salon and ask questions.

When multiple incompatible readings exist,
there is a risk that instructions will be misunder-
stood and not lead to the desired goal. To identify
potential occurrences of such cases, we consider
different fillers in the shared task and rate the plau-
sibility of each filler independently.

3.2 Shared Task Settings

The SemEval shared task is set up as follows: Sys-
tems are provided with a cloze sentence, surround-
ing sentences and a potential clarifying filler as in-
put, and are required to make a prediction regarding
the plausibility of the filler in the given context. For
evaluation, predicted labels are compared against
the manually collected plausibility judgements de-
scribed in Section 4. We define two subtasks with
different labels and evaluation measures.

Task 1: Classification. In the classification task,
systems need to distinguish between three labels

(IMPLAUSIBLE, NEUTRAL and PLAUSIBLE). We
use accuracy as the main evaluation measure, calcu-
lated as the proportion of correct predictions among
all predictions of a system.

Task 2: Ranking. In the ranking task, systems
need to predict a continuous plausibility score. We
evaluate the predictions based on their correlation
with human judgements, calculated as Spearman’s
rank correlation coefficient between all predictions
and all judgements.

We describe the selection of data and collection
of human judgements in the next section. In Sec-
tion 6, we discuss additional evaluations performed
to assess system performance with regard to the
presence of multiple plausible clarifications.

4 Data

We closely follow the three steps of our pilot study,
described in Section 3.1, to construct the data for
this shared task. Our starting point is the dataset
wikiHowToImprove (Anthonio et al., 2020), a re-
source of sentence-level revisions and their con-
texts based on wikiHow. In the first two steps, we
create relevant data from this resource automati-
cally; in the final step, we collect manual annota-
tions to form a gold standard. In step 1, we apply a
pattern-based approach to identify revisions that in-
volve insertions that serve specific clarifying func-
tions (§4.1). In step 2, we use transformer-based
language models to produce sets of alternate clarifi-
cations that may or may not be compatible with an
observed insertion (§4.2). In step 3, we collect hu-
man plausibility judgements on each clarification
independently (§4.3).

4.1 Data Extraction

We collect relevant revisions by identifying cases
in which a single contiguous insertion and no other
change was made within a sentence. We compute
differences and extract cases automatically based
on the Python library difflib3 and the following
preprocessing tools: spaCy4 for sentence splitting
and tokenization, the Berkeley Neural Parser (Ki-
taev and Klein, 2018) for constituency parsing and
Stanza (Qi et al., 2020) for POS tagging, depen-
dency parsing and co-reference resolution. For the
shared task, we focus on four types of phenomena,
which are summarized in Table 2.

3https://docs.python.org/3/library/
difflib.html

4https://github.com/explosion/spaCy
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Phenomenon Clarification pattern Example Potential filler

Implicit
Reference

∅ → [DET] NOUN

Lift your toes up while keeping
your leg straight. Hold ∅ for
a few seconds, then release.
Incorporate calf stretches into
your yoga routine.

✓ your pose
✓ the stretch
? a leg
? the chair
✗ your head

Fused head DET/JJ ∅ → DET/JJ NOUN

Traditionally, the groom waits
for the bride at the altar, the
bride tosses the bouquet and
(. . . ). Since this is your wedding,
feel free to change these ∅ .

✓ ideas
✓ plans
? symbols
? characters
✗ changes

Noun
compound

∅ NOUN→ NOUN NOUN

Heating for cold water tanks
isn’t quite of an issue as for
tropicals. In fact, you can keep a
∅ tank without a heater.

✓ goldfish
✓ freshwater
✓ water
? fishing
✗ soup

Metonymy
NP ∅ → NP’s NP
∅ NP→ NP of NP

Look at the ∅ of the teeth.
If you’re unsure of your dog’s
age, or want to determine if they
are already entering into the
senior territory, try the teeth.

✓ condition
✓ color
✓ thickness
? layout
? points

Table 2: Phenomena, extraction patterns and example clarifications (✓ plausible, ? neutral, ✗ implausible).

Implicit references. Instances with a non-
verbalized reference in the original sentence which
was clarified in the revised sentence through inser-
tion. We select the cases from Anthonio and Roth
(2021) with insertions containing a single noun or
a determiner followed by a noun.

Fused heads. Instances of noun phrases for
which the head noun was implicit in the origi-
nal sentence and clarified in the revised sentence
through insertion. We search for noun phrases with
a determiner or adjective head in the original sen-
tence and select those instances where a single
noun was inserted in the revision.

Noun compounds. Instances of underspecified
noun phrases, which were clarified in the revised
sentence through the insertion of a dependent noun
to form a more specific compound. We select in-
stances of single noun insertions in which the in-
serted noun is a compound dependent of another
noun that has already been present in the original
sentence.

Metonymy. Instances in which a revision adds
a noun y to a noun x to make explicit to which
component or aspect of x the text refers. For the

genitive pattern x’(s) y, we select insertions includ-
ing an apostrophe and a noun y that is in a depen-
dency relation nmod:poss with a noun x. For
the y of x pattern, we select insertions that consist
of a noun y and the token of added right in front of
a noun x, allowing for intervening determiners and
adjectives.

4.2 Constructing Clarifications

We produce a set of possible clarifications for each
instance as follows: First, we generate the top-
100 fillers in place of an observed insertion using
language modeling. Second, we select a subset of
potentially suitable clarifications by filtering and
clustering the top-100.

Filler generation. For the implicit references,
we take the top-100 generated clarifications
from Anthonio and Roth (2021). For the other
phenomena, we generate alternative clarifications
automatically using the same approach as An-
thonio and Roth (2021). That is, we feed the
original sentence s with the surrounding sentences
from the same paragraph to a language model.
We then compute the top-100 completions for
the token position(s) where an insertion was
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added in the revised sentence. We use BERT
(Devlin et al., 2019) instead of GPT (Radford
et al., 2018) to generate the clarifications, as the
required insertions consist of only one token
and BERT makes it possible to also consider
follow-up context directly. The BERT checkpoint
bert-base-uncasedbert-base-uncased5

in Transformers (Wolf et al., 2020) was used
without additional pre-training.

Filler selection. From the top-100 clarifications
provided by the language model, we select four
fillers with the goal of producing a semantically
diverse set of clarifications. First, we remove un-
suitable fillers from the top-100, including cases
that only consist of digits or non-alphanumerical
characters and fillers that do not have the right part
of speech based on Stanza (retaining only NOUN
for fused heads and metonymy and NN for noun
compounds to exclude plural nouns).

For all instances with ≥ 4 candidate fillers, we
select the observed insertion from the revised sen-
tence as one filler. To select semantically different
fillers as alternate candidates, we apply k-means
clustering with k = 4 to the remaining candi-
dates, using the algorithm by Elkan (2003) as im-
plemented in sklearn (Pedregosa et al., 2011).
We obtain vector representations for clustering
from BERT (bert-base-uncased) by averag-
ing over the last hidden state for all tokens in a filler.
After clustering, we select the fillers closest to the
four cluster centroids based on cosine similarity.

4.3 Plausibility Annotation

Task. After selecting fillers for each sentence,
we collect plausibility judgements on Amazon Me-
chanical Turk for our train set (19,975 instances,
i.e. 3995 sentences with 1 human and 4 generated
fillers each6), development and test sets (2,500 in-
stances each, i.e., 125 sentences per phenomenon
with 5 fillers per sentence). Each clarification in the
training set is annotated by 2 crowdworkers. For
the development and test set, we collected annota-
tions from 4 crowdworkers to ensure a consistently
high quality. In each annotation task, we ask par-
ticipants to indicate on a scale from 1 to 5 whether
the clarification made sense in the given how-to-
guide. A screenshot of the interface for our Human

5We also tried bert-base-cased in preliminary ex-
periments but observed no improvements.

61000 each for noun compounds and metonymy, 996 for
implicit references and 999 for fused heads.

Train Dev Test

IMPLAUSIBLE 5,474 (27%) 982 (39%) 858 (34%)
NEUTRAL 7,162 (36%) 602 (24%) 672 (27%)
PLAUSIBLE 7,339 (37%) 916 (37%) 970 (39%)

Total 19,975 2,500 2,500

Table 3: Distribution of class labels in our training,
development and test sets.

Intelligence Task (HIT) is provided in Appendix A.

Qualifications. We use several qualifications to
increase the annotation quality. First, we require
participants to be located in the United States or in
the United Kingdom, to increase the chance that
the participants are native speakers of English. Sec-
ondly, participants need to have a HIT approval
rate ≥ 95% and their number of approved HITS
has to be ≥ 1000. Finally, annotators are required
to pass a qualification test in which they are asked
to judge a list of clearly plausible and implausible
cases that were pre-selected unanimously by the
authors.

Class labels. For Task 1 (classification), we aver-
age over the real-valued judgements collected for
a clarification and map this plausibility score to
one of the three classes labels. Specifically, we
label clarifications with an average score ≤ 2.5 as
IMPLAUSIBLE, clarifications with a score ≥ 4.0 as
PLAUSIBLE, and all clarifications between these
thresholds as NEUTRAL. The thresholds have been
selected based on manual inspection of the data
and mathematical considerations: in particular, the
threshold for PLAUSIBLE requires scores to be
substantially above average (in case of two judge-
ments, ≥3&5 or ≥4&4), whereas the IMPLAUSI-
BLE threshold allows for a slightly wider range of
judgements. The NEUTRAL label covers cases that
received inconclusive individual scores as well as
cases of disagreement (e.g. 3&3 as well as 2&5).

Statistics. We show the frequency distribution of
the labels in the train, development and test set in
Table 3. It is noteworthy that development and test
set proportionally includes fewer NEUTRAL and
more IMPLAUSIBLE clarifications than the training
set. Presumably, this is because we increased the
number of qualification questions from 4 to 6 after
collecting the training data to ensure the quality of
the evaluation data.

Since we are particularly interested in cases with

1043



Team Model type Pre-trained model components Additional comments

X-PuDu ensemble DeBERTa, ERNIE, XLM-R pattern-aware, multi-loss
HW-TSC ensemble DeBERTa, RoBERTa, S-BERT incl. unsupervised model

PALI ensemble DeBERTa, RoBERTa, XLM-R pattern-aware, multi-loss
Nowruz Transformer T5 ordinal regression, multi-loss

JBNU-CCLab ensemble DeBERTa −
DuluthNLP Transformer ELECTRA class weighting

Stanford MLab Transformer ELECTRA −
niksss Transformer BERT −

Table 4: Summary of the best models on the test set according to the submitted system descriptions.

multiple plausible clarifications, we also compute
the average number of PLAUSIBLE clarifications
per sentence s, which we found to be 1.84, 1.87
and 1.84 in the training, development and test set,
respectively. This means that, on average, each an-
notated sentence in the dataset has between 1 and 2
clarifications that the annotators rated as plausible.

5 Participants

A total of 21 users participated in the CodaLab
competition set up for the shared task and 8 teams
submitted system description papers. An overview
of the best model by each team is shown in Ta-
ble 4.7 We observe that all systems are based on
Transformer architectures, using one or more of
the following pre-trained models: BERT (Devlin
et al., 2019), DeBERTa (He et al., 2020), ELEC-
TRA (Clark et al., 2019), ERNIE (Sun et al., 2019),
RoBERTa (Liu et al., 2019), S-BERT (Reimers and
Gurevych, 2019), T5 (Raffel et al., 2020), XLM-R
(Conneau et al., 2020).

In addition to fine-tuning a single or multiple
Transformer models in an ensemble, some teams
have taken additional steps to adapt their system to
the task. We summarize some of these steps below.

Consideration of phenomena. At least two
teams took into account that the data set consists
of four phenomena that were identified using dif-
ferent patterns (pattern-aware): PALI used the phe-
nomenon description that applies to a classification
instance as additional model input; X-PuDu de-
veloped an ensemble architecture that consists of
different individual models and hyperparamters for
each phenomenon.

7A table with the official results of the CodaLab com-
petition, including participants who did not submit system
descriptions, is shown in Appendix B.

Adapted loss functions. Several teams adapted
the loss functions of their models to better account
for various properties of the task. This includes the
use of classification and regression based loss func-
tions in a multi-task learning set-up (multi-loss)
as well as the use of specific loss functions that
consider the ordinal nature of labels (ordinal re-
gression) or differences in label distributions (class
weighting) in the classification task.

Unsupervised components. Given the similarity
of our task to general cloze tasks, several teams
experimented with models that were merely self-
supervised and not fine-tuned on task-specific train-
ing data. In case of one team, HW-TSC, such an
unsupervised component is also part of the ensem-
ble model that produced the best results.

6 Results and Discussion

The results for Task 1 and 2 are shown in Table 5
and 6, respectively. We focus our discussion on
Task 1: Classification, as the participants of Task 2
form only a subset of the Task 1 participants and
the system results rank, with exception of the last
two teams, in the same order. In addition to show-
ing results by participants, we also provide a hu-
man upper bound as well as results by our own
BERT-based baseline model. The upper bound was
computed as the accuracy over all individual anno-
tations when compared against the (averaged) class
label of each test instance.

The human upper bound has an accuracy of
79.4%, indicating that the task is challenging and
potentially involves a number of disagreements.
The winning team of the competition, X-PuDu,
achieves an accuracy of 68.9%, only 10.5 percent-
age points below the human upper bound. The
results of all teams lies substantially above a naive
majority class baseline of 39%. All teams but one
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Rank Team Accuracy

− Human (upper bound) 79.4%

1 X-PuDu 68.9%
2 HW-TSC 66.1%
3 PALI 65.4%
4 Nowruz 62.4%
5 JBNU-CCLab 61.4%
6 DuluthNLP 53.3%
7 Stanford MLab 46.6%
8 niksss 44.2%

− BERT (baseline) 45.7%

Table 5: Results for Task 1 (classification).

Rank Team Spearman’s ρ

1 X-PuDu 0.807
2 PALI 0.785
3 HW-TSC 0.774
4 Nowruz 0.707
5 niksss 0.252
6 Stanford MLab 0.194

Table 6: Results for Task 2 (ranking).

also outperform our BERT-based baseline, which
is a linear classification model based on the check-
point provided by the Transformer library (Wolf
et al., 2020) and fine-tuned on our training data.

6.1 Findings by Participants
In the following, we briefly summarize a couple of
findings by task participants. More details can be
found in the individual task description papers.

Different phenomena. The winning team, X-
PuDu, found that different hyperparameters worked
best depending on the phenomenon/extraction pat-
tern. Based on this finding, different individual
models were trained and combined in an ensemble.

Label distribution. Some teams, including Du-
luthNLP, noticed performance issues related to the
distribution of labels in the development data. As
a dedicated solution, DuluthNLP uses a decreased
weight for the NEUTRAL label in the loss function.

NEUTRAL label. Team JBNU-CCLab reported
that the NEUTRAL label is generally difficult to dis-
tinguish from other labels by different models. An
underlying problem could be that the label repre-
sents instances that are seen as somewhat plausible

Rank Team F1 (all) F1 (w/o N)

1 X-PuDu 0.689 0.773
2 HW-TSC 0.661 0.749
3 PALI 0.654 0.749
4 Nowruz 0.624 0.714
5 JBNU-CCLab 0.551 0.627
6 DuluthNLP 0.533 0.608
7 Stanford MLab 0.466 0.514
8 niksss 0.442 0.494

Table 7: Classification results with/without NEUTRAL.

Rank Team Accuracy (#P≥2)

1 X-PuDu 75.2%
2 HW-TSC 73.2%
3 PALI 72.6%
4 Nowruz 71.6%
5 JBNU-CCLab 63.6%
6 DuluthNLP 62.6%
7 Stanford MLab 54.8%
8 niksss 60.0%

Table 8: Results for identifying contexts with multiple
plausible fillers, based on individual model predictions.

by multiple annotators as well as instances that are
seen as plausible by some annotators and implausi-
ble by others (see Section 4).

Noisy data. Team HW-TSC found that isolated
training instances have the label NEUTRAL rather
than PLAUSIBLE, even though the respective filler
represents a human insertion (i.e., the filler can be
found in the final version of the text in wikiHow).
As the results of our human upper bound in Table 5
show, this is partly because the right label is some-
times not clear cut even for humans. We discuss
this aspect in more detail in the next section.

6.2 Additional Evaluations

We perform two additional evaluations to assess
the impact of the NEUTRAL label on system perfor-
mance and to investigate the possibility of identify-
ing whether multiple plausible clarifications exist
by aggregating the predictions regarding individual
clarifications.

Excluding NEUTRAL. For the evaluation without
the NEUTRAL label, we calculate micro-averaged
precision, recall and F1-scores for the two labels
PLAUSIBLE and IMPLAUSIBLE. The results in
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Correct #P≥2 Text Fillers

8 (all)

✓

Galette des rois—or “King Cake” in English—is traditionally
made to celebrate the ∅ of Epiphany. Especially popular in
France during the Christmas season, it is enjoyed elsewhere too.

✓ holidays ✓ Feast
? hours ? celebration
? proclamation

✗

Let the ∅ of shoes air dry. You can put them in front of a
dehumidifier, a fan, or an open window, but avoid putting them
in front of any type of heat source.

✓ pair ? pile
✗ shoes ✗ color
✗ end

0 (none)

✓

If you want a smoother surface, try a ∅ of paper with a
higher amount of grains, if you want a faster job but a rougher
surface try a paper with a lower amount of grains.

✓ thickness ✓ piece
? fabric ? product
✗ pile

✗

Your cucumber plant will also grow thin, light green shoots that
help the plant grasp onto a surface and grow vertically. These
∅ grow immediately next to the suckers.

✓ shoots ? fibers
? tendrils ? foliage
✗ bushes

Table 9: Examples of difficult and easy instances, selected based on how many systems classified them correctly.

terms of F1-score are shown in Table 7. The results
indicate that all systems perform substantially bet-
ter in the evaluation setting that ignores NEUTRAL

labels. The ranking is identical to the ranking in the
evaluation including all labels. Considering only
the PLAUSIBLE and IMPLAUSIBLE, Team X-PuDu
achieves the highest micro-averaged F1-score of
0.773. In the cases where their system predicts
a non-NEUTRAL label, it is correct in 72.7% of
cases (precision), and 82.5% of all non-NEUTRAL

instances in the data received the correct prediction
(recall).

Multiple clarifications. In our final evaluation,
we examine whether system predictions can also
be used to determine whether multiple plausible
clarifications for a given context exist. For this, we
consider the labels of each individual clarification
and compare system outputs and annotations in
terms of whether two or more clarifications for a
cloze and its context received the label PLAUSIBLE.
We show the result of this evaluation in terms of
accuracy for each team in Table 8. Apart from the
last two places, the teams rank in the same order
as in the other evaluations. The best performing
team, X-PuDu, correctly predicts whether two or
more plausible clarifications exist for 75.2% of all
cases. Table 9 shows examples that were correctly
classified by all or none of the systems.

7 Conclusion

In this paper, we presented the task, data, partici-
pating systems, and results of the shared task on
clarifying implicit and underspecified phrases in

instructional texts. Our motivation for this task was
to explore the possibility of testing different clarifi-
cations for plausibility. In particular, we were con-
cerned with the question of whether two or more
clarifications can be plausible and whether such
cases can be detected automatically. To create a
suitable dataset, we worked with and identified a
set of revisions with manual clarifications, auto-
matically generated possible alternatives, and then
collected human plausibility ratings.

In total, 21 users participated in our shared task.
We summarized the systems and results of 8 teams
that submitted descriptions of their systems. The
best systems from each group have in common
that they are based on Transformer architectures
or combine them in an ensemble. The best system
achieved 68.9% accuracy, only 10.5 percentage
points below a human upper bound. In additional
evaluations, we have shown that an accuracy of up
to 75.2% is achieved with respect to the detection
of multiple plausible clarifications.

The results show that the presented task is a
difficult one, but that many cases can already be
modeled well by current state-of-the-art methods.
There is further room for improvement with re-
spect to both the data set and models: with respect
to the data, it should be noted that the training set
with less than 20k instances is relatively small and
that there are many instances with a underspeci-
fied NEUTRAL label (36%). On the model side, we
found that the participating teams make comple-
mentary contributions that may allow for additional
improvements in combination.

1046



One shortcoming of the task as presented and
performed is that we only considered four forms
of clarifications related to referring expressions. In
addition, clarifications were assessed individually
and judgements by different annotators were aggre-
gated. In the long term, we believe that more forms
of clarifications as well as individual differences
regarding their plausibility need to be considered.
Finally, future work will have to investigate under
which circumstances multiple different clarifica-
tions are actually incompatible and can thus reveal
potential sources of misunderstanding.
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A Annotation Interface

The annotation interface for our crowdsourcing task
is depicted in Figure 1. Annotators see and have to
rate a single underlined clarification in its context.

Figure 1: Interface for collecting annotations.

B CodaLab Leaderboard

In the main part of the paper, we only list results
of participants who provided a description of their
system(s) for the shared task. Table 10 shows a
complete set of user names and results of the partic-
ipants in the CodaLab competition, including users
who did not submit a system description.

Team name User name acc. ρ

X-PuDu tt123 0.689 0.807
HW-TSC Yinglu_Li 0.661 0.774
− tiantaijian 0.661 0.763
− fanxiaoxing 0.656 −
PALI stce 0.654 0.785
− hudou 0.641 −
− huangwkk 0.631 0.774
Nowruz mohammadmahdinoori 0.624 0.707
JBNU-CCLab OrangeAvocado 0.614 −
− CitizenTano 0.595 −
− huawei_zhangmin 0.589 0.640
− parkwonjae 0.554 −
− lith 0.537 0.600
− ywzhang_cr 0.537 0.600
DuluthNLP Sakrah 0.533 −
Stanford MLab patrickliu2011 0.466 0.194
− Autism_PAFC 0.461 −
− SelinaIW 0.456 −
niksss niksss 0.442 0.252
− andrei.manea 0.418 -0.109
− tanigaki 0.395 0.415

Table 10: Oveview of results, including user submis-
sions without a shared task system description.
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Abstract

In this study, we examine the ability of con-
textualized representations of pretrained lan-
guage model to distinguish whether sequences
from instructional articles are plausible or im-
plausible. Towards this end, we compare the
BERT, RoBERTa, and DeBERTa models using
simple classifiers based on the sentence repre-
sentations of the [CLS] tokens and perform a
detailed analysis by visualizing the representa-
tions of the [CLS] tokens of the models. In the
experimental results of Subtask A: Multi-Class
Classification, DeBERTa exhibits the best per-
formance and produces a more distinguishable
representation across different labels. Submit-
ting an ensemble of 10 DeBERTa-based mod-
els, our final system achieves an accuracy of
61.4% and is ranked fifth out of models sub-
mitted by eight teams. Further in-depth results
suggest that the abilities of pretrained language
models for the plausibility detection task are
more strongly affected by their model struc-
tures or attention designs than by their model
sizes.

1 Introduction
WikiHow1 is the largest how-to website with

more than 300,000 articles and over 2.5M regis-
tered users that help user improve their knowledge
of specific areas. However, these instructional arti-
cles have grammatical errors and ambiguous con-
tent that cause misunderstandings. To enhance
the clarity of instructional texts, clarification is
required as a revision that makes implicit elements
explicit, resolves ambiguities, or replaces under-
specified phrases with a clearer and more precise
expressions.

SemEval-2022 Task 7 (Roth et al., 2022) eval-
uates the ability of an NLP system to distinguish
between plausible and implausible clarifications of
an instruction. The task is formulated as a CLOZE

task in which clarification is presented as a filler in
1https://www.wikihow.com/Main-Page

a blanked sentence. Given a context with a filler
option (i.e., a sentence X and filler option O), the
system should determine the plausibility of a se-
quence, that is whether a sequence is “plausible,”
“neutral,” and “implausible.”

Our work is motivated by the recent successes of
pretrained language models such as BERT (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019),
and DeBERTa (He et al., 2021a,b), which have
effectively induced contextualized representations,
achieving remarkable fine-tuning performance on
downstream tasks.

To explore the plausibility detection of clari-
fications in SemEval-2022 Task 7, we compare
the plausibility detection abilities of three pre-
trained language models (BERT, RoBERTa, and
DeBERTa) in Subtask A, Multi-Class Classifica-
tion. Our main observations of the development set
are highlighted as follows.

• Among the three models, DeBERTa exhibits
the best performance in the plausibility classi-
fication task2.

• Visualization analysis of the representations
of the [CLS] tokens of BERT, RoBERTa, and
DeBERTa, reveals that the best distinguish-
able representations among different classes
are achieved with DeBERTa.

• A comparison of base and large models con-
firms that large models are always better
than base models for all the types: BERT,
RoBERTa and DeBERTa.

• Given the comparative results among various
models, we hypothesize that the abilities of
pretrained language models for the plausibil-
ity detection task are more strongly affected

2Note that we used BERT-{base, large}, RoBERTa-{base,
large}, and DeBERTa-{base, large}. DeBERTa V3 model of
(He et al., 2021a) was used for DeBERTa models.
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Pre-trained Language Model

[CLS] [Tok 1] [Tok 2] [Tok 3] [Tok 4] [Tok 5] [Tok 6] [Tok N] [SEP]

[CLS]

CLS Token Embedding Classifier Softmax

X 10
(Number of Model)

Max Voting

“Open your iPhone's Phone app. You'll see this option in the bottom right corner of the screen. Tap”

Figure 1: Architecture of the proposed system for plausibility classification using pretrained language models

by their model structures or attention designs
rather than their parameter sizes.

By ensembling 10 different DeBERTa-based
models, our final submitted system achieves an ac-
curacy of 61.4% on the test data and is ranked the
8th place among 21 systems3, that is, 5thth place
among the 8 teams who submitted their papers on
Subtask A.

The remainder of this paper is organized as fol-
lows: Section 2 presents related work. Section 3
describes the system architecture in detail. Sec-
tion 4 describes the experimental settings, results,
and analyses. Our concluding remarks and a de-
scription of future work are presented in Section
5.

2 Related work
Since the success of BERT (Devlin et al., 2019),

it has been used for numerous natural language pro-
cessing (NLP) tasks and has inspired the emergence
of many other pretrained models. In RoBERTa
(Liu et al., 2019), dynamic masking in the masked
language modeling (MLM) objective dynamically
while revisiting the next sentence prediction owing
to its uncertain effectiveness has achieved promis-
ing results on GLUE (Wang et al., 2018), RACE
(Lai et al., 2017), and SQuAD (Rajpurkar et al.,
2016). DeBERTa (He et al., 2021b) further ad-
vanced BERT based on two major extensions, dis-
entangled attention and enhanced mask decoder,
by combining both the relative and absolute posi-

3https://competitions.codalab.org/
competitions/35210

tions of words. DeBERTa V3 (He et al., 2021a)
replaces the MLM objective in DeBERTa with the
replaced token detection (RTD) objective proposed
by ELECTRA (Clark et al., 2020) and further pro-
poses gradient-disentangled embedding sharing to
alleviate the tug-of-war problem between the gen-
erator and discriminator 4 as an improvement of
the embedding sharing method used in ELECTRA.

3 System description
Figure 1 presents the architecture of our system,

which uses pretrained language models equipped
with ensemble inference.

3.1 Methods with pretrained language models

Let Xp, Xc and Xn be the previous, main, and
follow-up context, respectively. As in Section 4.1,
we concatenate these sentences for the i-th training
example as follows: Xi = Xp ⊕Xc ⊕Xn, where
Xc is unmasked by filling each possible filler op-
tion Oij . We use Yi ∈ {0, 1, 2} to refer to the
ground truth of the i-th example, where Y0, Y1,
and Y1 refer to implausible, neutral, and plausible
sequences, respectively. Finally, we denote a train-
ing set as D = {Xi, Yi}Ni=1, where N is the total
number of training examples obtained by unmask-
ing all the main sentences with their possible filler
options.

We feed Xi into a pretrained language model
denoted as LM to encode contextualized represen-

4Because the generator and discriminator have different ob-
jectives, they tend to pull shared word embeddings in different
directions, resulting in degradation of the training speed.
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tations Mi ∈ R|Xi|×d as follows:

Mi = LM(Xi)

where |Xi| is the length of the concatenated sen-
tence Xi and d is the dimensionality of the hidden
representation of LM. As mentioned, we use BERT,
RoBERTa, and DeBERTa for LM.

Let Mi,[CLS] be the representation of the [CLS]
token of Xi. To perform a plausibility prediction,
we feed Mi,[CLS] to a linear layer as follows:

f(Xi) = WTMi,[CLS] + b, (1)

where W ∈ Rd×3 and b ∈ R3 are task-specific
parameters of the linear layer. The loss function
L used to optimize our system is formulated as
follows:

L = −
∑

(Xi,Yi)∈D
yi · log softmax(f(Xi)) (2)

where yi ∈ {0, 1}3 is the one-hot vector for Yi.

4 Experiments

Team Name (or User Name) Accuracy
X-PuDu 68.9
HW-TSC 66.1
PALI 65.4
Nowruz 62.4
DuluthNLP 53.3
Stanford MLab 46.6
niksss 44.2
JBNU-CCLAB 61.40

Table 1: Results of our system on the test dataset (Offi-
cial Leaderboard)

4.1 Experimental setting

Dataset We used the data and labels from
SemEval-2022 Task 7 (Roth et al., 2022). The data
consists of the article title, sub-heading, masked
sentence, previous and follow-up context, and pos-
sible filler options with corresponding labels (Sub-
task A) and ratings (Subtask B). During our prepro-
cessing step, the placeholder in the main sentence
is filled with each possible filler option Oi.

Preprocessing We concatenate the previous con-
text, main context, and follow-up context without
using the article name and section header; any
parenthesis and the content inside, special charac-
ters, and redundant whitespaces are removed. No

truncation is applied because none of the concate-
nated data exceeds the maximum token length of
the pretrained language models.

For example, suppose that a masked sentence
is given as "You’ll see this ______ in the bottom
right corner of the screen." and is filled with each
filler text “option.” Assume that the sentence that
precedes it is “1. Open your iPhone’s Phone app.
(...),” and the sentence that follows it "3. Tap ." The
concatenated input looks like "Open your iPhone’s
Phone app. You’ll see this option in the bottom
right corner of the screen. Tap".

Training We fine-tune the model on the training
data with a batch size of 32 and 20 of epochs. We
use the AdamW optimizer (Loshchilov and Hutter,
2019) and a cosine scheduler with warm-up steps
for the initial 5% of the total steps at a learning rate
of 1e− 5.

We also create a DeBERTa-based ensemble
model using ten models trained on different seeds
to obtain the final submission result.

4.2 Official results

For each model, we select the checkpoint with
the best accuracy on the validation data as the fine-
tuned model.

As mentioned in Section 4.1, we ensem-
ble 10 finetuned DeBERTa-v3-large models by
max-voting their outputs to further improve our
DeBERTa-based model.

Table 1 shows the official results of our
DeBERTa-based ensemble model compared with
the other participants’ systems.

4.3 Analysis

4.3.1 Comparison of the results on the
development set

Table 2 presents the results of the validation data
using three different pretrained language models
without an ensemble 5

As shown in Table 2, DeBERTa-large outper-
forms the baseline models by a decent margin.

Furthermore, Figure 2 shows the detailed confu-
sion matrix of the finetuned DeBERTa-large model
for the development set. As shown in Figure 2,
DeBERTa-large distinguishes between plausible
and implausible sequences reasonably well but has
difficulty identifying neutral sequences. In our ex-

5While the official evaluation only measures the accuracy
of the system, Table 2 lists the precision, recall and f1 score
for analysis in detail.
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Model Parameters
Metric

Accuracy Precision Recall F1-score
BERT-base 110M 45.36 43.32 43.06 42.67
BERT-large 340M 48.00 43.06 43.32 38.89
RoBERTa-base 125M 51.48 50.20 48.22 46.32
RoBERTa-large 355M 53.12 49.39 49.50 48.28
DeBERTa-v3-base 86M 55.92 49.19 50.84 48.36
DeBERTa-v3-large 304M 59.88 52.92 54.20 50.81

Table 2: Comparative results of BERT, RoBERTa, and DeBERTa on the validation dataset. The precision, recall,
and F1-score are calculated via macro-average.
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Figure 2: Illustration of the confusion matrix of our
DeBERTa-based model on the validation dataset

periment, a similar tendency was also observed on
BERT- and RoBERTa-based models.

Overall, from these results, we hypothesize that
the ability of a pretrained language model to contex-
tualize representations for the plausibility detection
task is more strongly affected by its model struc-
tures, such as attention design or refining positional
embeddings, rather than its parameter size.

4.3.2 Visualization of [CLS] representation

Figure 3 shows the visualization of the represen-
tations of [CLS] tokens using T-SNE (van der
Maaten and Hinton, 2008) to compare the abilities
of pretrained language models to distinguish be-
tween plausible, neutral and implausible sequences.
As shown in Figure 3, the context representation
distributions of the two DeBERTa models are more
coherent and distinctive that those of BERT and
RoBERTa. In contrast, no significant differences
are observed between the BERT and RoBERTa
models.

5 Conclusion
In this study, we compare BERT, RoBERTa and

DeBERTa in SemEval-2022 Task 7 Subtask A:
Multi-Class Classification. The results show that
DeBERTa presents the best performances with im-
proved distinguishable representations. We assume
that the substantial changes made to the model
structure of DeBERTa, such as disentangled atten-
tion, enhanced mask decoder, and RTD objective,
would give DeBERTa a significant advantage in the
addressed task.

Our final submission, based on an ensemble
model comprising 10 fine-tuned DeBERTa-based
models, achieved an accuracy of 61.4% on the test
data. Our proposed model is ranked fifth out of
eight models of teams who reported their papers.

In future studies, it would be worthwhile to ex-
plore other pretrained language models, such as
ELECTRA, or models resulting from task-specific
pretraining.
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A Hyperparameters
Table 3 shows the setup of hyper-parameters of

our models.

epochs 20
total batch size 32

accumulation steps 4
learning rate 1e-5

optimizer AdamW
warm-up proportion 0.05

weight decay 0.01

Table 3: Hyperparameters
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Abstract 

This paper describes the system for the 

identifying Plausible Clarifications of 

Implicit and Underspecified Phrases. This 

task was set up as an English cloze task, in 

which clarifications are presented as 

possible fillers and systems have to score 

how well each filler plausibly fits in a given 

context. For this shared task, we propose 

our own solutions, including supervised 

approaches, unsupervised approaches with 

pretrained models, and then we use these 

models to build an ensemble model. Finally 

we get the 2nd best result in the subtask1 

which is a classification task, and the 3rd 

best result in the subtask2 which is a 

regression task. 

1 Introduction 

The rapid development of artificial intelligence has 

also been reflected in the field of NLP, and there 

have been many heavyweight achievements, such 

as word2Vec (Mikolov, et al., 2013), Glove 

(Pennington, et al., 2014), Transformer (Vaswani, 

et al., 2017). Natural language processing is an 

important branch of artificial intelligence. Cloze 

tasks have become a standard framework for 

evaluating various discourse-level phenomena in 

NLP, which is an important field in artificial 

intelligence, many researchers have long been 

committed to the development of this field. Some 

prominent examples include the narrative cloze test 

(Chambers and Jurafksy, 2008), the story cloze test 

(Mostafazadeh et al., 2016), and the LAMBADA 

word prediction task (Paperno et al., 2016). Cloze 

requires the testee to infer from the context, which 

is very difficult for machines. 

The goal of this shared task is to evaluate the 

ability of NLP systems to distinguish between 

plausible and implausible clarifications of an 

instruction. Such clarifications can be critical to 

ensure that instructions describe clearly enough 

what steps must be followed to achieve a specific 

goal. This task was set up as a cloze task. However, 

different from regular cloze task, there may be zero 

or more than one correct candidates out of the five 

options. This presents new challenges for cloze 

systems. 

For subtask 1, it is a classification task that 

requires the system to classify five candidates into 

corresponding categories, which are plausible, 

neutral, or implausible, and the number of each 

category is not fixed. This means that there may be 

zero or more than one correct candidates out of the 

five options, and the same applies to the other two 

categories. This situation creates new challenges 

for cloze tasks. 

For subtask 2, it is a regression task ask 

annotators to rate for each clarification option 

whether it "makes sense in the given how-to guide" 

(on a scale from 1 to 5) to assess the plausibility of 

different clarification options. 

In this paper, we analyze the characteristics of 

the shared task and describe out contribution to this 

cloze task. We build an ensemble model with 

Deberta-v3 (He P, et al., 2020), Roberta-large (Liu 

Y, et al., 2019), SBERT (Reimers and Gurevych, 

2019), including supervised approaches and 

unsupervised approaches. Our model had the 2nd 

best performance in the subtask1 (66.1% Accuracy 

Score) and the 3rd best performance in the subtask2 

(77.4% Ranking Score). The results are 

encouraging for evaluating various discourse-level 

phenomena in NLP, although there is much room 

for improvement. 

The rest of this paper is organized as follows. 

Section 2 introduce our approach for the shared 

task. Section 3 shows the experimental results of 

our approach and do some analysis. In Section 3, 

experimental results are compared and discussed. 

Finally, the whole paper is summarized with a brief 

conclusion in Section 4. 
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2 System Overview 

In this section, we first describe our data processing 

steps. We experimented with different ways of 

processing the data, trying to find the one that 

worked best for the task. And then, we discuss our 

solutions with pre-trained models for the shared 

task, including unsupervised approaches, 

supervised approaches, and an ensemble model. 

2.1 Data Processing 

The participants of the shared task were provided a 

collection of revisions of instructional texts from 

the how-to website wikiHow. The dataset contains 

sentences that need to be filled in and its previous 

context, follow-up context, five options, etc. The 

data example is as shown in the Figure 1 below: 

We bring the five options into the positions that 

need to be filled in, and get a dataset that is five 

times the size of the original.  

For subtask1, a label file was gave which 

contains the corresponding category of each option 

of each piece of data, which category does it belong 

to, plausible, neutral or implausible? We map these 

three categories to numbers 2, 1, 0, corresponding 

to plausible, neutral and implausible.  

For subtask2, a score file was gave to assess the 

plausibility of different clarification options. For 

the score file, we keep it in its native state. In 

addition, in order to make the model focus on the 

positions that need to be filled in, we have added 

special symbols $ on both sides of the blank. After 

data processing, the data example is as shown in 

the Figure 2 below:  

To get more information that might be useful, we 

tried a variety of sentence concatenations using 

different columns in the data. Our experiments 

show that this is necessary and effective. 

2.2 Unsupervised approach 

First, in order to get a reliable benchmark on this 

task, we use unsupervised methods to try to solve 

the task with BERT. Because the pre-training 

process of BERT includes masked language model, 

that is, to replace a small part of words in the text 

with [MASK], and let the model predict the words 

replaced by [MASK]. This task is very similar to 

cloze, so we can use cloze to test BERT’s masked 

language model capability in longer and more 

[MASK] texts (Ding et al., 2021). 

For this task, we tokenize each option to get the 

number of tokens, and then fill in the blank with the 

same [MASK] as the number of tokens. We do this 

because multiple [MASK] work better than a single 

one. The processing process is shown in the 

following Figure 3: 

A pooling operation is added to the output of 

BERT to generate a fixed-size sentence embedding 

vector. The tokens embedding of [MASK] obtained 

from the pre-trained model would be used for 

classification with different pooling strategies. In 

our experiment, three pooling strategies were used 

for comparison: 

 MEAN strategy 

Calculate the average value of each token output 

vector of option to represent the sentence vector. 

 MAX strategy 

Take the maximum value of each dimension of 

all output vectors of option to represent the 

sentence vector. 

 SUM strategy 

Take the sum value of each dimension of all 

output vectors of option to represent the 

sentence vector. 

2.3 Supervised approach 

After getting a benchmark with an unsupervised 

method, we want to get some experimental results 

 

Figure 2: Data example after processing 

 

1. Wash thoroughly with warm water. Pat $ your birthmark $ dry with a clean towel. 2 5.0

2. Wash thoroughly with warm water. Pat $ the area $ dry with a clean towel. 2 4.5

3. Wash thoroughly with warm water. Pat $ the lemon $ dry with a clean towel. 1 2.0

4. Wash thoroughly with warm water. Pat $ lemon juice $ dry with a clean towel. 0 2.0

5. Wash thoroughly with warm water. Pat $ your stomach $ dry with a clean towel. 0 1.0

 

Figure 1: Data example 

 

How to Lighten Birthmarks Naturally

Lightening Your Birthmark

(...)

2. Rub lemon juice on your birthmark

(...)

* Wash thoroughly with warm water. Pat ______ dry with a clean towel.

* Repeat this process three times a day.

your birthmark (5.0) the area (4.5)  the lemon (2.5)

lemon juice(2.0)  your stomach (1.0)

 

Figure 3: Data example after filled with [MASK] 

 

1. Wash thoroughly with warm water. Pat $ [MASK] [MASK] [MASK] $ dry with a clean towel.

2. Wash thoroughly with warm water. Pat $ [MASK] [MASK] $ dry with a clean towel.

3. Wash thoroughly with warm water. Pat $ [MASK] [MASK] $ dry with a clean towel.

4. Wash thoroughly with warm water. Pat $ [MASK] [MASK] $ dry with a clean towel.

5. Wash thoroughly with warm water. Pat $ [MASK] [MASK] $ dry with a clean towel.

After tokenize the option: 1. ['your', 'birth', '##mark']

2. ['the', 'area']

3. ['the', 'lemon']

4. ['lemon', 'juice']

5. ['your‘, 'stomach']

1. your birthmark 

2. the area

3. the lemon

4. lemon juice

5. your stomach
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with a supervised method. First, we still conduct 

some experiments to screen out the model with 

better performance from several models. The 

models we use include Deberta-v3, Roberta-large, 

SBERT, BERT (Devlin et al., 2018), etc. The final 

experimental results will be displayed in the 

experimental section. 

And then, in the above part, we mentioned 

filling in the blanks with [MASK], and using the 

embedding of [MASK] is directly used for 

classification. This is naturally associated with the 

similarity between [MASK] and options. 

Intuitively, [MASK] should be the most similar to 

the plausible option, and the least similar to the 

implausible option. So we use SBERT to calculate 

the similarity between the sentences after filling in 

[MASK] and filling in the options. After getting the 

similarity, we classify it by threshold optimization. 

The schematic diagram of the data process is 

shown in the following Figure 4:  

The sentence obtained by filling [MASK] into 

the blank part and the sentence obtained by filling 

the option into the blank part are used as the input 

of the model, and then the embedding 

representation of [MASK] and the option is 

obtained by average pooling, as u and v 

respectively. We concatenate the values of u and v 

and the absolute value of their differences for 

classification tasks, and we also calculate the 

similarity between u and v for the task. The process 

is shown in Figure 5. 

2.4 Model ensemble 

Through Sections 2.3.1 and 2.3.2, we have 

obtained the results of several models. By 

comparing the classification results between 

different models, there are large differences, which 

means that for the classification results of the same 

data, the Model I may classify it into IMPLAUSE, 

but the Model II may classify it as NEUTRAL. 

This makes it possible for us to further improve the 

classification effect through the model ensemble. 

The voting method is an ensemble learning 

model that follows the majority principle, and 

reduces variance through the integration of 

multiple models, thereby improving the robustness 

and generalization ability of the model. We adopt 

the voting method commonly used in ensemble 

learning, which is an ensemble learning model that 

follows the principle of majority rule by the 

minority, and reduces variance through the 

integration of multiple models, thereby improving 

the robustness and generalization ability of the 

model. We used four models (Roberta based on 

unsupervised method, and Roberta-large, Deberta-

v3, SBERT based on supervised method) as 

benchmarks for ensemble learning. The structure 

of ensemble model is shown in the Figure 6.   

3 Experimental Results 

In the following experimental part, all the data used 

for the experiment adopts the data processing 

method we introduced in Section 2.1. 

3.1 Unsupervised approach results 

We propose an attempt to use an unsupervised 

approach to benchmark this task in Section 2.2, and 

propose three strategies for dealing with [MASK]. 

The experimental comparison of the three 

strategies is gave by Table 1, there is little 

 

Figure 4: Data process for calculate 

 

Wash thoroughly with warm water. Pat $ your birthmark $ dry with a clean towel.

Similarity?

Wash thoroughly with warm water. Pat $ [MASK] [MASK] [MASK] $ dry with a clean towel.

After tokenize the option:

['your', 'birth', '##mark']your birthmark 

 

Figure 5: The process of SBERT 

 

Softmax classifier

Bert

Sentence B

Bert

Sentence A

Bert

Sentence B

Bert

Sentence A

 

Figure 6: The structure of ensemble model 

 

Training set

Vote

T
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training
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Classification models

Predictions

Vote

Final prediction
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difference between MEAN strategy and Max 

strategy. We ended up using MEAN strategy to get 

a benchmark (57.88% Accuracy Score) with 

Roberta-large. 

3.2 Supervised approach results 

For supervised methods, although we did some 

experiments to try to find a better embedding than 

[CLS] for this task, we didn't get it. So we still 

ended up screening out the model with better 

performance from several models with [CLS] 

embedding. The results of model screening are 

given in Table 2. 

In Section 2.3 we propose to use SBERT to try 

to solve this task. We conduct experiments with 

direct classification and computing similarity 

respectively. Table 3 gave the experimental results 

of SEBRT. 

3.3 Model ensemble results 

After obtaining several benchmarks using the 

unsupervised method and the supervised method, 

Model Pooling Train Accuracy Dev Accuracy 

Bert-large Mean 0.4373 0.5152 

Bert-large Sum 0.4434 0.4920 

Bert-large Max 0.4330 0.5150 

Roberta-large Mean 0.4678 0.5788 

Table 1: Pooling strategy for unsupervised approach 

Model Train Accuracy Dev Accuracy 

Bert-base 0.5071 0.5394 

Bert-large 0.5599 0.5613 

Roberta-large 0.5260 0.5710 

Deberta-v3 0.4403 0.6326 

Table 2: Screen out the model with better performance from several models with [CLS] embedding 

Model Strategy Train Accuracy Dev Accuracy 

Roberta-large Classification 0.5463 0.5665 

Roberta-large Similarity 0.6337 0.6272 

Bert-base Classification 0.6298 0.5237 

Bert-base Similarity 0.7034 0.4553 

Table 3: Experiment results of SBERT 

Model Train Accuracy Dev Accuracy Test Accuracy 

Roberta-large unsupervised 0.4678 0.5788 -- 

Roberta-large supervised 0.5260 0.5710 -- 

Deberta-v3 0.5624 0.6485 0.622 

SBERT(Roberta-large) 0.6337 0.6272 -- 

Ensemble -- 0.7088 0.661 

Table 4: Results for subtask1 with ensemble model 

Model Train Rank  Dev Rank Test Rank 

Roberta-large unsupervised -- 0.6112 -- 

Roberta-large supervised -- 0.6370 -- 

Deberta-v3 0.6137 0.7784 0.747 

SBERT(Roberta-large) -- 0.6560 -- 

Ensemble -- 0.7752 0.774 

Table 5: Results for subtask2 with ensemble model 
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respectively, in the supervised method, by 

adjusting the parameters of several models, such as 

adjusting the batch size, learning rate or freezing 

some parameters in the model. We end up with 11 

results including the above for ensemble learning。

Due to space limitations, we no longer list the 

training results after adjusting the model 

parameters or freezing some parameters here. For 

each model, we list its best results. The results are 

given in Table 4. 

For subtask 2, we just converted the above 

model from a classification task to a regression task, 

and also adjusted the training parameters, froze 

some model parameters, and obtained eleven kinds 

of results. The ensemble learning is carried out by 

the method of averaging, and the final result is 

obtained and shown in Table 5. 

3.4 Discussion 

A phenomenon can be observed from the 

experimental results: when the model has not fully 

converged on the training set, the best result of the 

model on the validation set has already appeared. 

Especially when using Deberta-v3, when the best 

results (63.26%) appear on the validation set, the 

model's accuracy score on the training set is only 

44.03% in the classification task. This 

phenomenon also occurs in the regression task. But 

the difference is that the difference between the 

results of the training set and the validation set of 

the model in the classification task is much smaller 

than that in the regression task. 

We therefore consider that there is noise in the 

training set, which is especially evident in 

classification tasks. To verify that there is really 

noise in the data, we compared part of the data in 

the training set with the data on the wikiHow 

website, as shown in the figure below. It can be 

seen that the sentences that appear in the original 

text in time are still marked as Neutral or 

Implausible in the training set. Figure 7 shows an 

example of original data with id-20 that may be 

incorrect. 

We tried Label Smoothing (Müller et al., 2019) 

and Self-Adaptive Training (Huang et al., 2020) to 

solve the problem of data noise. Although there is 

no significant improvement in the model’s 

performance, it speeds up the model Convergence 

rate during training. 

4 Conclusion 

In this paper, we describe the Identifying Plausible 

Clarifications of Implicit and Underspecified 

Phrases shared task held within SemEval-2022 and 

present the design, the data, the results, and the 

systems for the shared task. The participants of the 

shared task were provided a collection of revisions 

of instructional texts from the how-to website 

wikiHow. The shared task is challenging, partly 

due to the relatively small training data and label 

noise. 

We develop an ensemble model of NLP to 

distinguish between plausible and implausible 

clarifications of an instruction, achieving the 2nd 

best performance in the subtask1 and the 3rd best 

performance in the subtask2. For some of the 

problems reflected in this task, such as data noise, 

non-identically distributed data, there is still a lot 

of research space. 
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Figure 7: Data in the original paragraph 

 

Add in a few drops of clear nail polish and stir with a toothpick

until there are no lumps. Keep stirring until you get an even color

and consistency. If the color too sheer, add some more eyeshadow.

Make sure that there are no clumps in the polish. If there are any

clumps, break them up with the toothpick. If you don't do this, they

will show up on your manicure and make it look lumpy.
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Abstract

This paper describes the DuluthNLP system
that participated in Task 7 of SemEval-2022
on Identifying Plausible Clarifications of Im-
plicit and Underspecified Phrases in Instruc-
tional Texts. Given an instructional text with an
omitted token, the task requires models to clas-
sify or rank the plausibility of potential fillers.
To solve the task, we fine–tuned the models
BERT, RoBERTa, and ELECTRA on training
data where potential fillers are rated for plausi-
bility. This is a challenging problem, as shown
by BERT-based models achieving accuracy less
than 45%. However, our ELECTRA model
with tuned class weights on CrossEntropyLoss
achieves an accuracy of 53.3% on the official
evaluation test data, which ranks 6 out of the 8
total submissions for Subtask A.

1 Introduction

Instructional texts (e.g., How To Guides) describe
how to accomplish a given goal and are integral to
our daily lives. One popular source is WikiHow1

which is an online platform that allows users to col-
laborate to create and maintain such guides. This
kind of documentation must be clear, and if it is not
then this is a key reason that prompts revisions of
underspecified instructions in WikiHow (Anthonio
et al., 2020a).

One important problem for NLP is to determine
if a given instructional text is in need of clarifica-
tion or revision. SemEval-2021 Task 7 (Roth et al.,
2022) extends this problem by requiring models to
score five possible fillers based on how well they
can plausibly fit a given context. Task 7 includes
two subtasks. Subtask A classifies the possible
fillers as IMPLAUSIBLE, NEURAL, and PLAUS-
BILE. Subtask B requires systems to rank the fillers
on a scale of 1 to 5, where a higher score means
more plausible. We only participated in Subtask A
and used a variety of BERT-based methods.

1https://www.wikihow.com

2 Task Data

The training, development and test data were sup-
plied by the organizers of SemEval–2022 Task 7
(Roth et al., 2022). The dataset is based on the Wik-
iHowToImprove Corpus (Anthonio et al., 2020b)
which consists of edits of 2.5 million sentences
from WikiHow. The authors show that edits are pri-
marily made to clarify instructional texts and that
the distinction between older and revised versions
of sentences can be modelled computationally.

Each instance in the data is divided into an Ar-
ticle title, a Section header, and a Sentence nested
between a Previous and Future context. Each in-
stance also includes five potential fillers, each of
which is annotated as IMPLAUSIBLE, NEUTRAL,
or PLAUSIBLE, which serves as the basis of Sub-
task A. There is a also a plausibility score of 1 to 5
which is the basis of Subtask B (which we did not
participate in).

Table 1 shows 3 training example templates
made up of the concatenation of the Previous con-
text, the Sentence with the blank to be filled, and
the Future context. Each template is filled with
each of the five possible fillers to generate the train-
ing examples (5 per template). We start with 3,995
training templates where the filler is not specified.
We create an instance for each of the five possible
fillers for each template, giving us a total of 19,975
training examples. We remove extraneous content
such as bullet points and numbers in order to make
the examples more readable. In a later approach,
we highlight each filler in the generated instance
with a special "[filler]" token, a step that yields
further performance gains on the development data
( Table 3) but achieves no corresponding gains on
the official test results.

3 Methodology

We experimented on three large pre–trained lan-
guage models for Subtask A, including BERT,
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Previous context Sentence Followup context

State what you have contributed
to the company. By doing it this
way, it is going to show that you
have done your job and been
an asset, thus the raise is well-
deserved. *

P: If you believe your [...] of time work-
ing at this company warrants a raise or
promotion, say that as well. Fillers: A.
continuity B. window C. abundance D.
length E. appreciation

It is best to tell them all the reasons
you believe you deserve this increase.

An all weather strategy often
keeps you always afloat com-
pared to one planned for normal
market behavior. Planning for a
failure is always better than fail-
ing to plan

P: Uncertainties of [...] can be classified
into four levels Fillers: A. public opin-
ion B. future markets C. the future D.
this sort E. their futures

Level one gives a fairly clear view of
the future, and an inkling of what to
expect.

Since wikis are often volunteer-
driven projects, wikigifts can go
a long way in showing someone
how much you appreciate their
efforts. Find or create awards
specific to that wiki.

P: On wikiHow, for example, you can
Make Award Templates on [...] and post
them on people’s talk pages. Fillers: A.
books B. facebook C. graph D. wiki-
How E. earth

Publicize that you gave the wikigift.

Table 1: Training Example Templates for SemEval–2022 Task 7. Each possible replacement (filler) for the omitted
token [...] must be ranked as PLAUSIBLE (blue), NEUTRAL(orange), or IMPLAUSIBLE (RED).

RoBERTa and ELECTRA. BERT (Bidirectional
Encoder Representational from Transformers) (De-
vlin et al., 2018), is a Transformer-based language
model trained using Masked Language Modeling
(MLM) to predict the masked tokens based on the
surrounding context. In MLM, a given percent-
age of the tokens of an input sequence is masked,
and BERT is tasked to predict the orginal tokens.
With the MLM approach, BERT was able to pro-
duce good results when transferred to downstream
NLP tasks, becoming the new benchmark for other
pre–trained models. The authors of the ELECTRA
paper (Clark et al., 2020), however, note that the
MLM approach only learns from the masked tokens
(about 15%) of any given example, thus requiring
substantial compute resources to train a language
model using MLM.

The next model we used was RoBERTa, which is
essentially a replication of BERT (Liu et al., 2019)
which adjusts key hyperparameters and uses larger
amounts of data during pre–training. RoBERTa
improves upon BERT when trained longer, using
larger mini–batches over more data.

Similarly, we experimented with ELECTRA
(Clark et al., 2020), a pre–trained model that uses
Replaced Token Detection as a pre–training objec-
tive. This distinguishes real inputs from plausible
but synthetically generated ones coming from a
small masked language model. The authors ar-
gue that ELECTRA improves compute efficiency
during pre–training, and can match or exceed the
performance of BERT and its variants when fine–

tuned on downstream tasks.
The ELECTRA model includes two Transformer

models, a generator and a discriminator. The gener-
ator emulates a small Masked Language Model by
predicting the original token of a masked-out token.
Like the Masked Language Model in BERT, some
samples of the input sequence to the generator are
replaced with [MASK]. The predicted results of
the generator are fed as inputs to the discriminator.

For each token in the sequence, the discriminator
predicts whether it is the original or the generated
one. This means that the discriminator is able to
learn from all input tokens for any given example,
with the model loss calculated over all the tokens.
This is what sets ELECTRA apart from BERT, and
a major reason for ELECTRA’s greater compute
efficiency.

ELECTRA addresses a drawback of Masked
Language Models, which is that the masked to-
kens are only used during pre–training and are
omitted during fine–tuning. This pre–train fine-
tune mismatch contributes to a loss in performance.
Replaced Token Detection, in which ELECTRA
distinguishes between real tokens and their plausi-
ble fakes, is easily transferable to fine–tuning. This
is particularly true for Subtask A of SemEval-2022
Task 7, which requires a model to classify how
fillers will plausibly fit an omitted token.

4 System Description

This section introduces DuluthNLP’s approach
which relied on BERT, RoBERTa, and ELECTRA.
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Hyperparameter Value

Learning Rate 4e-5
Adam ϵ 1e-8
Optimizer AdamW
Learning rate decay Linear
Weight Decay 0
Batch Size 16
Train Epochs 10

Table 2: Hyperparameter Values for Fine-Tuning.

We discuss our fine–tuning process, and then how
class weights were tuned.

4.1 System Description

We first fine–tune BERT on Subtask A. Using our
pre–processed dataset as inputs, we build and train
a classifier on top of the BERT model to learn how
plausible each filler fits the blank in each sentence.

Using the BERT-base uncased tokenizer on our
inputs, we then train our BERT model using the
Adam Optimizer with a linear scheduler with
warmup; a CrossEtropy Loss with adjusted class
weights; and a learning rate of 4e-5 for 10 epochs
(see Table 2). We train our model twice, once with-
out class weight tuning, and a second time with
tuned class weights.

We used these same hyperparameters for fine-
tuning RoBERTa (Liu et al., 2019) and ELECTRA
(Clark et al., 2020). As our experimental results
will show, the most accurate results were obtained
with ELECTRA.

We used the HuggingFace PyTorch implemen-
tations of the BERT, RoBERTa, and ELECTRA
(Wolf et al., 2019). We fine-tuned our models us-
ing 2 Nvidia Quadro RTX 8000 GPUs.

4.2 Class Weights

Class imbalances for classification tasks are of-
ten caused by imbalances in the dataset. How-
ever, for Subtask A the training data is reasonably
balanced and includes 7339 (36%) PLAUSIBLE
labels, 7162 (36%) NEUTRAL labels, and 5474
(27%) IMPLAUSIBLE labels.

While the task training data does not have signif-
icant imbalances, our model predictions on the de-
velopment set initially skewed towards NEUTRAL.
Over 52% of all the predictions were NEUTRAL,
as shown in Table 4.

Our model corrects these imbalances by apply-

Model Accuracy

ELECTRA with class weights 0.556
RoBERTa with class weights 0.552
BERT with class weights 0.522
ELECTRA 0.443
BERT 0.441
Logistic Regression 0.348
Random Guessing 0.267
RoBERTa 0.177

Table 3: Experimental Results on Development Data.

ing class weights that penalize NEUTRAL labels.
This helped to reduce predictions for NEUTRAL
labels to 28%, as shown in Table 5. This is at least
closer to the actual distribution of 18% NEUTRAL
in the development data and helps to improve accu-
racy.

The selection of optimal weights was based
on random search, which has been shown to be
more efficient for parameter optimization than grid
search (Bergstra and Bengio, 2012). To achieve
this, we initially defined a 3-tuple list of random
weights, and for each tuple, we set the class weights
for the CrossEntropy Loss function and trained our
model. From the list, we selected the class weights
with the best performance for further tuning.

5 Experimental Results

In this section we present the results of our models
on both the development data and the test data as
used in the official evaluation scored by the task
organizers.

We used the Logistic Regression model from
scikit-learn2 as a baseline method. It incorpo-
rates binarized Ngram counts (Wang and Manning,
2012).This obtained an accuracy of 34.8% on the
development data for Subtask A.

As shown in Table 3, accuracy on the develop-
ment data without class weights were lower. The
RoBERTa model, in particular, achieved accuracy
of 17.7%, the lowest among the three language
models, and even lower than random guessing.

However, with tuned class weights, all three of
the pre–trained models achieved accuracy above
50%. ELECTRA and RoBERTa obtained nearly
identical scores of 55.2% versus 55.6%. We de-
cided to use ELECTRA as our official evaluation

2https://scikit-learn.org/
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Predicted Total %
0 1 2

A
ct

ua
l 0 249 580 140 969 38%

1 53 255 135 443 18%

2 45 456 587 1088 44%

Total 347 1291 862 2500

14% 52% 34%

Table 4: Confusion Matrix with ELECTRA Before
Weight Tuning on Development Data. The labels (0,1,2)
refer to (IMPLAUSIBLE, NEUTRAL, PLAUSIBLE)
respectively. Accuracy is 42.4%.

Predicted Total %
0 1 2

A
ct

ua
l 0 332 340 297 969 38%

1 70 128 245 443 18%

2 60 221 807 1088 44%

Total 462 689 1345 2500

18% 28% 54%

Table 5: Confusion Matrix with ELECTRA After
Weight Tuning on Development Data. Accuracy is
50.7%.

method because of its very consistent performance
with the class weights adjustment and its somewhat
lower energy consumption as compared to other
large language models.

Our official results on the Subtask A evaluation
data for Task 7 Subtask A were 53.3% with our
ELECTRA model with class weights. The top
ranked system in the task obtained accuracy of
68%. DuluthNLP ranked 6 among 8 systems.

6 Error Analysis

The classes predicted by our model on the devel-
opment data prior to the official evaluation were
skewed to NEUTRAL, as discussed earlier. We ob-
served this with various different pre–trained mod-
els including BERT, RoBERTa, and ELECTRA
with various different hyperparameter settings. De-
spite our best efforts the DuluthNLP system never
reached accuracy above 45%.

We addressed this by adding class weights to
CrossEntropyLoss function used in our models.
When we assigned class weights of [1.5, 0.03, 0.7]

for the IMPLAUSIBLE, NEUTRAL, and PLAU-
SIBLE labels, the wrongly predicted scores for the
NEUTRAL label reduced to 28%, as shown in Ta-
ble 5.

What is curious, though, is the difficulty in cor-
rectly classifying the IMPLAUSIBLE label. This
represents 38% of the actual labels but is 14% of
the predicted labels. Even after class weights are
set as described above, only 18% of the labels are
predicted to be IMPLAUSIBLE, which is still a
difference of 20% from the actual IMPLAUSIBLE
labels.

We achieved further performance gains on the
devset across all the models by highlighting the
filler in each data instance with a special "[]" sym-
bol, and this forms the basis for our results in Table
3. This approach did not distribute well over the
test data, however.

7 Ethical Considerations

The training of large language models has a dark
side: demands for large amounts of compute power
and the corresponding energy consumption. Train-
ing BERT with the Masked Language Model re-
quires a lot of computational resources.This raises
concerns over the accessibility, cost, and environ-
mental impact of such methods (Bender et al.,
2021). Whilst we experimented with three BERT-
variants, we sought to limit model fine–tuning to
the base models (Bert-base, RoBERTa-base, and
ELECTRA-base), which require less compute re-
sources than their larger versions. The ELECTRA
model, which we used for our official evaluation
test results, is computationally efficient, which
partly informed our choosing it over the other mod-
els for use as our official method during the evalua-
tion stage.

The accuracy of our models are, at best, a little
above 50%. This means that roughly half of any of
these predictions may be wrong. This is clearly not
accurate enough to deploy in a real setting without
potentially causing harm. It is easy to imagine the
negative impacts of automatically clarified instruc-
tions that prove to be inaccurate.

Similarly, the test data and the training set are
from the same sample distribution, and we cannot
guarantee that our model will achieve similar re-
sults for any out-of-distribution test data. In other
words, our model, reliant as it is on the contextual
representations provided by the pre–trained mod-
els, cannot perform well on a completely new task
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or distribution.
We relied on large language models which were

trained on very large corpora. Such text may in-
clude stereotypes and biases which are then carried
over into the resulting model (Bender et al., 2021).
This locks the model to older, less–inclusive under-
standings that may not reflect more modern views
of gender, race, or other questions of identify. To
minimize the potential harms of such misrepresen-
tations it would be best if candidate predictions
were verified by a human editor.

However, if models like these were deployed
and used to auto–suggest revisions to WikiHow,
they may constrain the choices of human editors
(Miller and Record, 2017). This could create a
mindset that uncritically accepts the framed options
of the model as legitimate (Alfano et al., 2018). The
reviewer may then abandon their own edits because
the auto–suggestion seems to provide an answer.
One way to minimize such risk is the deployment
of Reflection Machines (Cornelissen et al., 2022),
a decision support system that will compel users to
give reasons for accepting or rejecting suggestions
from the model.
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Abstract
In this paper, we detail the methods we used to
determine the idiomaticity and plausibility of
candidate words or phrases into an instructional
text as part of the SemEval Task 7: Identifying
Plausible Clarifications of Implicit and Under-
specified Phrases in Instructional Texts. Given
a set of steps in an instructional text, there are
certain phrases that most plausibly fill that spot.
We explored various possible architectures, in-
cluding tree-based methods over GloVe embed-
dings, ensembled BERT and ELECTRA mod-
els, and GPT 2-based infilling methods.

1 Introduction

The internet is filled with instructional texts from
websites like wikiHow that detail how to perform
a variety of tasks (from tying a bow tie to build-
ing a deck of stairs). With this increase of quan-
tity and use of instructional texts, it has become
increasingly important for them to be clear and
unambiguously worded. To this end, we evaluate
whether lightweight and neural models are capable
of detecting which phrases most plausibly fit into a
given series of instructions.

The current revision process requires that a
reader potentially identify something wrong about
the content, and they report it to the website for al-
terations. A system such as the one described could
automatically identify candidates that are unlikely
to exist and report them for human verification.

In this paper, we describe our lightweight and
transformer-based models that rank the plausibility
of candidate phrases given some previous context.

2 Background

2.1 Task Setup
The data for this task was provided by SemEval
Task 7 (Roth et al., 2022). This dataset is an aug-
mented version of WikiHowToImprove (Anthonio

∗Co-first authors.
†Co-senior authors.

et al., 2020), which consists of 2.7 million sen-
tences and their revision histories extracted from
the instructional website WikiHow. The dataset
extracts over 4000 sentences and revision that rep-
resent clarifications of the original text. Each sen-
tence is masked and presented with 5 possible
fillers that may represent a clarification. The article
title, subsection, previous context, and future con-
text are also provided. Each filler is annotated with
a plausibility class label (either IMPLAUSIBLE,
NEUTRAL, or PLAUSIBLE), whose prediction is
the basis of Subtask A, and a plausibility score on
a scale from 1 to 5, whose prediction is the basis
of Subtask B.

The plausibility of a given filler is highly depen-
dent on the context. For example, the clarification
birthday is annotated as implausible for the sen-
tence

2. Send a card. Even if you’re able to
have the conversation in person, it’s worth sending
a card.

given the previous context
1. Ask in person whenever possible. Receiving

an invitation to be a groomsman is exciting.
as the previous context implies a wedding.
Given this, we simply concatenate each of the

provided data inputs into a single string as input
for our models.

3 System overview

3.1 Word Embeddings

We first implemented a GloVe-based method (Pen-
nington et al., 2014). To embed all the words, we
used the Python Natural Language Toolkit (nltk) li-
brary to handle tokenizing all words. These words
were pre-processed using a Punkt sentence tok-
enizer that can handle stripping punctuation from
boundaries that would not affect the semantics of
the phrase or sentence. We then fit various classi-
cal ML models, as listed in Section 3.2, to make
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predictions on the word vector inputs.

3.2 Lightweight models
• Ridge regression is a classification algorithm

that minimizes the residual sum of squares.

• Random forest is a supervised learning tech-
nique that ensembles independent decision
trees to yield a result.

• Gradient Boosting is a technique that ensem-
bles a number of weak learners (typically de-
cision trees) and optimizes based on a differ-
entiable loss function.

• Discriminant analysis is a generative learn-
ing algorithm that assumes the data is dis-
tributed according to a Gaussian distribution.

• Multilayer Perceptron is a multi-layer artifi-
cial neural network.

3.3 BERT-like models
BERT is a language representation model first in-
troduced in 2018 that has achieved state-of-the-art
results in NLP experiments (Devlin et al., 2018).
The model follows a multi-layer transformer-based
encoder architecure. It leverages bidirectional self-
attention, which enables it to learn context from
both preceding and following sentences. Further-
more, it was trained on language modeling tasks
– predicting masked tokens from context – which
makes it an ideal model for this task. We fine-tune
the BERT model to learn the plausibility of various
possible fillers.

To do so, we input both the masked sentence
with context information (chosen out of resolved
pattern, article title, section header, previous con-
text, and follow-up context) and the possible filler,
with each element separated by a special separator
token. We then train a shallow neural network on
top of BERT to recognize the plausibility or im-
plausibility of the filler based on BERT’s encoded
representation.

In our data set, we used the pre-trained bert-
base-uncased tokenizer to prepare the words for the
model. In our BERT Class, we used the Sigmoid
activation function and added dropout to prevent
over-fitting of the model. We froze the first 8 layers
of the BERT model and then trained using Cross
Entropy Loss, an Adam optimizer function, and a
learning rate scheduler. As the model was trained,
the program kept track of the best models with the

highest performance accuracy. It would check with
each epoch and save the model if it improved.

Alongside BERT, we also experiment with other
similar BERT-based language models, like AL-
BERT (Lan et al., 2019) and RoBERTa (Liu et al.,
2019). ELECTRA uses the same underlying model
as BERT, but through a different pre-training mech-
anism. This approach corrupts the input by replac-
ing tokens with alternatives, rather than masking
it, and trains the model to determine which tokens
were corrupted versus part of the original sentence
(Clark et al., 2020). This makes ELECTRA another
ideal candidate for determining the plausibility of
certain fillers. Each of these models was fine-tuned
and evaluated in the same manner as the original
BERT.

The ELECTRA model of the highest accuracy
was achieved using the ELECTRA-small discrimi-
nator, two linear layers, a hyperbolic tangent activa-
tion function, and a dropout rate of 0.5 before each
linear layer. The context information used was the
previous and follow-up context.

3.4 Infilling by Language Modeling

This approach is taken from (Donahue et al., 2020).
Training data for this model was created by ran-
domly masking words or phrases in a body of text
and fine-tuning the GPT-2 model on those masked
sentences. We combined the Article Title, Section
Header, Previous Context, Sentence, and Follow-
up Context into a single string and added an infill
mask token where we are predicting the word or
phrase. Then, given the surrounding the context,
the model returned a set of logits and softmaxed
probabilities that ranked the probability of all pos-
sible tokens. To handle multitoken words such as
"jalapenos" ([474, 282, 499, 28380]), the logits
were summed and the probabilities were mutliplied
for each individual token. There were addition-
ally phrases like "your hands" ([14108, 2832]) that
were multi-token as well.

For the example "How to Store Jalapenos," the
sentence needing clarification was "Make sure to
wear latex gloves when handling jalapenos or wash
[INFILL-WORD] thoroughly after handling." As
follows are the options and their returned logits:
"your hands": -6.1058 "the jalapenos": -70.2685
"the sun": -22.6745 "the floor": -19.1986 "your
underwear": -18.6225. The model accurately de-
termined "your hands" to be more probable than
the other options like "the sun", "the floor", and
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"your underwear" which make little sense in this
context. However, "the jalapenos", which received
a medium plausible score of 3.0 in the training
data was found to be extremely improbable with
this model due to the high number of tokens. This
was a flaw that was pervasive throughout the usage
of this model and is why we decided to continue
with the BERT and ELECTRA ensemble models
instead.

After the logits were calculated for all the possi-
ble infills in the training data, we trained a Ridge
linear model to convert from logits to our 1-5 scor-
ing scale. Unfortunately, because of the inaccurate
probabilities generated by multi-token words and
phrases, there appeared to be no correlation be-
tween logits and their labeled scores, leading the
Ridge model to predict around 3.33 as a baseline
score for most words.

4 Experimental setup

We merge the provided train and dev sets, perform
random 75:25 splits of the merged data to use for
training and validation. We noted little difference
in performance between different random splits.

Predictions were evaluated on accuracy for Sub-
task A and Spearman correlation for Subtask B.
Although we also calculated other metrics such
as macro-averaged F1 for Subtask A and mean
squared error for Subtask B, we standardized on
accuracy and Spearman correlation for consistency
in comparing results. In particular, since the classes
were close to balanced for Subtask A, using accu-
racy was not a big issue in overfitting to certain
classes.

5 Results

As shown in Table 1, here was some variation in
dev set performance between the lightweight mod-
els that we experimented with; in particular, Linear
and Quadratic Discriminant Analysis performed
better than the other models. However, even these
performances are very low, achieving a maximal
dev set accuracy of only 0.389 with Linear Dis-
criminant Analysis.

After switching to BERT-like models, we gener-
ally achieve a significant improvement in classifi-
cation accuracy. In particular, ELECTRA achieves
the highest accuracy across all of our models, with
a dev set accuracy of 0.465. An exception is
RoBERTa, with which we achieve an accuracy
close to that of Linear Discriminant Analysis.

The ILM-based models ultimately failed to im-
prove upon the accuracy of the lightweight models.
While the ILM approach might initially seem to be
the most promising given the task, it seems that the
model’s ability to generate the top few most likely
options did not correlate with its ability to com-
pare relatively more unlikely potential infills. The
model was also pre-trained on a stories database,
which may not reflect the context appropriate for
instructional texts like WikiHow articles.

For the regression subtask, we only experiment
with BERT with a regression head. We find that
BERT achieves a Spearman correlation of 0.149 on
the dev dev set.

Our final evaluation results on both subtasks are
shown in Table 2. Surprisingly, our evaluation
scores are slightly higher than our development
scores.

6 Conclusion

BERT-like models are the highest performing mod-
els for this type of instructional clarifications task.
Because BERT has been trained to predict masked
tokens, it is naturally better at finding words or
phrases that most plausibly fit with the surround-
ing context. Simple GloVe word embedding mod-
els were unable to learn to the requisite complex-
ity of this meta-linguistic task and were unable
to break the level of 0.389 accuracy. Meanwhile,
ILM-based approaches seemed promising, but in
practice failed to accommodate phrases or long
words. This method is more effective at generating
text and not necessarily determining how plausible
an infill sounds in that context.

In terms of future work, we believe that our sys-
tem may be improved by the usage of large pre-
trained models such as SpanBERT (Joshi et al.,
2019), which are trained using tasks involving
multi-token span prediction, which may be more
fit to the given task. Despite our lack of results, we
believe that the infilling approach is still promising,
and hope that it can be adapted to this task going
forward.
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Model Accuracy
K Nearest Neighbors 0.347
ILM 0.354
Ridge 0.357
Random Forest 0.363
MLP Classifier 0.365
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RoBERTa 0.387
Linear Discriminant Analysis 0.389
BERT 0.447
ELECTRA 0.465

Table 1: Dev set performance (Subtask A)

Subtask Method Result
A (Accuracy) ELECTRA 0.496
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Table 2: Test set results.
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Abstract
This paper outlines the system using which
team Nowruz participated in SemEval 2022
Task 7 “Identifying Plausible Clarifications of
Implicit and Underspecified Phrases” for both
subtasks A and B (Roth et al., 2022). Using
a pre-trained transformer as a backbone, the
model targeted the task of multi-task classifica-
tion and ranking in the context of finding the
best fillers for a cloze task related to instruc-
tional texts on the website Wikihow.

The system employed a combination of two
ordinal regression components to tackle
this task in a multi-task learning scenario.
According to the official leaderboard of the
shared task, this system was ranked 4th in both
classification and ranking subtasks out of 21
participating teams. With additional exper-
iments, the models have since been further
optimised. The code used in the experiments
is going to be freely available at https://
github.com/mohammadmahdinoori/
Nowruz-at-SemEval-2022-Task-7.

1 Introduction

Oxford dictionary defines cloze test as “a test of
readability or comprehension in which a person is
required to supply words which have been delib-
erately omitted from a passage” (Oxford Univer-
sity Press, 2022). In the context of NLP, a cloze
format task is one in which the context is one or
more sentences with masked spans and the model
is expected to predict a suitable filler for each span.
Cloze-format datasets have become popular in NLP
recently as they are relatively easy to create auto-
matically and provide high quality resources for
model training (Rogers et al., 2021).

0National Organization For Development of Exceptional
Talents

SemEval 2022 task 7 is framed as a cloze task in
which the goal is to rank or classify fillers within a
given context based on their suitability. The texts
are taken from actual articles on an instructional
website and the masked spans are placed at loca-
tions of edits made by users. We participated in
this shared task in both ranking and classification
parts and developed a transformer-based model that
utilises both classification and regression compo-
nents at the top layer. The code and the data used
in these experiments are publicly available.

2 Related Work

Cloze tasks have been a subject of interest in Natu-
ral Language Understanding (NLU) in recent years,
especially within the context of reading compre-
hension, story understanding, and summarisation
(Deutsch and Roth, 2019; Sharma et al., 2018;
Mostafazadeh et al., 2016). There is evidence that
cloze tasks can be used to effectively pretrain or
finetune language models in order to perform few
shot learning (Schick and Schütze, 2021; Liu et al.,
2021).

WikiHow is a community-edited open domain
repository that hosts how-to articles on a variety of
different subjects. It is possible to track edits made
by users and compare different versions. There
have been some recent computational works explor-
ing this resource, including modelling of revision
requirements (Bhat et al., 2020), and the effect of
edits on fluency (Anthonio and Roth, 2020) and
vagueness (Debnath and Roth, 2021).

2.1 Masked Language Modelling
Masked Language Modeling (MLM) is a pre-
training task which is widely used in transformer-
based models. This task forms a self-supervised
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cloze test by randomly removing some of the to-
kens of the sentence which will be further filled by
the model during training. Prominent transformers
including BERT (Devlin et al., 2019) , RoBERTa
(Liu et al., 2019), DeBERTa (He et al., 2020) and
T5 (Raffel et al., 2019) are trained using MLM
as an auxiliary objective. Given the successes of
transformers in most areas of machine learning and
NLP, it is standard practice to fine-tune them for
various down-stream tasks.

2.2 Ordinal Regression

Ordinal Regression (also known as Ordinal Classi-
fication) is a type of classification in which labels
have order with respect to each other. Examples
of ordinal regression tasks include age estimation
(Niu et al., 2016), assessment of damage (Ci et al.,
2019), and monocular depth estimation (Fu et al.,
2018). In ordinal regression, performance of the
model is sensitive to the order of the predictions
with regards to the labels. For instance, in the age
estimation task, the error of the model should be
higher when it incorrectly predicts the age of 30
as 10, as opposed to when it predicts the age of
30 as 20. Ordinal Regression is commonly done
by breaking the multi-class classification task into
several binary classification subtasks within a multi-
task learning scenario. The output of these binary
classification subtasks should be rank-consistent to
achieve good performance.

3 System Description

Figure 1 shows the overall architecture of our
model. A pre-trained transformer sits at the base of
the architecture. Different variations of this trans-
former are tried and reported in Sec 5. These in-
clude BERT (Devlin et al., 2019), RoBERTa (Liu
et al., 2019), DeBERTa (v1 & 3) (He et al., 2020,
2021), and T51 (Raffel et al., 2019) in different
configurations.

At the bottom of the network, there are two com-
ponents, one for regression and the other for classi-
fication. At training time, both of these are trained
in tandem using ordinal regression and a combined
loss. The loss function ensures that the ranks of
the labels are kept consistent across these task (Sec.
3.6).

1Since T5 is originally an encoder-decoder language
model, we only use its pre-trained encoder for our experi-
ments

= =

[CLS] Tok 1 F 1 F 2 F 3 [SEP]

F 3[CLS]

......

Word Pieces of the Filler

Pooled Representation

Classi�cation Head
(Coral)

Regression Head
(Coral)

Pre-Trained Transformer

Figure 1: Overall architecture of the model. Note how a
pooled representation is produced using the last token
of the filler and the CLS token

3.1 Representing the Filler

To classify each filler, it is first placed in the lo-
cation of the blank in the text to form a full con-
text. The pre-trained transformer is equipped with
a word-piece tokeniser that breaks down the filler
to subword units and also uses a [CLS] token to
represent the entire context 2. To build a pooled
representation for the filler, the contextualised rep-
resentations for the last word piece and the entire
context (i.e. representation of [CLS]) are concate-
nated and passed on to the next layer.

3.2 Multi-task learning with Ordinal
Regression

Once a combined contextualised representation is
obtained from concatenation of [CLS] and the filler,
we address both subtasks of the shared task in a sin-
gle multi-task learning architecture. The objective
of this model is to predict both the class and the
suitability score for each provided filler. The con-
catenated representation is fed to a fully connected
feed-forward layer followed by a GELU activation
function (Hendrycks and Gimpel, 2016). This layer
projects the representation to a lower dimensional
space. Subsequently, the output is passed on to two
separate classification and regression heads.

3.3 Decomposing the Problem into Binary
Classification tasks

As mentioned in Sec. 3, our model uses a special
loss function named coral to perform ordinal regres-
sion. This loss function and the training procedure
it requires are explained in Cao et al. (2020). Coral
layers break a K-class classification problem into
K− 1 binary classification tasks as part of a multi-
task learning scenario. For a coral layer with K− 1

2T5 does not use CLS for context representation. In that
case we just classify the last word-piece with no additional
concatenation
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units 3, the value of loss is constructed from the
sum of K− 1 separate binary cross entropy losses
belonging to each unit.

To train a coral layer, it is necessary to first trans-
form the original labels to sets of binary labels.
This is the step where the notion of order is intro-
duced into the model. Given K classes, we convert
each label to a collection of binary labels as fol-
lows:

f(y, k) =

{
1 if k < y

0 if k ≥ y
(1)

Y
(i)
ordinal = {f(y(i), k)|k ∈W ∧ k < K− 1}

where y(i) is the original label for the ith training
instance and 0 ≤ y(i) ≤ K− 1.

3.4 Classification and Regression Heads

At the top end of the architecture there are two com-
ponents for classification and regression. The clas-
sification head is a coral layer with two units which
is used to address the classification subtask where
we have three labels, namely, Implausible,
Neutral, and Plausible. Note that the la-
bels in the classification task have inherent order
and for the model to be trained effectively, it is
important that the training objective penalises mis-
classifications based on this underlying assump-
tion. For instance, the error of the model should
be more when it predicts an Implausible sam-
ple as Plausible compared to when it predicts
an Implausible sample as Neutral. This is
the motivation to use ordinal regression losses like
coral.

The other head is assigned to the regression sub-
task and rates each filler for suitability. We con-
verted continuous scores in the 1 − 5 range to la-
bels with discrete values in the 0 − 4 range by
either rounding or flooring the scores. For example,
the original scores of {1.333, 1.75, 2.5, 3.75, 4.25}
are mapped to {0, 1, 2, 3, 3} by rounding and
{0, 0, 1, 2, 3} by flooring. We can frame the regres-
sion task as ordinal classification with five labels by
binning the values. A 4-unit coral layer is used to
perform this classification. These heads are jointly
trained using a combined loss.

3A T-unit coral layer, is comprised of T binary classifi-
cation units which share the same weights but have different
biases.

3.5 Constructing Labels and Ranks from
Heads

Since coral layers differ from normal dense lay-
ers, their output can not be directly converted to
labels. Furthermore, the regression subtask is also
framed as an additional classification task in our
methodology. However, since the purpose is to re-
port continuous scores rather than discrete labels,
a unique conversion is necessary for the output of
the regression head.

For the classification head, the goal is to output
discrete labels in range of 0− 2. Given the output
of the classification head for one sample Ĉ, the
conversion to the label is defined as follows:

f(y) =

{
1 if y > 0.5

0 if y ≤ 0.5
(2)

c =

2∑

k=1

f(σ(Ĉk))

where c is the final label and σ is the sigmoid
function.

For the regression head, the goal is to out-
put continuous scores in range of 1− 5. Given the
output of the regression head for one sample R̂,
the conversion to the continuous scores in range of
1− 5 is defined as follows:

r = (
4∑

k=1

σ(R̂k)) + 1 (3)

3.6 Computation of Loss
Since we have three labels for the classification
task, ordinal labels would be sets of binary values
with the length of two. Given C(i) as the converted
classification label for the ith training sample and
the Ĉ(i) as the output of the classification head for
the ith training sample, we can define the classifi-
cation loss as:

l(i)c =
2∑

k=1

−C(i)
k log(σ(Ĉ

(i)
k )) (4)

−(1− C(i)
k ) log(1− σ(Ĉ(i)

k ))

For the regression task there are 5 different la-
bels, and accordingly, ordinal labels would be sets
of binary values with the length of four. Given R(i)

as the converted regression label for the ith training
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sample and the R̂(i) as the output of the regression
head for the ith training sample we can define the
regression loss in a similar way:

l(i)r =
4∑

k=1

−R(i)
k log(σ(R̂

(i)
k )) (5)

−(1−R(i)
k ) log(1− σ(R̂(i)

k ))

Since we are aiming to perform both classifica-
tion and regression, a joint loss is needed to com-
bine losses from the two heads. For a given training
batch of size n:

Ltotal =
1

n

n∑

i=1

λcl
(i)
c + λrl

(i)
r (6)

where λc is the weight associated with the classifi-
cation loss and the λr is associated with regression.

4 Dataset and Experimental Setup

The shared task is based on Anthonio et al. (2020),
where instructional texts from the website Wiki-
how 4 are used to create training instances for a
cloze task. The deletions in the dataset are based
on actual edits made by online users and they are
assumed to represent certain types of clarifications
to make a point more clear or disambiguate a sen-
tence. Based on the actual edits, alternative fillers
are automatically extracted and added to build a
number of possible fillers. These texts along with
the fillers were later annotated by humans and given
plausibility scores from 1 to 5. There is also a sep-
arate type of annotation available in which there
are 3 labels with discrete plausibility values. The
shared task was organised in two separate tracks
of classification and regression, depending on what
kind of annotation was used for modelling the task.
Table 2 & 3 show the basic statistics of the dataset
in the shared task.

The dataset for this task consists of six
features, named Resolved Pattern, Article ti-
tle, Section header, Previous context, Sentence,
and Follow-up context along with five differ-
ent fillers for each sample. Resolved Pat-
tern is one of the four following categories:
IMPLICIT REFERENCE, ADDED COMPOUND,
METONYMIC REFERENCE, and FUSED HEAD
which indicates the relationship of the fillers with
the context. Article title is the name of the arti-
cle from which the paragraph is selected. Section

4A wiki-style online collection of how-to articles accessi-
ble at https://www.wikihow.com

header is the section from which the article is se-
lected. Previous context is a few sentences before
the sentence that contains the filler. Sentence is the
sentence that contains the filler.

We obtained our best results when we used a
custom formatting using which we can feed all
the features to the model as textual input. Table 1
is an example of how we represent each training
instance. Note how the ‘Text’ feature is constructed
by concatenating previous and follow-up contexts
with the target sentence.

Example input while using all features

Resolved pattern: ADDED COMPOUND
Section header: Following a Basic Routine
Article title: How to Get Rid of Peeling Skin
Text: (...) 6. Never tear away loose skin. (...) 7. Protect
your skin from sunlight. Exposure to direct sunlight can
weaken your skin further and complicate the [Filler] prob-
lem. This is true regardless of whether your skin is peeling
due to a sunburn or due to dryness.

Table 1: An example of how each input is formatted for
training and inference. Each identifier followed by ":"
represents a feature of the dataset represented in textual
format.

Variation implausible neutral plausible total

train 5474 7162 7339 19975
(27.40%) (35.85%) (36.75%) (100%)

dev 982 602 916 2500
(39.28%) (24.08%) (36.64%) (100%)

Table 2: Statistics of the data for subtask A

Variation 1 2 3 4 5 total

train F 2254 4123 6259 5321 2018 19975
train R 1053 4421 4034 8441 2026 19975
dev F 645 458 481 596 320 2500
dev R 386 596 376 639 503 2500

Table 3: Statistics of the data for subtask B. R and F
represent rounded and floored scores, respectively

5 Results and Discussion

The official test results for both subtasks are pre-
sented in Table 5. These are the best results that
we have obtained on the test set prior to the end of
the competition. On the official leaderboard of the
shared task, our system was ranked 4th in both the
ranking and classification tasks.

We have since performed extensive analyses on
the effect of hyperparameters on different varia-
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tions of our models, and since we do not have ac-
cess to the true labels in the test set, we report
our best results on the dev set. As can be seen in
Table 4, we have produced our best results using
DeBERTa-V3large. We have noticed two important
factors that influence the final performance of the
models. The first factor is batch size. Our best
results were obtained on lower batch sizes of 8 and
16. The choice of rounded or floored numbers for
subtask B is also a significant factor. The reason
for this is that the distribution of labels changes
depending on the normalisation method used.

6 Conclusion

In this work we developed a set of transformer-
based models powered with ordinal regression to
tackle an NLP cloze task as part of the SemEval
2022 shared task 7. The goal was to assign suit-
ability scores or labels to several different provided
fillers given each context and masked span.

Using a combined architecture based on ordi-
nal regression that used training labels from both
subtasks, we developed and trained models with a
multi-task learning objective. The proposed system
was ranked 4th out of 21 teams in both tracks of the
shared task. In the subsequent analyses in the post
evaluation phase, we have showed the effective-
ness of this architecture in addressing this task. We
compared different variations of our models and
explored the effects of hyperparameters on model
performance. The code and analyses are going to
be publicly available.
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Backbone
Transformer

Model Batch
Size

Scores Accuracy
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Spearman’s rank
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A Appendix

In this section, we are going to share the details of
the hyperparameters used for the fine-tuning of our
models and the final training procedure used for
the submission.

A.1 Hyperparameters
We fine-tuned all models for 5 epochs while keep-
ing the embedding layers of all models frozen. We
used the AdamW as our optimizer with a cosine
learning rate schedular from the Hugging Face li-
brary and a weight decay of 0.00123974 and an
initial learning rate of 1.90323e− 05. Also, the λl
and λr (as mentioned in 3.6) are set to 0.5 in all of
the reported experiments as shown in Table 6.

A.2 Training Procedure for Submission
Once we found the best hyperparameters and mod-
els using Dev dataset, We used a combination of
Training and Dev data to train our final models for
submission. With this approach, we have been able
to achieve a 3% improvement on accuracy and up
to 0.05 improvement on Spearman’s rank correla-
tion. Additionally, we found that combining Train
and Dev data is noticeably less effective in the
smaller models such as Bertbase or RoBERTabase,
however, this is a better strategy when it comes

Hyperparamters

Epochs 5
Optimizer AdamW
Learaning Rate Scheduler Cosine
Initial Learning Rate 1.90323e-05
Weight Decay 0.00123974
λl 0.5
λr 0.5

Table 6: Details of the Hyperparamters used for fine-
tuning

to larger models such as RoBERTalarge or T5large.
Based on this, we suppose that with further tun-
ing. DeBERTa-V3large can potentially surpass the
state-of-the-art if it has access to the combination
of Train and Dev data.
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Abstract

This paper describes our winning system on
SemEval 2022 Task 7: Identifying Plausi-
ble Clarifications of Implicit and Underspec-
ified Phrases in Instructional Texts. A re-
placed token detection pre-trained model is uti-
lized with minorly different task-specific heads
for SubTask-A: Multi-class Classification and
SubTask-B: Ranking. Incorporating a pattern-
aware ensemble method, our system achieves
a 68.90% accuracy score and 0.8070 spear-
man’s rank correlation score surpassing the 2nd
place with a large margin by 2.7 and 2.2 per-
cent points for SubTask-A and SubTask-B, re-
spectively. Our approach is simple and easy to
implement, and we conducted ablation studies
and qualitative and quantitative analyses for the
working strategies used in our system.

1 Introduction

The Internet’s ever-increasing size has made it easy
to find instructional texts such as articles in wik-
iHow1, on almost any topic or activity. Regular
revisions of these how-to manuals are necessary
to ensure that instructions communicate the pro-
cedures required to attain a certain goal precisely.
This shared task is introduced by Roth et al. (2022),
whose intention is to find ways to improve instruc-
tional texts, evaluate to what extent current NLP
systems are able to handle implicit, ambiguous,
and underspecified language, and go beyond the
surface form of a text and take multiple plausible
interpretations into account. Thus, the proposed
NLP systems should be capable of distinguishing
between plausible and implausible clarifications of
an instruction shown in Figure. 1.

The shared task consists of two subtasks:

• SubTask-A: Multi-Class Classification. The
goal is to predict a class label (IMPLAUSI-

1https://www.wikihow.com/Main-Page

How to Print a Word Documen

10 Second Sumarray …

(...)
2. 
Open or create a ______ Word document.
3. 

user (2.75) page (2.0) 

Microsoft (5.0) software (2.0) forum (1.25)

Title

Sec. Header

Prev. Sent.

Target Sent.

Follow-up Sent.

Clarifications 
(fillers)

IMPLICIT REFERENCEPattern

Figure 1: An example randomly chosen from the dev
set. Each sample is associated with five clarifications
labeled ( PLAUSIBLE, NEUTRAL or IMPLAUSIBLE)
and scored on a scale from 1.0 to 5.0.

BLE, NEUTRAL, PLAUSIBLE) given the
clarification2 and its context.

• SubTask-B: Ranking. The goal is to predict
the plausibility score on a scale from 1 to 5
given the clarification and its context.

In this paper, we describe our winning system
for both subtasks. We built our system based on a
replaced token detection (RTD) task pre-training
model. The idea is that the replaced token detection
task is similar to this shared task which focuses on
distinguishing semantically similar words/phrases.
To close the gap the model trained between the pre-
training phase and fine-tuning phase, we reused the
pre-trained language modeling head during fine-
tuning on Task 7. Then, two-layers MLPs are ap-
plied on the mean-pooled hidden states of a clarifi-
cation (filler) given the context. For subtask A, we
utilized the cross-entropy loss for the multi-class
classification. For subtask B, a sigmoid function
was used to impose restrictions on the output of
the system on a scale from 1 to 5. Finally, we

2A clarification is a word/phrase that was inserted to spec-
ify information in the instruction.
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trained multiple models and aggregated the predic-
tions with a pattern-aware ensemble strategy. Our
system achieved the best overall performance in the
shared task with a 68.9% accuracy score (subtask
A) and 0.807 Spearman’s rank correlation score
(subtask B). The outcomes are promising for im-
proving the clarification of instructional texts.

2 Background

Pre-trained models (Devlin et al., 2018; Liu et al.,
2019; Sun et al., 2019; Clark et al., 2020) have
achieved state-of-the-art results in various Nat-
ural Language Processing (NLP) tasks. Recent
works (Raffel et al., 2019; Brown et al., 2020; Sun
et al., 2021) have shown that more generalization
ability and superior performance can be achieved
by pre-training models with billion or trillion pa-
rameters. Thus, we pursued the competitive pre-
trained models such as DeBERTa (He et al., 2020)
and large-scale pre-trained models ERNIE (Sun
et al., 2021) whose effectiveness has been validated
in the standard GLUE (Wang et al., 2018) and Su-
perGLUE benchmark (Wang et al., 2019).

However, in our initial experiment, we found that
the aforementioned models, though have promising
results on sentence-level or paragraph-level tasks,
failed to distinguish the word/phrase-level semanti-
cally similar clarifications (fillers) in a given con-
text. We believe the failure is due to the way these
models were trained using a masked language mod-
eling (MLM) task in the pre-training phase. MLM
aims to map tokens with similar semantics to the
embedding space that are close to each other in-
stead of distinguishing them.

Based on the above finding, we believe what we
need is a discriminator (Clark et al., 2020; He et al.,
2021) pre-trained via a replaced token detection
(RTD) task which is more aligned with this shared
task. In RTD, the discriminator needs to determine
if a corresponding token is either an original token
or a token replaced by the generator. Formally, the
loss function for the discriminator is as follows:

LRTD = −
∑

i

log p
(
1 (x̃i = xi) | X̃, i

)
(1)

where X̃ is the input sequence constructed by re-
placing masked tokens with plausible tokens sam-
pled from a generator, and the indicator function
1(·) distinguishes whether the plausible tokens are
generated or the original ones.

3 Method

In this section, we will describe the strategies we
used in our system in detail. In Section. 3.1, the sys-
tem is presented on how we formalize the data as
input, basic modules, and task-specific design for
each subtask. Then, we describe the optimization
object for each subtask (see Section. 3.2). Finally,
we introduce a pattern-aware ensemble strategy to
further boost the performance beyond a normal
ensembled model in Section. 3.3.

3.1 System Description
As illustrated in Figure. 2, the framework for both
tasks is nearly the same which consists of 4 parts,
namely the input, a basic model, a pre-trained
head, and a task-specific head.

The input sequence. Each sample is constructed
by joining the Pattern, Title, Section Header,
Previous Sentence, Target Sentence and Follow-up
Sentence in order demonstrated in Figure. 1. Each
candidate phase is filled in in its original position
in the Target Sentence. When modeling the filled
target sentence independently, the training set will
be 5 times larger than the original since each target
phrase has five candidates.

Basic Model. The pre-trained transformer is our
starting point. The basic model takes as input the
sequence x̃ and outputs the contextual representa-
tion of each token as follows:

Hb = Transformer(x̃) (2)

where Hb ∈ Rn×d with n tokens and d dimension.

Pre-trained Head. During the pre-training phase,
a language modeling head is appended for a lan-
guage modeling task. The head is usually discarded
in the fine-tuning phase. However, in our experi-
ment, we found better performance can be achieved
when reusing the pre-trained head. Formally, the
language modeling head takes as the input Hb and
output representations for task-specific head as fol-
lows:

Hp = LN(Act(HbW1 + b1)) (3)

where W1 ∈ Rd×d,b1 ∈ Rd is the weight
and bias, Act(·) and LN(·) are the activation
function and the layernorm layer (Ba et al., 2016)
respectively.
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Wash thoroughly with warm water. Pat your birthmark dry with a clean towel.

Pre-trained Transformer

… …

Language Modeling Head

Mean Pooling

Dropout

Dense

Tanh

Dropout

Subtask A: Multi-class Classification

PLAUSIBLE

IMPLAUSIBLE

NEUTRAL

Subtask B: Ranking

Sigmoid * 4+1

Dense (dim, 3) Dense (dim, 1)

5.0

your birthmarkInput Sequence

Basic Model

Task-specific
Head

Pre-trained
Head

Figure 2: The illustration of our system.

Task-specfic Head. As there are several tokens
after tokenizing the target phrase, we apply a mean
pooing layer for the hidden states of the target
phrase denoted as Hp,i:j as follows:

ht =

∑j
i Hp,i

j − i (4)

where ht ∈ R1×d is the mean embedding of the
target phase, i, j are the start and end token index
of the tokenized target phrase respectively. Then,
we sequentially appended a dropout layer, a dense
layer with a Tanh activation function and a dropout
layer for ht as follows:

h̃t = Dropout(Tanh(Dropout(ht)W2+b2)) (5)

where h̃t ∈ R1×d,W2 ∈ Rd×d,b2 ∈ Rd are the
enhanced embedding of the target phase, learnable
weight and bias respectively. Finally, the h̃t is
transformed to fit the three-class classification task
and regression task as follows:

ỹc = Softmax(h̃tW3 + b3) (6)

ỹr = Sigmoid(h̃tW4 + b4) ∗ 4 + 1 (7)

where ỹc ∈ R1×3,W3 ∈ Rd×3,b3 ∈ R3 are the
probabilty distribution, learnable weight and bias
for subtask A, and ỹr ∈ R1,W3 ∈ Rd×1,b3 ∈ R1

are the regression score, learnable weight and bias
for subtask B. The Sigmoid function restricts the
range of output space between 0 to 1, then we
shift the number by multiplying four and adding

one. The above method successfully restrict the
regression score within the golden score on a scale
of 1 to 5.

3.2 Optimazation Object
For subtask A, we utilized the cross-entropy loss
for multi-class classification as follows:

Lce = −
N∑

i

log(ỹi
c[y

i
c]) (8)

where N is the number of training samples, yic is
the golden label for i-th sample, ỹi

c[y
i
c] means the

predicted probability of the golden label.
For subtask B, we used the mean squared error

loss for regression as follows:

Lreg =
1

N

N∑

i

(ỹir − yir)2 (9)

3.3 Pattern-aware Ensembling
Ensemble is the commonly used technique where
multiple diverse models are trained to predict an
outcome, then aggregates the prediction of each
model resulting in the final prediction. In our ex-
periment, we observed that the model fine-tuned
with different hyper-parameters have different pref-
erence on the Resolved Pattern3. Thus, we aggre-
gates the prediction of each model seperately based
on the performance on a subset split by the given
Resolved Pattern attribute.

3Descriptions of the resolved pattern can be found
in https://competitions.codalab.org/
competitions/35210#participate
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Pattern\Dataset Train Validation Test

ADDED COMPOUND 5000 625 625
FUSED HEAD 4995 625 625
IMPLICIT REFERENCE 4980 625 625
METONYMIC REFERENCE 5000 625 625

Total 19975 2500 2500

Table 1: Data statistics in train, validation, and test set
on the different patterns.

Hyper-parameter Model

Dropout 0.1
Warmup Ratio 0.1
Learning Rates {5e-6, 7e-6, 9e-6, 1e-5}
Batch Size {32, 48, 64}
Weight Decay 0.01
Epoches 5
Learning Rate Decay Linear

Table 2: Hyper-parameters for fine-tuning on both sub-
tasks.

4 Experiment

4.1 Data

We use the training, validation and test data pro-
vided for SemEval 2022 Task 7 without introducing
extra data. The data statistic is summarized in Ta-
ble. 1 where there is a balanced distribution among
different patterns.

4.2 Experimental Setup

DeBERTa (He et al., 2020, 2021), XLMR (Con-
neau et al., 2019) and ERNIE (Sun et al., 2021)
are used as the pre-trained language model. We
fine-tune the models using the AdamW opti-
mizer (Kingma and Ba, 2014) with the default
hyper-parameter, and additional fine-tuning hyper-
parameters are listed in Table. 2. Experiments are
carried out using eight Nvidia A100 GPUs.

4.3 Evaluation Method

For subtask A, the evaluation metric is the accu-
racy score. The model must predict one of the
following labels: {IMPLAUSIBLE, NEUTRAL,
PLAUSIBLE}.

For subtask B, the submission will be scored us-
ing Spearman’s rank correlation coefficient, which
compares the predicted plausibility ranking over
all test samples to the gold ranking.

Task SubTask-A SubTask-B

Dev Test Dev Test

2nd Place - 66.10 - 0.7850

Ensembled Model 71.08 66.50 0.8260 0.7950
+ Pattern-aware 75.20 68.90 0.8441 0.8070

Table 3: Performance of models on dev set and official
test set.

# Models SubTask-A

MLM-based Models

1 XLMR-Large 61.14
2 ERNIE 61.73

RTD-based Models

3 DeBERTa-V3-Large 67.25
4 #3 without pre-trained head 65.96

Table 4: Ablation studies on SubTask A with respect
to the accuracy score on the dev set. (We reported the
mean results with at least three runs.)

4.4 Results

Our ensembled prediction on test set placed first in
the competition, with a 68.9% accuracy score for
subtask A and a 0.8070 Spearman’s rank correla-
tion coefficient for subtask B. As shown in Table. 3.
Our system outperforms the second-place system
by 2.8 and 2.2 percent points respectively. The or-
ganizers predict an upper bound of 77.1% accuracy
score and 0.89 ranking correlation based on the
manual annotations. As a result, there’s still a lot
of room for growth.

4.5 Ablation Studies

2040

1346

2237

1539

2010

1860

1678

1791

950

1789

1065

1670

0 1000 2000 3000 4000 5000 6000

ADDED COMPOUND

FUSED HEAD

IMPLICIT REFERENCE

METONYMIC REFERENCE

NEUTRAL PLAUSIBLE IMPLAUSIBLE

Figure 3: The label distribution of different pattern on
training dataset.

The effectiveness of using a replaced token detec-
tion task pre-trained model and recovering the pre-
train language modeling head in the task-specific
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Pattern IMPLICIT REFERENCE METONYMIC REFERENCE FUSED HEAD ADDED COMPOUND

Hyper-paramters\Task SubTask-A SubTask-B SubTask-A SubTask-B SubTask-A SubTask-B SubTask-A SubTask-B

LR:1e-5, BSZ:32 65.12 0.8321 67.36 0.8427 67.68 0.8400 64.64 0.8272
LR:9e-6, BSZ:32 64.96 0.8340 69.60 0.8408 71.84 0.8418 63.20 0.8251
LR:1e-5, BSZ:64 71.84 0.8286 69.28 0.8382 65.12 0.8347 68.96 0.8134
LR:9e-6, BSZ:64 72.32 0.8265 69.60 0.8424 64.96 0.8325 69.28 0.8142

Table 5: Performance of the DeBERTa-V3-Large with different fine-tuning hyperparameters on the dev set. A
model can’t win all the subtasks on a subset split by the given pattern attribute. (LR and BSZ are abbreviations for
learning rate and batch size.)

head have been revealed in Table. 4. The hypoth-
esis that utilizing a model pre-trained by a similar
task aligned with SemEval-2022 Task 7 contributes
a lot is supported by comparing #1,#2 and #3. The
performance of the model improved even more af-
ter reusing the pre-trained LM head (#3 and #4).
The assumption is that the hidden states from the
pre-trained head contain more information learned
during the pre-training phase for distinguishing se-
mantically similar tokens.

The effectiveness of the pattern-aware ensem-
bling has been shown in Table.3. On subtasks A
and B, pattern-aware ensembling outperformed the
standard ensemble technique by 2.4 and 1.2 per-
cent points, respectively, compared to the standard
ensemble method.

The model trained with different hyper-
parameters may perform better on one pattern but
not on another, as seen in Table. 5. For example,
on the FUSED HEAD pattern, the model (LR:9e-6,
BSZ:32) has the highest accuracy score of 71.84%
but the lowest accuracy scores of 64.96% and
63.20% on ADDED COMPOUND and IMPLICIT
REFERENCE pattern, respectively. The model
(LR:9e-6, BSZ:64), on the other hand, has the low-
est score on FUSED HEAD pattern but the best
result on ADDED COMPOUND and IMPLICIT
REFERENCE pattern. By visualizing the label
distribution in Figure. 3, we infer that the phe-
nomenon is related to a distribution difference
in which FUSED HEAD pattern contains the low-
est number of the label NEUTRAL, and the label
PLAUSIBLE dominates the ADDED COMPOUND
and IMPLICIT REFERENCE patterns.

5 Conclusion

We built a system for identifying plausible clarifi-
cations of implicit and underspecified phrases in
instructional texts which is useful for improving
the clarification of instructional texts. The system
leverages the strength of a replaced token detec-

tion pre-trained discriminator and therefore per-
forms extremely well on this shared task with the
same goal to distinguish semantically similar to-
kens. In particular, we proposed a pattern-aware
ensembling strategy to aggregate multiple predic-
tions separately based on the pattern when there is
a label distribution difference among patterns. On
SemEval-2022 Task 7, the system achieved the best
performance in both subtasks.

In future work, it’s promising to incorporate the
replace token detection task in a large-scale pre-
trained model with billion, or even trillion parame-
ters.
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Abstract

This paper describes our system used in the
SemEval-2022 Task 7(Roth et al.): Identifying
Plausible Clarifications of Implicit and Under-
specified Phrases. Semeval Task7 is an more
complex cloze task, different than normal cloze
task, only requiring NLP system could find the
best fillers for sentence. In Semeval Task7,
NLP system not only need to choose the best
fillers for each input instance, but also evaluate
the quality of all possible fillers and give them
a relative score according to context semantic
information. We propose an ensemble of differ-
ent state-of-the-art transformer-based language
models(i.e., RoBERTa and Deberta) with some
plug-and-play tricks, such as Grouped Layer-
wise Learning Rate Decay (GLLRD) strategy,
contrastive learning loss, different pooling head
and an external input data preprecess block be-
fore the information came into pretrained lan-
guage models, which improve performance sig-
nificantly. The main contributions of our sys-
tem are 1) revealing the performance discrep-
ancy of different transformer-based pretraining
models on the downstream task; 2) presenting
an efficient learning-rate and parameter atten-
uation strategy when fintuning pretrained lan-
guage models; 3) adding different constrative
learning loss to improve model performance;
4) showing the useful of the different pooling
head structure. Our system achieves a test ac-
curacy of 0.654 on subtask1(ranking 4th on the
leaderboard) and a test Spearman’s rank corre-
lation coefficient of 0.785 on subtask2(ranking
2nd on the leaderboard).

1 Introduction

Cloze tasks have become a standard framework for
evaluating various discourse-level phenomena in
NLP. Some prominent examples include the narra-
tive cloze test(Hoshino and Nakagawa, 2007), the
story cloze test (Xie et al., 2020), and the LAM-
BADA word prediction task(Paperno et al., 2016).
In these tasks, NLP systems are required to make

a prediction about the filler of a cloze that is most
likely to continue the discourse. However, these ex-
isting cloze tasks focus on the accuray of choosen
fillers, ignore evaluating the absolute quality of all
possible predictions.

The goal of Semeval 2022 Task7 is to evaluate
the ability of NLP systems to distinguish between
plausible and implausible clarifications of an in-
struction. The task is formulated as a complex
cloze task, which involve two sub tasks. In Sub task
1, for each(sentence, filler) pair, NLP system need
to classify four fillers into plausible, implausible
or neutral and the evaluating indicator is accuracy.
In Sub task 2, for each pair, NLP system need to
predict scores for five fillers and the evaluating in-
dicator is Spearman’s rank correlation coefficient.

Since 2018, NLP models have adopted the con-
cept of pre-training on a diverse corpus of unla-
belled text, followed by supervised finetuning on
specific tasks. Pretrained models are built to sim-
ulate anthropomorphic learning, wherein existing
knowledge can be adapted to new tasks without
doing any training on these tasks from scratch - a
requirement of traditional machine learning models.
By now, these pre-trained large language models
such as Bert(Devlin et al., 2018), Roberta(Liu et al.,
2019),Xlm-roberta (Conneau et al., 2019), De-
berta(He et al., 2021) has been widely used to solve
all kinds of language understanding tasks. Ad-
ditionally, fine-tuning self-supervised pre-trained
models has significantly boosted state-of-the-art
performance on natural language processing (NLP)
tasks. Many evidence showing models with pre-
trained commonsense knowledge can be well ap-
plied in the field of cloze task(Cui et al., 2020),
because cloze task needs commonsense language
knowledge and genera language knowledge.

Additionally, there are many training tricks can
be used to improve the performance and gener-
alization ability of the large pre-trained language
models. First, adding contrastive learning loss in
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supervised task, such as Ntxent loss(Chen et al.,
2020). Second, in case of pretrained language mod-
els’ catastrophic forgetting in funtuning period, we
set different learning rate and weight decay rate for
different pre-trained language model layers(Zhang
et al., 2021). Third in order to get the best sentence
embedding, trying different pooling head is neces-
sary. Inspired by these discoveries, we designed
two NLP system for sub-task1 and sub-task2.

2 Task Setup

Formally, each instance in dataset is composed of 5
sentences, 5 fillers, 1 clarification phenomena and
1 score:

• Article title : title of the wikiHow article in
which the sentence occurs.

• Section header : heading of the section
which the sentence is part of.

• Previous context : a couple of sentences
that occur before the sentence in question -
omissions are marked by "(...)".

• Sentence : the sentence with a placeholder
"..." that marks where the fillers should be
inserted.

• Follow − up context : a couple of sentences
that occur after the sentence in question -
omissions are marked by "(...)".

• Filler1− Filler5 : the five different fillers.

• Score : is the quality score of each candidate
word, range from 1 to 5.

• Resolved pattern : name of the clarification
phenomenon (cf. list above: implicit refer-
ence, fused head, added noun, metonymic ref-
erence.)

As showing in figure 1, this task is a cloze task,
using fillers(Filler1 to Filler5) to insert a blank at
the position in the text(e.g. Screw each stringer to
___ the deck frame with a drill, use L-brackets and
deck screws to attach the stringers to the deck.).
Additional, article title(), section header,previous
and fellow-up sentence, resolved pattern are given.

Sub-task 1 is a classification sub-task, the eval-
uation metrics is overall accuracy. According to
rules, converting each real-valued gold score to a
class label as follows:

Figure 1: Data Instance.

• score <= 2.5 : IMPLAUSIBLE

• 2.5 < score < 4 : NEUTRAL

• score >= 4 : PLAUSIBLE

Subtask2 is a regression subtask, our system
need to predict each instance’s gold plausibility
score. The submissions will be scored based on
Spearman’s rank correlation coefficient which com-
pares the predicted plausibility ranking over all test
instances with the gold ranking.

3 Data Summary and Analysis

3.1 Data Construction

We try two different methods to preprocess input
data.

Strategy One: We simplely concatenate re-
solved pattern, article title, section header, previous
context, sentence and follow-up context first. And
then fill the blank spaces with 5 fillers separately.
Finally in order to highlight fillers information, we
add special symbols "<e>" before and after fillers.

Strategy Two: Since Resolved pattern is kind
of category feature which is different than the other
text features, We first replace resolved pattern with
their explanations. And then connecting explana-
tions to the other information. Finally, adding spe-
cial symbols "<e>" before and after fillers. The
explanation of resolved pattern showing below:

MPLICIT REFERENCE: In the original version
of a sentence, there is an implicit reference to a
previously mentioned entity. The revision makes
this reference explicit.

FUSED HEAD: In the original version, there is
a noun phrase where the head noun is missing. The
revision adds that noun.

ADDED NOUN: The revision adds a compound
modifier to a noun to make its meaning more spe-
cific.

METONYMIC REFERENCE: In the original
version, a noun is used in a metonymy. The revision
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Figure 2: Label Distribution.

Figure 3: Score Distribution.

makes the particular component or aspect of a noun
explicit that is meant.

We adopt two kinds of preprocess methods in
our experiment and Strategy Two showing a better
performance.

3.2 Data Analysis
We can see the label distribution and score distribu-
tion in Figure 2 and Figure 3. The largest number
of labels is a plausible and the average score is near
3.5.

4 Methodology

For this task, we have tried a variety of modeling,
optimization methods, learning rate schedule and
different constrative learning loss. Details are de-
scribed below.

4.1 Model Design
We design same model architectures for this two
sub-task. Our model is based on different pre-
trained models, such as roberta, xlmroberta and
deberta. After these pre-trained block, we set dif-
ferent pooling head to replace cls head in order to
get better sentence information. We try 3 differ-
ent head, mean-max pooling head, cls head and
lstm + attention head, and all the pooling structures
showing good performance in our experiments.

CLS Pooling Head: CLS Pooling Head is the
last layer hidden-state of the first token of the se-
quence (classification token) further processed by

a Linear layer and a Tanh activation function. The
Linear layer weights are trained from the next sen-
tence prediction (classification) objective during
pretraining. We reset cls top linear layer weights
in finetuning. We believe this weights are over
fitting NSP task that have a bad effect on further
finetuning.

Mean-Max Pooling Head: We consider the last
hidden state [batch, maxlen, hidden_state], then
take max across maxlen dimensions to get max
pooling embeddings. For mean pooling, we also
consider the last hidden state, the average across
max length dimensions to get averaged/mean em-
bedding. Finally we concatenate this two embed-
ding and further processed by a Linear layer.

LSTM plus Attention Pooling Head: Since
LSTM network is inherently suitable for process-
ing sequential information, we can use a LSTM
network to connect all token of last hidden state
[batch, maxlen, hidden_state], and the output
of the all LSTM cell [batch, nums_LSTM_cell,
LSTM_hidden_state] is used as input of next dot-
product attention module. After dot-product atten-
tion module, we pass the pooled output to a fully
connected layer for label prediction.

4.2 Training Details

Our system adopt grouped layer-wise learning rate
decay(GLLRD)(Ginsburg et al., 2018) as main
learning rate and weight decay strategy. GLLRD is
a method that applies higher learning rates for top
layers and lower learning rates for bottom layers.
This is accomplished by setting the learning rate of
the top layer and using a multiplicative decay rate
to decrease the learning rate layer-by-layer from
top to bottom.

In our experiment, We set 3 parameter group
for 24-layers pretrained large language models,
first group include 0 to 7 pretrained layers; sec-
ond group include 8 to 15 pretrained layers; third
group include 16-23 pretrained layers. We design a
base learning rate 1e-5 for group 2(8-15 pretrained
layers); A lower learning rate 1e-5/1.6 for group 1;
A higher learning rate 1e-5 * 1.6 for group3; And
a much higher learning rate(2e-4) for top layers.

The goal is to modify the lower layers that en-
code more general information less than the top
layers that are more specific to the pre-training
task. This method is adopted in fine-tuning several
recent pre-trained models, including Roberta, Xlm-
roberta and Deberta-v3(Zhang et al., 2021). Addi-
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tionally, we adopt cosine_warmup in our learning
rate scheduler and we adopt AdamW with opening
bias correction. For task7 dataset, if not open bias
correction, will lead to huge fluctuations in model
performance.

4.3 Loss Function Design

Our system involve 3 kinds of loss, Classification
loss(CrossEntropy loss), regression loss(MSE loss)
and contrastive loss(NTXent loss). Inspired by re-
cent contrastive learning algorithms, our system
adopt NTXent loss as sencond loss which is pro-
posed in SimCLR. Contrastive loss learns represen-
tations to maximize agreement between differently
augmented views of the same data example in the
latent space.In this task, our system need to evalu-
ate the quality of all possible fillers, NTXent loss
can help system get more robust sentence represen-
tation to classify all fillers.

For NTXent loss, We randomly sample a mini-
batch of N examples and define the contrastive
prediction task on pairs of augmented examples
derived from the minibatch, resulting in 2N data
points.We do not sample negative examples ex-
plicitly. Instead, given a positive pair, similar to
(Chen et al., 2017), we treat the other 2(N− 1) aug-
mented examples within a minibatch as negative
examples. Let sim(u, v) = u⊤v/||u||||v|| denote
the dot product between ℓ2 normalized u and v
(i.e.cosine similarity). Then the loss function for a
positive pair of examples (i, j) is defined as (Chen
et al., 2020):

ℓi,j = − log
exp

(
sim

(
zi, zj

)
/τ
)

∑2N
k=1⊮[k ̸=i] exp

(
sim (zi, zk) /τ

)

(1)
where ⊮[k ̸=i] ∈ (0, 1) is an indicator function

evaluating to 1 iff [k ̸= i] and τ denotes a tempera-
ture parameter. The final loss is computed across
all positive pairs, both (i, j) and (j, i), in a mini-
batch.

In subtask 1, we adopt the weighted average
method to obtain the final loss between CrossEn-
tropy loss and NTXent loss. The method is as
follows:

Losstotal = LossCE + αLossNTX , (2)

where LossCE is CrossEntropy loss,LossNTX is
NTXent loss, α = 0.1

In subtask 2, we adopt the final weighted average
method to obtain the final loss between MSE loss
and NTXent loss. The method is as follows:

Losstotal = LossMSE + αLossNTX (3)

whereLossMSE is MSE loss,LossNTX is NTXent
loss, α = 0.1.

5 Experiments

5.1 Experiment Settings

In order to get better performance in this few-
sample dataset, We apply AdamW as an optimiza-
tion algorithm with 10% steps of warmup and
open the the correct_bias item (Zhang et al., 2021).
For hyperparamete, we fine-tune the uncased, 24-
layer RobertaLarge, Xlm−RobertaLarge and
DebertaLarge model with batch size 40, dropout
0.2, cosine_warmup 1e-2. Additionally we adopt
grouped layer-wise learning rate decay strategy
with base learning rate 1e-5, weight-ratio 1.6 and
a much higher learning 2e-4 for top pooling lay-
ers, mentioned in 4.2 Training Details. We used
stratified k-fold method to split training data into 5
folds.

5.2 Experimental Results

We separate trained our system for sub-task1 and
sub-task2. In both sub-task, we adopt sentence
embedding to settle the further classification and
regression works. As showing in Table 1, for each
method, the score we report here is the average
score of the experiment results. From Table 1, we
see that the deberta-v3 model showing the best
overall performance on both sub-task1 and sub-
task2. In sub-task1, we can find deberta model is
at least 2% higher than roberta model and 1.8%
higher than xlm-roberta model. On sub-task2, de-
berta model’s improvement is much higher, com-
pared with roberta and xlm-robera, deberta has an
improvement of more than 4.5% and 3.1% respec-
tively. More important, data construction method 2
replacing resolved pattern with their explanations
also provided a performance boost, around 0.7%
in both sub-task. GLLRD strategy and contrastive
loss bring a great improvement, neary 1% and 0.5%.
Different pooling head also bring different influ-
ence in final score, Lstm + Attention head showing
the best performance, which can reach 0.649 in
sub-task1 and 0.782 in sub-task2 . Totally, after try-
ing different method and model fusion, our system
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Pretrained
model

Data
Construction

Method

Pooling
head GLLRD Contrastive

loss
ACC @

subtask1

Spearman
coefficient

@ subtask2

Strategy One
CLS

Pooling
False — 0.602 0.696

Strategy Two
CLS

Pooling
False — 0.608 0.704

Strategy Two
CLS

Pooling
True — 0.619 0.714

Strategy Two
CLS

Pooling
True NTXent 0.624 0.718

Strategy Two
Mean-
Max

Pooling
True NTXent 0.626 0.717

Strategy Two

LSTM
plus

Attention
Pooling

True NTXent 0.628 0.725

Strategy Two
CLS

Pooling
True NTXent 0.626 0.738

Strategy Two
Mean-
Max

Pooling
True NTXent 0.625 0.736

Strategy Two

LSTM
plus

Attention
Pooling

True NTXent 0.629 0.740

Strategy Two
CLS

Pooling
True NTXent 0.647 0.771

Strategy Two
Mean-
Max

Pooling
True NTXent 0.645 0.773

Strategy Two

LSTM
plus

Attention
Pooling

True NTXent 0.649 0.782

Multi
model
Fusion

— — — — 0.654 0.785

roberta-large

xlm-roberta-large

deberta-v3-large

Table 1: Experiment results for sub-task1 and sub-task2

reach a test accuracy of 0.654 on sub-task1 and a
test Spear-man coefficient of 0.785 on sub-task2.

6 Conclusion

This paper propose a complex system with GLLRD
strategy, contrastive loss, input data construction
block, different pretrained models and different
pooling head structure. It solves the problem of

how to evaluate the quality of all possible fillers in
cloze task. Experiments on SemEval task 7 datasets
demonstrate that using our system can advance the
normal cloze task models.
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Abstract

This paper describes the 9th place system de-
scription for SemEval-2022 Task 7. The goal
of this shared task was to develop computa-
tional models to predict how plausible a clari-
fication made on an instructional text is. This
shared task was divided into two Subtasks A
and B. We attempted to solve these using vari-
ous transformers-based architecture under dif-
ferent regime. We initially treated this as a
text2text generation problem but comparing it
with our recent approach we dropped it and
treated this as a text-sequence classification and
regression depending on the Subtask.

1 Introduction

Instructional texts which are in the form of step-
by-step instruction to achieve a particular goal are
sometimes ambiguous to make out what is being
talked about. To ensure that instructions describe
clearly enough what steps must be followed, some
clarifications are made in the places of ambiguity.
This task (Roth et al., 2022) revolves around au-
tomating the grading of a particular clarification
made on the instructions into plausible implausible
and neutral (SubTask A) and on a finer scale where
it is required to rank potential clarifications from 1
to 5 (SubTask B).

Previous work, related to this involves a Shared
Task (Roth and Anthonio, 2021) which was a bi-
nary classification task, in which systems had to
predict whether a given sentence in context requires
clarification or not. This shared task uses the same
dataset that is the wikiHowToImprove dataset (An-
thonio et al., 2020) but with some variations. In-
stead of a binary classification task, this task is
shaped as a cloze task in which, clarifications are
presented as possible fillers and systems have to
score how well each filler plausibly fits in a given
context. A data instance can be seen in Figure 1.

Seeing the performance of BERT over BiLSTMs
in (Bhat et al., 2020), we decided to build upon that

Figure 1: A data instance of Task 7

and explore the use of other transformers-based
models.

2 System Overview

Data Pre-Processing

In order to convert the provided data into the form
required for a text sequence classification model,
we filled the blanks in the provided text with the
provided potential fillers and associated their re-
spective labels as shown in Figure 2. The resulting
data were then divided into three parts training(80
% ), validating(10 % ), and testing(10 % ).

2.1 Subtask A

For this task, we mainly experiment with two
transformers-based models that differ fundamen-
tally in the manner they were trained. Initially, we
treated this as a text to text generation task using
T5 (Raffel et al., 2019). The detailed steps involved
in this experiment is present below.

• The Article title, previous context, the sen-
tence (with filler), and the follow-up context
was sequentially laid out one after the other.
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Figure 2: Data input for both T5 and BERT

• Keywords such as Article Title,Section
Header,Previous Context,Sentence and Follow
up context were included in the input string
to indicate the respective content for the T5
model.

• The model was trained in a supervised man-
ner using Cross-Entropy for 2 Epochs with
a batch size of 2 and gradient accumulation
steps of 8 making an effective batch size of
16. The rest of the Hyper-parameters were as
follows:max seq length=512,learning rate=3e-
4,adam epsilon=1e-8 and a seed value of 42
to keep the model deterministic.

• The model took approximately 1.5 hours to
train on Nvidia’s P100 GPU with a memory
of 16Gb.

• The complete experiment was done on Google
Colab Pro.

• The model architecture can be seen in Figure
3.

The second model used was a BERT (Devlin
et al., 2018) based model.

The detailed steps involved in this experiment is
present below.

• The pre-processing of the data was the same
as T5 but with all the instruction constituents
clubbed into a single text, i.e. all the keywords
such as Article Title,Section Header,Previous
Context,Sentence and Follow up context were
dropped and the resulting sequence was a con-
tinuous text sequence.

• The resulting input sequence was tokenized
using a BertTokenizer from Huggingface and
is passed through the bert-base-uncased model
to embed it into a 768 dimensional feature

Model Accuracy(%)
T5-base 40.28
bert-base-uncased 44.40

Table 1: Result on the hold-out test set for Subtask A

vector containing the syntactical information
of the input string.

• The feature vector is then passed through a
dropout layer to increase the regularization
which in-turn increases the generalizability of
the model.

• The model was trained in a supervised man-
ner in a multiclass classification regime for 5
Epochs with a batch size of 32. Rest of the
Hyper-parameters are shown in Table 2. A
seed value of 42 to keep the model determin-
istic.

• The model took approximately 25 minutes to
train on Nvidia’s P100 GPU with a memory
of 16Gb.

• The complete experiment was done on Google
Colab Pro.

• The model architecture can be seen in Figure
4

When compared to the T5 model the BERT-
based model was not just effective but also more
efficient and took lower time for training and infer-
ence and therefore became our official submission
for this subtask. See Table 1 for results on the
hold-out test set.

The Experiment setup has been shown in Ta-
ble 2. All the Experiments were performed using
Huggingface Transformers Library. 1

2.2 Subtask B
Seeing the success of BERT over T5, we make
necessary changes to convert the model used for
Subtask A into a regression model. See Figure 5.
See Table 3 for results on the hold-out test set. The
experiment setup can be seen in Table 4.

3 Results

3.1 Subtask A
The submitted systems were evaluated using the
Accuracy metric(Sklearn footnote). We were of-
ficially ranked 7th in Subtask A with an accuracy

1https://huggingface.co/
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Figure 3: Working of T5 Model

Figure 4: Model Architecture for Subtask A

Parameter Value
Model bert-base-uncased
Max sequence Length 256
Batch Size 8
Learning rate 2e-5
Weight decay Linear
Momentum 0.9
Optimizer AdamW 2

Epochs 5
Loss Cross Entropy

Table 2: Experimental Setup for Subtask A

Model MSE
bert-base-uncased 44.40

Table 3: Result on the hold-out test set for Subtask B

Figure 5: Model Architecture for Subtask B
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Parameter Value
Model bert-base-uncased
Max sequence Length 256
Batch Size 8
Learning rate 2e-5
Weight decay Linear
Momentum 0.9
Optimizer AdamW
Epochs 5
Loss Mean Squared Error

Table 4: Experimental Setup for Subtask B

score of 44.200% which is substantially above a
naive majority class baseline of 39% and compara-
ble to the baseline presented by the task organizers.

3.2 Subtask B

For Subtask B, the submissions were evaluated us-
ing Spearman’s rank correlation coefficient(SRCC)
which compares the predicted plausibility ranking
overall test instances with the gold ranking. We
ranked 5th with an SRCC of 0.25200.

4 Error Analysis

After examining the predictions from the submitted
model, we saw that the model struggled signifi-
cantly in distinguishing between neutral and either
of plausible/implausible clarifications as there’s a
very slight difference between them. This problem
increases further when we created a feature vector
from the same sentence with changed filler word as
it leads to a very slight change in the vector, hence
leading the model confused to distinguish between
individual classes having almost similar feature dis-
tribution. The performance can also be attributed
to the distribution of the labels in development set
and our submitted model might have overfitted to
the development set, leading to a further decrease
in performance in the test set.

5 Conclusion

We developed a system to classify the clarifica-
tion made on instructional text into varying levels
of plausibility using a transformer based language
model with a limited attention span only taking a
limited context around the filler. The recent ad-
vancement in transformer based models, such as
BigBird (Zaheer et al., 2020) and Longformer (Belt-
agy et al., 2020) which can take up longer context

into consideration are more preferred for a task like
this.
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Abstract

Thousands of new news articles appear daily
in outlets in different languages. Understand-
ing which articles refer to the same story can
not only improve applications like news aggre-
gation but enable cross-linguistic analysis of
media consumption and attention. However,
assessing the similarity of stories in news arti-
cles is challenging due to the different dimen-
sions in which a story might vary, e.g., two
articles may have substantial textual overlap
but describe similar events that happened years
apart. To address this challenge, we introduce a
new dataset of nearly 10,000 news article pairs
spanning 18 language combinations annotated
for seven dimensions of similarity as SemEval
2022 Task 8. Here, we present an overview
of the task, the best performing submissions,
and the frontiers and challenges for measuring
multilingual news article similarity. While the
participants of this SemEval task contributed
very strong models, achieving up to 0.818 cor-
relation with gold standard labels across lan-
guages, human annotators are capable of reach-
ing higher correlations, suggesting space for
further progress.

1 Introduction

Consider the following question: Given a pair of
“hard” news articles,1 are they covering the same
news story? Answering this question likely re-
quires knowing specific aspects of the events cov-
ered: what happened, where and when it hap-
pened, who was involved, and why and how it hap-
pened (Pan and Kosicki, 1993; Klein and Martínez,
2009; Dijk, 1988).

1“Hard news” is characterized as having a high level of
newsworthiness demanding immediate publication (Tuchman,
1972). In our use, we aim to exclude opinion, features, and
other forms of journalistic pieces not mainly concerned with
covering current events as in Flaxman et al. (2016).

Effectively modeling the similarity of news sto-
ries holds substantial practical benefits in structur-
ing the content of the hundreds of thousands of
news articles generated every day.2 Given the vol-
ume of articles, an effective measure of news story
similarity enables clustering and identification of
event coverage in news media (Rupnik et al., 2016;
Bisandu et al., 2018). Commercial news aggrega-
tion services, as provided by, e.g., Google News or
Apple News, perform a similar clustering approach,
yet are primarily monolingual and have not been
made openly available or extensively researched
beyond proprietary solutions. In addition, quantify-
ing news article similarity allows the comparison
of news outlets in terms of their coverage, under-
standing which stories consume much of the media
agenda, as well as tracking the diffusion of news
stories through a media ecosystem and over time.
Being able to measure these aspects is important
for a host of research questions in media and com-
munication studies including, for example, agenda
setting (McCombs, 2005). Another highly desir-
able property of such methods is to be applicable
in multilingual settings, to detect news stories cov-
ered across languages in an increasingly globalized
news ecosystem (Rupnik et al., 2016).

Assessing the similarity of two news articles in-
troduces new challenges not found in traditional se-
mantic textual similarity. Most importantly, meth-
ods for semantic textual similarity typically mea-
sure the extent to which two arbitrary documents
are “the same,” without concretely specifying the
meaning of this similarity, or only do so in broad
strokes (cf. Agirre et al., 2012; Lee et al., 2005;
Nguyen et al., 2014). One byproduct of this vague
application domain and under-specification is that

2For example, the source we use for metadata, Media
Cloud, collects 629K articles per day.
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agreeing on gold labels is notoriously difficult, at
least at the full-length document level (Nguyen
et al., 2014; Westerman et al., 2010), as even hu-
man labelers are dependent on specific instructions
and/or knowledge of the absolute space of docu-
ments to label, to understand the relative concept
of “similar” (Bär et al., 2011). News article simi-
larity is thus more related to attempts to compare
narratives (Chambers and Jurafsky, 2009; Miller
et al., 2015; Chaturvedi et al., 2018), which require
understanding the structure and content to assess
similarity.

Here, we introduce SemEval 2022 Task 8 for
the task of quantifying news similarity, a hard
discourse-level task. Stories often include a va-
riety of descriptions, people, and entities that may
appear in another, dissimilar story. Further, the tem-
poral nature of news means that as real-life events
evolve, stories describing the same event may in-
clude new details or entities—possibly becoming
a new news story altogether. For this task, we cre-
ate a high-quality dataset by annotating pairs of
news article for similarity in 10 different languages
on several dimensions, e.g, geographic, temporal,
and narrative similarity. Participants in this task
were given a large collection of news articles, with
4,918 pairs receiving ground-truth similarity labels,
and were asked to estimate the overall similarity
of 4,902 news article pairs given to participants
without labels for any dimension. The task is also
challenging due to its large language diversity: the
training data consists of 8 language combinations,
while the evaluation dataset has 18 language com-
binations including three languages not appearing
at all in the training data.

2 Data

2.1 Data Collection

The metadata and full text of news articles was
collected from Media Cloud, an open-source plat-
form aggregating millions of stories published on-
line (Roberts et al., 2021). We collected the meta-
data and full text of all news articles from January
1, 2020 to June 30, 2020 in 10 languages, thanks
to white-listing by Media Cloud. Overall, this col-
lection includes news articles in the following lan-
guages: English (31M articles), Spanish (8.2M),
Russian (7.2M), German (3.2M), French (3.2M),
Arabic (2.9M), Italian (2.4M), Turkish (1.1M), Pol-
ish (595K), and Mandarin Chinese (342K). We
hired and trained annotators with fluency in these

Media
Cloud
data

Named
entity

recognition
Cross-lingual

concept linking
Per-article
filtering

Rule-based
matching

Pairwise
filteringClassifierData for

Annotation

Figure 1: Filtering and pair matching pipeline.

languages. The total dataset consists of about 60M
articles. Article metadata includes dates, headlines,
and URLs of articles. To filter, match, and sample
pairs of news articles for annotation, we apply a
series of processing steps to the dataset (Figure 1),
described below. The annotated data is available
on Zenodo while the full text of most webpages
annotated is available in a special collection at the
Internet Archive. We have also created a Python
package to crawl and process the webpages.

Filtering. We applied a series of filtering steps
to clean the data. First, we filtered out articles
that miss one of basic metadata attributes: story
ID, URL, title, or text. Second, we dropped data
points that do not correspond to news articles of
social or political importance3 and very short ar-
ticles whose word count is less than 100. Third,
we filtered out articles that have titles or URLs that
exactly match a newer news article. After applying
these filtering steps, the numbers of articles per lan-
guage are: English (10M articles), Spanish (4.6M),
Russian (1.8M), German (1.3M), French (1.2M),
Arabic (1.8M), Italian (1.5M), Turkish (655K), Pol-
ish (369K), and Mandarin Chinese (205K).

Matching and Sampling of News Pairs. Ran-
domly sampled pairs of news articles are unlikely
to be related. Therefore, a major design point in
our pilot work was to identify meaningful candi-
date pairs. We experimented with document em-
beddings (Cr5: Josifoski et al., 2019), sentence em-
beddings (Sentence BERT: Reimers and Gurevych,
2019) applied to headlines and lead paragraphs,
and named entities (spaCy, polyglot, and Babelfy;
Moro et al., 2014) to identify similar articles. With
extensive pilot study, we devised an efficient sam-
pling pipeline (Figure 1). First, the named enti-
ties of each article are extracted using spaCy and

3Irrelevant websites include: “reddit.com,” “face-
book.com,” “twitter.com,” “fb.com,” “wikipedia.org,”
“epochtimes.com,” “youtube.com,” “slideshare.net”. We also
dropped any url with ‘sport’ in it.
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Figure 2: The average dissimilarity of news article pairs
(left) and the fraction of duplicates (right) per sampling
version.

polyglot.4 For monolingual pairs, we select pairs
of articles having high Jaccard similarity of these
named entities. For cross-lingual pairs, we attempt
to match the named entities to Wikipedia article ti-
tles and store the Wikidata concept ids of matching
Wikipedia articles, which are language agnostic.
We then select cross-lingual pairs of articles having
high Jaccard similarity of these Wikidata concept
ids.

To remove duplicate articles (i.e., articles that
have the same or nearly the same text, but are pub-
lished with different titles and URLs), we drop
all pairs of articles that share one or more long
sentences (of 40 or more characters) or where the
Jaccard similarity of article text is higher than a cer-
tain threshold. Once the training set of news article
pairs was annotated, we trained a logistic regres-
sion classifier that was used for further sampling.
The features included in the classifier are: the word
counts of both articles, the number of common
words, the number of common named entities, co-
sine similarity of the named entities with BM25
embeddings (Robertson and Zaragoza, 2009), text
Jaccard similarity, and an exponentially decaying
function of publication date difference.

The pipeline was updated over time to increase
the fraction of OVERALL similar pairs among sam-
ples (Figure 2, left). Version 1 of our sampling
pipeline selects pairs based solely on the Jaccard
similarity of named entities without any classifier,
since initially no labeled data was unavailable. Ver-
sion 2 introduces a temporal window where only ar-
ticles published within a few days from each other
are considered. Version 3 introduces a minimal
threshold for Jaccard similarity of named entities.
Versions 4 and 5 count the reappearance of words
for Jaccard similarity and implement a more ef-
ficient similarity computation in Cython, respec-

4To scale the pipeline to tens of millions of articles, we
use the efficient, simple language models rather than the trans-
former models in spaCy version 3.

tively. Version 6 removes the word reappearance
counts after an evaluation of its effectiveness. We
note that while improvements to matching and sam-
pling increased the fraction of similar news articles,
we also experienced a small increase in the fraction
of duplicate news articles (Figure 2, right).

2.2 Annotation

Annotation guidelines were developed through an
iterative process, grounded in media studies litera-
ture on news. After several pilot annotation rounds,
we formed a detailed codebook for seven dimen-
sions of similarity. The questions were:

GEO How similar is the geographic focus (places, cities,
countries, etc.) of the two articles?

ENT How similar are the named entities (e.g., people,
companies, organizations, products, named living
beings), excluding previously considered locations
appearing in the two articles?

TIME Are the two articles relevant to similar time periods
or describing similar time periods?

NAR How similar are the narrative schemas presented in
the two articles?

OVERALL Overall, are the two articles covering the same
substantive news story? (excluding style, framing,
and tone)

STYLE Do the articles have similar writing styles?

TONE Do the articles have similar tones?

Annotators answered each question using a four-
point Likert scale with the options, “Very Dissim-
ilar,” “Somewhat Dissimilar,” “Somewhat Simi-
lar,” and “Very Similar.” In this paper, we repre-
sent these ordinal labels as numbers from 4 (Very
Dissimilar) to 1 (Very Similar). In addition, each
question can be answered with the option “Other”,
which is used mainly for marking pairs of duplicate
news articles and unavailable articles, e.g., due to
a paywall or take-down (annotators were asked to
report such cases via a free-text comment). The
annotation codebook defines each dimension and
gives examples with explanations of labeled news
article pairs (e.g., Table 1).

To achieve the desired linguistic diversity and
magnitude of news annotation we trained 25 anno-
tators hired across 3 institutions (GESIS, UMass,
UMich), out of which 10 labeled over 1,000 news
article pairs during the course of roughly six
months (Table 2). Annotators were compensated
C12 per hour at GESIS and $15 per hour at UMass
and UMich.

We implemented a custom annotation interface
in Ruby and MongoDB that assigns news articles
pairs at random within the language abilities of
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Article 1 Article 2 GEO ENT TIME NAR STY TONE OVERALL

NYC testing two more
people for coronavirus

New York City Reports 2
Additional Suspected Cases
of Coronavirus

VS VS VS VS VS VS VS

Video of a man beating his
girlfriend mercilessly goes
viral

Curry house in Worcester
improves from one-star to
five food hygiene rating

VD SD SD VD SS SD VD

All with flu symptoms to be
tested for Covid-19 in
Chandigarh

ICMR study points towards
possible community
transmission of coronavirus
COVID-19 in India

SD SD SS SD SS SS SD

Table 1: Example annotated pairs. The pairs were annotated based on the full-text of the articles. Each of the seven
dimension is annotated with a Likert scale with four options: Very Similar (VS), Somewhat Similar (SS), Somewhat
Dissimilar (SD), and Very Dissimilar (VD). The articles in the first pair released very similar information about two
people tested Coronavirus positive at New York City. The second pair is very dissimilar since one article described
the violence against a women while the other one reported the rating improvement of a restaurant. They shared
nothing in common. The final pair overlapped somewhat in terms of GEO (India), ENT (Indian Council of Medical
Research, ILI, severe acute resparatory illness), and TIME. The two articles, however, still refer to different events.

id items shared seconds/item correlation

1 1,657 809 296 0.88
2 2,311 495 344 0.86
3 1,197 611 237 0.85
4 1,178 794 213 0.85
5 134 98 153 0.84
6 1,036 626 128 0.84
7 1,302 345 220 0.84
8 466 398 224 0.84
9 787 208 233 0.84
10 887 368 506 0.83
11 1,062 466 387 0.82
12 361 321 311 0.81
13 262 213 165 0.81
14 139 135 235 0.79
15 1,076 716 71 0.77

Table 2: Annotators and their statistics: the number of
labeled items (news article pairs), the number of shared
items (also annotated by another annotator), median
number of seconds to label an item, and Pearson corre-
lation of their OVERALL labels with the mean labels
of other annotators. Only annotators with at least 100
labels are shown.

each annotator. To engage and motivate annotators,
the interface also provides feedback to annotators
in the form of basic statistics such as the number
of annotations, and the inter-rater agreement of the
top annotators. The interface also shows past anno-
tations and highlights disagreements, which were
discussed at biweekly video conference meetings.

Codebook, Training, & Annotation. The anno-
tation process has multiple stages (Figure 3). All
annotators read the codebook and attended a train-

Codebook
with

examples
Training
sessions

Calibration
sessions

Open
labeling

Feedback
and

meetings

Figure 3: Annotator workplan.

ing session at which the codebook and annotations
of example pairs were discussed. The annotators
then completed 30 practice annotation pairs inde-
pendently. After completing each practice pair,
annotators were able to view the gold standard la-
bels that had been agreed by all of the SemEval
task authors. Each gold standard label was accom-
panied by a written explanation of why the label
was assigned. Question and answer sessions were
held at which the annotations were discussed as
well.

Annotators then labeled another 30 gold stan-
dard pairs having detailed explanations, which we
used to calibrate annotators’ understanding of the
codebook. Any disagreements were discussed until
agreement was reached. The practice and calibra-
tion pairs were all English-language articles, which
was a shared language ability between all our an-
notators. All news article pairs with gold standard
labels and explanations, as well as the codebook,
are released on Zenodo.

After these practice and calibration activities,
pairs were annotated by a variable number of an-
notators, usually 1, 2, or 3, in the “open labeling”
phase, where news article pairs were served to an-
notators continuously. Annotators were given feed-
back in the annotation interface on their agreement
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languages annotations mean(OVERALL)

en 5,189 2.92
de 2,166 2.56
es 955 2.40
zh 866 2.24
de-en 863 3.20
tr 817 2.79
pl 584 2.36
ar 572 2.41
es-en 504 2.79
it 411 2.65
es-it 320 2.29
ru 289 2.78
zh-en 253 3.04
fr 184 2.39
de-fr 116 1.88
pl-en 77 2.38
de-pl 35 1.69
fr-pl 11 1.91

Table 3: The number of annotations and the mean
OVERALL label (the higher, the more dissimilar) across
the 10 languages and their combinations.

GEO ENT TIME NAR OVERALL STYLE TONE

Krippen. 0.73 0.69 0.57 0.69 0.77 0.46 0.38
Gwet 0.81 0.67 0.75 0.69 0.76 0.69 0.67

Table 4: Inter-rater agreement measures, Krippendorf’s
α and Gwet’s AC1, for each labeled dimension.

with other annotators, met regularly to discuss dis-
agreements, and had an open channel for communi-
cation on a shared Slack instance. After annotating
English-language pairs, non-English pairs were in-
troduced and discussed with annotators. Finally,
cross-language pairs were also introduced. The to-
tal number of annotations and average OVERALL
label per each language pair is shown in Table 3.

Inter-annotator Agreement. The inter-rater
agreement on the OVERALL similarity dimension
is very high, with a Krippendorff’s α of 0.77. We
note that the distribution over labels is generally
not uniform, e.g., the labeled news article pairs are
skewed towards “Very Similar” in TIME, STYLE,
and TONE (Figure 4). Gwet’s AC1 is known to
be less sensitive to non-uniform marginal label dis-
tributions (Gwet, 2008), and it suggests a good
agreement in all dimensions (Table 4).

Annotators vary in terms of the quantity and
quality of the provided annotations. To compare
the performance of annotators to the performance
of models, we measure the inter-rater agreement
of each annotator in a way that corresponds to the

Figure 4: Histograms and Pearson correlations of every
pair of scores in the labelled data.

Figure 5: Heatmap showing the coefficients of the first
three principal components of variation in the scores.

score of models, i.e., as a Pearson correlation be-
tween the labels of that annotator and a series of
average labels from other annotators. Note, how-
ever, that this correlation is measured over labels
contributed by the given annotator to both training
and evaluation datasets, it is biased by the language-
abilities of the annotator, and the mean label does
not include the ego annotator. Our top 5 annota-
tors consistently reach very high agreement scores
of 0.85–0.88, whereas bottom 5 annotators reach
agreement scores of 0.73–0.80 (Table 2).

2.3 Statistics of the Labeled Dataset

Figure 4 illustrates the relationship between the
multiple similarity dimensions in the annotated
dataset. The bar charts on the diagonal represent
the distribution of annotations, from 1 (Very Sim-
ilar) to 4 (Very Dissimilar). Panels below the di-
agonal represent two-dimensional histograms, and
panels above the diagonal report the Pearson corre-
lation between different dimensions, namely GEO,
ENT, TIME, NAR, STYLE, TONE, and OVER-
ALL.
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language(s) train eval mean(OVERALL)

ar 274 298 2.41
de 857 608 2.57
de–en 531 185 3.18
de–fr 116 1.88
de–pl 35 1.69
en 1,800 236 2.86
es 570 243 2.34
es–en 496 2.79
es–it 320 2.29
fr 72 111 2.39
fr–pl 11 2.00
it 411 2.65
pl 349 224 2.35
pl–en 64 2.35
ru 287 2.78
tr 465 275 2.74
zh 769 2.22
zh–en 213 3.07

Totals 4,918 4,902 2.62

Table 5: The number of news article pairs in the train-
ing and evaluation datasets by language and the mean
OVERALL label (the higher, the more dissimilar).

NAR and ENT show the highest correlation with
OVERALL (0.88 and 0.79 respectively). These two
dimensions also provide the largest contributions
to the variation in annotations, as indicated by the
first component of the PCA shown in Figure 5.

There is no significant difference between the
training and evaluation datasets with respect to the
labels of any similarity dimension, and these results
are also found when the dataset is disaggregated by
language pair.

3 Task

3.1 Task Description & Rules

The Task was created on CodaLab.org5 and adver-
tised with alongside the other SemEval 2022 tasks.
Participants were told, “The task is: Given a pair
of news articles, are they covering the same news
story? This SemEval task aims to develop systems
that identify multilingual news articles that provide
similar information. This is a document-level simi-
larity task in the applied domain of news articles,
rating them pairwise on a 4-point scale from most
to least similar.”

Participants were given 60 English-language
pairs for trial data in August 2021. The training
data was released to participants in two batches:

5https://competitions.codalab.org/
competitions/33835

the first batch was released on September 15, 2021,
and the second was released on November 4, 2021.
The training data consisted of article pairs in 8
different language combinations (Table 5).

Due to copyright restrictions, we were unable to
release the raw text of the news articles included
in the training data. In lieu of this, we devel-
oped and shared a Python package to download
the text of news articles. For the training data, the
downloader tries to fetch the articles from the In-
ternet Archive or the live web and parse them with
newspaper3k.6 This mirrored the actions of an-
notators who were given links to the articles on the
Internet Archive and live web.

The evaluation data was released on January 10,
2022, and consists of 4,902 pairs of news articles
across 18 languages. For the evaluation data, we
only included pairs of articles where both news
articles were available on the Internet Archive.7

For both the training and evaluation datasets, we
removed any article pairs where one or more anno-
tators labeled the OVERALL similarity as “Other”.
This usually indicated that the pair was unavailable
or not a news article.

The evaluation period ran from January 10 to
February 3, 2022. This date reflected the extra time
needed to download the articles as well as a short
extension due to technical issues with the Codalab
system. Participants were allowed to submit up
to 5 submissions per day and 1,000 submissions
overall.

3.2 Baselines

Our baseline models use SVC with linear kernel,
logistic regression, random forest, and XGBoost
(Chen and Guestrin, 2016). For feature selection,
we found positive correlation between the fraction
of “Very Similar” news article pairs and their Jac-
card similarity in terms of named entities, as well
as full text (Figure 6). Thus we evaluate three
sets of features in the baseline models: set-A (Jac-
card similarity of named entities), set-B (set-A and
text Jaccard similarity), and set-C (set-B and word
count difference).

3.3 Evaluation and Ranking

The teams were evaluated using Pearson’s r cor-
relation with the mean OVERALL labels on the

6Some participants found better success at parsing the
articles using trafilatura (Barbaresi, 2021)

7A special collection on the Internet Archive now includes
most webpages.
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evaluation data. In ranking teams, we were inspired
by recent work (e.g., Dodge et al., 2019) on esti-
mating model performance while recognizing that
not all systems solving a task are on equal footing.
Specifically, some teams may have submitted more
or fewer submissions due to time, computational
budget, or model performance. Having varied num-
bers of submissions for each team/system creates
an opportunity for rethinking how to estimate how
well the system actually does.

Our approach ranks teams by bootstrapping their
expected rank under certain constraints. We assume
that for most teams, submissions are an exploration
of the hyperparameter/model configuration space
of their system. Each submission’s score is then
informative of the distribution of its expected per-
formance. To create the official Task rankings, we
bootstrap the expected rank from all teams’ sub-
missions. Specifically, we bootstrap rankings by
sampling an equal number of submissions (n=5)
from the most-recent 50 submissions of each team
and then use the maximum score from each team’s
sampled submissions to compute one ranking of
all teams. To get our final ranking, we repeat this
process to sample n=10,000 rankings and take the
average rank for each team across these samples. In
essence, this process measures the expected rank-
ing if each team was given the same number of
hyperparameter/configuration searches.

In practice, our new ranking approach largely
does not change the ranking from simply order-
ing teams by their highest-performing submission.
However, a handful of teams did shift positions.
The relative stability suggests that models were not
affected by different hyperparameter/configuration
selections.

4 Results

The task received over 500 public submissions
from over 30 participants. Next, we provide an
overview of the baselines and the approaches that
have been adopted by the 19 teams who partici-
pated in the competition’s leaderboard and submit-
ted a description of their systems.

4.1 Summary of the Approaches

The teams explored a staggering range of ap-
proaches, including multimodal systems that en-
code the articles’ images and knowledge-based fea-
tures (Zosa et al., 2022). Systems were evaluated
on their ability to assess news similarity of pairs of

Figure 6: Sample distribution within different Jaccard
similarity of named entities (left) and text (right). The
“Similar" class includes both the “Very Similar" and
“Somewhat Similar" labels

Figure 7: Baseline performances for feature sets.

cross-lingual news articles, and on a secondary task
involving only pairs of articles in English. While
some teams developed dedicated systems for the
two evaluations, cross-lingual and English-only,
the great majority of such systems were variations
of a single design. For the sake of conciseness, in
the remainder of the section we will restrict discus-
sion to the cross-lingual news similarity task and
to the best-performing systems. Table 6 reports
salient characteristics of these systems, in order
of their ranking using Pearson’s correlation coef-
ficient. The participant describe each system in
finer detail and offer valuable insights on adapting
them to the English-only subtask and on negative
results (Nai et al., 2022; Wangsadirdja et al., 2022;
Pisarevskaya and Zubiaga, 2022; Zosa et al., 2022;
Singh et al., 2022; Giovanni et al., 2022; Hajjar
et al., 2022; Chen et al., 2022; Joshi et al., 2022;
Heil et al., 2022; Sandeep et al., 2022; Xu et al.,
2022; Kuimov et al., 2022; Ishihara and Shirai,
2022; Luo et al., 2022; Jobanputra and Rodriguez,
2022; Dufour et al., 2022; Bhavsar et al., 2022;
Stefanovitch, 2022).
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HFL x cross yes x x TB x x x **
GateNLP-UShef LaBSE bi yes x x TB x x x

DataScience-Polimi x bi yes x x TBD x x
ITNLP2022 x infoxlm cross yes x x TBK x x ****

EMBEDDIA x bi yes x TB x
HuaAMS x cross yes x x B x x

WueDevils x USE bi no x TBP x x
DartmouthCS x neither yes x x B x **

Nikkei x bert bi yes x x TB x x x
YNU-HPCC x cross yes x B

SkoltechNLP xlm-mlm bi yes x B
Team Innovators DeBERTa cross no x TBD x x ***

TCU x cross yes x x B
OversampledML x neither no x x TB x x x **

BL.Research x NER-tf, BART neither no x TB x x x *
LSX_team5 x neither no x B x

TMA LASER neither no x TBDP x x
dina x cross no x B x x

IIIT-MLNS distilbert bi yes x TBDK x x x

Table 6: A summary of submitted models ordered by their performance. For each TEAM, the table reports common
choices in terms of TRANSFORMER architecture, approaches for tackling CROSS-LINGUAL input, DATA HANDLING
such as feature engineering and augmentation, and learning TECHNIQUE. Legend: T = title, B = body, D =
description, K = keywords, P = publication date, * = sentiment, topics, geocoding, ** = 6 subdimensions, *** =
semantic similarity, hyperpartisan news, **** = 3 subdimensions

4.2 Rankings and Variation Across Languages

The final rankings for the multilingual task as well
as the English-language only subset are shown in
Supplemental Table A1. Overall performance on
the multilingual task (as measured with Pearson’s
r) ranged from 0.35 to 0.82 with a mean of 0.66
and a median of 0.72.

The highest single-language performance was
achieved on French (median 0.84, max 0.87) and
French–Polish (median 0.82, max 0.95) pairs. The
worst performance was on German–French pairs
(median 0.60, max 0.72). Supplemental Figure A1
shows the distribution of the best scores achieved
by each team in each language.

Among the baseline models, we find that the
SVC performs best, while the Jaccard similarities
of named entities and text matter more than word
count difference (Figure 7). However, the majority
of submitted models perform significantly better
than the baseline models.

4.3 Nuanced Inputs: Multiple Fields,
Fine-tuning, & Feature Engineering

In addition to the main body of the articles, most
systems leveraged information from multiple fields
such as their titles and descriptions. All systems

involved deep neural embeddings of those fields,
with all but one team using Transformer-based
architectures. The top-ranking system used sev-
eral techniques to optimize an XLM-RoBERTa-
based model without further feature engineering.
Accurately embedding multiple fields of the arti-
cles appears a crucial source of performance. Sys-
tems that engaged in fine-tuning or continued pre-
training the embeddings scored higher on average.
Yet, there was no clear pattern on which architec-
ture would produce performant representations for
the task. In particular, the teams offered mixed
evidence on the superiority of bi-embedding over
cross-embedding approaches for the task. For ex-
ample, teams Nikkei and SkoltechNLP found bi-
encoders to outperform cross-encoders, whereas
team HFL found the opposite (Ishihara and Shirai,
2022; Kuimov et al., 2022; Xu et al., 2022).

To improve upon the baseline of the sole embed-
dings (albeit often marginally), 10 teams experi-
mented with additional feature engineering. Sev-
eral teams explored forms of keyword and named-
entity extraction. These approaches were arguably
promising in that they mirrored the process of sam-
pling,8 though the results offer no conclusive ev-

8The sampling process was not shared with teams.
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idence. Similarly, teams also tested strategies to
focus the input around the most informative parts
of the articles. This was due to multiple factors:
first, the limitations of Transformer-based architec-
tures which can only handle limited-length input;
second, a small but consistent number of errors in
automatically parsing the articles adding noise to
the text; and last, the nature of the task: according
to the “inverted pyramid” writing style, the start of
a news article often summarizes the most important
information. Thus, participants experimented with
splicing the article body, which led to performance
improvements.

4.4 Tackling Generalization: Multilingual,
Augmentation, & Learning Strategies

A challenging characteristic of the task is the pres-
ence of cross-lingual pairs of articles—with several
new language combinations introduced first in the
evaluation data. The teams approached the chal-
lenge by resorting to multilingual embeddings or
machine translating the articles to a high-resource
language. The best-performing systems employed
a combination of both approaches, multilingual
embeddings and translation, as part of a broader
strategy for data augmentation. Furthermore, the
best-performing systems resorted to forms of en-
semble learning such as stacking, which offered
a further way to improve the generalization of the
models (with the exceptions of teams TCU and
dina (Luo et al., 2022; Pisarevskaya and Zubiaga,
2022)). With few exceptions (see Jobanputra and
Rodriguez, 2022), optimizing for multiple tasks
also seems to improve performance—e.g., the top-
ranking system jointly learns all seven dimensions
of similarity provided in the training data.

4.5 Simplicity–Performance Trade-Offs
While the best-performing systems explore sophis-
ticated designs and techniques, the teams also sug-
gested simpler methods that prove surprisingly ef-
fective. In fact, several teams found that simple
systems outperformed more complex approaches
in their experiments. A system that relies on pre-
trained embeddings without fine-tuning achieved a
performance of 0.759 Pearson’s correlation coeffi-
cient (Wangsadirdja et al., 2022) vis-à-vis the top
score of 0.818 (Xu et al., 2022). Similarly, a base-
line regressing over two features—shared named
entities and cosine similarity between the article
embeddings—scored as high as 0.677 (Sandeep
et al., 2022). Finally, several teams reported per-
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Figure 8: The variance of models’ error against pairs
with the same GEO/ENT as a function of GEO/ENT
(left) and an average of models’ error against pairs that
were at least somewhat similar in GEO, ENT, TIME,
and NAR (right).

formance improvement by using lexical features
without particular adaptation to the cross-lingual
settings of this task (e.g., teams Nikkei & TMA:
Ishihara and Shirai, 2022; Stefanovitch, 2022). In
a nutshell, carefully reflecting the characteristics
of the task into the system design can lead to good
performance even with simpler models.

4.6 Error Analysis

In this section, we analyze the errors of submitted
models. Twenty-one teams achieved an accuracy
of at least 0.70, and we focus our error analysis on
these teams.

First, we compute the correlation between each
model’s error (absolute difference between the pre-
dicted OVERALL and the OVERALL reported
by the annotators) and the sub-dimensions (GEO,
ENT, TIME, and NAR) for each pair. We find a
strong Pearson correlation between the variance of
errors and the GEO and ENT sub-dimensions: the
correlation for GEO is 0.97, while for ENT it is
0.88 (Figure 8, left).

We hypothesized that if there is a pair with high
similarity in terms of GEO, ENT, TIME, and NAR
but dissimilar in terms of the OVERALL label,
then models will have difficulties against this pair.
To test this hypothesis, we select only pairs that
are Somewhat/Very Similar in terms of GEO, ENT,
TIME, and NAR dimensions. Then, we report
how the average error of models varies for different
OVERALL ratings. We expect that the average er-
ror will be higher for pairs with higher OVERALL
values (i.e., pairs that are more dissimilar overall).
Figure 8 (right) shows the result of this analysis.
We can see that there is a strong correlation be-
tween the average of error and the OVERALL la-
bel. The Pearson correlation between the error and
OVERALL for the selected pairs is 0.88.
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5 Discussion

Multilingual news article similarity is a challenging
problem despite sharing some characteristics with
Semantic Text Similarity. Participants in this Sem-
Eval task tried a number of innovative approaches
to the problem. Systems that used multiple parts
of the article (headline, body, publication date) and
systems that fine-tuned or otherwise trained embed-
dings generally performed better than those that
did not. The best-performing systems generally
combined multilingual embeddings and translation.
Nonetheless, there was no clear consensus as to the
best architectures, embedding models, or prepro-
cessing to perform on the data.

There were clear variations across languages,
and more work is needed to create multilingual
systems that work across diverse language combi-
nations. Errors were particularly common when
the news articles shared some similarity in terms
of their geographic focus, temporal focus, named
entities, and narratives but were nonetheless dis-
similar overall. While the best-submitted model
achieved a very high correlation of 0.82 with gold
standard labels, the best human annotator reached
0.88 correlation, which suggests ample space for
further progress.9

Our dataset is drawn from the first half of
2020 and covers several geopolitical events (e.g.,
BlackLivesMatter) as well as the first wave of the
COVID-19 pandemic. The nearly 10,000 annotated
pairs of news articles across 18 combinations of
10 different languages will enable exciting devel-
opments in natural language processing methods
as well as social science studies of how the global
media reported on this unique period.
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Team Rank Max Score Mean Score

HFL 1 0.818 0.788
GateNLP-UShef 2 0.801 0.781
cyk1337 3 0.792 0.682
ITNLP2022 4 0.784 0.633
EMBEDDIA 5 0.784 0.685
L3i 6 0.783 0.688
DataScience-Polimi 7 0.790 0.656
HuaAMS 8 0.771 0.759
WueDevils 9 0.759 0.711
DartmouthCS 10 0.748 0.509
aim 11 0.748 0.686
Nikkei 12 0.743 0.718
SkoltechNLP 13 0.734 0.596
Andi 14 0.726 0.723
Team Innovators 15 0.733 0.690
BUT 16 0.726 0.588
sebduf 17 0.706 0.701
BL.Research 18 0.703 0.688
OversampledML 19 0.701 0.679
TCU 20 0.715 0.511
Ormus 21 0.701 0.567
LSX_team5 22 0.572 0.572
dina 23 0.507 0.228
Elena_Shu 24 0.492 0.332
naizihan 25 0.475 0.411
TMA 26 0.507 0.352
IIIT-MLNS 27 0.441 0.301
rahul19266 28 0.350 0.268
EAS 29 0.391 0.163

(a) Multilingual Setting

Team Rank Max Score Mean Score

HFL 1 0.872 0.839
EMBEDDIA 2 0.855 0.704
L3i 3 0.855 0.786
WueDevils 4 0.857 0.822
DataScience-Polimi 5 0.873 0.770
DartmouthCS 6 0.845 0.647
cyk1337 7 0.837 0.725
ITNLP2022 8 0.833 0.777
aim 9 0.839 0.773
GateNLP-UShef 10 0.833 0.813
SkoltechNLP 11 0.871 0.716
BL.Research 12 0.828 0.820
sebduf 13 0.824 0.821
OversampledML 14 0.814 0.794
Team Innovators 15 0.829 0.764
HuaAMS 16 0.804 0.792
naizihan 17 0.783 0.676
BUT 18 0.779 0.685
Andi 19 0.771 0.762
Nikkei 20 0.765 0.742
Ormus 21 0.767 0.673
TCU 22 0.755 0.743
LSX_team5 23 0.683 0.683
TMA 24 0.740 0.557
Elena_Shu 25 0.623 0.421
dina 26 0.624 0.306
EAS 27 0.659 0.346
IIIT-MLNS 28 0.542 0.350
rahul19266 29 0.366 0.299
us241077 30 0.226 0.226

(b) English-only Setting

Table A1: Rankings for each team in the official mulingual setting and in the optional English-only setting, in which
one additional team participated. The final team rankings shown here were computed through the bootstrapping
process described in §3.3. We additionally report the maximum and mean scores (Pearson r) for each team, which
largely correspond to the same ranking as our bootstrapping process.

0.00

0.25

0.50

0.75

fr fr−pl en es es−en de−en it zh−en pl−en tr es−it overall ru zh de ar pl de−pl de−fr
Language(s)

P
ea

rs
on

's
 c

or
re

la
tio

n 
co

ef
fic

ie
nt

Figure A1: Distribution of the highest Pearson’s correlation coefficients achieved by each team per language.
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Abstract

In this paper, we present the participation of
the EMBEDDIA team in the SemEval-2022
Task 8 (Multilingual News Article Similarity).
We cover several techniques and propose differ-
ent methods for finding the multilingual news
article similarity by exploring the dataset in
its entirety. We take advantage of the textual
content of the articles, the provided metadata
(e.g., titles, keywords, topics), the translated
articles, the images (those that were available),
and knowledge graph-based representations for
entities and relations present in the articles. We,
then, compute the semantic similarity between
the different features and predict through re-
gression the similarity scores. Our findings
show that, while our proposed methods ob-
tained promising results, exploiting the seman-
tic textual similarity with sentence represen-
tations is unbeatable. Finally, in the official
SemEval-2022 Task 8, we ranked fifth in the
overall team ranking cross-lingual results, and
second in the English-only results.

1 Introduction

Detecting news stories related to a single theme and
combining them into news clusters has been an in-
creasing interest in the creation of news aggregators
that consolidate thousands of articles from differ-
ent publishers and websites (Pranjić et al., 2020).
Tracking similarity of news coverage between dif-
ferent outlets or regions has also been urgent and
challenging. For example, whether previously with
Ebola or recently with the COVID-19 pandemic,
monitoring and containment of infectious disease
outbreaks has remained a key component of public
health strategy to contain the diseases. The ability

∗* Equal contribution from all the authors.

to track disease outbreaks in an accurate manner is
critical in the deployment of efficient intervention
measures. As such reports may not only be in En-
glish, there is also a need for effective multilingual
systems. Hence, recent research has been focused
on the area of identifying similarities between doc-
uments, phrases, stories, etc.

Semantic textual similarity (STS) deals with de-
termining how similar two groups of sentences are
by measuring their semantic similarity. Over the
years, several solutions were proposed to assess
STS. The most general approach is pre-training on
massive datasets before fine-tuning on subsequent
downstream tasks (Jiang et al., 2020; Raffel et al.,
2019; Lan et al., 2019; Yang et al., 2019; Liu et al.,
2019; Sanh et al., 2019). Other works considered
finding the similarity by classifying texts using
BERT-based models (Devlin et al., 2019) with a
pair of sentences packed together as input (Yang
et al., 2019; Liu et al., 2019; Sanh et al., 2019;
Wang et al., 2019).

The SemEval-2022 Task 8 (Multilingual News
Article Similarity) (Chen et al., 2022) aimed at de-
veloping systems that identify multilingual news
articles that provide similar information by rating
them on a real-valued [1− 4] scale, from most to
least similar.

In this paper, we cover several techniques and
propose different methods for finding the multilin-
gual news article similarity by exploring different
aspects of the dataset. We consider that the textual
content, the provided metadata (e.g. title, keywords,
topics), representative images corresponding to the
news articles, and knowledge graph-based repre-
sentations for entities and relations present in the ar-
ticles, would draw on a multiplicity of modes, all of
which contribute to the meaning and the main story
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of the news articles. Moreover, we also translate
the articles to a high-resource language (English)
in order to assess the ability of our models in an
English-only context. Therefore, we investigate the
multimodality of the data by experimenting with
sentence, image, and knowledge graph embeddings
in two scenarios: (1) by directly computing the se-
mantic similarity between the different features and
(2) by learning through regression and predicting
the similarity scores.

2 Data

The training data has 4,964 article pairs from seven
languages (English, German, Spanish, Arabic, Pol-
ish, Turkish, and French) and gold standard simi-
larity scores for six dimensions (Geography, Enti-
ties, Time, Narrative, Style, Tone), plus the Overall
score. The final evaluation data has 4,902 pairs and
three “surprise” languages that were not present in
the training data (Chinese, Italian, and Russian)1.

Train Eval
Monolingual pairs 4,387 3,462
Cross-lingual pairs 577 1,440
Unseen language pairs NA 2,000
Total 4,964 4,902
Top image 6,755 7,569

Table 1: Training and evaluation data statistics.

Moreover, the metadata includes the article titles,
several specific topics and keywords, and links to
representative images. The statistics of the training
and final evaluation data are in Table 1. Since some
of our methods use images, we also report in the
table a total number of images we were able to
download for the datasets. We use only images
from the URL specified as top_image in the JSON
files of the articles.

3 Experiments

Next, we detail all our approaches and perform a de-
tailed error analysis2. The evaluation is performed
in terms of Pearson correlation. Our results are pre-
sented in Table 2. Each type of approach is detailed
with the corresponding pre-trained models3. Also,

1For both sets, we were able to download around 98% of
the articles.

2Our code is available at https://github.com/
bkolosk1/semeval-2022-MNS

3All models are available at https://huggingface.
co/.

each type of model has an id corresponding to the
subsection number is detailed (1a, 2b, etc.).

3.1 Semantic Textual Similarity
A straightforward solution for finding the similar-
ity between two texts is approaching it with sen-
tence embeddings. Thus, we start our experimental
setup by encoding the articles with Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019), a mod-
ified pre-trained BERT (Devlin et al., 2019) that
uses a siamese and triplet network structure to de-
rive semantically meaningful sentence embeddings
that can be compared using cosine similarity. We
explore this approach by encoding the articles with
SBERT and and using the cosine similarity of arti-
cles pairs as the predicted Overall score. For these
experiments, we used the default hyperparameters
provided by Reimers and Gurevych (2019).

Similarity based We first concatenate the title
and the textual content of each article, and due
to the multilingual characteristic of the data, we
encode the textual sequence with a pre-trained mul-
tilingual SBERT model and compute the Pearson
correlation between the cosine similarity of these
sentence embeddings and the gold labels, results
presented in Table 2 (1a). Then, we experiment
with machine translating all the non-English arti-
cles to English using Google Translate and use an
English SBERT model. The results are presented
in Table 2 (1b).

Regression based We fine-tune the SBERT
model on the multilingual pairs, results presented in
Table 2 (1c) and on the machine-translated articles,
results presented in Table 2 (1d). For fine-tuning,
we use only the Overall score as the target similar-
ity score. Since the similarity scores provided in
the training data are in the range [1-4] from most
to least similar, we normalize the Overall scores
(the scores provided by cosine similarity are in the
[0, 1] range from least to most similar.

3.2 Image Similarity & Regression
We download the images from the top_image, and
as we can see in Table 1, out of 9,928 articles (4,964
pairs) in the train set, only 6,755 articles (68%) had
a viable image. Out of 9,804 articles in the evalua-
tion set, only 7,569 had a viable image (77%). For
both, only around 60% of the articles had an image
that could be used. Moreover, only around half of
the pairs in both sets have representative images
for both articles. Nonetheless, we attempt using
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Model Pearson-r
Semantic Textual Similarity & Regression

(1a) SBERT (PARAPHRASE-MULTILINGUAL-MPNET) Similarity 0.6713
(1b) SBERT (ALL-MPNET) - Google Translate Similarity 0.7139
(1c) SBERT (PARAPHRASE-MULTILINGUAL-MPNET) Regression 0.7396
(1d) SBERT (ALL-MPNET) - Google Translate Regression 0.7835

Image Similarity & Regression
(2a) Images (CLIP-VIT-PATCH32) Similarity 0.2991
(2b) Cross-images (CLIP-VIT-PATCH32) Similarity 0.2607
(2c) Images (CLIP-VIT-PATCH32) Regression 0.1043
(2d) Images (VIT-LARGE-PATCH32) Regression 0.1124

Knowledge Graph Similarity & Regression
(3a) KGm+LSA+SBERT (DISTILBERT+XLM-ROBERTA+ROBERTA) Similarity 0.7128
(3b) KGm+LSA+SBERT (DISTILBERT) Regression 0.5134

Text & Image Regression
(4a) Text+metadata (XLM-ROBERTA-LARGE) Regression 0.7773
(4b) Text+metadata+images (XLM-ROBERTA-BASE+CLIP-VIT-PATCH32) Regression 0.7020
(4c) Text+metadata+images (XLM-ROBERTA-LARGE+VIT-LARGE-PATCH32) Regression 0.7335

Table 2: Correlation between similarity scores from the proposed models and the Overall score.

them in our approaches. We experiment with two
recent pre-trained models, CLIP (Radford et al.,
2021) and ViT (Dosovitskiy et al., 2020).

Similarity based We obtain the image embed-
dings with CLIP, compute the cosine similarity
between the paired images, and report the Pear-
son correlation between the obtained similarities
and the gold labels. The results are presented in
Table 2 (2a). For the missing images, we assign
the default cosine similarity of 0.5. We also ex-
periment with an alternative strategy, which takes
advantage of the fact that CLIP is a multimodal
model and produces images and text embeddings
in the same space, Cross-images. In this strategy,
we compute all possible similarities between data
points: image-to-image, text-to-text, and image-
to-text. In the best case, when both images are
available, this results in a total of four similarity
values. In the worst case scenario, when no images
are present, only the similarity between texts is
used. If only one image is available, the strategy
results in two similarities: text-to-image and text-
to-text. The final score is obtained by averaging
the similarities available. Surprisingly, this strategy
works slightly worse than an approach based solely
on images, as can be seen in Table 2 (2b).

Regression based This method is detailed in Sec-
tion 3.4. The results are presented in Table 2 (2c
and 2d).

3.3 Knowledge Graph Similarity &
Regression

We use the Wikidata5m (Wang et al., 2021) knowl-
edge graph (KG) to retrieve knowledge-based fea-
tures as used by Koloski et al. (2022). Similarly, we
exploit six different knowledge graph embeddings:
transE (Bordes et al., 2013), rotatE (Sun et al.,
2019), complEx (Trouillon et al., 2016), distmult
(Yang et al., 2015), simplE (Kazemi and Poole,
2018), and quate (Zhang et al., 2019). We use
GraphVite (Zhu et al., 2019), a system for training
node embeddings, pre-trained on aforementioned
embeddings of the Wikidata KG. For these exper-
iments, we use the translated articles. We con-
catenate the title and text of the articles to search
n-grams of sizes 1, 2, and 3, as potential concepts
appearing in the KG. After extracting potential can-
didates, we extract the embeddings of the candi-
dates from the KG. In addition, we generate latent
semantic analysis (LSA), SBERT and stats repre-
sentations as done by Koloski et al. (2021). The
results are in Table 2 (3a and 3b).

Similarity based First, we generate all ten fea-
ture spaces. Next, we generate combinations of
feature spaces (1,024 combinations in total), we
concatenate and normalize them (KGm). Finally,
we find thresholds to estimate the similarity scores,
with respect to the Overall label. Our best results
are presented in Table 2 (3a).
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Regression based We utilize all six of the afore-
mentioned KG representations, LSA and Distil-
BERT (Sanh et al., 2019) SBERT representations.
Next, we use a singular value decomposition (SVD)
to generate a new latent space of the devised fea-
tures and we proceed to train a feed-forward neural
network on the whole target space. Our best results
are presented in Table 2 (3b).

3.4 Text & Image Regression Models
We also propose a classical approach that consid-
ers the task of finding the similarity between two
articles by considering it as a regression task, and
by predicting the similarity for the Overall score.
This approach consists of a pre-trained and fine-
tuned language model (BERT (Devlin et al., 2019)
pre-trained on multilingual data). Because these
models expect input data in a specific format, we
need a special token, [SEP] or <sep>, to mark the
end of a sentence or the separation between two
sentences, and [CLS] or </s>, at the beginning of a
text generally used for classification or regression
tasks.

Regression based After the pair of articles are
tokenized and together encoded with [CLS] at the
start and then separated by [SEP], they are passed
through the encoder. Similarly, images are passed
through a ViT encoder. For the missing images,
we generate a fake white image. The BERT output
token representations are afterward concatenated
with the [CLS] representation and Vit output im-
age representation followed by a linear layer for
regression. The learning of the model is conducted
end-to-end by optimizing an objective correspond-
ing to Overall prediction. For these experiments,
we utilized AdamW (Kingma and Ba, 2014) with a
learning rate of 1× 10−5 for 2 epochs with mean
squared error (MSE) loss. We also consider a max-
imum sentence length of 512 (the maximum possi-
ble accepted by BERT or RoBERTa). These results
are presented in Table 2 (from 4a to 4d).

4 Error Analysis

Semantic Textual Similarity We can substan-
tially improve the English-only model (1d) for STS
by fine-tuning not just with monolingual English
pairs from the training data but by using all the
machine-translated pairs. However, we observe
some cases where our best performing fine-tuned
model is misled by similar turns of phrase even if
the article pair covers different events. We show

extracts from an article pair in Table 3 that cov-
ers a fire and a traffic accident, respectively. The
gold Overall score for this pair is 4.0 (very dissimi-
lar) but our best-performing model scores it at 3.1
(somewhat dissimilar) due to the similar phrasing
that opens the articles and the mention of the same
named entities.

Article1 Article2
1492472369 (EN): At least one per-
son has been confirmed dead, fol-
lowing Saturday’s fire that gutted the
Mgbuka Obosi Spare Parts Market
in Idemili North Local Government
Area of Anambra . . . Mr Edwin
Okadigbo, the Public Relations Offi-
cer of the Nigeria Security and Civil
Defence Corps (NSCDC), Anambra
command . . .

1530831511 (EN): At least, one per-
son has been confirmed dead . . . in
a road mishap that involved a commer-
cial bus and a motorcycle in Mbosi
junction, Ihiala Local Government
Area of Anambra State on Tues-
day . . . Spokesperson of the Nigeria
Security and Civil Defence Corps,
NSCDC in Anambra State, Edwin
Okadigbo said preliminary . . .

Table 3: Extracts from an article pair with a predicted
Overall similarity score of 3.159 by SBERT translated
model (1d) and a gold-standard score is 4.0. We high-
light similar terms are in bold.

Figure 1: Two pairs of similar English articles (gold
score of 1.0 for both) correctly predicted by the image-
based model (1.28 & 1.0), and incorrectly predicted by
SBERT (1.83 & 1.63).

Figure 2: A pair of marginally similar Russian articles
(gold score of 2.0), which is an unseen language during
training, correctly predicted by the image-based model
(1.64), and incorrectly predicted by SBERT (2.94).

Image Similarity & Regression We analyze the
scores predicted by two textual-based methods,
(1d) SBERT with the best scores when using only
images (2a). Out of 4,902 pairs in the evaluation
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Figure 3: Similarity scores for the article pairs with
available images for the image-based model, Images
(2a) and Text+metadata (4c).

set (Table 1), only 2,009 have representative im-
ages for both news articles. Thus, we look closer at
the predictions for these pairs and notice that 13%
of them (262 pairs) are correctly predicted by (2a),
and not by (1d), all of these being images with ei-
ther faces or clearly identifiable texts or text boxes,
as shown in Figure 1 for two pairs of English arti-
cles. We also give an example where this model
is able to better distinguish the similarity between
two articles in an unseen language (Russian) in Fig-
ure 2, where the articles discuss the same topic but
describe different events.

Knowledge Graph Similarity & Regression
We analyze the representations of articles based
on the number of concepts retrieved from the Wiki-
Data5m. The most frequent concepts include en-
tities such as government, coronavirus, epidemic,
report, information, death, and economy, show-
ing us that most of the articles report about the
COVID-19 pandemic. The distribution of concepts
per document is shown in Figure 4. Originally, the
Wikidata5m KG is based only on English concepts.
We notice a performance drop for the non-English
articles, due to the translation to English, some
original concepts are lost and replaced with an-
other. For the training set, we retrieved an average
of 55 concepts per article, while for the evaluation
set we obtained 54 concepts per article. The low-
est amount of retrieved concepts was one and the
highest was 757.

Text & Image Regression Figure 3 presents the
Images (2a) similarity scores in comparison with

Figure 4: Distribution of KG concepts in the train and
evaluation sets.

Text+metadata (4b) and Text+metadata+images
(4d) similarity scores. First, the results for
Text+metadata (4a) seem to be rather similarly dis-
tributed to those provided by SBERT, with a slight
difference in the monolingual pairs with a gold
score of 1.5, while SBERT generally predicts a
similarity of 2.5. When using image representa-
tions, not surprisingly, we notice that the results for
Images (2a) generally stay around an average of
2.0. This shows that having only around half of the
train and evaluation sets with images is not enough
to help distinguish between news articles.

SemEval-2022 Task 8 In the official SemEval-
2022 Task 8, we ranked fifth in the overall team
ranking for multilingual and cross-lingual results,
and second in the English-only results. Our best
performing model for both is SBERT finetuned on
the STS task.

5 Conclusions

In this paper, we covered several techniques
for assessing the similarity between multilingual
and monolingual news articles in the context of
SemEval-2022 Task 8 Multilingual News Article
Similarity. We notice that, even if using images
and knowledge graph representations give promis-
ing results, approaching STS with sentence embed-
dings is still unbeatable. However, images, being
a language-agnostic medium, could be helpful if
they depict people or text boxes. Future work could
include an adaptable inclusion of images (for han-
dling missing images) and the usage of multilingual
knowledge graph representations.
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Abstract

This paper describes our system designed for
SemEval-2022 Task 8: Multilingual News Ar-
ticle Similarity. We proposed a linguistics-
inspired model trained with a few task-specific
strategies. The main techniques of our system
are: 1) data augmentation, 2) multi-label loss,
3) adapted R-Drop, 4) samples reconstruction
with the head-tail combination. We also present
a brief analysis of some negative methods like
two-tower architecture. Our system ranked 1st
on the leaderboard while achieving a Pearson’s
Correlation Coefficient of 0.818 on the official
evaluation set.

1 Introduction

In Task 8 (Chen et al., 2022), we are expected to
assess the similarity of pairs of multilingual news
articles as shown in Table 1. Ten different lan-
guages are covered in this task, including Spanish,
Italian, German, English, Chinese, Arabic, Polish,
French, Turkish and Russian. Task 8 emphasizes
more the events themselves described in the news
rather than the style of writing or other subjective
characteristics. Therefore, it is beneficial to im-
prove the quality of clustering of news articles and
to explore similar news coverage across different
outlets or regions.

The foundation model (Bommasani et al., 2021)
we choose is XLM-RoBERTa (XLM-R) (Conneau
et al., 2019) which has been proved to be a powerful
multilingual pre-trained language model compared
with other models like mBERT (Devlin et al., 2018)
and it can process all the languages existing in Task
8. Based on that, a great variety of strategies have
been tested along with our exploration like data
augmentation (DA), head-tail combination, multi-
label loss, adapted R-Drop, etc.

Through this task, we realized the importance of
data quality and efficient training schemes in such
a cross-lingual setting. By struggling to improve

the richness of the data and find out what meth-
ods are effective when training such a similarity
assessment model, our system1 ranked 1st in this
competition.

2 Background

2.1 Dataset Description
There are 4,964 samples with 8 language pairs in
the training set and the test set contains 4,593 sam-
ples in 18 different language pairs, the details of
which are presented in Table 2. Due to some inac-
cessible URLs, the training set is slightly smaller
than it should be (22 samples missing in total).

The similarity scores of pairs of articles in the
provided dataset are rated on a 4-point scale (be-
tween 1 and 4) from most to least similar in 7 sub-
dimensions, including Geography, Entities, Time,
Narrative, Overall, Style and Tone (an example is
provided in Appendix). However, only the pre-
dictions for Overall will be used to evaluate the
performance of our systems.

2.2 Related Work
Research on text similarity always attracts people’s
eyes as it acts as the basis of quite a few NLP
downstream tasks like information retrieval (Ponte
and Croft, 2017). Previously, some methods based
on statistics like BM25 (Trotman et al., 2014) and
Edit Distance (Ristad and Yianilos, 1998) are used
to evaluate the relevance between two texts but
they do not work anymore in cross-lingual settings.
Then, after dense word embedding in low dimen-
sions like Word2Vec (Mikolov et al., 2013) was put
forward, methods like calculating the cosine sim-
ilarity (Rahutomo et al., 2012) with the sentence
embedding based on each word embedding came
into use. However, it is hard for these approaches to
capture the latent meaning of the whole article pre-
cisely. Nowadays, depending on transformer-based

1Our codes are available at https://github.com/
GeekDream-x/SemEval2022-Task8-TonyX
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Key Value

Pair_id 1626170156_1623571850
Lang1/Lang2 de/en

News1 US-Bürgerrechtler verklagen Trump wegen Polizeieinsatzes. Der Einsatz am Montag sei gesetzwidrig
gewesen, da die Demonstranten sich friedlich verhalten hätten, ...... Tod des Afroamerikaners George
Floyd bei einem brutalen Polizeieinsatz in Minneapolis ausgelöst worden. Im Zuge der Proteste kam es
immer wieder zu Ausschreitungen.

News2 Joe Biden Addresses The Nation On Race And Trump’s Attacks On Protesters Via the Washington Post:
Seeking to console a nation riven by nights of violence with a promise to heal its racial wounds, ...... —
“I can’t breathe” — as a mantra. Floyd, an unarmed black man, died after a police officer knelt on his
neck in Minneapolis.

Scores Geography 1.0 Entities 2.0 Time 1.0 Narrative 2.0 Overall 4.0 Style 2.0 Tone 1.0

Table 1: An example in the training set.

Figure 1: The overall framework of our system proposed
for SemEval-2022 Task 8.

general pre-trained models are becoming the new
paradigm and plenty of models for multilingual
and cross-lingual settings have been proposed like
mBERT (Devlin et al., 2018), ERNIE-M (Ouyang
et al., 2020) and XLM-R (Conneau et al., 2019).

3 System Overview

Our baseline system is simply providing a pair of
articles to XLM-R and regressing its output from
[CLS] token to the manually annotated similarity
score by training with Mean Squared Error (MSE).
All the optimization methods discussed below are
applied based on this architecture and the overall
framework of our final system is illustrated in Fig-
ure 1. After training with all the positive strategies,
we then made an ensemble of the best models on
each fold for the final prediction.

3.1 Data Augmentation

In this task, we augmented the training data in
two different ways and they will be introduced
respectively in the following subsections.

3.1.1 Back Translation
It is clear from Table 2 that the original training
set is not sufficient to train XLM-R, so we made
use of back-translation to enrich it. As the English
pairs account for the largest, we only paid attention
to the non-English samples in this stage. Take
the French samples for example, by calling Google
Translation API2, we translate the French articles to
English and then translate the English texts back to
French. As for the cross-lingual pairs with German
and English, we only back-translate the German
part and then combine it with the corresponding
English part to form a new sample.

3.1.2 Translate Train
Another weakness of the original training set is the
severe lack of some monolingual language pairs
which exist in the test set but not in the training set
like Chinese and quite a few cross-lingual language
pairs like German to French. To deal with this
problem, we planned to generate translate-train
data to fill the gap.

In such semantic comprehension tasks, it is un-
doubted that the richer semantic information is, the
better the model performance will be. Therefore,
for maintaining the semantic richness to the largest
extent, we made an arrangement for the construc-
tion of the translate-train set (details are provided
in Table 3).

As the average quantity of non-English monolin-
gual samples in the training set is 430, for the sake

2https://cloud.google.com/translate
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ar de en es fr it pl ru tr zh de-en de-fr de-pl es-en es-it fr-pl pl-en zh-en Total

Train 274 857 1787 567 72 0 349 0 462 0 574 0 0 0 0 0 0 0 4942
Test 298 611 236 243 111 442 224 287 275 769 190 116 35 498 320 11 64 223 4953
Train+DA 548 1714 1787 1134 461 586 689 401 924 800 1148 317 0 586 586 0 349 800 12830

Table 2: Data distribution in each set. Columns with one language (e.g. “zh”) mean the two articles in a pair are in
the same language. Columns with two languages (e.g. “zh-en”) indicate the corresponding cross-lingual pairs.

Origin Quantity Target

en-en
401 ru-ru
800 zh-zh / zh-en
586 it-it / es-en / es-it

pl-pl 349 pl-en

de-en 317 de-fr / fr-fr

Table 3: Arrangement for the construction of translate-
train set.

of balancing the whole dataset, we decided to round
it down to 400 and let it be the number of trans-
lated samples for Russian (due to some precision
issues, it became 401 accidentally). As we may
know, Russian and English both belong to Indo-
European Family (Fortson IV, 2011) while Chinese
is a member of the Sino-Tibetan Family (Thurgood
and LaPolla, 2016), which indicates that there are
quite a lot of common characteristics between the
two languages like syntactic structures and lexical
analysis methods. So, the most English samples in
the original training set would help more in under-
standing Russian instead of Chinese. Therefore, we
decided to generate more Chinese pairs and here
we just doubled the number for Russian. Further-
more, the English samples left were all used for
generating samples in Italian and Spanish.

In order to improve the reusability of those sam-
ples newly translated already, some work on recom-
bination among different languages pairs was done
in this phase. For instance, translating German to
English samples to French would let us get German
to French samples in the meantime.

3.2 Head-tail Combination
There is no doubt that different types of texts have
different features. As for news, the title tends to
be the most informative place in each article since
the authors need to use as few concise words as
possible to let the readers know what happened in
the story. Besides, we believe the head and tail
parts of a news article provide much information
as well as similar to the introduction and conclu-
sion parts in a research paper. As the XLM-R is

Figure 2: Cumulative probability distribution of article
lengths in the training set.

capable of processing 512 tokens in each sequence
(a pair of articles) at most and the large majority of
articles in the training set are much longer than 256
tokens (see Figure 2), we tried different truncation
strategies to further boost the model performance.

3.3 Multi-label Loss
As introduced in Background, only the predictions
for Overall will be used to evaluate, but the other
6 sub-dimensions are also probably helpful for as-
sisting in building a better model. Consequently,
we tried to assign various weights for Overall
when calculating the loss while treating other sub-
dimensions equally. For example, if the loss for
Overall accounts for 40%, the percentages of the
other six sub-dimensions are all 10% individually.

3.4 Adapted R-Drop
R-Drop is proved to be an effective regularization
method based on dropout, by minimizing the KL-
divergence of the output distributions of every two
sub-models generated via dropout in model training
(Liang et al., 2021). To better fit with this regres-
sion task, we replaced the KL-divergence loss with
MSE loss (adapted R-Drop). Similarly, at each
training step, we feed the samples through the for-
ward pass of the network twice. Then, our adapted
R-Drop method tries to regularize the model by
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minimizing the two predicted scores for the same
sample, which is:

Li
R = MSE(yi1, y

i
2)

where the yi1 means the model output in the first
forward pass for the ith sample. With the basic
MSE loss LB of the two forward passes:

Li
B =

1

2
· (MSE(yi1, ŷ

i) + MSE(yi2, ŷ
i))

where the ŷi is the label of the ith sample, the final
training target is minimizing Li for ith sample:

Li = α · Li
R + (1− α) · Li

B

where the α is the weight for the adapted R-Drop
loss. Based on this introduction, it is easy to extend
the formulas to those of forwarding three times.

3.5 Extra Linear Layers

In our baseline system, the prediction score is
generated by passing the output of [CLS] token
from XLM-R through a single linear layer with the
size of (1024, 1). In other words, there are only
1024 parameters that are responsible for the regres-
sion from the sentence representation vector to the
prediction score, which is probably beyond their
power. Hence, we attempted to add a few more
layers on top of the XLM-R.

3.6 Post-processing

Once getting the prediction scores, we further cor-
rected some wrong numbers which were outside
the expected range. As introduced in Section 2.1,
the annotators annotated the similarity in the range
(1, 4); consequently, we clipped the outliers.

4 Experimental setup

4.1 Dataset Split

Both the original training set and the training set
with DA set were split into 10 subsets with no inter-
section by random sampling. All the experiments
discussed in this paper were conducted with 10-
fold cross-validation, and the results displayed are
the averages. By using the cross-validation method
(Browne, 2000), we could ensure the strategies ap-
plied will take a good effect on the final test set to
the largest extent.

System Pearson’s CC

w/ data augmentation

Baseline 83.49
+ DA 85.86

w/o data augmentation

Baseline 84.94
+ Head-tail Combination 85.38
+ Multi-label Loss 85.33
+ Adapted R-Drop 86.14
+ Extra Linear Layers 85.50

Table 4: Best results with training methods we used.

4.2 Pre-processing
The news articles in all the data sets are released
as URLs and the task organizers offer us a python
script3 which helps to download the pages. Af-
ter downloading the original files in JSON format,
we then extracted and combined “title” and “text”
parts of each article and abandoned all other infor-
mation like “description”. Before starting training
our model, apart from conducting data augmenta-
tion to the training set, we also cleaned the data
and joined the head and tail parts of each article.
During the process of cleaning, we mainly removed
some dirty formatted data like URLs and file paths.

4.3 Evaluation Metrics
The evaluation metric for task 8 is the Pearson’s
Correlation Coefficient (Pearson’s CC) which is a
measure of linear correlation between two series of
data with a range from -1 to 1 (from least to most
correlated) (Stigler, 1989).

4.4 Others
Although hyper-parameters tuning is not a crucial
point in our work, we tested a few values for sev-
eral of them within a small range as they did have
an influence on our decisions about how well a
strategy worked (see Appendix). Additionally, to
help readers replicate our experiments, the details
of tools and libraries are provided (see Appendix).

5 Results

5.1 Overall Performance
Finally, our system got 0.818 on the evaluation
set according to the official scoring system and

3https://github.com/euagendas/semeval_
8_2022_ia_downloader
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Head Tail Pearson’s CC

256 0 84.94
200 56 85.38
128 128 85.21
56 200 84.53
0 256 78.85

Table 5: Results on different head-tail combinations.

ranked 1st. As results are shown in Table 4, all
the strategies introduced in Section 3 turned out
to have positive effects, and we will discuss the
effect of the strategies mentioned individually in
the following subsections. For convenience, all the
results from our experiments are multiplied by 100.

5.2 Data Augmentation

To find out whether the augmented data was helpful
or not, we trained our system on the original train-
ing set and the training set with DA respectively
(samples used for testing were removed in both of
them), then tested it on each fold of the DA set.
In experiments on other strategies, we trained and
tested our system on the original training set. And
this is the difference between the two baselines in
Table 4.

Without any surprise, an evident increase is ob-
served from the results displayed in the top part of
Table 4, based on which we could make a conclu-
sion that a more abundant training set is definitely
beneficial for building a strong system.

5.3 Head-tail Combination

As introduced in Section 3.2, we realized the impor-
tance of the head and tail parts of the news articles.
However, we cannot determine which part should
be paid more attention to heuristically. So, we tried
on different ratios of head-tail combination and the
results are enumerated in Table 5. Clearly, the head
part plays a much more important role by compar-
ing the first and last rows where only either of them
are used. However, from the middle three rows
where the head and tail parts are combined, it is
indicated that the tail part also benefits the whole
model performance.

5.4 Multi-label Loss

As discussed in Section 3.3, we used other 6 dimen-
sions and assigned a few different values for the
weight of Overall from 0% to 100%. It is explicitly

Figure 3: Results on training with multi-label loss.

observed from Figure 3 that there is an overwhelm-
ing increase followed by a slight drop while the
weight of Overall rises gradually. Based on the ex-
periment results, we believe that Overall is of the
greatest importance to this task, yet the other 6 sub-
dimensions also have a positive effect on achieving
a better similarity assessment system.

5.5 Adapted R-drop

As described in Section 3.4, the training loss in
our system is composed of both the loss between
predictions and labels and the loss between the
predictions from different forwarding processes.
Here, we explored forwarding once to three times
while changing the weight of adapted R-Drop loss.

Apparently, there is a phenomenon from Figure
4 that no matter how large the weight of R-Drop
loss is, the more forwarding times are, the better
results we will achieve. However, by comparing the
results between forwarding once and twice and the
results between forwarding twice and three times,
we speculate that there is a marginal utility (Kauder,
2015) on this trick, which means the additional
benefit from this method will decrease while simply
continuing increasing the number of forwarding.

5.6 Extra Linear Layers

During the process of exploration in this direction,
we attempted to add 2 or 3 extra linear layers to
test if it worked. In the 2-layer setting, the sizes of
the layers are (1024, 512) and (512, 1) while sizes
composed of (1024, 768), (768, 256) and (256, 1)
are prepared for the 3-layer setting. Two sets of
experiments were conducted in both settings about
whether to put an activation layer (we used GELU
(Hendrycks and Gimpel, 2016) here) between adja-
cent linear layers or not.

It can be observed from Table 6 that there is only
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Figure 4: Results about adapted R-Drop (RD) in differ-
ent settings. “2F” means forwarding twice.

System Pearson’s CC

1-layer 84.94
2-layer 85.46

+ activation 85.50
3-layer 85.32

+ activation 85.23

Table 6: Results on different extra layers.

a quite small difference that caused by activation
layers in each setting and the effect of that is not
always positive. In addition, by comparing the
results from different settings, we could draw a
conclusion that more parameters did help to boost
the system performance even if the benefit does not
show linear growth.

5.7 Negative Results

Aside from the strategies discussed above, several
tricks that were attempted to deploy in our system
as well turned out to be meaningless or had a bad
effect on the model performance. For example,
we tried to use a pooling vector (max or mean) or
the fusion of [CLS] vectors from different layers
in XLM-R as the article representation. We also
tried to expand the length of sentences that XLM-R
could process to 1024 tokens by modifying its po-
sition embedding matrix by means of adding a ran-
dom shift vector after each vector or just randomly
initializing the latter part of the learnable expanded
matrix. Each negative strategy mentioned above
brought approximately at least 2 points drop on the
Pearson’s CC. Furthermore, unsurprisingly, a two-
tower architecture where each shared-parameter
model processed each article in a pair led to scores

en de es pl tr

87.19 84.96 86.64 75.29 83.54

ar ru zh fr it

79.42 78.47 76.78 86.53 86.17

es-en de-en pl-en zh-en

86.35 85.98 88.18 81.00

es-it de-fr de-pl fr-pl

81.97 68.89 64.31 82.68

Table 7: Individual results of all language pairs in our
best submission.

of points decrease, which reflected the importance
of semantic interaction via the attention mechanism
inside the model.

5.8 Error Analysis

After the evaluation phase ended, the evaluation
data with labels were provided and we also checked
the system performance on different language pairs
individually. The details of our best submission are
presented in Table 7. It is obvious that the model
tends to perform worse on the language pairs which
are rare or absent from the training set like German
to Polish (only 64.31). Interestingly, although hav-
ing seen monolingual samples in Polish and related
cross-lingual data, the system still behaves badly
on Polish monolingual data (just slightly over 75),
which is probably due to its complicated lexical
variation and grammar rules (Smoczynska, 2017).

6 Conclusion

By deploying various optimization methods, in-
cluding data augmentation, head-tail combination,
multi-label loss, adapted R-Drop and adding extra
linear layers, we built a relatively strong system
for assessing the similarity between a pair of news
articles in multilingual and cross-lingual settings
and ranked 1st in the competition with a Pearson’s
CC of 0.818 on the official evaluation set.

In the future, apart from enriching the training
data, we are also supposed to analyze the languages
individually and try to leverage the exclusive rules
or features of each language rather than relying too
heavily on general pre-trained models to further
boost the model performance, especially on those
minority languages.
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Abstract

This paper describes the second-placed system
on the leaderboard of SemEval-2022 Task 8:
Multilingual News Article Similarity. We pro-
pose an entity-enriched Siamese Transformer
which computes news article similarity based
on different sub-dimensions, such as the shared
narrative, entities, location and time of the
event discussed in the news article. Our system
exploits a Siamese network architecture using
a Transformer encoder to learn document-level
representations for the purpose of capturing
the narrative together with the auxiliary entity-
based features extracted from the news articles.
The intuition behind using all these features
together is to capture the similarity between
news articles at different granularity levels and
to assess the extent to which different news
outlets write about “the same events”. Our ex-
perimental results and detailed ablation study
demonstrate the effectiveness and the validity
of our proposed method.

1 Introduction

News article similarity measures could facilitate
various important tasks such as the clustering of
news (Montalvo et al., 2007; Azzopardi and Staff,
2012), duplicate news detection (Alonso et al.,
2013; Gibson et al., 2008; Singh et al., 2021a;
Theobald et al., 2008), fact-checking (Hassan et al.,
2017; Jiang et al., 2021) and tracking of the spread
of news (Zhai and Shah, 2005). SemEval-2022
task 8 (Chen et al., 2022) assesses the similarity be-
tween news articles in terms of the real world hap-
penings. Therefore, it mainly considers the loca-
tion, time, entities and narratives, instead of writing
style, political spin, or tone of the article. The train-
ing set comprises of monolingual and cross-lingual
news articles pairs in 10 different languages.

The main contributions in this paper are: 1) We
propose an entity-enriched Siamese Transformer
whose general idea is to enable the model to ex-
plicitly learn from entity features (geolocation, or-

ganization, date and quantity) that are crucial to
determine the similarity between news events but
difficult to extract directly from the language mod-
els during fine-tuning. 2) We explore different data
augmentation approaches through semi-supervised
learning in order to tackle the imbalanced data prob-
lem. 3) We compare our proposed model with
strong baselines and conduct an ablation study to
analyse the contribution of each component in our
model. We also present an error analysis at the end
of this paper. Our best system which exploits Lan-
guage Agnostic BERT Sentence Representations
(Feng et al., 2020) ranks 2nd in the competition.

2 Background

The goal of the task is to predict similarity scores
ranging from 1 (most similar) to 4 (least similar) for
a give news article pair. The training data consists
of 4,964 article pairs in seven distinct languages
(English, German, Spanish, Turkish, Polish, Ara-
bic and French), with seven groups of monolingual
pairs and only one group of cross-lingual pair (Ger-
man and English). The 4,902 pairs in test data
feature three more languages (Chinese, Russian
and Italian) and seven groups of new cross-lingual
pairs. Appendix A.1 (Figure 3) shows the distri-
bution of the train and test data. Most of the news
pairs exhibit low level of similarity. However, the
test set contains more pairs with the same news
stories. The similarity based on location, time, en-
tities, narratives, style and tone is also annotated
respectively and given for the training data.

Previous studies on textual similarity have in-
vestigated different approaches based on cor-
pus, knowledge or deep neural network (Chan-
drasekaran and Mago, 2021; Gomaa et al., 2013;
Devlin et al., 2019; Reimers and Gurevych, 2019;
Thakur et al., 2021a; Singh et al., 2021b), but they
mainly experiment with short text pairs (e.g., the
Semantic Textual Similarity (STS) benchmark (Cer
et al., 2017), which is a sentence-level task). Mea-
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surement of the document similarity is arguably
more challenging than that of short text since the in-
formation in the document is sparse and the model
is easier to be misled by non-essential content. This
paper tries to tackle the above mentioned chal-
lenges to build robust models for document simi-
larity (Section 3).

3 System Overview

We propose an entity-enriched Siamese Trans-
former model which exploits multiple multilin-
gual pre-trained Transformers (MPT) for multi-
lingual news document similarity. The main sub-
dimensions of similarity as annotated by the anno-
tators are geolocation, time, shared entities and the
shared narratives between the news articles (Chen
et al., 2022)1. All this information is encoded in
our model to capture different dimensions of news
articles. Figure 1 shows the architecture of our pro-
posed model and section 3.1 discusses its details.

3.1 Model Details

Reimers and Gurevych (2019) propose a Siamese
and triplet network training methodology for the
BERT-based (Devlin et al., 2019) models to derive
semantically meaningful sentence embeddings. In-
stead of just learning the sentence representations,
we use the Siamese (or bi-encoder) network archi-
tecture to learn document-level representations for
the purpose of capturing the narrative of the article.

In this work, we test multiple MPT models as the
backbone Transformer (Vaswani et al., 2017) en-
coder for our Siamese network and train the model
using a regression objective function (Reimers and
Gurevych, 2019). In this, the model is trained such
that it forces contextual representations from simi-
lar documents close to each other in contrast to dis-
similar documents by reducing the mean squared
error loss between the overall similarity score and
the cosine similarity between document representa-
tions. First, we concatenate title and news article
text together to generate a single document. For
the documents that lie beyond the maximum input
sequence length for the model, we truncate their
length and use the initial part of the document as a
proxy for its fundamental narrative that is usually
stated in the title and the lead paragraphs of news
articles.

1https://competitions.codalab.org/
competitions/33835

In an effort to explicitly capture other dimen-
sions of the news article such as mentions of geolo-
cation, event date, organisations and other named
entities, we use SpaCy NER2 to extract entities
from the documents. For the non-English docu-
ments, we use their machine translated English
versions to extract the entities (Fan et al., 2021).3

All the extracted entities are aggregated into four
different types of entities. The entity types along
with their SpaCy labels (in brackets) are:

• Geolocation (GEO): Location (LOC) and
geopolitical entities (GPE) which includes
mentions of countries, cities, states etc.

• Organization (ORG): Name of organization
(ORG), person (PERSON) and mentions of
other important named entities (FAC, EVENT,
NORP, PRODUCT, WORK_OF_ART) which
can include names of airports, highways,
sports events, religious or political groups etc.

• Date (DATE): Date of publish from train-
ing set and date (DATE) and time (TIME)
extracted from the news articles.

• Quantity (QTY): Mentions of numerical
quantity (QUANTITY) which can include
both ordinal and cardinal measurements (OR-
DINAL, CARDINAL).

After extracting the list of all the above men-
tioned entities for both the documents, we lower-
case all the entities and compute the cosine similar-
ity to get a single similarity score which we use as
feature for further training. The complete algorithm
to compute similarity between entities is presented
at Algorithm 1. We use the cosine scores of these
four additional entity features along with the shared
narrative score from Siamese Transformer to train
a multilayer perceptron (MLP) with sigmoid acti-
vation to get the final news article similarity score.
Overall, only the Siamese Transformer model is
differentiable and all other are non-differentiable
static features before the MLP layer. It is worth
noting that both the Siamese Transformer and the
MLP layer are trained separately and not jointly.
The intuition behind using all these features to-
gether is to capture the similarity between news
articles with different granularity and to assess the
extent to which outlets write about same events.

2Pre-trained model en_core_web_trf is used for our exper-
iments. Ref. https://spacy.io/models

3Pre-trained model m2m_100_418M is used for our ex-
periments. Ref. https://github.com/pytorch/
fairseq
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Figure 1: Entity-enriched Siamese Transformer model

Algorithm 1 Similarity between list of entities

function SIMILARITY(A,B)
▷ where A and B are list of entities

Entities←− Union (A, B)
Product←− Sum(A.count(ent)*B.count(ent)

for ent in Entities)
MagnitudeA ←− Sqrt(Sum(A.count(ent)2

for ent in Entities))
MagnitudeB ←− Sqrt(Sum(B.count(ent)2

for ent in Entities))
Score←− Product / ( MagnitudeA * Magni-

tudeB )
return Score

end function

3.2 Semi-Supervised Learning

One of the issues with the training dataset is its
imbalanced nature, i.e. there are considerably more
document pairs with low similarity scores as com-
pared to pairs with high similarity scores (Figure
3). In order to upsample the instances with high
similarity, we first augment the training set and
then adopt a semi-supervised training methodol-
ogy to train the model. For this, we first explore
randomly sampling document pairs and label them
using our previous best model trained on the train-
ing set. However, we found that random sampling
does not generate good quality augmented training
data as most of the generated pairs still lie in the
similarity range of [0.0,0.2]. Therefore, we employ
the augmentation strategy similar to one proposed
by Thakur et al. (2021b), i.e. BM25 sampling, for
which we use the Elasticsearch4 implementation of
BM25 to generate augmented article pairs. How-

4https://www.elastic.co/elasticsearch/

ever, our method is slightly different where we use
the title of a news article as a query for retriev-
ing other news article to get the document pairs.
This helped the generation of documents pairs with
similarity score that are more evenly distributed.
A total of 59,943 additional document pairs were
generated using the BM25 sampling and 2,845 doc-
ument pairs were generated using machine trans-
lation. The complete details of the generation of
augmented data is mentioned in Appendix A.2.

Semi-supervised learning (Zhu and Goldberg,
2009) is a widely known training paradigm where
a model is first trained on a human labelled dataset
and the model is further used to extend the train-
ing set by automatically annotating the unlabelled
dataset. Following previous studies (Thakur et al.,
2021b; Jurkiewicz et al., 2020), we initially start
with training on the original training set and then
for all the generated unlabelled document pairs, we
use the previously trained model for inference to
get the similarity scores for the new synthetic doc-
ument pairs. Finally, we train our entity-enriched
Siamese Transformer in a semi-supervised fashion
on both the complete augmented training set.

4 Experimental Setup

The training set contain 4,964 article pairs, how-
ever, after removing pairs with empty documents
or if one of the document has less than ten tokens,
we get a total of 4,544 article pairs for training. For
the experiments, the training set is split into train
and development sets using a 80:20 split ratio. The
data is split in a stratified fashion to keep equal pro-
portion of all languages, except Arabic document
pairs that only appear in the development set, keep-
ing it as a unseen language for the training set We
get a total of 3,635 document pairs for the training
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set and 909 document pairs for the development
set. In the end, we train models on the complete
train and development set for final evaluation on
the test set consisting of 4,953 document pairs.

The training set has different types of labels
which take into account different aspects of simi-
larity among news articles (e.g., geolocation, narra-
tive) (Chen et al., 2022). For our experiments, we
use the “Overall” similarity as the true labels. How-
ever, the overall similarity label is in a range [1,4]
where 1 signifies highest similarity and 4 means
lowest similarity. In order to normalise these over-
all similarity label, we subtract all values from 4 to
bring values in range [0,3], followed by min-max
normalisation. The formula for this is as follows,

xnorm =
x− xmin

xmax − xmin
=

4− x
3

(1)

where x denotes the overall similarity value and
xnorm is the normalised value in range [0,1] from
least similar to most similar. We use these as labels
for training our models.

Since there are no baselines provided by task or-
ganisers, we use strong baseline methods for com-
parison. First, we use separate entity-based cosine
similarity scores (Section 3.1) to find the Pearson
correlation with the official test set labels. Sec-
ond, we use Siamese multilingual BERT (Devlin
et al., 2019), XLM-RoBERTa base variant (Con-
neau et al., 2020), Universal Sentence Encoder
(USE)5 (Yang et al., 2020) and LaBSE (Feng et al.,
2020). Third, we also use the pre-trained MPNet6

(Song et al., 2020) and fine-tuned it on the ma-
chine translated English training set. Please refer
to Appendix A.3 for training details and the hyper-
parameters used in our experiments.

5 Results and Discussion

Table 1 shows the Pearson correlation coefficient
scores on the official test data. The first part of the
Table 1 presents the results of the baseline meth-
ods and the second part presents the results of our
proposed model. For baselines, we find that if we
just consider the entity-based features without train-
ing, organisation (ORG) achieves the highest Pear-

5We employ a custom variant of USE model
which supports 50+ languages. Ref. https:
//huggingface.co/sentence-transformers/
distiluse-base-multilingual-cased-v2

6We employ a custom MPNet model which already fine-
tuned on a 1 billion sentence pairs dataset with contrastive
training objective. Ref. https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

son correlation with the official test set. Further-
more, for the trained Siamese Transformer models,
the LaBSE works best and the XLM-RoBERTa
achieves the lowest score of around 0.70.

The second part of Table 1 shows the results of
our entity-enriched Siamese Transformer trained
on the augmented data using the semi-supervised
learning paradigm. Training the Siamese Trans-
former on the augmented data brings significant
improvements for all the models except USE when
compared with the ones trained on the training
set without augmentation. A potential explanation
for LaBSE’s impressive performance is the MLM
and TLM pre-training objective on a dataset of
109 different languages, followed by training on
a translation ranking task (Feng et al., 2020). We
also test the Siamese Transformer both with and
without the entity-enrichment in order to study how
significant the improvements are statistically with
entity features. Furthermore, we use Williams test
(Graham and Baldwin, 2014) to test the statisti-
cal significance of increased correlation with the
added auxiliary entity features. As shown in the Ta-
ble 1, for all Siamese Transformers trained on the
augmented data, entity-enrichment brings improve-
ments in results to a statistically significant degree
(p-value<0.01). We also find that the results of
entity-enriched Siamese Transformers are statisti-
cally significant (p-value<0.01) when compared
with the baseline Siamese Transformers for all
the models. Overall, our entity-enriched Siamese
LaBSE model trained on augmented data achieves
the highest Pearson correlation of 0.80164.

Figure 2 presents the detailed analysis of the
results for the entity-enriched Siamese LaBSE
trained on augmented data model (best model). We
observe that model performance varies in differ-
ent language settings. The model performs the
worst over German-French pairs (0.619), while it
achieves the highest score on French-Polish arti-
cles (0.866). Overall, the model performs better on
mono-lingual pairs than on cross-lingual pairs.

We further analyse the "serious mistakes" that
our best model tends to make: giving high/low
similarity scores for dissimilar/similar article pairs.
We identify these instances based on the difference
between the true similarity score and the predicted
similarity score from the model. We examine the
cases when the absolute values of the differences
are larger than 2.0 (total 46 samples found), and
observe that: 1) News pairs that cover different
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Experiments Test Results P-value
Baselines
Geolocation (GEO) 0.26696
Organisation (ORG) 0.45503
Date (DATE) 0.43482
Quantity (QTY) 0.35791
Siamese mBERT 0.73069
Siamese XLM-RoBERTa 0.70775
Siamese USE 0.73324
Siamese MPNet (English MT) 0.74536
Siamese LaBSE 0.79187
Proposed Method
Siamese mBERT (Augmented data) 0.76649
Entity-enriched Siamese mBERT (Augmented data) 0.76771 <0.0001
Siamese XLM-RoBERTa (Augmented data) 0.77669
Entity-enriched Siamese XLM-RoBERTa (Augmented data) 0.77781 <0.0001
Siamese USE (Augmented data) 0.73320
Entity-enriched Siamese USE (Augmented data) 0.73590 <0.0001
Siamese LaBSE (Augmented data) 0.80089
Entity-enriched Siamese LaBSE (Augmented data) 0.80164 0.0022

Table 1: Pearson correlation coefficient score on the official test data. The best performance is in bold.
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Figure 2: Performance over different language pairs in
official test data. Average score of mono-lingual and
cross-lingual pairs is 0.79833 and 0.78205 respectively.

stories around the same entities or topics are more
challenging for the model. For example, the model
outputs a similarity score of 1.77 for the following
dissimilar news pair: an article about COVID-19
quarantine policy in Azerbaijan and another one
regarding sanitary rules for preventing COVID-19
in Azerbaijan. 2) Web scraping could introduce
noises in the model evaluation and obscure the true
performance. We find that the scraping tool pro-
vided by the organizer fails to extract the real news
content for all the Arabic news from Ahewar news
website. The banner of the news website is re-
turned instead. If we ignore the 25 pairs involving
news from this website in the official test set, the

Pearson correlation coefficient score over the Ara-
bic data increases significantly from 0.69425 (2nd
worst in Figure 2) to 0.84067 (4th best). 3) The
model tends to overestimate the degree of similarity.
Among the 46 "serious mistakes", only 15 of them
are similar news pairs with predictions indicating
dissimilarity. And these wrong predictions are all
caused by scraping-related issues (the real content
of news is not returned). However, we argue that
our entity features may potentially increase the ro-
bustness and decrease the level of overestimation.
We compare the performance between models with
and without entity features. The results show that
the differences between true label and prediction
decrease for 22 of the 31 dissimilar news pairs.

6 Conclusion

We introduce an entity-enriched Siamese Trans-
former for SemEval-2022 Task 8: Multilingual
News Article Similarity. The error analysis shows
that the entity-enrichment leads to statistically sig-
nificant improvement and make models more ro-
bust for computing similarity between news articles
in both monolingual and cross-lingual setting. Our
entity-enriched LaBSE model achieves a Pearson
Correlation of 0.802, ranking 2nd in the competi-
tion. The code is available at https://github.
com/iknoorjobs/semeval-code.
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A Appendix

A.1 Data Distribution
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Figure 3: Distribution of training and test data

A.2 Augmented Data Generation

The details of augmented data used in our experi-
ments is as follows,

Augment Data 1. In this, we used the training
set provided by organisers where the title of the
article is used as a query to all the other articles in
the training set that are indexed in Elasticsearch. If
title or article are not in English, then the English
machine translated version is used to perform the
retrieval. Also, we exclude the cases of document
pairs that are already present in the training set.
We generated 25,125 by using the top 5 retrieved
documents for each case.

Augment Data 2. We machine translated the En-
glish document pairs with overall similarity score
in range of [0.5-1] to other languages. We only
choose to translate document pairs that are English
to get a good quality machine translated augmented
training data. For this we randomly sampled five
different language pairs from the list of language
pairs that follow the same distribution as that of
language pairs found in the test set and machine
translated the documents7 (Fan et al., 2021). We
generated 2845 additional document pairs using
this augmentation strategy.

7Pre-trained model m2m_100_418M is used for our ex-
periments. Ref. https://github.com/pytorch/
fairseq
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Augment Data 3. Here, we utilised “All the
news” dataset available on Kaggle8 which contains
143,000 articles from 15 American publications.
Here, title from the SemEval training set is used as
query to all the articles in Kaggle new datasets. We
generated 34,818 document pairs using the top 5
retrieved documents.

In our experiments, we use augment data 1, 2
and 3 which constitute a total of 62,788 additional
document pairs and use them all together along
with the training set to train the models.

A.3 Hyperparameters
The Transformer encoder of our Siamese Trans-
former (shared parameters) model is trained for 4
epochs with a batch size of 8, learning rate of 2e-5
and maximal input sequence length of 512. The
output of model along with entity features is passed
to the MLP layer which is composed of 32 hidden
units trained with learning rate of 1e-3. The output
of this MLP layer is used to get the final similarity
score for the news articles. Adam (Kingma and
Ba, 2015) is used to optimize the model param-
eters. For all the experiments, the model which
works the best on the dev set is submitted and eval-
uated on the test set provided by the task organisers.
All experiments are conducted on a machine with
NVIDIA GeForce RTX 3090.

8https://www.kaggle.com/snapcrack/
all-the-news
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Abstract

This work is about finding the similarity be-
tween a pair of news articles. There are seven
different objective similarity metrics provided
in the dataset for each pair and the news ar-
ticles are in multiple different languages. On
top of the pre-trained embedding model, we
calculated cosine similarity for baseline re-
sults and feed-forward neural network was
then trained on top of it to improve the results.
We also built separate pipelines for each sim-
ilarity metric for feature extraction. We could
see significant improvement from baseline re-
sults using feature extraction and feed-forward
neural network.

1 Introduction

For finding similarity between two documents,
the general approach is to get the embeddings
for the documents and use some similarity met-
ric like cosine similarity to get similarity mea-
sures. Such work has been done in multiple
domains like research papers, semantic similar-
ity (Olizarenko and Radchenko, 2021) (Boom
et al., 2015) document similarity (Ostendorff et al.,
2020) (Rushkin, 2020) and for news articles (Wat-
ters and Wang, 2000) (Singh and Singh, 2020)
(Blokh and Alexandrov, 2017). There have been
other works to find similarity between documents
of multiple languages (Potthast et al., 2008) as
well. The most significant difference here is that
authors have used subjective similarity measures
like writing style and authorship for these works.

We do feature extraction corresponding to each
similarity metric via a unique feature extraction
pipeline. For example, for geolocation, we extract
the locations from the text. To make it a domain-
specific task, we train a network on top of the
generic similarity pre-trained embedding model.

To test our approach, we use a pre-trained
model for sentence similarity based on S-BERT
(Reimers and Gurevych, 2019a) (Devlin et al.,

2019). We calculate cosine similarity (Rahutomo
et al., 2012) as our baseline on the embedding of
the documents. We train a feed-forward network
on top of the pre-trained embedding to learn about
our domain-specific task. We also use a large pre-
trained model, which can take more words as input
and compare the results. Our approaches result in
an almost 60% MSE improvement over the base-
line model.

Our contributions are mentioned below:
• We implement a strong paraphrase-

multilingual-MiniLM baseline and show
significant gains in MSE by adding a feed-
forward neural network on top to learn
domain specific knowledge.

• We do domain-specific feature extraction for
each similarity metric to prevent model from
learning incorrect information. This feature
extraction helps improve the final metrics for
the task.

• We do qualitative result analysis and show
that the baseline model does not learn rele-
vant information for location/time/entity for
the corresponding metrics. We observe that
after adding feature extraction, the model
learns metric specific information.

2 System Description

2.1 Feature Extraction

We extract the entities from the text using Stanza
(Qi et al., 2020). Stanza is a python natural
language analysis library that contains tools for
parsing sentences, recognize named entities etc.
Through our experiments we observe that for sim-
ilarity measures like geography, entities and time,
we just need to extract those relevant named enti-
ties from the text. To do this, we build seven stanza
pipelines for the seven similarity measures. Fea-
ture extraction for each of the metric is described
below.

1129



1. Geography: We extract the location from the
article for each pair. If Stanza cannot ex-
tract the location, we use the entire text as
the embedding. We linearize the location and
feed them to the pre-trained model if there are
multiple locations. For example, if there are
four locations in the article, the output of the
pre-trained model is [4, embedding size]. To
further linearize the input, we take the mean
of all the rows, so the linearized input dims is
[1, embedding size]. We repeat this process
for the other news articles and calculate the
cosine similarity between the two articles.

2. Entities: We extract all the named entities
from the article for each pair. We linearize
the input in the same way as geography, cal-
culating the cosine similarity. There were no
cases in this dataset where stanza was unable
to extract entities, but in case there are, they
will be handled similarly to location.

3. Time: We extracted time and date entities
from the articles for each pair. If Stanza can-
not extract the time entity, we create an em-
bedding for the entire text instead of the time.
The rest of the processing is similar to Geog-
raphy and entities.

4. For Narrative, Style, Tone and Overall, we
give the entire text as input to the pre-trained
embedding and calculate the similarity based
on that. In general, for this slightly subjective
measure, the neural network learns the repre-
sentations on its own.

Using the feature extraction defined above, we
build our baseline model. Initially, we were giv-
ing entire text as input for location class but were
getting similar results (less overfitted but worse on
test data). We hypothesized that it might be be-
cause the model is not learning about specific lo-
cation class entities but looking at the overall text.
To confirm this hypothesis, we took two news arti-
cles that were outputting highly similar scores for
location and manually changed the location of one
article to some random place. The result was that
the model was still outputting the two articles as
quite similar, which showed that the model was
not learning correctly. We extracted just the enti-
ties for an objective metric like location, time, and
entities and gave that as input to the model. We
are making sure that the model is not learning the
wrong information to get correct results.

In the future, we can to try to extract the depen-

dency parse of the sentence and give it as an input
to the pre-trained embedding as another step in the
feature extraction task. We hypothesize that for
the style and tone metric giving the dependency
parse of sentence as input to the neural network
will improve the results. This is because style and
tone of writing is author specific and depends on
the writing style of the author which a dependency
parse of the sentence can capture, but we have not
used that approach for this paper.

2.2 Baseline Model
For the baseline model, we used the en-en arti-
cles as our dataset. We then do feature extraction
to extract relevant features from the article corre-
sponding to the similarity metric. After that, we
got the embeddings for these pairs from the pre-
trained model for sentence similarity (miniLM-v6)
(Reimers and Gurevych, 2019a) and calculated the
cosine similarity to find similarity between the ar-
ticles and calculated the loss for each similarity
metric separately.

Limitation The issue with the approaches done
historically is that the similarity metrics were sub-
jective, like comparing two documents to see if
the same author has written them or not. For such
tasks, semantic and syntactic features of the doc-
ument play a vital role. For our task, we need to
focus more on the article’s content. For the base-
line model that we create, there are two signifi-
cant issues. First, we use en-en articles to train the
model. To test, we translate other language articles
to English using Google translate. This approach
is error-prone as it compounds the error. Second, if
we directly use the cosine similarity of two embed-
ding from a generic document similarity model,
we do not take advantage of the domain-specific
task. For example, the document similarity in the
case of medical documents will be much different
in the case of research documents.

3 Proposed approaches

3.1 Feed-forward network
The first idea is to take advantage of the domain-
specific task in this work. To do this, we train a
feedforward model on top of the baseline to learn
document similarity for the news articles domain.
To implement this idea, we concatenated the em-
bedding that we got using the pipeline in Figure 1.
This input is fed through a three-layer neural net-
work with a ReLU activation function after each
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Figure 1: Pipeline for the task. The figure depicts
the pipeline for similarity generation containing pre-
processing, stanza feature extraction, and pre-trained
S-BERT model steps. If we remove the feed-forward
and directly calculate the similarity score, that is our
baseline model.

layer. The final layer is passed through a softmax
layer to get the similarity score between 0 to 1.
This model uses MSE loss between the output and
predicted value as the loss function, and the opti-
mizer used to train this network is SGD.

3.2 Doc S-BERT
Doc S-BERT is a BERT-base document similar-
ity model that is also called bert-base-nli-mean-
tokens. The amount of resources needed to use a
base pre-trained model for BERT is much more,
but the idea behind using the large doc similar-
ity model is due to a shortcoming in the miniLM
model. The miniLM model takes a maximum of
256 words of a document, after which it trun-
cates the rest of the document. The input text
length went up to 1000 words, so we believe there
is a loss of important information if we use the
miniLM model. Both Doc S-BERT and MiniLM
models belong to the family of Siamese BERT
(Figure 2) (Reimers and Gurevych, 2019b) mod-
els.

3.3 Multilingual S-BERT
The idea is to use a multilingual pre-trained model
to generate embedding instead of converting other

Figure 2: Architecture of S-BERT (Reimers and
Gurevych, 2019b)

languages to English to prevent the compound-
ing of errors. We use a multilingual pre-trained
similarity embedding generating model. Multilin-
gual miniLM is a single model that is pre-trained
for multiple languages. The model is called
’paraphrase-multilingual-MiniLM-L12-v2’. The
output embedding dimension from this is similar
to our previous model, and the constraints are also
similar. We hypothesize that if we can remove
the compounding of errors, the multilingual model
should give better results than the baseline.

4 Experimental Setup

4.1 Evaluation Measures

The dataset rates similarity metric between 1 to 4,
where 1 means most similar, and 4 means most
dissimilar. To convert this score to a more usable
metric, we subtracted it from the max (4) and di-
vided it by max-min (4-1). The score gets normal-
ized between 0 to 1, with 1 being most similar and
0 being most dissimilar. This score is treated as a
regression problem as the scores are rated contin-
uously between 1 to 4 with small buckets.

To evaluate our model, we use MSE loss as the
metric. Since we treat this as a regression problem,
MSE loss is a good way to judge how the model
performance.
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Mean squared error MSE =
1

n

n∑

t=1

e2t

where et is the difference between predicted and
actual value.

We have also set a tolerance value to get the ac-
curacy. We have tried different values of tolerance
to see how our results vary.

If the predicted and actual value difference is
less than tolerance, we predict it as a true label;
otherwise, we predict it as a false label. We take
the mean over the dataset to get the accuracy.

4.2 Preprocessing
We download news articles as HTML files from
the URLs given in the dataset. We use beautiful
soup to extract the headings and body of the text
in the news article and store the metadata in JSON
files for each article id. There was some junk data
appended at the end of the news article that we
manually removed in many articles. We removed
the stop words from these articles because our pre-
trained model has a word limit in the input docu-
ment.

4.3 Experimental design
We used the dataset provided by the task organiz-
ers 1. The train dataset has 4964 pairs of news arti-
cles with different language articles. En-en:1800,
de-de:857, de-en:577, es-es: 570, tr-tr: 465, pl-pl:
349, ar-ar: 274, fr-fr: 72. We split the dataset into
train and test sets with the division as 67:33. We
did not use a validation set since the dataset was
tiny.

We used a variation of S-BERT for all four
approaches as the embeddings generation pre-
trained model. For baseline and first approach, we
use a miniLM model. We use a large miniLM
model for the second approach. For the third
approach, we used a small multilingual miniLM
model. The input truncates after 256 words in
the first approach (miniLM FFN) and the third ap-
proach(multilingual miniLM). For the second ap-
proach (Doc-S-BERT), the input truncates after
256 words.

The output of the embedding size from the
small pre-trained model is (384,1). The input to
the neural network will be two * embedding size
since we concatenate the two article embeddings
in our approach, it will be (768,1). We use a

1URL of the dataset https://competitions.
codalab.org/competitions/33835#learn_
the_details-timetable.

three layer feedforward network with layer sizes
as (120, 84, 1). After each layer, we feed the in-
put through a ReLU activation function. The final
layer is passed through a softmax layer to get the
similarity score between 0 to 1. There are seven
models for each similarity metric as the input is
different for each.

We train the model using SGD with the learn-
ing rate at 0.01 and momentum at 0.9. The loss
function we chose to train this model is MSE. We
trained the model for eight epochs (Early stop-
ping) as the input size was small, and the model
started overfitting on the data.

5 Result and analysis

5.1 Baseline

For location, the MSE loss that we got is around
0.15 (Table 1). The result is as expected as we hy-
pothesized that just extracting the location entities
should give us a good match for similarity. If we
allow the threshold to be high (0.5), the accuracy,
in this case, is around 0.82. Since its regression,
we need to decide the threshold to calculate a met-
ric like an accuracy. With a threshold of 0.33, ac-
curacy was around 0.67. A low threshold like 0.2
gives an accuracy of 0.47.

Similarly, for time similarity, we got the MSE
as 0.132 (Table 1) and the accuracy with 0.5 tol-
erance as 0.834. Comparatively, for time, the per-
formance of cosine similarity is good, which is the
expected behavior from our initial thoughts since
it is a simple task of extracting time from an article
and checking its similarity.

For entities similarity, we got the MSE as 0.288
(Table 1) and the accuracy with 0.5 tolerance as
0.507. The results are much worse for entities
as compared to other results. Our initial thought
was that cosine similarity should work with sim-
ple tasks like entity similarity. We observed that
each article has more than 20 entities at the least,
so doing mean of all entities makes it lose all nec-
essary information. We might need to think of a
more innovative way of using cosine similarity in
this case or use the neural model.

As can be seen from the table, Overall class and
Narrative class show promising results, which is
intuitive as the text-similarity of the entire article
captures the narrative class and the overall class
similarity. As expected, Style class and Tone class
do not show that great accuracy as both style and
tone require hidden features like semantic and syn-
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Metric baseline
(cosine-
sim) MSE

miniLM
(ap-
proach1)
MSE

doc-
SBERT
MSE

M-
miniLM-
cosine-
sim MSE

M-
miniLM-
MSE

Geography 0.15 0.135 0.164 0.175 0.134
Time 0.132 0.074 0.079 0.171 0.109
Entity 0.288 0.106 0.098 0.327 0.133
Narrative 0.129 0.119 0.131 0.258 0.127
Style 0.192 0.075 0.085 0.136 0.081
Tone 0.187 0.077 0.077 0.131 0.075
Overall 0.131 0.122 0.132 0.248 0.128

Table 1: Results of different approaches

tactic parse of the sentence, which text embedding
similarity cannot capture. These results show the
need for neural models to find these hidden fea-
tures with little help from feature extraction if re-
quired.

5.2 miniLM

As we can see clearly from the table (Table 1),
using a feed-forward network on top of the pre-
trained embedding to make it a domain-specific
task decreases the loss and improves the results for
almost all similarity metrics. These results con-
firm our hypothesis for domain-specific knowl-
edge.

Our hypothesis for location class not perform-
ing well is that the pre-trained embedding is for
sentence similarity, all location entities should be
nearby in the embedding space for such models,
and overall it will be hard for such models to learn
the differences between location classes. If we use
a location-specific pre-trained model, we should
get good results.

Also, we can see that the improvement is the
most for entities, which is intuitive. The baseline
model was poorly performing because embedding
all entities averaged did not give any helpful in-
formation. Training a model on top of it allows
the neural model to learn the differences in enti-
ties and output much better results. The logic is
similar for the time similarity metric as well.

We see significant improvement for style and
tone classes as the similarity score loss decreased
from 0.192 and 0.187 to 0.075 and 0.077 (Table
1), respectively. As mentioned previously, these
require semantic and syntactic information of the
text, which a cosine similarity cannot find. The
neural model can learn these differences better and

show significant improvement.
Narrative class and Overall class gave good re-

sults with baseline as they depend on the embed-
ding of the entire text, but the neural model can
improve on those results slightly. These results are
intuitive as the model does not learn meaningful
additional information to improve those metrics.

5.3 Doc S-BERT

Using a large BERT model for sentence similar-
ity did not lead to many significant improvements
in test data (Table 1). The shortcoming of the ini-
tial model was that it truncates the text after 256
words. The reason for these poor results is that
most of the information is present in the head-
lines and the first paragraph of news articles, and
the rest of the article is a detailed explanation of
these texts. This logic makes sense as to why the
larger model is not showing significant improve-
ment. The objective similarity metric can be cal-
culated using these words, generally less than 256
words, and gain insightful results.

5.4 Multilingual miniLM

For the multilingual model, we first look at the
baseline results, which are the cosine similarity
between the embedding.

In Table 1, the most significant difference we
see is between the narrative class and the overall
class. For both these measures, our single lan-
guage model performed much better than the mul-
tilingual model. We hypothesize that because of
multiple languages, the embedding of this model
learns less about the text itself as much as it
learns the semantic and syntactic knowledge of the
words.

This hypothesis can be confirmed by looking at
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the cosine similarity of style class and tone class,
which depends more on these hidden features. As
we can see, the multilingual model is performing
better for these metrics because of the hypothesis
stated above. We were unable to test this hypoth-
esis in great detail but looking through online re-
sources; intuitively, it makes sense.

Even the narrative and overall classes, which
gave terrible results (Table 1) for cosine similar-
ity, have almost the same accuracy as our English
model, which contained only the English data. Us-
ing this model for different language types and still
getting the same results strengthens our idea of us-
ing a multilingual model instead of compounding
the errors.

The test loss for geography in multilingual
miniLM and miniLM is precisely the same, which
shows that the models have been trained simi-
larly for this metric (Table 1). Our hypothesis
in miniLM for location should also hold for this
model.

The multilingual model is giving poor results
for time and entity compared to our previous
model (Table 1), which might be because of the
feature extraction problem for other languages.
We used Stanza to extract the features, but the
overall accuracy is much lower for other lan-
guages than English. To confirm this hypothe-
sis, we looked at the extracted entities from Other
languages, and the number of entities was much
lower than they were in English.

5.5 Best model final results

We experiment with multiple approaches using
different parameters. Overall, the multilingual
model gave us the most consistent results across
all languages. We choose this to be our best model.
Both models performed well in a few languages
but poorly in others. Hence, we chose the most
consistent model across all languages as there can
be unseen instances of language in the test dataset.

We calculated the Pearson correlation coeffi-
cient on the test data to further test this model,
which is the official task metric. On the test data
2 that the task organizers have provided, the coef-
ficient was 0.288 for the multilingual model. The
eval data has 4902 pairs of news articles and ten
languages.

2URL of the dataset https://competitions.
codalab.org/competitions/33835#learn_
the_details-timetable.

One of the biggest reasons for the low coef-
ficient was that both the stanza and multilingual
model did not support pl and tr languages from
the dataset. Further, the multilingual model did
not support a few other languages from the eval
dataset, which were absent in the training dataset.
Due to these two significant shortcomings, our
model performed poorly on a few dataset instances
while performing well on other languages. In
the future, we can try to find other parsers for
Named Entity Recognition and different multilin-
gual models which supports all languages.

5.6 Code
The google drive link for the code for this project
is given here: link for google drive The link con-
tains all the generated files, readme for instruc-
tions, and code.

6 Conclusions

We created an end-to-end pipeline to find similar-
ities between two news articles in this work and
used multiple approaches to find the most optimal
way to calculate similarity. We were able to deal
with the problem of multilingualism best using
a multilingual S-BERT model. We were able to
identify the shortcomings of the pre-trained model
for similarity in the location metric. We also ex-
plored using a large model, which did not signif-
icantly improve the results. On the eval data, the
multilingual model showed decent results even on
unseen languages, which shows that we can extend
the model to other languages with minor changes.
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Abstract

This paper describes our contribution to Se-
mEval 2022 Task 8 on Multilingual News Ar-
ticle Similarity. The aim was to test com-
pletely different approaches and distinguish the
best performing. That is why we’ve consid-
ered systems based on Transformer-based en-
coders, NER-based, and NLI-based methods
(and their combination with SVO dependency
triplets representation). The results prove that
Transformer models produce the best scores.
However, there is space for research and ap-
proaches that give not yet comparable but more
interpretable results.

1 Introduction

The SemEval 2022 Task 8 competition (Chen et al.,
2022) aims to develop systems that identify mul-
tilingual news articles that provide similar infor-
mation. This is a document-level similarity task in
the applied domain of news articles, rating them
pairwise on a 4-point scale from most to least sim-
ilar. The alikeness of news is measured in such a
sense: how similar are them in geography, time,
shared entities, and shared narratives. The devel-
oped approaches for solving the task can be applied
to several different real-world tasks. The first one
is the clustering of news.

A lot of news-providing companies want thou-
sands of articles from different publishers on one
topic to be combined in a single page showing the
news.
Another task is Fake News Detection. This task
has become extremely important to solve lately.
Different articles on the same news story can be
compared to find contradictions in facts and details.
This can be an indicator that the story is fake like it
is shown in (Dementieva and Panchenko, 2021).

2 Related Work

In (Montalvo et al., 2007), authors extract PERSON,
ORGANIZATION and LOCATION named entities

(NE) and compose a vector for each of the cate-
gory with the help of Levenshtein distance function
and TF-IDF weighting function, which combines
Term Frequency (TF) and Inverse Document Fre-
quency (IDF). These 3 vectors are compared to
3 corresponding vectors of the second news with
cosine distance. Obtained scores are combined
with the set of IF-THEN rules. In (Rahimi et al.,
2019) the approach for cross-lingual transfer is
proposed which is evaluated on the Named Entity
Recognition task. Dialogue competition (Gusev
and Smurov, 2021) on Russian news clustering has
produced many promising methods which could
be adopted to the multilingual case. Most of them,
like (Sergei et al., 2021; Glazkova, 2021), are the
variations of fine-tuning the transformer models
and making ensembles.

In (Martín et al., 2021), the authors developed
the pipeline for checking the news on veracity.
They compare embeddings of the news under con-
sideration with ones from the database, using co-
sine distance. Then they take the most similar news
found and apply Natural Language Inference (NLI)
model to obtain the probability that two texts con-
tradict each other. This probability is used to de-
cide whether the input news is fake. However, NLI
scores can be used to find the similarity between
articles.

3 Methodology

To solve the task we have tried several approaches.
In the subsection 3.1 we will give an overview on
methods exploiting pre-trained transformer mod-
els as the foundation. In the next subsection we
will explain how the Natural Language Inference
(NLI) problem can be reduced to the task of News
Article Similarity. Block 3.3 is dedicated to ap-
proaches based on the Named Entities extracted
from the news texts. In the last section, the ap-
proaches which were tested to improve the quality
of prediction during the post-evaluation period will
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be described.

3.1 Transformer-based Pre-trained Encoders

Pre-trained neural masked language models like
BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have shown superior performance on a
wide range of NLP tasks both in monolingual and
multilingual settings. During the work on the task
of the competition, the approach for fine-tuning
Transformers was developed. The following multi-
lingual models were tested: DistilBERT1, BERT2

RoBERTa3, XLM4. All these models support all the
languages included in the competition dataset. Two
different architectures were chosen for fine-tuning
the language models. The first one is based on the
approach for the BERT Next Sentence Prediction
problem described in the original article (Devlin
et al., 2019). We will call it TransformerEncoder-
CLS. The second approach is inspired by the ar-
ticles (Reimers and Gurevych, 2019; Sergei et al.,
2021). It will be labeled as TransformerEncoder-
CosSim from now on.

3.1.1 TransformerEncoderCLS
The general scheme of the approach is shown in
Fig. 1. The Transformer model takes as input 2 tok-
enized news texts separated by [SEP] token, which
is needed for the model to distinguish words from
different texts. Also, this sequence of tokens has
a special [CLS] token in the beginning. Passing
through the layers of the model, each token re-
sults in the embedding vector. All the information
from the sequence is aggregated in the [CLS] to-
ken embedding. That is why we use it as the input
to the regression head, which is the combination
of fully-connected layer and Sigmoid nonlinear-
ity. The linear layer dimensions are emb_len ×
2, where emb_len is the dimension of the hidden
layer. We use the output probability of the first class
as the similarity score. Togeth er with mapped to
[0, 1] range ground true similarity scores, the pre-
dicted scores are passed to the MSE loss function.
Transformers weights are not frozen while training
1 https://huggingface.co/
distilbert-base-multilingual-cased

2 https://huggingface.co/
bert-base-multilingual-cased and
https://huggingface.co/
bert-base-multilingual-uncased

3 https://huggingface.co/
xlm-roberta-base and
https://huggingface.co/
xlm-roberta-large

4 https://huggingface.co/xlm-mlm-17-1280

and initialized from the aforementioned pre-trained
multilingual models. The models were trained on
GPU NVIDIA GeForce RTX 3090 for 10 epochs
with a learning rate of 10−5 and batch size equal to
8.

Figure 1: TransformersEncoderCLS architecture,
depicted from the original paper (Devlin et al., 2019).

3.1.2 TransformerEncoderCosSim
The general scheme of the approach is shown in
Fig. 2. The pre-trained Transformer model takes as
input the tokenized news text. Then, Transformer
output embeddings are passed through the average
pooling followed by a fully-connected layer5 and
L2 normalization layer. This procedure is applied
for both compared news. Then, the resulting text
embeddings are passed in the cosine distance func-
tion which is computed with equation bellow to
produce a distance score:

cosine_dist = 1− |cosine_sim|.

We use absolute value of cosine similarity function
because it takes values from −1 to 1. Together
with mapped to [0, 1] range ground true scores, the
predicted scores are passed to MSE loss function.
Transformers weights are not frozen while training
and initialized from the aforementioned pre-trained
multilingual models. The models were trained on
GPU NVIDIA GeForce RTX 3090 for 10 epochs
with a learning rate of 10−6 and batch size equal to
4.

3.2 Natural Language Inference
The task of estimation similarity between news con-
tents can be reformulated as Natural Language In-
ference task, which is the main hypothesis tested in
5 The linear layer dimensions are emb_len × emb_len,

where emb_len is the dimension of the hidden layer
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Figure 2: TransformerEncoderCosSim architecture.

this work. Natural Language Inference (NLI) is the
problem of determining whether a natural language
hypothesis h can reasonably be inferred from a
natural language premise p (MacCartney and Man-
ning, 2008). The relations between hypothesis and
premise can be entailment, contradiction, and neu-
tral. The release of the large NLI dataset (Bowman
et al., 2015) and later multilingual XNLI dataset
(Conneau et al., 2018) made possible the develop-
ment of different deep learning systems to solve
this task. That is why the pre-trained NLI models
like XLM-RoBERTa-large appeared. We use this
model pre-trained on multilingual XNLI dataset6

to obtain NLI scores for pairs “the first news as
premise p↔ the second one as hypothesis h”. The
size N of the used content is a hyperparameter
of this NLI based approach for the news content
similarity computation. NLI model outputs the
probabilities of news pair to be classified as entail-
ment, contradiction, or neutral. Hence, it’s 3 real
numbers from the [0, 1] range. These extracted NLI
features are passed as input to the Machine Learn-
ing model, which predicts the similarity score for
the pair of news under consideration. In our work,
we’ve compared the performance of several regres-
sion models: Linear Regression, Support Vector
Machine for regression, Decision Trees, Random
Forest, Gradient Boosting. The last one gave the
best results. The general scheme of the approach
is shown in Fig. 3. Also, several improvements to
this pipeline were tested:

1. Both pairs. Each piece of news is used as a
premise and hypothesis. As a result, we get
twice more features for training.

6 https://huggingface.co/joeddav/
xlm-roberta-large-xnli

(a) Basic architec-
ture.

(b) Fine-tuning architecture.

Figure 3: NLI approach

2. Subject-Verb-Object triplets. We extract
syntactic dependencies from the sentences
of a text to make triplets consisting of sub-
jects, verbs, and objects. These triplets are
passed to the model. Such an approach short-
ens the input data, which makes the process
of extracting NLI features faster and doesn’t
have the significant influence in quality of the
method. We extracted syntactic dependencies
with Spacy library (Honnibal et al., 2020).

3. Fine-tune. We fine-tune the NLI model on the
data of the competition. The approach is based
on the one proposed by (Martín et al., 2021).
We add the regression head to the NLI model,
which has global average pooling of the last
hidden state of the transformer model, linear
layer with 768 neurons and tanh activation,
a 10% dropout for training, and a classifier
linear layer with sigmoid. The output proba-
bility is treated as a similarity score, and MSE
loss is used. This regression head is trained,
freezing the XLM-RoBERTa-large weights to
preserve the previous pre-training. This is op-
timized using Adam optimizer (Kingma and
Ba, 2015) with 10−3 learning rate. The gen-
eral scheme of the approach is shown in Fig.
3.

3.3 Named Entity Recognition

Transformers have great performance but almost
no interpretability. In search of interpretability,
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the Named Entity Recognition-based approach has
been developed. The general scheme of the ap-
proach is shown in Fig. 4. News texts are pre-
processed and forwarded to the NER extractor to
extract locations (LOC), organizations (ORG), and
person entities (PER). For this task we’ve tested
and compared several tools:

1. Transformer for named entities tagging.
We used BERT7 pre-trained model from the
Hugging Face repository. It is a Named En-
tity Recognition model for 10 high-resource
languages (Arabic, German, English, Spanish,
French, Italian, Latvian, Dutch, Portuguese,
and Chinese) based on a fine-tuned mBERT
base model.

2. Polyglot for Named Entity Extraction. The
models from this package (Al-Rfou et al.,
2015) were trained on datasets extracted auto-
matically from Wikipedia. Polyglot currently
supports 40 major languages, including all
presented in the dataset of the competition.

3. Spacy. Spacy library (Honnibal et al., 2020)
provides huge variety of NLP tools, includ-
ing NER extractor. We used multi-language
model,8 trained on Wikipedia.

In the next step, we vectorize extracted entities
with Bag of Words, Tf-Idf, Fasttext (Bojanowski
et al., 2017), Bert embeddings9 for comparison.
Then we average all the word vectors. As a result,
we obtain 3 vectors (one for each of LOC, PER,
ORG entities) for each text. Corresponding vectors
for LOC, ORG, PER for two texts are compared
with cosine distance to get 3 distance scores for ev-
ery pair of news under consideration. Then, these
scores are passed in the Machine Learning model to
get the final distance score. We test several regres-
sion models: Linear Regression, Support Vector
Machine for regression, Decision Trees, Random
Forest, Gradient Boosting.

3.4 Additional study
To improve the quality of the prediction the follow-
ing two techniques were tested:

1. Augmentation. Testing part of the dataset
has a lot of language pairs10 which are not

7 https://huggingface.co/Davlan/
bert-base-multilingual-cased-ner-hrl

8 xx_ent_wiki_sm
9 bert-base-multilingual-uncased pre-trained model was used

10 A pair of languages, in which a pair of news is written.

Figure 4: NER approach architecture.

presented in the training part of the dataset.
To test the influence of unseen language pairs
on the results, we added pairs of news for the
missing language pairs. Such augmentation
was performed with the help of the Google
Translator, which was accessed with the help
of Deep Translator python library. The pairs
of news were selected randomly from the pairs
written in English and then translated to the
target languages. Samples were added to the
training part of dataset in the same propor-
tion they are presented in the testing part of
the dataset. As a result, training dataset was
extended to 7505 samples.

2. Stacking. Ensembling different models is a
common way to improve the scores. To aggre-
gate the dependencies caught by several mod-
els, we exploited the technique called stack-
ing. To form the ensemble, we used Trans-
formerEncoderCosSim, TransformerEncoder-
CLS, fine-tuned NLI model and NER model11

which has shown the best results in the ex-
periments described bellow. All the models
were trained on three quarters of the training
dataset. And one quarter of the dataset was
used to train the aggregation model. We used
Linear Regression model with L2 regulariza-
tion as aggregation model.

4 Results

Our team has taken the 14th place among 32 par-
ticipants. The best result for separate model, 0, 734
correlation, was reached by the TransformerEn-

11 We used the following combination: Huggingface NER
tagger, Huggingface embeddings, Gradient Boosting ML
model.
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coderCosSim model. Final results for all separate
methods, as well as the best competition score, are
provided in Table 1. Also, we provide the results
for ensembles of models in the Table 3. The appli-
cation of ensembling and augmentation techniques
improved the best result to 0, 763 correlation. In ad-
dition to the test set, which was provided by organ-
isers during the evaluation period, the performance
of the developed systems was evaluated on the val-
idation set. Validation set was randomly sampled
from the training data12 in case of TransformerEn-
coder methods, including fine-tuned NLI model.
For other methods the results on validation are the
results obtained with 5-fold cross-validation.

Validation Evaluation
TransformerEncoderCLS 0.813 0.706

TransformerEncoderCosSim 0.793 0.734
NLI 0.478 0.477

NLI fine-tuned 0.670 0.632

NER 0.496 0.395

NLI + NER 0.615 0.546

Best SemEval result — 0.818

Table 1: Overall results. Pearson correlation.

Transformer models. As it has already been said
TransformerEncoderCosSim model has shown the
best result. It was the one with XLM13 pre-trained
model. The worst score was given by the Distil-
Bert model. We provide the comparison of dif-
ferent encoders from Transformers for 2 proposed
models in the Table 6 in the appendix. As for the
TransformerEncoderCLS model, its performance
has dropped by 12% on the evaluation part of the
dataset in comparison to validation part. And it’s
become worse than the TransformerEncoderCos-
Sim model, although it showed better results on
the cross-validation.14 In general, the transformer-
based models have a lower correlation on the eval-
uation data. You can see a similar behavior for the
NLI fine-tuning approach.

NLI. The comparison of the results for NLI-
based models is provided in Table 2. The best score
for the NLI approach was given by the Gradient
Boosting model. (We provide the comparison of
results for different Machine Learning models for

12 The size of validation set was 0.25 from the size of the
training dataset.

13 https://huggingface.co/xlm-mlm-17-1280
14 Model which has shown the best result:

https://huggingface.co/
xlm-roberta-large

«NLI pairs - titles» in the Table 7 in appendix.) The
fine-tuning approach has given the best correlation
here. Also, there is a tendency for smaller input
text to have better scores. The highest correlation
was achieved when only titles were given as input.
The reason for that could be that the NLI model
was trained on the XNLI dataset, composed of short
phrases. That is why it was decided to try to shorten
the news with the extraction of SVO triplets from
them. The extracted triplets were joined to form a
text which was forwarded to the input of the NLI
model. As you can see from Table 2 the quality of
both methods (with fine-tuning and without) has
dropped significantly. Hence, the conclusion is that
despite SVO triplets give a good summary of the
given text, they are not applicable, at least without
any complex processing, for the task of comparing
the news. Also, it could mean that the source of
similarity of articles is not contained in Subjects,
Verbs, and Objects. Last, it is worth mentioning
that the resulting summary for big texts still has
quite a large size in comparison to titles.
The idea to extract NLI scores from both pairs,
as it was described in devoted subsection, gave
an improvement. Also, it can be noticed that the
NLI approach without fine-tuning is quite robust to
adding new languages. The score for "NLI pairs
- titles" has only a slight decrease on the evalua-
tion dataset. Although the correlation for single
NLI features is low, it becomes significantly better
in combination with features with the NER-based
method. This approach is described in more details
in the devoted paragraph bellow.

Validation Evaluation
NLI tiltes 0.453 0.438
NLI pairs - titles 0.478 0.477
NLI pairs - titles + text 0.354 0.310
NLI pairs - SVO 0.154 0.107
NLI fine-tuned - titles 0.670 0.632
NLI fine-tuned - titles + text 0.627 0.589
NLI fine-tuned - SVO 0.495 0.422

Table 2: Comparison of NLI approaches. Pearson corre-
lation.

NER. One can find the comprehensive compari-
son of different NER taggers, various vectorizing
techniques and different Machine Learning mod-
els for prediction of distance score in the Table 5
in the appendix. You can see that the best corre-
lation was shown by combination: Huggingface
NER tagger, Huggingface embeddings, Gradient
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Boosting ML model. In general, Gradient Boosting
has shown superior scores for all combinations of
NER taggers and vectorizers. Also, Huggingface
embeddings in combination with this model have
shown the highest results for all vectorizing meth-
ods listed in the Methodology section. However, in
comparison to NLI and Transformers approaches,
the results for NER models are significantly lower.
Looking at the outputs of the model (You can find
the examples in Table 4 in appendix), the following
behaviors can be noticed. In our method in cases
when no named entities were found for the PER,
ORG or LOC classes, the distance score was set to
0.5, because it is not clear whether the absence of
named entities is an indicator of similarity or not.
These 0.5 scores confuse the model, increasing its
generalization error. The second problem is that
when there is no overlap of named entities in one
of the classes, it could lead to two bad outcomes.
When the other two distance scores correctly re-
flect the ground true similarity, like in the second
example in Table 4, the one with no overlap could
be large, which spoils the overall prediction. The
second behavior happens when the extracted en-
tities have no straight overlap but happen to be
similar in vector space. For example, two different
news about the close locations. In this case, the
model can output a small distance, which is not
correct. Also, the errors of the NER tagger makes
the model performance worse. As a result, the
model tends to predict values from the middle of
the [1, 4] range, avoiding its edges. In addition, the
problems described make the results even worse on
unseen evaluation data. We provide the comparison
of the best results for different NER extractors for
validation and evaluation in the Table 8.

NER + NLI. As you can conclude from Table 1,
NER features, having poor single performance, add
significant improvement in correlation being com-
bined with NLI features. To obtain this result we
have taken the features used in best-scored NLI and
NER models. For classification Gradient Boosting
ML model was used as it had given the highest
results for both approaches.

Additional study. The application of augmenta-
tion to the training part of the dataset improved the
result of the best performing model from 0.734 to
0.746, which is a slight improvement. It can be
concluded that the performance of this model is
not highly effected by unseen language pairs. The

Correlation
TrEncCLS, TrEncCosSim 0.752
TrEncCLS, TrEncCosSim, NLI 0.763
TrEncCLS, TrEncCosSim, NLI, NER 0.763

Table 3: Comparison of the results for different ensem-
bles on the evaluation dataset. Pearson correlation. The
names of TransformerEncoders models were shortened.

increase in score may be caused just by the increase
of the number of training samples.
The results for stacking of the models can be found
in the Table 3. In this experiment stacking tech-
nique was combined with augmentation, which
showed a slight improvement in score. You can see
that the addition of the predictions obtained with
the NER model gives no increase in score. Overall,
the augmentation together with stacking gave the
4% improvement to the result of TransformerEn-
coderCosSim model.

5 Conclusion

We have tested several approaches, including two
systems based on Transformer-based encoders, two
NLI approaches (with fine-tuning and without),
NER-based pipeline and the ensemble of these
models. The best result was achieved by the
ensemble of TransformerEncoderCosSim, Trans-
formerEncoderCLS and fine-tuned NLI models. To
improve the scores the following things can be
done. For models based on Transformer-based en-
coders, sentence Transformers can be tested. To
improve the NER-based method additional features
can be added (addition of NLI features improved
the correlation), and also we can apply the binary
mask for the feature matrix not to take into account
0.5 values while calculating the loss during the
training process can be applied.

Source code of our solutions is available online15.
Also, the hyper-parameters of the models can be
found there.
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Appendix

pair_id NER 1 NER 2 dist.
LOC

dist.
PER

dist.
ORG

Predict. Ground
true

1484012638
1483801741

LOC: Baku, Azerbaijan,
Shamakhi, Ismayilli,
Aghsu
PER: Ilham Aliyev
ORG: _

LOC: Azerbaijan, Baku
PER: Ilham Aliyev
ORG: _

0.148 0.000 0.500 2.959 2.500

1483806302
1483770632

LOC: Atlanta, GA,
Washington, D. C.,
Capitol Hill, BarackO,
America, Georgia,
New Jersey
PER: John Lewis, Lewis,
RepJohnLewis,
Barack Obama, God,
Stacey Abrams,
Cory Booker, Jim Crow,
Mark Hamill
ORG: Ku Klux Klan

LOC: America, Georgia,
Mississippi Delta,
Edmund Pettus Bridge
PER: John Lewis,
Peniel Joseph, Jim Crow,
Barbara Jordan,
Peniel Joseph, Lewis,
Crow, Donald Trump,
ORG: Center for the
Study of Race and
Democracy, LBJ School
of Public Affairs, CNN,
University of Texas
at Austin

0.078 0.071 0.971 2.492 1.000

1546012672
1488866568

LOC: Dresden,
Chemnitz
PER: _
ORG: Staatsanwaltschaft

LOC: Dresden
PER: Carolyn,
Carolyn Anne Cavender
ORG: Jackson Madison,
General Hospital

0.471 0.500 0.998 3.360 4.000

Table 4: Example of performance of the best NER model. (Huggingface NER extractor, Huggingface vectorizer,
Gradient Boosting model).

In this section, we provide some further comments on Table 4. In the Table example output of the
best-performing NER approach can be found. You can notice several patterns, which could be the reason
for the low quality of prediction of NER approaches. First of all, the errors of the NER tagger makes the
model performance worse. You can see several wrong detections. For example, «BarackO» definitely
should be tagged as person, not location, in the second example.

Also, in our method, in cases when no named entities were found for the PER, ORG or LOC classes, the
distance score was set to 0.5, because it is not clear whether the absence of named entities is an indicator
of similarity or not. These 0.5 scores confuse the model, increasing its generalization error. The second
problem is that when there is no overlap of named entities in one of the classes, it could lead to two bad
outcomes. When the other two distance scores correctly reflect the ground true similarity, like in the
second example in Table 4, the one with no overlap could be large, which spoils the overall prediction.

The second behavior happens when the extracted entities have no straight overlap but happen to be
similar in vector space. For example, two different news about the close locations. In this case, the model
can output a small distance, which is not correct. As a result, the model tends to predict values from the
middle of the [1, 4] range, avoiding its edges. However, there are examples which show good performance.
In the third example, there is an overlap in one word for LOC, which gives the distance from the middle of
the range. There is no overlap in organizations. As a result, we get a score quite similar to ground true,
taking into account the peculiarities discussed above.
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Tagger Vectorizer Linear Regression SVR Decision Tree Random Forest Gradient Boosting
Huggingface BOW 0.202 0.200 0.154 0.244 0.246

Tf-Idf 0.195 0.191 0.135 0.229 0.239
Fasttext 0.194 0.194 0.157 0.320 0.326
Huggingface 0.250 0.250 0.200 0.385 0.395

Polyglot BOW 0.228 0.227 0.146 0.240 0.244
Tf-Idf 0.220 0.218 0.143 0.227 0.226
Fasttext 0.206 0.205 0.151 0.309 0.310
Huggingface 0.211 0.211 0.180 0.334 0.342

Spacy BOW 0.227 0.227 0.147 0.230 0.235
Tf-Idf 0.223 0.223 0.154 0.224 0.231
Fasttext 0.184 0.183 0.146 0.254 0.259
Huggingface 0.219 0.220 0.152 0.278 0.279

Table 5: Comparison of different NER taggers, vectorizers and ML models for evaluation dataset. Pearson
correlation.

Transformer- Transformer-
EncoderCLS EncoderCosSim

distilbert 0.591 0.679

bert-base-cased 0.644 0.704
bert-base-uncased 0.678 0.714

xlm-roberta-base 0.656 0.643

xlm-roberta-large 0.706 0.718

xlm-mlm-17-1280 0.650 0.734

Table 6: Comparison of performance of different pre-trained encoders from Transformers on evaluation dataset.
Pearson correlation.

Validation Evaluation
LinearRegression 0.290 0.364

SVR 0.288 0.356

DecisionTreeRegressor 0.228 0.273

RandomForestRegressor 0.477 0.469

GradientBoostingRegressor 0.478 0.477

Table 7: Comparison of performance of different pre-trained encoders from Transformers for «NLI pairs - titles»
approach. Pearson correlation.

Validation Evaluation
Polyglot 0.461 0.342
Spacy 0.426 0.279
Huggingface 0.496 0.395

Table 8: Comparison of the results on cross-validation and evaluation dataset. Pearson correlation.
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Abstract

The task of multilingual news article similarity en-
tails determining the degree of similarity of a given
pair of news articles in a language-agnostic setting.
This task aims to determine the extent to which the
articles deal with the entities and events in ques-
tion without much consideration of the subjective
aspects of the discourse. Considering the supe-
rior representations being given by these models
as validated on other tasks in NLP across an array
of high and low-resource languages and this task
not having any restricted set of languages to focus
on, we adopted using the encoder representations
from these models as our choice throughout our
experiments. For modeling the similarity task by
using the representations given by these models, a
Siamese architecture was used as the underlying
architecture. In experimentation, we investigated
on several fronts including features passed to the
encoder model, data augmentation and ensembling
among our major experiments. We found data aug-
mentation to be the most effective working strategy
among our experiments.

1 Introduction

News articles from the web covering the same event
tend to differ on regional and political biases, style
of writing, conciseness and preciseness of cover-
age and the intended audience of the news outlet.
Misleading and confusing articles might lead to un-
necessary confusion, chaos and tensions potentially
exacerbating or even creating non-existent issues.
Often, news articles covering the same event in dif-
ferent languages from varied regional sources are
readily available. This can apply for happenings
of local, regional as well as international signifi-
cance. In such a scenario, it is pertinent to able to
identify or cluster together news articles covering

*These authors contributed equally to this work.

the same story in different languages and different
view points while also being able to distinguish be-
tween articles similar in style but covering different
happenings.

The significance of the problem of multilingual
news article similarity (Chen et al., 2022) lies to-
wards the applicability in this area by scoring a
pair of news articles based on their similarity in
coverage of the event without focusing on the sub-
jectivity of the content.

In our approach, we model the task as a regres-
sion problem by making use of a Siamese neural
network (Bromley et al., 1993) as the base architec-
ture. We perform experiments in feature engineer-
ing by making use of metadata such as title, descrip-
tion, keywords and tags in addition to the news text.
We also experimented with artificially augmenting
the data by document permutation. Also, we tried
with ensembling of two models - one trained us-
ing only textual features, the other using metadata
information.

While data augmentation strategy did give a de-
cent improvement in performance, considering the
length of the news articles and the coverage of a
variety of entities or events throughout the article,
globally modeling the text representation might not
be the best way to model for this task. In the sub-
sequent sections, we elaborate on our experiments
performed and the results obtained and analyze the
same. We have open-sourced our code1 for ease of
replicability and improvement over our techniques.

2 Task Definition

The task of multilingual news similarity consists of
predicting the similarity score between two news
articles on a scale of 1 to 4, with a higher score
indicating a higher degree of similarity. The news
articles may belong to either the same or different

1https://github.com/sagarsj42/
multilingual-news-article-similarity
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Lang #Train
ar_ar 274
de_de 857
de_en 577
en_en 1800
es_es 570
fr_fr 72
pl_pl 349
tr_tr 465

Table 1: Stats of different languages available in train
set

languages, with there being no specified set of lan-
guages in which the articles might be written in.
Most of the pair of news articles were annotated by
1-3 annotators, with the maximum no. of annota-
tions per data sample being 8. In case of multiple
annotations per sample, the scores were averaged.

Statistics of the data created for the task are
shown in table 1 and 2. The training and evalu-
ation (test) splits were prepared such that the lan-
guages appearing in either of the sets might not
occur in the other, which shows the necessity of
a good multilingual representation for modeling a
solution. The news articles were downloaded from
the provided URLs following which the dataset
was prepared for the task. There were 18 and 22
articles not accessible by the provided URLs in the
train and test sets respectively, which were replaced
by a placeholder dummy text. 10 % of the training
data was used as the validation set. The model with
the best performance on the validation split was
evaluated on the test data.

3 System Description

Figure 1 shows the architecture we adopted for
modeling the task. In the Siamese architecture
(Bromley et al., 1993), an encoder representation
is taken for each of the news articles following
which a linear layer is used for reducing the dimen-
sionality of the representation. An aggregation of
these representations is then performed for having
a unified representation of the two articles before
passing them through fully connected layers that
finally output the similarity score from 1 to 4. The
entire architecture was trained end-to-end by mini-
mizing the mean squared error (MSE) loss between
the actual scores and model predictions. We exper-
imented with various strategies in this generalized
architecture which we elaborate in the remainder

Lang #Test
ar_ar 78
ar_en 11
de_de 494
de_en 152
de_fr 85
de_pl 27
de_ru 1
el_el 1
en_ar 11
en_de 9
en_en 268
en_es 6
en_fr 3
en_it 17
en_pl 5
en_ru 1
en_zh 10
es_da 1
es_en 380
es_es 194

Lang #Test
es_it 247
fr_fr 98
fr_pl 10

hu_hu 1
it_en 1
it_it 371

ja_en 2
ja_ja 5
ja_zh 2
nl_fr 2
pl_en 58
pl_pl 179
ru_de 2
ru_en 3
ru_ru 196
tr_tr 240

zh_en 63
zh_nb 1
zh_zh 164

Table 2: Stats of different languages available in test set

of this section.

1. Features passed to the encoder.

(a) News text. The plain text content of the news
article is used as the input. The distribution
of the news content lengths is shown in Fig-
ure 2. The articles have a mean length of
589 tokens and a standard deviation of 954,
with about 60.5% of the documents having
length greater than 512 tokens, which is the
maximum tokenization output size for the
encoders used. Considering, however, that
most of the salient information of a news ar-
ticle is contained in its initial section, the to-
ken lengths were capped to 512 for all news
texts before feeding to the encoder.

(b) Metadata. Information such as title, descrip-
tion, keywords and tags was present for the
many of the news articles, the statistics of
which are shown in table 3. We ran exper-
iments using only these features as well as
concatenating them before the news text, cap-
ping the overall length to 512 tokens.

(c) NER-extracted features. Since the task en-
tails determining the similarity based on ob-
jective features such as entities, date/time
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Figure 1: Underlying architecture used across the exper-
iments performed

Figure 2: Distribution of number of tokens per news
article

values, places, NER features for all the avail-
able tags were extracted from text using the
Multilingual BERT model from DeepPavlov
(Burtsev et al., 2018).

2. Base encoder model.

(a) XLM-RoBERTa. (Conneau et al., 2020)
This transformer-encoder (Vaswani et al.,
2017) based model used was pretrained on
100 languages using masked language mod-
eling objective, achieving remarkable im-
provements on various cross-lingual under-
standing tasks.

(b) Multilingual DistilBERT. (Sanh et al.,
2019) A distilled version of the multilin-
gual cased BERT-base (Devlin et al., 2018)
model trained on Wikipedia data from 104

Attribute Count
meta_keywords 4430
tags 4430
title 4421
meta_description 4121

Table 3: Count of the non-null metadata attributes
present in the data for the ones used as additional fea-
tures.

languages was also used as the base encoder.
While the performance of the distilled ver-
sion was slightly lesser as compared to the
original model, this version was chosen on
account of it having relatively less no. of
paramaters which usually suits well for low-
data settings.

3. Concatenating encoder representations. The
following concatenation strategies were tried
out for building an aggregated representation of
the two news articles:

(a) [ | x1 − x2 | ; (x1 + x2)/2 ]

(b) [ x1 ; x2 ; | x1 − x2 | ]
Here, x1 and x2 are the encoder representations
of the two news articles after passing through
the linear layer for reduced dimensionality.

4. Data augmentation. Synthetic data samples
were created by randomly permuting the sen-
tence order in the news articles to create an aug-
mented data of size 3, 4 and 5 times the original
size.

5. Output activation. We tried using Sigmoid and
ReLU activation functions at the output along
with also trying out simple linear output without
any activation to determine the best one.

6. Ensembling. An ensemble of two models
was created by combining the prediction scores
of the models by simple average as well as
weighted average, in the latter case of which
the scores were determined by first training a
linear regression model based on the prediction
scores on the train data.

4 Experimentation & Results

4.1 Experiments

In this section, we describe the set of experiments
performed based on the strategies described in sec-
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tion 3. Unless otherwise specified, sigmoid activa-
tion was used at the output and the final score was
scaled in the range of 1 to 4 as 3∗sigmoid(.) + 1.

1. XLM-TXT: News text feature passed as input
to XLM-RoBERTa (XLMR).

2. DB-TXT: News text feature passed as input
to the DistilBERT model.

3. XLM-MTD: Concatenated metadata features
passed as input to XLMR.

4. XLM-MTD-TXT: Concatenation of meta-
data features with text passed to XLMR.

5. XLM-NER-MTD: Concatenation of ex-
tracted NER features and metadata passed as
input to XLMR.

6. DB-NER-MTD: Concatenation of extracted
NER features and metadata passed as input to
DistilBERT.

7. DB-CAT3: The second concatenation strat-
egy for feature aggregation as described in
section 3 used in the same setting as DB-TXT.

8. XLM-REL: ReLU activation used at the out-
put in the same setting as XLM-TXT.

9. DB-CAT3-LIN: A simple linear output with-
out any activation kept in the same setting as
DB-CAT3.

10. DB-DA3: Data augmented to thrice the origi-
nal size, fed to setting same as DB-TXT.

11. DB-DA4: Data augmented to four times the
original size, fed to setting same as DB-TXT.

12. XLM-DA5: Data augmented to five times
the original size, fed to setting same as XLM-
TXT.

13. SA: Simple averaging of the predictions of
XLM-MTD-TXT and XLM-DA5.

14. WA: Weighted average of the predictions of
XLM-MTD-TXT and XLM-DA5.

4.2 Training Setup
The training was done with the number of epochs
ranging from 5 to 10. The batch size for train
set was kept to be 4 and gradients were accumu-
lated over 8 steps giving an effective batch size of

32. Adam (Kingma and Ba, 2014) optimizer with
a weight decay (Loshchilov and Hutter, 2019) of
0.01 was used and the learning rate was kept to a
constant value of 5e-6. Validation was performed
four times per epoch and the model performance
was evaluated using Pearson’s Correlation Coeffi-
cient (PCC) and Mean Absolute Percentage Error
(MAPE) along with the MSE loss value. The best
checkpoint was saved based on the PCC score on
validation set, following which the predictions on
test set were sent for evaluation.

4.3 Results
Results for all the experiments performed on the
validation set are shown in table 4 and the PCC
reported on some of the experiments on test set are
in table 5.

Experiment Validation set
PCC MAPE MSE

XLM-TXT 0.53 0.39 0.98
DB-TXT 0.55 0.41 0.93

XLM-MTD 0.46 0.47 1.03
XLM-MTD-TXT 0.52 0.41 0.94
XLM-NER-MTD 0.45 0.43 1.05
DB-NER-MTD 0.47 0.43 1.04

DB-CAT3 0.42 0.47 1.06
XLM-REL 0.45 0.43 1.05

DB-CAT3-LIN 0.42 0.46 1.10
DB-DA3 0.52 0.38 0.99
DB-DA4 0.58 0.41 0.94

XLM-DA5 0.54 0.37 0.99
SA 0.49 0.42 1.02
WA 0.51 0.53 0.95

Table 4: Results of all the experiments performed on
validation set.

Experiment Test PCC
DB-DA3 0.436
DB-DA4 0.441

SA 0.43

Table 5: PCC for three of the experiments performed on
test set.

4.4 Analysis
The major insights that can be derived out of the
results on the validation set are:

• Metadata as features. Using plain text (XLM-
TXT, DB-TXT) turned out to be the best way
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to capture the representation among the exper-
iments we tried. The metadata information in
itself (XLM-MTD) was insufficient to provide
the representation. Even concatenating the meta-
data information with text (XLM-MTD-TXT)
resulted in a suboptimal solution.

• NER output as features. The NER output con-
catenated with metadata features (XLM-NER-
MTD, DB-NER-MTD) did not result in a great
feature modeling, with the metadata in combi-
nation with text and only text input performing
better.

• Encoder model. DistilBERT-based multilin-
gual model performed consistently better than its
XLMR counterpart across similar experiments
(DB-TXT v/s XLM-TXT, DB-NER-MTD v/s
XLM-NER-MTD). This might be due to Dis-
tilBERT having lesser no. of parameters, thus
suiting better against overfitting.

• Concatenation strategy. The aggregation strat-
egy of concatenating the absolute difference and
average of the two news article representations
(DB-TXT) worked better than the other strategy
(DB-CAT3) tried out.

• Output activation. Sigmoid activation2

achieved the best training trajectory and results
as compared to ReLU (XLM-REL) and linear
(DB-CAT3-LIN). During training, the loss from
ReLU and linear activations started off with very
high values before achieving convergence at val-
ues subpotimal as compared to that on sigmoid
output.

• Ensembling. Simple (SA) and weighted aver-
aging (WA) for ensembling performed competi-
tively, with the validation PCC on simple averag-
ing having an edge over the weighted averaging
one.

• Effectiveness of data augmentation. Data aug-
mentation turned out to be the best strategy so far,
as obvious from the results on validation and test
sets. Augmenting the data to 4 times the original
size turned out to the best among the tried values
ϵ {3, 4, 5} (DB-DA3, DB-DA4, XLM-DA5).

As an overall insight, it seems the method of
globally representing the news article by a single

2Apart from XLM-REL and DB-CAT3-LIN, all the exper-
iments used sigmoid activation at the output.

representation after capping the length to a smaller,
fixed size is not the best way in modeling a solu-
tion for this problem. A solution exploiting the
information present in the articles at a more gran-
ular level - either by explicit feature extraction or
implicit detection of these features through tech-
niques suitable across multiple languages can be
experimented with in pursuit of better results.

Another possible conjecture we speculate based
on the poorer performance on the test dataset is
that finetuning the underlying multilingual trans-
former encoder models might have hampered the
effectiveness of the multilingual representation for
languages that were not present in the training or
validation sets, but were present at the time of eval-
uation. It is to be noted that since the validation
dataset was a split taken from the original train-
ing data itself, there was not much of a difference
between these two distributions. Hence, if this con-
jecture holds, a solution that trains the model pa-
rameters for the task without deranging their multi-
linguality aspect should provide a scalable solution
across multiple languages.

5 Conclusion

We presented our base architecture adopted for
the task of multilingual news article similarity and
explained the various experiments performed on
the same. An analysis of the results gave insights
on what strategies worked best on our underlying
Siamese architecture, of which we determined data
augmentation to be the most effective one. Finally,
we provided some insights on the modeling effi-
ciency of the architecture adopted along with di-
rections for possible improvement. This problem
being very relevant in the face of diverse, multi-
lingual news content being continually generated
from diverse sources, improvements achieved in
this task would be of value in industry and social
benefit.
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Abstract

This paper describes our submission to
SemEval-2022 Multilingual News Article Sim-
ilarity task. We experiment with different ap-
proaches that utilize a pre-trained language
model fitted with a regression head to predict
similarity scores for a given pair of news arti-
cles. Our best performing systems include 2
key steps: 1) pre-training with in-domain data
2) training data enrichment through machine
translation. Our final submission is an ensem-
ble of predictions from our top systems. While
we show the significance of pre-training and
augmentation, we believe the issue of language
coverage calls for more attention.

1 Introduction

In the recent few years, there has been a growing
interest towards automating news understanding
tasks thanks to the continuous demand by down-
stream applications. One of the most important
aspects of news understanding is identifying news
articles that cover the same stories. Grouping such
similar articles can be useful in multiple appli-
cation scenarios including news recommendation,
news stories analysis, news retrieval and ranking
amongst others.

Task 8 in SemEval 2022 (Chen et al., 2022) pro-
vides an experimental setup to address and identify
the challenges of assessing the similarity between
two news articles. Unlike standard document simi-
larity tasks (Agirre et al., 2015), this task is focused
on a more challenging multilingual setting where
the systems are not only expected to evaluate pairs
of long text articles in the same language but in
different languages as well. Moreover, the task as-
sumes that accurately identifying articles that share
the same story cannot be solely captured by textual
similarity since the underlying similarity function
is hypothetically a combination of a set of other
features like time, geo-location, mentions of named
entities and narratives.

Participating teams are required to provide a sim-
ilarity score for each pair of news articles. The
scores should range between 1 and 4 where 1 in-
dicates that two stories are almost identical and
4 indicates no similarity at all. The systems are
evaluated based on the Pearson’s correlation with
ground truth scores which are provided in a test set
annotated by human evaluators.

In our submission, we hypothesize that the sub-
dimensions (that are assumed to be story similarity
predictors by the task organizers) do not have to
be independently modeled and present an approach
that assumes that such sub-dimensions can be rep-
resented in the model’s latent space while directly
optimizing to learn article similarity scores. For-
mally speaking, we model the similarity task as
a supervised regression problem to optimize the
similarity score between two news articles. To
test our hypothesis, we experiment with different
pre-trained language models and evaluate multiple
methods of boosting the model’s performance via
domain pre-training and data augmentation. Our
final submission ranked 8 out of a total of 32 teams
in the official rankings with a Pearson correlation
of 0.771 - a score difference of 0.047 compared to
the top ranked submission.

This paper is organized as follows: In section
2 we describe the official datasets as well as the
external datastes that were used. In section 3 we
present our baselines and systems’ setups. Sec-
tion 4 presents our data splits and model training
specifics. We show and analyse our results in sec-
tion 5, then we conclude and discuss future work
in section 6.

2 Datasets

The used datasets are categorized into two cate-
gories: 1) Task Datasets which are provided by the
task organizers and 2) External datasets that are
used as additional assets for model training.
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Pair Training Evaluation
ar-ar 263 298
de-de 832 611
de-en 532 190
de-fr - 116
de-pl - 35
en-en 1689 235
es-en - 498
es-es 506 243
es-it - 320
fr-fr 69 111
fr-pl - 11
it-it - 442

pl-en - 64
pl-pl 333 224
ru-ru - 287
tr-tr 419 275

zh-en - 223
zh-zh - 769
Total 4643 4953

Table 1: Count of training and evaluation samples by
language-pair. "-" means not present in training data.

2.1 Task Dataset

The task organizers provided a number of 4,9641

news article pairs along with their "Overall Similar-
ity" scores to be used for training purposes. Mul-
tiple trained human evaluators were asked to eval-
uate pairs of news articles and provide similarity
scores for different sub-dimensions as well as an
overall score; all in 1-4 range. The final scores
are calculated by averaging the individual scores
across all the evaluators. The training set contains
same language pairs as well as cross-lingual pairs.
The evaluation dataset was created in the same way
as the training data however it contains new lan-
guages that are not present in the training set and
the language pair distribution does not match the
training set distribution as shown in Table 1.

2.2 External Datasets

We made use of monolingual datasets from multi-
ple news sources to fine-tune the pre-training phase
of the language models that we experimented with
(see section 3 for the details). NADiA dataset (Al-
Debsi et al., 2019) is used for Arabic, CCNEWS
dataset (Hamborg et al., 2017) is used for English,
Global Voices news data (Tiedemann, 2012) is

1Task organizers published article URLs but only 4643
pairs were retrievable by the time we scrapped them

used for Polish and MLSM (Scialom et al., 2020)
dataset’s input text is used for German, Spanish,
French and Turkish.

3 System Overview

All of our systems are solely trained on the text
descriptions of input articles as features and their
similarity score as the target variable. All the
presented systems except for the baseline system
3.1, are based on XLM-RoBERTa (XLM-R). This
choice is made based on the fact that it’s a multi-
lingual model that is pre-trained on large amounts
of data spanning 100 languages and performs com-
petitively on several cross-lingual transfer tasks
(Conneau et al., 2019). The general architecture
of our systems itself is kept relatively simple i.e. a
Language Model with a regression head on top.

3.1 Baseline

Our baseline system is a multi-variate linear re-
gression model that uses 2 independent variables:
a) count of the named entities2 that are shared be-
tween the two news articles and b) cosine similarity
between the sentence embeddings of the news ar-
ticle pair. Formally speaking; We model this as
Y = A + B1X1 + B2X2 where X1 and X2 are
the aforementioned variables and Y is the simi-
larity score. The model is trained to minimize
the Mean Square Error (MSE). We also experi-
mented with a Gamma Function for regression on
the non-negative similarity values, however no dif-
ference was perceived in Pearson’s scores. We
evaluated sentence embeddings generated using
LaBSE (Feng et al., 2020), MPNET (Song et al.,
2020) and SBERT (Reimers and Gurevych, 2019)
and reported baseline results using LaBSE embed-
dings since it resulted in the least MSE.

3.2 XLMR

Our first system dubbed XLMR is an XLM-R model
with a regression head on top which is trained to
minimize the MSE on the task dataset 2.1. The
input is formed by concatenating the text of the
two input articles and placing a special token in
between.

3.3 XLMR-Pre

Our second system dubbed XLMR-Pre follows the
same architecture as XLMR however, we continue
model pre-training using the Masked Language

2Exact lexical matching
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Pair Original After
ar-ar 263 1607
de-de 832 2176
de-en 532 532
en-en 1689 1689
es-en - 1344
es-es 506 1850
es-it - 1344
fr-fr 69 1413
it-it - 1344
tr-tr 419 1763
pl-pl 333 1677
ru-ru - 1344
zh-zh - 1344
zh-en - 1344
Total 4643 12707

Table 2: Count of training samples by language-pair be-
fore and after data augmentation by translation. Please
note that only samples from the training split were trans-
lated to avoid any potential data leakage. "-" means not
present in training data.

Modelling (MLM) objective (Devlin et al., Liu
et al.) for languages in the training set using the
collected external datasets 2.2.

3.4 XLMR-Aug

Our third system dubbed XLMR-Aug follows the
same setup of XLMR however the training data
is supplemented with data augmentation. Syn-
thetic data is created in two different ways namely:
pair switching and Machine Translation (MT). Pair
switching is achieved by switching the text concate-
nation order of the input pairs to act against pair
order bias. Machine Translation is leveraged to
address the fact that the majority of the training set
pairs are in the same language (4500 pairs) however
the systems are evaluated on their ability to score
cross-lingual pairs as well. A number of 1344 En-
glish pairs are sampled and translated to different
languages. Additionally a number of 667 German
language examples are translated into English to
encourage improvements in the English language
pairs. Translated pairs’ statistics are reported in Ta-
ble 2. The used MT system is an in-house general
purpose Transformer Big model (Vaswani et al.,
2017) that is not adapted to any specific domain.

3.5 Ensemble Systems

Ensemble systems are developed by averaging the
individual scores of different combinations of our

three systems: XLMR, XLMR-Pre and XLMR-Aug.

4 Experimental Setup

4.1 Data Setup

To be able to run our model selection experiments
and validate our hyper-parameter settings, a stan-
dard split of 80:10:10 is applied to the task dataset
2.1 to split it into train, validation and held-out sets.
This setting resulted in a training set size of 3719
samples, validation set size of 464 and a held-out
set size of 460 samples. The validation set was
used for hyper-parameter tuning and the held-out
set was used for system comparisons since there
were no datasets provided for such purposes by the
task organizers. Our experiments that leveraged
data augmentation techniques made use of a total
of 12707 training samples. To avoid any data leak-
age, we only used samples from the train set to
augment the data.

4.2 Hyper-parameters

Model hyper-parameters were initially setup with
the recommended values for XLM-R model fine-
tuning (Conneau et al., 2019) and were manually
fine-tuned based on the correlation scores and the
loss on the validation set. XLMR and XLMR-Pre
systems were trained for 4 epochs and XLMR-
Aug system was trained for 10 epochs. In all
the experiments, an AdamW optimizer (Kingma
and Ba, Loshchilov and Hutter) was used with
a linear schedule, a learning_rate = 2e − 5,
epsilon = 1e − 8 and training and validation
batch_size = 8.

4.3 Training

The Huggingface transformers library3 was used
to conduct all our model training experiments and
all our models were initialized using xlm-roberta-
large4 weights. All models were trained using 8
Nvidia Tesla-V100 GPUs.

4.4 Evaluation

We evaluated our models using Pearson’s correla-
tions score on the overall test set. Additionally, we
conducted a per-language correlation scoring for
better reasoning and model development.

3https://github.com/huggingface/transformers
4https://huggingface.co/xlm-roberta-large
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System Score
Baseline 0.677
XLMR 0.808
XLMR-Pre 0.804
XLMR-Aug 0.790

Table 3: Pearson’s scores for different systems during
model development on the held-out set

5 Results and Analysis

During the development phase, we used the fixed
held-out set to compare the performance of differ-
ent systems. When the evaluation phase ended, the
gold labels were made available for the evaluation
set and thus we re-evaluated all our systems using
that set as well. The results on the held-out set are
shown in Table 3 and the results on the evaluation
set are shown in Table 4. A per language break-
down scoring is also provided on both the held-out
and the evaluation sets in Table 5 and Table 6 re-
spectively.

Our submitted system is ES2S3 (table 4) which
is an ensemble of XLMR-Pre and XLMR-Aug,
however our post-evaluation analysis showed that
ES1S2S3 which an ensemble of our three systems
performs slightly better than our official submis-
sion with a marginal increase of 0.004 in the corre-
lation score. We attribute this increase to the power
of ensembling given that the three systems were
competitive to each other in terms of the aggregate
performance scores however each system has it’s
own strengths when it comes to language specific
performances as shown in Table 6. A little inconsis-
tency between the scores of the different systems
on the held-out and evaluation sets is attributed to
the fact that the evaluation set has unseen language
pairs and a radically different language distribution
compared to the training and held-out distributions.

Our per language evaluation (Table 6) reveals
explainable patterns. XLMR-Pre performs the best
on fr_pl and fr_fr language pairs due to abun-
dance of French pre-training data in this model.
XLMR-Aug performs the best in 12 out of 18 lan-
guage pairs due to it’s MT augmentation that boosts
it’s performance on unseen pairs. An ensemble of
XLMR and XLMR-Pre performs the best for en_en
pairs due to the bias of the original XLM-R model
towards English, the news domain fine-tuning and
the lack of translation noise or parameter sharing
competition with other languages.

System Score
Baseline 0.615
XLMR (S1) 0.752
XLMR-Pre (S2) 0.755
XLMR-Aug (S3) 0.753
ES1S3 0.768
ES1S2 0.767
ES2S3 0.771*
ES1S2S3 0.775

Table 4: Pearson’s scores for different systems on the
evaluation set. ESiSj is an ensemble of Si and Sj . *
indicates our best submitted system

Pair XLMR XLMR-Pre XLMR-Aug
ar_ar 0.603 0.717 0.606
de_de 0.810 0.788 0.838
de_en 0.862 0.862 0.899
en_en 0.818 0.827 0.764
es_es 0.914 0.861 0.906
fr_fr 0.812 0.762 0.682
pl_pl 0.709 0.622 0.579
tr_tr 0.823 0.782 0.841

Table 5: Language pair wise Pearson’s scores for differ-
ent systems on the held-out set

6 Discussion

In this paper we described our submissions to the
news similarity task in SemEval 2022. Our models
showed competitive performance by leveraging pre-
trained language models and showed that further
improvements can be gained by the use of domain
pre-training and data augmentation using machine
translation. Due to the competition time limits
such domain pre-training and translation experi-
ments were conducted on relatively small datasets
and we did not manage to experiment with a model
that combines both additions. We believe that scal-
ing these approaches by using huge amounts of
monolingual data across different languages is po-
tentially a direction that is worth exploring.

We see improvement posibilities when it comes
to modeling as well. In the early stages of our ex-
perimentation we tried a contrastive learning based
approach similar to the works done by (Chopra
et al., 2005) though, initial results were not promis-
ing and we decided to discard this direction, we be-
lieve that further efforts can be fruitful. We’ve also
experimented with explicit modeling of Named En-
tities within our models without a positive outcome
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Pair XLMR (S1) XLMR-Pre (S2) XLMR-Aug (S3) ES1S3 ES1S2 ES2S3 ES1S2S3
ar_ar 0.784 0.790 0.774 0.797 0.805 0.805 0.809
de_de 0.752 0.753 0.730 0.757 0.766 0.763 0.768
de_en 0.795 0.797 0.741 0.785 0.809 0.793 0.802
de_fr 0.559 0.528 0.583 0.592 0.564 0.586 0.590
de_pl 0.673 0.713 0.667 0.701 0.721 0.720 0.725
en_en 0.780 0.791 0.756 0.779 0.795 0.786 0.791
es_en 0.807 0.810 0.794 0.816 0.821 0.819 0.824
es_es 0.819 0.813 0.813 0.828 0.826 0.829 0.833
es_it 0.718 0.717 0.744 0.752 0.738 0.750 0.754
fr_fr 0.834 0.847 0.818 0.837 0.848 0.845 0.847
fr_pl 0.853 0.943 0.846 0.862 0.911 0.908 0.898
it_it 0.788 0.766 0.763 0.786 0.790 0.781 0.790
pl_en 0.632 0.615 0.712 0.709 0.659 0.703 0.705
pl_pl 0.679 0.655 0.643 0.672 0.678 0.663 0.675
ru_ru 0.704 0.678 0.718 0.724 0.703 0.717 0.719
tr_tr 0.810 0.814 0.804 0.824 0.827 0.830 0.833
zh_en 0.684 0.689 0.758 0.763 0.715 0.763 0.762
zh_zh 0.729 0.725 0.739 0.748 0.741 0.750 0.752

Table 6: Language pair wise Pearson’s scores for different systems on the evaluation set. ESiSj is an ensemble of
Si and Sj

however this could be due to the fact that we used
a very simple string matching approach for named
entities identification. Another modeling aspect is
the train/evaluation language distribution modeling.
Given that the distribution of evaluation language
pairs are available, one could leverage this to im-
prove the model optimization process.

Finally, in this exploratory work we haven’t
made use of any available article related meta-data
which can have strong predictive power of article
similarity. Examples include URL normalization
to identify parallel articles in different languages,
domain and country information among other fea-
tures. We leave out these territories to be explored
in future works.
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Abstract

This work represents the system proposed by
team Innovators for SemEval 2022 Task 8:
Multilingual News Article Similarity (Chen
et al., 2022). Similar multilingual news articles
should match irrespective of the style of writ-
ing, the language of conveyance, and subjective
decisions and biases induced by medium/outlet.
The proposed architecture includes a machine
translation system that translates multilingual
news articles into English and presents a mul-
titask learning model trained simultaneously
on three distinct datasets. The system lever-
ages the PageRank algorithm for Long-form
text alignment. Multitask learning approach
allows simultaneous training of multiple tasks
while sharing the same encoder during training,
facilitating knowledge transfer between tasks.
Our best model is ranked 16 with a Pearson
score of 0.733. We make our code accessible

here1

1 Introduction

Over the last decade, English has been one of the
most dominant languages on the internet. However,
the number of non-English websites is rapidly in-
creasing. From 2001-to 11, online use of English
increased at a slower rate than that of Spanish, Chi-
nese, etc. Approximately 4 billion people connect
to the internet every day, but only half of them ac-
cess web pages written in English (Pimienta, 2009).
This creates a severe problem regarding verifying
the integrity of the documentation because most
systems in use are enhanced with English as the
medium of information delivery.

1https://github.com/rdev12/Multilingual-News-Article-
Similarity

* First three authors have equal contribution

SemEval has conducted similar tasks on
sentence-level semantic textual similarity in the
past. The SemEval 2017 Task 1 (Cer et al., 2017)
dealt with finding the similarity between sentence
pairs of both monolingual and cross-lingual nature.
ECNU (Tian et al., 2017) was the best model that
used feature engineering and deep averaging net-
work (DAN) (Iyyer et al., 2015).

Furthermore, language-agnostic representation
for sentence similarity described in Tiyajamorn
et al. (2021) uses meaning embedding to estimate
the cross-lingual sentence similarity without using
human annotations. It improves the performance of
any pre-trained multilingual sentence encoder, even
in low-resource languages, with a few thousand
parallel sentence pairs.

Inspired by Ham and Kim (2021), we explored
the concept of semantically aligned multilingual
sentence embedding. It covers the biases induced
by monolingual similarity evaluation and multilin-
gual sentence retrieval to generate language-aware
embeddings. This method aligns semantic struc-
tures across different languages and uses a teacher
network to distill the knowledge of pivot languages,
thus achieving state-of-the-art STS 2017 multilin-
gual corpora.

Our model is inspired by a multitask training
approach using a BERT-based encoder. We use
multiple subtasks to improve the overall accuracy
score. Our model uses a machine translation model
to cope with the articles’ linguistic diversity. Addi-
tionally, since the average size of each article in the
training data is close to 512 tokens, we use a text
ranking algorithm that can capture the long-range
sentence-level similarity between two documents.
The next sections provide a more in-depth exposi-
tion.
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2 Task Description

The shared task emphasizes finding the similarity
of multi-lingual news articles irrespective of the
style of writing, political spin, tone, or any other
more subjective "design decision" imposed by a
medium/outlet. It gives participants access to a
cross/multi-lingual dataset that spans over ten lan-
guages, including English, German, French, Ital-
ian, Polish, Russian, Chinese, Turkish, Arabic, and
Spanish. The dataset includes an overall matching
score between two different news articles. Addi-
tionally, the dataset consists of other dimensionality
scores, such as Geo-location, Time, Shared Enti-
ties, and Shared Narratives (see table 1). These
scores are based on a four-point scale ranging from
the most to the least similar.

Table 1 indicates two examples: the first pair
of articles shows extreme similarity with a Pear-
son score of 1.25, and the second pair shows non-
similar articles with a Pearson score of 4. The sec-
ond pair of articles is a cross-lingual pair where one
article is in English and another in German. The
next section outlines the overview of the model
proposed by our team.

3 System Overview

Our system pipeline can be decomposed into four
modules i.e., extraction, translation, text ranking,
and multitask training.

3.1 Extraction
We extract title, descriptions, meta-description,
and text from the JSON files obtained by scrap-
ing the news articles from the URLs given in the
dataset. In most instances, the description and meta-
description are the same, so we merge them by cre-
ating an additional field in the dataset called "extra
text." The intuition behind this is to provide more
context, as the title and descriptions tend to convey
the overall message of the news article. This led to
an increase in Pearson score by 0.07.

3.2 Machine Translation
Our translation module is based on the OPUS-MT
(Tiedemann and Thottingal, 2020), a transformer-
based neural machine translation model. This
model uses Marian-NMT (Junczys-Dowmunt et al.,
2018), a stable production-ready neural machine
translation toolbox with efficient training and de-
coding capabilities. It is pre-trained on freely avail-
able parallel corpora collected in the large bitext

repository OPUS (Tiedemann, 2012). The pre-
trained version of the OPUS-MT model has six self-
attentive layers in both the encoder and decoder net-
works and eight attention heads in each layer. Also,
to handle the long-form nature of text articles, we
use the chunking technique to segment texts into
various chunks and then concatenate these derived
chunks with other characteristics.

3.3 Text Ranking
There are many instances where the combined to-
ken length for a pair of articles exceeded the length
of 512 tokens. Often, there are many irrelevant sen-
tences with no semantic significance. So, these sen-
tences are eliminated since they contribute much
less to the overall context of the article. To achieve
this, we adopt sentence-level noise filtering ap-
proach similar to Pang et al. (2021) & Mihalcea
and Tarau (2004). In this, we first concatenate the
pair of texts da and db obtained in the previous sec-
tions and split them into their component sentences
si as shown in equations 1 & 2.

da = {s11, s12, s13, ..., s1n} (1)

db = {s21, s22, s23, ..., s2m} (2)

Then we concatenate da and db into S as shown
in equation 3 later we derive representation ma-
trix by taking the mean of the component word
embeddings.

S = (s11, ..., s
1
n, s

2
1, ..., s

2
m) (3)

We use fastText embeddings (Bojanowski et al.,
2017) which construct a better node similarity ma-
trix than traditional methods and generate the em-
beddings by capturing transitive relationships and
utilizing very sparse random projections. To gen-
erate the sentence similarity graph, we calculate
the pairwise similarity of the sentence embeddings.
The sentence similarity is defined as the same as
TextRank (Page et al., 1999) to measure the over-
lapping word ratio between two sentences:

Sim (si, sj) =
|{wk | wk ∈ si, wk ∈ sj}|

log (|si|) + log (|sj |)
, si, sj ∈ S

(4)

Then, we apply the Page rank algorithm (Page et al.,
1998) to calculate the sentence importance score
of each si in S and sort in decreasing order of
importance. Finally, we extract the top λ sentences
from da and db separately such that it is less than
512 tokens when combined. If the two articles
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Geo Entities Time Narrative Overall Style Tone

Pair 1

India approves third moon mission, months after land-
ing failure (link)

1 1.25 1 1.25 1.25 1 1India targets the new moon mission in 2020 (link)

Pair 2

Hong Kong exam question on China and Japan
sparked outrage (link)

4 4 3 4 4 1 4Staatsanwalt wirft Reeder "inszenierte Machen-
schaften" vor (link)

Table 1: Two examples from the SemEval dataset. Pair 1 shows extreme similarity and pair 2 non similairty

Figure 1: Main model pipeline

are similar, the sentences on the top of the ranked
corpora reflect the same. As hypothesized, the title
and extra text often appear on the top since they are
rich in information.

3.4 Multi-task Training

Our multitask approach is based on the architec-
ture proposed by Pruksachatkun et al. (2020). As
shown in 2, the model consists of separate task-
specific heads with their preprocessing methods
but a shared encoder where the weights of all the
tasks are updated simultaneously. This approach
of introducing multiple subtasks supplements the
main task. As evident from table 3, when more rele-
vant tasks are added as task heads, the performance
improves. In our best-performing model, the task
head consists of an auxiliary semantic similarity
task, a hyperpartisan identification task, and the
main task. If required, the provided dataset and the
hyperpartisan dataset are preprocessed by transla-
tion and text ranking modules. The sentences in
the two ranked documents are combined, and a sep-
arator token separates the documents. This output
is then fed into our multitasking model based on
DeBERTa. The Loss during training was calculated
using Mean Square Error (MSE) Loss function.

4 Experimental Setup

This section describes various hyper-parameters
we use in data preprocessing and training. After
scraping all the valid URLs, we could access 3651
pairs of articles for training, 408 for validation, and
4902 for a test. For training, we implement sim-
ple transformer models. We use DeBERTa (He
et al., 2020) as the pre-trained language model
with a batch size of 4. We found that the model per-
forms better when the initial learning rate is 10−6

to 10−5. We use the AdamW optimizer. We use
Google Colab with a Tesla V100 GPU for various
experiments. We apply various Python libraries
like Pytorch, Transformers, Numpy, and Pandas to
implement our multitask learning model.

4.1 Selecting Loss Function
We tried various approaches for selecting the loss
function for our model. Initially, we experimented
with many different loss functions such as Mean
Square Error (MSE), weighted MSE, and dice
loss. Furthermore, we experimented with a multi-
objective weighted loss function as the data had
multiple features. This loss is calculated as the
weighted loss of LE , LN , and LO, which are the

https://huggingface.co/microsoft/deberta-base
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Figure 2: Multi-task Training Model

individual MSE Loss of entity, narrative, and over-
all similarity prediction. Multi-objective loss can
be represented by the equation 5, where α, β, γ are
the hyper-parameters decided while experimenta-
tion.

L = αLO + βLE + γLN (5)

5 Performance Analysis

In this section, we analyze the performance of sev-
eral components of our system and compare dif-
ferent schemes for representing the document and
the techniques used. Since the commencement of
this task, Our team leaned toward using a multi-
task learning strategy because it seemed to be the
ideal fit for this problem. To do so, we ideated with
several subtasks and experimented with our base
encoder architecture. Table 3 shows all the differ-
ent combinations of subtasks and base encoders
used. Since the task prompts the participants to
use multilingualism as a feature, our initial models
utilized multilingual transformers such as XLM-
Roberta (Conneau et al., 2019), and RemBERT
(Chung et al., 2020), both of which are efficient
with multiple languages. However, the primary is-
sue we faced was the cross-linguality of the data;
since the delivery style of information varies within
every language, it becomes challenging to surface
common information among pairs of text articles.

Thus, we emphasize more on translating the ar-
ticles into English. We utilize a state-of-the-art
publicly available model OPUS-MT. This transla-
tion module helped all articles to be represented

in the same language. Doing so opens up the op-
portunity for us to choose from multiple encoders
instead of our previous approach, where the num-
ber of encoders is limited.

After experimentation with various combina-
tions of subtasks, as mentioned in table 3, we see
that each of the subtasks has a unique attribute that
can contribute to the overall performance of our
model. After extensive experimentation, we chose
two subtasks along with one main task.

5.1 Maintask - SemEval2022
As described earlier, our approach for generating
the overall similarity is quite simple yet effective.
The model uses an aggregate of title, text, and de-
scriptions, which is then ranked based on the impor-
tance of each sentence in the article. The SemEval
2022 task-8 has various features to consider along-
side the overall similarity score, rated between 1-
and 4. During the task, the system pipeline supplies
a pair of translated and ranked articles to the model,
using the Deberta encoder to generate optimally
aware document embedding. These embeddings
are then supplemented with a set of linear layers to
generate a final similarity score.

5.2 Subtask 1 - Hyperpartisan News Detection
As shown in Table 2 we used the Hyperpartisan
News Detection dataset for detecting extreme sen-
tences that may be biased towards a political group
or a cause. The intuition behind this subtask was
distinguishing news articles supporting extreme
causes from more general articles. In sporadic
cases, these two types of articles show similarities.
This task also neglects political biases induced by
media outlets and encourages us to treat each pair
of articles impartially.

5.3 Subtask 2 - Semantic Textual Similarity
The semantic textual similarity closely relates to
our main task since this involves finding the seman-
tic proximity between pairs of texts. Because the
STS-b dataset uses small sentence pairs with a max
word limit of 40, it improved sentence-level simi-
larity for the main task. The STS-b dataset covers
a broad spectrum of sentences from news articles,
image captions, and forums, which helps the model
diversify across varied sentence-type situations.

5.4 Additional Models
We experimented with different combinations of
Transformer based models and datasets. Table 4
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Subtask Description Dataset
Semantic Textual Similarity Determine how semantically similar two pieces of text are. STS benchmark
Hyperpartisan detection Given a news article, decide whether it follows a hyperpartisan argumenta-

tion, i.e., whether it exhibits blind, prejudiced, or unreasoning allegiance
to one party, faction, cause, or person.

Hyperpartisan News Detection
(Kiesel et al., 2019)

Stance detection It involves estimating the relative perspective (or stance) of two pieces of
text respective to a topic, claim or issue.

Fake News Challenge - 1
(Hanselowski et al., 2018)

Fake news inference detection Fake news Detection using the Natural Language Inference. This entails
categorizing a piece of text into categories such as "pants-on-fire", "false",
"barely true", "half-true", "mostly true", and "true."

Fake news inference dataset

Language Inference Determine whether a “hypothesis” is true (entailment), false (contradic-
tion), or undetermined (neutral) given a “premise”

DocNLI Dataset (Yin et al., 2021)

Emotion Detection Our Intuition behind this subtask was that if two articles are similar, they
will exhibit same type of emotion. However, after experimentation we
found this false as this subtask did not contribute towards the main task.

Go-Emotions Dataset (Demszky et al.,
2020)

Paraphrase detection Determine whether a particular sentence is a paraphrase of the original
text.

Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005)

Table 2: Brief description of all different subtasks used for experimentation

Model subtasks Model Type Pearson Score (on validation set)
Stance detection Translated text with RoBERTa 0.800
Stance detection Untranslated text with XLM-RoBERTa 0.737
No Subtask (Multi-Objective Loss) Weighted loss on Entity (0.15), Narrative (0.15) and

Overall (0.7) Similarity (Sener and Koltun, 2018)
0.815

No Subtask (Multi-Objective Loss) Weighted loss on Entity (0.2) and Overall (0.8) Sim-
ilarity

0.811

Stance detection + Hyperpartisan detection Translated text with RoBERTa 0.809
Hyperpartisan detection + Semantic Textual Similarity DeBERTa 0.835

Table 3: Combination of all the subtasks and model types we used in experimentation. The results here are calculated
on the validation set.

represents the score we achieved while develop-
ing the model. These scores are on the validation
dataset that comprises 408 article pairs. Our model
performed well during the developing stage. For in-
stance, our best-performing model achieved a Pear-
son score of 0.835, and subsequently, we achieved
a Pearson score greater than 0.8 in two other ap-
proaches. Table 3, however, shows the Pearson
scores evaluated on the test dataset. We believe
that the decline in performance was caused by the
new languages (Chinese, Italian, Russian) intro-
duced in the test dataset. These languages were not
present in the training or validation set. This could
be linked to the shift in writing style imposed on
new languages, regardless of translation. Accord-
ing to our validation results, the model could not
interpret the new languages and the unique cross-
lingual pairs in the dataset.

6 Results

We use the Pearson score to evaluate SemEval 2022
task 8, which measures the linear relationship be-
tween the predicted and ground truth values. Like
other correlation coefficients, the Pearson score
varies between -1 and +1, with 0 implying no cor-
relation. Correlations of -1 or +1 imply an exact
linear relationship. The dataset available in the
evaluation phase of the task lacked features like
Geography, Entity, etc., which were present in the

training phase. Furthermore, the test dataset has
an additional set of languages not present in the
training dataset. This test dataset ensured that the
model trained by the participants was an accurate
multilingual model. Table 4 shows the models sub-
mitted by our team for the SemEval 2022 task-8;
our best model achieves a Pearson score of 0.733,
placing us amongst the top 15 of all participating
teams.

As stated in the second row of table 3 we also ex-
periment with a singleton multitask learning model
separate from a machine translation system. The
model, however, was unable to generalize ade-
quately for each language in the dataset, and there
appeared to be considerable sparsity between the
predicted scores, particularly for low-resource lan-
guages like Turkish and Polish. Also, the lack of
invariant multilingual data, specifically for each of
the languages listed previously, was crucial in our
decision to switch to a translation-based approach.

Next, table 5 showcases two instances where our
model is successful and two instances where it fails
to predict the correct value. We believe that this
behavior is due to the machine translation module
in our pipeline. Our model performs poorly for the
following language pairs: de-en, ar-en, pl-en, and
zh-en. This can be closely connected to the OPUS-
MT model’s BLEU score values, which are much
lower for the language mentioned above pairs. This
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Model Type Model Subtasks Pearson Score (on test set)

RoBERTa Semantic Textual Similarity + Stance Detection 0.724
Phrase Detection + Stance Detection 0.730

DeBERTa Semantic Textual Similarity + Hyperpartisan Detection 0.733

Table 4: Models submitted by our team for the SemEval 2022 Task-8

Article 1 Article 2 Predicted Similarity
Score

Actual Similarity
Score

Language
Pairs

Paraguay: Presidente promulga ley contra
el “dinero sucio” en campañas (link)

Paraguay: Deputies approve the law on
"dirty money" in political campaigns
(link)

1.045 1 de-de

Conductores chocan por detenerse a ver
accidente (link)

Paraguay: Deputies approve law on "dirty
money" in political campaigns (link)

3.8 4 de-de

Schlag gegen den rechtsnationalen Flügel
(link)

AfD-Rechtsaußen unter Druck (link) 1.02 3 es-es

Neue Debatte um Steuern: Millionen Ar-
beitnehmer zahlen Höchstsatz (link)

Norbert Walter-Borjans wants a higher
top tax rate from 76,000 euros (link)

3.8 1 es-es

Table 5: First two rows of this table represents the instances where our model performed up to the mark and the last
two rows represent the cases where our model failed to predict the right values

Pearson Score
Ours 0.733
Average 0.624
Best in all teams 0.818

Table 6: Comparison of ours result with the best and the
average pearson score

indicates that the model cannot comprehend these
languages adequately, resulting in unclear results.
Additionally, our system performs exceptionally
well for data in French and Spanish, where the
BLEU score values were 59.66 and 57.5, respec-
tively. Furthermore, the results on en-en pairs are
very accurate since they are not translated, thus
retaining the writing style of the editor/outlet. Also,
We encountered numerous challenges while scrap-
ing the data; not all websites were fully accessible,
others only included photos or titles, and a handful
swapped the URL with that of the main website’s
landing page. Next, the scrapper made numerous
mistakes in discovering and assigning relevant tags
to the articles’ various subsections. A common
erratum was combining description and title and
attributing the title of the continuing piece to some
random advertisement or supporting material.

7 Conclusion & Future Work

Our model performs well on English, Spanish, and
French data while falling short on German. Even
though the German data is the second largest, the
biggest problem is that there is a lot of data to
consider. The model could not correctly address
each attribute of the article, resulting in underper-
formance. Some of the future work we anticipate
to do which can increase the performance of our
model are stated below:

1. Better Neural Machine Translation system
which can effectively produce English sen-
tences. We do suggest using AWS Translate
since it makes more accurate predictions.

2. Using a finely trained multilingual model, en-
hanced explicitly for dealing with documents.
DocMT5 (Lee et al., 2021) is one considered
model; however, due to its public unavailabil-
ity at the time of writing this paper, made us
unable to use it in our approach.
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Abstract

We investigate the capabilities of pre-trained
models without any fine-tuning, for a
document-level multilingual news similarity
task of SemEval-2022. We utilize title and
news content with appropriate pre-processing
techniques. Our system derives 14 differ-
ent similarity features using a combination of
pre-trained MPNet with well-known statisti-
cal methods (i.e. TF-IDF, Word Mover’s dis-
tance). We formulate the multilingual news
similarity task as a regression task and approxi-
mate the overall similarity between two news
articles using these features. Our best per-
forming system achieved a correlation score
of 70.1% and was ranked 20th among the
34 participating teams. In this paper, in ad-
dition to a system description, we also pro-
vide further analysis of our results and an ab-
lation study highlighting the strengths and lim-
itations of our features. We make our code
publicly available at https://github.com/cicl-
iscl/multinewssimilarity.

1 Introduction
Assessing semantic similarity between two given
content pieces has become one of the important
natural language processing (NLP) tasks. This task
can help researchers estimate the quality of their
models for many other tasks such as: machine trans-
lation (MT), summarization, question answering
(QA), semantic search, dialog, and conversational
systems. Extending semantic similarity task to a
cross-lingual setup can extend the evaluation bene-
fits to cross-lingual tasks as well. Previous works
(Agirre et al., 2016; Cer et al., 2017) focus on sen-
tence level cross-lingual semantic similarity. The
presented shared task, Chen et al., 2022, proposes
a novel problem that focuses on document-level
semantic similarity based on news articles.

The multilingual news similarity task contains
monolingual as well as cross-lingual pairs of news

∗∗ Both authors contributed equally.

reports. This setup enables researchers to test their
multilingual models on a document-level semantic
similarity task. There can be multiple extensions
to this, including the clustering of news articles
and tracking similarity of news coverage between
different outlets or regions.

In this work, we investigate the capabilities of
pre-trained multilingual language models (LMs) as
well as word-embedding models in this task, with-
out fine-tuning them on the task data. Our solution
pipeline combines pre-trained MPNet (Song et al.,
2020) with well-known statistical methods with
well-known statistical methods (i.e. TF-IDF, Word
Mover’s distance) to derive the semantic similar-
ity features between articles using their title and
textual content. We use these similarity features
to approximate overall similarity between article
pairs.

Our system performance is encouraging for this
task, albeit with room for improvement. In the
following sections, we describe our approach and
provide a detailed study of the errors made by the
system. We also report the results of an ablation
study highlighting strengths and limitations of our
derived features.

2 Task Setup

2.1 Dataset

The shared task introduced a new dataset consisting
of 4964 article pairs in the training set and 4953
article pairs in the hidden test set. The participants
were provided with these news articles’ URLs and a
Python script to scrape the texts. The training data
contained an annotated overall similarity score for
each pair and other similarity scores correspond-
ing to features such as geography, entities, time,
narrative, style, and tone.

The released training data consisted of monolin-
gual pairs in English, German, Spanish, Turkish,
Polish, Arabic, and French, and one cross-lingual
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pair: German-English. The evaluation data con-
tained 4,953 news article pairs. To the languages in-
cluded in the training data, there were added mono-
lingual pairs in Italian, Russian, and Chinese, and
the cross-lingual pairs: German-French, German-
Polish, Spanish-English, Spanish-Italian, French-
Polish, Polish-English, and Chinese-English. For
more details, please refer to table 5 and 6 in the
Appendix. These monolingual and cross-lingual
news article pairs are annotated on a 4-point scale
from most to least similar.

2.2 Evaluation
The overall similarity between the two news stories
is the only score used to evaluate system perfor-
mance. The online scoring system calculates Pear-
son’s correlation between system-generated overall
similarity ratings and the gold standard ratings.

3 System Overview

In our approach, we formulate the multilingual
news article similarity as a regression task, rely-
ing on different similarity features to approximate
the overall similarity between two news reports.
We choose this approach as the language pair dis-
tribution differs significantly between training set
and the test set. This setup enables us to investi-
gate the capabilities of pre-trained multilingual lan-
guage models (LMs) as well as word-embedding
models on document-level similarity task without
fine-tuning.

We divide the news similarity task into a pipeline
of five subtasks: Article Scraping, Preprocessing,
Embedding Creation, Feature Calculation, and In-
ference. Figure 1 illustrates the architecture of our
system.

3.1 Article Scraping
We used the script1 provided by the organizers to
download the article content from the web. After
multiple tries, we were able to retrieve news content
for 4940 out of 4964 training article pairs (see Table
5 in the Appendix). Similarly for evaluation data,
we were able to retrieve news content for 4903 out
of 4953 article pairs (see Table 6 in the Appendix).

3.2 Preprocessing

Our preprocessing step takes an article as an input
and generates a json object containing only the

1https://github.com/euagendas/
semeval_8_2022_ia_downloader

information which is relevant for our approach. As
we do not fine-tune any model based on the textual
content, data cleaning is an important step for our
system. We remove irrelevant content from the data
in the following manner:

Copyright text: The article texts sometimes con-
tains information regarding the copyright policy of
the news websites. We observed a few cases where
the scraper only downloaded the copyright notice
instead of the news content. In such cases, copy-
right content increased or decreased the similarity
significantly. To avoid errors in similarity feature
calculation, we remove such copyright lines.

URLs: Generally, news reports also link other rele-
vant references in their articles but parsing them to
make them useful can be tricky. Moreover, some-
times these can contain unrelated advertisement
links. Hence, we remove all kinds of links from the
text for our purposes.

Cookies text: Similar to the copyright content,
the scraper also ends up downloading text with
information regarding the usage of cookies from
the website. As this text is irrelevant for measuring
content similarity, we remove this information from
the article text.

Image captions: News stories can also contain
images referring to some event or place that is cov-
ered in the news article. Such images are generally
captioned with the details of the photographer cred-
its. We find such credits irrelevant for our task and
clean them from the article text.

3.3 Embedding Creation:

We use vector representation of article title and text
to compute similarity features. We obtain these
representations using MPNet and FastText. We
calculate these vector representations once and
store it on the disk. This way, we do not have to
calculate these representations every time we need
them. We utilize a multilingual version (Reimers
and Gurevych, 2020) of MPNet (Song et al., 2020),
fine-tuned on a paraphrasing task using parallel
data for 50+ languages for calculating vector repre-
sentations. We also experimented with language-
agnostic BERT (Feng et al., 2020), but we dropped
it after initial results.

For the longer text, multilingual MPNet model
simply truncates the text and returns the represen-
tation of the first 512 tokens. We need a way
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Figure 1: A schematic of our approach. We utilize Zero-shot feature extractors to derive similarity features from the
articles. We use these features to train our regression model and obtain overall similarity score.

to be able to compute accurate vector represen-
tation of news articles irrespective of their length.
Hence, we compute representations for article text
at two different granularity levels: sentence-level
and paragraph-level.

We obtain separate sentences using a multi-
lingual sentence tokenizer from SpaCy.2 For
paragraph-level representation, we tokenize the
text using a pre-trained tokenizer, provided along
with MPNet model, and take the first and the
last 512 tokens of the article. We obtain the
vector representations of these sentences, the
first 512 tokens, and the last 512 tokens using
the SentenceTransformers (Reimers and
Gurevych, 2019) library. Similarly, we compute
the vector representations of the news title. From
now on, we will refer to the first 512 tokens as
the first paragraph and the last 512 tokens
as the last paragraph. Note that for articles
shorter than 512 tokens, the first and the last para-
graph will be the same.

3.4 Feature Calculation

To estimate overall news article similarity, we de-
rive 14 unique similarity features from the news
title and text pairs. In this subsection, we describe
all the features in detail.

2https://spacy.io/models/xx

3.4.1 Sentence similarity
We derive four similarity features from the arti-
cle text to capture the sentence-level similarity be-
tween articles. These features are obtained as fol-
lows:

Sentence mean similarity: The average cosine
similarity scores of the top matching sentence vec-
tors between the source and target articles.

Sentence maximum similarity: The maximum
cosine score of the top matching sentence vectors
between the source and target articles.

Sentence minimum similarity: The minimum co-
sine score of the top matching sentence vectors
between the source and target articles.

Sentence median similarity: The median of the
cosine similarity scores of the top matching sen-
tence vectors between the source and target articles.

3.4.2 Paragraph similarity
Additionally, we derive two similarity features
from the article text to capture the paragraph-level
similarity between articles. These features are ob-
tained as follows:

First paragraph similarity: The cosine similar-
ity value between the first paragraph vector
representations of the news articles.

Last paragraph similarity: The cosine similarity
between the last paragraph vector represen-
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tations of the news articles.

3.4.3 Title similarity
The title should summarize the article text in a
meaningful manner. We calculate five similarity
features from the article title, capturing title simi-
larity as well as inter and intra title-text similarity
between articles. These features are obtained as
follows:

Title similarity: The cosine similarity between the
title vector representations of the news article pair.

Inter title-text similarity: We calculate inter title-
text similarity to see how the source title is similar
to the text of the target and vice versa. We utilize
stored vector representations of the corresponding
news entities and calculate cosine similarity be-
tween these entities. Note that we produce two
separate features for inter title-text similarity (i.e.
sim(titles, textt), sim(titlet, texts)).

Intra title-text similarity: Similarly, to mea-
sure title-text coherence, we calculate intra title-
text similarity between the title and the text of
same news article using the stored vector rep-
resentations. Note that we produce two sep-
arate features for intra title-text similarity (i.e.
sim(titles, texts), sim(titlet, textt)).

3.4.4 NER similarity
We calculate named entity similarity NEsim using
the below equation.

NEsim =
|NEs ∩ NEt|

max(|NEs|, |NEt|)

where NEs represents set of named entities in the
source article, NEt represents set of named entities
in the target article.

3.4.5 TF-IDF Similarity
We first remove stop words using NLTK’s language-
specific stop words corpus. We then estimate the
cosine similarity between TF-IDF representations
of the article pair.

3.4.6 WMD Similarity
Similar to TF-IDF similarity, we calculate the Word
Mover’s distance of two texts without stop words
using multilingual FastText(Bojanowski et al.,
2017) model from Gensim.3

3https://fasttext.cc/docs/en/crawl-vectors.html

3.5 Inference

The last part of our system is estimating the overall
similarity using the features obtained. We experi-
mented with three different setups: regression over
all the features, multitask regression using addi-
tional available scores, and regression over reduced
feature space (i.e. principle components, autoen-
coder representations). In this subsection, we men-
tion all the setups briefly and provide details of our
best performing system.

Multitask Regression: The training data contains
similarity scores for geography, entities, time, nar-
rative, style, and tone along with Overall article
similarity. We trained a Multi-task Lasso model
and Multi-task autoencoder on the training set but
after initial experiments, we decided not to pursue
these setups further.

Regression over reduced feature space: We apply
principal component analysis on our feature space
for dimensionality reduction.

Regression over entire feature space: We ex-
perimented with Linear regression, Decision Tree
regression, Random Forest regression, Kernel ridge
regression, Multilayer perceptron regression, and
TabNet regression (Arık and Pfister, 2021).

Our two best performing systems used Kernel
ridge regression. In the highest ranked system, we
train a Kernel ridge regressor using a polynomial
kernel of degree 3 and a regularization co-efficient
of 1.0. This way we allow our model to learn from
non-linear features. Our second best performing
system uses Kernel ridge regression (KRR) with
RBF kernel over top-4 principal components and
achieves 70% Pearson correlation. TabNet regres-
sion ranked third during the evaluation phase, with
a correlation score of 69.1%. We describe the im-
plementation details of our best performing setup
below.

Implementation details: We split the data into
95:05 training and evaluation datasets and utilize
the entire feature space. Going from 80:20 split to
95:05 split boosted our model accuracy by half
point. As a final step, we also clip the model
predictions between 1-4 to make sure that our
model predictions remain inside the range. We
use scikit-learn (Pedregosa et al., 2011) for
training the kernel regression model and wandb
(Biewald, 2020) for hyperparameter tuning.
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4 Results

All the submissions for this shared task were eval-
uated with regard to Pearson’s correlation coeffi-
cient. Our best performing system achieved a score
of 70.1% in the evaluation phase. We were offi-
cially ranked 20th out of 34 teams on the main task
leaderboard. On the English-only subtask, we were
ranked 15th out of 34. We report scores for our top
three submissions during evaluation phase in Table
1. All three systems use all the features to predict
the overall similarity.

Model Data Split Score

KRR-poly 95:05 70.1

KRR-rbf 80:20 70.0

TabNet 95:05 69.1

Table 1: Correlation scores of our top performing sys-
tems on the hidden test set

We report our results for each monolingual lan-
guage pairs in Table 2 and cross-lingual pairs in
Table 3. The general system performance was sim-
ilar for monolingual and cross-lingual pairs, with
an average accuracy of 0.71 for monolingual pairs
and 0.72 for cross-lingual ones.

Language Score Language Score

fr-fr 84.34 tr-tr 70.36

es-es 81.24 zh-zh 64.42

en-en 79.55 ar-ar 62.23

it-it 79.42 pl-pl 61.49

ru-ru 73.50 de-de 59.43

Table 2: Correlation scores for monolingual pairs

Language Score Language Score

pl-en 82.84 fr-pl 74.76

es-en 80.13 es-it 70.95

zh-en 76.91 de-pl 60.11

de-en 76.54 de-fr 55.47

Table 3: Correlation scores for multilingual pairs

The highest accuracy was achieved in the French
monolingual pair, with 0.84, but the lowest accu-

racy score was found in the German-French cross-
lingual subsection with 0.55. This can be explained
by the general low results that the system achieved
in the pairs with news written in German, be it in
the monoligual subset (0.59), or cross-lingual pairs
German-French and German-Polish (0.60). Only
one pair with German language had an above av-
erage accuracy, the German-English cross-lingual
pair (0.76).

5 Performance Analysis

In this section, we analyze the performance of fea-
ture sets used by our system and compare different
subsets against each other. We also discuss some
errors made by our system and possible improve-
ments.

5.1 Ablation study
We conducted ablation experiments to evaluate the
importance of different feature sets on the results.
We use released test set labels and our best per-
forming model, Kernel Regression to conduct this
study. We report the results of this study in Table
4. Note that these results were obtained after exten-
sive hyperparameter tuning, which was not feasible
during the shared task evaluation phase.

Features Correlation

MPNet features 71.83

Non-MPNet features 47.15

MPNet features +
WMD distance

71.35

TF-IDF +
WMD distance

47.89

MPNet Sentence features 63.21

MPNet Title features 64.11

MPNet Paragraph feature 63.73

Table 4: Results of feature ablation study

We observe that features derived from MPNet
perform better than our reported system and
slightly improve the correlation score. We also
observe that adding other features with MPNet-
derived features rather degrades the system per-
formance (i.e. MPNet features + WMD distance).
Other features perform very poorly compared to
MPNet features through our setup. While MPNet
feature sets perform substantially better individ-
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ually compared to other features, combining all
MPNet gives the best performance on the task.

5.2 Error analysis

In order to closely examine the performance of our
system, we analysed a subset of the news pairs
which were classified in the wrong category. This
subset only included news pairs written in English,
German, Spanish, Italian or French and its cross-
lingual combinations. Most differences between
our systems’ result and the annotation guidelines
differed in less than one point. Since the different
categories of similarity proposed in the dataset also
differed in one point, we considered this as our
threshold for error analysis.

The following patterns were found when our
system overestimated the similarity between two
news pairs:

Articles with parallel structures: Some news gen-
res present a more fixed structure than others. Such
is the case for police reports, which include similar
key phrases but narrate different events.

Same location: Two different events which hap-
pened in the same location.

The following patterns were found for when our
system underestimated the similarity between two
news pairs:

Scraping errors: At least one of the articles did
not contain any textual content relevant for the
news article.

Lack of information: At least one of the news arti-
cles was extremely brief (less than one paragraph),
and lacked information about the event.

Different titles: The titles focused on different
aspects of the news report.

6 Conclusion

In this paper, we have described our participation in
the Task 8 of SemEval-2022, “Multilingual news ar-
ticle similarity”. We developed a system to investi-
gate the capabilities of pre-trained language models
(LMs) as well as word-embedding models. Our re-
sults suggest that the system performs similarly for
monolingual and cross-lingual pairs, but its perfor-
mance varies based on the specific language pairs.
The ablation study showcases the strength of the
pre-trained multilingual language models for this
task. Given the performance of our system, despite

the noticeable variation in language-pair distribu-
tions, we speculate that our approach can be used
to deliver similar results for additional languages
as well.

For the future, we would like to explore the
system’s performance with the same features but
also fine-tuning our MPNet model on the train-
ing dataset. This would allow us to compare the
effectiveness of pre-trained models against the fine-
tuned model. Additionally, we would like to exper-
iment with new features such as article summary
similarity and article topic similarities.
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A Appendix

Language #pairs
(w\o dup)

Downloaded
pairs

en-en: 1800 1773

de-de: 857 853

de-en: 577 (575) 522

es-es: 570 561

tr-tr: 465 428

pl-pl: 349 349

ar-ar: 274 274

fr-fr 72 72

Table 5: Distribution of languages in the training data

Language #pairs
(w\o dup)

Downloaded
pairs

en-en 236 236

de-de 611 (608) 608

de-en 190 (185) 185

es-es 243 243

tr-tr 275 272

pl-pl 224 224

ar-ar 298 298

fr-fr 111 111

zh-zh 769 764

es-en 498 (496) 496

it-it 442 (411) 411

es-it 320 310

ru-ru 287 287

zh-en 223 (213) 213

de-fr 116 111

pl-en 64 64

de-pl 35 34

fr-pl 11 11

Table 6: Distribution of languages in the test data
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Abstract

We present our contribution to the SemEval
22 Shared Task 8: Multilingual news article
similarity. The approach is lightweight and
language-agnostic, it is based on the computa-
tion of several lexicographic and embedding-
based features, and the use of a simple ML ap-
proach: random forests. In a notable departure
from the task formulation, which is a ranking
task, we tackled this task as a classification one.
We present a detailed analysis of the behaviour
of our system under different settings.

1 Introduction

Detecting similar news is a key component of me-
dia monitoring, such as the one done by the Europe
Media Monitor1, which collects daily about half a
million articles in more than 80 languages. This
shared task (Chen et al., 2022) allows to study two
important challenges that arise in practice: articles
can be similar to several extent and in different
ways; massive multilingualism requires language
agnostic approaches. We report in this paper the
result of an experimental approach to tackle this
task.

We considered computing simple lexicographic
and embedding-based features and using simple
ML approach for complexity reasons, having in
mind that pair-wise comparison of half a million ar-
ticles each day is not possible with heavier solution
without massive resource cost. There are two im-
portant tasks when building such large scale news
clustering: determining which pair of articles are
worth comparing, and computing the actual similar-
ity between pairs of articles. While this shared task
deals only with the second approach, the presented
system has been designed to tackle also the first
one.

1https://emm.newsbrief.eu/

2 System Description

Our system computes several lexicographic- and
embedding-based similarity features, which are fed
to a standard random forest. We used the follow-
ing hyperparameters: 100 trees and a leaf split
parameter of 3 data points. On the train set, these
parameters avoided extreme overfitting to the data,
while not degrading significantly the performances.
We used 5-folds cross validation in order to choose
the hyper parameters.

For each article we consider separately the simi-
larities related to 4 fields of the news item: the title,
the description, the first sentence and the snippet.
The snippet is constituted of the first 4 sentences
comprised within the first 512 characters of the text
- everything after was ignored, sentences were not
truncated. We present here the set of features that
have been computed for each of these fields, and
for some cross field (title-description, title-first sen-
tence, description-first sentences), all features are
normalized.

Lexicographic measures: we consider two sets
of representation: the set of words, and the set
of multi-word expressions (MWE). The MWE
were computed by splitting the text around stop-
words and punctuation marks, essentially similar to
RAKE keyword extraction (Piskorski et al., 2021).
The features include the proportion of matching
words and proportion of matching MWE between
both articles. In the case of MWE, a margin of error
was allowed in that two non strictly equal MWE
were considered equal if the longest common sub-
sequence between them was of 75% the length of
the longest one. For both words and MWE we com-
pute the raw count of elements in common and the
length of the corresponding span of text.

Embedding-based measures: all embedding-
based measures are based on LASER embed-
dings (Artetxe and Schwenk, 2019) which are
aligned multilingual embeddings covering over 100
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languages and that perform well for multilingual
semantic comparison. They are BiLSTM based,
and as such are much faster than transformer-based
solutions, it also has to be noted that out of the box
BERT solutions do not perform well on the task
of semantic similarity, and LASER embeddings
have a better performance (Reimers and Gurevych,
2020). On top of the pairwise comparison between
the aforementioned fields, we also compute the
equivalent of Word Mover Distance (Zhao et al.,
2019) between the first 4 sentences of the articles,
by binning sentences in pairs of decreasing similar-
ity.

Non linguistic features: the only non linguistic
feature considered is the difference in publication
date of the two articles.

When developing the system, the results were
checked for near misses, by considering all the
clusters produced, and checking for missing links
between elements of the clusters. This approach
was able to catch such misses, including in the
training data itself, but it was not used in the final
system due to lack of time.

3 Data

The training data provided by the organizers is a
list of 4964 article pairs covering 9431 articles in
16 languages, while the 7 main languages represent
99% of the dataset. The pairs are associated with
several similarity scores; one of them giving the
overall similarity is ranked between 1.0 (maximum)
and 4.0 (minimum) and is the only one considered
in our approach. Test data contains 4890 pairs over
9715 articles in 10 languages. There is a notable
difference between both datasets, in that train data
contained almost no pairs of article in different
language, while such pairs represented 15% of the
evaluation dataset. A major difference was also the
introduction of Chinese in the test set.

3.1 Acquisition

The data was given as a list of urls to download,
and this proved to be a daunting exercise fraught
with difficulties and eventually taking more time
and dedication than the development of the sys-
tem itself. The scrapper provided by the organizer
was not used, we relied on the trafillatura (Bar-
baresi, 2020) library, which was desirable thanks
to its good metadata extraction capacities and over-
all performances. A total of 3 different scrapping
approaches were used: first trying to scrap directly

from the original url, then trying to scrap from the
internet archive, finally, in case the url was reach-
able but the data was not correctly extracted, we
wrote an ad-hoc scrapper whose extraction rules
were manually written for each problematic news
source. Despite these efforts, about 7% of the test
data was impossible to download. We report these
numbers in Table 1. Most of the articles that had to
go through the ad-hoc scrapper were from Chinese
sources, for several of these it was possible to ex-
tract only the title, this created a difference in the
features available with several missing values.

set direct arch. ad-hoc total absent
train 8108 951 159 9431 274
test 7348 847 838 9715 682

Table 1: Number of additional downloaded pairs of urls
by scrapping method, total and missing pairs

3.2 Preprocessing

The data underwent significant prepossessing. The
title was cleaned of mentions to the news source. In
order to do that, if the source name was extracted
from the metadata and was present in the title it
was removed, if a token was ending with an internet
top level domain, the token was removed, if a pipe
bar was present, the leftmost part of the bar was
kept. If it was detected that a source always had
the same title, indicating that the scrapper was not
correctly extracting it, then the title was replaced by
the first sentence of the description if available. If
the description was not available, the first sentence
of the article was used instead, in case the article
had no text but had a description, the description
was used for the text, and in case there was not
description but a title, the title was used for the
description. This procedure aimed at minimising
the impact of missing values.

The text was preprocessed by removing likely
source name, author name and date mention at the
beginning of the text, using an heuristic rule-based
procedure focusing on the presence of numbers,
uppercase letter, short sentences and typical start
of text markers, such a double dashes. Out of the
remaining text, a snippet was extracted, taking the
sentences spanned by the first 512 characters, with
a maximum of 4 sentences. Unicode letters were
normalized to canonical forms. The language anno-
tation provided in the dataset was not trusted, and
we instead relied on the one provided by the lan-
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Figure 1: Confusion matrix for random forest classifica-
tion (left) and rounded random forest regression (right)

guage detector of fasttext (Grave et al., 2018).
Chinese texts were segmented using the jieba
library in order to insert spaces between words so
as to further deal with them in a language agnostic
way.

4 Experimental Results

4.1 Experiments on train dataset
We settled on using random forests on the classifi-
cation task as our contribution model after prelim-
inary trial showed that random forests had better
performances than neural networks and that the la-
bel distribution produced by random forests on the
classification task was much more coherent with
the ground truth than the one produced by random
forests applied to the regression task. Given that
we will tackle the problem as a classification prob-
lem, we will consider 4 classes labelled from 1 to
4, denoting the following relations in article pairs:
similarity (sim), close similarity (close), different
(diff) and unrelated (unrel). Unless specified other-
wise, all the values computed over the train set are
an average over 5-fold cross validation.

In Figure 1 we report the confusion matrix over
the 4 classes using all the features with a random
forest classifier (RF-C) and regressor whose output
have been rounded to the closest integer (RF-R).
RF-R has more errors than RF-C, but these are
less significant as classes are mistaken mostly be-
tween related classes: for instance the classes sim
and close are more often confused than with RF-C,
but the classes sim and unrel are significantly less
confused.

In Figure 3 we report the label distribution of
the classifier and the regressor when trained and
tested over the full training set and compare it with
the ground truth. In this same setting, in Table 2
we report the Jensen-Shannon divergence of these
label distributions, measuring the distance with the
train data label distribution (Fuglede and Topsoe,

Figure 2: Caption

Figure 3: Label distribution for random forest classifi-
cation (up. left), random forest regression (low. left),
ground truth (low. right) and rounded ground truth (up.
right)

measure RF-C RF-R
micro F1 93.6 80.2
macro F1 93.7 78.9

JS div. 0.0016 0.0098

Table 2: Performances on the train data, and distance
of the label distribution with respect to the train dataset
distribution

2004), we also report the micro F1 and macro F1

performance of RF-C and RF-R. Despite a seem-
ing overfitting of RF-C, the distribution of labels
produced by RF-C is clearly closer to the one of
the ground truth than the one of RC-R. For all these
different reasons we decided to tackle this task as a
classification problem instead of a regression one.

In Table 3 we report the performance of our
classifier (RF-C) over different subsets of the train-
ing data, in function of the language pairs consid-
ered: all (MULTI), only same languages (SAME),
only English (EN) and only different languages
(CROSS). Both micro an macro F1 are the highest
for EN, nevertheless MULTI is the second best per-
forming subset in terms of macro, with only one
point less, while the micro difference of 6 points is
important. The performance of SAME an MULTI
are similar, this seems to indicate that specifically
for English the performances are better. This could
be due to the fact that English is the less flexional
language of all the languages in the training set,
as such, string matching is more likely to report
the correct answer, both for exact and approximate
matching. CROSS has the second highest micro
score, but has the lowest macro score. This ap-
proach tends to rely more heavily on the embed-
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subset micro F1 macro F1

MULTI 55.2 47.5
SAME 54.1 47.2
EN 61.1 48.3
CROSS 58.0 40.1

Table 3: multilabel evaluation of RF-C: micro F1 and
macro F1 performance of different subsets of language
pairs of the train dataset

subset F1 (1 vs rest) F1 (1+2 vs rest)
MULTI 60.1 78.0
SAME 59.1 74.1
EN 64.5 75.1
CROSS 56.3 76.1

Table 4: binary evaluation of RF-C: the F1 measure
is reported for two binary classifier: class 1 (similar
articles) vs rest and class 1+2 (similar and close articles)
vs rest.

ding feature as lexical matches are unlikely except
for named entities.

In Table 4 we report the measures for the same
subsets, but applied when considering binary clas-
sifications problems. We consider two such clas-
sifiers: when considering class 1 (similar articles)
versus the rest of the classes and when considering
class 1 and 2 (similar and close articles) versus the
rest of the classes. The performance of the binary
classifiers are clearly superior to the performance
of the multilabel classifier: on MULTI the former
has a micro F1 performance about 5 points better,
and the later has a better performance by 22 points.

Study of the correlation matrix of the features
with the ground truth, not reported in this paper for
readability reasons, shows that all lexicographic-
based features are the highest correlated features,
with a correlation percent of about 50%. Among
the several embedding-based features, only the dis-
tance between titles correlated highly with ground
truth with 46%, second to it only similarity between
title and description has a significant correlation of
around 32%.

In Table 5 we report the performance of our clas-
sifier on the train dataset for different subsets of the
features: all the features (ALL), only lexicographic-
based ones (LEX), only embedding-based one
(EMB), a combination of both (LEX+EMB) and
date (DATE). ALL has clearly the best performance
both in terms of macro and micro F1, despite inte-
grating the date feature, which on itself performs

features micro F1 macro F1

ALL 55.2 47.5
LEX+EMB 53.3 44.8
LEX 49.6 40.4
EMB 51.3 42.6
DATE 37.5 22.6

Table 5: evaluation of different subsets measured as the
micro and macro F1 of RF-C in a multilabel setting

subset support micro F1 macro F1

all eval dataset 4902 44.1 40.5
all downloaded 4455 46.5 41.5
all with text 3946 47.6 42.4

Table 6: micro and macro F1 performance of our ap-
proach on the evaluation dataset, for different subsets of
articles pairs

quite poorly. However, we believe that the impact
of this feature is heavily biased by the way both the
train and test datasets have been constructed, as the
organizer of the shared task have fetched news over
a time period of several years, while about half the
items are related, and about a quarter are similar.
As a consequence, it happens that close dates are
related to similar news more than it would appear
in an uniform sample over the same time period.
For that reason, we don’t expect that this feature
would generalise well, but we left it nevertheless
as we expect the train and test distributions to be
similar.

4.2 Experiments on test dataset

When evaluating on the test dataset, we use a clas-
sifier (RF-C) trained on the full training dataset.
Because of the difficulties in downloading the test
data, we report the performance of the classifier on
different subsets of the downloaded data.

In Table 6 we report the micro and macro F1 per-
formances of our classifier, as well as the support,
counted in number or article pairs. We consider
three subsets: all evaluation data (including also ar-
ticle pairs whose articles were not downloaded, and
for which a default score of 2.69 was used - which
was the average predicted value of our classifier
for the other articles), all pairs whose correspond-
ing articles have been successfully downloaded, all
pairs for which the text of the corresponding arti-
cles have been successfully downloaded. The best
performance on the test data is on average 5 points
lower both in term of micro an macro than on the
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subset micro F1 macro F1 F1

MULTI 46.5 41.5 74.0
SAME 43.7 42.0 78.6
EN 58.4 42.7 79.0
CROSS 43.8 38.3 71.7

Table 7: performance on the evaluation dataset of the
classifier, using micro and macro F1 as well as F1 for
the corresponding binary classification problem

train dataset. Expectedly, the model evaluated on
the full dataset performs the worst, but reasonably
so with only 2 points down the performance on the
subset of successfully downloaded articles while
9% of the data rely on the default value. Further
restricting the evaluation on the articles that had a
successfully downloaded text content only provides
one additional point of performance.

In Table 7 we report the performance of the clas-
sifier on the test dataset for different subsets of
language pairs, as already previously described.
The measures are micro and macro F1, as well as
the F1 of the class 1+2 when considering tackling
the problem as binary classification. Interestingly,
while the mutlilabel performances are lower than
on the training set by about 9 points, the binary clas-
sification performance is only lower by 5 points in
a cross language setting and actually higher by 4
points in a same language setting.

In Figure 5 we report the true positive rate by
language pairs for pairs of languages having more
than 10 data points, evaluated on the subset of the
dataset for which articles were successfully down-
loaded. We consider a true positive in case the
predicted and ground truth had exactly the same la-
bel, as such it is not possible to assess how close to
the actual label the predicted values are. Therefore,
this figure only allows to give an overall picture of
the respective performances for pairs of languages.
When considering pairs of articles in the same lan-
guages, French, Spanish and English performs the
best. Among these, Chinese has the worst score,
this could be related to the fact that a few Chinese
sources representing a significant share of articles
were impossible to be correctly downloaded (text
and other metadata are absent). Surprisingly some
pairs of different languages perform better than for
these languages considered individually, this is the
case for German and Chinese. Nevertheless, arti-
cles pairs in different languages tend to perform
worse than pairs in the same language.

Figure 4: Confusion matrix of RF-C on the test set,
for same-language pairs (left) and cross-language pairs
(right)

In Figure 4 we report the confusion matrix of
our classifier, by considering separately two cases:
the confusion matrix for same-language pairs and
for cross-language pairs. From this figure it is clear
that our classifier tends to over-estimate the similar-
ity of articles written in the same language, while
underestimating the similarity of articles written in
different languages.

5 Discussion

Despite the problem of the shared task being posed
as a regression one, we have chosen to address it
as a classification problem. This has two direct
negative consequences on the performance of the
model: firstly due the mandatory discretization step
of the real-valued evaluation score provided in the
training data and expected by the evaluation sys-
tem; secondly due to the fact that the notion of
related classes, such as "similar" and "close", are
lost and penalized as much as if "similar" had been
predicted as "unrelated". This is clearly shown by
the fact that the multilabel classifier trained on 4
labels performs significantly worse than a binary
classifier trained on two classes, which has actually
acceptable performances. Despite being language
agnostic our approach performs better in a same
language setting than in a cross language one. This
indicates either the high importance of the lexico-
graphic as being a good predictor, or that multilin-
gual embeddings perform significantly differently
on different language pairs.

The lexicographic-based features perform sur-
prisingly well, only two points under the perfor-
mance of the embeddings-based features when eval-
uated on the full training dataset contain. A poten-
tial reason for that could be that named entities
can differ only slightly between languages and that
the soft lexicographic measure used is good at cap-
turing these variations. The performance of our
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Figure 5: True Positive Rate by language pair of the
multilabel classifier on the test dataset

approach is lower on the test dataset, such a drop
in performance could be due to different reasons
among others: the fuzzy lexicographic matching
having lower performance in a cross language set-
ting (much more prevalent in the test dataset than
in the training); the difficulty to download data and
correctly extract it, making the data incomplete;
the heuristic reconstitution of missing description
and text content could have introduced noise in
some cases; maybe the fact that only tiny snippets
of the full article were considered; or potentially a
more fundamental limitation of the approach. Our
approach could be improved by considering the
actual language pairs as features, using more ad-
vanced features based on named entity extraction,
and using exclusively data without missing values.
However, we lacked time to investigates all of these
configurations. Interestingly, of the embedding-
based features, the title and the description are the
most important features, and work better than more
advanced ones, such as word mover distance ap-
plied to the sentences of the snippets.

Given these results, we can argue that the lan-
guage agnostic approach we developed is an inter-
esting solution for a coarse grain similarity eval-
uation, but not for a fine grained one. Given the
fast computation time, a few minutes to compute
all the features on a CPU machine without using
multi-threading, our approach could be used as a
preprocessing step before using more precise but
also more time consuming approaches. Particularly,
this approach is interesting when a news processing
system has to process hundreds of thousands arti-
cles a day, preventing the use of costly solutions.

6 Conclusion

In this paper we presented the system we used to
tackle the multilingual news clustering shared task
at SemEval-22. Our approach is language-agnostic
and inherently multilingual. It relies on a set of rela-
tively simple lexicographic- and embedding-based
features, and as such is able to process documents
efficiently. We tackle the task as a classification
problem rather than a regression problem. Our ap-
proach performs satisfyingly when evaluated over
a simpler binary classification problem.
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Abstract

This article introduces a system to solve the
SemEval 2022 Task 8: Multilingual News Arti-
cle Similarity. The task focuses on the con-
sistency of events reported in two news ar-
ticles. The system consists of a pre-trained
model(e.g., INFOXLM and XLM-RoBERTa)
to extract multilingual news features, following
fully-connected networks to measure the simi-
larity. In addition, data augmentation and Ten
Folds Voting are used to enhance the model.
Our final submitted model is an ensemble of
three base models, with a Pearson value of
0.784 on the test dataset.

1 Introduction

The task (Chen et al., 2022) aims to design a sys-
tem that can find the similarities of multi-language
news articles. The task focuses on the consistency
of actual events reported in two news articles, but
not the subjective factors such as writing style or
political factors. Geographical location, time, com-
mon entity, and common narrative were used to
judge similarity. Consistency is measured by a
float value between [1,4]. The lower the value is,
the more likely the two news are reporting the same
thing. The metric is the Pearson Coefficient of the
predicted and ground truth values.

Challenge of this task: 1. Need to understand ev-
ery aspect of a news event: what happened, where
and when, who was involved, and why and how it
happened 2. Make the writing style and common
phrases clear because some unnecessary content
can be misleading. 3. Some information about the
event is hard to get, such as the time, location, and
description of the event.

We use the pre-trained language model XLM-
Roberta and INFOXLM to fine-tune. Specifically,
we splice the available information of two news
articles (exact method will be described in Chapter

1*These authors contributed equally.

3), input it into the pre-trained model, and then
transmit the output vector to the fully connected
layer of downstream tasks. For the original fine-
tuning task, we try to use various techniques to
make the program run faster and work better. The
techniques include 1. Freezing the lower layers
of the pre-trained model, means not updating their
parameters during training. 2. Data Augmentation.
Use translation software to translate the original
news text to expand the data. 3. Divide the training
set into 10 parts. the ten folds voting was adopted
to make full use of the data set.

Our code is available on github1.

2 Related Work

2.1 Background

The input of the task is the content of two news,
and the output is the Overall label of them. Overall
label is a float value between 1 and 4, which is
used to measure whether two news report a same
thing.The lower the Overall score, the more likely
the content of the two news to be the same. The
datasets including nearly 5,000 pairs of news with
Overall label given. In addition to the Overall label,
Geography, Entities, Time, Narrative, Style, and
Tone label are also noted in the datasets. The news
is given in the form of links and contains seven
languages(en, de, ar, es, fr, pl, tr), while the test
set contains the other three languages(it, ru, zh). It
should be noted that the dataset contains news pairs
in different languages.

2.2 Pre-trained language model

Pre-trained language models such as BERT (Devlin
et al., 2018) and RoBERTa (Liu et al., 2019) start
to make a difference in the way of word representa-
tions rather than static word embedding methods,
and Word2Vec (Mikolov et al., 2013) and FastText

1https://github.com/SemevalITNLP/
Semeval8NewsCorrelation
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Figure 1: The architecture of the system.

(Joulin et al., 2016) are two examples. In partic-
ular, the XLM-RoBERTa (Conneau et al., 2019)
model is a newly released large-scale cross-lingual
language model based on RoBERTa and trained
on 2.5TB filtered CommonCrawl data in 100 lan-
guages. Unlike other XLM models (Lample and
Conneau, 2019), XLM-RoBERTa does not require
language tokens to understand which language is
used and can recognize the correct language from
the input id.

INFOXLM (Chi et al., 2020) is a cross-lingual
pre-trained model based on the XLM-RoBERTa
structure, using monolingual and parallel corpora
to train the model. Specifically, in addition to the
masked language modeling(MLM) and the translat-
ing language modeling tasks(TLM), INFOXLM is
jointly pre-trained with a newly introduced cross-
lingual contrastive learning task. Through compari-
son, the cross-lingual uses bilingual pairs as the two
views of the same meaning, making their encoded
representations more similar than the negative ex-
amples. It uses the [CLS] tokens from the BERT
encoder as sentence representations with linear pro-
jection heads. The momentum encoder is used to
encode the query, while the online encoder is up-
dated with InfoNCE (Van den Oord et al., 2018)
loss.

2.3 Sentence similarity

There are usually two methods for comparing the
similarity between two sentences. Cross-encoders
perform full-attention over the input pair, and Bi-
encoders map each input independently to a dense
vector space.(Thakur et al., 2020)

3 System Description

3.1 Data processing

We use crawlers and the newspaper3 1 library to
download and parse news web pages to obtain var-
ious information about news, including title, text,
pictures, keywords and abstracts. For the news data
in the training and test set, some missing titles and
body texts. At the same time, some web pages have
errors during the crawling process, or the crawler
crawls wrong news information. We revisit the
news link and the alternate link to modify the news
data. In addition, there are still problems such as
advertising webpages and link failures, which are
omitted in the training process.

3.2 Model

We designed cross-encoder model to solve the task.
The structure of the cross-encoder model shows as
Fig 1. It contains the pre-trained language model,
pooling layer, and downstream layers, consisting
of two fully connected layers and a relu activation
function, to learn the Overall value of each news
pair.

The inputs of cross-encoder model are composed
of contents of two news which are named news
A and news B. For each news, we use title, text
and keywords. We use the symbol <s> to separate
different parts of the news, the symbol </s> as
the separator for two news articles, and add <s>
and </s> at the beginning of each news pair. The
input form finally can be illustrated as: <s> news
A </s></s> news B </s>.

1https://github.com/codelucas/
newspaper
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For the pooling methods, we compared two
methods of learning the representation of the whole
news pair: 1. use the output of the model Pooler,
which is similar to the token’s representation of the
[CLS] of BERT; 2.mean pooling: use the average
vector of the whole hidden state. Experiments have
shown that the latter works better.

The model eventually outputs a value between
1 and 4, which calculate MSE loss (Mean Squared
Error Loss) with the standard Overall label of the
data.

3.3 Methods

• Ten-Fold Voting Ten-Fold Voting method
shuffles and divides the training set into ten
parts equally, and separately chooses one of
them as a validation set, while the remaining
nine part are used as the training set. As a
result, we end up with 10 models. These ten
models use averaging method to vote, which
increases model generalization. For example,
we use 10 models to obtain 10 Overall predic-
tions for a given news pair, and the average of
these 10 results is taken as the final prediction
for that news pair.

• Data Augmentation Due to the addition of
three new languages (zh, ru, it) in the test set,
we added translation corpus to the training
data so that the model can better deal with the
new languages. Specifically, we use Baidu
translation API 1 to obtain the translated text,
and the news in each language is translated
into the other 9 languages. Different epochs
are trained alternately with the original and
translated data. Each news is translated into
one of the nine other languages with the same
probability at the epoch using translated data.

• Frozen Layers Generally, lower layers of
a language model encode more local syntax
while higher layers capture more complex se-
mantics (Tenney et al., 2019). Therefore, dur-
ing training, we freeze the parameters of the
embedding layer and some lower layers of the
pre-trained model. The parameters of frozen
layers cannot participate in back propagation
thus keeping the original parameters. There-
fore, we aim to choose the most memory-
efficient hyperparameters.

1http://api.fanyi.baidu.com/

• Multi-task Learning We noticed that the
training data not only has the Overall label
but also has other labels. Considering that
Narrative and Entity are consistent with the
target task, we let the model fit the Overall
label and the Narrative label and Entity la-
bel. Specifically, after the pre-trained model,
we separately use a dense layer to obtain dif-
ferent predicted values for Entity, Narrative,
and Overall and calculate the MSE loss of
the three labels: lossentity, lossnarrative and
lossOverall. Then the multi-task loss of the
model, lossmulti−task, take the weighted sum
of the three.

• Auxiliary Loss We add a loss function to help
the model distinguish those news pairs. In
addition to calculating the similarity of each
news pair, we also calculate the MSE loss
between the predicted Overall labels of the
two news pairs and their true Overall labels,
which is as following.

lossAL = mse(ŷ1 − ŷ2, y1 − y2) (1)

where y1 is the standard Overall value of news
pair 1 and ŷ1 is the predicted Overall value of
news pair 1, so as y2 and ŷ2. Two news pairs
are randomly selected. In practice, we ran-
domly draw several news pairs from a batch
and combine them. The training data was shuf-
fled before the start of each training epoch so
that the data within the batch are not precisely
the same in different epochs.

4 Experiment

All experiments were run on two GPUs: NVIDIA
GeForce RTX 3080 Ti and NVIDIA GeForce RTX
3090. For optimizer selection, we use Adamw
optimizer with weight decay taken as 0.01 and
set 1e-5 as learning rate for the pre-trained layer
and 1e-4 for downstream layers with the batchsize
8.If not specified, we use INFOXLM-large as the
pre-trained model from Hugging Face2.The weight
of the lossentity, lossnarrative and lossOverall in
the lossmultitask are set to 0.3, 0.7 and 1.0 respec-
tively.The weight of the lossAL is set to 0.1.

4.1 Information Selection
This section presents experiments to explore which
news information should be used. From Table 1

2https://huggingface.co/models
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,it can be seen that the result of using only title
and only text is not as good as using title and text
at the same time. The model shows better perfor-
mance when facing more text types, which may be
because different texts contain different informa-
tion. The title focuses on summarizing the news
and represents the article’s central idea; The text fo-
cuses on describing the event and conveying more
detailed information. The performance of using
title, keywords and text is not improved. Most of
the keywords information is likely contained in the
first two.

Model Dval Dtest

Title60 0.798 0.684
Text100 0.813 0.702
Title60+Text100 0.852 0.759
Title60+Text100+Keywords50 0.855 0.760
Title60+Text150 0.859 0.772
Title60+Text200 0.859 0.769

Table 1: The impact of using different information and
different content lengths on the model. Pearson coef-
ficients in the table are the maximum values for the
validation set, notated Dval in 15 epochs, while Dtest

is the corresponding pearson coefficients in test set at
this time.The number after the title and text in the table
indicates how many text words are used. For example,
Title60 indicates using the first 60 words of the title;
The ratio of validation set to training set is 1:9.

The text length of each news article is related to
the final prediction of the system. The table shows
the Overall scores of different text lengths. Due
to the input length limitations, our max length of
the title is 60, while the max length of the text is
between 100 and 200. The model works better with
longer text lengths in the validation set, probably
because longer texts contain richer information,
while it achieves the best result in the test set when
text length is 150. The reason may be that the
behavior of the test set is inconsistent with the
validation set.

4.2 Frozen layers

We tested the performance of unfrozen, frozen em-
bedding layers and partial transformer layers re-
spectively. The results are shown in Table 2. As
we can see, when freezing embedding layers and
the layers from 0 to 11, the result is similar to not
freezing all layers, but it saves memory and reduces
training time. So we take these kinds of parameters
in the following experiments.

Frozen layers Dtest

no freezing 0.760
freeze embedding + layers 0∼5 0.759
freeze embedding + layers 0∼11 0.759
freeze embedding + layers 0∼14 0.750

Table 2: Results of freezing different pre-trained
model layers on the test set.

4.3 Strategies

We also conducted additional experiments, includ-
ing data augmentation through translation, a multi-
task learning approach, and Auxiliary Loss men-
tioned before. These methods are effective in the
validation set, but some did not improve much in
the final test set.

Table 3 shows the comparison of different meth-
ods used in the model. The parameters used by
the base model are INFOXLMlarge, Title60 and
Text100. The split ratio between the training set
and the validation set is 9:1. According to the table,
we have the following conclusions:

In the validation set, when the model cumula-
tively uses Multi-task Learning, Auxiliary Loss
and Data Augmentation, the performance is contin-
uously improved. When the three methods are used
together, the model performance is best to reach
0.8627 in the validation set. Multi-task Learning
and Auxiliary Loss increase the learning and repre-
sentation ability of the model by modifying the task
and loss. Data Augmentation improves the general-
ization of the model by introducing the translation
corpus.

In the test set, when the model uses Multi-task
Learning and Auxiliary Loss, the performance is
not much different from that of the base model.
This may be that Multi-task Learning and Auxil-
iary Loss can improve the representation ability
of the model in the validation set, but they are
lack of generalization and generally perform in
the face of a large amount of data and new data.
However, when the model uses Data Augmenta-
tion, the performance reaches 0.7667 in the test set,
which is greatly improved compared with the base
model and the model using Multi-task Learning
and Auxiliary Loss. This may be because the trans-
lation corpus introduces languages (Chinese, Rus-
sian and Italian) that the model has not encountered
before. The newly introduced language enhances
the model’s generalization ability in the test set and
enables the model to understand the news in the
test set better.
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Model Dval Dtest

Base 0.852 0.759
Base + MT 0.854 0.758
Base + MT + AL 0.859 0.759
Base + MT + AL + DA 0.862 0.766
Base + MT + AL + DA + TFV / 0.781

Table 3: Results of system under different methods.
Base: INFOXLMlarge +Title60+Text100; MT:Multi-
task Learning; AL:Auxiliary Loss; DA:Data Augmenta-
tion; TFV:Ten-fold voting

Finally, we can see that when the model uses
Ten-Fold voting, the performance is improved from
0.7667 to 0.7810. There may be two reasons for
this. On the one hand, the Ten-Fold voting essen-
tially uses all the training data, and the expansion of
the amount of data may increase the performance
of the model. On the other hand, the Ten-Fold
voting integrates the model results under ten dif-
ferent training data sets, which greatly improves
the robustness of the results and strengthens its
generalization ability.

4.4 Ensemble

The ensemble technique is a widely used strategy.
Ensemble methods work by aggregating the predic-
tions of multiple single models. The strategy we
use in the competition is simple averaging. The
final prediction value is obtained by averaging the
prediction results of different models, which will
improve the robustness of the prediction results.
The results are shown in Table 4.

Model Dtest

INFOXLM 0.776
INFOXLM + DA 0.781
XLM-RoBERTa + DA 0.779
Ensemble 0.784

Table 4: Results of base models and ensemble model.

All three base models use Title60, Text100,
Multi-Task Learning and Auxiliary Loss. The latter
two models additionally use the Data Augmenta-
tion strategy. The result of the ensemble model
achieves the best performance in our competition.

5 Conclusion

In this paper, we summarize our work in Multi-
lingual News Article Similarity. We utilize IN-
FOXLM and XLM-RoBERTa pre-trained models

to handle multilingual news. In addition, many
methods are used such as Data Augmentation and
Ten-Fold Voting. Our final submitted model is an
ensemble of three base models, and we achieve
Pearson value of 0.784 on the test dataset.
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Abstract

This paper introduces our submission for the
SemEval 2022 Task 8: Multilingual News Ar-
ticle Similarity. The task of the competition
consisted of the development of a model, capa-
ble of determining the similarity between pairs
of multilingual news articles. To address this
challenge, we evaluated the Word Mover’s Dis-
tance in conjunction with word embeddings
from ConceptNet Numberbatch and term fre-
quencies of WorldLex, as well the Sentence
Mover’s Distance based on sentence embed-
dings generated by pretrained transformer mod-
els of Sentence-BERT. To facilitate the com-
parison of multilingual articles with Sentence-
BERT models, we deployed a Neural Machine
Translation system. All our models achieve sta-
ble results in multilingual similarity estimation
without learning parameters.

1 Introduction

The assessment of similarity between documents
is a central challenge in the context of information
retrieval. Especially the evaluation of similarities
between news articles across different languages
opens up opportunities for numerous downstream
tasks, such as the analysis of regional differences
in news coverage of topics or sentiments towards
events and news.

Task 8 of the SemEval challenge 2022 (Chen
et al., 2022) posed the problem of the assessment
of similarity of news articles across a variety of
languages and provided a dataset of news article
pairs in seven languages, as well as a number of
bilingual pairs. Apart from an overall similarity
score to be estimated in the challenge, a number of
scores for similarity in different categories, such as
narrative or entities were provided.

For our submission for this task, we evaluated
the performance of the Word Mover’s Distance
(WMD) and Sentence Mover’s Distance (SMD)
in the context of similarity assessment of multilin-

gual news articles. We participated in all given lan-
guages, comparing both document pairs in the same
language, as well as pairs in different languages.
Our code is available at https://github.
com/StefanJMU/SemEval2022_Task_8.

We considered WMD and SMD due to their con-
ceptual simplicity and capability to integrate well
with resources such as pretrained word embeddings
or sentence embeddings, produced by state-of-the-
art language models. Additionally, they offer the
appeal of being themselves parameter-free, and
hence independent of labelled training data.

The rest of the paper is organized as follows:
We introduce the approaches deployed in the chal-
lenge submission, as well as the used resources,
supplementing the WMD and SMD. Subsequently,
we present the results achieved and conclude with
a discussion of the results.

2 System Overview

Figure 1 shows a schematic overview of the meth-
ods we investigated for our submission. We
evaluated two different methods for this task,
namely the Word Mover’s Distance (WMD) (Kus-
ner et al., 2015) and the Sentence Mover’s distance
(SMD) (Clark et al., 2019). Both approaches take
two news articles and calculate a similarity score
from the representation of both texts as either Bag
of Words or Bag of Sentences, respectively. Both ap-
proaches have been found to constitute a metric ex-
hibiting a pronounced correlation with the human-
assessed similarity scores of the text pairs (Kusner
et al., 2015). We create the required word and sen-
tence representations using word embeddings and
sentence embeddings generated from state-of-the-
art language models.

For the WMD approach, we deployed a prepro-
cessing pipeline, involving the tokenization of both
news articles, as well as the removal of stopwords
and punctuations. Subsequently, the preprocessed
texts were transformed into a Bag of Words using
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Figure 1: Schematic overview of our experiments in order to determine the best model for submission. Given two
news articles, we a) use pretrained multilingual ConceptNet Numberbatch word embeddings for both articles and
compute the Word Mover’s Distance (Kusner et al., 2015) between both non-translated texts; also b), we obtain
sentence embeddings from a Sentence-BERT model (Reimers and Gurevych, 2019) by first translating both articles
to English and then computing the Sentence Mover’s Distance (Clark et al., 2019) on the translated documents.

the vector representations provided by ConceptNet
Numberbatch. These vector representations, to-
gether with the dot-product similarity, constituted
the metric at the core of the linear optimization
problem forming the Word Mover’s Distance be-
tween two texts. The WMD also allows for a differ-
ent weighting of the words of texts in the evaluation
of similarity. These weights were chosen according
to the respective TF-IDF, calculated with the help
of WorldLex (Gimenes and New, 2015).

The SMD approach required the decomposition
of texts into sentences, which were subsequently
encoded with a transformer language model, re-
sulting in a Bag of Sentences representation of
texts. By interpreting these sentence embeddings
as words, a similarity score is readily computable
using the WMD again.

The following subsections introduce both met-
rics in more detail, as well as the word embeddings
and models involved, which were deployed to ex-
tend the application of the metrics to similarity
assessment of texts across of different languages.

2.1 ConceptNet Numberbatch

For the calculation of WMD for multilingual arti-
cles, we deployed ConceptNet Numberbatch word
embeddings (Speer and Lowry-Duda, 2017). Con-

ceptNet Numberbatch are embeddings based on the
knowledge graph ConceptNet (Speer et al., 2017).
Due to its multilinguality (and support of all lan-
guages used in the challenge), we selected these em-
beddings to facilitate the calculation of the WMD.

2.2 WorldLex

Evaluating semantic similarity by matching words
across texts can be obstructed by the presence of
stop words or words, which can occur in many se-
mantic contexts and are therefore no compelling
indicators for semantic similarity. Apart from the
removal of stopwords, we deployed a weighting
of words according to the occurrence frequency
in Twitter, blogs and newspapers gathered by
Gimenes and New (2015), which are curated in
the WorldLex database and were available for all
languages used in the SemEval task. To create
the WorldLex database, the authors converted all
collected documents to lowercase. After that, the
frequencies of all of the different words were cal-
culated and lists of words were extracted utilizing
spellcheckers to remove words with orthographic
and typographic errors, as well as foreign words.
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2.3 Word Mover’s Distance
In 2015, the Word Mover’s Distance has been pro-
posed by Kusner et al. (2015) and constitutes a con-
ceptually simple mean of quantifying the distance
(and inversely correlated, the similarity) between
texts, by optimizing a linear program for a cost
minimal mapping between words of two texts with
respect to a similarity measure between words. A
text with n distinct words is considered as a vec-
tor t ∈ Rn, with ||t||1 = 1 and ti indicating the
weight (from the WorldLex Database described in
Section 2.2) of the ith distinct word of the text. The
rationale of the WMD is, that for each word in a
text, the weight has to be accounted for by words in
the other text, while no word can account for more
than its own weight. Considering two vector rep-
resentations t1 and t2 of texts T1 and T2 of length
n1 and n2 respectively, the distance between both
texts Ω can be mathematically formulated as

Ω = min
M

∑

i,j

Mijc(i, j) (1)

s.t.

n2∑

j=1

Mij = t1i , 1 ≤ i ≤ n1 (2)

n1∑

j=1

Mji = t2i , 1 ≤ i ≤ n2 , (3)

where c(i, j) is the distance between the ith dis-
tinct word of T1 and the jth distinct word of T2, and
M is the accounting matrix, where Mij indicates
the amount of weight the ith word of T1 provides
for the accounting of the weight of the jth word of
T2. The resulting Ω can subsequently be used as
measure correlated with smililarty or distance of
text pairs.

Many options for choosing the weights of words,
such as the document frequency of the word, are
possible. We deployed a TF-IDF weighting of the
words, where the inverse document frequency was
derived from the WorldLex database introduced in
the previous section. The rationale for introducing
also the inverse document frequency, instead of
only a term frequency weighting as suggested by
Kusner et al. (2015), was to have a stronger empha-
sis of words, which are potentially more semanti-
cally meaningful and are therefore more suited for
comparing themes and content of two texts.

For the quantification of distances between
words, Kusner et al. (2015) propose distance mea-
sures such as cosine similarity on dense word em-

beddings, and use themselves word embeddings
generated by Word2Vec (Mikolov et al., 2013). To
facilitate the comparison of multilingual text pairs,
we used multilingual ConceptNet Numberbatch em-
beddings (Speer and Lowry-Duda, 2017).

2.4 Sentence Mover’s Distance

For our second line of experiments, we used the
Sentence Mover’s Distance, which was introduced
by Clark et al. (2019), who adapted the concept
of the Word Mover’s Distance to calculate the dis-
tance of texts based on sentences instead of words,
in order to address the typical shortcomings of ap-
proaches considering only Bag of Words without
the incorporation of any compositional information
contained in the word order. For the required repre-
sentations of sentences, Clark et al. (2019) suggest
averaging the word embeddings of the words in a
sentence and a subsequent weighting of the sen-
tences within the Bag of Sentences according to the
number of constituent words.

Apart from the operating mode of the SMD pro-
posed by Clark et al. (2019), the Sentence Mover’s
Distance allows also the incorporation of more rich
representations of sentences, such as sentence em-
beddings produced by complex transformer-based
models. Trained implementations of such models
are readily available, such as the Sentence-BERT
proposed by Reimers and Gurevych (2019). For
the evaluation of the Sentence Mover’s Distance,
we deployed the pretrained all-MiniLM-L12-v2 pro-
vided on sbert.net, which embeds an English
sentence into a 384-dimensional embedding vector
and supports the dot-product as similarity measure.

2.5 Neural Machine Translation

Since the used pretrained transformer can only em-
bed English sentences, we propose to use English
as an intermediary language, into which the multi-
lingual news articles were automatically translated
using a Neural Machine Translation system.

For the translation of the articles, we used a
model submitted to WMT’s 2021 News translation
task (Chau et al., 2021). This translator has ranked
first in the most language directions the team partic-
ipated in, introducing the first multilingual model
with stronger translation performance than bilin-
gual ones. Using the any-to-English model and
DeepL1 (for the languages not supported by the first
translation model), we translated all news articles

1https://www.deepl.com/translator
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Language
Dataset en pl es de zh ru tr fr it ar
Training 4048 663 1114 2198 - - 903 144 - 541
Test 1487 555 1291 1536 1728 574 548 345 1127 589

Table 1: Number of used articles for each language in training and test data.

and used them to calculate BERT transformer em-
beddings. These in turn were used for the SMD cal-
culation. We also evaluated possible performance
differences for the WMD, if texts are translated be-
forehand, instead of relying on the power of the
multilingual word embeddings of ConceptNet Num-
berbatch.

3 Experimental Setup

For preprocessing routines, the Python nltk-
package was utilized (version 3.6.5). The embed-
dings have been conducted using ConceptNet Num-
berbatch version 19.08. The TF-IDF weighting
used WorldLex. WorldLex is no longer under ac-
tive development.2 The transformer model was
all-MiniLM-L12-v2 provided on sbert.net.

We employed three experiments to find the best
model used for submitting to the task’s evaluation:

1. Word Mover’s Distance with multilingual
ConceptNet Numberbatch embeddings

2. Word Mover’s Distance with translated news
articles before embedding them using Con-
ceptNet Numberbatch embeddings

3. Sentence Mover’s Distance using translated
news articles embedded with an English
Sentence-BERT model

For the evaluation, the Pearson Correlation Coef-
ficient (Pearson, 1895) was used. The target similar-
ity scores range from one (very similar) to four (not
similar), so these scores really correspond numeri-
cally to distances. We can thus use the computed
distances directly as predictions. Since the calcula-
tion of the Pearson Correlation Coefficient normal-
izes all predicted and actual similarity scores using
the mean and standard deviation, we do not need to
scale the predicted scores to the range of the labels.

Due to the fact that our employed methods do not
need any training labels, we can directly evaluate
the results on the training data provided by the task

2The deployed data can be retrieved from http://www.
lexique.org/?page_id=250.

organizers. The model found to perform best was
then used for the task submission. The number of
articles used for each language is listed in Table 1.

4 Results

Table 2 shows the Pearson Correlation Coefficient
of the articles for the provided training data consist-
ing of eight language pairs. Comparing the results
of WMD applied to original and translated docu-
ments shows, that the estimation of text similarity
with the proposed model benefits from a translation
in a common language, instead of solely relying
on a multilingual word embedding (all documents
were translated into English). It can also be seen
from the table, that for all language pairs except
for ar-ar and de-de, SMD shows the best perfor-
mance. As in the analysis of Kusner et al. (2015),
we also find, that using the richer representations
of complete sentences, instead of words, is gen-
erally beneficial. For the two remaining language
pairs, WMD, applied on translated articles, achieves
higher scores than the other metrics.

Given these results, we used the Sentence
Mover’s Distance with translated input texts and
the pretrained language model for sentence embed-
dings as the model for our task submission. We
achieved the 23nd place with an overall Pearson
Correlation Coefficient of 0.57. Table 2 also shows
the final scores for all 18 language pairs present in
the test set. For the most language pairs, the results
on the test data are very similar or even slightly
better compared to the scores on the training set.
We expected this behavior, since the used approach
does not use any training labels for optimization
and is hence not prone to overfitting. The rigidness
of the optimization and straightforwardness of the
similarity notion however, allows also for higher
performance fluctuations observed for instance in
the two language pairs (en-en and de-de), which
perform noticeably worse for the test set than for
the training data, while pl-pl shows much better
performance on the test data.

Also, language pairs including German news ar-
ticles are typically performing worse than average
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Training Language Pairs Test
Model en-en de-en es-es fr-fr tr-tr ar-ar pl-pl de-de ru-ru
WMD 0.77 0.60 0.67 0.68 0.72 0.55 0.36 0.54 —
WMD translated 0.77 0.66 0.68 0.69 0.76 0.60 0.42 0.63 —
SMD 0.78 0.68 0.71 0.73 0.77 0.59 0.45 0.59 —
Test Results SMD 0.68 0.69 0.71 0.70 0.71 0.65 0.59 0.31 0.56

Testing Language Pairs
zh-zh es-en it-it pl-en zh-en es-it de-fr de-pl fr-pl

Test Results SMD 0.56 0.77 0.69 0.69 0.66 0.65 0.40 0.47 0.75

Table 2: Pearson Correlation Score for all language pairs in the provided training and test data of the task evaluation.
Since the SMD worked best on the training data overall, we used this method for the final submission.

and thus decrease the overall test score in the chal-
lenge. While looking for possible reasons for such
poor results, we found some articles in training
and test data, which could not be extracted cor-
rectly. For instance, some German articles from
the test data are identical and contain only infor-
mation about the issue of opening the web pages
due to privacy regulations3. Another reason for
bad performance in similarity estimation of pairs
containing German article (or comparison of two
German articles) could be the incompletely loaded
content of some German pages, since some arti-
cles only contain the beginning of the actual text4,
which is indicated by the spontaneous termination
of the article content with the following sentence
“read the full article...”5.
In order to eliminate such externally imposed as-
sessment impediments, the data scraping system6

would need to be overhauled.

5 Discussion and Conclusion

For our submission, we evaluated multiple ap-
proaches, that operate on the word or sentence level
and calculate a distance between two texts using
a linear program optimized on pretrained word or
sentence embeddings. To be able to apply English-
only models for the representation of sentences, we

3we found two groups of articles, each with the same
content:
1.Group: 1586615494, 1490686353,1520406037,1524031333,
1525352422
2.Group: 1572312750, 1576180076,1611845398,1612866403
,1617051090,1619154724,1627621567,
1551767123,1562891463, etc.

4articles with IDs 1488265289,1493242324,
1505316713,1516114270,1517039073,
1519376267,1531637961,1549821395, etc.

5translation of original German sentence: “Den vollständi-
gen Inhalt lesen...”

6https://github.com/euagendas/semeval_
8_2022_ia_downloader

used a Neural Machine Translation system that, in
our experiments, improved the performance of mul-
tilingual word embeddings. The proposed model
shows stable performance in similarity estimation
between mono- and multilingual document pairs.
The usage of state-of-the art pretrained word and
sentence embeddings led to a fast system with low
computational cost, allowing implementation with-
out use of graphics processing units. The use of an
extensively pretrained Sentence-BERT transformer
for sentence embeddings of documents, that were
translated into English, confirmed, that the pro-
posed model is well suited for the similarity com-
parison of multilingual articles without optimizing
any parameters in the model.
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Abstract

This paper describes the participation of the
team “dina” in the Multilingual News Similar-
ity task at SemEval 2022. To build our sys-
tem for the task, we experimented with several
multilingual language models which were orig-
inally pre-trained for semantic similarity but
were not further fine-tuned. We use these mod-
els in combination with state-of-the-art pack-
ages for machine translation and named entity
recognition with the expectation of providing
valuable input to the model. Our work assesses
the applicability of such “pure” models to solve
the multilingual semantic similarity task in the
case of news articles. Our best model achieved
a score of 0.511, but shows that there is room
for improvement.

1 Introduction

The Multilingual News Article Similarity Task1

(SemEval 2022 Task 8) is designed as a shared
task to encourage participants to build systems that
check if a monolingual or cross-lingual pair of news
articles belong to the same story (Chen et al., 2022).
The task consists in providing a similarity score
from 1 to 4 for a pair of news articles.

In this paper, we describe the participation of
the “dina” team in the shared task. In our partici-
pation, we took an exploratory approach focusing
on language features, while trying several multilin-
gual language models as baselines. These language
models had been pre-trained for semantic similarity
and are “pure” (without any fine-tuning conducted
for the task), which we enhance to use jointly with
state-of-the-art packages for machine translation
and named entity recognition.

Our best-performing submission to the task is
based on a “pure” paraphrase-xlm-r-multilingual-
v1 model combined with the presence of overlap-
ping named entities and overlapping dates, which

1https://competitions.codalab.org/
competitions/33835

achieved a Pearson’s correlation score of 0.511 in
the final evaluation.

2 Related Work

Multiple prior SemEval semantic similarity tasks
(2012-2017) focused on estimating the degree of
semantic equivalence between two text fragments.
In 2014 and 2015, two subtasks were proposed for
semantic textual similarity in English and Spanish
(Agirre et al., 2015). It was found that aligning
words between sentences worked best for English,
using features such as WordNet, word embeddings,
or paraphrase databases. In 2016, a new cross-
lingual subtask was added for English and Spanish.
In 2017, participants were instructed to predict the
degree of semantic similarity (namely, a continu-
ous valued similarity score on a scale from 0 to 5)
between monolingual and cross-lingual sentences
in Arabic, English and Spanish (Cer et al., 2017).
State-of-the-art deep learning models and feature
engineered systems were implemented (Tian et al.,
2017), and machine translation was widely used
for cross-lingual and non-English setups, in order
to convert two sentences into the same language.
Based on the corpus of English tasks data (2012-
2017), the STS benchmark was presented for train-
ing and evaluation2. Its extended version is often
used to evaluate the performance of multilingual
pre-trained models3.

Currently, state-of-the-art methods are based
on pre-train transformer language models,
which are fine-tuned for downstream tasks.
Multilingual pre-trained language models for
50+ languages are freely available4, such
as distiluse-base-multilingual-cased models,

2http://ixa2.si.ehu.eus/stswiki/index.
php/STSbenchmark

3https://www.sbert.net/examples/
training/multilingual/README.html

4https://www.sbert.net/
docs/pretrained_models.html#
multi-lingual-models
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paraphrase-multilingual-MiniLM-L12-v2,
paraphrase-multilingual-mpnet-base-v2, LaBSE
(Feng et al., 2020), and other various models, such
as paraphrase-xlm-r-multilingual-v15 (Reimers
and Gurevych, 2019). All these models are
applicable to the sentence similarity task.

Event clustering can be considered as a task that
is close to the task of semantic similarity between
news articles. Miranda et al. (2018) used similar-
ity metrics and ranking for clustering documents
into monolingual and cross-lingual story clusters.
Linger and Hajaiej (2020) used multilingual Distil-
BERT and Sentence-BERT for multilingual docu-
ment representation. In general, BERT-like models
with different averaging and pooling are widely
used for document representation in the clustering
task too.

In the system proposed in our paper, we build
on this line of research of leveraging large multi-
lingual language models, which we further exper-
iment with by incorporating machine translation
and named entity recognition components.

3 Task and Data

The aim of the task was to check, at the document
level, if a pair of news articles, which can be written
in the same or different languages, provide similar
information. The training set provided by the organ-
isers includes 4,964 monolingual and cross-lingual
pairs of news articles: 1800 English-English pairs,
857 German-German pairs, 577 German-English
pairs, 570 Spanish-Spanish pairs, 465 Turkish-
Turkish pairs, 349 Polish-Polish pairs, 274 Arabic-
Arabic pairs, and 72 French-French pairs. For test
data, the organisers added three new languages:
Italian, Russian, Chinese.

For each entry in the dataset, different similar-
ity scores are given for “Geography”, “Entities”,
“Time”, “Narrative”, “Style” and “Tone”, in addi-
tion to the main “Overall” similarity score. These
scores are based on a 4-point scale, from most (1)
to least (4) similar. The aim of the task is to predict
the “Overall” score, but the participants can make
use of the other auxiliary scores. For the final eval-
uation, the organisers proposed to use Pearson’s
correlation between the predicted similarity score
and the gold “Overall” similarity score. Correlation
scores for different article pairs are then averaged

5https://huggingface.
co/sentence-transformers/
paraphrase-xlm-r-multilingual-v1

to compute the final score.
A script6 provided by the task organisers enabled

downloading news article pairs pertaining to train
and test subsets. This script retrieves the URLs of
news articles, using the Internet Archive7 to support
this retrieval.

4 Data Preprocessing

Upon downloading the news articles with the script
provided by the organisers, we noticed that some
texts were not correctly parsed: they contained only
non-relevant texts (e.g. error messages), without
the main content. Therefore, we removed such
problematic text pairs from the training set, based
on the manually collected list of strings and heuris-
tic rules for them, mostly for English (e.g. texts
that started with “Get full access to” or “TAKE A
FREE TRIAL”); pairs with short texts (< 400 char-
acters) that contained mostly metadata were also
removed from the training set. Finally, our training
set consists of 4,228 text pairs. From texts both in
the training and test sets, we also applied heuristic
rules based on the manually collected list of strings
(mostly for English) to remove non-relevant text
fragments (e.g. “Your browser does not support
the audio element” or “Share this item on Twitter”)
from texts.

All texts (in the training and test sets) were split
into sentences using the stanza8 python package,
which supports all the languages under considera-
tion. We relied on the assumption that news texts
usually contain the most important information at
the beginning, while the remainder of the story
contains other less important details, according to
the ‘inverted pyramid’ principle (Pöttker, 2003).
According to this principle, the first paragraph or
sentences of a news article are generally expected
to cover the main information addressing the who,
what, when, where, and why of a story. Therefore,
aiming to improve both the efficiency and effec-
tiveness of our system, we only take the first 10
sentences of all non-English texts and we trans-
late them into English using m2m100 models (Fan
et al., 2021): 1.2B model9 for the training set and
418M10 model for the test set (the latter model was

6https://github.com/euagendas/semeval_
8_2022_ia_downloader

7http://web.archive.org
8https://github.com/stanfordnlp/stanza
9https://huggingface.co/facebook/

m2m100_1.2B
10https://huggingface.co/facebook/
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Model Train set En-En data
(1)

4 sent 0.51 0.65
5 sent 0.51 0.67
3 sent merged 0.64 0.70
(2)

4 sent 0.61 0.72
5 sent 0.61 0.73
3 sent merged 0.66 0.73
(3)

3 sent merged 0.63 0.70

Table 1: Pearson’s correlation scores for train set for pre-
trained language models: LaBSE (1), paraphrase-xlm-
r-multilingual-v1 (2), and distiluse-base-multilingual-
cased-v1 (3). Scores are presented for the whole train
set and only for the English-English pairs of the train
set.

chosen, as it is faster). Given that similar events
are expected to mention the same or related named
entities, we used the spacy11 python package on
English texts (original and translated) for named
entity recognition.

All the preprocessing, fine-tuning and evaluation
tasks were performed using Google Colab and two
NVIDIA GeForce GTX 1080 Ti Graphics Cards
(22 GB RAM).

5 Description of Models and
Experimental Setup

In order to detect similarity at the document level,
we focused on sentence-transformer models. All
similarity scores were calculated based on cosine
similarity. During the development stage, we con-
ducted all our experiments on the training set, with
a held-out subset reserved for evaluation.

We tested different transformer models, includ-
ing LaBSE (Feng et al., 2020) and paraphrase-xlm-
r-multilingual-v112. Based on the assumption that
the main information about a story is expected to
appear in the beginning of news articles, different
setups for both models were taken: mean seman-
tic similarity (cosine similarity) for all pairwise
sentence-to-sentence similarities for the first 4 sen-
tences in both articles (4 sent) and the first 5
sentences in both articles (5 sent); and the se-

m2m100_418M
11https://spacy.io/
12https://huggingface.

co/sentence-transformers/
paraphrase-xlm-r-multilingual-v1

mantic similarity between the merged set of first 3
sentences from each article (3 sent merged).
To come up with the best approach to submit to
the shared task, we conducted three sets of experi-
ments.

Experiment set 1. Table 1 provides performance
scores for the different “pure” pre-trained language
models, measured based on Pearson’s correlation
values between predicted and gold similarity scores.
Among the sentence selection approaches, the best-
performing setup is the one based on the merged
combination of the first 3 sentences (3 sent
merged). Among the pre-trained language mod-
els, the paraphrase-xlm-r-multilingual-v1 model
performs better than the other one. This finding
confirms the notion that LaBSE works less well
in detecting similarity of sentence pairs that are
not translations of each other other13 (Reimers
and Gurevych, 2020). Multilingual distiluse-base-
multilingual-cased-v114 model, one of the mod-
els recommended15 for semantic similarity tasks,
was also included in experiments, namely, for
the best setup (first 3 sentences merged), but per-
formed worse than paraphrase-xlm-r-multilingual-
v1 model.

Experiment set 2. In addition, we also conducted
some baseline fine-tuning experiments. We took
XLSum dataset as the biggest dataset with avail-
able news texts that contains most of the languages
present in our train and test sets (Arabic, Chi-
nese, English, Spanish, Russian, and Turkish are
included; it does not include German, Italian, and
Polish). XLSum consists of 1.35 million article-
summary pairs from the BBC in 44 languages
(Hasan et al., 2021). We selected a smaller sample
of 98,697 news texts with as balanced representa-
tion of 6 languages as possible (15,000 or fewer
random examples for each language). Unsuper-
vised domain-specific fine-tuning of the paraphrase-
xlm-r-multilingual-v1 model on the news dataset
(1 epoch with MultipleNegativesRankingLoss) did
not improve the results: Pearson’s correlation score
was 0.63 for all text pairs from the preprocessed

13https://www.sbert.net/
docs/pretrained_models.html#
multi-lingual-models

14https://huggingface.
co/sentence-transformers/
distiluse-base-multilingual-cased-v1

15https://www.sbert.net/
docs/pretrained_models.html#
multi-lingual-models

1198



training set, and 0.71 for only English-English
pairs. Masked Language Model approach (1 epoch,
batch size 16) also yielded worse scores (0.41 and
0.51 respectively).

Experiment set 3. We also conducted more
model fine-tuning experiments. For internal eval-
uation, 10% of the training set was selected as
an internal test set (with a balanced representa-
tion of English, Spanish, German, and Polish lan-
guages), and training was made on the remaining
90% (internal train set). The models distiluse-
base-multilingual-cased-v1 and paraphrase-xlm-r-
multilingual-v1 were fine-tuned on the internal
train set (with MultipleNegativesRankingLoss, 3, 5,
8 epochs with 5 epochs as the best option, the latter
one better). The model distiluse-base-multilingual-
cased-v1 was also fine-tuned on the aforemen-
tioned XlSum dataset part (3 epochs with Multi-
pleNegativesRankingLoss). On the internal test set,
the models ensemble of distiluse-base-multilingual-
cased-v1 fine-tuned on train set and distiluse-base-
multilingual-cased-v1 fine-tuned on news dataset,
with addition of named entities intersection ratio,
achieved the best score, but still lower than the
baseline “pure” models.

Other models considered. Apart from the three
main sets of experiments above, we also consid-
ered other options. Our experiments with baseline
experiments with generative pre-trained models did
not lead to competitive results. Experimental re-
sults with GPT-Neo 2.7B16 on English texts yielded
only 0.13 correlation score between the perplexity
scores for the first sentences and the gold scores.
Basic fine-tuning for the mt5-base model17 (setups
up to 5 epochs, the task was handled as a multi-
class classification task with 7 labels) did not give
relevant results (all texts were misclassified for the
highest scores).

Other features considered. Another possibility
we considered was to include the dates mentioned
in the news articles into our model. This was based
on the assumption that news articles that are re-
lated to each other are supposed to be published
in similar dates. However, our attempts at pars-
ing dates from the articles (using the dateparser
and num2words python packages) led to noisy out-

16https://huggingface.co/EleutherAI/
gpt-neo-2.7B

17https://huggingface.co/google/
mt5-base

comes, so we ended up using a rule-based approach
to extract months and days from texts in English
(original or translated). We check if both texts
contain the same months and days (handled as in-
tersections with two different sets).

6 Results

6.1 Analysis of Results
On the test set, among our submitted results,
the setup leading to the best performance score
was a “pure” paraphrase-xlm-r-multilingual-v1
model combined with named entities intersections
and dates intersections (0.511 Pearson’s correla-
tion). This setup performed better than a “pure”
paraphrase-xlm-r-multilingual-v1 model (0.502
Pearson’s correlation) or a “pure” paraphrase-xlm-
r-multilingual-v1 model combined with named en-
tities intersections (0.508 Pearson’s correlation),
so the features helped improve the model’s scores.
Named entity and date intersection scores were
added to the model’s scores using rule-based coef-
ficients selected manually.

The best model also performed slightly bet-
ter than the ensemble of a “pure” paraphrase-
xlm-r-multilingual-v1 model and a distiluse-base-
multilingual-cased-v1 model fine-tuned on news
(0.502 Pearson’s correlation). It shows that more
domain-specified models and more complicated
fine-tuning techniques should be used for the task.
Among the setups we considered, we observe that
“pure” models can be deemed stronger baselines.

6.2 Error Analysis
We performed an error analysis to understand
why our proposed models yielded moderate per-
formance scores. We identified two main reasons
that can inform future directions of our research in
improving these models:

1. Text parsing errors in the test set: some
texts include, or sometimes solely consist of, meta-
information that was not excluded by rules. Our
rules did not cover all cases for all languages, as
they required language knowledge, and should ide-
ally be further pre-processed to reduce the noise
and improve model performance. Examples of
these cases include:

• German: “OK Wir setzen auf unserer Web-
site Cookies und andere Technologien ein, um
Ihnen den vollen Funktionsumfang unseres
Angebotes anzubieten”
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• German: “Um die Funktion unserer Web-
site zu verbessern und die relevantesten
Nachrichten und zielgrichtete Werbung
anzuzeigen, sammeln wir technische
anonymisierte Informationen über Sie,
unter anderem mit Instrumenten unserer
Partner. Ausführliche Informationen zur
Datenverarbeitung finden Sie in den Daten-
schutzrichtlinien. Ausführliche Informationen
zu den von uns genutzten Technologien finden
Sie in den Regeln der Cookies-Nutzung
und des automatischen Einloggens. Indem
Sie „Akzeptieren und schließen“ anklicken,
stimmen Sie ausdrücklich der Verarbeitung
Ihrer persönlichen Daten zu, damit das
beschriebene Ziel erreicht wird. Ihre
Zustimmung können Sie auf die Weise
widerrufen, wie in den Datenschutzrichtlinien
beschrieben.”

• Italian: “Informativa Privacy Questo sito uti-
lizza cookies per migliorare servizi ed espe-
rienza dei lettori. Le informazioni raccolte
dai cookies sono conservate nel tuo browser
e hanno la funzione di riconoscere l’utente
quando ritorna sul nostro sito web e aiutare il
nostro team a capire quali sono le sezioni del
sito ritenute più interessanti ed utili.”

2. Translation errors. It produced model
“hallucinations” and repetitions, such as “Chief
Executive Officer of the Ministry of Foreign
Affairs and Foreign Affairs of the Ministry
of Foreign Affairs” or “WASHINGTON-SANA
WASHINGTON-SANA WASHINGTON-SANA”
instead of the correct English translations. We no-
ticed this to be the case particularly for articles orig-
inally written in Chinese and Arabic (translations of
more than 30% of test samples in these languages
contained such translation errors). Therefore, other
translation approaches, i.e. using Google Trans-
late API, might be used to obtain better English
translations to detect named entities intersections.

Table 2 provides the best model setup scores,
broken down by language. For this analysis, we
selected only monolingual language pairs. The
best results are for Spanish, French and English,
while Arabic, German and Chinese yield the lowest
scores. It can be caused by parsing errors, as well
as by translation errors. Separate monolingual lan-
guage models for these languages can be applied
in further research, as well as models with better

Language Score No. of pairs
French 0.692 111
Spanish 0.678 243
English 0.625 236
Turkish 0.610 275
Italian 0.573 411
Russian 0.530 287
Polish 0.512 224
Chinese 0.426 769
German 0.250 608
Arabic 0.154 298

Table 2: Pearson’s correlation scores for paraphrase-
xlm-r-multilingual-v1 model combined with named en-
tities intersections and dates intersections, for different
languages from the test set (monolingual text pairs).

transfer learning techniques for these languages. In
the future, further experiments could be conducted
for the multilingual XLSum dataset, using different
sampling techniques and sample size.

7 Conclusion

This paper presents the participation results of our
team “dina” in the Multilingual News Similarity
shared task held as part of SemEval 2022. We
tested a range of state-of-the-art pre-trained mul-
tilingual transformer models, which were further
tested by incorporating features based on dates,
machine translation and named entity recognition.
Our best model achieved a Pearson’s correlation
score of 0.511. It can be considered as a moder-
ate performance score with substantial room for
improvement, based on performance scores from
other participants in the task, where the best system
achieved a score of 0.818. In future experiments
on cross-lingual semantic similarity of news texts,
we aim to focus on more sophisticated fine-tuning
techniques for domain adaptation on a further pre-
processed and cleaned dataset.
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Abstract

Previous studies focus on measuring the de-
gree of similarity of texts by using traditional
machine learning methods, such as Support
Vector Regression (SVR). Based on Trans-
formers, this paper describes our contribution
to SemEval-2022 Task 8 Multilingual News
Article Similarity. The similarity of multilin-
gual news articles requires a regression predic-
tion on the similarity of multilingual articles,
rather than a classification for judging text sim-
ilarity. This paper mainly describes the archi-
tecture of the model and how to adjust the pa-
rameters in the experiment and strengthen the
generalization ability. In this paper, we imple-
ment and construct different models through
transformer-based models. We applied differ-
ent transformer-based models, as well as en-
semble them together by using ensemble learn-
ing. To avoid the overfit, we focus on the ad-
justment of parameters and the increase of gen-
eralization ability in our experiments. In the
last submitted contest, we achieve a score of
0.715 and rank the 21st place.

1 Introduction

Providing computer the ability to understand the
abstract meaning of real world is a fundamental
tasks. Given a pair of news articles, this task seek
to evaluate the semantic similarity between them,
which focuses on the real world-happenings cov-
ered in the news articles. It’s a regression problem
for measuring similarity of multilingual texts.
Previous studies measured the similarity be-

tween texts by using traditional machine learning
methods, such as using Support Vector Regression
(SVR) (Šarić et al., 2012). Recently many deep
learning methods came out, such as pre-trained
model. It had attracted the interest of researchers
and had shown good result. For example, Explor-
ing Bidirectional Encoder Representations from
Transformers (BERT), XLNet and Robustly opti-
mized BERT approach (RoBERTa) and finally got

a good ranking (Yang et al., 2020). And a new
hybridized approach using Weighted Fine-Tuned
BERT Feature extraction with Siamese Bi-LSTM
model has been implemented. It is employed for
determining question pair sets using Semantic-text-
similarity from Quora dataset (Viji and Revathy,
2022). These novel deep learning methods have
performed well.
In this study, we explored some transformer-

based models. We had employed BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019), A Lite
BERT for Self-supervised Learning of Language
Representations (ALBERT) (Lan et al., 2020), Dis-
tilBERT (Sanh et al., 2020; Gou et al., 2021), be-
sides this, we used them as base models, merged
them together with ensemble learning, and the pre-
diction result is used as a new training set, and
then SVR is used as the meta model. The train-
ing set generated by the base model is put into the
meta-model. Afterwards, the final result is pre-
dicted by the meta-model. The advantage of the
pre-trained model is that the upstream corpus has
already trained the parameters of the model well.
We only need to fine-tune it, and we don’t need a
huge training set for training (Kong et al., 2022).
The rest of this paper is organized as follows.

Section 2 describes all the models which are used
for measuring similarity between sentence pairs.
Experimental results are summarized in Section 3.
Conclusion is drawn in Section 4.

2 Model Description

This section will describe what models we have
used, and how they organized. Because of the
attention mechanism, pre-trained model had been
made a huge success in Nature Language Process-
ing (NLP). We use transformer-based models such
as BERT, RoBERTa, ALBERT, DistilBERT to pro-
duce hidden representations. Then, a stacking en-
semble strategy was used to ensemble the results.
The details are presented as follow.
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h[SEP]
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h[SEP]
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Figure 1: The overall architecture of the proposed method.

2.1 Base Models

Based on the self-attention mechanism,
transformer-based model become a popular
method in NLP. The models, such as BERT,
ALBERT, RoBERTa, DistilBERT are variants on
the improvement of the transformer architecture
(Huang et al., 2021).
For four Transformer encoders, we applied a

similar architecture as sentence pair classification
to learn representation for the final regression.
Given two sentences and X = [x1, x2, ..., xn] and
Y = [y1, y2, ..., ym]. The model used WordPiece
tokenizer to obtain subwords sequences. Two spe-
cial tokens, i.e., [CLS] and [SEP], were added to
the beginning of the whole sequence and between
two sentences.The model architecture we use is
shown in Fig. 1 The details of each Transformer
encoder are presented as follows.

BERT. BERT stands for Bidirectional Encoder
Representations from Transformers. BERT is de-
signed to pretrain deep bidirectional representa-
tions from unlabeled text by jointly condition-
ing on both left and right context in all layers.
The checkpoint we use is “bert-base-multilingual-
cased”, which uses 12-layer, 768-hidden, 12-
heads, 110M parameters. Trained on cased text in
the top 104 languages with the largest Wikipedias.
The outputs tensor contains the batch_size, se-

quence_length, hidden_state and we use the first
token to regress (Zhang et al., 2021). Moreover,
BERT uses character-level BPE encoding.

RoBERTa. RoBERTa is a robustly optimized
BERT pretraining approach, it’s an improved
recipe for training BERT models, that can match
or exceed the performance of all of the post-BERT
methods. Our modifications are simple, they in-
clude: (1) training the model longer, with big-
ger batches, over more data; (2) removing the
next sentence prediction objective; (3) training on
longer sequences; and (4) dynamically changing
the masking pattern applied to the training data.
The checkpoint we use is “roberta-base”, which
uses 12-layer, 768-hidden, 12-heads, 125M param-
eters. RoBERTa using the BERT-base architec-
ture. So the output of RoBERTa is similar to BERT.
The token of RoBERTa is called ‘sos’. After that,
RoBERTa uses byte-level BPE encoding.

ALBERT. ALBERT is a lite BERT for self-
supervised learning of language representations
which lead to models that scale much better com-
pared to the original BERT and it uses a self-
supervised loss that focuses on modeling inter-
sentence coherence, and show it consistently helps
downstream tasks with multi-sentence inputs. The
checkpoint we use is “albert-base-v2”, which uses
12 repeating layers, 128 embedding, 768-hidden,
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MODEL PEARSON MSE
DistilBERT+ALBERT+BERT+RoBERTa 0.880 0.298
DistilBERT+BERT+ALBERT 0.879 0.301
DistilBERT+ALBERT+RoBERTa 0.815 0.450
DistilBERT+BERT+RoBERTa 0.879 0.301
ALBERT+RoBERTa 0.815 0.452
ALBERT+RoBERTa+BERT 0.880 0.298
BERT+ALBERT 0.877 0.306
BERT+RoBERTa 0.878 0.303
BERT+DistilBERT 0.879 0.301
ALBERT+DistilBERT 0.805 0.472
RoBERTa+DistilBERT 0.799 0.483
DistilBERT 0.749 0.587
BERT 0.874 0.310
ALBERT 0.792 0.504
RoBERTa 0.790 0.509

Table 1: The Pearson Score and MSE of Each Model in Test Data.

12-heads, 11M parameters. ALBERT base model
with no dropout, additional training data and
longer training. And ALBERT is also using the
first position of token to regress which is similar
to the token of BERT.

DistilBERT. DistilBERT is a distilled version of
BERT,which pre-train a smaller general-purpose
language representation model and can then be
finetuned with good performances on a wide range
of tasks like its larger counterparts. The check-
point we use is “distilbert-base-cased”, which use
6-layer, 768-hidden, 12-heads, 65M parameters.
The DistilBERT model distilled from the BERT
model bert-base-cased checkpoint. And the tok-
enization of DistilBERT is also similar to BERT.

2.2 Ensemble Learning

In ensemble learning, we train multiple models to
solve the same problem and combine them to get
better results. The most important assumption is
that when weak models are combined correctly,
we can get more accurate or robust models. We
decide to use stacking as our ensemble learning
model. Stacking usually considers heterogeneous
weak learners and stacking learning to combine
base models with meta-models.
We concatenate the output of the base regressor.

Then we put the output into the meta-model which
we use SVR as. After that, we use grid sweep to
get the optimizer parameters, using SVR to output
the prediction results.
We divide the base models into RoBERTa,

BERT, DistilBERT and ALBERT, we first train
each base model and save the best performing
model, and then we combine them separately. We
use SVR as our meta-model, take the output of
the base model as the input of the meta-model,
and then train the input data through the meta-
model.The data we use is the test set divided from
the training set, and the pearson score andMSE are
used to judge the quality of the entire model. For
different base models, we will adjust the parame-
ters on the meta-model, so that each set of base
models perform as best as possible. The final re-
sult is shown in Table 1.

3 Experimental Results

In this section, we will describe how the whole ex-
perimental part is done, and the main focus will be
on the part that implements the model. The experi-
mental part will be divided in to 5 parts as follows.

3.1 Datasets

In raw dataset, there are many descriptions about
the news from different part such as Geography,
Entities, Time, Narrative, Overall, Style, Tone.
However, as the issue overview said, the annota-
tion task consists of carefully reading each of the
two news articles in a pair and selecting the Over-
all similarity score. As written in the description,
systems will be evaluated on their ability to esti-
mate the Overall similarity between two pairs of
news stories, not any of the other scores. So we
focus on the relationship between the Overall and
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the sentences, we use sentences separately.

3.2 Evaluation Metrics
In the evaluation dataset, we find that the evalu-
ation dataset is mixed with many languages that
does not appear in the training set, such as Chi-
nese, so we try to add some languages that appear
in the evaluation dataset in the text back transla-
tion. We useGoogle’s translationAPI, we translate
non-Chinese source language into Chinese, and in-
crease the amount of train data through this form
The submissions were scored using Pearson’s cor-
relation with the ’Overall’ column. We use Pear-
son’s correlation as our evaluation metrics. The
definition of Pearson’s correlation is as follows:

ρx,y =
E (XY )− E (X)E (Y )√

E (X2)− E2 (X)
√

E (Y 2)− E2 (Y )
(1)

where the X is the predicted value, and Y is the
ground-truth value. Further, mean squared error is
calculated as follows:

MSE =
1

N

N∑

i=1

(
yi − ∧

yi

)2
(2)

where yi is the predicted value, and ∧
yi is the

ground-truth value.

3.3 Implementation Details
The train data is split into 3 parts, the base data
which is for the part of base regressor, the ensem-
ble data which is for the part of ensemble learning
and the test data for the final test, and the test data is
used in Table 1. According to the paper (Sun et al.,
2020), we truncate the middle part of the text of
tokens larger than 512.
In the part of base regressor. At first, we clean

the data, fill and delete the missing values in the
dataset. The cleaned data is split to train data, val-
idation data and test data. The raw sentences are
put into the tokenizer that the tokenizer is corre-
sponding to each model such as BertTokenizer and
the tokenizer uses the upstream model to complete
the tokenization. After that, we use tf.data.dataset
to wrap the tokenizer so that the it can be used
by regressor. Then The transformer-based model
is used as our regressor such as BertForSequence-
Classification, when the parameter num_labels=1,
it can be used as a regressor. Adam (Kingma and
Ba, 2017) is chosen as our optimizer and MSE is
used as the loss function and Pearson as evaluation

metrics to train the model. The validation data is
used in each epoch to judge the performance of
model. After training, we use the trained model
to make predictions. The test data is used to detect
which model perform better. We choose the best
model and save it. In addition, we start to tune the
parameters such as learning rate, weight decay and
epochs. Because of the limit of the memory, we set
batch size to 8 so that the model can run smoothly.
We use grid search so that we can find the optimal
parameters accurately and quickly.

3.4 Parameters Fine-tuning
WeightsBiases is a visualization tool to supervise
the model training process. When tuning the pa-
rameters, we use it so that we can record the change
curve of the parameters and easy to find optimal
parameters (Wang et al., 2022). After tuning the
parameters, we use test data to test. Finally, we
set learning rate to 1e-5, set weight decay to 1e-6,
set epochs to 50. And the C parameter of the SVR
is set to 10, and the C parameter is essentially a
regularisation parameter, which controls the trade-
off between achieving a low error on the training
data and minimising the norm of the weights.The
kernel parameter is set to “linear”. We show the
adjustment process of our parameters through two
line graphs fig 2 and fig 3.

3.5 Comparative Results
We use the test data which is split from train data.
We use this test data to calculate the Pearson score
and MSE for each model’s predictions, and the re-
sult is shown in Table 1.
We submit these models to the organizer. But

the method of stacking doesn’t achieve a good re-
sult. The model of BERT gets the best score in
this competition which the score is 0.715. After
submitting our final prediction, the best score is
obtained by BERT instead of stacking. We submit
these models to the final evaluation, but the only
scores returned to us are BERT and stacking. The
model of BERT got 0.715, the model of stacking
only got 0.464. The reason why we set the topic
as stacking ensemble learning is because we spend
most of our time on it during the entire competition,
and we think it does achieve better results on the
training set, so we set the topic to stacking ensem-
ble learning. And we reflect that it may be caused
by insufficient generalization ability of our base
model or meta-model. It may also be caused by
insufficient differences in the base model during
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Figure 2: The performance of different parameters on
MSE.

Figure 3: The performance of different parameters on
PEARSON.

stacking, or it may be that the selected parameter
adjustment method does not make the parameters
optimal. This is what we reflect on after getting
the feedback.

4 Conclusions

In this paper, we are participating in SemEval-
2022 Task 8 (Chen et al., 2022). In this task,
we perform regression prediction on the similarity
of multilingual news articles, and we use various
methods such as BERT, ALBERT, RoBERTa, Dis-
tilBERT, and the stacking method built with them
as the base model. The model we proposed can
effectively predict this task. Among the multiple
models we submitted, the BERT model we finally
submitted achieved the best score with a score of
0.715, ranking 21st in the leaderboard. At present,
in terms of deep learning, the processing methods
of multilingual texts have not been widely popular-
ized. So in the future, we hope to go further in the

processing of multilingual texts.
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Abstract
This paper describes our system in SemEval-
2022 Task 8, where participants were required
to predict the similarity of two multilingual
news articles. In the task of pairwise sentence
and document scoring, there are two main ap-
proaches: Cross-Encoder, which inputs pairs
of texts into a single encoder, and Bi-Encoder,
which encodes each input independently. The
former method often achieves higher perfor-
mance, but the latter gave us a better result
in SemEval-2022 Task 8. This paper presents
our exploration of BERT-based Bi-Encoder ap-
proach for this task, and there are several find-
ings such as pretrained models, pooling meth-
ods, translation, data separation, and the num-
ber of tokens. The weighted average ensemble
of the four models achieved the competitive
result and ranked in the top 12.

1 Introduction

Measuring sentence and document similarity is a
task that has been studied for many years in the
field of natural language processing. One of the
applications is to identify whether news articles
address the same subject. If news articles can be
properly clustered, they can be used for a wide
range of purposes, such as recommendation and
displaying related articles. SemEval-2022 Task 8
attempts to tackle this task with multilingual news
articles (Chen et al., 2022).

Nowadays, it is common for this kind of tasks to
use transformer-based models like BERT (Devlin
et al., 2019). There are several research directions,
including post-processing (Li et al., 2020; Wang
and Kuo, 2020), unsupervised learning (Zhang
et al., 2020; Tiyajamorn et al., 2021), and su-
pervised learning (Reimers and Gurevych, 2019;
Thakur et al., 2021; Feng et al., 2020; Jiang et al.,
2022). Here, since a labeled dataset was provided,
we decided to use a supervised learning approach.

It is standard practice to combine two sentences
as input when dealing with pairwise similarity of

Figure 1: The architectures of Cross-Encoder and Bi-
Encoder. The input of the Cross-Encoder architecture is
two sentences joined by SEP, and through BERT and
a pooling layer, the regressor outputs a score. In the
Bi-Encoder architecture, each sentence is transformed
by BERT and pooling layers, and the score is calculated
through interaction of the two vectors.

sentences in a supervised learning approach with
BERT (Lin et al., 2021; Reimers and Gurevych,
2019). In contrast, we chose an approach that em-
beds each sentence separately. Figure 1 shows
these two approaches, named Cross-Encoder and
Bi-Encoder to follow the previous research (Thakur
et al., 2021).

This paper describes our system in SemEval-
2022 Task 8. First, we explain the experimental
results by adopting the Bi-Encoder architecture
rather than Cross-Encoder. We also present the
following research questions: 1) which pretrained
model works well when dealing with multilingual
news articles, 2) what kind of pooling method is
proper for this task, 3) is it useful for translating the
other language into English, and 4) is there some
effect of data splitting and max length? Our code is
available at https://github.com/upura/semeval2022-
task8-multilingual-news-article-similarity.

2 Task Description

SemEval-2022 Task 8 provides a dataset that con-
tains pairs of news articles. The dataset contains the
information like the language and URL of each arti-
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Table 1: Language pairs in the training and evaluation
dataset. There are eight language pairs in the training
dataset, and an additional ten language pairs appear in
the evaluation dataset.

language-language traning evaluation
English-English 1800 236
German-German 857 608
German-English 577 185
Spanish-Spanish 570 243
Turkish-Turkish 465 275
Polish-Polish 349 224
Arabic-Arabic 274 298
French-French 72 111
Russian-Russian 287
Chinese-Chinese 769
Spanish-English 496
Italian-Italian 411
Polish-English 64
Chinese-English 213
Spanish-Italian 320
German-French 116
German-Polish 35
French-Polish 11

Figure 2: The histogram of the number of tokens. Left
and right shows the number of tokens in the title and
body text.

cle and the target score named Overall. Training
dataset consists of 4,964 pairs of articles. Table
1 shows the number of each language pair. It is
interesting that a large number of new language
pairs appear in the evaluation dataset. It is inferred
that building machine learning models using only
the language pairs in the training dataset results
in poor performance for these unknown language
pairs. Therefore, it is essential to address multi-
lingual datasets in some way. Information such as
the title and body text of the article is available by
scraping the data from the URL1. Figure 2 shows
the histogram of the number of tokens2. Most ti-
tles are around 20-30 tokens, and the body text
often has a maximum token length of 512. Each
Overall score is calculated by averaging the an-
notators’ scores.

The evaluation dataset, in which the labels are
1https://github.com/euagendas/semeval_

8_2022_ia_downloader
2As a tokenizer, we used the pretrained BERT model

named bert-base-multilingual-uncased.

Figure 3: The overview of the developed system. Four
neural networks output predictions and the final result
is calculated by weighted average ensemble.

Figure 4: Base architecture of each neural network in
the developed system.

hidden from the participants, consists of 4,902
pairs. The ranking of the task is determined by
Pearson’s correlation between the labels in the eval-
uation dataset and the submitted predictions. Par-
ticipants are allowed to submit their predictions
five times per day, but none of the scores could
be observed until the deadline. The leaderboard is
also kept private until the end, so it is impossible
to know the scores of the other teams.

3 System Overview

The developed system is outlined in Figure 3. The
final prediction is calculated by a weighted average
of the output of the four neural networks. Figure
4 illustrates the base architecture of each neural
network. We use a Bi-Encoder approach where
the two texts are entered into separate BERT. Each
input is the combined title and body text of the
article. As a pooling method, the representations
of the last four CLS tokens are concatenated. CLS
is the token to be attached to the beginning of an
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input of BERT. At the end, the score is given based
on the interaction of the two sentence vectors.

The rest of this section describes the key points
of the system. First, we consider whether Cross-
Encoder or Bi-Encoder should be used. Next, we
address the perspectives of the research questions
listed in Section 1: pretrained models, pooling
methods, translation, data splitting, and maximum
length. Finally, we explain the ensemble of models.

3.1 Cross-Encoder vs Bi-Encoder

In the Bi-Encoder architecture, each sentence is
transformed into an embedding by BERT, and the
sentence vectors are obtained by a pooling layer.
Denote two vectors A and B, then their interac-
tions are designed as distance and angle with
reference to (Tai et al., 2015) in the following
formula. Here, distance is calculated as an
element-wise absolute error, and angle is calcu-
lated as an element-wise multiplication.

distance = |A−B|, angle = A⊗B

In addition to distance and angle, tradi-
tional features are also created and combined. We
use Jaccard Index (Jaccard, 1912), Dice Index
(Dice, 1945), and cosine similarity. These features
may not work when dealing with pairs with differ-
ent languages. However, when building a predic-
tion model with LightGBM (Ke et al., 2017) using
only these features, Pearson’s correlation achieved
0.2989 in the evaluation data set. We believe that
these features can contribute to some extent and
combine them into the layer.

A comparison between Cross-Encoder and Bi-
Encoder is reported in Section 4.1. The Cross-
Encoder architecture for the comparison is shown
in Figure 5. We use two BERT models, one with
concatenated article headlines and one with con-
catenated body text. The pooling method and fea-
tures are fixed to the same settings. The regressor
is a simple fully connected layer.

3.2 Pretrained Models

We considered various pretrained BERT models
of Hugging Face Transformers (Wolf et al., 2020).
There are some multi-lingual pretrained models
such as mBERT (Devlin et al., 2019) and XLM-R
(Conneau et al., 2020) available3 and the following
models are selected as candidates.

3https://huggingface.co/docs/
transformers/multilingual

Figure 5: Cross-Encoder architecture for the compari-
son with Bi-Encoder architecture shown in Figure 4.

• bert-base-multilingual-uncased
• bert-base-multilingual-cased
• xlm-roberta-base

Since none of the models performed badly, we used
all of them for the final submission as shown in
Figure 3. A comparison among models is reported
in Section 4.2.

3.3 Pooling Methods

There are several ways to extract the sentence vec-
tor from the output through BERT. One of the sim-
plest ways is to use the embedding of the CLS
token in the final layer, but some methods are pro-
posed to use information from other layers as well.
A number of experimental results have been re-
ported (Reimers and Gurevych, 2019; Gao et al.,
2021; Jiang et al., 2022; Conneau and Kiela, 2018),
but we believe that the results depend largely on
the individual task. Therefore, we consider the
following four methods.

• CLS: Concatenate the last four representations
of CLS token.

• CNN: Use the convolutional neural network
(CNN) to extract sentence vectors.

• LSTM: Use the long short-term memory
(LSTM) for extracting sentence vectors.

• MAX: Use max-pooling to extract sentence
vectors.

On the basis of the results of our experiments, we
adopted the first method. A comparison among the
pooling methods is reported in Section 4.3.

3.4 Translation

One of the ways of dealing with multilingual
datasets is the translation. Here we examine
a method of translating all datasets into En-
glish and using pretrained models in English.
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Table 2: Experimental results of Pearson’s correlation for the validation and evaluation dataset. The columns named
"pool" and "length" represent pooling methods and max length respectively.

id architecture model pool folds length validation evaluation
0 Cross-Encoder bert-base-multilingual-cased CLS 5 512 0.7045 0.6188
1 Bi-Encoder bert-base-multilingual-cased CLS 5 512 0.7688 0.6922
2 Bi-Encoder bert-base-multilingual-uncased CLS 5 512 0.7627 0.6940
3 Bi-Encoder xlm-roberta-base CLS 5 512 0.7118 0.6153
4 Bi-Encoder bert-base-multilingual-cased CNN 5 512 0.4892 0.3269
5 Bi-Encoder bert-base-multilingual-cased LSTM 5 512 0.4979 0.3271
6 Bi-Encoder bert-base-multilingual-cased MAX 5 512 0.7221 0.6313
7 Bi-Encoder translation with bert-base-uncased CLS 5 512 0.7505 0.6748
8 Bi-Encoder bert-base-multilingual-cased CLS 20 512 0.7853 0.7107
9 Bi-Encoder bert-base-multilingual-cased CLS 5 256 0.7427 0.6616
10 Bi-Encoder bert-base-multilingual-cased CLS 5 128 0.7137 0.6355
11 Bi-Encoder bert-base-multilingual-cased CLS 5 64 0.6744 0.5782
12 weighted average ensemble 0.7902 0.7425

We use Googletrans4 for the translation, and
bert-base-cased as a pretrained model. In
conclusion, the translation approach did not im-
prove the performance of the multilingual models.
A comparison result is shown in Section 4.4.

3.5 Data Splitting and Max Length

We also investigate the effect of data splitting and
max length. The number of data partitions in cross
validation (Blum et al., 1999) affects the number
of available training samples. When the size of the
training dataset is not very large, as in this task,
it may affect the performance. The setting of the
max length based on the distribution of the token
size introduced in Section 2 is also an adjustable
element. In general, news articles contain impor-
tant information early in the article, so there is a
possibility that a smaller max length works well.

For data splitting, it was suggested through the
experiment that the larger the number of splits,
that is, the larger the training dataset, the higher
the performance. We set the max length to 512,
because, in contrast to the hypothesis, the smaller
max length led to the poor performance. Both
comparison results are shown in Section 4.5.

3.6 Weighted Average Ensemble

In the weighted average of the models, the per-
formance on the validation dataset was taken into
account to determine the models to be used and
their weights. In the final submission, we used the
average of all models obtained in the cross valida-
tion process. In case of folds set 5, five models
were generated. This means that (5 + 5 + 5 + 20)
models were used in Figure 3. The improvement

4https://github.com/ssut/
py-googletrans

Figure 6: Scatter plot of Pearson’s correlation for the
validation and evaluation dataset. It can be observed
that the scores are correlated.

through the ensemble is reported in Section 4.6.

4 Results

This section reports the experimental results that
facilitated the design of the system described in the
previous section. Table 2 lists the scores of Pear-
son’s correlation for the validation and evaluation
dataset.

The validation dataset is extracted from the train-
ing dataset. The column named "folds" shows the
number of folds in cross validation. That is, in case
of folds set 5, 20 % of the training dataset is re-
moved for the validation. Each model is trained for
seven epochs, and the scores with the best perfor-
mance on the validation dataset are reported. In our
experimental setting, the performance for the vali-
dation dataset converged after about five training
epochs.

The scatter plots of the performance for the vali-
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dation and evaluation datasets are shown in Figure
6, and it can be observed that they are correlated. It
is suggested that the improved performance on the
validation dataset is also useful on the evaluation
dataset, and that the validation framework works
well.

The rest of this section describes the result in
detail from the same perspective as in the previ-
ous section. The models in Table 2 are referred to
as experiments 0-12 respectively, and their perfor-
mances are compared for the discussions.

4.1 Cross-Encoder vs Bi-Encoder
Comparing the results of experiments 0 and 1, we
see that the architecture of Bi-Encoder worked well
rather than Cross-Encoder. There is a large differ-
ence of more than 0.06 in Pearson’s correlation.
The results are only for this task and our experi-
mental setup and should not be overly generalized.
However, it is an interesting case study, as the re-
sults contrast with the use of Cross-Encoder in
some of the previous studies presented in Section 1.
The results suggest that it is important to try both
Cross-Encoder and Bi-Encoder in the search for
high performance.

4.2 Pretrained Models
The results of experiments 1-3 show the perfor-
mance of each pretrained model. The model
with bert-base-multilingual-uncased
and bert-base-multilingual-cased per-
formed better than xlm-roberta-base.

4.3 Pooling Methods
Seeing the results of experiments 1 and 4-6, we can
say that the best pooling method in this task is CLS.
It outperformed the other three methods.

4.4 Translation
The results of experiment 7 show that the trans-
lation approach did not improve the performance
from experiment 1.

4.5 Data Splitting and Max Length
In experiment 8, the number of folds was changed
from 5 to 20. This was not an exact comparison
since the validation dataset was changed, but there
was 0.03 improvement in Pearson’s correlation
from experiment 1. For max length, we examined
values from 64 to 256 in experiments 9-11. It was
observed that the performance was getting worse
as the max length was decreased.

Table 3: Correlation between the experiments used in
the final submission (1, 2, 7, and 8).

id 2 7 8
1 0.9156 0.8812 0.9348
2 - 0.8752 0.9105
7 - - 0.8730

Table 4: Median of absolute error and the number of
samples for the evaluation dataset for each language
pair. The symbol ✓ means the language pair is included
in the training dataset.

language-langage median samples training
German-English 0.2971 185 ✓
Chinese-English 0.4092 213
French-French 0.4213 111 ✓
Spanish-Italian 0.4251 320
Polish-English 0.4286 64

English-English 0.4662 236 ✓
Spanish-Spanish 0.5223 243 ✓
Spanish-English 0.5239 496

Polish-Polish 0.5256 224 ✓
Italian-Italian 0.5444 411

Chinese-Chinese 0.5450 769
Russian-Russian 0.5722 287
Turkish-Turkish 0.5789 275 ✓
French-Polish 0.5855 11

German-German 0.6030 608 ✓
Arabic-Arabic 0.6765 298 ✓

German-French 0.6905 116
German-Polish 0.7751 35

4.6 Weighted Average Ensemble

The results of experiment 12 show that the
weighted average of the models boosted the per-
formance. It is important to highlight that when
comparing experiment 8 and 12, the performance
improved by only 0.005 on the validation dataset,
but by more than 0.03 on the evaluation dataset.
Table 3 describes the correlation between the exper-
iments used in the final submission (1, 2, 7, and 8).
We can see that there is a high similarity between
experiments 1 and 8, where the only difference is
the number of folds. It is also observed that the
translation approach contributes to the diversity,
because its correlation is low. This was our submis-
sion for SemEval-2022 task 8. The score 0.7425
for the evaluation dataset ranked 12th out of 32
teams.

4.7 Error Analysis

Here we describe the analysis results using labels
of the evaluation dataset. First, a comparison of
each pair of languages shows the performance dif-
ferences observed in Table 4. The median abso-
lute error for German-English is 0.2971, whereas
German-Polish is 0.7751. German-German per-
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forms relatively poorly, and their proportion in the
evaluation dataset is high as shown in Table 1. Fo-
cusing on these language pairs may improve the
overall performance of the system. It is noteworthy
that even language pairs that are not part of the
training dataset, such as Chinese-English, show ex-
cellent performance. It can be suggested that mod-
els pretrained in multilingual languages worked
well.

Next, we identified the problem in obtain-
ing the article body text by checking extremely
incorrectly predicted samples. For example,
consider the sample with pair_id equals
1512411298_1512618793 where the system
predicted 3.555 and the correct answer was
1.000. We checked the body text of the article
1512618793 and found that the extracted text
by the script was different from the actual body
text for some reasons such as the page layout like
advertisements or related articles.

5 Conclusion

This paper presented our exploration of BERT-
based Bi-Encoder approach for SemEval-2022 task
8. The experiment showed that Bi-Encoder archi-
tecture worked better than Cross-Encoder. There
are several findings, such as pretrained models,
pooling methods, translation, data separation, and
the number of tokens. The exploration of these dif-
ferent variants led to the creation of several diverse
models. Finally, a weighted average ensemble of
the four models achieved the competitive result.
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Abstract

This paper describes the system submitted by
our team (YNU-HPCC) to SemEval-2022 Task
8: Multilingual news article similarity. This
task requires participants to develop a system
which could evaluate the similarity between
multilingual news article pairs. We propose an
approach that relies on Transformers to com-
pute the similarity between pairs of news. We
tried different models namely BERT, ALBERT,
ELECTRA, RoBERTa, M-BERT and Com-
pared their results. At last, we chose M-BERT
as our System, which has achieved the best
Pearson Correlation Coefficient score of 0.738.

1 Introduction

In the field of Natural Language Processing (NLP),
how to measure the similarity of two texts has been
a topic of interest among researchers for decades.
Text similarity measures play an increasingly im-
portant role in text related research and applications
in tasks such as information retrieval, text classifi-
cation, document clustering, topic detection, topic
tracking, questions generation, question answer-
ing, essay scoring, short answer scoring, machine
translation, text summarization and others(Gomaa,
Fahmy, et al. 2013). It is widely known that text is
a high-dimensional semantic space, hence how to
abstractly decompose it so that we can quantify its
similarity from a mathematical point of view has
become the focus for many researchers. There are
three methods to measure text similarity: one is
the traditional method based on keyword matching,
such as N-gram similarity; the second is to map
the text to the vector space, and then use the co-
sine similarity and other methods; the third is the
method of deep learning, such as the deep learn-
ing semantic matching model DSSM based on user
click data, ConvNet based on convolutional neu-
ral network, and the current state-of-art Siamese
LSTM and other methods. However, since the in-
troduction of bidirectional encoder representations

from transformers (BERT)(Devlin, Chang, Lee,
and Toutanova 2018), the accuracy and training
efficiency in both text classification and sequence
labeling have reached new heights.

SemEval 2022 Task 8 is a multilingual news ar-
ticle similarity task(X. Chen, Zeynali, Camargo,
Flöck, Gaffney, Grabowicz, Hale, Jurgens, and
Samory 2022). There are mainly 3 difficulties
in the task compared with regular text similarity
task: (1) the task is interested in the real world-
happenings covered in the news articles, not their
style of writing, political spin, tone, or any other
more subjective design. Therefore, the system built
by participant should neglect the subjective part of
the text and focus on objective part only;(2) there
were over six different languages in both training
and test dataset, and some of test data set were
composed of multilingual text pair to test the mul-
tilingual ability of participating system; (3) the test
dataset contains new languages which have never
appeared in training data. This situation disguis-
edly reduces the training data required to train the
model.

In this paper, we primarily present a deep learn-
ing system for the SemEval-2021 Task 8: Multi-
lingual News Article Similarity. Since there are
not any subtasks in the SemEval 2022 Task 8, our
system will focus on calculating the overall similar-
ity only. Our approach is based on Transformers,
which is a classic NLP model proposed by Google’s
team in 2017(Vaswani, Shazeer, Parmar, Uszkor-
eit, Jones, Gomez, Kaiser, and Polosukhin 2017).
We fine-tuned pre-trained masked language models
namely BERT, ALBERT, ELECTRA, RoBERTa
and M-BERT, which are all based on Transformers.
We compared their performance at the task, then
picked best of them as our system.

Experimental results show that most of the Trans-
formers based model are valid in the field of text
similarity(Mittal and Modi 2021). However, when
it comes to multilingual text, there is a clear drop
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Figure 1: the example of the given training data

in results for all models. Among these models,
M-BERT has achieved the best score with the Pear-
son Correlation Coefficient of 0.738. That is why
we chose M-BERT as our system at last. The im-
plementation for our system is made available via
Github 1.

The rest of the paper is organized as follow. Sec-
tion 2 describes the specific requirements of the
task and dataset. Section 3 describes the details of
the Transformers model used in our system. Sec-
tion 4 presents the experimental results. Finally,
the results and conclusions are presented in Section
4 and 5.

2 Task Overview

The task organizers have provided training and test
dataset for the task. The details of this task are
given below, and some examples are shown in the
Figure 1.

2.1 Problem Description

Given a pair of news articles, are they covering the
same news story? Based on the same event, dif-
ferent journalist could write completely different
news article, because of their political stance. The
kernel of this task is to ignore the subjective part
of news article, and calculate the similarity score
according to objective facts such as time, geogra-
phy, entities, etc. A pair of news article will be rate
pairwise on a 4-point scale from most to least sim-
ilar. Systems will be evaluated on their ability to
estimate the Overall Similarity between two pairs
of news stories, not any of the other scores. The
similarity ratings will be compared with the gold
standard ratings using Pearson’s correlation.

1https://github.com/151140043/Sem2022task8.git

2.2 Data Description

The task organizers have provided training and test
dataset. The training data consists of 4,964 pairs of
news articles, and every pair of news articles have
their unique pair_id, the counts of language-pairs
is following: en-en: 1800, de-de: 857, de-en: 577,
es-es: 570, tr-tr: 465, pl-pl: 349, ar-ar: 274, fr-fr:
72. Apart from the overall score, the score of "Ge-
ography", "Entities", "Time", "Narrative", "Style",
and "Tone" are also given to contestants. However,
they are all for reference only and will not be eval-
uated as final score. The test data consists of 4954
pairs of news articles. It is worth mentioning that
the test dataset is contained more forms of pairs of
multilingual news article which are not existed in
training data.

3 System Description

We use the transformer based pre-trained model as
solution to accomplish the task. As shown in Figure
2, the system we built contains a tokenizer, a model
layer, fully connected layer and mean squared error
function. The mean squared error is loss function
of our system. The model layer represent a Trans-
fomers based pre-trained model, it will be replaced
by BERT or any model mentioned above to com-
pare their effect on task 8. The rest of the section
will describe the details of every part of the system
and their mechanics.

3.1 Tokenizer

Tokenization is essentially splitting a phrase, sen-
tence, paragraph, or an entire text document into
smaller units, such as individual words or terms.
Each of these smaller units are called tokens. Since
the requirement of the task is to evaluate the similar-
ity between two news articles, both the articles will
be entered into the tokenizer at the same time. To
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Figure 2: The structure of system

distinguish them, the tokenizer will add a special
token named “[SEP]” between them and the last
of second article. in addition to “[SEP]”, the tok-
enizer will also add a special token named “[CLS]”
at the begin of the first article which is necessary
for subsequent step.

3.2 Model

Model layer is an abstraction of a pre-trained Trans-
former model, it can be a BERT model or any mod-
els mentioned below in practical application. In
this step, the tokens we got from tokenizer will be
passed to the layer, and layer will generate 768-
dimensional word embeddings for each word in
the news article(Xinge Ma and Zhang 2021) (Most
of the models we used generate 768-dimensional
word embeddings, a few models generate other pa-
rameters, which we will mention later). Then, the
model will take the word embeddings of the first
token of each article (i.e., ‘[CLS]’) to evaluate the
similarity between two news articles, because it
integrated the semantic information of the whole
sentence. Below we will introduce the specific
model we used in the task.
BERT. BERT is a pretrained language represen-
tation model, which stands for Bidirectional En-
coder Representations from Transformers (Devlin,
Chang, Lee, and Toutanova 2018). BERT builds
two pre-training tasks, Masked Language Model

(MLM) and Next Sentence Prediction (NSP). Un-
like traditional left-to-right language model pre-
training, BERT is using a MLM pre-training objec-
tive, which make BERT to generate deep Bidirec-
tional Linguistic Representation (Devlin J, Chang
M W, Lee K, et al. 2018). We used the “bert-base-
uncased” in our task. The size of BERT model
we use in the task: Layers=12, Hidden Dimen-
sion=768, self-attention head =12, Word Piece em-
bedding size =768, Total Parameters=110M.

ALBERT. ALBERT,which stands for A Lite Bert,
is proposed to solve the problem that the parame-
ters of the current pre-training model are too large
(Lan, M. Chen, Goodman, Gimpel, Sharma, and
Soricut 2019). In the classic BERT model, the
size of Word Piece embedding (E) is always the
same as the hidden layer size(H), i.e., E=H. AL-
BERT break the binding relationship between E
and H, thereby reducing the number of parameters
of the model and improving the performance of the
model. Another method for ALBERT to reduce the
amount of parameters is parameter sharing between
layers, which mean, multiple layers could use the
same parameters. There are three ways to share
parameters: (1) Only share the parameters of the
feed-forward network. (2) Only share the parame-
ters of the attention. (3) Share all the parameters.
Through these methods, ALBERT could greatly
reduce the total parameters. We chose “albert-base-
v2” as the model, and the size of model we use
in the task: L=12, H=768, A=12, E=128, Total
Parameters=12M.

ELECTRA. ELECTRA is a model that share some
ideas with BERT, but the main structure is still
different. It also can be named as “Efficiently
Learning an Encoder that Classifies Token Replace-
ments Accurately” (Clark, Luong, Le, and Man-
ning 2020). The pre-training of ELECTRA can be
divided into two parts, which are generator and dis-
criminator. The generator is still MLM, the struc-
ture is similar to BERT, but the model will be much
smaller than BERT. The output of generator is the
input of discriminator. The role of discriminator
is to distinguish whether each token input is origi-
nal or replaced. For each token, the discriminator
will perform a binary classification on it, and get
the loss. The approach above is called replaced to-
ken detection. We chose the “google/electra-base-
discriminator” as our model, whose size is: L=12,
H=768, A=12, E=768, Total Parameters=110M.

RoBERTa. The full name of RoBERTa is “Ro-
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model name L H E A P
BERT 12 768 768 12 110M

ALBERT 12 768 128 12 12M
ELECTRA 12 768 768 12 110M
RoBERTa 24 1024 1024 16 355M
M-BERT 12 768 768 12 110M

Table 1: Model structure
L represents L Layers,H represents Hidden Dimension

H, E represents WordPiece embedding size E, A
represents A self-attention head, P represents Total

Parameters

bustly optimized BERT approach” (Liu, Ott, Goyal,
Du, Joshi, D. Chen, Levy, Lewis, Zettlemoyer, and
Stoyanov 2019). From the perspective of the model,
there are not novel innovation in RoBERTa. There
are only some adjustment made on the basis of
BERT: 1) The training time is longer, the batch size
is larger, and the training data is more; 2) The next
predict loss is removed; 3) The training sequence
is longer; 4) The Masking mechanism is dynami-
cally adjusted. The model we used in the task is
“roberta-base”, and the architecture of it is: L =
24, H = 1024, E=1024, A = 16, Total Parameters
=355M.
M-BERT. The structure of Multilingual-BERT(M-
BERT) is exactly the same with the common BERT
model. The biggest difference between M-BERT
and BERT is that M-BERT is pre-trained on the
top 104 languages with the largest Wikipedia us-
ing a masked language modeling (MLM) objective.
While the common BERT is pre-trained on English
Corpus.

3.3 Transformers
Transformers is the base of all the model we men-
tioned above. Like many neural sequence transduc-
tion models, Transformers also have an encoder-
decoder structure.
Encoder. The encoder is composed of a stack
of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention
mechanism, and the second is a fully connected
feed-forward network (Vaswani, Shazeer, Parmar,
Uszkoreit, Jones, Gomez, Kaiser, and Polosukhin
2017). The output of the sub-layer can be expressed
as:

sub_layer_output = LayerNorm(x+ Sublayer(x))

Decoder. The decoder is also composed of a stack
of N = 6 identical layers. In addition to the two

sub-layers in each encoder layer, the decoder in-
serts a third sub-layer, which performs multi-head
attention over the output of the encoder stack.
Multi-Head Attention

Given a set of vector set values, and a vector
query, the attention mechanism is a mechanism
that computes a weighted sum of values based on
the query. In Transformers, they compute attention
as:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

The multi-head attention allows the model to
concatenate different attention results, and it can
be represent as:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

3.4 Fully Connected Layer
In the fully connected layer, word embeddings ac-
quired from the previous step will be converted into
1-dimensional numerical values. then, the fully con-
nected layer will output the similarity score depend
on the 1-dimensional numerical values.

4 Experiments

4.1 Data Preprocessing
As shown in Figure 2, tokenizer is the data pro-
cessing structure of our system. After feeding
data into tokenizer, it will return a dictionary of
3 lists of ints, which are input_ids, attention_mask
and token_type_ids. The input ids are token in-
dices, numerical representations of tokens build-
ing the sequences that will be used as input by
the model. The attention mask is an optional ar-
gument used when batching sequences together.
This argument indicates to the model which tokens
should be attended to, and which should not. The
token_type_ids allow some models to understand
where one sequence ends and where another begins.
But RoBERTa is an exception, RoBERTa removes
NSP, so RoBERTa do not need the token_type_ids
as input. We will split ten percent of the training
data as validation data to prevent overfitting.

4.2 Evaluation Metrics
Systems will be evaluated on their ability to es-
timate the Overall Similarity between two pairs
of news stories, not any of the other scores. The
similarity ratings will be compared with the gold
standard ratings using Pearson’s correlation.
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Epoch 1 2 3 4 5
score 0.681 0.712 0.738 0.721 0.694

Table 2: The relationship between epoch and Pearson
coefficient

4.3 Implementation Details

The 5 models that mentioned above are all appli-
cated in the task to evaluate the overall similar-
ity between the given pairs of news articles. The
datasets we used were all provided by the compe-
tition, with no other external corpus. For all the
models, we set learning rate = 5e−6, epsilon=1e−8,
loss function as mean squared error, and a batch
size of 8 for three epochs.

4.4 Hyper-parameters Fine-tuning

In the experiment, we have tried to change specific
parameters while controlling other parameters un-
changed, to see if we can get better results. The fol-
lowing will introduce our attempts on fine-tuning
parameters.
Loss function. At the beginning of the experiment,
we had to choose loss function from mean squared
error and cosine similarity. Therefore, we trained
an ALBERT model with the loss function of mean
squared error based on the news article provided by
official, and get the Pearson’s correlation of 0.543.
Then, we trained another ALBERT model with
the loss function of cosine similarity, but only got
Pearson’s correlation score of 0.055. As a result,
we chose mean squared error as loss function.
Batch size. Appropriate batch size is important
for the optimization of model. If batch size is too
small, the result may be poor. If the batch is too
large, it will cause memory overflow. So we chose
a batch size of 8.
Epoch. Take M-BERT as an example, the test
data provided by task organizers are feed into the
model to exam the effect of different epochs. The
relationship between epoch and Pearson coefficient
score is shown in table 2. It is obvious that the
Pearson coefficient score come to the highest when
epoch=3. So, we set the epoch equals to 3 in the
experiment.

4.5 Comparative Results and Discussion

The results are evaluated by Pearson Correlation
Coefficient with the test data provided by official,
which is shown in table 3. BERT reach an accuracy
of 0.464, ALBERT of 0.543, ELECTRA of 0.474,

model Pearson Correlation Coefficient
BERT 0.464

ALBERT 0.543
ELECTRA 0.474
RoBERTa 0.475
M-BERT 0.738

Table 3: Comparable results of experiments

RoBERTa of 0.475, and M-BERT of 0.738. Our
best individual score is 0.738 for M-BERT. As can
be seen from the results, BERT, ALBERT, ELEC-
TRA and RoBERTa have similar scores which
greater than 0.45 and less than 0.5. M-BERT is
the highest among them, whose score is over 0.7.
Our results show that M-BERT is able to perform
cross-lingual generalization surprisingly well. We
believe that the reason why M-BERT outperforms
other models is that M-BERT is pre-trained on the
Corpus contained 104 languages while other mod-
els are pre-trained on a Corpus contained English
only. Our conjectures are not groundless. A re-
search (Papadimitriou, Chi, Futrell, and Mahowald
2021) demonstrate that mBERT representations are
influenced by high-level grammatical features that
are not manifested in any one input sentence, and
that this is robust across languages. And mBERT
does not encode subjecthood purely syntactically,
but that subjecthood embedding is continuous and
dependent on semantic and discourse factors, as
is proposed in much of the functional linguistics
literature. But there is a defect in M-BERT which
is while M-BERT’s multilingual representation is
able to map learned structures onto new vocabu-
laries, it does not seem to learn systematic trans-
formations of those structures to accommodate a
target language with different word order (Pires,
Schlinger, and Garrette 2019). For example, cross-
script transfer is less accurate for pairs like English
and Japanese, which have a different order of sub-
ject. Therefore, our experiments still have many
areas for improvement.

5 Conclusion

In this paper, we described our deep learning
models for the multilingual text similarity task
SemEval-2022 shared Task 8. The best Pearson’s
correlation score we got was 0.738. We showed
that the Transformer based approaches is valid in
the field of multilingual text similarity. However,
our system is far from perfect, lots of possible
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improvement can be implemented in the current
model. We would like to further explore how to
improve it, and employ more interesting methods
in the task.
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Abstract 

This paper presents our system for 

document-level semantic textual similarity 

(STS) evaluation at SemEval-2022 Task 8: 

“Multilingual News Article Similarity”. 

The semantic information used is obtained 

by using different semantic models ranging 

from the extraction of key terms and named 

entities to the document classification and 

obtaining similarity from automatic 

summarization of documents. All these 

semantic information’s are then used as 

features to feed a supervised system in 

order to evaluate the degree of similarity of 

a pair of documents. We obtained a Pearson 

correlation score of 0.706 compared to the 

best score of 0.818 from teams that 

participated in this task. Our source code 

can be found at GitHub1. 

1 Introduction 

    Measuring semantic textual similarity has been a 

research subject in natural language processing, 

information retrieval and artificial intelligence for 

many years. Accurate modelling of textual 

similarity is fundamental for many applications. 

Previous efforts have focused on comparing a short 

text with a long text (e.g., Web search), two 

sentences or other short text sequences (e.g., 

paraphrase recognition, image retrieval by captions 

and Twitter tweets search). There are many other 

tasks requiring computing the semantic similarity 

between two long texts (e.g., document 

classification, document clustering and tracking the 

 
1 https://github.com/jln-brtn/BL.Research-at-

SemEval-2022-Task-8  

similarity of news coverage between different 

regions). 

    Semantic textual similarity (STS) measures the 

level of semantic equivalence between two textual 

contents. In this paper, we are interested to develop 

a system that identifies news articles that provide 

similar semantic information. More specifically, 

given two news articles, we aim to compute their 

similarity based on four characteristics: 

geolocation, time, shared entities, and shared 

narratives. To achieve this goal, we must identify 

important elements of the news articles content, 

such as the discussed event, location, time, and 

people involved. More precisely, the task 8 of 

SemEval-2022 edition focuses on the analysis of 

documents (long texts) that can share different 

semantic information and can be from different 

natural languages in both monolingual and cross-

lingual settings. 

The STS task has been held in SemEval since 

2012. More precisely, the semantic similarity 

systems between sentences using paraphrase 

datasets have been proposed (Agirre et al., 2012). 

In the 2013 edition of Joint Conference on Lexical 

and Computational Semantics – *SEM (Agirre et 

al., 2013), STS task was focused in using cultural 

heritage items which are described with metadata 

such as title, author, or description. Thereafter, 

systems that compare snippets of text are proposed 

in the 2016 edition of SemEval (Agirre et al., 

2016). Afterwards, the 2017 edition of SemEval 

proposed to compare sentences in a dimension of 

monolingual and cross-lingual contents (Cer et al., 

2017). In the last few years, many semantic 

BL.Research at SemEval-2022 Task 8: Using various Semantic Information  

to evaluate document-level Semantic Textual Similarity 
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similarity datasets and systems have been explored. 

Among the elements that characterize this new 

edition of SemEval-2022 compared to 2017 is the 

fact that we are interested in measuring the 

similarity between long news contents and not 

sentences, snippets of texts or short texts. 

We encountered many challenges: First, the 

content scraping of the provided URL (in the first 

attempt, we had empty or incomplete content in 

many examples). Then, we have many languages 

(new languages in the test set are not present in the 

train set). Finally, it was challenging to choose the 

type of the predicted score: decimal or integer, 

which is different according to the number of 

human annotators per document. 

In this paper, we present our approach for 

SemEval-2022 Task 8. The system that we propose 

is based on the computation of different scores by 

document pairs. These scores are used as features 

to train a supervised system. Regarding the 

multiple languages, we have developed a dedicated 

model for some of them, and translations in a pivot 

language for others. 

The paper is organized as follows: we describe 

the problem and the data in section 2. Then, we 

give an overview of the related work in section 3. 

Next, we present the proposed system in section 4. 

We detail the performed experiments and the 

results in sections 5 and 6. Finally, we conclude the 

paper in section 7. 

2 Background 

2.1 Problem Description 

    The objective of this task at SemEval-2022 is to 

compare the similarity between two news articles 

and to be as consistent as possible with manual 

annotations provided by native annotators. We 

identified several challenges and issues in this task:  

 

• Scraping of the data: probably not foreseen, 

because the final access to a clean and 

complete text was not always possible. For 

example, scraping sometimes empty, 

incomplete, or not correct (name of the 

newspaper, badly identified characters, and 

others). 

• Multilingual aspect of this task: several 

languages used, some of which difficult or 

poorly modeled like Russian, Chinese, 

Turkish, and also text pair analysis where text 

content are provided by different languages. 

• Similarity evaluation of texts: on a precise 

topic basis, on concordant geographical or 

temporal elements, on a similarity of tone and 

common style. 

2.2 Data Description 

    Data used to train consisted of a total of 4,964 

pairs of news articles written in seven different 

languages, namely: English (EN), French (FR), 

Spanish (SP), German (DE), Polish (PL), Arabic 

(AR) and Turkish (TR). The pairs were formed 

either with the same language or with different 

languages. In the training corpus, seven couple 

types are monolingual and only one is cross-lingual 

(DE_EN). For the test corpus, we have a total of 

4,953 pairs of news articles and ten different 

languages with three new languages, namely: 

Russian (RU), Chinese (ZH) and Italian (IT). In 

this corpus, we have eight cross-lingual couple 

types with seven couple types that never seen in 

train corpus. Table 1 describes the number of 

document pairs for each corpus and each language 

pair. 

 

Couple 

Type 

Monolingual 

 

Couple 

Type 

Cross-

lingual 

Train Test Train Test 

EN_EN 1,800 236 DE_EN 577 190 

FR_FR 72 111 SP_EN — 498 

SP_SP 570 243 PL_EN — 64 

DE_DE 857 611 ZH_EN — 223 

PL_PL 349 224 SP_IT — 320 

AR_AR 274 298 DE_FR — 116 

TR_TR 465 275 DE_PL — 35 

RU_RU — 287 

FR_PL — 11 ZH_ZH — 769 

IT_IT — 442 

Table 1:  statistics on the number of examples of train 

and test corpus. 

    Each pair of documents was annotated by one to 

eight annotators based on seven score categories 

that are “Geography”, “Entities”, “Time”, 

“Narrative”, “Overall”, “Style”, and “Tone”. For 

each category of each pair, a score on a 4-point 

scale was given by the available annotators then the 

average resulted in floats or integers. The score 

ranges from 1 as most similar to 4 as least similar.  

In addition to the mentioned scoring categories, the 

article pair identifiers, languages, and URLs were 

given for each pair. Using the URLs, we were able 

to retrieve data from the articles such as: titles, 
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texts, keywords, tags, authors, publication date, 

abstracts, and meta-descriptions along with other 

irrelevant information. Finally, evaluation data 

were released later by organizers in the same 

format as train data except for the previous cited 

scoring categories as our system were judged based 

on one of those scores that is the “Overall score”. 

3 Related Work  

    Semantic textual similarity deals with 

determining how similar two pieces of texts are. 

This can be done by assigning a rating from 1 to 4 

(or 1 to 5) for more similar to less similar content 

pairs. Related tasks are paraphrasing or duplication 

identification. There are many interesting works 

for STS, an Evaluation Toolkit for Universal 

Sentence Representations, named SentEval has 

been proposed (Conneau and Kiela, 2018). It 

includes 17 downstream tasks2, including common 

STS tasks from 2012-2016. We describe in this 

section some existing systems from the previous 

editions of SemEval. 

Tian et al. (2017) proposed three feature-

engineered models using Random Forest, Gradient 

Boosting, and XGBoost regression methods. Their 

features are based on n-gram overlap; edit distance, 

longest common prefix/suffix/substring, tree 

kernels, word alignments, to cite a few. They also 

propose four deep learning methods. The 

difference between the methods is the approach to 

sentence embeddings using either: averaged word 

embeddings, projected word embeddings, a deep 

averaging network, or LSTM (Long-Short Term 

Memory) (Hochreiter and Schmidhuber, 1997). To 

build the global model, they average scores of the 

deep learning and the feature-engineered models. 

Wu et al. (2017) use sentence information 

content with WordNet (Wallace, 2007) and BNC 

word frequencies (Leech, Rayson and Wilson, 

2001). One variant uses sentence information 

content exclusively. Another variant uses 

ensembles information content with  Sultan, 

Bethard and Sumner (2015)’s alignment method. 

The third variant uses ensembles information 

content with a cosine similarity of summed word 

embeddings with an IDF (Inverse Document 

Frequency) weighting scheme (Jones, 1972). 

 
2http://nlpprogress.com/english/semantic_textual_simi

larity.html 

Shao (2017) proposed a convolutional Deep 

Structured Semantic Model for the generation of 

sentence embeddings. The embeddings are 

compared using cosine similarity and element-wise 

difference with the resulting values fed to 

additional layers. This architecture is similar to 

Tian et al. (2017)’s deep learning models. 

Henderson et al. (2017) proposed a feature 

engineering approach that they complete with deep 

learning. Ensembled components include 

alignment similarity; string similarity measures 

such as matching n-grams, summarization, 

Machine Translation (MT) metrics, an RNN 

(Recurrent Neural Networks), and RCNN 

(Recurrent Convolutional Neural Networks) over 

word alignments, and a BiLSTM (Bidirectional 

Long-Short Term Memory) networks. 

4 System Overview 

Some strategies can be considered to resolve the 

task 8 of SemEval-2022 : 

 

• Building a model for each training dataset by 

language: English, French, Spanish, German, 

Polish, Arabic and Turkish. 

• Building a unique model in English 3  and 

translating all texts into that language. 

• Building a multilingual model that can handle 

two texts into different languages. 

 

The advantage of the first and the third strategies 

is that they avoid translation to a pivot language. 

The second strategy has the advantage of enabling 

consistent training and being able to handle all 

languages using a single model. Our system is 

neither based on the translation of all texts in 

English, nor on the construction of a multilingual 

model. We have chosen to build learning models in 

some main languages, namely: English, French, 

Spanish, German, Arabic and Turkish. We 

abandoned Polish language because we did not find 

adequate pretrained models. When two texts to be 

compared are not in the same language, they are 

translated into the main language selected. 

A fundamental point for the final score to be 

generated is the choice on the precision of the 

answer in terms of decimals. We have noticed that 

for some languages, the Overall score obtained is 

3 The global reference language and therefore the one 

best managed by all techniques in natural language 

processing. 
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Figure 1 : Density of annotator scores. 

an integer. In English, for example, there is a 

decimal score and more annotators. The actual 

number of annotations cannot be determined in 

advance. We have therefore defined rules to 

complete our evaluation according to the score 

obtained and the language. We did not use the 

metadata of the news articles (authors, dates, 

newspaper, tags, etc.) because these data were 

incomplete. We simply retained both titles and text 

contents. We also noticed: 

• Strong correlations between the Overall score 

and the scores of Entities, Narrative, and 

Geography. Table 2 describes the correlations 

between annotator scores. 

• The training dataset is unbalanced, especially in 

English. We have more than four scores. The 

figure 1 describes more information about this 

dataset. 
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Geography 1 0.63 0.12 0.52 0.59 0.33 0.35 

Entities  1 0.25 0.74 0.80 0.32 0.39 

Time  1 0.4 0.43 0.10 0.18 

Narrative  1 0.88 0.32 0.45 

Overall  1 0.33 0.45 

Style  1 0.57 

Tone  1 

Table 2: Correlations between annotator scores. 

 

 

    Following the observations that are seen in table 

2 and figure 1, we implemented a scoring system 

based on each language who will be features to 

feed a supervised system. We detail below our 

features: 

 

 
4 https://geopy.readthedocs.io/en/stable/#nominatim 

1. A similarity score of titles based on sentence 

transformers with a pretrained encoder model 

(Reimers and Gurevych, 2019). 

2. We used text summarization based on 

pretrained transformers in each language to 

measure a similarity score between these 

summaries. We tested several models on some 

examples and selected those which seemed to 

be the best. Based on the language, we were 

able to obtain one or two models of summaries 

and thus one or two scores. We have mainly 

turned to BART (Lewis et al., 2019) or 

Sequence-to-Sequence models (Chen et al., 

2021; Zhang et al., 2019; Shleifer and Rush, 

2020; Eddine, Tixier and Vazirgiannis, 2021). 

The models are pretrained on different 

summarization corpus variants, for example 

MLSUM, the Multilingual Summarization 

Corpus (Scialom et al., 2020). 

3. We used identification and extraction of 

keywords/‘key terms’ in titles and content 

texts by using the PKE toolkit library (Boudin, 

2016). The extracted tags are nouns, proper 

nouns, verbs, and adjectives only with 

stemming adding the ten semantically closest 

words by using Word2Vec (Mikolov et al., 

2013) with Gensim library (Řehůřek and 

Sojka, 2010), if a model exists in a specific 

language. We compute the number of 

common terms in both texts. 

4. We used identification and extraction of 

common named entities between titles and 

content texts, namely: places, persons, 

organizations, and dates. We used two 

libraries: Spacy (Honnibal et al., 2020) and 

Stanza (Qi et al., 2020), and pretrained 

transformers models. As for keywords and 

key terms, we compute the number of 

identical entities in both texts. 

5. For the various geographical detected entities 

(cities, regions, countries), we calculate a 

score for the proximity between places based 

on geocoding4. 

6. We used the zero-shot classification models 

(Yin, Hay and Roth, 2019) based on Press 

topics that we have defined manually: politics, 

sport, health, economy and technology. The 

similarity score obtained reflects the number 

of common topics between two texts. 
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7. Finally, sentiment analysis models are used to 

identify if the sentiment polarity is positive, 

negative, or neutral in both texts. The models 

used are proposed by Wolf et al. (2019), Guhr 

et al. (2020), Demange (2021) and Pérez, 

Giudici and Luque (2021). The similarity 

score obtained thus reflects the number of 

common points. 

    With all these features, it is possible to make a 

final rating based on the classification or regression 

techniques. For the classification, we have tested 

Random Forest classifier and Logistic Regression 

for the algorithms that achieve the best 

performance. For the regression, we have tested 

Linear Regression, Partial Least Squares (PLS) and 

Extra Trees Regressor. That said, we can  obtain a 

final evaluation of the selected strategy. To 

optimize the Pearson correlation score (the 

measure chosen by the organizers for the 

evaluation), we use PyCaret library (Moez, 2020) 

to compare all possible models (by using cross-

validation with 10 folds). 

    For our English model, the various elements 

found allowed to have a good performance quickly 

(approximately 0.85 of Pearson correlation). The 

only concern was the strong imbalance of the 

training dataset that we needed to rebalance. The 

French model had a poor training dataset (only 72 

pair examples). Thus, we selected a more efficient 

NER (Named Entity Recognition) Transformer 

model 5  than Spacy; and supplemented and 

balanced it to 200 pair examples with Spanish train 

texts to obtain a correct performance. We also 

focused on optimising the Turkish model in the 

same way with an efficient NER transformer6. We 

have not worked to optimize the German model 

which ought to have been much better. 

5 Experimental Setup  

    We applied our scoring models to every pair of 

titles and content texts. For Polish language and the 

new languages observed in the evaluation dataset 

like Chinese, Russian and Italian, all texts were 

translated into English with deep Translator 

library7 (Google Translate model) and then applied 

the English model. When there are two different 

languages, they are translated into English (for 

DE_EN, SP_EN, PL_EN and ZH_EN pairs), 

 
5 https://huggingface.co/Jean-Baptiste/camembert-ner 
6 https://huggingface.co/savasy/bert-base-turkish-ner-

cased 

French (for FR_PL pairs), Spanish (for SP_IT 

pairs) or German (for DE_PL and DE_FR pairs). 

Finally, a compromise strategy was used between 

the score obtained in classification (integers) and in 

regression (value between 1 and 4 with selected 

rounding). Table 3 describes the confusion matrix 

after a test on a subset of train corpus. 

 

Annotation 

score 
1 2 3 4 

1 136 27 4 0 

2 50 84 35 16 

3 6 42 53 89 

4 0 20 33 363 

Table 3: Example of Confusion Matrix obtained in 

English (test on the training dataset) after a 

Classification Random Forest Model. 

6 Results and Analysis  

    Our final Pearson correlation on the test corpus 

is 0.706. A closer look at the results shows 

inconsistent performance scores for different 

languages. Table 4 shows the obtained results on 

the test corpus for each language pair. There are 

very good results for English and French (0.82 as 

Pearson correlation), good for Spanish (0.75), 

rather interesting for Turkish (0.74), disappointing 

for German (0.60, poorly optimized and badly 

managed model), and weak for Arabic (0.64). The 

final result for a specific language is generally 

consistent with the evaluations made previously on 

the subset (cross-validation) of training dataset. 

    For the translation part, we observe a fast drift 

according to the languages: the ZH_EN examples 

translated into English remain very accurate (0.79) 

but the ZH_ZH examples only obtain an average 

score of 0.69. We thus have a significant 

performance reduction in IT_IT (0.74) and SP_IT 

(0.61) compared to cases when English is used. 

    We found that most of the large deviations in 

evaluation (45 greater than 2 and 98 greater than 

1.5) were related to scraping errors (blank or 

inconsistent text) where 2 and 1.5 are “Overall 

scores”. This derivation also resulted in an 

evaluation of 3 to 4 on our part for an actual close 

to 1. We did not find a reverse case where our score 

was close to 1 and the actual close to 4. 

7 https://deep-translator.readthedocs.io/en/latest/ 
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    We observe in conclusion that 71% scores of 

pairs were excellent (below 0.1), 84% were good 

(below 0.5) and 96% below 1.  We believe that our 

English, French, Turkish and Spanish models are 

correct and could have been further optimized 

cleanly. We had technical difficulties in making a 

correct Arabic model. As for the German model, 

we did not work on it enough and it should have 

obtained a performance close to 0.80. 

 

Language pair Pearson correlation 

EN_EN 0.82 

DE_DE 0.60 

SP_SP 0.75 

PL_PL 0.55 

TR_TR 0.74 

AR_AR 0.64 

RU_RU 0.67 

ZH_ZH 0.69 

FR_FR 0.82 

DE_EN 0.74 

SP_EN 0.79 

IT_IT 0.74 

PL_EN 0.73 

ZH_EN 0.79 

SP_IT 0.61 

DE_FR 0.61 

DE_PL 0.4 

FR_PL 0.74 

Global 0.706 

Table 4: System results on the test corpus. 

7 Conclusion 

    In this paper, we described our supervised 

semantic textual similarity system developed for 

the SemEval-2022 task 8 and the result of the 

corresponding run we submitted. Our system uses 

different features reflecting the similarity that can 

be obtained, for example, between shared key 

terms and named entities, or even topics by using 

zero-shot learning for text classification systems. 

In addition, we use geolocation for location 

entities and measure the semantic similarity 

through the use of lexical embeddings at the 

sentence level (text title) and paragraph level (text 

summarizer obtained automatically by using 

transformers). 

    Beyond the use of a supervised system to 

measure the degree of similarity between two 

given texts, we are in a context of documents that 

can come from different languages by processing 

both pairs of monolingual documents and pairs of 

cross-lingual documents. Since the test corpus 

may contain documents written in natural 

languages not processed during learning phase, 

our system is able to perform an automatic 

translation into a pivot language in order to project 

new documents into already known spaces. 
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Abstract

In this paper, we describe the approach we de-
signed to solve SemEval-2022 Task 8: Multi-
lingual News Article Similarity. We collect and
use exclusively textual features (title, descrip-
tion and body) of articles. Our best model is
a stacking of 14 Transformer-based Language
models fine-tuned on single or multiple fields,
using data in the original language or translated
to English. It placed fourth on the original
leaderboard, sixth on the complete official one
and fourth on the English-subset official one.
We observe the data collection as our princi-
pal source of error due to a relevant fraction of
missing or wrong fields.

1 Introduction

SemEval-2022 task 8 (Chen et al., 2022) (Multilin-
gual News Article Similarity) is a document-level
similarity task on news articles data. The goal is
to predict whether two multilingual news articles
cover the same real-world happening regardless
of their writing style, political spin and tone. The
task included resources written in 10 different lan-
guages: English, German, Spanish, Turkish, Polish,
Arabic, French, Chinese, Italian and Russian (the
training dataset included news written only in the
first seven languages). This task is interesting as we
can apply the obtained approaches to cluster news
articles and track the similarity of news coverage
between different outlets or regions as done in the
Agenda Setting project1.

Our best model is a simple but effective Stack-
ing of a set of Language Models trained on differ-
ent combinations of textual features. We fine-tune
14 Language Models, half of them with original
multilingual texts and half with texts translated to
English. We select three textual fields from the
features extracted by our scraper (title, body and
description of the news article), and we fine-tune a
model for every combination.

1http://www.euagendas.org/

Our model achieved a maximum Pearson corre-
lation score of 0.790 and scored 4th on the leader-
board that considers the best test result for each
team. However, the final ranking, based on a boot-
strapping approach across teams’ submissions to es-
timate the expected rank, penalizes us to 6th place
since it assumes that submissions are an exploration
of the hyperparameter/model configuration space
of the system. The assumption, released after the
end of the competition, does not hold for our team.

Our model mainly struggles with missing or
wrong data since the training and evaluation
datasets were released as links to scrape due to
privacy policies. We noticed that we could not col-
lect parts of the datasets, and some of the collected
data were clearly wrong (e.g. "Get in touch with
us. All rights reserved" as the body of an article).

The code will be available on GitHub2.

2 Background

2.1 Task Setup

The organizers of the competitions provided two
datasets: the training dataset and the test dataset.
The training dataset is a collection of 4964 pairs of
links to news articles with gold labels: real numbers
ranging from 1 to 4, where 4 represents completely
different articles. The test dataset is a collection of
4953 pairs of links to news articles without gold
labels. Both datasets included the languages of
the original articles so that we do not need to infer
them from the data. Both datasets also included du-
plicated rows that we discarded. Due to copyright
problems, the datasets did not directly contain the
contents of the articles but only the links (original
link and the Internet Archive version) to scrape
them with a public script. Figure 1 shows the dis-
tribution of languages is in the two datasets. The
test data contains news written in languages never

2https://github.com/DataSciencePolimi/
MultilingualNewsArticleSimilarity
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Figure 1: Distribution of language pairs in both datasets.

used in the training dataset (Chinese, Italian and
Russian). Moreover, only 577 training pairs of
news articles are in different languages (English
and German). The performance of the models was
computed using the Pearson Correlation Coeffi-
cient.

2.2 Related Work

We relied on transformers-based models and, in
particular, we leverage the SentenceTransform-
ers (Reimers and Gurevych, 2019) framework,
which learns meaningful sentence Embeddings us-
ing Transformer-based Language Models (Vaswani
et al., 2017). We build our solutions on top of the
best pre-trained models provided and suggested by
SentenceTransformers. Both models are based on
Microsoft MPNet (Song et al., 2020), a pre-training
approach that inherits the advantages of BERT’s
Masked Language Modeling (Devlin et al., 2019)
and XLNet’s Permuted Language Modeling (Yang
et al., 2020) and avoids their limitations, providing
better performances.

3 System overview

3.1 Data retrieval

To facilitate re-hydrating the textual content of the
news articles, organizers provided a script3 that
downloads the earliest available version of each
one of them from the Internet Archive and, only in
case of problems, attempt to download them from
the original site of publication using newspaper3k.
For each article, we obtain the HTML content of
the page and a JSON file containing additional
information extracted from the page. We select
the article’s title, body and a brief description as
features to feed our LMs.

In populating the dataset, we encountered two
main challenges:

3https://github.com/euagendas/semeval_
8_2022_ia_downloader

• We could not download the complete train-
ing dataset due to sites inaccessibility issues
or anti-scraping systems. We did not en-
counter this issue on news articles from the
Test dataset;

• The JSON files contains missing and noisy
data. We believe that empty, unusable, or
obviously incorrect fields are due to the low
robustness of newspaper3k when applied to
non-standard news websites.

While the first issue is hard to solve a-posteriori
and could have been tackled by downloading the
data as soon as the links were released, we im-
proved the quality of the obtained dataset with
Trafilatura4 (Barbaresi, 2021), an alternative to
newspaper3k. Trafilatura is an accurate web scrap-
ing tool for text discovery and retrieval that al-
lows to prioritize the precision of the collection,
i.e. yielding less but cleaner data.

3.2 Key algorithms

3.2.1 Single-field Language Models
As baseline models, we fine-tuned pre-trained
Transformer-Encoder Language Model on a sin-
gle field. We initialize the LMs with the pre-
trained models suggested by SentenceTransform-
ers (Reimers and Gurevych, 2019): a version of
MPNet fine-tuned with self-supervised contrastive
learning objective over a 1B sentences pairs ob-
tained concatenating more than 20 datasets and
trained using a self-supervised contrastive learn-
ing objective5, and a similar multilingual alterna-
tive 6. Every model was downloaded from Hug-
gingface (Wolf et al., 2020).

The selected models are trained to generate, from
variable-length input texts, fixed-size dense embed-
dings that encode semantic similarity: similar doc-
uments are mapped to vectors close to each other.
We minimize the MSE loss between the cosine sim-
ilarity of the embeddings obtained from the LMs
and the rescaled labels (details about how and why
we rescale the original labels in Section 5.1).

We trained the Single-field LMs on the three se-
lected fields independently: Title (T), Description

4https://github.com/adbar/trafilatura
5https://huggingface.co/

sentence-transformers/all-mpnet-base-v2
6https://huggingface.

co/sentence-transformers/
paraphrase-mpnet-base-v2
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Figure 2: Schema of the two-fields (title and description)
Language Model

(D) and Body (B). We obtain 6 different Single-
field LMs, three of them fine-tuned on the original
multilingual fields and three on the fields translated
to English.

3.2.2 Multiple-fields Language Models
To improve the Single-Field LMs, we design an
architecture that can handle multiple textual fields
to generate semantically informative dense embed-
dings. Figure 2 shows the schema of such a model.
Firstly, we select two fields (the alternative with the
three fields is straightforward), and we feed them
into a pre-trained Sentence-LM to generate two
dense fixed-size embeddings for each news article
(ti and di). Then we concatenate the obtained em-
beddings, and we feed the result to a single learn-
able dense layer, initialized with Xavier (Glorot
and Bengio, 2010), to generate a 768-dimensional
global vector that includes information of both
fields (ui).

We train the model using every combination of
two fields (TD, TB and DB) and also using all
of them (TDB). We obtain 8 fine-tuned models,
four of them fine-tuned on the original multilingual
fields and four on the fields translated to English.

As for Single-field LMs, we minimize the MSE
loss between the cosine similarity of the embed-
dings obtained from the LMs and the rescaled la-
bels.

3.2.3 Stacking
Since ensemble learning has proven to be effective
in competitions, we perform Stacking (Wolpert,

1992) on sets of the previously described mod-
els. We tested as final estimators simple regres-
sors (implemented in scikit-learn (Pedregosa et al.,
2011)) such as linear regressors regularized with
Lasso (Tibshirani, 1996) or Ridge (Hoerl and Ken-
nard, 2000), ElasticNet (Ela), Support Vector Ma-
chines (Cortes and Vapnik, 1995), KNN (Altman,
1992) and shallow Multi-layer Perceptrons (Hastie
et al., 2001). Our best model is a MLP with 3 lay-
ers, 10 units per layer, trained with Adam (Kingma
and Ba, 2015) and learning rate 3× 10−2, obtained
using 5-fold cross-validation on the validation set.

4 Experimental setup

4.1 Data splitting, cleaning and preprocessing

We partitioned the available training data into two
portions using an 80/20 training/test split stratified
for language pairs and score (we approximate the
labels to their integer part during this step).

We clean our dataset with the following pre-
processing approaches:

• We remove duplicated rows. Some of the
duplicates pairs obtained different similarity
scores, so we replaced them with their mean;

• We detect the right character encoding with
cChardet7, a library to automatically detect
the character encodings. Most of the files
encoded with rare encodings were Turkish
or Arabic news articles (encoded with legacy
standards Windows-1254 and Windows-1256
respectively). When cChardet fails to detect
the right encoding, we scrape the original web-
site with Trafilatura;

• Some news articles had missing fields. We
replace missing descriptions with bodies and
missing titles with descriptions.

4.2 Translation

We fine-tuned our models on original data or trans-
lated data. Fine-tuning on original data requires
a robust multi-lingual model that can compute se-
mantic similarities regardless of the language of
the documents. Fine-tuning on data translated to
English requires an accurate Neural Machine Trans-
lation (NMT) model. We believe that Stacking both
alternatives improves the overall performance since
the final prediction relies on the strengths of both.

7https://github.com/PyYoshi/cChardet
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We translated the whole dataset using
EasyNMT8 , a container of different NMT models.
In particular, we used the Opus-MT (Tiedemann
and Thottingal, 2020) model provided by the
Helsinki NLP group.

4.3 Hyperparameters

Every LM was fine-tuned using the default opti-
mizer (AdamW) with learning rate 2 × 10−5 and
weight decay 0.01, using 10% of train iterations
as warm-up. We trained the models for 3 epochs
on our Training set, and we select the best model
as the one that maximizes the Pearson Correlation
Coefficient on the Validation set. Every experiment
was performed using Colab (Bisong, 2019).

4.4 Evaluation measure

We evaluate our models using Pearson Correlation
Coefficient of the cosine similarity between the
embeddings generated by the models and the simi-
larity manually scored by annotators. The scores
ranges from 1 (perfect positive correlation) to -1
(perfect negative correlation), where 0 represents
uncorrelated data.

5 Results and Ablation

Table 1 shows the results of our models. We ob-
tain the best performing model on the Test set by
Stacking 3 carefully selected Single-field Models
fine-tuned respectively on translated titles, trans-
lated bodies and original bodies. The final estima-
tor is a MLP with 3 layers and 10 units per layer as
described above.

However, we obtained our best submitted pre-
diction using our best performing model on the
Validation set: a Stacking of all Single-field and
Multiple-fields LMs, with the same final estimator
as before. This model allowed us to score fourth
in the original leaderboard that includes the best
performing model for each team, and sixth on the
official ranking9.

8https://github.com/UKPLab/EasyNMT
9The final ranking was computed using a bootstrapping

approach across teams’ submissions. This approach assumes
that multiple submissions by the same team represent an ex-
ploration of the hyper-parameter/model configuration space.
This approach allows the organizers to estimate the general
performance of the proposed models. However, the organiz-
ers announced this evaluation procedure after the end of the
competition. We remark that the assumption does not hold for
our team, and penalizes us on the final leaderboard. To get
an idea of the overall test performance, several submissions
from our team, especially at the beginning of the challenge,
were generated with simple (sometimes even not fine-tuned)

Name Field Dev Test
MPNet Tt 75.1 63.7
M_MPNet T 74.7 65.1
MPNet Dt 69.9 57.2
M_MPNet D 67.6 56.9
MPNet Bt512 81.7 77.6
M_MPNet B512 78.2 73.4
MPNet Tt,Dt 77.4 66.7
M_MPNet T ,D 76.7 67.9
MPNet Tt,Bt 81.5 75.8
M_MPNet T ,B 80.1 74.2
MPNet Dt,Bt 80.9 74.5
M_MPNet D,B 77.7 71.7
MPNet Tt,Dt,Bt 81.9 75.1
M_MPNet T , D, B 79.7 73.6
Ridge Bt512,Tt 82.13† 78.07
SVR Bt512,B512, Tt 82.99† 78.71
MLP A 83.7† 79.0
MLP* Bt512,B512, Tt 83.5† 79.2
Winner model / / 81.8

Table 1: Pearson’s r × 100 on Validation and Test
Datasets. We indicate with T the title, D the description
and B the body of the articles. A stands for title, de-
scription and body, both original and translated, both ob-
tained with Single-field and Multiple-fields approaches.
The subscript t indicates translated texts. Values marked
with † refer to the models evaluated with 5-fold crossval-
idation on the validation dataset. All fields are truncated
at 256 tokens except when specified with a subscript.
The model marked with * was not submitted before the
end of the competition.

The first part of Table 1 reports the results of
the six Single-field LMs. As expected, the model
fine-tuned on the body (B) of the news articles,
the longest, thus most informative field, obtained
the best results, both in the Validation and Test
set. Models fine-tuned on the description (D) per-
form worse, probably due to the higher noise of the
field (i.e., sometimes the content was missing or
contained general information about the journal or
the website). English models (reported as MPNet
to highlight their initialization model) trained on
translated data generally perform better than multi-
lingual models (reported as M_MPNet) trained on
original data.

The second part of the table reports the results
of the six Double-fields LMs and the two Triple-

models. Moreover, due to technical problems of the challenge,
we submitted opposite predictions from the same model to be
sure that at least one scored correctly.
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Figure 3: (left): Distribution of scores of pairs of titles
from training set. (right): Pearson correlation during
training for different values of smin.

fields LMs. Combinations and interactions of fields
give performances worse than our best performing
Single-field LMs (MPNet on Body). We believe
that this degradation of performance is due to two
main factors. First, the noisiness of the title and
description, as a higher percentage was missing or
wrong. Second, due to memory issues, we had to
perform Multiple-field LMs training reducing the
maximum length of the body to 256 tokens instead
of 512, as used when training Single-field LMs.

The third part of the table shows performances of
our best four Stacking models. We evaluated many
final estimators and combinations of first estima-
tors and we submitted the scores from the models
that performed better on our validation set. We
computed the validation performance of stacking
models using 5-fold cross-validation on the original
validation dataset.

Finally we report the performance of the best
team that participated to the competition. Up to
now we do not know details about their approach.

5.1 Label rescaling

When we train our models we have to linearly scale
the labels from the original range [1, 4]. While the
straightforward choice of the final range could be
[-1, 1] since our scores naturally fits that range due
to the nature of the final cosine similarity computa-
tion, we observe that in practice, there are no pairs
of titles from the training dataset that score less
than -0.15 when we use a pre-trained model (see
Figure 3 (left) for the complete distribution). Thus,
we treat the lower bound of the transformed range
smin as an hyper-parameter to set. Figure 3 (right)
shows values of Pearson Correlation on the valida-
tion dataset during the first training epoch for differ-
ent choices of this parameter. We noticed that set-
ting smin = −1 as previously hypothesised leads
to a slow training phase. We find smin = −0.1 the

Language Pair Test
ar-ar 66.2
de-pl 68.4
de-fr 71.3
pl-pl 71.5
ru-ru 72.9
zh-zh 76.8
es-it 77.3
de-de 78.0
tr-tr 78.3

de-en 82.2
it-it 82.4

zh-en 82.6
es-es 82.9
es-en 83.3
fr-fr 86.2

en-en 86.7
pl-en 87.1
fr-pl 88.3

Table 2: Pearson’s r× 100 of our best model on subsets
of the Test dataset.

best value among the tested ones. On the contrary,
setting the higher bound smax = 1 is optimal.

5.2 Error analysis

We report in Table 2 the performance of our best
model for each language combination of the Test
set. We believe that lower correlations are due to
scraping issues, translation issues and to the differ-
ent distribution of languages between the Training
and Test sets.

6 Conclusion

To quantify the similarity between news articles,
we propose an approach trained exclusively on the
extracted textual data. We initialize our architecture
with SOTA Semantic-Similarity Language Models,
which we fine-tuned on titles, descriptions and texts
of the articles. We also design a simple variant to
process many textual fields at once. Finally, we
perform stacking with a simple MLP, as it was
proved to improve the overall performance of mod-
els trained on different features. Results show how
the approach successfully estimated similarities
since the main sources of error involved missing or
wrong data.
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Abstract

We present a system that creates pair-wise co-
sine and arccosine sentence similarity matri-
ces using multilingual sentence embeddings
obtained from pre-trained SBERT and Univer-
sal Sentence Encoder models respectively. For
each news article sentence, it searches the most
similar sentence from the other article and com-
putes an average score. Further, a convolu-
tional neural network calculates a total similar-
ity score for the article pairs on these matrices.
Finally, a random forest regressor merges the
previous results to a final score that can option-
ally be extended with a publishing date score.

1 Introduction

The goal of the Multilingual News Article Similar-
ity task (Chen et al., 2022) is to check pairs of mul-
tilingual news articles against each other in terms
of similarity of their information content. The chal-
lenge focuses on what is talked about (time, ge-
olocation, shared entities), not how the informa-
tion is expressed (writing style, emotional tone,
etc.), which is essential for applications such as
analyzing the news coverage between different re-
gions. The participants’ objective is the creation
of a model that rates the similarity of article pairs
on a 4-point scale from most (1) to least (4) similar
and achieves the highest possible Pearson corre-
lation score compared to the gold standard. The
languages covered by this competition are English
(en), German (de), Spanish (es), Turkish (tr), Pol-
ish (pl), French (fr) and Arabic (ar) in the training,
additionally Italian (it), Russian (ru) and Chinese
(zh) in the evaluation.

Our system uses an ensemble approach to score
pair-wise sentence similarity matrices of the article
pairs, which are created with SBERT and Universal
Sentence Encoder sentence embeddings. Scores
are obtained through simple matrix operations and
our convolutional neural network SimCNN based

on the TextCNN by Kim (2014). Finally, a ran-
dom forest regressor (Breiman, 2001) consolidates
the individual scores into a final result, which we
extend with a publishing date score.

The key challenge of this task is the usage of mul-
tilingual text pairs, which requires the application
of less precise multilingual language models. Also
the splitting of sentences and named entity recog-
nition becomes hard to accomplish, since models
for these tasks are still monolingual in most cases
and we found the few multilingual ones to be un-
reliable. The article scraping tool provided by the
authors also did not reveal meaningful features to
work with besides the article title and text, since the
scraped keywords, tags and publishing dates were
not always available and in a utilizable format.

In the competition, we took 9th place with a
Pearson correlation coefficient of 0.759 on the eval-
uation set, which differs from the observed perfor-
mance on our own validation sets. This is due to
a shift from Latin languages to more complex lan-
guages like Chinese in the evaluation data, where
the performance of the multilingual models and
sentence tokenizing algorithm decreases. Our code
is publicly available1.

2 Background

The starting point of the task is the training data —
a CSV file — which contains a list of article pairs2.
Each article pair consists of the languages, IDs
and URLs for both articles and the gold standard
similarity scores for multiple aspects of the articles
(Geography, Entities, Time, Narrative, Style, Tone,
Overall), of which only the overall score is relevant
for our evaluation.

To get the content and metadata of the articles,

1https://github.com/simontrapp/
semeval-22-task-8

2We used the most recent version 0.2 with 4,964 labeled
article pairs.
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the task authors provide a scraping tool3 utilizing
the newspaper3k python package that downloads
the HTML page and creates a JSON file that con-
tains the title, text, keywords, labels, date, and more
properties of each news article. For the training of
the prediction system on the JSON files, the results
can be compared against the overall scores in the
initial CSV file. The final evaluation data CSV, for
which the results are submitted, does not provide
scores to compare against.

3 Related Work

For the scoring of our similarity matrices in subsec-
tion 4.4, we use an idea from Ginzburg et al. (2021),
who introduce Self-Supervised Document Similar-
ity Ranking (SDR), an unsupervised approach built
upon the RoBERTa language model to rank the se-
mantic similarity of a collection of documents to a
source (query) document. SDR captures the intu-
itive fact that for each sentence or paragraph in one
document, there should be at least one similar one
anywhere (obtained by a max operation on the rows
and columns of the similarity matrix) in the other
document if both deal with the same topic. Since
SDR is monolingual and is only trained on En-
glish texts, we combine its scoring approach with
multilingual embeddings obtained from SBERT
(Reimers and Gurevych, 2019) and Universal Sen-
tence Encoder (Cer et al., 2018) for this challenge.

4 System Overview

Our system (see Figure 1) first splits the article text
into a list of sentences including the title. Then we
compute embeddings with SBERT and Universal
Sentence Encoder for all sentences and create the
respective similarity matrices (similarity of all sen-
tences of one article to all sentences of the other) of
all article pairs. In the next step, we apply two dif-
ferent scoring approaches to these matrices: First,
we apply simple maximum and average operations
to the two matrices for four similarity scores, as pro-
posed by Ginzburg et al. (2021). Second, we feed
the matrices into our SimCNN to increase score ac-
curacy (see Appendix C). Finally, we combine the
five scores into a final score with a random forest
regressor to get a stable prediction. Optionally, an
additional score for the publishing date distance of
both articles can be computed and merged with the
random forest result to refine the prediction.

3https://github.com/euagendas/semeval_
8_2022_ia_downloader

4.1 Preparation of Article Data

We decided that only the title and the text of the
article should be relevant for our model, since other
features such as keywords, tags or publishing date
of the articles are not always available or feasibly
retrievable. We use the sent_tokenize func-
tion of the nltk python package to split the text
of both articles into a list of sentences and append
their title strings to the respective list. This allows
us to feed text of arbitrary length into the embed-
ding models.

4.2 Creation of Embeddings and Similarity
Matrices

For all sentences in the lists, we create two separate
sets of sentence embeddings:

The Universal Sentence Encoder (Yang et al.,
2019) always uses the same pre-trained model (see
subsection 5.2) to create the embeddings, for which
we calculate the recommended arccos-based text
similarity (Yang et al., 2018), that converts the co-
sine values into angular distances in [0, π] pair-wise
between all sentences of both articles.

For SBERT, the model that is selected to create
the embeddings depends on the languages of both
articles: If both are the same and a model with bet-
ter performance than the multilingual one is known
(see subsection 5.2), this model computes the em-
beddings for both articles, otherwise the default
multilingual model is used. The pair-wise simi-
larity matrix between article sentences is created
analogously to the Universal Sentence Encoder, but
with cosine similarity instead of arccos, because
SBERT was optimized for it.

4.3 Architecture of SimCNN

The architecture of our CNN is based on the ar-
chitecture by Yoon Kim for CNNs for text pro-
cessing (Kim, 2014) (detailed layer information
in Appendix A). As input, we use both precom-
puted sentence embeddings from the SBERT and
the Universal Sentence Encoder model of two ar-
ticles with lengths x and y. Further, we calculate
one similarity matrix from both the SBERT and
the Universal Sentence Encoder embeddings since
tests have indicated an increased performance us-
ing this input. Finally, the input of the CNN is
an x × y × 2 matrix, generated by concatenating
the SBERT and the Universal Sentence Encoder
similarity matrices. Due to this input, we named
our network SimCNN. However, the CNN requires
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Figure 1: The data flow of the article pairs from raw text to the final score. If both articles are written in the same
language, we use an SBERT model that is better than the default multilingual one, if one exists (see subsection 5.2).

a fixed input size within the y-dimension, so we
set y to 100 (using zero-padding if y < 100 and
cropping if y > 100). We chose y = 100 based
on analysis that indicates only a few articles have
longer sentence lists and do not set it to the maxi-
mum sentence list length since broken lists with up
to 1500 sentences can occur.

Adapted from the TextCNN of Yoon Kim, the
network consists of seven different convolutions
with kernel size w × 100 with w ∈ {2, 3, . . . , 9},
and 128 filters, named sliding window. For ex-
tended feature extraction, we added two convolu-
tional blocks before each sliding window SWw,
consisting of five convolutions. Thereby, each con-
volution of a block SWk uses a kernel size of
w × w, the same padding, and 32 filters within
the first block and 64 within the second. Further-
more, each convolution follows a ReLU6 activation
and a batch normalization layer and, additionally,
a dropout layer (probability = 0.25) after the 2nd
and 4th convolution. After each sliding window
convolution, a max over time pooling extracts the
best feature of each filter, so we get a output vector
of size 128. Afterwards, a separate linear layer is
applied to each vector(mapping to 128 features),
followed by another dropout (probability = 0.5)
and a ReLU6 layer.

For the final prediction, we concatenate all vec-
tors of the different sliding windows to one vector
of size 1024 that is fed into five consecutive lin-
ear layers. Thereby, the output size for each linear
layer is half the input size and every layer uses
a ReLU6 activation function and, additionally, a
dropout layer (probability = 0.5) every second
time. Finally, a linear layer with an input size of

32 and output size of 1 predicts a score s ∈ [0, 1]
using a sigmoid activation function. This score is
scaled to our target values s ∈ [1, 4] subsequently.

4.4 Ensemble Scoring of Article Similarity

In addition to being fed into the SimCNN, the ar-
ccos and cosine similarity matrices of the article
pairs are processed by taking the average over the
maximum value of each row/column of the matrix,
similar to the approach by Ginzburg et al. (2021) in
section 3. The maximum values yield the most sim-
ilar sentence in the other article for each sentence
and the average operation acts as a proportion of
how many sentences of one article share statements
with the other article. By doing this for both rows
and columns, we obtain two scores for both articles
respectively. Figure 2 visualizes this process.
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0.3 0.2 0.8

0.4 0.6 0.9

s1
1

s2
1

s3
1

s1
2 s2

2 s3
2

0.7

0.8

0.9

0.5 0.7 0.9

0.8
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max
/col.
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Figure 2: Example of the scoring operation on the arc-
cos and cosine sentence similarity matrices. The super-
script number denotes the number of the sentence in the
document, the subscript number marks the document
number of the sentence.
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Finally, the four matrix scores (article similarity
SBERT 1-to-2 and 2-to-1, Universal Sentence En-
coder 1-to-2 and 2-to-1) and the SimCNN score are
fed into a random forest (Breiman, 2001) regressor
from the scikit-learn Python package4. The
forest uses the results of 100 different trained deci-
sion trees and takes the average of their predictions,
which is the final score reported back by the model.

4.5 Integration of a Publishing Date Score

We also compute scores based on the publishing
date distances of each article pair (if available) for
the reason that the further the publishing dates are
apart, the more likely the articles are about differ-
ent topics. In accordance with the 4-point score
used for the text scoring, we use 10, 20, and 50
days as the boundaries, meaning the score would
be ignored if the difference is less than 10 days,
between 2 and 3 if the difference is between 10 and
20 days, between 3 and 4 if the difference is be-
tween 20 and 50 days, and a hard 4 for a difference
of more than 50 days.

If a date score can be calculated and is not ig-
nored, a weighted average of the random forest
score (weight 2) and the date score (weight 1) is re-
turned as a final result, otherwise the random forest
score is returned. The 10, 20, and 50 day bound-
aries, as well as the weights, were determined based
on experiments on the training data.

5 Experimental Setup

After outlining the model components and their in-
teractions in the previous section, here we cover the
data sets, experiments and training processes used
to configure the separate parts of the system. The
sole evaluation metric for this competition is the
Pearson correlation coefficient r (Pearson, 1896;
Lee Rodgers and Nicewander, 1988), which de-
scribes the linear association between two related
variables X and Y . A score close to -1 or 1 implies
that a linear equation can express the relationship
between the two variables almost perfectly, while a
score of 0 indicates no correlation.

5.1 Validation Data Sets

The only labeled data available for training are the
4,964 article pairs provided by the task authors.
We reserve a static 10% subset of the training data

4https://scikit-learn.org/stable/
modules/ensemble.html#forest

consisting of 470 pairs of diverse language com-
binations for our model validation in Table 2, Ap-
pendix D and the following experiments. The other
90% of the data are used for the actual training.

5.2 Selection of Pre-Trained Models

The pre-trained multilingual SBERT model
paraphrase-multilingual-mpnet-base-v2 performed
best overall on the validation set, so it is used as the
default model. We could improve the accuracy for
some same-language article pairs by using special-
ized pre-trained models (en-en: all-mpnet-base-v2,
es-es: distiluse-base-multilingual-cased-v1, and fr-
fr: sentence-transformers/LaBSE). For Universal
Sentence Encoder we used version 3 of the model
multilingual-large.

5.3 SimCNN Pre-Training

The presented model was implemented in python
using PyTorch (Paszke et al., 2019) and trained
on a consumer graphics card. For updating the pa-
rameters in the network, we employed the Stochas-
tic Gradient Decent optimization algorithm using a
learning rate of 0.05 with a batch size of 8. Mean
squared error was used as the loss function, and
additionally, we monitored the mean average error
and the Pearson correlation coefficient for perfor-
mance evaluation. We used early stopping with a
patience of 20 epochs to prevent overfitting, so the
network was saved when no longer improving in
terms of the Person correlation coefficient. Even-
tually, our network was trained around 30 epochs
before overfitting.

5.4 Random Forest Regressor Pre-Training

After the training of the SimCNN model, five sim-
ilarity scores per article pair of the training data
are available through our model pipeline: Two
scores for both the SBERT and Universal Sentence
Encoder matrices and the SimCNN score. These
scores are fed into a random forest (Breiman, 2001)
regressor5 with the provided Overall scores of the
training data as labels. The random forest is popu-
lated with 100 decision trees and uses the squared
error as the optimization criterion. Appendix C
shows how the performance of the model increases
as we provide more data.

5RandomForestRegressor of the python package
scikit-learn with version 1.0.2.
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Data Set
Language Combination

pl-pl de-de de-en fr-fr ar-ar en-en tr-tr es-es zh-zh
Validation 0.80 0.75 0.80 0.91 0.76 0.79 0.89 0.81 -
Evaluation 0.63 0.67 0.77 0.74 0.59 0.85 0.66 0.74 0.64

Table 1: Performance of the random forest with date score on selected language combinations. The full table with
all pairs is in Appendix D.

Model
Pearson r

Validation Evaluation
SimCNN 0.800 0.699
RF 0.797 0.702
RF + Date 0.800 0.715

Table 2: Performance of our models on our validation
set and the final evaluation data. The random forest
(RF) is able to improve over just the SimCNN on the
evaluation data when combined with the date score.

6 Results

Our system ranked 9th place in the competition
with a Pearson score of 0.759.

To find the best models for submission, we tested
the three last stages of our system on the aforemen-
tioned validation set separately: Just the SimCNN
score, the prediction of the random forest regres-
sor and the weighted average of the random forest
score and the publishing date score.

The results in Table 2 indicate that the random
forest regressor replicates the results of the Sim-
CNN and barely considers the additional informa-
tion provided. The combination of the random
forest with the publishing date score on the other
hand improves the results. Further, our models
generally predict perceptibly worse scores on the
evaluation data than on the training data split.

The language distribution in Appendix B shows
a shift from Latin languages and article pairs
to vastly different and more complex languages:
Chinese-Chinese article pairs account for over 15%
of article pairs in the evaluation data. Russian, Pol-
ish and Arabic articles also occur often, frequently
in combination with other article languages such
as English, French and German. This leads to prob-
lems in the preparation of the article texts for our
system because our sentence tokenizer only sup-
ports English or similar texts and many of the new
languages have a different structure and alphabet.

When taking a look at the performance per lan-
guage pair of our model in Table 1, another reason
for the score drop-off between training split and

evaluation data becomes apparent: The commonly
occurring Chinese-Chinese article pairs perform
bad with a Pearson score of 0.64. Also, other com-
binations which previously did well on the split of
the training data gave significantly worse results on
the evaluation set, indicating that maybe the quality
or structure of the new data differs from the earlier
samples. Interestingly, our system improved on the
English-English evaluation pairs.

All things considered, we achieved satisfying
results with just slightly modified publicly available
models to create sentence embeddings and a CNN
to work with them. The system only depends on
an article’s text, title and sometimes the publishing
date, if it is available, and is still able to achieve a
Pearson correlation score of about 0.6 even for the
most difficult examined language.

7 Conclusion

Pair-wise sentence comparison is a simple way to
calculate the similarity of texts of arbitrary length
if suitable multilingual models for sentence em-
beddings are available. With simple matrix oper-
ations like taking the maximum or average and a
random forest regression algorithm, good results
can be achieved. After introducing the more com-
plex SimCNN and combining it with a score of
the publishing dates of the article pairs, our model
surpassed a Pearson correlation coefficient of 0.8
in some conditions.

Nevertheless, the current state of the system
leaves many things to be improved: The sentence
tokenizing currently only reliably works for En-
glish and similar languages. With a sentence split-
ting algorithm, that is capable of differently struc-
tured languages like Chinese or Japanese, results
on such articles could be greatly improved. Further,
our pair-wise sentence similarity matrix approach
could be extended to named entities like locations
and persons, which we think would also greatly im-
prove accuracy, but for that, a more sophisticated
multilingual algorithm for named entity recogni-
tion would be needed.
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A Architecture of SimCNN

(a) SimCNN

(b) Sliding Window Block with size k

Figure 3: Architecture and methods of the SimCNN based on the TextCNN described by Kim (2014).

Figure 3a shows the architecture of the SimCNN. The SimCNN is based on the architecture by Yoon
Kim for CNNs for text processing (TextCNN) (Kim, 2014). It consists of seven sliding window blocks
SWw with window size w ∈ {2, . . . , 9}. Each block SWw receives the input of size 2 × x × 100 and
is structured as illustrated in graphic 3b. First, two convolution blocks, with five convolutions each, are
applied to the input. Each convolution of SWw has a kernel size of w × w and uses same padding. The
convolutions of the first block have 32 filters and the ones of the second block 64. After a convolution,
first, a ReLU6 activation layer is applied and, subsequently, a batch normalization layer. Furthermore,
after the second, fourth and last convolution, a dropout is executed with a probability of 0.25. Afterwards,
the sliding window convolution is applied, using a kernel size of w × 100 and 128 filters, followed by a
ReLU6 and a batch normalization layer. Next, a MaxOverTime pooling layer extracts the best feature of
each filter. Last of the sliding window block, a fully connected layer using a Relu6 activation function,
followed by a dropout with a probability of 0.5, maps to a feature vector of 128 features.

After all sliding window blocks SW2, . . . , SW9, the outputs are concatenated to a feature vector of
1024 features. Five fully connected layers with output sizes 512, 256, 128, 64 and 32 are applied to this
vector. A Relu6 is used as activation function after these layers, and a dropout is performed after the
second and fourth layer with a probability of 0.5. Finally, a fully connected layer maps the feature vector
to one number, that is processed in a sigmoid function, to get the score s ∈ [0, 1]
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B Language Distributions of Data Sets

en-en de-de de-en es-es tr-tr pl-pl ar-ar fr-fr
Absolute Count 1800 857 577 570 465 349 274 72
Percentage [%] 36.26 17.26 11.62 11.48 9.37 7.03 5.52 1.45

Table 3: In the distribution of training data language pairs, English-to-English is the prevalent combination, with
other similar European languages following. With our specialized English-to-English SBERT model, we therefore
achieve very good results.

zh-zh de-de es-en it-it es-it ar-ar ru-ru tr-tr es-es
Absolute Count 769 608 496 411 320 298 287 275 243
Percentage [%] 15.69 12.4 10.12 8.38 6.53 6.08 5.85 5.61 4.96

en-en pl-pl zh-en de-en de-fr fr-fr pl-en de-pl fr-pl
Absolute Count 236 224 213 185 116 111 64 35 11
Percentage [%] 4.81 4.57 4.35 3.77 2.37 2.26 1.31 0.71 0.22

Table 4: In the evaluation set, the use of languages is vastly different: Previously unseen combinations (gray), often
with complex languages like Chinese, make up a large part of the article pairs the models are scored upon.

C Random Forest Performance with Increasing Amount of Training Data
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(a) SBERT (cosine) scores only
(r = 0.703)

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Labeled score

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pr
ed

ict
ed

 sc
or

e

Model Performance (Mean = green, Median = red)
Ideal behavior

(b) SBERT + Universal Sentence En-
coder scores (r = 0.748)
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(c) SBERT + Universal Sentence En-
coder + SimCNN scores (r = 0.77)

Figure 4: Performance of the random forest regressor with different inputs on a random train-test-split with 80%
training and 20% test data. The more data is provided, the better our Pearson correlation score r gets.
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D Model Performance per Language

Model
Language Combination

pl-pl de-de de-en fr-fr ar-ar en-en tr-tr es-es es-it
V SimCNN 0.89 0.75 0.82 0.83 0.77 0.80 0.81 0.80 -
V Random Forest 0.90 0.75 0.81 0.88 0.76 0.79 0.83 0.80 -
V Publish Date 0.80 0.75 0.80 0.91 0.76 0.79 0.89 0.81 -
E SimCNN 0.61 0.67 0.76 0.69 0.56 0.86 0.65 0.73 0.73
E Random Forest 0.61 0.66 0.76 0.72 0.58 0.85 0.67 0.73 0.73
E Publish Date 0.63 0.67 0.77 0.74 0.59 0.85 0.66 0.74 0.73

fr-pl pl-en de-pl zh-en it-it ru-ru de-fr zh-zh es-en
E SimCNN 0.71 0.77 0.62 0.76 0.76 0.73 0.60 0.64 0.77
E Random Forest 0.70 0.77 0.62 0.75 0.76 0.73 0.58 0.63 0.77
E Publish Date 0.70 0.78 0.62 0.78 0.79 0.74 0.59 0.64 0.80

Table 5: Pearson correlation score of our model configurations on different language pairs. They often do perform
significantly better on the validation data (V) than on the evaluation data (E) and seldom vice versa. The additional
languages in the evaluation data do not perform noticeably worse than some of the languages already seen in the
training set.

1243



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1244 - 1255
July 14-15, 2022 ©2022 Association for Computational Linguistics

SemEval-2022 Task 9:
R2VQ – Competence-based Multimodal Question Answering

Jingxuan Tu, Eben Holderness,
Kyeongmin Rim, Kelley Lynch,

Richard Brutti, James Pustejovsky
Lab for Linguistics & Computation
Department of Computer Science

Brandeis University
{jxtu,egh,krim,kmlynch,

brutti,jamesp}@brandeis.edu

Marco Maru1, Simone Conia1,
Roberto Navigli2

Sapienza NLP Group
1Department of Computer Science
2Department of Computer, Control

and Management Engineering
Sapienza University of Rome

first.lastname@uniroma1.it

Abstract

In this task, we identify a challenge that is re-
flective of linguistic and cognitive competen-
cies that humans have when speaking and rea-
soning. Particularly, given the intuition that
textual and visual information mutually inform
each other for semantic reasoning, we formu-
late a Competence-based Question Answering
challenge, designed to involve rich semantic
annotation and aligned text-video objects. The
task is to answer questions from a collection of
English language cooking recipes and videos,
where each question belongs to a “question fam-
ily” reflecting a specific reasoning competence.
The data and task result is publicly available. 1

1 Introduction

One of the fundamental goals of Artificial Intel-
ligence (AI) has been to create systems that in-
teract with human users fluently and intelligently,
by demonstrating inferencing and reasoning capa-
bilities that would be expected of a human part-
ner. This includes a growing interest in posing
larger challenges to end-to-end systems employing
architectures with deep neural networks (DNNs)
(Ribeiro et al., 2020; Prabhumoye et al., 2020;
Rogers et al., 2021; Minaee et al., 2021). Here
we argue that we should start focusing on linguistic
competencies, and not just on Question Answer-
ing (QA) skills or “challenge checklisting”. There
are some moves in this direction already (John-
son et al., 2017), but there is still no generally ac-
cepted distinction in current Natural Language Pro-
cessing (NLP) between challenge-based tasks and
competence-based performance (Bentivogli et al.,
2017). Analogous to human cognitive competen-
cies, there is both a methodological and modeling
advantage to focusing a system’s performance on

1https://competitions.codalab.org/
competitions/34056

competence-based learning rather than a narrowly
defined task or challenge checklist.

First we define competence-based knowledge,
and then the questions that can be generated from
such knowledge. While Chomsky (1965)’s dis-
tinction between competence and performance
has long been debated in linguistics, the term
competence-based has been applied to a number
of different concepts in both the science of learn-
ing and educational communities (Bechtel et al.,
1999; Voorhees, 2001; Chyung et al., 2006; Platan-
ios et al., 2019; Hsiao et al., 2020). The common
core to both is a concept capturing a coherent set of
abilities that an individual has in a specific domain
(Doignon and Falmagne, 1985; Heller et al., 2013).

Here we focus on lexical competence as de-
ployed in both single and multiple sentence com-
position (Pustejovsky, 1995; Marconi, 1997; Geer-
aerts, 2009; Asher, 2011). A competence-based
question will query competence-based knowledge
structures. For this task, lexical competence will
involve the following:

• Understanding implicit arguments that are not
present (due to syntactic ellipsis or semantic de-
faulting or shadowing), and being able to use
this (missing) information to formulate knowl-
edge about the event or situation (Malmaud et al.,
2014; Kiddon et al., 2015);

• Understanding the dynamics of the text or nar-
rative and how events can change an object or
contribute to new properties (and subsequent de-
scriptions) of objects in the text (Tandon et al.,
2018; Das et al., 2018; Brown et al., 2018).

It is clearly the case that these two phenomena re-
quire non-extractive QA capabilities of some sort.
We describe our dataset, Recipe-to-Video Ques-
tions (R2VQ), and summarize the procedures im-
plemented by task participants for answering such
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questions in the remainder of the paper.

2 Overview

2.1 Summary of the task

The task is structured as QA pairs, querying how
well a system understands the semantics of English
language recipes.

We hope that this task will help move NLP sys-
tem design and evaluation towards the construction
of meaning representations involving linguistic and
multimodal situated grounding. In the present con-
text, this involves identifying cooking entities and
activities from recipe text, as well as linking them
to videos of related recipes, entities, and activities.

Participants are provided with a multimodal
training set, and are asked to provide answers to
unseen queries. These questions can be answered
using a unimodal dataset of text recipes and associ-
ated annotations. Participants are also encouraged
to explore the full multimodal training set with
additional cooking videos to potentially improve
the results from the unimodal models. Following
SemEval guidelines, the R2VQ dataset is publicly
available2 in CONLL-U format, with annotations
encoded in plain text files.

2.2 Impact of the task

When we apply our existing knowledge to new
situations, we demonstrate a kind of understand-
ing of how the knowledge (through tasks) is ap-
plied. When viewed over a conceptual domain, this
constitutes what we will refer to as a competence,
and the corresponding challenge can be called a
competence-based challenge. Competence-based
evaluations can be seen as a new approach for de-
signing NLP challenges, in order to better charac-
terize the underlying operational knowledge that
a system has for a conceptual domain, rather than
focusing on individual tasks.

3 Related Work

NLP challenges have helped drive progress in the
field recently. These challenges in part have been
framed as specific tasks, and advances are largely
driven by leaderboards on benchmark datasets or
model comparison on individual datasets. Common
benchmarks such as GLUE (Wang et al., 2018)
and SuperGLUE (Wang et al., 2019) have been

2https://competitions.codalab.org/
competitions/34056#participate

used widely. They contain several language under-
standing tasks such as Winograd Natural Language
Inference (WNLI) (Levesque et al., 2011) as an
inference task, and Winograd Schema Challenge
(WSC) (Levesque et al., 2011) as a coreference res-
olution task. A survey (Rogers et al., 2021) showed
the recent trend to measure various machine rea-
soning capabilities using different designs of QA
tasks.

While all the tasks aim to advance the research
towards corresponding NLP challenges, whether
these reflect human competencies remains a ques-
tion, especially in recent years with the success of
transformers (Devlin et al., 2019; Yang et al., 2019;
Liu et al., 2019). Many top-ranked NLP models
that have shown better performance than humans
on benchmarks may have come from overfitting
to the dataset rather than addressing the challenge
(Rogers, 2019). Current pre-training paradigms
may also tune models towards capturing merely
statistical patterns, so datasets should be designed
to align the model’s ability with human expecta-
tions (Linzen, 2020). Sugawara et al. (2020) found
that most of the questions from common QA and
reading comprehension datasets can be correctly
answered by models without complex reasoning.

Recent work has been trying to identify and eval-
uate the tasks that are reflective of human linguistic
and reasoning competencies. For example, Kim
and Linzen (2020) proposed a semantic parsing
dataset that evaluates the human-like compositional
generalization of models. Ribeiro et al. (2020) de-
signed three test types that can be used to test var-
ious linguistic capabilities of NLP models. More
closely related to our work, QA-SRL (He et al.,
2015) use predicate-argument structure to repre-
sent QA pairs. SynQG (Dhole and Manning, 2021)
and RoleQ (Pyatkin et al., 2021) try to incorporate
existing semantic annotations to generate compre-
hension questions.

4 Task Description

We formulate the task as competence-based QA,
designed to involve rich semantic annotation and
aligned text-video objects. The goal of this task is
to answer questions from a collection of cooking
recipes and images. Each question belongs to a
“question family” that characterizes a specific rea-
soning competence to be tested. These competen-
cies include abilities such as spatial and temporal
reasoning, semantic role assignment, and object
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Recipe Title: Appelkoek Passage: Peel and cut apples into eighths (wedges). Sift together flour,
baking powder and salt with 4 tablespoons of the sugar. Cut in butter. Combine egg and milk and
add to flour mixture. Turn batter into greased 8 inch square cake pan. Press apple wedges partly into
batter. Combine remaining 2 tbsp sugar and cinnamon. Sprinkle over apple. Bake at 425 degF for
25 to 30 minutes.
IMPLICIT How do you cut apples into wedges? - by using a knife
ELISION What should be sprinkled over apple wedges? - cinnamon sugar
LOC. CHANGE Where was the batter when you press apple wedges? - in the pan
OBJ. LIFESPAN What’s in the appelkoek? - apples
SRL-TIME For how long should you bake appelkoek? - 20 to 35 minutes
SRL-VALUE How do you bake appelkoek? - bake at 425 degF

Table 1: Example competence-based questions. Color-coded text spans represent how information has been collected
and generated in the questions.

cardinality and counting.
We adopt the concept of “question families” as

outlined in the CLEVR dataset (Johnson et al.,
2017). While some question families (e.g., inte-
ger comparison, counting) naturally transfer over
from the Visual Question Answering (VQA) do-
main (Antol et al., 2015; Zhu et al., 2016), other
concepts such as ellipsis and object lifespan must
be employed to cover the full extent of compe-
tency within procedural texts. On the basis of the
aforementioned competencies, we categorize the
questions into five question families. Table 1 shows
the definition of each question family as well as
sample questions.

The question families are defined as follows:

• Cardinality: covers concepts of integer compari-
son and counting.

• Elision: deals with identifying arguments (ingre-
dients in most cases) that are omitted from a text,
but can be understood from context.

• Implicit: covers both implicit tools and habitats
introduced in the text. This is distinct from eli-
sion, as these are not solved merely through con-
textual clues. Instead, they require general com-
petence; applying world knowledge of an action
and its requirements to a novel situation.

• Obj. Lifespan: covers different states of an object
in a cooking event.

• Semantic Role Labeling (SRL) covers semantic
roles that are modifiers to a cooking event.

5 Data and Resources

The textual component of our dataset consists of
a collection of English language recipes sourced
from two open-source recipe wikis, Recipe Fan-

dom3 and Foodista4, and is labeled according
to three distinct annotation layers: (i) Cooking
Role Labeling (CRL), (ii) Semantic Role Labeling
(SRL), and (iii) aligned key frames image triples
taken from creative commons cooking videos
downloaded from YouTube.

Compared to text of news or narratives, proce-
dural text such as recipes and user manuals tend to
be task-oriented, and the main content is split into
steps that describe small goals to accomplish the
final task. We believe such texts are a good fit for
our task, as it involves the understanding of how
to reach the goal locally for each step, as well as
how each step contributes to the final task globally.
Further, the step-wise progression inherent in the
goal-oriented narrative contributes both an interpre-
tative dynamics as well as contextualized elision of
arguments.

5.1 Train/Dev/Test Datasets

There are 1, 000 recipes released as part of the task
(800 for training and 100 each for validation and
testing). Table 2 shows the basic statistics of the
dataset. We exclude any “less informative” recipe
that has less than 4 sentences from our dataset. For
each recipe, there are an average of 35 questions
(5 from each question family). Each recipe is also
paired with an additional set of 10 “unanswerable”
questions (answers that cannot be found in a given
recipe) as negative samples.

5.2 Cooking Role Labeling

Cooking Role Labeling (CRL) is a domain-specific
dependency relation annotation for the cooking do-
main. CRL is done via a two-phase annotation.
First, to identify mentions of cooking events and

3https://recipes.fandom.com/
4http://foodista.com/
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Train Dev Test
# of recipes 800 100 100
Avg. # of sentences per recipe 8 7.9 7.8
Max. # of sentences 26 16 31
Min. # of sentences 4 4 4
Avg. sentence length per recipe 12.5 13.4 12.5
Max. sentence length 32 25 19
Min. sentence length 6 6 7

Table 2: Statistics of the train, dev and test subsets of
the R2VQ dataset.

Figure 1: Docanno environment for event and entity
annotation.

entities and put labels on them, and then to estab-
lish relations between those mentions.

Each step in a given recipe is annotated for
cooking-related events and the associated entities
(ingredients and props such as tools, containers,
and habitats). The ingredients can be either labeled
as explicit (those listed in the ingredients section
of the recipe) or implicit (intermediate outputs of
applying a cooking action to a set of explicit ingre-
dients).

We post-process the data by running the Stanza
pipeline (Qi et al., 2020) on the raw text of each
recipe to get tokenization and other basic linguis-
tic features including word lemmas, part-of-speech
tags. We took a semi-automated approach to per-
forming the span-level entity annotations. First,
using a small labeled dataset as seed training data,
we trained a character-level named entity recogni-
tion (NER) model using Flair embeddings (Akbik
et al., 2019) to pre-annotate the recipe text. We then
validated the model predictions using the Docanno
annotation tool (Nakayama et al., 2018) to create
our gold set of event and entity mentions. Figure 1
shows an example from the Docanno environment,
with annotations for Event, Implicit Ingredient, and
Habitat.

For the next phase of annotation, we developed
Deep Event & Entity Palette or DEEP, a specialized
annotation environment to manually annotate cook-
ing role relations. Annotators start from documents
that are already annotated with span-level entity
tagging from Docanno. The primary job of annota-
tors is to draw links between entities (coreference)
or between an entity and an event (participant).
DEEP provides an intuitive and easy interface for

pairwise linking annotation, as well as a holistic
view of the document-level context using color cod-
ing of tokens related to the selected events or enti-
ties, as shown in Figure 2. All annotation is done at
document-level, namely, annotators can create long
distance links. For example, a food entity from a
previous step can be linked to an event in the next
step even if the direct object of the event is omitted
on surface (or “hidden”). And finally, DEEP also
provides an interface to add such hidden entities
with a free-text identifier and immediately link it
to an event.

More specifically, event-entity links can be one
of several possible link tags, which can be made
between explicit spans of text or between an event
and a hidden entity that does not explicitly appear
in the recipe text. These relations are:

• Ingredient: identifies the food material that
participates in cooking events.

• Result: identifies entities produced as the out-
put of an event.

• Tool: relates objects with the events they are
used in. Tools may appear in the text (“Cut the
pear with a sharp knife”), or they may be hid-
den (“Cut an apple” requires an unmentioned
knife).

• Habitat: links events with the objects in
which they take place. Habitats may appear in
the text (“Bake in a preheated oven”), or they
may be hidden (“Saute the onion” requires an
unmentioned pan).

Table 3 shows the statistics of cooking role an-
notation on the dataset. EVENT should always be
explicit, while the other cooking roles can be either
explicit text spans or hidden entities. We hired 8
student annotators for the CRL annotation work.
All annotators were students at Brandeis University,
ranging from undergraduate to master’s level.

5.3 Semantic Role Labeling
Aside from the above-described annotation layer,
which is tailored to highlight domain-specific
events and entities, each step in the recipes fea-
tured in R2VQ is automatically tagged and manu-
ally validated according to the predicates and con-
stituents identified at the Semantic Role Labeling
(SRL) level, i.e., the task of identifying and label-
ing predicate-argument structures within a sentence
(Gildea and Jurafsky, 2002). More specifically,
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Figure 2: DEEP environment for CRL entity linking.

Train Dev Test
Avg. # of entities per recipe Exp. Hidden Exp. Hidden Exp. Hidden
EVENT 14.0 N/A 13.6 N/A 13.3 N/A
INGREDIENT 13.0 6.9 14.0 10.8 12.5 8.6
RESULT 0.2 1.5 0.2 1.4 0.3 1.7
TOOL 0.6 2.1 0.7 2.2 0.6 2.0
HABITAT 2.8 4.8 2.5 6.2 2.5 4.0

Table 3: Statistics of cooking role annotation on R2VQ.

each recipe step is semantically enriched by (i)
identifying all its predicates, i.e., those words or
multi-word expressions that denote an event or an
action, (ii) assigning the most appropriate sense
label to each identified predicate according to a pre-
defined inventory, (iii) detecting all the arguments,
i.e., the parts of the text that are semantically re-
lated to each predicate, and (iv) choosing the most
fitting semantic role for each predicate-argument
pair. Let’s consider the example “John bakes pota-
toes”. In this case, SRL consists of (i) identifying
“bake” as a predicate, that is, something that de-
notes an action or an event; (ii) disambiguating
the predicate, that is, assigning the most appropri-
ate sense for “bakes” in this context; (iii) identify-
ing the arguments of each predicate, that is, those
parts of the text, “John” and “potatoes” that are
semantically linked to “bakes”; and (iv) assigning
a semantic role to each predicate-argument pair,
e.g., “John” is the Agent of the predicate “bakes”,
whereas “potatoes” is the Patient.

In SRL, there are two main annotation for-
malisms for tagging arguments: span-based and
dependency-based. We adopted the former; the

core and only difference between the two lies in
the fact that, in the span-based SRL, semantic role
labels are applied to the whole span of a given ar-
gument, whereas, in dependency-based SRL, the
label is only applied to the argument’s head (e.g.,
we label “the broccoli” and not “the”).

The SRL task is often tied to a linguistic re-
source, which defines the inventory of predicate
senses and semantic roles. For this task, we chose
VerbAtlas5 (Di Fabio et al., 2019) as our inven-
tory of predicate senses and semantic roles given
its high coverage in terms of verbal lexicon6, the
informativeness of its human-readable roles (e.g.,
Agent, Patient, Instrument), and its mapping to the
PropBank frame inventory (Palmer et al., 2005)
and to the BabelNet multilingual knowledge base
(Navigli and Ponzetto, 2012; Navigli et al., 2021).

The annotation process for the SRL layer fea-
tured three distinct stages. In detail, we first em-
ployed the Stanza toolkit (Qi et al., 2020) to per-
form PoS tagging over the R2VQ corpus so as to

5VerbAtlas is freely available for research purposes at
http://verbatlas.org/.

6VerbAtlas covers all the verbal senses defined in WordNet,
and clusters them into predicate frames.
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identify verbal predicates, and proceeded to man-
ually include predicates that were not discovered
automatically (e.g., season was often incorrectly
labeled as a noun), as well as fixing instances er-
roneously labeled as predicates (such as adjectival
or prenominal predicates, as well as predicates ap-
pearing within ill-formed sentences).7 Secondly,
we employed a state-of-the-art system (Conia and
Navigli, 2020) to automatically label recipes in a
span-based fashion, concurrently assigning VerbAt-
las frames and arguments to recipes, and manually
validating the whole corpus once more in order to
verify the automatically-generated outputs, fixing
errors and inconsistencies.8

We used BabelNet 5.0 as the inventory to vali-
date predicates, first picking the most suitable word
sense to disambiguate a given verb, and then se-
lecting the relative frame in VerbAtlas according
to its original mapping. As our final step, we in-
structed annotators to manually tag as many argu-
ments as possible for each predicate (adding ar-
guments where needed and removing additional
arguments such as Negation in the process), first,
referring to the predicates’ prototypical arguments
according to VerbAtlas, and then, providing ad-
ditional arguments. We used VerbNet (Schuler,
2006) argument descriptions and examples along
with in-house argument descriptions for ambigu-
ous argument assignments (e.g., “in the oven” in
“Jennifer baked the potatoes IN THE OVEN” is not
a Agent, but rather an Instrument with respect to to
the predicate “bake”).

With respect to the SRL layer annotators, in or-
der to make use of the Mechanical Turk platform
already employed in the context of the aligned im-
age frame annotation, we initially devised HITs for
both predicate sense disambiguation and argument
labeling. Though, independently of the rates and
templates employed, we kept collecting low-quality
or suboptimal data, likely, due to the background
knowledge needed to perform such tasks in an ade-
quate fashion. In light of this, after several attempts,
we eventually decided to have one in-house anno-
tator with extensive experience in SRL validate the
whole corpus at all stages required, and asked a
second annotator to review the validation instances,

7We also labeled word forms with typos in the original
recipes as predicates (e.g. prehet as preheat). Additionally,
we labeled as multi-word predicates those predicates whose
form was featured as a compound in BabelNet.

8See Appendix A for details about the SRL annotations’
format.

Figure 3: An aligned CRL-Image Frame annotation.

seeking agreement in case of discrepancies. As
an additional step to ensure data quality, a third,
external annotator was assigned with the task of
reviewing recipes in order to look for potential for-
matting issues.9

5.4 Aligned Image Frame Annotation

Accompanying each recipe is a series of images
extracted from YouTube videos that are associated
with a particular event in the recipe. We pulled the
images from a set of YouTube videos that were
selected by querying YouTube for recipe titles.
For each recipe title, we downloaded 5 Creative
Commons licensed videos. These videos were in-
dexed by generating an embedding using the Ten-
sorflow implementation of the S3D Text-Video
model trained on HowTo100M using MIL-NCE
(Miech et al., 2020, 2019). For each cooking event
in the recipes, the 5 closest clips as scored by L2
distance were selected from the YouTube videos
we downloaded. We showed the annotators the
first, middle and last frame from each 4 second clip
alongside a list of the CRL representations of the
events in the recipe. We asked the annotators to
rank the match of the image and the cooking event
as a good match, a partial match, or not a match.
The Swipe Labeler (Peterson Jenessa, 2021) tool
was used to conduct the annotation. The tool was
modified to included the recipe event text, with the
full recipe displayed and the current step in bold
text. An example of the frame annotation is shown
in Figure 4.

Due to complex combinations of ingredients in
many of the recipes and the limitation of consider-
ing only Creative Commons videos, many events
did not match with any of the detected segments.
Partial matches were included in order to increase
the total number of events represented. Importantly,
the action represented in the image clips does nec-

9All annotators employed in the SRL layer have effective
operational proficiency in English and received a wage in line
with their country of residence. Annotation has been carried
out by means of user-friendly shared worksheets.
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Figure 4: Swipe Labeler Annotation Tool

essarily include the exact same ingredients of as
those used in the recipe. The videos were chosen
based on the similarity of the cooking event de-
scribed in the sentence. In total, 1927 events were
matched with images across 655 recipes.

5.5 Generating Competence-based Questions

We first design text templates for each type of ques-
tion. Then we generate QA pairs by populating
the templates in a cloze test style with the data an-
notated in CRL. Table 4 shows the text templates
for two types of questions we want to use for the
QA task. ELISION identifies arguments (ingredi-
ents in most cases) that are omitted from a text, but
can be understood from context. IMPLICIT covers
both implicit tools and habitats introduced in the
text. This is distinct from ELISION, as these are not
solved merely through contextual clues. Each text
template has several slots that can be filled with
corresponding entities from CRL.

To increase the variety of questions, we also in-
clude adjunct slots into the templates. As shown in
Table 4, adjunct slots include tool or habitat phrases
and SRL modifiers. SRL modifiers are any seman-
tic roles that are not claimed by CRL entities such
as TIME and VALUE. For example, one ELISION

question can be as short as What should be cut? or
What should be cut on the board with a knife into
eighths? with all the adjunct slots. We argue that it
is helpful to generate questions more challenging to
the systems. Adding more adjunct slots completes
the context for the question, but also introduces
unseen context if the slots contain hidden entities.

These slotted templates are further processed
to improve the readability of generated questions.
We change word inflections and insert articles
and agreements. For the templates with [habi-

tat phrase] and [tool phrase] slots, we fill those
with corresponding LOCATION or INSTRUMENT
spans from SRL. If a slot is filled with a hidden
entity that has no associated semantic roles, we run
a BERT-based model (Devlin et al., 2019) to get the
most likely preposition given the sentence as con-
text through the masked language modeling task.
SRL modifiers are populated in the same order as
they were in the original sentence.

5.6 Details of copyright

All recipes are distributed under Creative Com-
mons license. The YouTube videos queried were
limited to Creative Commons videos only. No per-
sonally identifying information is included in either
the text or visual components of the dataset.

6 Participation

We discuss the baseline system and the systems
from participants in this section.

6.1 Evaluation Metrics

All systems are asked to provide answers to the
open-ended questions based on the textual and vi-
sual information encoded in the dataset. The re-
sults are evaluated using exact match (EM) and
token-level F1 score (F1) following Rajpurkar et al.
(2018).

6.2 Baselines

To build a model that is reflective of the nature of
the abstractive question answering task and benefits
from the aligned key frames to the text, we adopt a
vision-and-language text genertation model as the
baseline for our task. We build the baseline with
the model framework that is proposed by Cho et al.
(2021). They propose the model VL-T5 based on
T5 text generation model (Raffel et al., 2020) by
extending the original T5 text encoder to a multi-
modal encoder that can take both textual and visual
embeddings as the input.

Following closely the VL-T5 work (Cho et al.,
2021), we prepare the key frames as model input
by encoding them into visual embeddings using
Faster-R-CNN. We prepare the text input by ap-
pending the task-specific prefix to the question
and context text: "question: {question str}
context: {recipe str}". The recipe str is
the concatenation of the text of all cooking steps
from the recipe the question is generated from. We
fine-tune the VL-T5 model for our QA task on the
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QUESTION TYPE TEXT TEMPLATE QUESTION-ANSWER PAIR

Elision What should be verb [habitat phrase] [tool phrase]
[modifiers]? — ingredient obj

What should be cut on the board with a knife into
eighths? — apples

Implicit
What do you use to verb obj [habitat phrase] [mod-
ifiers]? — tool

What do you use to sauté the onions [in the pan]? —
spatula

Where do you verb obj [tool phrase] [modifiers]?
— habitat phrase

Where do you arrange the slices [into rounds]? —
in the casserole

Table 4: Text templates and example of generated questions. The squared brackets ([...]) in the templates indicates
adjunct slots.

training set, and run the fine-tuned model on the
test set. As a comparison, we also fine-tuned the
T5 model with text input only. Baseline results
are shown in Table 5 along with other results from
participants.

EM F1 Key Frames?
SRPOL 92.53 94.34
ITNLP&QMUL 91.33 94.23
PINGAN AI 78.21 82.62
Slug 69.49 77.37
BASELINE (VL-T5) 69.37 77.77 ✔

BASELINE (T5) 65.34 75.22
ych 10.23 10.23
UoR 5.90 15.78 ✔

CLT6 0.0 0.0

Table 5: Task results from participant teams and the
baseline. The ranking is based on EM score. The last
column indicates whether the system uses key frames
for training.

6.3 Description of team submissions
We collect successful submissions from 8 partic-
ipating teams (including the baseline), as well as
one participating team that did not submit predic-
tions that passed our automated evaluation script.
The results and final ranking are shown in Table 5.
We summarize their work below:

• SRPOL: This system attains the highest
scores in this task by adopting a hybrid ap-
proach. The system includes a rule-based sys-
tem for intent identification and finding N/A
questions. It also applies a transformer-based
model ELECTRA for generating extractive
answers.

• ITNLP&QMUL: This system attains the sec-
ond highest scores in this task. The system
adapts a T5 model to the task by altering the
input to include semantic and cooking role
labels that are provided in the data.

• PINGAN AI: This system attains the third
highest scores in this task. The system uses

the BERT model as the backbone, and en-
hances the model by incorporating additional
knowledge about cooking entities and part-
of-speech tags in the format of plain text and
embeddings.

• Slug: Semantic labels were preprocessed us-
ing BERT and handmade rules, with hidden
roles infused into the recipe. A task-finetuned
T5 model was then used for question answer-
ing.

• UoR: The only submission that exploited the
visual information provided in the dataset,
this system used an Inception V3 model (pre-
trained on ImageNet), to extract image fea-
tures that were used to train an image caption-
ing model on the MS-COCO dataset. These
captions were included alongside the recipe
text in a Retrieval-Augmented Generation
model for question answering.

7 Discussion

In this paper we have described the new task of
Competence-based Multimodal Question Answer-
ing. In this task, we extended the traditional ques-
tion answering by providing text-visual aligned
data as the context, and asking questions that re-
flects reasoning competences over the question con-
text. To create the dataset for our task, we proposed
and applied a rich annotation of semantic role la-
bels, cooking role labels and aligned video key
frames to a set of cooking recipes.

A criticism of the approach we adopted to cre-
ate annotated dataset is that the video key frames
are not well aligned with the text, thus making it
difficult to include those into the modeling train-
ing. Although with the full awareness of this, video
annotation and alignment remains a very difficult
task. Copyright issues also make it challenging for
us to get enough video sources to work with. Fu-
ture work to improve the key frame annotation may
include utilizing entity recognition so that more ac-
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curate alignment to text can be made. We will also
consider reusing the key frames and adding static
images to represent similar events from different
recipes to increase the coverage of annotation. An-
other criticism of the data is the semantic ambiguity
and loose definition of certain questions. For exam-
ple, the same How-to question can have multiple
reasonable answers, but only one is considered as
the gold answer. Although this is the semantic am-
biguity as it is, we intend to improve it by replacing
the question phrase “How to ...” to more specific
phrase like “What tool ...” based on the answer it
is inquiring about.

An analysis of the systems that participated in
our task showed the major improvement over the
evaluation scores is achieved by making the hidden
information appear on the surface. In general, two
approaches are proven to be useful for this purpose
by the participating systems. One is to train an end-
to-end system to generate text that contains CRL-
SRL annotation, so that the hidden information is
expressed explicitly in the generated text. Then
an extractive QA system can be adopted to iden-
tify text spans as answers. The second approach
involves rules and heuristics to identify question
intents, and get auxiliary knowledge. Intent identifi-
cation can help classify questions into different cat-
egories. Each question category is associated with
a rather fixed set of answer templates and possible
entity types to be filled in. Auxiliary knowledge
is generated by associating specific entities with
their co-referred mentions or result ingredients (e.g.
“small balls” to “flour mixture”).

The analysis of the results from participating sys-
tems also reveals some interesting characteristics
about the dataset and is useful for future task design.
Despite the error rate of the top-performing sys-
tems such as SRPOL and ITNLP&QMUL is only
8%, the cardinality questions and How-to questions
solely contribute the majority of the errors. As it is
mentioned above, the innate ambiguity of How-to
questions makes it difficult for both humans and
systems to get a single correct answer. The poor
performance on cardinality questions shows that
the “counting reasoning” remains a big challenge
to current transformer-based systems. In the R2VQ
dataset specifically, the mentions of the entity in-
volved a cardinality question can scatter over the
whole recipe, which requires a larger context to
answer such questions. Due to nature of “constant
ingredient transformation” in cooking recipes, the

mentions of the same entity could vary in our defi-
nition. For example, in the appelkoek recipe (Table
1), apples, peeled apples, apple wedges, apples
with batter all refer to the same entity Apple. This
characteristic of cardinality questions also hinders
the systems from counting the mentions of the en-
tity properly.

The human benchmark created by the SRPOL
team provides useful insights on our future QA task
design. They asked six linguists to answer 2, 000
questions selected randomly from the validation
set. By examining the manual annotation on the
questions, they found that although 73% of the an-
notated QA pairs have the same meaning as the
gold answers, the EM score is quite low. This re-
veals the fact that traditional QA metrics that focus
on string match might be too strict in our task. For
example, from the analysis of the human bench-
mark, for the question What’s in the mixture?, both
the gold answer the egg and mixture and the human
answer the butter, sugar, tangerine zest, vanilla,
baking powder, salt and egg can be considered cor-
rect. Other metrics like BERTScore (Zhang et al.,
2019) might be a good compliment to account for
the syntactic and semantic variance between the
model inference and the gold answer.

8 Conclusion

In this paper we described SemEval-2022 Task 9:
R2VQ – Competence-based Multimodal Question
Answering. The task is to answer questions from
a collection of cooking recipes and videos, where
each question belongs to a “question family” re-
flecting a specific reasoning competence. We de-
veloped a new dataset of cooking recipes with rich
annotation for cooking roles, semantic roles and
aligned video key frames. We collected 8 result
submissions and analyzed the participating systems
by highlighting and summarizing their findings to
help future research pertaining the topic of our task.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019.
Flair: An easy-to-use framework for state-of-the-art
nlp. In NAACL 2019, 2019 Annual Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and

1252



Devi Parikh. 2015. VQA: Visual question answering.
In Proceedings of the IEEE international conference
on computer vision, pages 2425–2433.

Nicholas Asher. 2011. Lexical meaning in context: A
web of words. Cambridge University Press.

Gregory A Bechtel, Ruth Davidhizar, and Martha J
Bradshaw. 1999. Problem-based learning in a
competency-based world. Nurse Education Today,
19(3):182–187.

Luisa Bentivogli, Ido Dagan, and Bernardo Magnini.
2017. The recognizing textual entailment challenges:
Datasets and methodologies. In Nancy Ide and James
Pustejovsky, editors, Handbook of Linguistic Annota-
tion, pages 1119–1147. Springer.

Susan Windisch Brown, James Pustejovsky, Annie Zae-
nen, and Martha Palmer. 2018. Integrating generative
lexicon event structures into verbnet. In Proceedings
of the Eleventh International Conference on Lan-
guage Resources and Evaluation (LREC 2018).

Jaemin Cho, Jie Lei, Haochen Tan, and Mohit Bansal.
2021. Unifying vision-and-language tasks via text
generation. ArXiv, abs/2102.02779.

Noam Chomsky. 1965. Aspects of the Theory of Syntax,
volume 11. MIT Press.

Seung Youn Chyung, Donald Stepich, and David Cox.
2006. Building a competency-based curriculum ar-
chitecture to educate 21st-century business practition-
ers. Journal of Education for Business, 81(6):307–
314.

Simone Conia and Roberto Navigli. 2020. Bridging
the gap in multilingual semantic role labeling: a
language-agnostic approach. In Proceedings of the
28th International Conference on Computational Lin-
guistics, pages 1396–1410, Barcelona, Spain (On-
line).

Rajarshi Das, Tsendsuren Munkhdalai, Xingdi Yuan,
Adam Trischler, and Andrew McCallum. 2018.
Building dynamic knowledge graphs from text using
machine reading comprehension. In International
Conference on Learning Representations.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Kaustubh D. Dhole and Christopher D. Manning. 2021.
Syn-qg: Syntactic and shallow semantic rules for
question generation.

Andrea Di Fabio, Simone Conia, and Roberto Navigli.
2019. VerbAtlas: a novel large-scale verbal semantic
resource and its application to semantic role labeling.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 627–637, Hong
Kong, China.

Jean-Paul Doignon and Jean-Claude Falmagne. 1985.
Spaces for the assessment of knowledge. Interna-
tional journal of man-machine studies, 23(2):175–
196.

Dirk Geeraerts. 2009. Theories of lexical semantics.
OUP Oxford.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational linguistics,
28(3):245–288.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
643–653, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Jürgen Heller, Thomas Augustin, Cord Hockemeyer,
Luca Stefanutti, and Dietrich Albert. 2013. Re-
cent developments in competence-based knowledge
space theory. In Knowledge spaces, pages 243–286.
Springer.

Cheng-Ting Hsiao, Fremen ChihChen Chou, Chih-
Cheng Hsieh, Li Chun Chang, and Chih-Ming Hsu.
2020. Developing a competency-based learning and
assessment system for residency training: analysis
study of user requirements and acceptance. Journal
of medical Internet research, 22(4):e15655.

Justin Johnson, Bharath Hariharan, Laurens Van
Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. 2017. CLEVR: A diagnostic dataset
for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
2901–2910.
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A Reading SRL Annotations in R2VQ

Predicate frames. Each predicate is labeled ac-
cording to its VerbAtlas sense/frame. A value of “ ”
means that the corresponding word is not a predi-
cate.

In the example below, there is only one predicate,
“Cut” with the corresponding sense/frame “CUT”
in position 1.

1 Cut [...] CUT B-V
2 the [...] B-Patient
3 broccoli [...] I-Patient
4 into [...] B-Result
5 flowerets [...] I-Result
6 . [...]

Semantic roles. For each predicate, we provide
its semantic roles in BIO format (B - Beginning, I
- Inside, O - Outside). Note that, for this dataset,
we only use B and I to indicate the first token of
a span and the rest of the tokens in the same span,
respectively. In the example above, “the broccoli”
is a Patient of the predicate CUT, with the token
“the” as the Beginning of the span (B-Patient) and
the token “broccoli” as the Inside of the span (I-
Patient). Note that the predicate that refers to a
specific column of semantic roles is always labeled
with the notation B-V. Should the predicate consist
of a multi-word expression, the other tokens apart
from the first are labeled as I-V:

Should the multi-word expression be made of
non-adjacent words, tokens apart from the first are
instead labeled as D-V:

In the case of multiple predicates in the same sen-
tence, there will be multiple semantic role columns,
one for each predicate. For example, if there are
two predicates in the sentence, one column will
indicate the semantic roles for the first predicate,

1 Deep [...] COOK B-V
2 - [...] I-V
3 fry [...] I-V
4 till [...] B-Result
5 crispy [...] I-Result
6 & [...] I-Result
7 golden [...] I-Result
8 brown [...] I-Result

1 Bring [...] CHANGE APP./STATE B-V
2 the [...] B-Patient
3 water [...] I-Patient
4 to [...] D-V
5 boil [...] D-V
6 . [...]

and the following will show the semantic roles for
the second predicate.

1 Reduce [...] REDUCE D. B-V
2 heat [...] B-Attr.
3 , [...]
4 and [...]
5 simmer [...] COOK B-V
6 for [...] B-Time
7 1 [...] I-Time
8 hour [...] I-Time
9 . [...]
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Abstract

This paper presents the second place system
for the R2VQ: competence-based multimodal
question answering shared task. The task con-
sisted in building question answering systems
that could process procedural recipes involv-
ing both text and image, and enriched with
semantic and cooking roles. We tackled the
task by using a text-to-text generative model
based on the transformer architecture, with the
aim of generalising across different question
types. Our proposed architecture incorporates
a novel approach for enriching input texts by
incorporating semantic and cooking role la-
bels through what we call Label-Enclosed Gen-
erative Question Answering (LEG-QA). Our
model achieves a score of 91.3, with a signifi-
cant improvement over the baseline (65.34) and
close to the top-ranked system ((92.5). After
describing the submitted system, we analyse
the impact of the different components of LEG-
QA as well as perform an error analysis.

1 Introduction

The objective of text-and-image multimodal ques-
tion answering (QA) is to jointly leverage both
textual and visual information to mutually inform
each other for semantic reasoning (Ben-Younes
et al., 2017). A SemEval 2022 shared task titled
Competence-based Multimodal Question Answer-
ing (R2VQ) focuses on this task. In the R2VQ
task, participants were invited to develop QA mod-
els to resolve questions associated with procedural
recipe instructions. The corpus provided for the
task is made of recipes, which include rich seman-
tic annotations and where textual instructions are
aligned with images illustrating them. The authors
proposed to address a set of 18 question families,
for which participants could develop and evaluate
their own proposed solutions.

*contribute equally
†corresponding author

This paper describes the participation of the
HIT&QMUL team in the R2VQ task, for which
we proposed a methodology that we call label-
enclosed generative question answering (LEG-
QA). Through this methodology, we proposed en-
closing labels providing semantic information em-
bedded in the input texts. This methodology has
proven competitive by achieving a score of 91.3%
in exact match accuracy, ranking 2nd overall in the
competition.

Our code is available at https:
//github.com/weihezhai/
HIT-QMUL-at-SemEval-2022-Task-9.

2 Task and System Description

Building on the transformer architecture (Vaswani
et al., 2017), we use T5 an encoder-decoder model
(Raffel et al., 2020) implemented using Hugging
Face1. We chose T5 given its reasonably good gen-
eral language learning abilities, and provided that
the downstream task of R2VQ covers a diverse set
of task types that are also shared by T5. Intuitively,
a task-agnostic model like T5 would be expected
to perform well on R2VQ. We further adapt the T5
model to the task by altering the input to include
semantic and cooking role labels enclosed in the
textual recipe instructions.

2.1 Task and Data
The R2VQ (Tu et al., 2022) task proposed the use of
multimodal models to leverage both text and image
for QA in the context of recipes. The R2VQ task
adopts the definition of ‘Question Family’ from
the CLEVR dataset (Johnson et al., 2017), where
each type of question-answer pair comes from a
template identified by task organisers. Each of
these question type is meant to evaluate a different
ability for reasoning.

The R2VQ dataset consists of a collection of
1,000 recipes, of which 800 are used for training

1https://huggingface.co/
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and two sets of 100 recipes are used for valida-
tion and testing. These recipes involve more than
30K question-answer pairs, where each recipe con-
sists of texts with procedural instructions as well
as associated images. Questions are intended to
require both visual and textual information jointly
to produce effective answers. However, based on
our initial explorations of the dataset provided and
after considering the use of multimodal models, we
found that the majority of the questions could be
answered through the sole use of text. Hence, we
thought that the use of an image processing compo-
nent could be avoided while producing an accurate
answer generation model for the dataset at hand.
Further improvement of the model through the use
of an image processing component is therefore left
for future work.

For in-depth analysis of the system results, we
grouped the 11 question types2 provided by the
organisers into 4 categories, i.e. generative, number
reasoning, classification and extractive (see Table 5
in the Appendix for category details). Note that
each of these classes comprises questions intended
to evaluate different abilities of models.

2.2 Soft Constrained Generative QA as
Multitask Transfer Learning

Soft Constrained Text-to-Text Generation
Mainstream text-to-text generation methods mostly
aim to learn meaningful mappings between input
and output sequences. This is particularly the case
for the recent pre-trained language models (Lewis
et al., 2020; Raffel et al., 2020), where the model is
expected to identify what to attend to in the source
input and what to include in the model output. Mod-
els like UniLM, T5 and GPT2 unify the generation
and understanding tasks within a single model, but
none of them investigates the model’s ability of
generating free-form answers which includes both
generative and discriminative tasks.

In R2VQ, all questions are created through a
semi-automated method. Generative questions
such as implicit argument identification (e.g. how
do you drain the pasta?) cannot be answered in-
dependently by an extractive question answering
approach, hence some question types should be
treated as a soft constrained generation (SCGen)
problem (See et al., 2017; Dou et al., 2021). SC-
Gen implicitly specifies token constraints that the

2To be clear, 11 types of questions are defined on the R2VQ
homepage but not the types of question-id in the dataset.

model needs to focus on in the answer output. For
instance, in the question example above, one of
the following words must be present in the answer:
“by”, “using” (gerund of a verb), “in/on/at”, “with”.
There are many variants of models considering soft
constraints, but usually they are achieved by adding
an attention mechanism to the source keywords
(Yao et al., 2019).

Multitask Transfer Learning Multitask learn-
ing consists in training the model on multiple tasks
at a time. This means the model has an objective
of simultaneously taking on more than one task. In
LEG-QA, we leverage and transfer the prior knowl-
edge from T5 and apply to our R2VQ tasks to solve
the unseen SCGen problems. The reason why we
do not train separate models for each of 4 cate-
gories in Table 5 is that we observe non-negligible
accuracy drop when missing some of the question
families.

2.3 Label-Enclosed Input

The key modification we made on the T5 model to
prepare our submitted system is a rarely adopted
heuristic method for embedding label information.
Instead of appending supportive external features
to the text sequence (He et al., 2017, 2018), we
fuse the hidden cooking entities into the original
text through our proposed approach called label-
enclosed input. Typically, to grammatically and
syntactically maintain the textual structure, the text
should not be broken down into pieces by inserting
annotations. However, we noticed that with the
knowledge of labels appearing in the enclosed form,
a pretrained text-to-text multitask model (in our
case T5) can effectively process the enclosed noise
from external information. In turn, the model using
this enriched input behaves better than using a clean
text input, when generatively answering questions
with soft constraints.

2.4 Input Format

Figure 1 depicts the pipeline for the input data pre-
processing through which the attributes of cooking
roles are transformed and enclosed into the input
sequences. We employed different processing ap-
proaches for each type of semantic and cooking
roles. Through close observation, the most fre-
quent attributes that take place in the answers are
the ‘Hidden’ labels which consist of multiple val-
ues and keywords. As shown in the example, after
text regularisation and reorganisation, attributes
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Stirring frequently , until the onions have turned golden brown .

Label Enclosed Input

Stirring ( drop : onion mixture # tool : spoon ) frequently , until the onions ( participant : turned ) have turned golden brown . 

Plain Text

( drop : onion mixture # tool : spoon ) ( participant : turned )
Enclosed Label Enclosed Label

Figure 1: Pipeline for creating label-enclosed inputs. In this case, labels are wrapped in braces, and labels for the
same event but are of different categories are separated by hashtag.

(e.g. stirring) are enclosed in special tokens before
embedding them into the input. While the example
shows the use of brackets for enclosing labels, we
tested different approaches, which we discuss in
more detail in Section 3.

3 Experiments

Since different formats of enclosing special tokens
can result in considerably different scores, we com-
pare a range of experiment settings to evaluate their
performance. For more detail on the different en-
closing methods tested, see Table 4 in Appendix
A.

We conduct a series of experiments to answer
the following questions:

Q1: Which way of enclosing special tokens per-
forms best? Is there any big difference between
them, and any measurable explanation for the gap?

Q2: Which label combos achieve the best accu-
racy?

Q3: How significant is the difference between
results generated by size-equivalent models?

3.1 Experimental Settings

For the purpose of, as much as possible, control-
ling variables unrelated to the pre-trained language
model, we experiment with five input variants on
T5-large (our suboptimal result model). For com-
parison, we also show results for models based
on different architectures. In this case, we use
BART(Lewis et al., 2020), a denoising text-to-text
model.

All the performance scores we show indicate the
exact match (EM) accuracy on the development
data.

Enclosing Method GEN CLS NUM EXT Overall

T
5-

L
ar

ge

brackets 87.3 97.0 82.6 93.4 89.9
hash 86.9 97.4 80.6 93.6 89.5
dollar sign 88.2 96.9 81.0 93.8 90.2
[BOL] [EOL] 87.0 97.2 81.0 93.4 89.5
parallel 81.2 97.0 79.7 94.1 86.5

Table 1: Detailed results for different enclosing meth-
ods. The default method is “( )” which is used for our
final submission. The dollar sign enclosing method is
evaluated after the final submission so is not reported as
the best practice during the competition.

3.2 Comparative study

To answer Q1, we report EM score for every 2K
steps up to a total 26K steps. This is equivalent
to approximately 10 epochs. Table 1 summarises
scores achieved by the T5-Large model with the
5 different label-enclosing methods. The Hidden,
Part and Event labels are examined together, given
for that our best-performing model so far follows
this paradigm. The special token “$” dollar sign
has a noticeable positive impact on the GEN task,
leading to the overall best performance. The “Par-
allel” enclosing method refers to directly attaching
all labels horizontally aligned with plain text. Ad-
ditionally, the [BOL] and [EOL] are special sym-
bols inherent to BERT-like models. Unsurprisingly,
joining labels in parallel with text without breaking
sentence syntax helps achieve better EXT score.
The reason for ultimately choosing “( )” is that we
believe that its directional attribute could help the
model parsing the label structure to some extent. A
further combination comparison is discussed when
answering Q2.

To answer Q2, we carry out label combination
experiments to compare the effectiveness of differ-
ent roles when contributing to the 4 question cat-
egories. Table 2 analyses the benefit of gradually
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Labels Combo GEN CLS NUM EXT Overall
T

5-
L

ar
ge HIDDEN 86.5 97.2 81.7 94.3 89.5

HIDDEN + PART 87.2 97.2 80.4 94.6 89.8
HIDDEN + PART + EVENT 87.3 97.0 82.6 93.4 89.9
Text Only 46.8 93.8 66.4 93.9 66.7

Table 2: Scores achieved with ensembles of selected
labels, each of which is picked out as a result of benefit-
ing certain types of questions.

appending additional roles to each identified entity,
i.e. adding more extrinsic information which fre-
quently matches with answers. Note that the Hid-
den label is the dominant among participants, as it
appears approximately in all generative questions,
and compared with the text-only method, there is
a noticeable improvement after adding Hidden to
it. First, introducing more applicable labels has
a positive impact on the overall accuracy. We ob-
serve the triplet leads to overall best performance.
Second, plain text behaves consistently to what we
find in answering Q1, which performs worse in
tasks like generative questions, however achieving
strong performance in the extractive questions.
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Figure 2: Models accuracy on validation dataset report
every 1k step for three representative models.

To answer Q3, the tested models need to be
comparable. We could say if two models (1) are
roughly of the same amount of parameters (i.e. the
same size). (2) share similar architectural design
methodology (e.g. transformer-based), they would
be considered comparable. We list the performance
comparison of five models for 26k training steps in
Table 3. We see that BART-Large is on a par with
T5-Base from many aspects but performs poorly
on a number of reasoning and generative questions.
This is likely because T5 is fine-tuned on a more

diverse mixture of tasks along with a very large
pre-training dataset. Figure 2 demonstrates that
BART-Large performs poorly at the beginning, tak-
ing off at around the 10k steps i.e. the second epoch.
Moreover, later in the training stage, T5-Base has
a slight advantage in achieving low variance. By
contrast, the performance of BART-Large drops.

Model GEN CLS NUM EXT Overall

E
nc

lo
se

d
by

()

H
D

+
PT

+
E

T BART-Base 82.9 94.2 74.7 92.7 86.0
BART-Large ( 850 MB ) 85.6 96.8 78.5 93.0 88.4
T5-Base ( 950 MB ) 87.0 96.4 81.7 93.9 89.6
T5-Large 87.3 97.0 82.6 93.4 89.9
T5-3B * 88.6 97.4 81.5 93.6 90.5

Table 3: Models comparison between T5 and BART of
multiple sizes, result of T5-3B without error correction
is used as our final prediction model. Note that T5-3B
is 4 times the size of T5-Large. HD, PT and ET are
short for HIDDEN, PART and ENTITY labels. Note
that those labels are defined by the R2VQ dataset.

3.3 Error Analysis

Table 6 gives detailed examples including denoting
mistakes of our suboptimal models i.e. T5-Large,
which is slightly worse than our best T5-3B. As
shown in questions 1 and 3, the model has a ten-
dency to include more unrelated label information
when answering generative questions. However, in
question 4, it ignores some non-label important in-
gredients. That is in part because the transformer’s
attention mechanism sometimes fails at choosing
whether to attend to labels or not when filling the
answer template. Additionally, the worst perform-
nace is for the ‘number reasoning’ question type,
which is very challenging given that it needs to pay
attention to multiple labels in combination. This
could possibly be improved by further re-designing
the transformer block or by including a memory
block over the context.

3.4 Best-performing Submission

Even though we submitted multiple systems
throughout the evaluation phase, our best-
performing submission is the model that uses T5-
3B and integrates the label-enclosing approach
based on round brackets “( )”. This system
achieved an overall 91.3 in the test set, attaining
the 2nd position in the competition.

4 Conclusion

In this paper, we describe the participation of the
HIT&QMUL team in the R2VQ shared task, where
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we ranked second. Our model is based on a uni-
fied generative text-to-text approach, in which we
propose a novel label-enclosed input technique to
include annotation labels to include semantic and
cooking role labels. Our model achieved an ex-
act match accuracy of 91.3, well over the base-
line model (65.3) and only slightly behind the top-
ranked system (92.53). Table 7 lists the top five
final results on the R2VQ test set from all user
submissions ordered by Exact Match score.

Through our comparative study, "$" enclosed
labels proved to be best, with the most effective
generative answering ability. A combination of
HIDDEN, PART and ENTITY provides the best
set of labels. Our study of the label-enclosing ap-
proach has some limitations given our focus on a
small number of experimental label combinations.
In future work, more analysis can be conducted
exploring other label combinations potentially lead-
ing to further improved performance. In addition,
the error analysis reveals that the model sometimes
lacks the ability to attend to related labels possibly
due to attention decay. Deeper investigation of this
is left for future work.
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Appendix

A Label-enclosed Example

Enclosing Method Example

( ) Stirring ( drop : onion mixture # tool : spoon ) frequently, until the onions (
participant : turned ) have turned golden brown.

# Stirring # drop : onion mixture # tool : spoon # frequently , until the onions #
participant : turned # have turned golden brown .

$ Stirring $ drop : onion mixture # tool : spoon $ frequently, until the onions $
participant : turned $ have turned golden brown.

[BOL] [EOL] Stirring [BOL] drop : onion mixture # tool : spoon [EOL] frequently, until the
onions [BOL] participant : turned [EOL] have turned golden brown.

Parallel Stirring frequently, until the onions have turned golden brown. [space] drop :
onion mixture tool : spoon [space] [space] [space] [space] [space] participant :
turned [space] [space] [space] [space] [space]

Table 4

B Question Family Categorisation

Catagory Question Family

Number Reasoning (NUM) Cardinality

Classification (CLS) Event Ordering, Unanswerable

Generative (GEN) Implicit Argument Identification, Ellipsis, Object Lifespan

Extractive (EXT) Coreference Location Change, Attribute, Temporal, Result, Cause,
Co-Patient

Table 5
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C Error Example

Context
1. Mash eggs & mix with salad cream or mayonnaise. If you prefer a sweeter taste, go with salad cream.
I like mine with mayo.
2. Clean & devein prawns; separate the heads. Blanch prawns & heads.
3. Drain & transfer to ice water to prevent them from over-cooking. Dice prawns & set aside.
4. Remove apple & mango skin & dice fruits into small cubes. Soak apple in salt water, lemon juice or
cider vinegar to prevent it from browning. I usually use the traditional method of soaking in salt water
handed down by my mom. Add them into egg mixture, together with the diced prawns.
5. Remove excess sauce from beancurd skin & stuff mixture into the pockets. You may have to cut &
adjust the pocket height.
6. Cut up watermelon & start plating your dish. Chill your appetiser & youre ready impress your guests
with this Inari Age Laughing Prawns Salad.

Question T5-Large Gold Answer

1. How did you get the mixture? by adding the diced prawns, ap-
ple, mango and prawns to the
bowl

by adding the apple, mango and
prawns to the bowl

2. How do you soak apple to pre-
vent it from browning?

soak apple in salt water, lemon
juice or cider vinegar

soak apple in salt water , lemon
juice or cider vinegar

3. What’s in the inari prawn
salad?

the pocket height and pockets the pockets

4. What should be diced? the apple mango the fruits, apple and mango

5. How many times is the pot
used?

2 3

Table 6

D Leader Board

Username EM F1

t.dryjanski 92.53 94.34

weihezhai 91.34 94.23

ruan 78.21 82.62

kartikaggarwal98 69.49 77.37

r2vq (baseline from organizers) 65.34 75.22

Table 7
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Abstract

In this work we present an overview of our
winning system for the R2VQ — Competence-
based Multimodal Question Answering task,
with the final exact match score of 92.53%.
The task is structured as question-answer pairs,
querying how well a system is capable of
competence-based comprehension of recipes.
We propose a hybrid of a rule-based system,
Question Answering Transformer, and a neu-
ral classifier for N/A answers recognition. The
rule-based system focuses on intent identifica-
tion, data extraction and response generation.

1 Introduction

The goal of the task1 was to develop a system apply-
ing existing knowledge to new situations, demon-
strating a kind of understanding of a real-world do-
main. The competition presents a QA2 challenge re-
quiring linguistic and cognitive competencies that
humans have while speaking and reasoning (Tu
et al., 2022).

The task dataset contains questions belonging
to "question families" based on CLEVR (Johnson
et al., 2016), reflecting specific reasoning compe-
tences. These families were explicitly marked as
19 categories, the last one having no answer (N/A),
but direct reference to these categories was prohib-
ited by the task requirements.

The cooking recipes included in the dataset were
provided with exceptionally extensive annotations
containing semantic information. The authors ap-
plied CRL and span-based SRL using VerbAtlas

1https://competitions.codalab.org/
competitions/34056 (access Apr 28th, 2022).

2Abbreviations used in the text: QA: Question Answering;
SRL: Semantic Role Labeling (or Labels); CRL: Cooking
Role Labeling; EM: Exact Match; RC: Reading Comprehen-
sion; DNN: Deep Neural Networks.

(Di Fabio et al., 2019) for the reference inventory
of frames and semantic roles. Subsequently, hu-
man annotators were asked to validate and correct
frames and argument labels.

The dataset was split into training (26,526), val-
idation (3,829) and test set (3,442 questions). At
the competition evaluation stage, the answers to the
latter were not revealed, but the annotations were
retained.

Our source code is available on GitHub3.

2 Related Work

In the recent years, deep learning systems trained
on large datasets began to outperform humans and
other algorithms in the whole QA discipline. Chal-
lenges presented in works such as SQuAD (Ra-
jpurkar et al., 2018), MS MARCO (Nguyen et al.,
2016), CoQA (Reddy et al., 2019), multilingual
MLQA (Lewis et al., 2020) and others popularized
various machine learning models for extractive QA.
Meanwhile, visual and multimodal QA contests
started to appear, e.g. VQA (Antol et al., 2015) or
Audio-Visual Scene-Aware Dialog (Alamri et al.,
2019). They require understanding of images, nat-
ural language and their mutual relations to produce
answers. One should not overlook QA systems ap-
plying SRL annotations used in advanced answer
and question generation, such as Fitzgerald et al.
(2018).

QA systems were proposed for open domains
as well as specific ones, including medicine, edu-
cation, tourism, weather forecasting, etc. One of
the most popular yet challenging topics for QA
is cooking. The system in Khilji et al. (2021) re-
quired preparing a cooking-related ontology, cate-
gorizing questions and extracting potential answers.

3https://github.com/samsungnlp/
semeval2022-task9
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Haussmann et al. (2019) focused on a knowledge
graph used to answer a range of questions related
to healthy diet.

Furthermore, food recognition could be per-
ceived as a part or a preliminary step for cooking
QA. Mohanty et al. (2021) and Akhi et al. (2018)
seek for deep learning classifiers to properly iden-
tify food from real images.

3 System Overview

3.1 Questions Categorization
Because using original question categories was not
allowed, we started with building a categorization
solution. We based it on syntactic and lexical struc-
ture of the questions and used regular expressions
as a way of distinguishing them; details can be
found in Appendix C. Subsequently, to discover
relationships between resulting question groups,
as well as within them, we took SRLs and CRLs
into account. They allowed us to determine a word
or a phrase that should be included in the answer
to a given question. Finally, we distinguished 17
question categories. To match the answers more
effectively, some of them were later divided into
subcategories:

1. COUNTING TIMES — counting how many
times a given TOOL or HABITAT is used.

2. COUNTING USES — counting how many
TOOLS or HABITATS are used.

3. COUNTING ACTIONS — counting how many
actions it takes to do something.

4. ELLIPSIS — searching for direct object(s)
which has undergone a certain process.

5. LOCATION (CRL) — searching for the place
to which something is being transferred or in
which it is located (a CRL is returned).

6. LOCATION (SRL) — similar to the above, but
an SRL is returned.

7. METHOD — searching for a way of perform-
ing an action, with four subcategories accord-
ing to which a CRL or an SRL is returned as
an answer:

• Question about a TOOL,
• Question about an INSTRUMENT — ob-

jects or forces (such as heat, cold) that
come in contact with an object and cause
a change in it,

• Question about an ATTRIBUTE — a prop-
erty that a direct or indirect object pos-
sesses,

• Question about a GOAL — the point
to which something (e.g. tempera-
ture/heat/flame, consistency, thickness)
needs to be brought.

8. LIFESPAN (HOW) — searching for a result of
a process; a related action and its objects are
returned as the answer.

9. LIFESPAN (WHAT) — similar to the above,
but only related objects are inserted into the
answer (without the action).

10. EVENT ORDERING — checking which action
should be performed first.

11. RESULT — searching for expressions deter-
mining to what point a condition has changed.

12. TIME — searching for a specific expression
relating to time.

13. EXTENT — searching for expressions speci-
fying the range or degree of change.

14. PURPOSE — searching for expressions de-
scribing why an action needs to be performed.

15. CO-PATIENT — searching for indirect objects
that undergo a process, are affected in a certain
way, are situated in a particular location or are
transferred to a different location.

16. SOURCE — searching for a starting point of a
motion.

17. LOCATION CHANGE — searching for previ-
ous location of an object.

3.2 Approach Based on Semantic Roles
The system uses the following three-step path to
find the answer: intent identification, data extrac-
tion and response generation.

Having the intent predicted, the question is dis-
patched to one of the per-category handlers. We
designed the system to use a separate answerer for
each category. LOCATION, RESULT, TIME, EX-
TENT, PURPOSE, CO-PATIENT and SOURCE share
the same code after some parametrization, see Ta-
ble 4. For the remaining categories (COUNTING,
ELLIPSIS, LOCATION CHANGE, EVENT ORDER-
ING, METHOD and both LIFESPANs) we use sep-
arate sub-engines, as we need to perform diverse
tasks.

The implementations (except for METHOD) are
pretty straightforward and obey the general rule:

• identify a reference verb and / or object in the
question,

• search for a relevant sentence using the same
verb / object in the given role (category-
dependent) and extract relevant informa-
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tion from the sentence using semantic roles
(category-dependent again),

• if necessary, rephrase the information to form
the answer.

Since METHOD contains four original categories
(2, 6, 10 and 14) and direct use of the category ID
was prohibited, the sub-engine for METHOD runs
the above steps multiple times for: ATTRIBUTE,
INSTRUMENT, GOAL and TOOL, returning the first
found answer. The exact order of the labels was
found empirically, by minimizing the number of
category mismatches on the validation set.

In following sections we discuss the details.

Intent Identification
In almost every category the key to answering a
question is identifying the verb and the object asso-
ciated to it (jointly referred to as intent) and then
finding the answer in the annotation.

First, a question classifier (see Section 3.1) is
used to assign the question to the relevant category.
Then, the analysis of the recipe is performed in an
iterative way. We start with a small chunk (sentence
or paragraph) to prevent mismatches resulting from
looking too broadly. Verbs from the analyzed part
are collected using either SRL (more specifically,
tokens labeled as B-V), or a CRL and SRL com-
bination, namely finding B-EVENT (CRL) with
corresponding SRL (I-V or D-V). A detailed de-
scription of the annotation system is presented in
Tu et al. (2022).

The next step of the intent identification requires
iteration over the collected verbs to find a related
object for each of them. The objects may be anno-
tated in numerous ways:

• using SRL (e.g., PATIENT, THEME)
• using CRL (e.g., TOOL, HABITAT, EXPLICIT-

INGREDIENT)
• using HIDDEN ROLES (e.g. DROP, HABITAT)

When both the verb and the associated object oc-
cur in the question, the system is ready to utilize
this information to search for the answer in the
recipe. More details of our algorithm can be found
in Appendix C.

Data Extraction
Depending on the identified intent, the answer may
appear in the passage either explicitly or implicitly.
In the first case, the data essential for generating
the answer is a direct span from the recipe and the

system only needs to find an appropriate SRL and
return it as the answer. However, for question cate-
gories where the answer is not explicitly mentioned
in the passage, the process of data extraction is far
more complicated. It requires calculating the ac-
tions, tracking object position, or collecting parts
of the answer using all the information available
in the annotation part: SRL, CRL, HIDDEN ROLES

and the relations between them.

Response Generation

Generation of the final response is category-
specific. In some cases, the gold answer contains
only words annotated as a specific SRL (e.g. LOCA-
TION, TIME). In other categories, the gold response
contains the verb and the object from the question.
There are categories where the system has to count
occurrences of the object and return the number, as
well as ones where the phrase by using is required
at the beginning. See Appendix C for details.

3.3 DNN-Based Systems

QA is a well-established NLP task, mainly thanks
to the advancements in attention-based DNN mod-
els. Thanks to fine-tuning, pre-trained BERT (De-
vlin et al., 2018) and its successors may be em-
ployed for downstream tasks, such as RC.

To examine how successful RC models could be
for the competition, we tested the following ones:
BERT, RoBERTa (Liu et al., 2019) and ELECTRA
(Clark et al., 2020) in the extractive setup, i.e. tak-
ing text spans as predicted answers. We fine-tuned
them on the SQuAD dataset and then on the task
recipes from the train set. We used large versions
of the models, and trained them for 5 (BERT), 12
(RoBERTa) and 15 (ELECTRA) epochs. The other
hyperparameters used were: batch size: 8, learning
rate: 1.5e-5, and max token sequence length: 512.
Notably, we did not use provided annotations so
that the solution was based solely on raw recipe
texts.

N/A Classifier

An important part of the task is the correct iden-
tification of N/A answers in the QA pairs. The
dataset contains about 9% of such, spread across
all categories quite evenly. In most cases, the rule-
based system was enough to identify the missing
response in a cooking recipe. For more problematic
situations we reached the best classification results
by fine-tuning the bert-base-multilingual-uncased

1265



model (Wolf et al., 2020) taken from the PyTorch
Hugging Face repository4.

4 Results

Our end-to-end hybrid system reached EM scores
between 80% and 100% per question category and
the official result overall amounted to 92.53%. De-
tails can be found in Table 1.

Our pipeline starts with the semantic-based sys-
tem. If no answer is returned, the RC system is
used if its confidence threshold exceeds 98%. This
fallback mechanism produced any significant im-
provement only for the LOCATION (SRL) category.
We additionally consider the N/A Classifier result:
if it exceeds the 99% certainty threshold, the N/A
answer is returned. This operation enhances the re-
sults for the EVENT ORDERING category. Adding
the DNN systems in such a way leads to a 0.145 pp
result increase.

In the post-evaluation phase we made further
improvements, mainly in the rule-based system,
and we ultimately reached the 92.969% EM result.

Human annotators reached notably low EM
score of 52%. It is mainly due to the fact that
the exact match metric leaves no room for human
creativity. A manual review of the semantic validity
of the responses gave us 73% alignment with the
gold answers. This is discussed further in Section
4.2.

Manual analysis revealed that only some ele-
ments of the images associated with the recipes
relate directly to recipe content. This was also
mentioned by task organizers. Only 62 from 500
analyzed pictures were considered helpful in an-
swering questions by our human evaluators. They
also reported that they were often assigned to a
different recipe step. For these reasons we further
disregarded the images and focused only on the
textual part of the data.

4.1 DNN-based Systems

Table 2 shows RC models comparison. As ex-
pected, the best Exact Match score was achieved by
ELECTRA, which is currently the top-performing
model on the SQuAD benchmark.

Table 3 presents the percentage of test set ques-
tions that could be answered by an oracle extractive
answering system, i.e. where the answer either can
be found as a span from the recipe text or it is N/A.

4https://huggingface.co/models
(access Feb 20th, 2022).

Such examples cover 35% of the test set, meaning
that this is the upper limit for any extractive QA sys-
tem. The result achieved by ELECTRA (EM equal
to 31%) is in line with this estimation. Another
34.6% EM could be achieved with an extractive
QA system by using additional post-processing.

This leaves out 30.4% examples, mainly from
categories COUNTING, LIFESPAN and EVENT OR-
DERING, that require non-trivial processing (e.g.
rephrasing) and/or aggregation of information from
various parts of the recipe.

Based on these results we claim that ELECTRA
or other BERT-based systems can be considered ap-
plicable for this type of task, yet they should be able
to generate answers beyond plain span extraction.
It would require improvements, such as making use
of a generative model, feeding the semantic annota-
tions along with recipe texts, and perhaps adjusting
the models to specific question categories.

The N/A Classifier worked better when fed with
the full recipe passage (i.e. Ingredients and Di-
rections; F1 = 82.7%). If provided only with
Directions, the result dropped to F1 = 76.6%. It
shows that the Ingredients information plays an
important role in the solution.

4.2 Human benchmark

The aim of creating the human benchmark de-
scribed in this subsection has no other purpose but
to measure to what extent our results (as well as
the gold answers) are close to human reasoning,
i.e. to the answers provided by an actual person.
We did so as we did not find any information on
human performance in materials provided by the
organizers.

We asked a group of six linguists to answer 2,000
questions selected randomly from the validation set.
We maintained similar percentages of each ques-
tion category for the sample to be representative.
Before starting their task, the linguists had become
familiar with the train dataset to grasp the main
idea and the structure of questions and answers.
Importantly, they did not have access to the anno-
tation so that they based their answers solely on
the recipe texts and related pictures. We decided to
take this approach assuming that the semantic an-
notation of the recipes serves as a partial equivalent
of the general knowledge that AI lacks.

As already mentioned, the manual review of the
human answers revealed that 73% of them have
the same meaning as the gold answers. Other re-
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Table 1: Exact Match percentage per category. For the training (Train), validation (Val) and test (Test) sets we
present the results of our hybrid system. Post-Eval shows our final post-evaluation results if different than Test.
Size is a percentage of the given question category in the whole validation set. Human results were calculated
based on a sample from the validation set as described in Section 4.2. For Electra we took the full test set.

Category Size Train Val Test Post-Eval Human Electra
COUNTING TIMES 2.3 80.6 95.3 88.5 41.9 9.0
COUNTING ACTIONS 6.2 89.7 88.4 87.8 52.7 8.9
COUNTING USES 5.4 98.1 97.5 98.4 77.1 10.2
ELLIPSIS 13.8 89.2 89.3 89.5 20.9 22.7
LOCATION (CRL) 9.4 98.4 97.5 98.4 51.0 47.2
LOCATION (SRL) 8.0 95.6 96.5 95.3 69.5 80.1
METHOD 13.4 86.4 87.9 87.0 88.0 37.1 23.9
LIFESPAN (HOW) 5.4 89.1 91.6 88.7 5.1 10.8
LIFESPAN (WHAT) 5.1 93.7 93.9 92.6 15.6 21.1
EVENT ORDERING 15.8 97.1 97.8 96.7 97.2 93.4 9.8
RESULT 2.5 95.9 97.9 96.5 96.2 83.5
TIME 3.0 87.8 94.2 90.3 74.7 73.8
EXTENT 0.3 100.0 100.0 88.9 0.0 88.9
PURPOSE 1.2 98.2 100.0 97.6 81.8 82.9
CO-PATIENT 0.6 88 .4 95.8 85.0 64.3 90.0
SOURCE 0.6 96.4 100.0 100.0 68.4 31.0
LOCATION CHANGE 7.2 93.9 97.0 91.5 93.9 40.8 40
Total 92.7 93.9 92.5 93.0 52.0 31.0

Table 2: Reading Comprehension models results for the
test set (0 - 100 range). EM — Exact Match score.

Model F1 EM
BERT 36.9 30.7
RoBERTa 37.7 30.7
ELECTRA 38.5 31.0

sponses are semantically close, yet not identical.
However, they often differ lexically from gold an-
swers, resulting in the low overall EM score.

It is particularly visible in the ELLIPSIS cate-
gory:

Question: What should be tossed?
Gold answer: the rice mixture and yogurt
mixture
Human answer: yogurt, sour cream, mustard,
sugar, salt, pepper and rice mixture

The linguists also failed to return the gold answer
when the question itself was semantically ambigu-
ous. It was mostly applicable to the METHOD

category and to both LIFESPAN categories. In the
former, it results from various possible ways of
understanding the English word how:

Question: How do you slice the tomatoes?

Gold answer: by using a knife
Human answer: slice the tomatoes thinly

The LIFESPAN questions require listing ingredients
needed to obtain something. The discrepancies
between the gold answer and the human answer
often resulted from a different nouns ordering or
using a synonym:

Question: How did you get the hot chocolate?
Gold answer: by mixing the hot water, milk
and mixture in the mug
Human answer: by mixing the mixture with
hot water or milk in a mug

As linguists did not see the annotation, their pro-
posals were often different from the gold answer
in categories where it was taken from SRL or CRL,
such as METHOD subcategory concerning tools or
habitats, or the COUNTING categories. Moreover,
e.g. in both LIFESPAN categories, gold answers
either listed the ingredients explicitly or returned
the DROP value (one of the HIDDEN ROLES), such
as "mixture", "soup" or "dough". From the human
point of view those two kinds of responses would
be equally correct:

Question: What’s in the mixture?
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Table 3: Extractive Answering usability on the task. EA
— answers present in source texts as non-empty spans.
NA — N/A answers in the test set. AQ — Answerable
Questions (EA + NA); i.e. an oracle system result. EM
— Exact Match (≤ AQ) actually achieved by our ELEC-
TRA system. All results are provided as percentage and
based on the test set.

Category EA NA AQ EM
COUNTING TIMES 0 9 9 9
COUNTING ACTIONS 0 9 9 9
COUNTING USES 0 10 10 10
ELLIPSIS 12 10 22 21
LOCATION (CRL) 50 10 60 47
LOCATION (SRL) 75 9 84 81
METHOD 13 12 25 24
LIFESPAN (HOW) 0 11 11 11
LIFESPAN (WHAT) 16 11 27 21
EVENT ORDERING 0 10 10 10
RESULT 79 5 84 83
TIME 67 13 80 74
EXTENT 78 11 89 89
PURPOSE 78 10 88 83
CO-PATIENT 80 10 90 90
SOURCE 81 5 86 31
LOCATION CHANGE 48 14 62 40
Total 25 10 35 31

Gold answer: the egg and mixture

Human answer: the butter, sugar, tangerine
zest, vanilla, baking powder, salt and egg

The linguists obtained the best results in the EVENT

ORDERING, RESULT, TIME and PURPOSE cate-
gories. Apart from the last one, those are closed-
form questions that leave little room for semantic
ambiguity.

We treated human benchmark as an interesting
experiment that confirmed two hypotheses we had.
Firstly, the answers provided by our model are
often semantically close to the gold answers, as
stated above. The scoring criteria reject any answer
that is not identical to the gold one, which leads to
allegedly poor human performance and makes the
answer post-processing a daunting but crucial step.
Secondly, there are some patterns in the task data
that are remote from human thinking. The result of
the experiment did not affect the final score — it
served solely for analytic purposes.

5 Conclusion and future work

Our main contribution is the hybrid system for the
cooking-related QA. While we are satisfied with
the result, the ~7% error rate still leaves some room
for improvement.

The most challenging task for our system was
the correct intent identification. This is visible in
the fairly low results in the METHOD category. It
may relate to four different intents, and we did not
always distinguish them properly. Other problem-
atic aspects were counting actions and objects and
generating answers that contain all required items
in the right order. These issues solely contribute to
as much as 5.5 out of 7 pp constituting the whole
the error rate.

The obvious question left unanswered is the pos-
sibility of SRL/CRL annotation automation, also
for other competence domains. This is a missing
component in a full end-to-end application of our
solution.
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A Dataset Analysis

One of the major problems we encountered during
the linguistic analysis was question duplicates:

Semantically justified
• Semantic ambiguity resulting from the spe-

cific characteristics of the English language,
so that it is not possible to distinguish ques-
tion types by their syntactic structure or by
other elements. For example, four groups of
semantic roles as possible answers can appear
in the same recipe
Duplicated question: How do you mix the
shrimp, pasta, butter and parsley?
Answer 1: mix the shrimp, pasta, butter and
parsley well
Answer 2: by using a spatula

• With the same question structure, semantic
ambiguity resulting from the content of the
recipe, e.g. the same verb appearing twice in
the text.
Duplicated question: What should be added
to the pan?
Answer 1: the string beans and dressing
Answer 2: the sauteed garlic, onions, ginger
and string beans

In such cases it might be a better solution to list the
correct answers instead of giving just one.

Semantically unjustified
• With the same question structure, referring to

the same object in the recipe; these appeared
mainly in the COUNTING category.
Duplicated question: How many bowls are
used?
Answer 1: N/A
Answer 2: 1

The aforementioned example of unjustified
duplicates is associated with another problem.
Namely, for many questions marked as unanswer-
able it was actually possible to find an answer in
the recipe. We suppose that this was caused by
selecting random questions from other recipes and
assuming that they could not be answered based on
the content of another recipe. Unfortunately, due to
the relatively small variety of vocabulary related to
cooking, this assumption was misleading. This can
be seen especially in the categories: COUNTING,
LIFESPAN and ELLIPSIS.

B Additional Experiments

B.1 Applicability to Another Domain QA

In this experiment we checked whether our sys-
tem would work for other domains. We chose four
instruction texts that are related to make-up tech-
niques, furniture assembling and handmade Christ-
mas decorations. We labeled these texts manually
and asked linguists to write questions and answers
bearing in mind the structure of questions and an-
swers proposed by the organizers. They created
20 QA pairs for each text on average. The system
achieved results in the range of 40%-50% EM (if
we additionally included responses that are seman-
tically correct, but not fully consistent with the an-
swer suggested by the question authors, we reached
approximately 60% EM). It is worth emphasizing
that this was possible without any changes in our
system.

B.2 Completeness and Correctness of
Question Intents

The second experiment checked whether the ques-
tions provided by the organizers were semantically
diverse and to what extent they corresponded to
potential human intentions. We asked linguists
to write questions related to five recipes from the
validation set. Importantly, for the sake of an un-
biased experiment, those were not the same peo-
ple who worked on the human benchmark. The
linguists engaged in this experiment had not seen
questions and answers provided by the organizers,
so the structure of independently written questions
is not influenced by the existing dataset. They pre-
pared about 100 question-answer pairs (20 for each
recipe). After comparing the questions provided by
the organizers to the ones created by our linguists,
we concluded that some question types have not
been included in the competition dataset:

• questions related to the amount of ingredients,
e.g How many tablespoons of vinegar should
I add?

• questions about the type of ingredients, e.g.
What kind of oil should I use for this recipe?

• yes-no questions, e.g. Is spinach required for
this recipe?

• questions about name or type of the dish, e.g.
What is this recipe for?

Therefore, we have four extra categories not men-
tioned by task organizers. On the other hand, every
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category in Section 3.1 was covered by at least one
question.

It is also noteworthy that most of the questions
formulated by linguists are in the first person singu-
lar instead of the second person, as the organizers
propose. Also, they respond using a whole sen-
tence rather than a single word or a short phrase.
The remaining questions written by the linguists
correspond to the questions categories proposed
by the task organizers. This proves that the pro-
posed Question categories are valid and reflect real
human intentions. It should be emphasized that
the structure of human-written questions and an-
swers is much more varied, but they still contain
keywords that can be used without problems in our
question classifier.

It must be stressed that our manual annotation
concerned entirely new texts, only for the purpose
of these experiments. We did not use the any of the
additionally annotated data to augment the datasets
provided by task organizers. Therefore, the experi-
ments did not affect out final score.

C Implementation Details

The process of searching for information in a recipe
and generating answers is presented in the Algo-
rithm 1. It utilizes information such as types of se-
mantic labels playing the crucial role while answer-
ing a given question category. It is summarized in
Table 4, which also shows regular expressions used
by our classification system.

• By event we usually mean a verb annotated
as EVENT which should match the verb from
the question. If the question also includes an
adverbial, it can be used to distinguish the
correct event in the recipe.

• By object we mean a word or phrase, which is
annotated as DROP, PATIENT or THEME and
matches the object from the question. In some
cases no object is provided. Then the system
relies on event matching.

• In the COUNTING category we need to search
directly for TOOLS, HABITATS or RESULTS.

If no matching event, object, HABITAT, TOOL or
RESULT can be found within the recipe, the system
concludes that the question is not answerable.

Example of answering can be seen in Fig 1.

Additional Remarks
To ensure higher accuracy of the results, the system
has to take into account several characteristics of

Algorithm 1: Answer generation process

Input :question, recipe
Output :generated answer

question category← predict category using
regex from TABLE 4 COLUMN 2

question details← extract details from the
question (see COLUMN 3)

relevant information← search for relevant
part in the recipe using question details

RC threshold← 0.98
NA threshold← 0.99

if relevant information was found then
answer← generate answer for given

question category according to
COLUMN 4

else
answer← use answer predicted by

Electra Extractive QA1

if confidence < RC threshold then
answer← N/A

if N/A Classifier1,2 output = N/A and
confidence >= NA threshold then

answer← N/A

return answer

1 Electra Extractive QA and N/A Classifier are used
only for some categories

2 N/A Classifier was added after competition end
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Table 4: Summary of question handling. Columns left-to-right: category, regex used for initial classification,
semantic information used to search for the answer in the recipe, information used to generate the final response.

Category Regex Pattern Searched Label Answer Generation
COUNTING TIMES How many times tools or habitats count found occurrences
COUNTING

ACTIONS

How many actions result and corresponding
event

count found occurrences

COUNTING USES How many .* are used tools or habitats count found occurrences

ELLIPSIS What should event and (tool or habitat) drops, ingredients

LOCATION (CRL) Where should you event and object habitat
LOCATION (SRL) Where do you event and object location, destination, co-

patient or co-theme
METHOD How do you event and (object or ingre-

dients)
verb, object, one of: tool,
instrument, attribute, goal

LIFESPAN (HOW) How did you get result and corresponding
event

verb, drops, patients, tools,
habitats

LIFESPAN

(WHAT)
What’s in result and corresponding

event
ingredients (if patient or
theme), drops

EVENT ORDERING .* which comes first both events use the preceeding one

RESULT To what extent event and object result
TIME For how long event and (object, attribute

or purpose)
time

EXTENT By how much event and object extent

PURPOSE Why do you event and object cause or purpose

CO-PATIENT What do you .* with event and object co-patient or co-theme

SOURCE From where event and object source

LOCATION

CHANGE

Where was .* before event and object, and all
previous events for the
same object

previous habitat different
from the one in the starting
event

the R2VQ dataset:

• SRLs are represented as columns, within
which objects are connected to the verb. Each
subsequent verb within a sentence has its own
column with corresponding objects. Iterating
over each column separately appears to be
very helpful in terms of associating verbs with
proper objects.

• Each SRL starts with the head (the label starts
with the letter B). If the phrase contains mul-
tiple words, the head is followed by the body
(the label starts with the letter I or D). We
found that concatenation of the full-length
expression (using B and I as indicators) im-
proves the quality of the identification pro-
cess.

• Tokens whose CRL is TOOL, HABITAT, EX-
PLICITINGREDIENT or IMPLICITINGREDI-
ENT are supplied with the index of the verb to

which they relate. In some cases, using that in-
formation is extremely helpful as it allows for
unambiguous identification of the relationship
between the verb, the object and the answer.

• While an object in the question is created
using a HIDDEN ROLE, it is needed to
singularize each part of it. For example, if
Drop=”limes.3.1.9:ginger.3.1.1:onions.2.1.7”
there is a great chance that it will appear in
the question in the form of the lime, ginger
and onion. On the contrary, when CRL or
SRL were used to create the question, they
will most likely appear as an unchanged span
from the passage.
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Figure 1: Example of the sematic-role-based answer generation.

Where do you saute minced meat?

Saute onion in 2 tablespoons of olive oil, add chopped vegetables and cook for 10 minutes

over low heat, stirring occasionally.

In a separate pan saute minced meat breaking it up well, and stir for 6-8 minutes until browned.

Add the tinned tomatoes to the cooked vegetables.

1. Recognized intent = LOCATION (SRL)

Verb = saute

Object = minced meat

2. Relevant Sentence (VERB = saute & PATIENT = minced meat):

There are two sentences with verb saute.

The model chooses the one whose object (PATIENT) is minced meat.

“In a separate pan saute minced meat breaking it up well, and stir for 6-8 minutes until browned.”

in a separate pan

VERB PATIENT INSTRUMENT PATIENT TIME

INSTRUMENT TIMEVERB

VERBVERB

LOCATION VERBPATIENTVERB PATIENT VERBATTRIBUTE TIME RESULT

VERB PATIENT CO-PATIENT

LOCATION VERB PATIENT

Question:

Recipe 

excerpt:

Procedure:

Answer:

Recognized intent:

LOCATION (SRL)

verb

found

object found

relevant label (LOCATION) found 

for the matching verb + object pair
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Abstract

This paper describes our system used in the
SemEval-2022 Task 09: R2VQ - Competence-
based Multimodal Question Answering. We
propose a knowledge-enhanced model for pre-
dicting answer in QA task, this model use
BERT as the backbone. We adopted two
knowledge-enhanced methods in this model:
the knowledge auxiliary text method and the
knowledge embedding method. We also design
an answer extraction task pipeline, which con-
tains an extraction-based model, an automatic
keyword labeling module, and an answer gen-
eration module. Our system ranked 3rd in task
9 and achieved an exact match score of 78.21
and a word-level F1 score of 82.62.

1 Introduction

In this paper, we discuss an approach to the
Question Answering (QA) task for SemEval-2022
Task9(Tu et al., 2022). This task is structured as
question answering pairs, querying how well a sys-
tem understands the semantics of recipes derived
from a collection of English cooking recipes and
videos, which involve rich semantic annotation and
aligned text-video objects.

In this task, a large proportion of answers can’t
be derived directly from the original recipe text
and the information of these answers is hidden in
annotated knowledge data. So we adopted two
knowledge-enhanced methods in this model: the
knowledge auxiliary text method and the knowl-
edge embedding method. The knowledge auxiliary
text method incorporates the hidden-roles knowl-
edge and co-reference knowledge in generating
auxiliary text. The knowledge embedding method
encodes u-pos knowledge and entity knowledge
into knowledge embedding.

A key evaluation measure in this task is the exact
match score. Because the extraction-based model
is more robust than the generative-based model,
we design an answer extraction task pipeline. The

pipeline contains an extraction-based model, an
automatic keyword labeling module, an answer re-
structures module. In the training phase, we locate
keywords of answers in recipe text and provide
training data by labeling the keywords. In the pre-
diction phase, we collect output keywords of the
model and generate answer text by the keywords.

Our system ranked 3rd in task 9 and achieved
an exact match score of 78.21 and a word-level
F1 score of 82.62. We make our code publicly
available on Github1.

2 Related Work

Question Answering (QA) Liu et al. (2019) de-
scribed the Span Extraction task in MRC (Machine
Reading Comprehension) and Mervin (2013) de-
scribed the extraction-based question answering
task. BERT(Devlin et al., 2019) displayed a gen-
eral extraction-based approach for the QA task.

Knowledge enhanced CoLAKE(Sun et al.,
2020), ERNIE 3.0(Sun et al., 2021) and K-
BERT(Liu et al., 2020) shown the method of con-
structing a new context by using knowledge infor-
mation. Know-BERT (Peters et al., 2019) used
the knowledge embedding method and Zhang et al.
make some improvements.

Prompt In generating knowledge auxiliary text,
we are inspired by prompt(Liu et al., 2021) learning.
We focus on prompt engineering in this paper. Yuan
et al. (2021) rewrite the context by replacing phrase.
Davison et al. (2019) use a unidirectional LM to
score the prompt patterns. Gao et al. (2021) use the
T5 model to generate a template.

3 System overview

In this paper, we discuss an approach to the
Question Answering (QA) task for SemEval-2022
Task9.

1https://github.com/archfool/SemEval2022_Task09
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Figure 1: knowledge enhanced model

We divided the samples into 18 categories after
analyzing the patterns of QA pairs. We predict
answers of 6 categories by rule-based method and
12 categories by deep-learning model.

We chose BERT(Devlin et al., 2019) as the back-
bone of our model and chose the answer extraction
method for this QA task.

Knowledge information is significant in this task,
so we adopted two knowledge-enhanced methods:
the knowledge auxiliary text method and the knowl-
edge embedding method.

Knowledge auxiliary text method generating ex-
panded text that contains original text and knowl-
edge auxiliary text. The knowledge auxiliary text
incorporates the hidden roles and co-reference
knowledge.

Knowledge embedding method encoding u-pos
(universal-part-of-speech) knowledge and entity
knowledge into knowledge embedding.

3.1 QA datasets analysis

Following the design ideas of the FAQ task, we
analyzed the patterns of QA pairs first. And we
summarize QA pairs into 18 pattern categories.

With the help of divided pattern categories, we
fed certain categories of data into a rule-based mod-
ule. For example, some questions are about count-
ing tasks, the rule-based method is better for these
tasks than the deep-learning model method. We
fed the rest QA categories into the deep-learning
model module. The proportion of samples using
the rule-based method was 39.87%, and the pro-
portion of samples using the deep-learning model
method was 60.13%.

The QA-pair pattern categories’ example is
shown in Table 2 of Appendix A.

Some more dataset information is shown in Sec-
tion 4.1.

3.2 Knowledge auxiliary text

By analyzing the QA cases of the datasets, we
found that a large proportion of answers can’t be
derived directly from the original recipe text. And
the information of the answers is in the Cooking
Role Labeling (CRL) annotations. So we generate
knowledge auxiliary text by introducing the knowl-
edge of the co-reference column and hidden-role
column in CRL annotations. We add knowledge
auxiliary text to the original text as the input of the
model.

Co-reference knowledge can be regarded as a
kind of entity link between the current entity to-
ken and the token where this entity is mentioned
the first time. In this way, readers can search and
locate the item unambiguously even though differ-
ent items have the same name or one item uses
different names. Knowledge auxiliary text of co-
reference information is generated by easily adding
the alias in the co-reference column within a couple
of brackets.

For example, if the original text is "mixture" and
the co-reference column has the value "small balls".
Then we generate knowledge auxiliary text "(small
balls)". Combined knowledge auxiliary text to the
original text, and get the final text: "mixture (small
balls)".

Hidden-role knowledge is a supplement to the
action token that appears in the original text when
some elements of the action are hidden. Inspired
by prompt(Liu et al., 2021) learning, we generate
knowledge auxiliary text following the pattern of
the answer text from the QA-pairs. For example,
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we use ‘by using a knife’ as knowledge auxiliary
text when the hidden role column has a key value
of ‘TOOL: knife’.

The knowledge auxiliary text method can be
shown in Figure 1. In the token embedding layer,
the tokens of green grids are the original text of
the recipe, and the tokens of orange grids are the
knowledge auxiliary text. We combined the orig-
inal text and the knowledge auxiliary text as the
input of the model.

3.3 Knowledge embedding
Entity knowledge and u-pos knowledge is useful in
predicting answers in QA task. For example, a QA
pair is: "How do you cut the carrots? by using a
knife". In this case, the token of a knife is labeled
as B-TOOL in the entity column. It would help
predict the answer if the model gets the token’s
entity type information.

In our model, we adopt the knowledge embed-
ding method to incorporate the knowledge of the
u-pos column and entity column. Similar to the
token embedding representation, the knowledge
embedding method maps values in the u-pos col-
umn to embeddings. The size of the knowledge
embedding is the same as token embedding. The
entity column’s knowledge embedding method is
the same.

As shown in Figure 1, we have two places op-
tions to apply knowledge embedding: the embed-
ding layer (knowledge embedding plan A in Fig-
ure 1) or the header (knowledge embedding plan B
in Figure 1).

In plan A, we add knowledge embedding to the
embedding layer of the model. Compared with
BERT’s embedding layer whose output embedding
is the sum of token embedding, position embed-
ding, and segment embedding, our model adds
entity knowledge embedding and u-pos knowl-
edge embedding to the original BERT’s embedding
layer.

In plan B, we add knowledge embedding to the
header of the model. We first sum up the output rep-
resentation of BERT’s last layer, the entity knowl-
edge embedding, and the u-pos knowledge embed-
ding. Then fed it into a small network such as
MLP(Rosenblatt, 1957).

3.4 Answer extraction method for QA task
Two common methods of predicting answers in
QA tasks are the extraction-based method and the
generative-based method. In our model, we chose

the answer extraction method for the QA task. Here
are the steps to label the data for extracting an-
swers:

First, we filtered out keywords from the ques-
tions and answers by deleting words whose u-pos
are article, preposition, pronoun, and so on.

Second, we located the keywords in the text. Ac-
cording to the statistics, 88.5% of the QA samples
can be located successfully in one sentence, and
0.5% in two adjacent sentences. 11% samples’ key-
words can’t be located in texts, these samples were
regarded as low confidence samples and would not
be used.

Third, we labeled the answers’ keywords in the
recipe texts. Concatenate the question and the la-
beled recipe texts as the input for the model.

Forth, predicting answer’s keywords by model.
Fifth, generate answers based on the keywords.

3.5 Rule-based answer generation method

Some QA categories in Table 2 are more suitable
for predicting using rule-based methods. For exam-
ple, some categories are about counting tasks.

By analyzing the QA patterns, we assigned 6
categories to the rule-base module: cat 1, cat 6, cat
7, cat 8, cat 9, and cat 10. These samples make up
44.36% of the total samples.

A simple rule description of the 6 categories is
shown in Appendix B.

4 Experimental setup

4.1 Dataset

The organizer of SemEval-2022 Task9 provided
R2VQ (Recipe Reading and Video Question An-
swering) dataset.

R2VQ dataset is a collection of cooking recipes
and videos. The R2VQ dataset provided to us has
1000 samples, and the organizer split the dataset
into 3 parts: training dataset (800 samples), valida-
tion dataset (100 samples), and testing dataset (100
samples). The training dataset and validate dataset
have corresponding answers to the questions while
the test dataset hasn’t.

Data of each sample in the R2VQ dataset is from
two sources: cooking recipe text and screenshots
from the videos. Each context of the recipes is
consist of ingredients and directions whose labels
have two annotation layers: Cooking Role Labeling
(CRL) and Semantic Role Labeling (SRL). In the
model of this paper, we only use the directions of
recipes as the model’s input.
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position entity upos f1
None False False 88.78
embed_layer False True 88.93
embed_layer True False 89.00
embed_layer True True 89.23
header False True 88.47
header True False 88.76
header True True 88.03
embed_layer * * 89.05
header * * 88.42

* True * 88.76

* * True 88.66

Table 1: Squad f1 for different knowledge-enhanced
methods. Column Position means which place we
add knowledge embedding to. Column Entity means
whether we use entity knowledge or not. Column
Upos means whether we use universal-pos knowledge
or not. Column F1 means the word-level F1 score of the
method.

4.2 Training Details

We implemented our model using the pre-trained
language model BERT(Devlin et al., 2019) as the
backbone and chose Adam-W(Loshchilov and Hut-
ter, 2018) as the optimizer. In train phrase, the
batch size is 8 and the optimizer’s learning rate
is 3e-5. We ran the experiment on an NVIDIA
GeForce RTX 3090 GPU.

As like in the MRC task, the article is a long text
while the question is a short text. We spilt the long
recipe text into short texts. Concatenate the short
recipe text and the question by the special token
[SEP] as a tokens sequence. And added [CLS] to-
ken to the beginning of the tokens sequence. Every
tokens sequence is an input of the model. We set
the max sequence length of the tokens sequence
as 512. We set the configuration of doc stride as
128 which indicates the token length of adjacent
sentences’ overlap.

5 Results

We ranked 3rd in the competition of SemEval-2022
task 9. Our model’s word-level F1 score is 82.62
and the exact match score is 78.21.

In our system, parts of questions got answers by
rule module while others by deep-learning model
module, which is mentioned in Section 3. In this
paper, we mainly focus on the deep-learning model
module and word-level F1 score. The oblation
experiment is about knowledge enhanced method.

The baseline of our original model is 61 of squad
word-level F1 score, without knowledge auxiliary
text method and knowledge embedding method. Its
corresponding model is BERT and its input is the
original text of the recipes without any annotation
of SRL and CRL.

Then we adopt the methods of knowledge en-
hancement including knowledge auxiliary text and
knowledge embedding. We got a squad word-level
F1 score of 88.78 when we used the knowledge aux-
iliary text method and an F1 score of 89.23 when
using both of the two knowledge enhanced meth-
ods. The ablation experiment results are shown in
Table 1.

The record of knowledge auxiliary text method
is shown in the first line (so as the first section) of
Table 1, and the squad word-level f1 score is 88.78.
In this method, we used a text which contains both
original text and knowledge auxiliary text as the
model’s input data.

The second part of Table 1 is the records of the
complete knowledge enhanced method containing
both knowledge auxiliary text and knowledge em-
bedding. We have done 6 groups of experiments.
They are different in the place we put the knowl-
edge embedding in and the specific embedding
terms (entity knowledge or upos knowledge).

The best score for the second part is 89.23, its
corresponding parameters are: adding knowledge
embedding in the embedding layer, using both en-
tity knowledge and upos knowledge.

The third part of Table 1 is a summary pivot table
of the second part.

Some conclusions could be drawn from Table 1.
1) Knowledge embedding in the embedding layer
improves the model’s performance. 2) Both entity
knowledge and upos knowledge benefit the perfor-
mance and entity knowledge is a little more impor-
tant. 3) The performance dropped if we place the
knowledge embedding in the header of the model.
Perhaps the parameters we set in experiments are
inappropriate or the model’s header we designed is
too simple.

6 Conclusion

We present two knowledge-enhanced methods in
this model: the knowledge auxiliary text method
and the knowledge embedding method. We design
an answer extraction task pipeline to accommodate
SemEval-2022 Task 09. Future work will involve
incorporating the video data and predicting the an-
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swer of all pattern categories by model.
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Appendix

A QA-pair pattern categories

The QA pattern categories are shown in Table 1.

B Rule-based method descriptions

Follows are brief descriptions of the some cate-
gories’ rule-based methods. The QA-pair pattern
categories are described in Table 1.

Cat 1: locate two sentences in the text and judge
whose position is in front.

Cat 6: count how many times the tool or ingre-
dient, is mentioned in the question, appears in the
text.

Cat 7: get ingredient and action information
from the question, locate the ingredient before the
action occurs, and get the habitat of the ingredient.

Cat 8: count how many times the habitat, which
is mentioned in the question, appears in the text.

Cat 9: locate the RESULT target in the context
and extract the whole sentence. Reorganize the text
by the components from original text and knowl-
edge auxiliary text.

Cat 10: locate the HABITAT target in the context
and extract relevant ingredients.
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ID Question Answer Pct.
01 Pouring batter in and baking the first event 15.9

other side, which comes first?
02 How do you cut the stalks? by using a knife 13.7
03 What should be added to the pan? the kale 12.9
04 Where should you divide the dough? floured surface 10.8
05 Where do you transfer the garlic? to a paper towel 8.5
06 How many times is the spoon used? 2 8.3
07 Where was the quinoum before it bowl 5.8

was mixed into the wok?
08 How many teaspoons are used? 2 5.6
09 How did you get the aromatic by adding the 4.5

mixture? shallot and garlic
10 What’s in the gratin? the cheese 4.2
11 For how long do you add diced after a few minutes 3.5

mushroom pieces?
12 To what extent do you stir the pie til syrup thickens 3.4
13 Why do you whip the egg? to mix well 1.3
14 From where do you drain water? potatoes 0.8
15 What do you mix sweetener with? with 3/4 cup water 0.6
16 By how much do you cover the beans by 2 inches 0.1

with water in a pot?
17 What do you cut the rectangle into? into 6 squares 0.05
18 How would you reduce oven temp? slightly 0.01

Table 2: QA-pair pattern categories
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Abstract

In this paper, we introduce the first SemEval
shared task on Structured Sentiment Analysis,
for which participants are required to predict
all sentiment graphs in a text, where a single
sentiment graph is composed of a sentiment
holder, target, expression and polarity. This
new shared task includes two subtracks (mono-
lingual and cross-lingual) with seven datasets
available in five languages, namely Norwegian,
Catalan, Basque, Spanish and English. Partici-
pants submitted their predictions on a held-out
test set and were evaluated on Sentiment Graph
F1. Overall, the task received over 200 submis-
sions from 32 participating teams. We present
the results of the 16 teams that provided system
descriptions and our own expanded analysis of
the test predictions.

1 Introduction

Affective computing is a fundamental step to-
wards enabling human computer interaction (Pi-
card, 1997), as human communication is filled with
affective content which conveys a speaker’s private
state, i.e. their current mood, their emotional expe-
riences, or their attitude towards a certain object of
conversation. Along with emotion detection, sen-
timent analysis (Pang et al., 2002; Turney, 2002;
Wiebe et al., 2005) is an important stepping stone
towards this goal. On a more practical level, being
able to automatically determine what people think
about an idea, product, or policy is of interest to
companies, governments, and private citizens.

In this paper, we describe the SemEval-2022

shared task on Structured Sentiment Analysis,
which can be thought of as an information ex-
traction problem in which one attempts to find all
of the opinion tuples O = Oi, . . . , On in a text.
Each opinion Oi is a tuple (h, t, e, p) where h is a
holder who expresses a polarity p towards a tar-
get t through a sentiment expression e, implicitly
defining pairwise relationships between elements
of the same tuple. Liu (2012) argues that all of
these elements are essential to fully resolve the
sentiment analysis problem. Although early anno-
tation efforts in sentiment analysis annotated for
fine-grained sentiment (Wiebe et al., 2005; Toprak
et al., 2010), most research on modeling sentiment
focuses either on a variety of sub-tasks which avoid
performing the full task, e.g. targeted (Hu and
Liu, 2004), aspect-based (Pontiki et al., 2014), or
end-2-end sentiment (Wang et al., 2016), or in-
stead relies on simplified and idealized tasks, e.g.
sentence-level binary polarity classification (Pang
et al., 2002).

We argue that the division of fine-grained sen-
timent into these sub-tasks has become counter-
productive, as reported experiments are often not
sensitive to whether a given addition to the pipeline
improves the overall resolution of sentiment, nor
do they take into account the inter-dependencies of
the various sub-tasks.

Motivated by this, we present the SemEval-2022
shared task on Structured Sentiment Analysis,
which jointly predicts all elements of an opinion
tuple and their relations.
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Some others give the new UMUC 5 stars - don't believe them . 

positive negative

holder target expression targetexpression

Esperientzia ezin hobea eduki genuen . 

positive

target expression holder

"experience           excellent              have               we had"

Figure 1: A structured sentiment graph (shown in English and Basque) is composed of a holder, target, sentiment
expression, their relationships and a polarity attribute. Holders and targets can be null.

2 Related Work

The conceptual roots of Structured Sentiment Anal-
ysis can be found in early computational work on
sentiment (Hu and Liu, 2004; Wiebe et al., 2005).
Much research in the field has been motivated by
the corpus compiled by Wiebe et al. (2005), who
annotated English news wire documents with senti-
ment holders, targets, expressions, intensities, and
other variables of interest. Subsets of these vari-
ables have been detected with linear (Choi et al.,
2006; Yang and Cardie, 2012) and neural models
(Katiyar and Cardie, 2016; Zhang et al., 2019), but
the full task has never been performed simultane-
ously.

For instance, various SemEval shared tasks on
Aspect-Based Sentiment Analysis (ABSA) (Pontiki
et al., 2014, 2015, 2016) have focused on target ex-
traction and polarity classification, and there have
been research efforts to predict sentiment expres-
sions as well (Wang et al., 2017). The models
implemented for that purpose, however, neither
resolve relations between expressions nor predict
their polarity. The combination of targets, expres-
sions and their polarity have been addressed for
the recent task of aspect sentiment triplet extrac-
tion (Peng et al., 2019; Xu et al., 2020), but the
resources that are used for this goal, which typi-
cally augment existing targeted datasets with polar
expressions, suffer from a major limitation: they
do not report annotation guidelines, procedures, or
inter-annotator agreement, leaving the final quality
of the data unclear.

To solve these issues and integrate all such per-
spectives, Barnes et al. (2021) proposed a holistic
approach to sentiment. They cast the problem of
structured sentiment as one of dependency pars-
ing, they introduced specific metrics to evaluate
automatic performance on this task, and developed
a state-of-the-art structure-aware model. Further
improvements were reported by Peng et al. (2021),
who proposed a sparse fuzzy attention mechanism
to deal with the sparseness of dependency arcs in
the dependency models.

3 Task Description

The aim of this shared task is to predict all sen-
timent graphs in a text (see Figure 1), where a
graph includes the elements of an opinion tuple
(h, t, e, p). We proposed two subtasks, correspond-
ing to monolingual structured sentiment and cross-
lingual structured sentiment. Participants were free
to participate in one or both setups, and they had the
opportunity to submit a single run on each dataset.

Subtask 1: Monolingual structured sentiment.
Models implemented for the first setup had to be
trained and tested on the same language. We did
not include a closed track, but we asked participants
to detail all data used to train models and to make
their training reproducible. This also allowed the
teams to train multi-lingual models on all of the
available training data for structured sentiment – a
choice that was made by some of them.

Subtask 2: Cross-lingual structured sentiment.
The second task required participants to train on
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other languages’ train set and test on Spanish, Cata-
lan, and Basque. Again, we allowed any further
resource besides the train/dev sets for the test lan-
guage provided with the shared task.

4 Data

The task contained seven datasets in five lan-
guages: Basque (MultiBookedEU), Catalan
(MultiBookedCA) (Barnes et al., 2018), English,
with data from OpeNEREN (Agerri et al., 2013),
Multi-Perspective Question Answer corpus (Wiebe
et al., 2005, MPQA) and Darmstadt Universities
corpus (Toprak et al., 2010, DSUnis), Norwegian
(Øvrelid et al., 2020, NoReCFine) and Spanish
(OpeNERES) (Agerri et al., 2013). We directly
distributed the datasets in json format, with the ex-
ception of the last two corpora, as they have more
restrictive licensing. For these, we provided links to
the data such that participants could acknowledge
their respective terms of use and include scripts to
preprocess the data in a uniform manner. Table
1 provides an overview of the datasets and their
sentiment annotations.

MultiBooked is a collection of hotel reviews in
Basque and Catalan, written by users and collected
from booking.com. The data was annotated
for structured sentiment with polar expressions,
targets, and holder labels, as well as polarity and
intensity. Each dataset contains around 1,500 sen-
tences, making them the smallest datasets in the
shared task. However, these sentences are more
densely annotated than some of the larger corpora.
For guidelines and inter-annotator agreement, see
Barnes et al. (2018).

OpeNER contains an opinion mining corpus of
hotel reviews for six languages (de, en, es, fr, it,
nl)1. For the purposes of the shared task, we only
used the English and Spanish data (Agerri et al.,
2013). The reviews were extracted from different
booking sites from November 2012 to November
2013. Data collection was designed to ensure that
different ratings and languages were included for a
given hotel review.

The annotations regard opinion expressions,
their respective holders and targets, their polarity
and opinion strength. The guidelines were based
on the work by Wiebe et al. (2005), which defines
an opinion expression as a word (or combination
of words) that expresses an attitude of the opinion

1https://github.com/opener-project

holder towards a target. The corpus also specifies
the relations between holders, targets and opinion
expressions in opinion triplets2.

MPQA annotates English news wire texts with
a complex set of annotation types, i.e. agent,
expressive-subjectivity, direct-subjective, objective-
speech-event, attitude, and target. These types are
also associated to a number of features and rela-
tions between one another. For the purpose of the
shared task, we keep only the labels of agent, tar-
get, direct-subjective, as well as the polarity feature
of direct-subjective, which respectively map to our
holder, target, polar expression and polarity. We
further normalize the polarities such that we have
only positive, negative, and neutral. This is the sec-
ond largest dataset, with a large number of holders,
but relatively fewer targets and expressions.

DSUnis was initially published as part of
the Darmstadt Service Review Corpus (DSRC)
(Toprak et al., 2010). The DSRC contains reviews
of online universities and services annotated with
sentiment on the sentence level and fine-grained
sentiment on the expression level. The DSUnis data
that is part of the task contains only the university
reviews, and discards the sentence-level annota-
tions. Toprak et al. (2010) distinguish between
polar facts and opinions in their annotation scheme.
In order to map the data to the format of the shared
task, this distinction is resolved.

NoReCFine annotates a subset of the Norwegian
Review Corpus (Velldal et al., 2018) for fine-
grained sentiment, i.e., including polar expressions,
targets and holders, as well as their polarity and
intensity. The corpus contains annotations for more
than 11k sentences (both subjective sentences and
fact-implied ones) taken from professional reviews
from a number of different domains, such as screen,
music, literature, products and games (Mæhlum
et al., 2019). Further details on the annotation pro-
cedure, guidelines and inter-annotator agreement
can be found in Øvrelid et al. (2020).

5 Evaluation

The main metric for the task is Sentiment Graph
F1 (SF1), which attempts to quantify how well a

2For more information about the annotation guide-
lines: https://github.com/opener-project/
opinion-domain-lexicon-acquisition/
blob/master/annotation_guidelines/
WP5-guidelinesReviews.pdf

1282



sentences holders targets expressions polarity

# avg. # avg. max # avg. max # avg. max + neu −
MultiBookedEU 1,520 10.6 296 1.1 6 1,760 1.4 9 2,319 2.2 10 1,940 0 379
MultiBookedCA 1,676 15.2 237 1.1 7 2,350 2.4 18 2,770 2.6 19 1,743 0 1,027
OpeNEREN 2,492 14.8 413 1.0 3 3,843 1.8 21 4,149 2.4 21 2,981 0 1,168
OpeNERES 2,054 17.4 225 1.0 2 3,960 2.2 12 4,386 2.2 15 3,557 0 829
MPQA 10,048 23.3 2,265 2.7 40 2,437 6.3 50 2,794 2.0 14 1,082 465 1,059
DSUnis 2,803 20.0 94 1.2 4 1,601 1.2 6 1,082 1.9 9 612 186 805
NoReCFine 11,437 16.9 1,128 1.0 12 8,923 2.0 35 11,115 5.0 40 7,547 0 3,557

Table 1: Statistics of the datasets, including number of sentences and average length (in tokens), as well as average
and max lengths (in tokens) for holder, target, and expression annotations. Additionally, we include the distribution
of polarity – restricted to positive, neutral, and negative – in each dataset.

model captures the full sentiment graph (see Fig-
ure 1). For SF1 each sentiment graph is a tuple of
(holder, target, expression, polarity). A true pos-
itive is defined as an exact match at graph-level,
weighting the overlap between the predicted and
gold spans for each element, averaged across all
three h, t, e spans. We therefore allow some vari-
ability at the token-level (properly weighted), as
long as the sentiment graph is predicted.

For precision, we weight the number of correctly
predicted tokens divided by the total number of pre-
dicted tokens (for recall, we divide instead by the
number of gold tokens). Correctly predicted tokens
can also consist of empty holders and targets.

6 Baselines

We provided participants with two strong baselines:
1) a dependency graph prediction model, and 2) a
sequence-labeling pipeline.

Dependency Graph The first baseline ap-
proaches sentiment graph prediction as a depen-
dency graph prediction task, following Barnes et al.
(2021). Each sentiment graph is converted to a
head-final dependency representation, where we
set the final token of the sentiment expression as a
root node, the final token in each holder and token
span as the head of the span, with all other tokens
within that span as dependents. The labels simply
denote the type of relation (target/holder) and for
sentiment expressions, they additionally encode the
polarity. After converting the data, we use a neural
graph parsing model (Dozat and Manning, 2018),
which learns to score each possible arc to predict
the output structure simply as a collection of all pos-
itively scored arcs. The base of the network struc-
ture is a BiLSTM that creates contextualized rep-
resentations c1, . . . , cn = BiLSTM(w1, . . . , wn)

where wi is the concatenation of a word embed-
ding, POS tag embedding, lemma embedding, and
character embedding created by a character-based
LSTM for the ith token. The contextualized em-
beddings are then processed by two feedforward
neural networks (FNN), creating specialized repre-
sentations for potential heads and dependents, and
the scores for each possible arc-label combination
are computed by a final bilinear transformation.

Sequence Labeling We also include a sequence
labeling baseline. Specifically, this approach first
trains three separate BiLSTM models to extract
holders, targets, and expressions, respectively. It
then trains a relation prediction model, which uses
a BiLSTM with max pooling to create contextual-
ized representations of 1) the full text, 2) the first
element (either a holder or target) and 3) the senti-
ment expression. These three representations are
then concatenated and passed to a linear layer fol-
lowed by a sigmoid function. The training consists
of predicting whether two elements have a relation-
ship or not, converting the problem into a binary
classification. During inference, the model starts
by predicting all sub-elements. Next, it decides if
these have a relationship (prediction > 0.5). Finally,
the predictions are combined to form full sentiment
graphs.

7 Results and Discussion

32 teams participated, with over 200 submissions
in total for the evaluation period. The top 10 results
for Subtask 1 are shown in Table 2 (for Subtask
2 in Table 3). Nearly all teams perform better than
the baselines and the performance of the winning
teams constitutes the new state of the art.
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NoReC MultiBooked OpeNER MPQA DS

Team NO CA EU ES EN EN EN Avg.

zhixiaobao 52.9 72.8 73.9 72.2 76.0 44.7 49.4 63.1
MT-speech 52.4 72.8 73.9 74.2 76.3 41.6 48.5 62.8

Hitachi 53.3 70.9 71.5 73.2 75.6 40.2 46.3 61.6
SLPL 50.4 68.1 72.3 73.5 74.7 37.5 41.0 59.6

sixsixsix 48.3 71.1 68.1 68.6 72.7 37.9 37.3 57.7
KE_AI 48.3 71.1 68.1 68.6 72.7 36.4 37.3 57.5

SeqL 48.4 70.4 70.3 69.8 72.5 25.4 42.0 57.0
LyS_ACoruña 46.2 65.3 68.0 69.2 69.8 34.9 41.4 56.4

ECNU_ICA 49.6 68.4 68.6 62.3 67.6 35.1 49.0 56.1
ohhhmygosh 48.7 65.8 65.1 66.9 71.0 26.9 41.6 55.1

graph baseline 27.2 51.6 54.5 49.5 52.1 12.5 20.4 38.3
seq baseline 12.3 33.8 36.5 24.0 32.9 0.02 0.06 19.9

Table 2: Top 10 systems for the monolingual Sub-task 1 according to Sentiment Graph F1.

Team ES CA EU Avg.

MT-speech 64.4 64.3 63.2 64.0
SLPL 61.8 56.2 58.4 58.8

Hitachi 62.8 60.7 52.7 58.7
sixsixsix 60.4 59.6 51.2 57.1

SeqL 58.9 59.3 51.6 56.6
ECNU_ICA 55.1 61.5 53.0 56.6

Mirs 61.7 54.4 52.2 56.1
LyS_ACoruña 57.0 55.4 50.9 54.4

OPI 56.4 58.6 44.4 53.1
KE_AI 56.1 55.2 46.3 52.5

Table 3: Top 10 systems for the cross-lingual Sub-task
2 according to Sentiment Graph F1.

8 Summary of Participating Systems

In this section, we summarize the top three ap-
proaches and then further discuss some commonal-
ities among the remaining teams.

8.1 The ZHIXIAOBAO submission

The best performing team on Subtask 1 formulated
the task similar to Barnes et al. (2021), using a de-
pendency graph parsing approach. They deviate
from the original in several important ways. First,
they use either RoBERTa_Large (Liu et al., 2019)
(for the English datasets) or XLM-RoBERTA_-
Large (Conneau et al., 2020) (for non-English) as
a feature extractor, rather than multilingual BERT
base (Devlin et al., 2019) and further fine-tune the
parameters of this model, rather than freezing it.

Secondly, they introduce a new attention mecha-
nism to help differentiate ‘in span’ and ‘out of span’
tokens, which helps dealing with tokens that are
not a part of any sentiment span. Finally, they also
use suffix masking for tokens which are broken
into subtokens when computing the edge scores.

During experimentation, they found that remov-
ing the final LSTM layer from the Barnes et al.
(2021) model gave improved performance. They
also found that the ‘in-label’ approach was ben-
eficial. Interestingly, they also found that XLM-
RoBERTa often performed better than similarly
sized monolingual BERT models, e.g. for Basque,
Catalan, and Spanish.

8.2 The MT-Speech submission

The second best team in Subtask 1 and best team
in Subtask 2 similarly used a dependency graph
parsing approach with an XLM-RoBERTa_Large
backbone. Given the rather small size of some
of the datasets, this team proposes several data
augmentation strategies which prove to be effec-
tive. The first is to exploit the Masked Language
Modeling pre-training task of XLM-RoBERTa to
augment the training data. They do this by ran-
domly masking a small percentage of the words
in a text which lie outside of the sentiment expres-
sion. They then sample up to 5 new sentences for
training, putting a threshold to remove unlikely ver-
sions. Secondly, they further pre-train the language
model on the training data, but using the Masked
Language Model objective. They also use data
from similar datasets in Portuguese and the English
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zhixiaobao 1 - ✓ ✓ ✓ ✓ ✓ ✓
MT-speech 2 1 ✓ aux. ✓ ✓ ✓ ✓ ✓ ✓
Hitachi 3 3 ✓ ✓ ✓ ✓ ✓ ✓
SLPL 4 2 ✓ ✓ ✓
LyS_ACoruña 8 8 ✓ ✓ ✓ ✓ ✓ ✓
ECNU_ICA 9 6 ✓ ✓ ? ✓
ISCAS 10 - ✓ ✓ ✓ ✓ ✓ ✓ ✓
OPI 11 9 ✓ ✓ ✓ ✓ ✓
HITSZ-HLT 12 - ✓ ✓ EN ✓
MaChAmp 13 26 ✓ ✓ ✓ ✓
Amex 14 - ✓ ✓
SenPoi 16 15 ✓ ✓ ✓ ✓
ETMS@IITKGP 18 11 ✓ ✓ non-EN ✓ ✓
SPDB 21 14 ✓ ✓ ✓
UFRGSent 22 18 ✓ ✓ ✓
SSN_MLRG1 27 - ✓ ✓

Table 4: Characteristics of submissions that submitted a system description. We show the rank for subtask 1
(mono) and 2 (cross), followed by the general approach, the use of language models, and other characteristics. FT
domain = Fine-tune to the domain, mono = monolingual LM, XLM-mono = multi-lingual language model used for
monolingual task.

SemEval Laptop dataset which has been automati-
cally augmented with polar expressions. This data
is converted to the structured sentiment format. Fi-
nally, they include several auxiliary tasks to predict
the spans in a sentiment graph as sequence label-
ing tasks. They include final polarity classification
auxiliary task, which they perform on the Catalonia
Independence Corpus (Zotova et al., 2020).

8.3 Hitachi

The third team compare a graph prediction model
(Graph) and a sequence-to-sequence (Seq2Seq) ap-
proach. Specifically, Graph includes a BIO se-
quence labeler for span extraction, followed by
relation prediction with biaffine classifiers (Dozat
and Manning, 2018). For the Seq2Seq model, they
serialize the tuples and use large pretrained lan-
guage models to predict these serialized tuples. As
the task required providing token offsets, as a post-
processing step they predict the text anchors using
a word-alignment tool (Jalili Sabet et al., 2020).

Generally, they find that graph prediction per-
forms better than Seq2Seq. In an extensive analy-
sis, they find that Seq2Seq’s need for an external
alignment system is a hindrance if that information
is truly necessary. On OpeNER, however, Graph is
clearly better. Both approaches generally perform
worse on examples with more opinions, although
Graph is slightly more robust. Finally, they find
that Graph is much faster to train, as there is no
decoder. They conclude, however, that there is not

enough evidence to conclusively show that Graph
is better than Seq2Seq.

8.4 General Trends

We now discuss some general trends within the
submissions and their possible effect on the results.
We summarize these trends in Table 4.

General Approach: In general, the teams with
the best performance all use graph prediction mod-
els. The top two teams maintained the dependency
graph approach of Barnes et al. (2021). Several
strong submissions successfully used a pipeline
approach of a sequence labeling model to extract
spans, followed by a relation prediction model.
Three teams preferred offset prediction to the BIO
sequence labelling, while two teams formulated the
task as question answering.

Language Models Nearly all teams used some
form of pre-trained language models to create con-
textualized token representations. One important
factor seems to be the size of the language model
used (Base or Large), as the top teams gener-
ally used XLM-RoBERTa_Large (Conneau et al.,
2020). MT-Speech find that fine-tuning this model
using the masked language model task on the pro-
vided training data improves the performance. The
benefits of using a monolingual model seem to
be language dependent, as for English or Spanish,
many submissions found monolingual models best,
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while for Basque or Catalan, they often found that
multi-lingual language models performed better.

Others Finally, two of the top teams used a multi-
task learning approach to incorporate further infor-
mation into their models. Several teams further
perform data augmentation to minimize the impact
of the smaller datasets. This is a particularly benefi-
cial side-effect explicitly annotating all parts of the
sentiment graph, as participants were able to make
changes in a controlled way, such that the opin-
ion itself was not changed. Three teams further
included ensemble approaches with less success
than in other tasks.

9 Further Analysis

To gain insight into the systems’ performance, we
move on to analyzing their mistakes and correct
predictions. We start with a quantitative analysis to
understand what types of errors appear most often
in the submissions, and how they vary according
to the different opinion spans (e.g., h/t), settings
(monolingual/cross-lingual) and datasets.

Next, we relate the predictions made in the two
sub-tasks to some structural properties of the data.
This qualitative analysis aims at shedding light on
what makes a tuple Oi easy/difficult to find, and
whether the observations that apply to a sub-task
generalize well to the other.

9.1 Quantitative Analysis.

For the quantitative analysis, we group the differ-
ent error types defined by Oberländer and Klinger
(2020) in the following way3: Too early ( , ),
Too late ( , ), Other ( , ), Multiple ( ),
False Positive ( / ), and False Negative ( ).

Figure 2 shows relative frequencies for each er-
ror type across all 10 winning teams in the monolin-
gual setting (left) and cross-lingual setting (right)4.
To obtain the relative frequencies, we flatten the
annotations for each span type and treat either a
continuous stream of annotated or of unannotated
tokens as the base of our predictions. Where a pre-
diction exactly aligns with an annotated span, it
counts as a true positive, where there is no predic-
tion on an unannotated part, as a true negative. For
all other cases we count this as another error type
as grouped above. True positives and negatives

3The top bar shows the gold span, while the bottom corre-
sponds to the predicted span.

4Error frequencies across the top 10 systems can be found
in Appendix (Table 6 and Table 7).

are not shown in the plot, but are considered when
calculating the relative frequency.

We find that, generally, predicting the correct
holder of an opinion in the monolingual setting is
easier than predicting the target or the polar ex-
pression. This is to be expected and explained by
the fact that the holders of an opinion are overall
shorter in length, reducing the potential of mak-
ing mistakes. Interestingly, this finding does not
fully hold for the cross-lingual setting where there
are more False Negatives ( ) and Multiple ( )
for holder than for polar expression. A finding
which holds for both the monolingual and the cross-
lingual setting is that the error type that occurs the
most apart from False Positives ( / ) and False
Negatives ( ) is Multiple ( ). Multiple occurs
the most when models predict polar expressions
for the monolingual setting and target for the cross-
lingual setting. This is likely because the polar
expression and target spans are typically longer,
which gives the models more options to find sev-
eral predictions within the span. The other type of
errors are infrequent, notable being Too early ( ,

) and Too late ( , ), both error types occur-
ring unsurprisingly mostly for the polar expression
spans.

Now we compare the box plots across the sub-
tasks. Looking at the medians, we see that these are
well separated with the median for relative frequen-
cies of False Negatives ( ) and Multiple ( )
for all span types being lower for the monolingual
than for the cross-lingual setting. The same pattern
for False Positives ( / ) can be seen, with the
exception of the span type polar expressions. The
inter-quartile ranges are not very similar to each
other while looking at pairs of the same type of
errors across the two sub-tasks. We see this aspect
in the lengths of the boxes, which differ quite a lot,
especially notable here are holders, for which the
boxes are two times in length for the cross-lingual
setting. We observe that the error frequencies are
generally more spread for the cross-lingual sub-
task, for False Negatives ( ) and Multiple ( )
holders, and False Positives ( / ) targets. For
other span types the trend is not as clear. Also,
the overall spreads across the settings are slightly
greater for the cross-lingual setup for the same span
types. However, looking at the overall spreads is
perhaps less informative about dispersion of the
frequencies of errors than the comparison of box
lengths, because of the outliers we see for the mono-
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Figure 2: Relative frequencies for each error type for each span type across all teams and datasets.

lingual case. The exceptions are the box plots for
the polar expressions in the case of the error type
Multiple ( ). Regarding skewness, we observe
generally a right-skewness for the monolingual
setup, and no large skew for the cross-lingual setup.
For instance, errors on holders are skewed to the
right in the monolingual case, whereas for the cross-
lingual setting, they are slightly skewed to the left.
Similarly, polar expressions are also skewed to the
left for the cross-lingual case and for targets the
opposite effect can be noticed. Far-away outliers
only exist for the monolingual setting, for False
Positives ( / ) the far-away outliers are mostly
from team ECNU_ICA and team sixsixsix for
the MPQA and NoReCFine datasets. For the False
Negatives ( ) and Multiple ( ), the far-away
outlier is team ohhhmygosh for both error types
on MultiBookedEU dataset.

The analysis on the box plots evokes a further
question: why are there so many False negatives
( ) for holders in the cross-lingual setup in com-
parison to the monolingual one? By inspecting the
datasets, we make two observations that explain
this result. First, across all datasets used for the
cross-lingual sub-task there are only approximately
10% of instances annotated with holders and sec-
ond, the fraction of non-empty holders is higher in
the test data than in the train data (the numbers can
be found in Table 5 in the Appendix).

9.2 Qualitative Analysis.

We now examine the extent to which the correct
(or incorrect) identification of specific sub-parts of
a sentiment graph (e.g. (h, t)) correlates with an-
other (e.g., (e, p)), or with additional properties of
the ground truth (e.g., sentiment intensity). So far,
we considered a sentiment graph to be correctly pre-

dicted by one system if the system’s output was a
true positive (following the definition in Section 5).
Now, to aggregate the results of all teams, a cor-
rectly predicted (ground-truth) graph is one which
corresponds to a majority of true positives across
teams. Table 8 in Appendix A reports a subsample
of texts in which all Oi are predicted correctly (in-
dicated as +) by most teams, and those in which
most teams did not score a true positive for any of
any tuple (marked as −).

Within-graph analysis. We begin by focusing
on the predictions of h, t, and e. We observe that
a successful detection of an opinion holder and
target approximates the exact identification of the
opinion expression. This is particularly evident
in the cross-lingual setup: 75% of ground-truth
opinion tuples that have a match in the holder and
target for more than half the teams have an exact
match in the expression (81% if also the h, t match
is exact). In the monolingual setup, this happens in
70% cases (73% for exact h, t span matches).

Typically, if the spans of holder, target and ex-
pression are properly recognized, the polarity of
such expression is too. It happens for 95% of cor-
rectly predicted h, t, e in the cross-lingual setting,
for 93% in the monolingual one. These numbers
corroborate the relational nature of the span types
involved in a structured sentiment task: determin-
ing a holder and a target is crucial to establish the
opinion linking the two, and hence, its polarity.

Polarity-intensity link. Going beyond the com-
ponent of a graph, we investigate the relationship
between Oi and the intensity of sentiment – a label
that was not evaluated in the competition but which
characterizes opinions in the used corpora. Figure 3
shows two example distributions of ground-truth
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Figure 3: Counts of opinions predicted correctly (with respect to h, t, e, and p) and incorrectly (wrong p): example
results from MPQA in Sub-task 1, and OpeNERES in Sub-task 2.

opinions for which more than half the teams identi-
fied the right (h, t, e, p) (correct predictions), and
those where for which (h, t, e) was identified but p
was not (errors).

For the setups with only two strength labels, in-
tensity seems to play a role in the prediction of
polarity: the submitted systems are consistent in
identifying the true polarity of most of the tuples
associated to a strong sentiment expression. We see
that, for instance in OpeNERES , correct predic-
tions are 70% of opinions labelled as “Strong”; the
same happens only for 46% ofOi tuples with a stan-
dard intensity level. Similar patterns are observed
through all corpora in the cross-lingual setup, as
well as in the monolingual task based on the same
corpora, and OpeNEREN (see Appendix Figure 4).
This suggests that the recognition of polarity cor-
relates to the intensity with which sentiment is ex-
pressed: a sentiment conveyed with higher intensity
tends make the prediction “easier”.

The link becomes less clear for corpora with non-
binary intensity annotation schemas, i.e. MPQA.
Most polarities were not properly recognized
across all sentiment strengths. Still, the proportion
of wrong-to-correct instances is typically higher
with milder intensity degrees (e.g., in MPQA, 87%
of weak-intensity Oi tuples correspond to errors).

Opinion span sparsity. One feature that differ-
entiates tuples is the sparsity of their spans in the
text (e.g., in “L’ habitació un pèl petita per un 5
estrelles” t and e encompass the whole sentence,
while in “La situació perquè tenim la nostra filla
vivint molt a prop . segurament repetirem”, which
contains no holder and target, the expression in-
volves only the last two words). Therefore, we
observe whether and how the systems’ decisions
change together with the sparsity of opinion spans,

computed as 1 −
∑

# tokens(h,t,e)
# tokens(text) (Figure 5 in Ap-

pendix shows the distribution of sparsity values in
the two tasks).

On average, sparsity is lower for correct predic-
tions than for errors. It is 0.73 and 0.72 for the
missed h, t, and e spans in the cross-lingual and
monolingual tasks, 0.67 (cross-lingual) and 0.66
(monolingual) for the predicted h, t, and e spans.
This suggests that spans covering larger parts of the
text are easier to predict, while errors tend to occur
with labels that are more scattered in the text.

A comparable observation can be drawn relative
to the number of opinions in a text. Opinion tu-
ples coming from texts with a higher number of
h, t, e relations appear harder to predict: correct
predictions occur for tuples that come from texts
containing on average 3.4 Ois (in the cross-lingual
setup, and 3 in the monolingual task), while errors
arise with spans present in text that have on average
4.16 opinions (in the cross-lingual setup, and 3.27
in the other).

10 Conclusion

We proposed to cast sentiment analysis as a struc-
tured prediction problem, explicitly predicting
the four main elements, and provide seven pre-
processed datasets in five languages. Graph pre-
diction models powered by pre-trained language
models generally performed best, although several
pipeline sequence labelling models also performed
well. An analysis of the errors shows that false
negatives and predicting shorter spans are the most
common errors, while when models correctly pre-
dict the holder and target, they generally predict
everything correctly. Finally, both more intense
polar expressions and spans that cover much of the
text are easier to predict.
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(a) Monolingual sentiment
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(b) Cross-lingual sentiment
OpeNERES MultiBookedEU MultiBookedCA

Standard Strong
0

50

100

150

200

250

300

350
Correct predictions
Errors

Standard Strong
0

20

40

60

80

100

120

140 Correct predictions
Errors

Standard Strong
0

25

50

75

100

125

150

175

200
Correct predictions
Errors

Figure 4: Counts of (h, t, e, p) tuples that are predicted correctly (> half the systems correctly identified all graph
components) and incorrectly (wrong p), across intensity levels: (a) Monolingual task, (b) Cross-lingual.
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Holder Target Expression

Dataset train test train test train test

MultiBookedCA 8.50% 10.13% 85.72% 82.98% 100.00% 100.00%
MultiBookedEU 12.21% 13.27% 76.06% 75.74% 100.00% 100.00%
OpeNERES 5.79% 5.85% 90.34% 88.71% 100.00% 100.00%
OpeNEREN 9.22% 11.33% 92.89% 91.68% 100.00% 100.00%
DSUnis 7.82% 9.23% 100.00% 100.00% 100.00% 100.00%
NoReCFine 10.63% 8.91% 80.23% 80.40% 100.00% 100.00%
MPQA 84.06% 83.78% 86.81% 89.19% 100.00% 100.00%

Table 5: The fraction of non-empty annotations for each span type across datasets.

Monolingual task. Cross-lingual task.
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Figure 5: Distribution of sparsity values for h, t, e, spans predicted correctly or incorrectly by most teams in the two
setups.
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NoReC MultiBooked OpeNER MPQA DS

Team Error type NO CA EU EN ES EN EN

H T E H T E H T E H T E H T E H T E H T E

zhixiaobao False negative 2 9 8 4 7 5 3 5 4 4 5 5 2 6 5 5 5 5 2 9 9
False positive 2 5 5 1 4 4 3 6 3 1 4 3 2 4 4 3 3 3 1 7 6
Multiple 2 10 12 4 7 7 3 5 5 4 6 6 2 7 7 5 5 6 2 9 9
Other 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Too early 0 1 4 0 2 2 0 2 3 0 1 2 0 2 3 0 1 2 0 1 0
Too late 0 1 3 0 1 2 0 0 2 0 1 2 0 1 3 0 1 1 0 1 1

Cong666 (MT-speech) False negative 2 9 8 5 6 4 3 4 4 3 5 4 2 6 5 5 5 5 2 9 8
False positive 2 5 4 1 5 4 4 6 4 2 4 3 4 4 3 3 3 3 1 8 8
Multiple 2 10 11 5 7 5 3 5 5 3 5 5 2 7 6 5 6 6 2 9 8
Other 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Too early 0 1 4 0 2 3 0 1 4 0 2 3 0 2 3 0 1 2 0 1 1
Too late 0 1 3 0 1 2 0 1 2 0 1 2 0 2 3 0 1 1 0 1 1

Hitachi False negative 1 9 7 4 6 5 4 5 4 3 5 4 2 5 3 4 4 4 2 10 10
False positive 2 7 5 1 5 4 3 5 3 2 4 3 3 5 4 4 4 4 0 6 5
Multiple 1 9 11 4 7 6 4 6 5 3 6 5 2 5 5 5 5 5 2 10 10
Other 0 0 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
Too early 0 1 4 0 2 3 0 1 3 0 1 2 0 3 3 1 1 2 0 0 1
Too late 0 1 3 0 1 2 0 1 3 0 1 3 0 2 4 0 1 1 0 1 1

colorful False negative 2 10 9 5 7 5 4 6 4 4 7 5 2 7 4 5 6 5 2 10 9
False positive 1 5 4 1 6 5 3 4 4 1 4 2 4 4 3 2 2 3 1 7 8
Multiple 2 11 14 5 8 6 4 7 6 4 7 6 2 8 6 5 7 6 2 10 10
Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Too early 0 2 3 0 1 2 0 1 2 0 1 2 0 2 3 0 1 1 0 0 1
Too late 0 1 3 0 2 2 0 1 2 0 1 2 0 2 3 0 0 1 0 1 1

sixsixsix False negative 1 9 8 4 6 5 4 6 5 5 6 5 2 5 5 5 5 5 2 11 11
False positive 3 7 6 2 5 4 4 5 5 1 4 3 3 4 4 4 4 5 0 7 7
Multiple 1 9 11 4 7 6 4 7 5 5 6 6 2 6 6 5 5 5 2 11 11
Other 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Too early 0 1 4 0 2 3 0 2 3 0 2 3 0 3 4 0 1 2 0 0 3
Too late 0 1 3 0 2 2 0 1 2 0 0 2 0 2 4 0 1 1 0 1 1

KE_AI False negative 1 9 8 4 6 5 4 6 5 5 6 5 2 5 5 5 5 5 2 11 11
False positive 3 7 6 2 5 4 4 5 5 1 4 3 3 4 4 4 3 5 0 7 7
Multiple 1 9 11 4 7 6 4 7 5 5 6 6 2 6 6 5 5 5 2 11 11
Other 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Too early 0 1 4 0 2 3 0 2 3 0 2 3 0 3 4 0 1 2 0 0 3
Too late 0 1 3 0 2 2 0 1 2 0 0 2 0 2 4 0 1 1 0 1 1

SeqL False negative 2 11 9 4 7 5 4 7 5 4 6 6 2 7 5 - - - 2 11 11
False positive 2 5 4 1 4 4 2 3 3 2 3 3 4 3 4 - - - 1 5 5
Multiple 2 11 12 4 7 6 4 7 5 4 7 6 2 8 6 - - - 2 11 11
Other 0 1 1 0 1 0 0 0 0 0 2 0 0 2 0 - - - 0 0 0
Too early 0 2 5 0 3 4 0 3 4 0 3 3 0 5 4 - - - 0 0 1
Too late 0 1 3 0 3 3 0 4 3 0 3 2 0 4 4 - - - 0 0 1

LyS_ACoruña False negative 2 11 9 4 8 5 4 7 5 5 8 7 2 8 6 5 6 5 2 10 10
False positive 2 6 5 1 5 6 3 4 4 1 3 3 3 4 3 3 3 4 1 8 8
Multiple 2 11 14 4 9 7 4 8 6 5 9 8 2 9 7 6 7 6 2 11 10
Other 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Too early 0 2 3 0 1 2 0 1 2 0 1 2 0 2 3 0 1 1 0 1 0
Too late 0 1 3 0 1 2 0 1 3 0 1 2 0 2 3 0 1 1 0 1 0

ECNU_ICA False negative 0 4 4 - - - 2 8 7 4 8 6 3 10 7 1 1 1 0 5 5
False positive 6 22 20 - - - 4 8 5 4 5 5 3 4 4 22 14 31 1 17 20
Multiple 0 4 7 - - - 2 8 8 4 8 7 3 11 8 1 1 1 0 5 5
Other 0 0 0 - - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Too early 0 1 4 - - - 0 1 3 0 2 3 0 2 3 0 1 1 0 0 2
Too late 0 1 1 - - - 0 1 2 0 1 2 0 1 3 0 1 0 0 1 0

ohhhmygosh False negative 5 12 12 9 10 10 12 9 11 8 9 9 8 10 10 7 6 8 2 11 11
False positive 0 5 4 0 5 3 0 4 3 0 4 2 0 4 3 4 3 3 0 6 6
Multiple 5 12 15 9 10 11 12 9 12 8 10 10 8 10 11 7 7 8 2 11 12
Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Too early 0 1 3 0 2 2 0 1 2 0 1 2 0 2 3 3 1 1 0 0 0
Too late 0 1 2 0 1 2 0 1 2 0 1 2 0 2 3 0 1 0 0 0 1

Table 6: Relative frequencies (%) of error types at the span level across the top 10 systems for the monolingual
Sub-task 1. H: holder; T: target; E: polar expression.
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OpeNER MultiBooked

Team Error type ES CA EU

H T E H T E H T E

Cong666 (MT-speech) False negative 3 12 6 6 7 5 9 7 6
False positive 4 2 3 1 8 5 0 7 4
Multiple 3 12 7 6 8 7 9 8 8
Other 0 0 0 0 0 0 0 0 0
Too early 0 2 3 0 3 4 0 2 3
Too late 0 1 5 0 1 2 0 1 4

colorful False negative 4 13 7 7 11 8 12 12 11
False positive 2 2 3 0 5 4 0 2 3
Multiple 4 14 9 7 12 10 12 13 12
Other 0 0 0 0 0 0 0 0 0
Too early 0 1 2 0 3 2 0 1 3
Too late 0 1 5 0 3 4 0 1 4

Hitachi False negative 4 11 5 7 8 6 12 10 11
False positive 3 3 4 0 7 5 0 6 3
Multiple 4 11 6 7 8 8 12 11 13
Other 0 0 0 0 0 0 0 0 1
Too early 0 2 3 0 4 3 0 2 2
Too late 0 2 6 0 2 3 0 1 4

sixsixsix False negative 3 9 5 7 7 4 11 8 9
False positive 3 5 4 1 7 7 1 11 6
Multiple 3 10 6 8 7 5 11 9 10
Other 0 0 1 0 0 0 0 0 0
Too early 0 2 3 0 2 5 0 2 3
Too late 0 3 6 0 3 5 0 2 6

SeqL False negative 3 12 5 7 8 4 11 10 8
False positive 5 2 2 0 6 5 0 7 5
Multiple 3 12 6 7 9 6 11 11 10
Other 0 4 5 0 1 0 0 1 2
Too early 0 5 6 0 8 6 0 4 3
Too late 1 4 8 0 3 3 0 3 8

ECNU_ICA False negative 5 13 8 - - - 7 7 8
False positive 1 3 4 - - - 1 13 5
Multiple 5 14 9 - - - 7 8 10
Other 0 0 1 - - - 0 0 0
Too early 0 2 3 - - - 0 2 4
Too late 0 2 4 - - - 0 1 3

Mirs False negative 5 13 7 7 10 7 12 11 12
False positive 2 2 3 1 7 5 0 6 5
Multiple 5 14 9 7 12 9 12 12 14
Other 0 0 0 0 0 0 0 0 0
Too early 0 1 2 0 3 1 0 1 1
Too late 0 1 5 0 2 3 0 1 4

LyS_ACoruña False negative 3 15 9 6 9 6 11 10 9
False positive 4 2 3 1 8 5 1 8 5
Multiple 3 16 10 6 10 8 11 11 12
Other 0 0 1 0 0 0 0 0 1
Too early 0 1 2 0 3 3 0 1 2
Too late 0 2 5 0 1 3 0 2 5

OPI False negative 4 14 5 6 10 5 12 14 11
False positive 2 3 4 0 5 5 0 3 3
Multiple 4 14 7 6 10 7 12 15 13
Other 0 0 0 0 0 0 0 0 0
Too early 0 1 3 0 4 3 0 1 2
Too late 0 2 5 0 2 3 0 0 4

KE_AI False negative 6 13 7 8 10 7 11 11 10
False positive 2 4 4 0 5 5 0 8 4
Multiple 6 13 8 8 11 8 11 12 11
Other 0 0 2 0 0 1 0 0 1
Too early 0 2 4 0 3 4 0 2 4
Too late 0 3 6 0 5 5 0 1 7

Table 7: Relative frequencies (%) of error types at the span level across the Top 10 systems for the cross-lingual
Sub-task 2. (H: holder; T: target; E: expression) 1294



Cross-lingual sentiment

MultiBookedCA
+ A una habitació , mancaba la teuleta de nit i la persiana estava trencada . hi

habia una batidora que no funcionaba .
− La ubicació , la decoració i la comoditat de els llits

MultiBookedEU
+ Langileak oso jatorrak , laguntzeko prest eta profesionalak .
− Iruzkinak euskaraz egiteko aukera ez izatea .

OpeNERES
+ Muy amables y simpaticos , bastante limpio todo .
− Los de recepción te aconsejan un poco sobre donde ir y que linea de metro o

de bus coger para ir a los destinos .

Monolingual sentiment

MultiBookedCA
+ El director de l’ hotel molt desagradable .
− Tot , ben situat a 10 minuts de la ciutat vella .

MultiBookedEU
+ Harreran zeuden langileen arreta ez zen onena izan .
− Bigarren aukera gisan izan bazen ere , zorionekoa izan zen Bergenenen alde

hartu genuen aukera .

OpeNERES
+ Ideal para pasar un fin de semana de turismo por la capital . .
− Muy bien ubicado para ver el musical

OpeNEREN
+ Because of renovation work probably my room was not fully ready .
− But the receptionist immediately offered me an improved room with riverside

view .

DSUnis
+ Courses are rigorous and challenging .
− For the sake of time - I will not comment on quality of education - let’s assume

it is OK compared to it’s competitors .

NoReCFine
+ Dette er dog lett å tilgi når spillbarheten er så overlegen som den er her .
− Og spesielt fabelaktig er det når Claire og Jamie er i selskap på slottet i

Versailles i andre episode .

MPQA + This announcement was met with unanimous condemnation by the interna-
tional media .

− That is a bitter pill to swallow in a thoroughly non-militaristic society such as
ours , where the clash of weapons provokes healthy reactions of repulsion .

Table 8: Examples from different setups and corpora. In the texts marked as +, the graphs Oi are predicted correctly
by more than half the teams. Items marked as − contain graphs for which the majority of teams missed the correct
prediction.
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Abstract

We describe the work carried out by AMEX AI
Labs on the structured sentiment analysis task
at SemEval-2022. This task focuses on extract-
ing fine grained information w.r.t. to source,
target and polar expressions in a given text. We
propose a BERT based encoder, which utilizes
a novel concatenation mechanism for combin-
ing syntactic and pretrained embeddings with
BERT embeddings. Our system achieved an
average rank of 14/32 systems, based on the
average scores across seven datasets for five
languages provided for the monolingual task.
The proposed BERT based approaches outper-
formed BiLSTM based approaches used for
structured sentiment extraction problem. We
provide an in-depth analysis based on our post
submission analysis.

1 Introduction

In this paper we present the work done by AMEX
AI Labs on the structured sentiment analysis mono-
lingual task at SemEval-2022 (Barnes et al., 2022).
Structured sentiment analysis (SSA) focuses on per-
forming fine grained analysis and extracting opin-
ion tuples from a given input text (Barnes et al.,
2021). An example is presented in Fig. 1.

Input sentence: Some others give the new
UMUC 5 stars - don’t believe them

Expected outputs are two tuples:

• Tuple1 - ("source": "Some others", "target":
"the new UMUC", "polar expression": "5
stars")

• Tuple2 - ("source": "", "target": "them", "po-
lar expression": "don’t believe").

Aspect based sentiment analysis is a popular
and widely researched topic in the NLP commu-
nity (Wagner et al., 2014; Pontiki et al., 2015;
Schouten and Frasincar, 2015). However, the SSA
task goes beyond traditional aspect based sentiment

Figure 1: Sample sentence, source: (Barnes et al., 2021)

mining. The main challenges in SSA task are as
follows:

• Focus is on correct span detection of source,
targets, and polar expression elements as
shown in Fig. 1.

• Correctly identifying relationships between
source, target, and polar expression elements,
as illustrated in the example above.

• Building a robust, generalized approach that
is applicable across domains as well as across
languages.

Most of the state-of-the-art (SOTA) approaches
have explored joint learning, span based multi-
task learning, BiLSTM encoders or CRF based
approaches for SSA related tasks (Barnes et al.,
2021; Li et al., 2019; Zhao et al., 2020; Chen et al.,
2020). We propose a contextualized BERT based
approach called ‘CBERT’, for capturing context
information effectively and address the main chal-
lenges for SSA task as discussed above.

The main contributions of our work are:

• We propose a BERT based encoding approach
and combine syntactic and pre-trained embed-
dings using a novel concatenation approach
to extract and find opinion tuples effectively.

• We performed a detailed error analysis high-
lighting the main challenges of SSA task and
suggest future directions for building a more
efficient and effective system for SSA.
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The outline of this paper is as follows: Section 2
describes the prior work in the area of SSA. Sec-
tion 3 presents an abstract overview of our pro-
posed system. Section 4 provides a detailed descrip-
tion of our CBERT system. Section 5 describes the
datasets, tools and resources used for the experi-
mental setup. Section 6 present the main results
of the proposed system and describes an in-depth
error analysis. Section 7 describes the main con-
clusions and leanings.

2 Background

Structured Sentiment Analysis (SSA) aims at cap-
turing the natural hierarchical structure of different
aspects, their corresponding sentiments in a sen-
tence and the correlation between them. Almars
et al. (2017) leveraged a hierarchical tree struc-
ture on the aspect terms, analyses the opinions
on those aspect terms and connects them to the
corresponding evidence for the same. Choi et al.
(2006) identify two types of opinion-related en-
tities — expressions of opinions and sources of
opinions — along with the linking relation that
exists between them. To identify the joint exis-
tence of opinion terms, they had utilized integer
linear programming approach. Over years, this task
was recognized further as Aspect Based Sentiment
Analysis which focuses more on the precise iden-
tification of aspects and their corresponding senti-
ments (Chen et al., 2014), (Liu et al., 2012). Other
intermediate works also focus on transition based
end-to-end opinion extraction approaches (Zhang
et al., 2019) which ignore the polarity classification
subtask. Target Sentiment Analysis, which is an-
other modified form of SSA focuses on extracting
only sentiment targets and classifying their polarity
(Jiang et al., 2011), (Mitchell et al., 2013).

Yang and Cardie (2012) is a strong baseline
which suggests that the use of Conditional Ran-
dom Fields could enhance the aspect terms pre-
diction, given a smaller dataset with annotations,
for training. During this time, some prominent re-
search works discussed the advantage of semantic
dependency parsing (Dozat and Manning, 2018),
(Kurtz et al., 2020) which was leveraged for SSA
task and for the establishment of the state-of-the-
art SSA model which was proposed by (Barnes
et al., 2021). This work formulates the SSA task
as a dependency parsing problem and predicts all
tuple components as a dependency graph. We aim
to extend this aforementioned work and propose a

modified architecture to improve the results across
various language datasets.

3 Model Overview

For the SSA task, prior works have deployed sepa-
rate models for detecting various elements (source,
target and polar expression) (Barnes et al., 2022).
However, this results in information regarding pre-
diction of individual elements not being passed on
to other element predictions.

Figure 2: Sample sentence : head-first representa-
tion (Barnes et al., 2021)

Figure 3: Sample sentence : head-final representa-
tion (Barnes et al., 2021)

For leveraging a joint learning technique,
(Barnes et al., 2021) suggest two sets of approaches,
viz., head-first and head-final representation. Head-
first considers spans of opinion elements using the
first token of each element, i.e., head token first,
as shown in Fig. 2. Head-final considers the last
token, i.e., head token last, as shown in Fig. 3. Our
proposed architecture was inspired by this joint
learning technique and is elaborated in Section 4.

SSA task involves prediction of opinion ele-
ments along with the relationship between them,
referred to as arc prediction. In this paper, we pro-
vide a comparison between two methods - VBERT,
which uses only BERT embeddings and CBERT,
which uses BERT embeddings along with concate-
nation of head and dependent BiLSTM blocks, de-
tailed in Section 4. A comparison of results from
these two approaches are provided in Section 6.

4 System Description

In this section we provide a detailed description
of our proposed CBERT system. Fig. 4 presents
the main architecture, comprising of seven main
components, detailed below respectively.
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4.1 Encoding Block
The BERT context shown in Fig. 4 represents
BERT’s role as an encoder. Our proposed model
uses a BERT base multilingual cased1 model (De-
vlin et al., 2018) which has t transformer layers
to calculate the fine-tuned BERT vector from the
input tokens, x = (x1, x2, x3, ..., xn) of n padded
sequence length. The output BERT fine-tuned vec-
tor is shown as, b = (bt1, b

t
2, ..., b

t
n) ∈ Rn∗dimb

where dimb denotes it’s dimension.

Figure 4: CBERT Architecture

The Head Context and Dependent Context as
shown in Fig. 4, represent independent BiLSTM
blocks where we fine-tune the syntactic and pre-
trained context in our CBERT system. However,
in the VBERT system we do not have the afore-
mentioned independent BiLSTM blocks (for more
details refer Section A.4).

The input embedding in the BiLSTM block is a
concatenation of Stanza2 pretrained syntactic vec-
tors (Qi et al., 2020) (U-pos, Lemma, Depparse)
and ELMo3 (Peters et al., 1802) embedding rep-
resented as, e = (e1, e2, ..., en) ∈ Rn∗dime where

1https://huggingface.co/
bert-base-multilingual-cased

2https://stanfordnlp.github.io/stanza/
index.html

3https://allenai.org/allennlp/
software/elmo

dime is the dimension of the input embedding. Af-
ter passing these vectors through two independent
identical BiLSTM blocks, we get the head and de-
pendent fine-tuned vectors h = (hr1, h

r
2, ..., h

r
n) ∈

Rn∗dimc and d = (dr1, d
r
2, ..., d

r
n) ∈ Rn∗dimc

where dimc is the dimension of the fine-tuned vec-
tor and r is the number of recurrent layers in the
BiLSTM block.

4.2 Target Encoding

We follow a head-first encoding (Barnes et al.,
2021) which entails adding a label map to each posi-
tion in the head-dependent 2D mapping, each label
showing which category from (Expression-positive,
Expression-negative, Source, Target, None) it be-
longs to. In the 2D mapping as shown in Fig. 5,
heads are shown as rows, dependents as columns
and a non None label shows if head-dependent re-
lation exists or not. For denoting span the starting
token of a certain span becomes the head and the
other tokens as the dependents, as shown in Fig. 5,
where "the" is linked to ("the","new","UMUC").
Similarly, the head token of (Expression-positive,
Expression-negative) labels point to the head to-
kens of (Source, Target), if a relation between them
exists. For eg., "5" being linked to "the" as shown
in Fig. 5. We also experimented with alternative
encoding approaches mentioned in Section A.2

Figure 5: Encoding Structure

4.3 Concatenation layer

In this layer, we combine the BERT fine-tuned vec-
tor with the head and dependent fine-tuned vectors
separately. The head and dependent vectors are
based on a space based tokenizer while the BERT
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Figure 6: Concatenation of fine-tuned BERT with head and dependent fine-tuned vectors

vector is based on word-piece (Wu et al., 2016) to-
kenizer. Some of these space delimited tokens are
further split by word-piece into sub-tokens. For eg.,
as shown in Fig. 6, the parent token "rumination"
is split into sub-tokens ("rum","##ination"). So we
duplicate the parent token’s vector,v as weighted
vectors in the Duplicator as shown in Fig. 4. Higher
weight is assigned to base-token "rum" and lower to
sub-token "##ination", as we want to put more sig-
nificance on the base-token of the word for identi-
fying span offsets correctly. Initializing sub-tokens
with relatively low weighted vector instead of null
vector helps us carry the base-word context till the
sub-word. Following are the vector equations,

v = (v1, v2, ..., vn)
vsub = (Wsub ∗ v1,Wsub ∗ v2, ...,Wsub ∗ vn)
vbase = (Wbase ∗ v1,Wbase ∗ v2, ...,Wbase ∗ vn)
Here v represents the parent token vector, vsub
the sub-token vector and vbase represents the base-
token vector. The lower constant weight for sub-
tokens is denoted by Wsub ∈ [0, 1] compared to
Wbase = 1 assigned to base-token. The weight is
decided after doing multiple runs with variations in
Wsub as shown in Fig. 8. We choose Wsub = 0.4
empirically, as we get higher average scores in our
experiments on the dev set.

4.4 Attention layer

The Concatenation layer outputs are then passed
into the Attention layer which uses a transition ma-
trix of Shape(U) = dimh ∗ labels. It transforms
the head and dependent inputs to a 3D tensor matrix
predicting the head-dependent relation arcs and la-
bels jointly as represented in Fig. 4 as the Attention
layer. The output is Preds ∈ Rn∗n∗labels where
labels is the number of predicted labels and n is

the padded sequence length. (for more details refer
Section A.3)

4.5 Loss Function

We use a weighted cross-entropy function where
the weights are assigned for each of the labels, l
with respect to the target label frequency. We found
out that the frequency of None label vs other labels
was unbalanced. Hence, we conducted different
runs with the following weight distribution w =
(wNone, 1, 1, 1, 1) by varying wNone. We choose
the weights w = (0.8, 1, 1, 1, 1) empirically, as we
get higher average scores in our experiments on the
dev set, as shown in Fig. 9.

lossn = −wyn ∗ log( exp(xn,yn )

exp(
∑L

l=1 xn,l)
)

loss = −∑N
n=1

lossn∑N
n=1 wyn

where xn is the input probabilities, yn is the cor-
responding target label, N is the batch length of
input, w are the weights and L is the number of
labels.

4.6 Decoding

In this subsection, we describe the methodology
behind decoding the Attention layer output into the
opinion pairs or tuples. As shown in Algorithm 1,
in lines 2 to 12, we move along the main diagonal
to find the predicted spans with labels of each cate-
gory. Each of these spans have their starting offset
denoted by the head pointing to itself as shown in
Fig. 5. The end offset of a span is the last consec-
utive occurrence of the same tag as the head. For
the next step shown in lines 13 to 22, we look at
expression head’s dependents to find if any of them
are heads to other spans. This signifies a relation
arc between spans.
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Algorithm 1 Algorithm for Decoding the scores to tuples
Input: Preds, the 3D tensor output which contains the pre-
dicted label with maximum class probability for every head-
dependent token pair.
Output: Arcs, which contain all the possible Source-Target-
Expression tuples.
Require: Preds ̸= null
1: Initialize Tar, Src, Exp and Arcs sets to empty
2: while Left index l ≤ length(Preds) and Right index

l < r ≤ length(Preds) do
3: if Preds(l, l) = T and all Preds(l, r) =

Preds(l, r − 1) then
4: Add tokens (tl, ...tr) to Tar
5: end if
6: if Preds(l, l) = S and all Preds(l, r) =

Preds(l, r − 1) then
7: Add tokens (tl, ...tr) to Src
8: end if
9: if Preds(l, l) ∈ (EN,EP ) and all Preds(l, r) =

Preds(l, r − 1) then
10: Add tokens (tl, ...tr) to Exp
11: end if
12: end while
13: while Left index l ≤ length(Preds) and Right index

r ≤ length(Preds) do
14: if Preds(l, l) ∈ (EN,EP ) and Preds(l, l) =

Preds(l, r) and l ̸= r then
15: if tr ∈ Tar then
16: Arcs← (Tar(tr), Exp(tl))
17: end if
18: if tr ∈ Src then
19: Arcs← (Src(tr), Exp(tl))
20: end if
21: end if
22: end while

4.7 Post processing
For post processing, in the generated tuples from
the decoding layer, we remove overlapping Source
or Target spans from edges of Expression spans.
As shown in Example 1, "experience" is removed
from the polar expression.

Example 1: Thank you for such a wonderful
experience.
Raw tuple - ("source": "", "target": "experience",
"polar expression": "wonderful experience")
Post processed tuple - ("source":"", "target":
"experience", "polar expression": "wonderful").

5 Experimental Setup

5.1 Datasets & Evaluation Metric
The shared task has seven datasets across five
languages that are used for final evaluation and
ranking of submitted systems MPQA (Wiebe
et al., 2005), NoRec (Øvrelid et al., 2020), Multi-
book (Barnes et al., 2018), Opener (Agerri et al.,
2013) and Darmstadt (Toprak et al., 2010). We
submitted our system for monolingual task, where

we fine-tuned our model for each individual dataset
mentioned above.

The experiments conducted as a part of this work
use Sentiment-F1 (SF1) score (Barnes et al., 2021)
as the evaluation metric, as used in SemEval-2022
Shared Task 10. This metric defines true positive
as an exact match for each element of the opinion
terms, averaging the overlap in predicted and anno-
tated spans for each element across source, target
and polar expressions.

5.2 Experimental Settings
We use the Pytorch4 implementation of BERT base
multilingual cased model pretrained on the 104
languages. The model has t = 12 transformer
layers, the hidden size dimh is 768 and 12 self-
attention heads. The padding length used for encod-
ing is 128. We use ELMo embeddings which are
domain-general with 256-dimensions, pre-trained
with 800M tokens and 28M parameters. The Py-
torch BiLSTM implementation has hidden dimen-
sion of 64, number of layers as 2 and dropout proba-
bility as 0.3. The Concatenation layer has a output
dimension as 32 and dropout probability of 0.2.
The batch size is set to 16 for Train and 8 for de-
vset. We adopt an Adam optimizer (Kingma and
Ba, 2014) with learning rate of 2e − 5 and 500
warmup steps. After conducting train-dev runs for
maximum 100 epochs we select best epoch based
on Sentiment-F1 score on dev-set. A detailed view
of these experiments have been included in Fig. 7
in Appendix. We conduct these experiments on
a DGX server consisting of 8 Nvidia Tesla V100-
SXM2 with 16GB V-RAM. We use multiple GPU’s
using the DataParallel5 Pytorch class.

6 Experimental Results and Analysis

The detailed results of final submission are
as shown in Table 1. The proposed CBERT
and VBERT models performed relatively better
than BiLSTM based head-first and head-final ap-
proaches. CBERT performed 9% relatively better
than VBERT, supporting the hypothesis that the
concatenation of contextualized information with
syntactic information is more effective.

Our system achieved an average rank of 14/32
systems, based on the average scores across seven
datasets. An in-depth analysis reveals that although

4https://huggingface.co/transformers/
v1.2.0/

5https://pytorch.org/docs/stable/
generated/torch.nn.DataParallel.html
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Dataset Head-first Head-final VBERT CBERT Median Best System
Opener_en 0.524 0.542 0.576 0.634 0.623 0.760

MPQA 0.218 0.218 0.218 0.283 0.367 0.447
Darmstadt_unis 0.181 0.209 0.271 0.320 0.342 0.494

Opener_es 0.480 0.552 0.537 0.595 0.539 0.722
NoRec 0.254 0.272 0.315 0.343 0.329 0.529

Multibook_ca 0.529 0.543 0.595 0.634 0.525 0.728
Multibook_eu 0.501 0.536 0.564 0.559 0.478 0.739

Average Scores 0.384 0.410 0.439 0.481 0.458 0.631

Table 1: Results on the test set across seven datasets for five languages, scores of the final system is in bold face

our model performed quite good for five datasets
over the median system, for two datasets MPQA
and Darmstadt_unis our proposed system did
not perform relatively well, thus hampering the
average scores. The best system scores are also
relatively quite high, than our proposed CBERT
system. One of the potential reasons for relatively
lower performance for two datasets could be the
existence of excessive number of neutral labels
in these two datasets, which was not separately
handled in the experimental setup, as discussed in
Section 3.2.

Following is a qualitative analysis to identify
main challenges in the CBERT system.

• Boundary Detection: It was observed that
there were differences in the source, target and
polar expression boundaries based on punctua-
tion marks, stopwords or adjectives. For eg., It
is really very basic. contains polar expression
as very basic in its gold annotations whereas
CBERT predicted as really very basic.

• Tuple Formation: In sentences that contain a
single target with multiple polar expressions,
CBERT predicts them as a single tuple. For
eg., The rooms are clean and functional. In
this sentence, there is one target, the rooms
and its two polar expressions are clean and
functional. Gold annotations provided for the
sentence have two separate tuples for polar
expressions whereas CBERT predicts them as
a single tuple.

• Differences in Gold Annotation: In the
datasets, some data annotations exist only
for texts which have an explicit indication to-
wards the theme of the dataset. For instance,
the NoRec dataset is a collection of restaurant
reviews. Hence, the data which do not have

an explicit indication towards restaurant re-
lated comments are not annotated. However,
CBERT does not distinguish between themes
and produces predictions for such texts as well.
For eg., As a gold member I enjoyed an up-
grade to a very large room with lots of floor
space . does not have any annotations. How-
ever, CBERT predicts Source as I, Target as
room and Polar Expressions as enjoyed, very
large, lots of floor space.

A detailed set of examples are shown in Table 2.

7 Conclusion and Future Scope

This paper discusses the proposed system and ex-
perimental results on SSA task at SemEval-2022.
The proposed model called CBERT, assumes a joint
learning technique using BERT-base multilingual
model embeddings along with contextualized em-
beddings created using pretrained Stanza vectors
and pretrained ELMo embeddings. The arc predic-
tion between opinion term elements are achieved
using an Attention layer. The proposed CBERT
approach performed relatively better than BiLSTM
approaches and VBERT approach. We find that
using BERT based encoding, along with concate-
nation of contextualized information with syntactic
information is more effective for SSA task.

For improving CBERT, leveraging 2D CRFs
(Zhu et al., 2005) can be explored for better span de-
tection over longer texts. Different joint learning ar-
chitecture on top of CBERT’s encoding like SDRN
(Chen et al., 2020) can be leveraged. Approaches
to fine-tune models for specific tasks (Zhao et al.,
2020) is also a potential area for exploration.
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A Appendix

A.1 Additional Experimental Settings
• In Fig. 7, each of the values correspond to SF1

scores obtained over devset, post to training
on Training set (train/dev). It was observed
that scores are consistent at 100 epochs.

• In Fig. 8, we ran train/dev experiments for 60
epochs to record SF1 scores by varying the
sub-token weight wsub to find optimal wsub

weights to be used in the Concatenation layer.

• In Fig. 9, we conducted train/dev experiments
for 60 epochs to record SF1 scores by varying
weight for None label wNone to find optimal
weight to be used in weighted cross-entropy
function.

Figure 7: Graph showing Sentiment-F1 scores for our
proposed model against the number of epochs.

Figure 8: Sub-token weight vs devset SF1

Figure 9: Weight(None) vs devset SF1

A.2 Alternative encoding schemes
We introduce another scheme for encoding where
we mirror the labels of the lower triangular ma-
trix to the upper triangular matrix along the main
diagonal using results from our original encoding
scheme as shown in Fig. 10. This helps us reduce
the size of Attention layer’s output Preds by half,
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Error Category Remarks Example

Boundary Detection

Based on Adjectives

For, The first floor 24 hr bar was well run and no matter
what time of day there was always a waiter on hand to serve .

CBERT predicts Polar Expression as there was whereas
the annotaions contain there was always

Based on Punctuations
For, Robbed in elevator of hotel ! CBERT predicts Polar

Expression as Robbed in elevator of hotel whereas annotations
contain punctuation

Based on Stopwords
For, The best about this hotel is its location . CBERT predicts

Polar Expression as The best about whereas annotations
contain The best

Long Sentences

For, There are good conference rooms with all necessary
infrastructure ,good location allowing you to have nice

evening , pool , restaurants , internet , 5 minutes to airport
everything you need to do a business and relax after that .
CBERT predicts Source and Target efficiently but fails to

detect Polar Expressions

Tuple Formation
For Relax and enjoy CBERT predicts two Polar Expressions

separately as Relax, enjoy whereas annotations contain
Relax and enjoy as single expression

Gold Annotations
For, No words for this country and its people . no

annotations were provided

Table 2: Examples for Error Analysis categories

as we can always mask the lower half while apply-
ing the loss function.

Figure 10: Upper Triangular encoding

A.3 Attention layer
The output of Attention layer is represented
as, y = (ynone, yexp−pos, yexp−neg, ytar, ysrc) ∈
Rn∗n∗labels which is a 3D tensor where ylabel is a
2D tensor corresponding to a certain label, labels is
the number of predicted labels and n is the padded
input sequence length. The matrix transformations
done in the attention module (Bi-linear label Atten-
tion) (Barnes et al., 2021) are shown below,

score(hi, dj) = hTi ∗ U ∗ dj where

hi = Concathead(ci),
di = Concatdep(ci)
Shape(U) = dimh ∗ labels

A.4 VBERT overview

Figure 11: VBERT Architecture

This architecture shown in Figure 11 uses BERT
as an encoder and splits the BERT output into head
and dependent context.
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Abstract

ISCAS participated in both sub-tasks in
SemEval-2022 Task 10: Structured Senti-
ment competition. We design an extraction-
validation pipeline architecture to tackle both
monolingual and cross-lingual sub-tasks. Ex-
perimental results show the multilingual ef-
fectiveness and cross-lingual robustness of
our system. Our system is openly released
on: https://github.com/luxinyu1/
SemEval2022-Task10/.

1 Introduction

Aspect-based Sentiment Analysis (ABSA) aims
to detect the fine-grained sentiment tendency ly-
ing underneath texts. After decades of develop-
ment, this area has formed a large family of tasks.
Nevertheless, many of them are too simple or
overlap with each other. Meanwhile, the popu-
lar evaluation resources are limited both in number
and linguistic diversity. SemEval-2022 Task 10
(Barnes et al., 2022) is proposed to unify differ-
ent sub-tasks in ABSA and introduces new met-
rics, new datasets on different languages to bet-
ter evaluate methods in this area. Task 10 chal-
lenges its participants to extract opinion quadru-
ple (holder, target, expression, polarity) from texts
across English, Spanish, Basque, Catalan and
Norwegian in monolingual (Sub-task 1) or cross-
lingual (Sub-task 2) manners. Figure 1 provides
two aspect-level annotations in a same sentence.

We applied an extraction-validation pipeline sys-
tem and participated in both sub-task. Our system
ranked at 10th in 32 teams on the monolingual task
without using extra data, and achieved competitive
performance on the cross-lingual task. Besides, the
proposed pipeline can be employed universally in
monolingual and cross-lingual scenarios.

∗This work was finished during their internship at ISCAS-
CIP Lab.

2 Background

2.1 Task Definition
Task 10 is formalized as detecting all opinion
tuples O = Oi, ..., On in given text s. Con-
cretely, each opinion Oi is a quadruple (h, t, e, p),
denoting a holder who expresses a polarity
∈ {Positive,Neutral,Negative} towards a target
through a sentiment expression. It’s worthy to note
that, h, t, e can be empty in this task. Following
Cai et al. (2021), tuples with empty values are re-
gard as implicit opinions in this system description
paper. For the example in Figure 1, the quadruple
"(–, them, don’t believe negative)" is an implicit
opinion.

2.2 Related Work
Aspect-based Sentiment Analysis Recently,
there has been a large body of work focusing on
different sub-tasks of ABSA. Generally we divide
these sub-tasks into two categories: atomic and
compound. Atomic ones take single element (e.g.,
t, e, or p) as the output and most of them can be
treated as a sequence tagging problem (Li and Lam,
2017; Xu et al., 2018; Li et al., 2018; Wu et al.,
2020b; Pouran Ben Veyseh et al., 2020). The com-
pound ones need to find pairs (e.g., (t, p)), triplets
(e.g., (t, e, p)) or even quadruples (e.g., (h, t, e, p))
from the inputs. Some works (Peng et al., 2020; Xu
et al., 2021) use pipeline architecture to extract the
elements separately and then make combinations;
meanwhile some works use Seq2Seq models (Yan
et al., 2021; Zhang et al., 2021) or unified tagging
schemes (Mitchell et al., 2013; Zhang et al., 2015)
to solve these sub-tasks in an end-to-end manner.

Pre-trained Language Models Pre-trained Lan-
guage Models (PLMs) are deep neural networks
pre-trained on large-scale corpora. Unlike tradi-
tional static word embedding methods, PLMs aim
to learn dynamic contextual embedding of words
in sentences from the unlabeled text. Recent re-
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(Some others, the new UMUC, 5 stars, positive) (--, them, don’t believe, negative)

Figure 1: An example of Semeval 2022 Task 10. This figure is modified based on Figure 1 in (Barnes et al., 2021),
the original sentiment graph representation is linearized to quadruple representation in this task. "–" indicates that
this element in quadruple is empty.

search shows PLMs perform well in various syn-
tactic tasks, such as POS tagging.

BERT (Devlin et al., 2019) is a typical language
representation model based on the Transformer en-
coder architecture. It is pre-trained on two unsu-
pervised tasks: Mask Language Modeling (MLM)
and Next Sentence Prediction (NSP). mBERT1 is
a multilingual version of BERT pre-trained on the
wiki dumps of 104 languages.

RoBERTa (Liu et al., 2019) removes the NSP
task, which has no prominent effect in BERT pre-
training and further improves BERT with dynamic
masking, deeper network, longer input sequence,
and larger training corpora. By virtue of these
robust optimizations, RoBERTa significantly out-
performs BERT on many tasks. XLM-RoBERTa
(Conneau et al., 2020) extends RoBERTa architec-
ture to the multilingual scenario by scalable pre-
training on filtered CommonCrawl data containing
100 languages.

SKEP (Tian et al., 2020) incorporates sentiment
knowledge into PLMs through sentiment masking
and three sentiment pre-training objectives. It pro-
vides a unified contextual representation for down-
stream sentiment tasks.

NB-BERT (Kummervold et al., 2021) is a Nor-
wegian instance of BERT in low-resource language.
To alleviate the shortage of pre-training Norwegian
corpora, OCR is conditionally used to mine good
texts from digital copies.

3 System Overview

To tackle this task, we design a pipeline system
that decouples this complex problem into a two-
step pipeline with an extraction stage and valida-
tion stage. In the extraction stage, we first extract
target-expression-polarity using an extended grid

1https://github.com/google-research/bert

tagging schema, and then extract holder with a
question answering system. In the validation stage,
we employ a neural validator to determine the ex-
tracted results whether are valid in texts. Figure 2
illustrates the overall architecture of our system.

3.1 Target-expression-polarity co-extraction

Target-expression-polarity co-extraction aims to ex-
tract (t, e, p) triplets from text s (Peng et al., 2020).
However, existing works (Peng et al., 2020; Wu
et al., 2020a) usually assume that all opinions are
expressed explicitly and pay little attention to im-
plicit opinion extraction. In our system, we extend
Grid Tagging Scheme (GTS) (Wu et al., 2020a) to
adapt both implicit and explicit opinion extraction.

Original tagging space in GTS is an upper trian-
gular grid, whose length and width is the tokenized
sequence length l. Specifically, for i, j ∈ [0, l],
cell (i, j) contains the tag for token-pair (ti, tj)
in the grid tagging. We integrate two new la-
bels {IA, IO} into the original tagging scheme
and end up with a label set containing eight la-
bels: Y = {A,O, IA, IO,Pos,Neu,Neg,N}. The
grid representation of implicit opinions can thus
be implemented by filling IA or IO label in the
cell of token-pair (t0, t0) while not interfering with
the representation of explict opinions. We believe
this strategy is also reasonable under the perspec-
tive of sentence embedding in pretrained encoders,
owing to that hidden-state of [CLS] (or <s> in
RoBERTa) token which later fed into the token-
level classifier, is often used as the semantic repre-
sentation of the whole sentence.

We list the meanings of labels in our extended
GTS separately in Table 1 and provide a tagging
example for the extended GTS in Figure 3.

The decoding algorithm and inference steps we
exploit are identical to the original paper.
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Figure 2: The overview of our system in SemEval-2022 Task 10. Best viewed in color.

Tags Meanings of tags in cell (i, j)

A ti and tj belong to the same target term.
O ti and tj belong to the same sentiment expression term.

IA i = j = 0, indicating an implicit target term.
IO i = j = 0, indicating an implicit expression term.

Pos ti and tj respectively belong to an target term and
an expression term, and they form

Positive/Neutral/Negative opinion pair relation.
Neu
Neg

N No relation between ti and tj

Table 1: The meanings of tags in our extended GTS.
Cell (i, j) contains the tag for token-pair (ti, tj).

Model Ensemble We ensemble the different
GTS models using a variety of backbones as the
final predictor. Specifically, we perform an un-
weighted average of predicted distributions pij ∈
Rd from each model on token-pair (ti, tj) and get
p̄ij . The final predicted label index is argmax(p̄ij).

3.2 Target-expression oriented holder
extraction

After obtaining (t, e, p) triplets from the previous
step, we further predict holder for each given triplet
extracted from text s, i.e., target-expression ori-
ented holder extraction. We cast this problem as a
Question Answering (QA) task, where the context
is text s and the answer is the holder span.

Query Construction For holder extraction, we
construct the query q for the QA system with the
(t, e, p) triplet. Under the multilingual setting of
this task, we design different question templates

IA Pos Pos N N N N N N

O O N N N N N N

O N N N N N N

N N N N N N

N N N N N

N N N N

N N N

N N

N

0 1 2 3

0 [CLS]

Idealy

situated

in

the

heart

of

Florence

.

4 5 6 7 8

1

2

3
4

5

6

7

8

Figure 3: The extended Grid Tagging Scheme on
opinion triplet (−, Idealy situated,Positive) in sentence
"Ideally situated in the heart of Florence.". "–" indicates
this element in triplet is empty.

in different languages. The details of the question
templates are shown in Table 2.

Encoding and Inference We adopted the same
setting as Devlin et al. (2019) to handle the QA
task. The input query message q and text s are
presented as a single packed sequence:

x =

{
[[CLS]; q; [SEP]; s; [SEP]] if BERT
[<s>; q;</s></s>; s;</s>] if RoBERTa

(1)

1307



Language Question Template

English What is the holder given the aspect t and the opinion e ?
Spanish ¿Cuál es el titular de la opinión dado el aspecto t y la opinión e ?
Basque Zein da helburu t eta e iritzia emanda iritzia duenak ?
Catalan Quin és el titular de l’opinió donat l’aspecte t i l’opinió e ?

Norwegian Hva er meningshaveren gitt aspektet t og meningen e ?

Table 2: The question templates we make to get query message in different languages. t denotes the target term and
e denotes the expression term. When t or e is empty, the string "empty" are given to the templates as the term.

Then the context-aware representations of x are
fed to a feed-forward linear layer to detect the span-
start and span-end position. Note that we treat the
special symbol [CLS] (or <s>) as the impossible
answers for implicit opinions that without corre-
sponding holders.

In detail, we feed the tokenized input sequence
x into the encoder of PLMs. The last hidden-states
Hx ∈ Rl×d can be represented by:

Hx =

{[
h[CLS];hq;h[SEP];hs;h[SEP]

]
if BERT

[h<s>;hq;h</s></s>;hs;h</s>] if RoBERTa
(2)

where l is the length of the tokenized sentence,
and d is the dimension of PLMs. The final linear
span prediction network takes Hx as the input and
outputs two probabilities ps, pe ∈ Rl for span-start
and span-end prediction:

ps, pe ∝ softmax(Linear(Hx)) (3)

For model learning, the whole parameters in the
QA model are optimized by maximizing the likeli-
hood of span-start and span-end positions:

LQA = − 1

N

N∑

i=1

[
log
(
psysi

)
+ log

(
peyei

)]
(4)

where N is the number of spans in a single batch,
ysi and yei are ground-truth span-start and span-end
positions respectively.

3.3 Quadruple Validation

To reduce the errors accumulated in previous steps,
we design a binary classifier that determines if a
combination of holder, target, and expression is
valid in text s. The valid triplets predicted by this
sub-system are kept along with their corresponding
polarity, while the others are discarded.

Encoding and Inference We utilize the pre-
trained transformers to obtain the representation
of text and triplets. Since BERT-like models are

more sensitive to sentence-pair input, we concate-
nate h, t, e with a special symbol [PAD] and treat
them together as sentence B. Concretely, we build
the sequence pack in the form of:

x = [[CLS]; s; [SEP];h[PAD]t[PAD]e; [SEP]] (5)

Under the circumstances of implicit opinion, the
empty h, t, e terms are replaced with a special
token [EMP].

The validator network takes the representation
of x[CLS] as the input and returns the binary vali-
dation result. We implement the validator with a
linear feed-forward layer.

Span Manipulation Considering that the combi-
nations from sub-spans of the golden holder, target,
and opinion terms are also treated as weighted cor-
rect predictions, we perform span manipulation to
build a more robust classifier. For each ground-
truth holder, target, expression term in triplet, we
enumerate all the sub-spans and the original term
in their corresponding set H,T,E, the final triplet
candidate pool is the Cartesian product of the three
set: H× T× E.

Finally, for each golden triplet, we randomly
select at most k triplets (must include the original
one) from the candidate pool as positive samples.

Negative Sampling We further design several
rules to mine the negative (i.e., invalid) samples
from raw datasets and manipulated golden triplets,
including:

1.1. If a golden triplet has a holder, remove the
holder and keep other elements.

1.2. If a golden triplet doesn’t have a holder, use
a holder dictionary to mine pseudo holders
from text, packaging the mined holders (if
there exist any) with the golden triplet.

2. If a text has multiple golden triplets, exchange
the holder / target / expression terms in one
with the other.
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3. Randomly sample triplets.

Rules 1 → 3 are sequentially executed until q
samples have been harvested, where q is in positive
correlation with the number of positive samples.
Meanwhile, we remove all the weighted true and
true samples from the mined pseudo negative sam-
ples.

4 Experimental setup

4.1 Data Splits
Monolingual Sub-task This sub-task contains 7
different datasets (Agerri et al., 2013; Wiebe et al.,
2005; Toprak et al., 2010; Barnes et al., 2018; Øvre-
lid et al., 2020) across 5 languages. We leveraged
the origin splits provided by the organizer and did
not include any extra data. The details of data splits
are shown in Table 3.

Dataset Splits

Train Dev Test

OpeNERen 1,744 249 499
OpeNERes 1,438 206 410
NoReCFine 8,634 1,531 1,272

MPQA 5,873 2,063 2,112
DSunis 2,253 232 318

MultiBca 1,174 167 335
MultiBeu 1,063 152 305

Table 3: Data splits.

Cross-lingual Sub-task This sub-task uses a
zero-shot setting in which models are trained on
the resource that does not contain annotations in
the target language. For each target language, we
combine all the training sets of OpeNER∗, MPQA,
and MultiB∗ in other languages.

4.2 Implementation and Hyperparameters
This section generally describes the system imple-
mentation details and the selection of parameters.
The detailed settings can be found in Appendix A.

Monolingual Sub-task For extended GTS and
QA part in our pipeline, we tune and select mod-
els based on SF1 (Sentiment Graph F1 (Barnes
et al., 2021)) scores on the development splits. For
the validator part, the models are tuned based on
the classification accuracy on the manipulated and
sampled development datasets.

In order to maximize the advantages of our sys-
tem, we test a number of high-performing PLMs
and finally RoBERTalarge, XLM-RoBERTalarge,

NB-BERTlarge, SKEP-ERNIElarge and ensemble
model [BERTlarge+SKEP-ERNIElarge] are adopted
to the training on different datasets in extended
GTS. The max sequence length is set to the max of
training and development sets, and meanwhile, the
number of hops is chosen in 2 and 3 for GPU mem-
ory limitation. The large extended GTS models are
trained on a single A100 80G GPU.

For QA sub-system, we use several task-
pre-trained PLMs as backbones, such as XLM-
RoBERTalarge-SQuAD2, distilBERTbase-SQuAD3

and RoBERTalarge-SQuAD4.
For the validation step, we add LaBSE5, which

is a PLM focusing on language-agnostic sentence
embedding and mBERT to the model pools in GTS
training.

We fine-tuned all models on the training data us-
ing linear learning rate scheduler and the warming
up strategy with the learning rate of 3e-5/3e-6 and
the batch size of 8~64. We set all random seeds to
1 for reproducibility.

Cross-lingual Sub-task We set all holder posi-
tions in tuples to empty instead of leveraging the
QA sub-system to extract holders. This is because
the QA sub-system requires extra enhancements to
fitting the cross-lingual setting (Cui et al., 2019).

The cross-lingual backbone in extended GTS is
XLM-RoBERTalarge, and LaBSE for the validator.

5 Results

In this section, we report the scores on the develop-
ment and test datasets of two sub-tasks separately.
We use SF1 (Sentiment Graph F1), SP (Sentiment
Graph Precision) and SR (Sentiment Graph Recall)
to evaluate the performance of our system.

5.1 Monolingual Sub-task

Table 4 reports the results of the monolingual sub-
task, which ranks 10th in 32 teams. Table 5 shows
the ablation analysis of different components on
the development set of monolingual tasks. We
can see that: 1) Grid-tagging-scheme based target-
expression-polarity co-extraction achieves good
performance in different languages. 2) The pro-
posed validator can effectively filter out invalid

2https://huggingface.co/deepset/xlm-roberta-large-
squad2/

3https://huggingface.co/distilbert-base-uncased-distilled-
squad/

4https://huggingface.co/deepset/roberta-large-squad2/
5https://tfhub.dev/google/LaBSE/1/
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SF1 SP SR

OpeNERen 0.710 0.788 0.646
OpeNERes 0.669 0.735 0.614
NoReCFine 0.487 0.539 0.444

MPQA 0.269 0.369 0.211
DSunis 0.416 0.480 0.366

MultiBca 0.658 0.720 0.605
MultiBeu 0.651 0.705 0.605

Table 4: Sub-task 1 Results.

System SF1 SP SR

OpeNERen Co-Extraction 0.686 0.710 0.664
+ Holder Extraction 0.705 0.732 0.681
+ Quadruple Validation 0.717 0.786 0.660

OpeNERes Co-Extraction 0.707 0.716 0.698
+ Holder Extraction 0.707 0.716 0.698
+ Quadruple Validation 0.728 0.768 0.692

NoReCFine Co-Extraction 0.501 0.510 0.492
+ Holder Extraction 0.501 0.510 0.492
+ Quadruple Validation 0.510 0.565 0.465

MPQA Co-Extraction 0.139 0.148 0.131
+ Holder Extraction 0.345 0.362 0.330
+ Quadruple Validation 0.358 0.424 0.309

DSunis Co-Extraction 0.370 0.453 0.313
+ Holder Extraction 0.393 0.480 0.333
+ Quadruple Validation 0.398 0.493 0.333

MultiBca Co-Extraction 0.674 0.707 0.643
+ Holder Extraction 0.677 0.711 0.646
+ Quadruple Validation 0.706 0.800 0.631

MultiBeu Co-Extraction 0.567 0.553 0.581
+ Holder Extraction 0.601 0.577 0.627
+ Quadruple Validation 0.625 0.665 0.589

Table 5: Ablation analysis of our pipeline system on the
dev sets in Sub-task 1.

triples and significantly improve the precision of
the model.

5.2 Cross-lingual Sub-task

Table 6 shows the results on the cross-lingual sub-
task. Compared to the monolingual sub-task, the
experimental results shows that the proposed cross-
lingual system still performs competitively without
training on the target language.

6 Conclusion

In this paper, we propose a pipeline system for
(holder, target, expression, polarity) quadruple ex-
traction in ABSA, and adopt a verity of pre-trained
language models in distinct parts of system. The
evaluation results demonstrate the effectiveness and
robustness of our system.

SF1 SP SR

OpeNERes 0.620 0.716 0.548
MultiBca 0.605 0.596 0.615
MultiBeu 0.569 0.573 0.566

Table 6: Sub-task 2 Results.
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A Experiment Details

Table 7 shows the detailed configurations of each
sub-system in the two sub-tasks.

Dataset Subsystem Backbone Hyper-parameters

Monolingual

OpenNERen

Co-Extraction [BERTlarge+SKEP-ERNIElarge] n-hop=3,lr=3e-5, bs=8, msl=132, epochs=100
Holder Extraction RoBERTalarge-SQuAD lr=3e-5, bs=16, msl=384, epochs=15
Quadruple Validation BERTlarge bs=16, lr=3e-6, msl=512, epochs=10

OpenNERes

Co-Extraction XLM-RoBERTalarge n-hop=3,lr=3e-5, bs=8, msl=193, epochs=100
Holder Extraction XLM-RoBERTalarge-SQuAD lr=3e-5, bs=32, msl=384, wus=100, epochs=15
Quadruple Validation LaBSE bs=32, lr=3e-5, msl=512, epochs=10

NoReCFine

Co-Extraction NB-BERTlarge n-hop=3,lr=3e-5, bs=16, msl=125, epochs=100
Holder Extraction XLM-RoBERTalarge-SQuAD lr=3e-5, bs=32, msl=384, epochs=15
Quadruple Validation NB-BERTbase bs=32, lr=3e-6, msl=512, epochs=10

MPQA
Co-Extraction RoBERTalarge n-hop=2,lr=3e-6, bs=16, msl=230, wus=2000, epochs=100
Holder Extraction BERTbase-distilled-SQuAD lr=3e-5, bs=64, msl=384, epochs=15
Quadruple Validation SKEP-ERNIElarge bs=64, lr=3e-6, msl=512, epochs=5

DSunis

Co-Extraction SKEP-ERNIElarge n-hop=3,lr=3e-5, bs=8, msl=229, wus=500, epochs=100
Holder Extraction RoBERTalarge-SQuAD lr=3e-5, bs=16, msl=384, wus=1000, epochs=20
Quadruple Validation SKEP-ERNIElarge bs=64, lr=3e-5, msl=512, epochs=10

MultiBca

Co-Extraction XLM-RoBERTalarge n-hop=3,lr=3e-5, bs=8, msl=265, epochs=100
Holder Extraction XLM-RoBERTalarge-SQuAD lr=3e-5, bs=32, msl=384, epochs=15
Quadruple Validation mBERTbase bs=32, lr=3e-5, msl=512, epochs=10

MultiBeu

Co-Extraction XLM-RoBERTalarge n-hop=3,lr=3e-5, bs=8, msl=132, epochs=100
Holder Extraction XLM-RoBERTalarge-SQuAD lr=3e-5, bs=32, msl=384, epochs=15
Quadruple Validation LaBSE bs=32, lr=3e-5, msl=512, epochs=10

Cross-lingual

OpenNERes
Co-Extraction XLM-RoBERTalarge n-hop=3,lr=3e-6, bs=8, msl=265, epochs=100
Quadruple Validation LaBSE bs=128, lr=3e-6, msl=512, wus=1000, epochs=10

MultiBca
Co-Extraction XLM-RoBERTalarge n-hop=3,lr=3e-6, bs=8, msl=193, epochs=100
Quadruple Validation LaBSE bs=128, lr=3e-6, msl=512, wus=1000, epochs=10

MultiBeu
Co-Extraction XLM-RoBERTalarge n-hop=3,lr=3e-6, bs=8, msl=152, epochs=100
Quadruple Validation LaBSE bs=128, lr=3e-6, msl=512, wus=1000, epochs=10

Table 7: Detailed configurations of the subsystems. The
abbreviation "bs" stands for batch size, "msl" for max
sequence length, "wus" for number of warm-up steps.
"[A+B]" represents an ensemble model using backbones
A and B.
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Abstract
Structured Sentiment Analysis is the task of
extracting sentiment tuples in a graph struc-
ture commonly from review texts. We adapt
the Aspect-Based Sentiment Analysis pointer
network BARTABSA to model this tuple ex-
traction as a sequence prediction task and ex-
tend their output grammar to account for the
increased complexity of Structured Sentiment
Analysis. To predict structured sentiment tu-
ples in languages other than English we swap
BART for a multilingual mT5 and introduce
a novel Output Length Regularization to mit-
igate overfitting to common target sequence
lengths, thereby improving the performance
of the model by up to 70%. We evaluate our
approach on seven datasets in five languages
including a zero shot crosslingual setting.

1 Introduction

The goal of sentiment analysis is to understand
a writer’s opinions expressed in a text. In recent
years, this topic became of particular research inter-
est since with the advent of social media platforms,
users were encouraged to share their opinions about
a wide range of subjects with the world. For exam-
ple, websites like Yelp collect and share opinions
about restaurant visits and various online retail-
ers allow customers to publish their reviews about
items in their assortment. Consequently, various
text corpora emerged that made it feasible to apply
machine learning based approaches to this task (Ya-
dav and Vishwakarma, 2020).

Sentiment analysis can be approached with var-
ious degrees of granularity. It is possible to only
classify the overall polarity of a sentence as pos-
itive or negative, or a more precise intermediate
value (Nguyen et al., 2020; Devlin et al., 2019).

Furthermore, the sentiment can be predicted in
a more fine-grained manner, like with regard to
the various targets addressed in the sentence. This
can be of particular interest if the writer is ambigu-
ous in their review and no overall sentiment label

can be assigned to a sentence. For example, a cus-
tomer might describe the service or the interior of a
restaurant as unpleasant but the food itself as good.
This can be extended to more complex sentence
structures, taking into account not only the aspects
or the sentiment, but also its holder (i.e. who is
expressing the sentiment) or the opinion term itself,
e.g. (Yan et al., 2021; Mukherjee et al., 2021).

In this paper, we work on the challenge described
by Barnes et al. (2022). Here, the goal is to extract
an arbitrary number of opinion tuples from a text.
Each tuple can consist of a holder, a target, a sen-
timent expression, and a polarity. However, it is
also possible that some of these mentioned enti-
ties are not present in a certain tuple. Moreover, a
sentence may include no sentiment and hence no
tuples should be extracted.

The challenge spans data from five different lan-
guages, namely English, Spanish, Catalan, Basque,
and Norwegian and two different subtasks. First,
there is the monolingual setting in which you are
allowed to train on all sentiment data, including
those in the language that is subsequently used to
test the model’s capability of extracting sentiment.
Moreover, in the crosslingual setting the models
are tested on Spanish, Catalan and Basque senti-
ment data while being trained on any of the other
languages. It was also allowed to train on Span-
ish, Catalan and Basque data as long as it does
not contain any annotated sentiment information.
This makes the crosslingual structured sentiment
analysis task a zero shot setting.

Our approach is based on BARTABSA (Yan
et al., 2021), who leverage a pointer network to pre-
dict sentiment tuples (aspect, opinion, sentiment)
by representing them using a custom output gram-
mar. They extend a BART model with a pointer
generator network which is thus able to predict
token indices from the input sequence as output.

Our contributions are as follows: (i) we intro-
duce a new, flexible grammar to model structured
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sentiment graphs as a pointer sequence, (ii) we
explore mT5 as base model allowing us to make
cross-lingual predictions, (iii) we introduce a new
length regularizer to prevent overfitting to common
sequence lengths.

2 Preliminaries

2.1 BART & mT5

BART (Lewis et al., 2020) is a sequence-to-
sequence model built using transformer (Vaswani
et al., 2017) neural networks. In its default configu-
ration BART consists of 6 encoder and 6 decoder
transformer layers. BART is trained as a denois-
ing autoencoder. Hence, the input to its encoder
are sentences which are noised using five differ-
ent methods like masking or permutation of tokens.
Consequently, the decoder is trained to restore the
original sentence like defined in Equation 1.

mT5 (Xue et al., 2021; Raffel et al., 2020) is
another sequence-to-sequence model based on the
transformer architecture. It is trained on 101 lan-
guages at the same time using the span corruption
objective and at time of publication achieved state
of the art on many multi-lingual benchmarks. Its
training corpus includes all languages used in this
challenge (section 1).

2.2 BARTABSA

We model the Structured-Sentiment Analysis task
as a seq2seq-task by adopting the framework intro-
duced in BARTABSA. It encodes sentiment tuples
(section 1) as a sequence of token indices (pointers)
and special tokens.

2.2.1 Output Grammar

In BARTABSA, the target sequence consists of
tuples with a fixed size of five:

. . . ,asi , a
e
i , o

s
i , o

e
i , s

p
i , . . .

which allows them to express the ith aspect term
(a) and its opinion term (o) in an input sentence by
their respective starts and ende integer token-index
in the input token sequence, as well as the senti-
ment polarity class sp associated with this combina-
tion of aspect and opinion terms. Sequences struc-
tured like this can be unambiguously converted to
aspect-based sentiment tuples as they occur in fixed
sequence lengths of five: four token indices and
one sentiment class.

2.2.2 Model
Sequences of this output grammar can be predicted
by the model by pointing to the tokens in the input
sequence in this fixed order and finally complet-
ing the triplet of aspect, opinion and sentiment by
predicting the associated sentiment class.

Thus, the task is modelled as an auto-regressive
decoding task where the probability of the next
output token P (Y |X) depends on both the input
X as well as the previously decoded tokens Y<t.
For a sequence of length m the decoding process
is hence given as

P (Y |X) =
m∏

t=1

P (yt|X,Y<t) (1)

Usually, the decoding is stopped as soon as the
End-Of-Sequence token EOS is predicted.

An architecture to generate such output was
introduced as BARTABSA (Yan et al., 2021).
BARTABSA is based on BART (Lewis et al., 2020)
and uses a pretrained BART encoder to encode the
input sentence. Hence, given an input sequence of
n tokens s = [x1, . . . , xn], BARTABSA first ap-
plies the encoder to obtain the input representation

He = BARTEncoder(s) (2)

with He ∈ Rn×d (d denotes the embedding size).
Since the goal of BARTABSA is to predict in-

dices to tokens in the input sequence, its decoder
is augmented with a pointing mechanism (Vinyals
et al., 2015) to generate these indices (Yan et al.,
2021) instead of tokens from a vocabulary (see
Equation 5 – 8). To be able to predict l additional
sentiment class labels C, they are concatenated to
the input and treated as tokens of the input sen-
tence. However, to train and inference the neural
network in an auto-regressive manner, i.e. feeding
the previous output back into the decoder, the yet
generated pointers must be mapped back to their
indexed tokens first using the following mapping:

ŷt =

{
Xyt if yt ∈ X
Cyt−n if yt is an index of a class label

(3)
The BART decoder is then applied to the mapped

pointers:

hdt = BARTDecoder(He; Ŷ<t) (4)

Using hdt , the distribution for pointing to the input
sequence is then calculated as:

Ee = BARTTokenEmbed(X) (5)
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Cd = BARTTokenEmbed(C) (6)

BARTTokenEmbed is a shared embedding layer
which is used to embed both the tokens from the
input sequence X as well as the class labels C.

H̄e = α MLP(He) + (1− α)Ee (7)

Finally, the embedded input sequence is concate-
nated with the embedded class labels. The pointing
distribution is then given as the softmax over the
concantenated sequence multiplied with the hidden
representation hdt obtained from the BART decoder:

Pt = softmax([H̄e;Cd]hdt )

= P (yt|X,Y<t)
(8)

where Ee, He, H̄e ∈ Rn×d, Cd ∈ Rl×d, Pt ∈
Rn+l. Teacher forcing (Williams and Zipser, 1989)
is used during training together with negative log-
likelihood as optimization criterion.

3 Methodology

Our approach to predicting sentiment graphs on the
given datasets is grounded on BARTABSA (2.2).
We adopt and extend their framework to not only
be able to predict aspect-based sentiment but also
structured sentiment. For this we introduce a new
output grammar which is able to model and repre-
sent the sentiment tuples as required for this task.

We adapt their sequential pointer representation
for Triplet Extraction (aspect, opinion, sentiment)
to the task at hand.

3.1 Extensions to the Output Grammar
We extend the expressive power of their output
grammar in several ways to account for the in-
creased target complexity of the structured sen-
timent task: Each entity (can be a or o for Triplet
Extraction) for structured sentiment analysis can. . .

• be optional

• consist of arbitrarily many discontiguous parts

• be “source”/“holder” of the sentiment

Defining such an enhanced output grammar which
can model these properties enables us to unambigu-
ously represent the sentiment tuples required for
the structured sentiment task. In the following we
adapt the notion of BARTABSA from “aspect term”
to the sentiment target and “opinion term” to the
polar expression.

3.1.1 Entity Absence
First we account for optional absence of entities
by introducing a special token for each type of
entity indicating the begin of its respective entity.
This prevents ambiguity if an entity is absent and
transforms the previous example from subsubsec-
tion 2.2.1 to the following sequence:

. . . ,TGTBEG, t
s
i , t

e
i ,EXPBEG, e

s
i , e

e
i , s

p
i , . . .

where XYZBEG is the unique class token for each
entity type indicating the begin of entity XYZ, ti
and ei are integers referring to token positions in
the input sequence and spi is the sentiment class
token (see Figure 1 for example). This way if, e.g.,
there is no target term to be predicted for the ith

sentiment tuple the sequence becomes

. . . ,EXPBEG, e
s
i , e

e
i , s

p
i , . . .

and thereby stays unambiguous as it is still well
defined that the tokens between esi and eei resemble
the expression term and not the missing target term.
This can be clearly interpreted although esi and eei
are the first two predicted indices of the ith sen-
timent tuple which were allocated to target entity
indices before.

3.1.2 Entity Splitting
Second we allow for split entities as described
in subsection 4.3 by further extending the output
grammar. After every begin-of-entity special token
(XYZBEG) we do not only allow for a single starts

and ende index tuple but arbitrarily many such tu-
ples. Therefore a two-part target term in the ith

triplet is represented like this:

. . . ,TGTBEG, t
s1
i , t

e1
i , t

s2
i , t

e2
i ,EXPBEG, e

s
i , . . .

In this syntax the first part of the ith target term
can be found between ts1i and te1i and the second
part between ts2i and te2i (see Figure 1 for exam-
ple). Every entity can be modeled by arbitrarily
many such pointer tuples and due to the special to-
kens (XYZBEG) indicating transitions between the
predicted entities the association between pointer
indices and entity type stays unambiguous.

3.1.3 Sentiment Source
Last we enable the prediction of the sentiment
holder or source. Given the previous modifications
to the output grammar this can be easily achieved
by introducing a new special token HOLBEG.
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I ‘ m definitely going there again whenever I get a chance.
1    2       3            4        5       6           7        8  9 10    11

polarity: positive

𝐵𝑂𝑆, 𝑇𝐺𝑇!"# , 5, 5, 𝐸𝑋𝑃!"# , 3,4,6,6, 𝐻𝑂𝐿!"# , 1,1, 𝑃𝑂𝑆, 𝐸𝑂𝑆

sentiment graph

input sentence
token indices

sentiment graph
represented as seq

Figure 1: Exemplary input sentence, its associated sen-
timent graph (target, expression, holder, sentiment) as
well as the sentiment graph modeled using our grammar.

3.1.4 Constructing the Output Grammar
Combining all our extensions to the output gram-
mar introduced above we are able to unambigu-
ously represent structured sentiment tuples in a
sentence as a sequence consisting of pointers and
special tokens.

First we sort all sentiment tuples per sentence
ascending by their token index in the input sen-
tence. For this we only look at the index of the start
token of each entity. We first sort the tuples by the
start index of the target term, if they are equal by
their expression term and lastly on equality we fall
back to their holder term. This is done the same
way in BARTABSA and PASTE as it is shown that
predicting the sentiment tuples of a sentence in
a strict order boosts the performance of the final
model (Yan et al., 2021; Mukherjee et al., 2021).

A sentiment graph for an input sentence is mod-
elled as follows using our output grammar (exam-
ple in Figure 1): After the BOS-token we encode
the sentiment tuples in the order described above.
First if the ith sentiment tuple contains an target
term we insert an TGTBEG-token followed by a
sequence of tuples of start (tsi ) and end (tei ) indices,
one for every discontiguous part of the target term.
We repeat this for the expression and holder terms
of the sentiment tuple. The representation of the
ith sentiment tuple is completed by its sentiment
polarity token (pos, neu, neg). This process is
repeated for every sentiment tuple of the input sen-
tence. After the last sentiment polarity token the
output sequence is closed with an EOS-token.

If a sentence has no sentiment tuples it is repre-
sented by the empty sequence [BOS,EOS].

3.2 Output Length Regularizer

Predicting the structured sentiment graph for an in-
put sentence using our above (3.1.4) defined output
grammar is naturally very sensitive to the place-
ment of the EOS-token. If our model predicts the
EOS-token e.g. only a single token too early the last

sentiment tuple — consisting of target, expression,
holder and sentiment class — becomes incomplete
as it lacks at least the sentiment class for the entire
tuple. Therefore it can no longer be correctly inter-
preted or converted to the sentiment graph structure.
A missplaced EOS-token can lead us to miss an en-
tire sentiment tuple or even more if the EOS-token
is off by more than the length of a tuple.

During our experiments we noticed some models
being prone to overfitting to common positions of
the EOS-token (also see Newman et al. (2020)) in
the train set (5.1). When analysing the predictions
of such a model during training we found that often
the EOS-token was predicted not only at the correct
location in the sequence, but also once more, ear-
lier at the most-common EOS-token position in the
train set. Usually this is right after the BOS-token.
As we convert the output sequence to the sentiment
graph up to the first EOS-token (3.1.4) this results
in an empty graph. Such an incorrect sequence
consisting of an otherwise correctly predicted sen-
timent unit with a target and an expression exem-
plarily looks like this:

[BOS,EOS], tsi , t
o
i ,EXPBEG, e

s
i , e

e
i , s

p
i , EOS

In this case the TGTBEG-token got erroneously
replaced by an overfitted EOS-token, thereby stop-
ping the output sequence early — as indicated by
the gray font. As can be clearly deducted from
Figure 1 such a token replacement would result
in an empty sequence and thereby no extracted
sentiment graph. We cannot just ignore/fix such
a misplaced EOS-token automatically because we
cannot decide whether such an error occurred at all
or which begin-of-entity (XYZBEG) got replaced
by the first EOS.

Therefore we have to prevent these errors from
occurring in the first place. To encourage the model
to predict the EOS-token at the correct location
only, we extended the loss function to make it more
sensitive to the placement of the EOS-token.

We realize this by introducing an additional loss
component LRE . The predictions ŷ of our model
during training have the shape Rs×t̂, where t̂ and
s is the length of the prediction P and source se-
quence S respectively, as we predict t target indices
pointing to tokens in the source sequence of length
s (including special tokens).

Now, along every column j ∈ 1 . . . t̂ of ŷ we
calculate the softmax to decide the token proba-
bility distribution at prediction step j. From this
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matrix we now extract the row o = ŷi ∈ Rt̂,
i ∈ 1 . . . s corresponding to the EOS-token. Then,
softmax(o) at position j represents the probabil-
ity that the j-th token in the target sequence is an
EOS-token over all positions in the target sequence.

We calculate the cross entropy between this re-
sulting vector o and the correct position for the
EOS-token in the target sequence.This loss addi-
tion penalizes high-probabilities for EOS-tokens in
the wrong locations:

LRE(y, ŷ) = CE(t, softmax(ŷi)) (9)

where t is the length of the target sequence y —
thereby the correct position of the EOS-token —
and i is the vocabulary index of EOS.

We add our Output Length Regularization to the
Cross Entropy loss:

L(y, ŷ) = CE(y, ŷ) + LRE(y, ŷ) (10)

4 Experiments

We base our model on two different but re-
lated architectures depending on the subtask.
For both tasks, we build a model similar to
BARTABSA (Yan et al., 2021)1 consisting of a
transformer encoder-decoder model augmented
with a pointer layer for predicting indices in the
input sequence.

We always train for 75 epochs and select the best
model based on the best performance on the valida-
tion set. This strategy is in line with BARTABSA
but we increased the maximum number of epochs
from 50 to 75 as we found in preliminary exper-
iments that mT5 sometimes was able to improve
slightly on the validation set beyond 50 epochs. If
we train on multiple datasets at the same time we
also validate on a concatenation of their respec-
tive validation sets. We finetune the models once
with and once without the Output Length Regu-
larization (3.2). We select model dependent learn-
ing rates, learning rate schedules and optimizers
as suggested in their respective original papers or
BARTABSA. Therefore we finetune BART models
using Adam with a peak learningrate of 5e−5 in
a triangular learning rate schedule and mT5 using
AdaFactor with a constant learningrate schedule
and a learningrate of 0.001.

The results are evaluated using the Sentiment
Graph F1 introduced by Barnes et al. (2021). For

1For our experiments we reuse their codebase making use
of torch, transformers and fastNLP.

this metric they calculate the true positives by av-
eraging the overlap for exact token-level matches
between predicted and gold spans over all three
entities. To obtain precision and recall they now
divide the number of correctly predicted tokens
by the total number of predicted tokens and gold
tokens respectively.

4.1 Subtask 1: Monolingual

For the monolingual task we divide between En-
glish and non-English datasets. For the English
datasets we select a pretrained monolingual En-
glish BART model as our transformer architecture
as suggested in BARTABSA. As there are no BART
models publicly available for all non-English lan-
guages from our datasets, we choose a pretrained
mT5 model for those instead which was pretrained
on 101 languages including all languages present
in our datasets. We do not train a separate mT5 for
every single dataset or language since finetuning
mT5 on small datasets lead to significant instabili-
ties during training (5.1) which we counteract by
concatenating all datasets available to us.

We compare our approach against the baselines
provided by the task organizers2. They provide a se-
quence labelling approach which consists of three
separate BiLSTM models, one each for extracting
the holders, targets, and expressions followed by
another BiLSTM-based relation prediction model.
On top of the concatenation of these three outputs
a classification task is trained to predict whether
two predicted elements are related or not. The sec-
ond baseline is a graph parsing model described
by Barnes et al. (2021). It works by modelling the
sentiment tuples as dependency graphs and then
predicting those using the neural dependency parser
introduced by Dozat and Manning (2018).

4.2 Subtask 2: Crosslingual

In the crosslingual setting it is important for our
model to be able to generalize and transfer well
between languages. Therefore we once again se-
lect mT5 as our basemodel and train it on English
and Norwegian at the same time as these are the
only languages available for training in this setting.
We train on both available languages at the same
time since we expect this to improve generalization
between languages.

2https://github.com/jerbarnes/
semeval22_structured_sentiment
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4.3 Datasets
The datasets provided for this challenge can
be split into five languages: English (darm-
stadt (Toprak et al., 2010), mpqa (Wiebe et al.,
2005), opener (Agerri et al., 2013)), Spanish
(opener), Catalan (multibooked (Barnes et al.,
2018)), Basque (multibooked) and Norwegian
(norec (Øvrelid et al., 2020)). All datasets are struc-
tured identically consisting of a source sentence
and its annotated sentiment graphs, which are rep-
resented by their sentiment tuples (target, expres-
sion, holder, polarity) as introduced in section 1.
Additional complexity is added by the fact that ev-
ery sentiment tuple entity can be either completely
missing or even consist of arbitrarily many discon-
tiguous parts as described in subsubsection 3.1.4:
e.g. in “[. . . ] have degraded the image of the Uni-
versity severely” the opinion term consists of two
parts: “degraded” and “severly”.

4.4 Dataset Sampling
During preliminary experiments we observed sta-
bility problems while finetuning mT5 (5.1) which
we were only able to mitigate by training on the
concatenation of different datasets and sampling
the training dataset. We were able to address this in-
stability by undersampling the training set in such a
way that at most one fifth of the training set consists
of empty samples. We implemented this sampling
by first ensuring this ratio for all datasets separately
and concatenating them afterwards. We kept this
sampling strategy for all experiments using mT5
except when training only on the concatenation of
the English datasets where we found that a maxi-
mum of one fourth empty samples achieved better
results on the validation set.

We ran the same experiments with BART and
found it to be not nearly as susceptible to a sam-
pling strategy compared to mT5. Nevertheless we
found that BART is able to gain small improve-
ments on the validation set only when training on
the concatenation of all English datasets without
Output Length Regulatization while sampling the
training datasets such that at most half of the sam-
ples are empty. So we sampled the training dataset
only in this specific case when finetuning BART.

5 Results & Evaluation

5.1 Training Instability of mT5
While finetuning mT5 on our datasets during pre-
liminary runs we noticed that the model is not only

Figure 2: Comparison of two representative English
validation set sentiment-F1 curves for BART and mT5
during training. The models got evaluated in each of the
75 training epochs.

generally very unstable during training but also that
the resulting performance is very sensitive to dif-
ferent dataset splits. When training on individual
training datasets including all samples the model
was not able to achieve sentiment-F1-scores above
5% on the validation set. For this it did not matter
whether we included the Output Length Regulariza-
tion (3.2) or not. We only managed to achieve com-
petitive results using mT5 after we significantly
undersampled the empty sentiment tuples in the
dataset as described in subsection 4.4. We believe
this to be already first signs of EOS-token location
overfitting (3.2) as all empty samples are repre-
sented by the sequence [BOS,EOS].

Training instabilities of mT5 become evident
when looking at the F1-scores on the validation set
during training as representatively plotted in Fig-
ure 2 (green). For comparison we rerun the same
setup using BART (blue). While the training loss of
the mT5-models descends during training without
large jumps or spikes the F1-score on the validation
set oscillates heavily. Although all mT5-models
we trained contained such frequent and huge jumps
in the F1-score, there became no common pattern
apparent between different runs. Even the slightest
change e.g. different dataset sampling can result in
a completely different F1-score curve on the vali-
dation set. At the same time the loss during train-
ing on the same dataset remained smooth. This is
not surprising given the fact that a wrongly placed
EOS-token can invalidate the entire prediction as
described in subsection 3.2, while in comparison
according to the cross entropy loss a higher proba-
bility for the EOS-token at the e.g. second position
only slightly decreases the measured performance.
In other words the final evaluation metric is way
more sensitive to the placement of the EOS-token
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Table 1: Submitted results for the monolingual subtask
as described in subsection 4.1.

ours baselines

dataset
m

od
el

sent-F1 place
seq.
label

graph
parser

opener_en

B
A

R
T

0.651 12 0.33 0.52
mpqa 0.338 11 0.02 0.12

ds_uni 0.417 6 0.06 0.20

average 0.469 — 0.14 0.28

opener_es

m
T

5

0.504 17 0.24 0.50
norec 0.280 18 0.20 0.36

multib_ca 0.517 16 0.34 0.52
multib_eu 0.439 18 0.37 0.55

average 0.435 — 0.29 0.64

overall avg 0.449 16 0.22 0.40

than the training objective. This is the core issue
we are addressing by introducing the additional
loss component (3.2). We did not observe a similar
phenomenon during training of any BART model.

5.2 Subtask 1: Monolingual

As we approached the monolingual setting using
two different base-models we also analyse them
separately. Overall for this monolingual subtask
we placed 16th out of 31 teams on the leaderboard
at the time the challenge ended.

For mT5 we report the results for finetuning on
all datasets on all languages at the same time using
our Output Length Regularization, as training mT5
became slightly more stable on a larger dataset.

For the English results we finetune BART with
our Output Length Regularization only on the re-
spective dataset the model was tested on except
when testing on the darmstadt dataset. For darm-
stadt we trained BART on a combination of all
English datasets and without Output Length Regu-
larization. If we train only on the darmstadt dataset
itself and with Output Length Regularization like
for the other datasets, we achieve an F1-score of
only 0.389. We chose this strategy for all BART
runs in general and the darmstadt dataset in spe-
cific as it resulted in the highest scores on the re-
spective validation datasets. The results for the
other datasets when training BART on all english
datasets at the same time is included in Table 2.

In Table 1 we report our performance on the

Table 2: Comparison of a single BART and a single
mT5 trained on all English datasets at the same time.

sent-F1

dataset BART mT5

opener_en 0.493 0.471
mpqa 0.326 0.159

darmstadt_uni 0.365 0.218

average 0.395 0.283

monolingual task and compare it against the base-
lines provided by the task organizers. On English
datasets using BART we achieved in general a con-
siderably higher placement (6,11,12) than our over
all placement (16) and are able to comfortably beat
the employed baselines (subsection 4.1). This indi-
cates that our method works comparatively better
using BART as base model than mT5 (16, 17, 18,
18) where our approach consistently beats the se-
quence labelling approach but matches the perfor-
mance of the graph parser only on some datasets.

5.2.1 BART vs. mT5 Performance
To further evaluate this presumed performance dis-
crepancy between BART and mT5 we compare our
approach using both base models on the English
datasets as this is the only language both models
have in common. We train both models using the
Output Length Regularization and only differing
by their respective optimal sampling strategy as
laid out in subsection 4.4. For a fair comparison we
train both models on all datasets at the same time
as a larger dataset reduces training instabilities of
mT5 (5.1). The results are visible in Table 2.

We find the performance to be drastically drop-
ping overall when we switch from a BART to an
mT5 model. The overall validation loss for both
models in every epoch is reported in Figure 2. We
assume this drop is hugely driven by the training
instabilities (5.1) we observed, although we also
suspect the differences in pretraining (2.1) to lead
to this discrepancy. This explains our compara-
tively better placement in Table 1 when we are able
to use BART instead of mT5 to solve the task.

5.2.2 Ablation: Output Length Regularization
In order to evaluate how well our novel Output
Length Regularization (3.2) is able to improve
model performance we finetune a separate BART
for every English dataset once with and once with-
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Table 3: Comparison of performance for models trained
with and without length regularization. BART models
were trained on the dataset they are tested on while mT5
models were trained on all languages at the same time.

sent-F1

model dataset w/ lenreg w/o lenreg

BART
opener_en 0.651 0.635

mpqa 0.338 0.320
darmstadt_uni 0.389 0.320

average 0.459 0.425

mT5

opener_es 0.504 0.410
norec 0.280 0.251

multibooked_ca 0.517 0.374
multibooked_eu 0.439 0.353

average 0.435 0.347

overall average 0.449 0.367

Table 4: Average number of predicted sentiment tuples
per sentence compared to actual average number of
sentiment tuples per sentence in the testset.

lenreg

dataset w/ w/o testset

B
A

R
T opener_en 1.77 1.88 1.73

mpqa 0.21 0.29 0.24
darmstadt_uni 0.31 0.47 0.41

m
T

5

opener_es 2.02 1.49 2.33
norec 1.28 0.77 0.97

multibooked_ca 1.39 1.00 1.56
multibooked_eu 1.19 0.76 1.43

out length regularization. We repeat this setup for
mT5 but train a single common mT5 on all datasets
together as we found mT5 to be more stable during
training with increasing dataset sizes.

We compare the results in Table 3. It is apparent
that for all runs for both base models on all datasets
and languages the sentiment F1 score improves
when adding our length regularization. Therefore
we conclude that our Output Length Regulariza-
tion (3.2) does indeed help the model learn where
to place the EOS-token and thereby decide how
many sentiment tuples are present in the sentence.
This results in better predictions for this task espe-
cially for the mT5 model.

Originally we introduced the Output Length Reg-
ularization to fix an overfitted EOS-token at the

Table 5: Performance of BART per dataset (columns)
when finetuning only on a single dataset (rows). All
models trained with Output Length Regularization.

op_en mpqa ds_uni

opener_en 0.651 0.007 0.195
mpqa 0.008 0.338 0.050

darmstadt_uni 0.300 0.005 0.389

all English 0.493 0.326 0.365

second position for the mT5 model as exemplarily
indicated by the colors in subsection 3.2. This led
the mT5 model to predict too few (commonly zero)
sentiment tuples. When analysing the differences
in length of the output sequences (see Table 4) we
found that for the mT5 model it consistently in-
creased the number of sentiment tuples predicted
by the model and thereby almost always moves the
average number of predicted tuples per sentence
closer to the average number of sentiment tuples
present in the dataset splits. Only for norec the
average number of predicted tuples on the testset
overshoots the average number of sentiment tuples
on the testset.

5.2.3 Crossdomain Performance

The crosslingual subtask of this challenge primarily
evaluates how well a model is able to generalize
between different languages and different domains
at the same time. We also analyze the performance
of our BART model when we change only the tar-
get domain by crossdomain zero shot evaluating on
a different english dataset. Therefore we finetune
a separate BART model with Output Length Reg-
ularization on each of the three English datasets
separately and then use each model to predict all
other English datasets.

In Table 5 we find BART to be able to generalize
between darmstadt_uni and opener_en albeit this
comes at the cost of a significant performance loss
in both directions. Meanwhile mpqa does not seem
to be similar enough to either of the other two En-
glish datasets for the model to output meaningful
crossdomain predictions. This can be explained as
both darmstadt_uni and opener_en datasets consist
of reviews of universities and hotels respectively,
while mpqa is a dataset focused around political
opinion expression. It is likely that the model ben-
efits from the more similar phrasing used in both
review datasets compared to political opinions.
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Table 6: Submitted results for the crosslingual subtask
as described in subsection 4.2. We finetuned mT5 with
Output Length Regularization on all datasets at once.

dataset sent-F1 place

opener_es 0.315 14
multibooked_ca 0.259 15
multibooked_eu 0.243 14

average 0.272 15

Table 7: Comparison of an mT5 trained with and with-
out Output Length Regularization (3.2).

sent-F1

dataset w/ lenreg w/o lenreg

opener_es 0.315 0.245
multibooked_ca 0.259 0.105
multibooked_eu 0.243 0.131

average 0.272 0.160

5.3 Subtask 2: Crosslingual

For the crosslingual task (Table 6) we predict struc-
tured sentiment tuples in Spanish, Catalan and
Basque without prior training on any sentiment
annotations in any of these languages. We again
finetune an mT5, but for this subtask on all lan-
guages at once which are not in the set of target
languages: English & Norwegian. Training on a
larger dataset consisting of multiple languages not
only stabilizes training but also possibly helps the
model to generalize between languages to predict
structured sentiment in unseen languages. Com-
pared to the monolingual subtask where mT5 was
trained using sentiment annotations in the target
languages (Table 1), here mT5 loses on average
over 40% of performance in this zero shot crosslin-
gual setting. Therefore we are able to show that
despite a significant performance loss pointer pre-
diction models are able to zero shot generalize be-
tween languages and domains at the same time.

5.3.1 Ablation: Output Length Regularization
Again we evaluate our Output Length Regulariza-
tion by finetuning two mT5 on all English and Nor-
wegian datasets at the same time, once with and
once without Output Length Regularization. We
find the same results as already described in 5.2.2:
Output Length Regularization is able to improve
the zero shot crosslingual generalization signifi-

cantly as can be found in Table 7. Finetuning mT5
for pointer prediction using this length regulariza-
tion increases the performance by 70% averaged
over all target datasets.

6 Related Works

The PASTE framework (Mukherjee et al., 2021)
also uses pointer networks to solve the task of
aspect-based sentiment analysis. Instead of Trans-
formers, they use an LSTM (Hochreiter and
Schmidhuber, 1997) as decoder and two additional
Bi-LSTMs as pointer networks — one for pointing
to aspect and opinion term each.

Peng et al. (2020) propose an approach to ex-
tract opinion triplets from text in a generative man-
ner without using pointers. However, their output
grammar is also less flexible meaning that all of the
entities (target, aspect, and sentiment) have to be
present in each triple. They also introduced one of
the data sets used to train BARTABSA and PASTE.

Apart from structured sentiment analysis, pointer
networks were also successfully applied to vari-
ous further NLP tasks where it is beneficial to di-
rectly transfer parts of the input sequence to the out-
put. This includes automatic summarization (See
et al., 2017; Enarvi et al., 2020) and entity extrac-
tion (Nayak and Ng, 2020).

7 Conclusion

In this work, we adapted BARTABSA, a pointer
network based on BART, for the task of structured
sentiment analysis. In particular, we introduced a
new output grammar which is able to model the
increased complexity of this task by taking into
account new entity types, split entities and missing
entities in sentiment tuples.

We also experimented replacing BART with an
mT5 network to allow for input sequences in lan-
guages other than English. We found that using the
approach of BARTABSA it is possible to swap out
BART for another base model but in the case of
mT5 this comes with a significant performance hit
which we suspect is mainly driven by training insta-
bilities we encountered. Moreover, we introduced
a output length regularizer to reduce overfitting to
common sequence output lengths from the trainset.
We found this to be very beneficial consistently on
all data sets and to increase relative performance
by up to 70%.
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Abstract

Task 10 in SemEval 2022 is a composite task
which entails analysis of opinion tuples, and
recognition and demarcation of their nature.
In this paper, we will elaborate on how such
a methodology is implemented, how it is un-
dertaken for a Structured Sentiment Analysis,
and the results obtained thereof. To achieve
this objective, we have adopted a bi-layered
BiLSTM approach. In our research, a varia-
tion on the norm has been effected towards
enhancement of accuracy, by basing the cate-
gorization meted out to an individual member
as a by-product of its adjacent members, using
specialized algorithms to ensure the veracity of
the output, which has been modelled to be the
holistically most accurate label for the entire
sequence.Such a strategy is superior in terms
of its parsing accuracy and requires less time.
This manner of action has yielded an SF1 of
0.33 in the highest-performing configuration.

1 Introduction

Sentiment Analysis is a specialized area under
Natural Language Processing which deals with
the extraction of opinions and emotions from
text which may include reviews, social media
posts, forums or news. Sentiment Analysis has
become a powerful tool for detecting the pub-
lic opinion on any topic.
This research article evinces how the senti-
ments and opinions expressed by people in
various environments could be understood by
means of a structured sentiment analysis (SSA)
approach. There are conventional means to

this end, in transition-based and graph-based
techniques, but a potent alternative is the novel
way to envision dependency parsing tasks as
algorithmic pattern-recognition by way of se-
quence labelling. Sequence labeling is essen-
tially an agglomeration of multiple discrete
categorizations, extended on to each element
of the entire sequence. The model is trained on
7 seven data sets with 5 different languages En-
glish, Spanish, Basque, Norwegian and Cata-
lan.

In Subtask-A we try to separately identify
the holder and target in the text, along with the
sentiment expression used using a Sequence
Labelling Approach.

In Subtask-B we predict whether the ex-
tracted tokens have a relation or the lack of
one.

Subtask-C involves the concatenation of the
results of Subtask-A and Subtask-B to provide
the final predictions.

2 Background

2.1 Definitions

The following contains descriptions of the
models made use of, and related terminology.
Namely we will define LSTM, BiLSTM,
Sigmoid, Linear, Max Pooling Layers and
Word Embeddings and the BIO Sequence
Labelling approach.

Long Short-Term Memory(LSTM)

1324



Speech-recognition language models, among
numerous other activities, have seen encour-
aging levels of success by availing Recurrent
Neural Networks (RNN) (Mikolov et al., 2010,
2011) (Graves and Schmidhuber, 2005). The
model is made to predict the current output by
analysing the long-distance features, by virtue
of how history information is incorporated
into an RNN. Long-range dependencies are
better detected and processed by LSTMs than
RNNs (Graves and Schmidhuber, 2005) by
virtue of their difference in terms of how the
latter has purpose-built memory cells in lieu
of the hidden layer updates in the former
(Hochreiter and Schmidhuber, 1997). Aside
from this striking feature, LSTMs and RNNs
are essentially the same.

BiDirectional Long Short-Term Mem-
ory(BiLSTM) - It a sequence processing
model that comprises of one LSTM receiving
input in the forward direction, and another
which drives input backwards. BiLSTMs are
used to enhance the subject and context to
be used by the network, by proliferating the
quantity of data that could be accessed by the
algorithm (e.g. cognizance of the words in
front of, and following a certain word that is
to be analyzed).

Sigmoid Layer The sigmoid layer is re-
sponsible for making sure that the output
remains confined within the interval (0,1),
through subjecting a sigmoid function on the
input.

S(x) =
1

1 + e−x

Linear Layer Mathematically, this module
is designed to calculate the linear equation
Ax = b where x is input, b is output, A is
weight.

Max Pooling Layer Max pooling task
results in a map output in which the significant
features from the preceding feature map is
reflected, considering how it extracts the most
crucial constituents of the feature map under
the purview of the filter.

Word Embeddings It refers to a spe-
cialized means of representation for input text,
dependent on its connotation, thus attributing
the same representation to words who depict a
similar meaning. In this paper we use GloVe
and FastText embeddings.

BIO Sequence Labelling - “B-I-O” is
a tagging scheme, where either of “B”
(Beginning), “I” (Inside), or “O” (Outside)
labels denote the relative position of the part
of speech. If none of these three assignments
could be meted out to the text in question,
a special label denoting that case could be
assigned.

2.2 Related Work

Sentiment analysis constitutes five operations
in sequence as i) sentiment expression ex-
traction, ii) sentiment target extraction, iii)
sentiment-holder extraction, iv) definition of
relationships between elements, v) assignment
of polarity. (Yadav and Vishwakarma, 2020)
compares various SOTA DL techniques which
have been applied to this problem, including
CNNs, Recursive Neural Nets, RNNs, LSTM,
GRU and Deep Belief Networks, concluding
that LSTMs give better results compared to
other models. (Xu et al., 2019) explored the
possibility of using BiLSTMs for sentiment
analysis on comments, and found improved
accuracy. (Phan et al., 2020) proposed an en-
semble model of various feature vectors to
form embeddings which were fed to a CNN,
this method greatly improved accuracy on sen-
tences with fuzzy sentiment. A Bidirectional
RNN-CNN (Basiri et al., 2021) was also found
to achieve SOTA results. Thus, emphasizing
the fact that bidirectional models capture con-
text better in textual data.

Sequence Labeling Typically, it would be
advantageous to formulate an NLP operation
akin to a general sequence-labeling task. Each
element from a defined input sequence is con-
sidered, and a collection of labels is scrutinized
to pick out one relevant to the text, and an as-
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signment is made with the aforementioned. In
this paper we propose a Part of Speech tagging
approach. (Akhundov et al., 2018) have shown
how BiLSTM-CRF can be used for this task.
(Prasad and Kan, 2017) shows the extraction of
keyphrases and relation prediction using CRFs
for sequence labeling.

2.3 Data

The seven datasets in question encompass five
different languages of which the expressions
are composed of, to be subjected to structured
sentiment analysis. They are made such as to
typify the way in which the particular approach
to this study performs, as necessitated by the
task. The datasets are similar in terms of pos-
sessing holders, expressions and targets, while
dissimilarities are by virtue of their frequency
and distribution.

The maximum number of holders in an indi-
vidual dataset would be the 2,054, featured
in MPQA (Wiebe et al., 2005), while the
lion’s share of targets (8,293) and expressions
(11,115) both are allocated to NoReCFine
(Øvrelid et al., 2020). The set DSUnis (Toprak
et al., 2010) possesses the least amount of all
among holders, targets, and expressions in 94,
1601, and 1082 respectively.

The dataset provided by opeNER project
(Agerri et al., 2013) are opener_en and
opener_es . The number of targets and ex-
pressions in opener_en, opener_es are 1286,
1760 , 1062 and 1625 respectively.

All the groups carry markers for polarity of
the text, which shows the positive or negative
connotation carried by each member. MPQA
and DSUnis are distinctive in how they also
include instances of “neutrality”, beside the
extremities. In DSUnis, this feature is utilized
while dealing with clauses that showcase vary-
ing degrees of both polarities, with contextual
variance. The neutralities in MPQA are much
less complicated, as they only vouch for words
that are subjective, and may not necessarily
have a polarizing effect.

MPQA is entirely in English, and carries
text from news agencies. The two datasets
involving critiques of hotels are MultiBEU

and MultiBCA (Barnes et al., 2018), which
are Basque and Catalan, respectively. They
include markers that further qualify each po-
larity, as “strong positive” or “strong nega-
tive”. DSUnis is essentially an agglomeration
of user reviews in English from the internet
towards e-commerce and educational institu-
tions, with only the latter being considered as
part of this research. This is a consequence
of the e-commerce reviews mostly comprising
only the relevant polar targets that account for
polarity, without holding the expressions them-
selves. NoReCFine is a Norwegian dataset
made up of professional reviews belonging to
a multitude of domains, and is also the most
voluminous set of the lot. It additionally shows
the intensity of the polarity for each expression,
as in slight, normal or strong, which is deemed
beyond the scope of the study.

3 System Overview

Here we provide a model that first learns to
extract the sub-elements (holders, targets, ex-
pressions) using sequence labelers, and then
tries to classify whether or not they have a
relationship.

Specifically, we first train three separate
BiLSTM models to extract holders, targets,
and expressions, respectively. We then train a
relation prediction model, which uses a BiL-
STM + max pooling to create contextualized
representations of 1) the full text, 2) the first
element (either a holder or target) and 3) the
sentiment expression.

These three depictions are concatenated and
sent to a linear layer, followed by a sigmoid
function. The training consists of predicting
whether two elements have a relationship or
not, converting the problem in binary classifi-
cation.

4 Experimental Setup

The sequence labelling model employed in our
research essentially attempts to divaricate and
demarcate various elements of the input text
into tuples. To begin with, the starting file
Get_baseline.sh is executed in order to call
the subsequent files in convert-to-bio.py, and

1326



Convert-to-rels.py. The former is responsi-
ble for converting the given statements into
the workable format, as in the stratification of
data into holder, target and expression parts,
with “B-I-O” labels. The labels are also carri-
ers of the polarity (positive, negative, or neu-
tral) of each text. Next up, the Convert-to-
rels.py file is called, upon which, it extracts the
target/expression pairs and holder/expression
pairs, and creates 2 new fields e1, e2. Fur-
thermore, the BiLSTMs are trained to extract
holder, target and expression from the data.
Pretrained GloVe or FastText embeddings are
also provided to the model for the operation of
labeling. After passing the input through the
aforementioned processing stages, the vocabu-
lary obtained in the end is stored in a vocabu-
lary dictionary. 3 BiLSTMs are trained sepa-
rately for each labeling task, following which,
is the relation prediction model trained. The
full sentence, in addition to e1 and e2, are all
scanned for relations. If relations are present,
then predictions are made accordingly. Finally
to get a consolidated prediction.json terminal
output file, the inference.py file is called. The
holders, targets, and expressions have been ex-
tracted using the trained BiLSTMs already and
the polarity is available from the expression
labelling. The data is formatted accordingly
and lastly packed into a neat json format. The
following model incorporates a learning rate
of 0.01. We have run it for upto 10 epochs,
to arrive at a considerable amount of accuracy.
The number of hidden layers in this model is
kept as 1 by default.

5 Results

The efficacy of the sentiment analysis model
towards encapsulating the full sentiment graph
can be depicted in terms of the criteria as
enumerated by two benchmarks, in Senti-
ment Graph F1 (SF1) and Non-polar Senti-
ment Graph F1 (NSF1). The sentiment graphs
are considered in terms of holder, target, ex-
pression, and polarity, for evaluation by SF1,
whereas NSF1 takes into account all elements
of the tuple, except polarity for scrutinization.
In this case, a perfect match on the graph, with

respect to the mean of all three spans, and
including weights pertaining to the gold and
expected spans for each member is considered
as a true positive. The precision value is a ratio
where the numerator is the sum of predicted
tokens that are found to be right, with the de-
nominator being the total sum of all predicted
tokens (amount of gold tokens is the denom-
inator in case of recall). Empty targets and
tokens are also taken into consideration.

Dataset SF1-Score

norec 0.191
multibooked_ca 0.323
multibooked_eu 0.331

opener_en 0.306
opener_es 0.257

mpqa 0.015
darmstadt_unis 0.104

average 0.218

Table 1: Results

6 Conclusion

In summation, our research work presents the
three-tier model which we constructed, and
is found to have the best accuracy of 0.33.
The model has been proven to consume sig-
nificantly less time as opposed to graph pars-
ing. An inconsistency however has been docu-
mented, with regard to the processing of com-
plex sentences carrying multiple expressions,
in how it considers only the polarity attributed
to the terminal element. Going forward, the
component BiLSTM could be supplanted with
BiLSTM CRF and run, owing to the nature
of the latter to be robust and independent of
word embedding, and capability to provide
superior accuracy levels on Parts of Speech
tagging, Name Entity Recognition of data sets
and chunking.
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Abstract

Structured Sentiment Analysis (SSA) is an
important component of sentiment analysis,
which is a critical task in NLP. Traditional SSA
methods cannot capture the cross-lingual inter-
actions between different language and there
is insufficient annotated data, especially in the
cross-lingual settings. In this paper, we use the
pre-trained language models with two auxiliary
tasks and adopt data augmentation to address
the above problems. Specifically, we employ
XLM-RoBERTa to capture the cross-lingual
knowledge interactions and enhance the gener-
alization in multilingual/cross-lingual settings.
Furthermore, we leverage two data augmenta-
tion techniques and propose two auxiliary tasks
to improve the performance on the few-shot and
zero-shot settings. Experiments demonstrate
that our model ranks first on the cross-lingual
sub-task and second on the monolingual sub-
task of SemEval-2022 task 10.

1 Introduction

Structured Sentiment Analysis (SSA) is an impor-
tant task in sentiment analysis (Barnes et al., 2021;
Liu, 2012; Mitchell et al., 2013). The goal of SSA
is to extract all opinion tuples from given texts.
The opinion tuple (h, t, e, p) consists of a holder
(h) which expresses a polarity (p) towards a target
(t) by a textual sentiment expression (e). Benefiting
a variety of business applications, such as human-
machine dialogue and recommendation systems,
SSA has attracted much more attention from both
academia and industry (Pang et al., 2008; Mitchell
et al., 2013; Xu et al., 2020; Ovrelid et al., 2020;
Li et al., 2019).

The mainstream method for SSA is to adopt a
pipeline approach by separately performing the
subtasks including holder extraction and target ex-
traction. However, such methods can not capture
dependencies of multiple sub-tasks. To address

this problem, Barnes et al. (2021) leverages graph-
based dependency parsing to capture the depen-
dencies among opinion tuples, where sentiment
holders, targets and expressions are the nodes, and
the relations of them as the arcs. This model has
obtained state-of-the-art performance on SSA.

However, the aforementioned methods still suf-
fer from some important issues. Firstly, the knowl-
edge of the pre-trained language models (PLMs)
has not been fully exploited. In fact, the cross-
lingual PLMs contain rich knowledge of the inter-
actions among different languages. Secondly, the
above data-driven models rely on a large amount of
annotation data, but there is insufficient or even no
annotated data in the real scene. For example, in
SemEval-2022 shared task 10 (Barnes et al., 2022),
the MultiBEU (Barnes et al., 2018) dataset has
only 1215 sentences and the MultiBCA (Barnes
et al., 2018) dataset have only 1341 sentences, and
there is no training data for the target language in
the cross-lingual setting, which heavily hinders the
performance on SSA.

To address the above problems, we propose a
unified and end-to-end model for SSA, which per-
forms data augmentation and adopts auxiliary tasks
with cross-lingual PLMs. Specifically, we employ
XLM-RoBERTa (Conneau and Lample, 2019; Con-
neau et al., 2019) as the backbone encoder to make
use of its multilingual/cross-lingual knowledge. To
alleviate the problem of insufficiency or lack of
annotated data, we adopt two data augmentation
methods: the one is to add in-domain annotated
data of the same task under the training stage, and
the other is to employ Masked Language Model
(MLM) (Devlin et al., 2018) for generating sim-
ilar texts. Furthermore, in addition to predicting
each tuple in the dependency parsing graph simul-
taneously, we add two auxiliary tasks: 1) sequence
labeling to predict the span of the holder / target
/ expression, and 2) sentiment polarity classifica-
tion. Note that both of them do not need additional
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Methods NoReCFine MultiBCA MultiBEU OpeNerEN OpeNerES MPQA DSUnis Average
Top1 0.529(2) 0.728(1) 0.739(1) 0.760(2) 0.722(4) 0.447(1) 0.494(1) 0.631(1)

Top2(Ours) 0.524(3) 0.728(1) 0.739(1) 0.763(1) 0.742(1) 0.416(2) 0.485(2) 0.628(2)
Top3 0.533(1) 0.709(3) 0.715(3) 0.756(3) 0.732(3) 0.402(3) 0.463(3) 0.616(3)
Top4 0.504(4) 0.681(6) 0.723(2) 0.747(4) 0.735(2) 0.375(5) 0.410(9) 0.596(4)
Top5 0.483(8) 0.711(2) 0.681(6) 0.727(5) 0.686(7) 0.379(4) 0.373(13) 0.577(5)

Table 1: Comparisons on monolingual evaluation leader board.

Methods OpeNerES MultiBCA MultiBEU Average
Top1(Ours) 0.644(1) 0.643(1) 0.632(1) 0.640(1)

Top2 0.618(3) 0.562(7) 0.584(2) 0.588(2)
Top3 0.628(2) 0.607(3) 0.527(4) 0.587(3)
Top4 0.604(5) 0.596(4) 0.512(7) 0.571(4)
Top5 0.589(6) 0.593(5) 0.516(6) 0.566(5)

Table 2: Comparisons on cross-lingual evaluation leader board.

annotations.
We conduct experiments on subtask 1 and sub-

task 2 of SemEval-2022 shared task on SSA. Ex-
perimental results demonstrate that our method
outperforms strong baselines. We rank first on
the cross-lingual sub-task and rank second on the
monolingual subtask in SemEval-2022 task 101.

To summarize, our contributions are as follows.

• We leverage cross-lingual pre-trained lan-
guage models to capture the interactive infor-
mation knowledge among different languages.

• We combine existing in-domain training data
and produce new training data by MLM to
alleviate the problem of insufficiency or lack
of annotated data.

• We propose two auxiliary tasks that do not
require additional annotations to further im-
prove the performance.

• Experimental results demonstrate the effec-
tiveness of our proposed model, and we rank
first on the subtask 2 and rank second on the
subtask 1 on SemEval-2022 task 10.

2 Method

We incorporate the dependency graph parsing
approach (Barnes et al., 2021) into our model.
The general architecture is a pre-trained language
model (e.g BERT (Devlin et al., 2018), RoBERTa
(Liu et al., 2019), etc..) followed by a three-layers
BiLSTMs (Schuster and Paliwal, 1997; Cross and

1https://competitions.codalab.org/
competitions/33556

Huang, 2016) and the bilinear (Kiperwasser and
Goldberg, 2016; Dozat and Manning, 2016) at-
tention as the decoding component. Hence, we
can take advantage of the knowledge of large-
scale PLMs (Vaswani et al., 2017; Radford et al.,
2019; Raffel et al., 2020; Yang et al., 2019; Wolf
et al., 2019) and deep semantic dependency pars-
ing (Dozat and Manning, 2016; Oepen et al., 2020;
Kurtz et al., 2020).

2.1 Encoder

We consider several state-of-the-art models as the
candidates of our model’s backbone, such as Mul-
tilingual BERT (mBERT) (Devlin et al., 2018),
XLM-RoBERTa (Conneau et al., 2019), and info-
XLM(Chi et al., 2021). Particularly, we choose the
XLM-RoBERTa backbone as the baseline. Because
subtask 1 is a multilingual problem and subtask 2
is a cross-lingual zero-shot problem. They both
benefit from the Translation Language Modeling
(TLM) objective in XLM-RoBERTa. The TLM
and Masked Language Modeling (MLM) objec-
tives in the XLM-family models perform better
than mBERT, which is simply trained on multi-
lingual corpus with the MLM objective. Addi-
tionally, XLM-RoBERTa is trained on more data,
which makes it more robust. Another reason we
choose XLM-RoBERTa is that it is a large open-
source model for downstream applications. We
did not employ info-XLM as it is trained with the
sentence-level classification objective, which is not
suited for this task.
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Methods MPQA DSUnis OpeNerEN OpeNerES MultiBCA MultiBEU NoReCFine Average
w2v + BiLSTM 0.103 0.166 0.525 0.526 0.524 0.539 0.320 0.386

mBERT 0.231 0.280 0.571 0.611 0.526 0.517 0.373 0.446
mBERT +BiLSTM 0.266 0.285 0.621 0.614 0.619 0.589 0.386 0.483
XLM-R +BiLSTM 0.332 0.357 0.705 0.654 0.669 0.650 0.481 0.550

Table 3: Monolingual task performances with different encoders. All models use the same bilinear attention decoder.
All results are evaluated on the official released development set.

2.2 Data Augmentation

We provide two data augmentation methods to fur-
ther boost the performance of our model. First is
the in-domain data enhancement (DA1) to better
make use of the data in different languages. The
second is the MLM data augmentation (DA2).

2.2.1 In-domain Data Enhancement
We combined different dataset that belong to
the same domain in the training phase, to help
improve generalization. Noticed that the four
datasets MultiBEU , MultiBCA, OpenerES , and
OpenerEN (Agerri et al., 2013) are all from the
hotel review corpus. We observe these datasets
share some common features even though they are
of different languages. These languages share the
same or similar words for the same objects or con-
cepts. For example, the "hotel" word in Catalan
and Spanish are also "hotel", and in Basque it is a
similar word "hotela". Besides, the people who use
these languages share the same sentiment polarity
tendency on the hotel review domain. Combin-
ing the four language datasets together as a whole
training set will improve the overall performance.
We additionally add the Portuguese hotel review
dataset (BOTE-rehol)(Barros and Bona, 2021) and
the English laptops review dataset (RES14) (Pon-
tiki et al., 2014; Xu et al., 2020) for extra training,
which needs to be converted to the same format as
this task.

2.2.2 Data Augmentation by Masked Word
Generation

The Masked Language Model corrupts the input
texts by randomly replacing the tokens with the
[MASK] tokens, and predicts the original token
at the [MASK] positions. For each sample with
valid opinion tuples, by randomly masking a small
portion of the tokens in the text, we obtain a new
sample whose meaning is similar as the original
with the same labels. Note that in this task we do
not mask the sentiment expression words as the
PLMs may generate words of different polarities

which are inconsistent with the original labels.

2.3 Auxiliary Tasks

SSA consists of structure prediction and sentiment
polarity classification, and to handle these two tasks
in an end-to-end manner is non-trivial. We propose
two auxiliary tasks to provide more training signals
to the model to better handle structure prediction
and polarity classification. For structure predic-
tion, we add a sequence labeling task to explic-
itly predict the type (target, holder, or expression)
of each token. For polarity classification, we add
more sentiment polarity classification data as ex-
tra tasks. Specifically, we use the average pooling
of the model’s BiLSTM hidden-states as sentence-
level representations. The representation is fed to
a multilayer perceptron(MLP) for sentence-level
sentiment polarity classification. The total loss is
the weighted sum of the main loss and the auxiliary
losses:

L = Lp + (Ls + Lc)/2 (1)

where Lp is the primary loss of the SSA task. Ls
and Lc are the losses for sequence-labeling and
classification task, respectively.

3 Experiments

3.1 Experimental data

We use the officially released development set as
the test set, and randomly split the original training
set into the training and development sets. We keep
the size of the split development sets the same as
the official released development set.

We transform the BOTE-rehol and RES14
datasets into the graph format and leave the opinion
tuples’ holders empty since the two datasets do not
contain holder labels.

For each dataset, we convert the sentiment graph
labels to sequence labeling labels, which will be
added as an auxiliary task during training. Addi-
tionally, for the MultiBCA and OpenerES datasets,
we make use of the Catalonia Independence Cor-
pus (CIC) (Zotova et al., 2020) as the extra training

1331



Methods MultiBCA MultiBEU OpeNerES OpeNerEN

baseline 0.685 0.650 0.654 0.712
w / DA1 0.727 0.670 0.711 0.729

Table 4: Monolingual performances of data augment (DA) on official released development set.

Methods MultiBCA MultiBEU OpeNerES

OpeNerEN 0.574 0.438 0.630
w / DA1 0.600 0.550 0.620

w / DA1-2 0.623 0.567 0.657

Table 5: Cross-lingual performances of data augment
(DA) on official released development set.

data of the polarity classification task.

3.2 Implementation details

We adopt the head-first setting (Barnes et al., 2021)
which sets the first token within each span as the
head of the span with all other tokens within that
span as dependents. The root node is represented
by the first token within the sentiment expression.
For any word that is tokenized into a head-token
followed by several sub-tokens, we set the head-
token as the head and its following sub-tokens as
the dependents. We use holder, targ, exp-Positive,
exp-Negative, exp-Neutral, None as labels to denote
different node types. The relation between each
node is expressed by the attention value between
the head-tokens of the nodes.

We try different combinations to get the best re-
sults for different subtasks. With XLM-RoBERTa-
large as the backbone, details combinations are
listed in Table 6 for the four hotel review
datasets (MultiBEU , MultiBCA , OpenerES and
OpenerEN ). For DSUnis dataset (Toprak et al.,
2010), we chose English RES14 dataset which also
has few holders elements as its in-domain dataset.
As most of the sentences in the two dataset are
expressed without holders elements.

When generating new samples via MLM, for
each sentence with at least one valid sentiment tu-
ple, we mask one position i at a time and feed
the masked sentence to the XLM-RoBERTa-large
model. The PLM generates a word based on the
highest probability pi. We pick the top 5 most con-
fident samples ranked by the PLM’s output prob-
ability Pi for i ∈ n, where n denotes the possible
masked positions. And set a threshold p as 0.85
to filter out any samples with a probability lower
than the threshold. Repeated samples are not con-
sidered valid. The generated samples are treated as

supplementary data to the original dataset.
For domain adaptation, we further pre-trained

XLM-RoBERTa-large with all the data from the
released datasets via Mask Language Modeling
(MLM)(Devlin et al., 2018). We pick the best
checkpoint according to the lowest perplexity on
the development set.

3.3 Overall Comparisons
Comparison Settings. Firstly, we compare our
model with other participant teams on the leader
board of the structured sentiment competition. Ta-
ble 1 and Table 2 record the comparison results
of the monolingual and cross-lingual evaluation,
respectively.

Comparison Results. (1) Our methods rank sec-
ond and first on the monolingual and cross-lingual
evaluation, respectively, which demonstrates the ef-
fectiveness of our proposed model. (2) Our model
remarkably outperforms the top2 team in the cross-
lingual subtask, which indicates our model has bet-
ter generalization on the zero-shot cross-lingual
settings.

3.4 Effectiveness of Cross-lingual Pre-trained
Language Model

Comparison Settings. To prove the effectiveness
of XLM-RoBERTa2, a cross-lingual pre-trained
language model, we compare it with the follow-
ing baselines: 1) w2v + BiLSTM, BiLSTMs with
word2vec (Mikolov et al., 2013) word embeddings;
2) mBERT, the Multilingual BERT (Devlin et al.,
2018); 3) mBERT + BiLSTM; 4) XLM-RoBERTa
+ BiLSTM.

Comparison Results. (1) Table 3 demonstrates
that XLM-RoBERTa + BiLSTM obtains the best
performance among all of the benchmarks, and the
average score outperforms the strongest baseline
(mBERT + BiLSTM) by 6.7%. It proves that our
model has great generalization ability. (2) BiLSTM
can improve the performance by 3.7%, which in-
dicates the BiLSTM layer can capture sequence
information, which is beneficial to sequence encod-
ing (Cross and Huang, 2016).

2We leverage the large version of XLM-RoBERTa to im-
prove performances.
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Methods MultiBCA MultiBEU OpeNerES

Data combination
OpeNerES

MultiBEU

OpeNerEN

MultiBCA

OpeNerES

bote-rehol

OpeNerEN

MultiBCA

Table 6: In domain data combination for cross-lingual evaluation. No target language data is participated in training
and development.

Methods MPQA DSUnis OpeNerEN OpeNerES MultiBCA MultiBEU NoReCFine

baseline 0.296 0.337 0.648 0.641 0.662 0.647 0.400
w / Auxiliary-task 0.305 0.346 0.674 0.660 0.687 0.657 0.411

Table 7: Performances on the official released development set with auxiliary tasks. We use RoBERTa-base (Liu
et al., 2019) for MPQA (Wiebe et al., 2005), DSUnis and OpeNerEN , bert-base-spanish-wwm-cased (Cañete et al.,
2020) for OpeNerES , RoBERTa-base-ca (Armengol-Estapé et al., 2021) for MultiBCA, berteus-base-cased (Agerri
et al., 2020) for MultiBEU , and norwegian-RoBERTa-base https://huggingface.co/patrickvonplaten/
norwegian-roberta-base for NoReCFine (Øvrelid et al., 2020).

3.5 Effectiveness of Data Augmentation

Comparison Settings. In order to demonstrate
the effectiveness of data augmentation, we utilize
existing training data for data augmentation (DA1)
including MultiBEU MultiBCA, OpeNerES and
OpeNerEN . Furthermore, we leverage MLM to
generate new training data for data augmentation
(DA2). We record the performance in Table 4 and
Table 5, where "w/" means "with", and "DA1-2"
means "DA1 combined with DA2".

Comparison Results. We can conclude the fol-
lowing from Table 4 and Table 5: both DA1 and
DA2 contribute to performance improvement, with
performance increases on almost every benchmark.
Specifically, the performance has remarkably im-
proved in the cross-lingual settings, and data aug-
mentation is more helpful on the few-shot and zero-
shot settings.

3.6 The Effectiveness of Auxiliary Tasks

As shown in Table 7, we leverage the auxiliary
tasks including sequence labeling and sentiment
polarity classification to improve the performances.
We can observe that the auxiliary tasks improve
performances on all of the datasets, which demon-
strate the effectiveness of the two auxiliary tasks.

4 Conclusion

This paper studies the task of structured sentiment
analysis. In order to deal with the problems of
poor interactions of different languages and lack
of annotation data, we adopt the cross-lingual pre-
trained language model and adopt data augmen-
tation and auxiliary tasks. Specifically, we em-

ploy XLM to capture the interactive information in
the pre-training stage. Furthermore, we leverage
two data augmentation strategies and two auxil-
iary tasks to improve the performance for lack of
training data. Experiments demonstrate the effec-
tiveness of our models. Our models rank first on
the cross-lingual sub-task and rank second on the
monolingual sub-task of SemEval-2022 task 10.
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Abstract

In this paper, we focus on the structured senti-
ment analysis task that is released on SemEval-
2022 Task 10. The task aims to extract the
structured sentiment information (e.g., holder,
target, expression and sentiment polarity) in a
text. We propose a simple and unified model
for both the monolingual and crosslingual struc-
tured sentiment analysis tasks. We translate this
task into an event extraction task by regarding
the expression as the trigger word and the other
elements as the arguments of the event. Particu-
larly, we first extract the expression by judging
its start and end indices. Then, to consider
the expression, we design a conditional layer
normalization algorithm to extract the holder
and target based on the extracted expression.
Finally, we infer the sentiment polarity based
on the extracted structured information. We
conduct the experiments on seven datasets in
five languages. It attracted 233 submissions in
monolingual subtask and crosslingual subtask
from 32 teams. Finally, we obtain the top 5
place on crosslingual tasks.

1 Introduction

The identification of sentiment in the text is an im-
portant field of study. Users’ opinions on products,
events, topics, and so on are valuable for both the
company and government to improve products or
policies. Recently, more and more researchers fo-
cus on fine-grained sentiment analysis tasks, such
as structured sentiment analysis, which can be
formulated into tuple extraction from the context
(Wiebe et al., 2005).

We focus on structured sentiment analysis,
which is released by SemEval 2022 task 10. For-
mally, the task aims to extract all of the opinion
tuples O = {Oi, ..., On} in a text. A tuple (h, t,
e, p) can represent the structure of sentiment in
context. As shown in Figure 1, “Some other " (h)
is a holder who expresses a polarity “positive" (p)

∗ Jie Zhou is the corresponding author of this paper.

Figure 1: A structured sentiment graph is composed of a
holder, target, sentiment expression, their relationships
and a polarity attribute. Holders and targets can be null.

towards a target “the new UMUC" (t) through a
sentiment expression “5 stars" (e), implicitly defin-
ing the relationships between the elements of a
sentiment graph. Moreover, the SemEval task 10 is
divided into two settings of increasing complexity:
Setting A trains and predicts the sentiment polarity
on monolingual. Setting B trains on the source lan-
guage and tests on the target language. Particularly,
we can train on any of the other datasets, as well as
any other resource that does not contain sentiment
annotations in the target language. The datasets
used for this task are provided by the competition
organizers, who collected and annotated the corpus
(Barnes et al., 2021).

Structured sentiment analysis can be resolved
down into four sub-tasks: a) expression extraction,
b) target extraction, c) holder extraction, and d)
sentiment polarity classification. Previous work on
information extraction has used pipeline methods
that extract the holders, targets, and expressions
(tasks a-c). Most of the works conduct experiments
on the MPQA dataset (Wiebe et al., 2005). Choi
et al. (2006); Yang and Cardie (2012) used CRFs
with the extracted features (e.g., named-entity tag-
ger, sentiment lexicons, and dependency parsers),
which results in a very strong baseline. For a com-
plicated task with a small size of the training data,
these feature-based mechanism learning techniques
often still perform better than neural-based models,
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such as Bi-LSTMs (Katiyar and Cardie, 2016). The
end-to-end approaches have shown some potential
by learning the relationships among the multiple
subtasks (Zhang et al., 2019; Zhou et al., 2020a).
However, all of these studies ignore the sentiment
polarity classification subtask. Barnes et al. (2021)
regarded the structured sentiment analysis task as a
dependency parsing task to model the relationships
among the elements.

In this paper, we transform this task into an event
extraction framework. Because we found the ex-
pression word is the same as the trigger word in
the event extraction, both of them can uniquely
represent the whole structured tuple. Besides, we
regard the other elements (e.g., holder and targets)
as the arguments of the sentiment structured infor-
mation. Above all, we propose a pipeline model for
this task. The key problem for this task is how to
model the relationships among the targets, holders
and expressions. To take the expressions into ac-
count, we introduce a conditional layer normaliza-
tion method to extract the holders and targets w.r.t.
the expression. Our simple and unified model is
appropriate for both monolingual and crosslingual
tasks. Experiments on datasets of monolingual and
crosslingual tasks show our approach is capable to
improve performance significantly on structured
sentiment analysis as event extraction.

2 Related Work

2.1 Structured Sentiment Analysis

The goal of structured sentiment analysis is to ex-
tract the holders, expressions, and polarities w.r.t.
the targets (Zhou et al., 2019). Early researches
formulated the subtasks of structured sentiment
analysis into independent span extraction or rela-
tion extraction. Choi et al. (2006) investigated a
joint approach to extract entities and relations at
the same time for opinion recognition and analysis.
Yang and Cardie (2012) proposed semi-Markov
conditional random fields (semi-CRFs) to extract
opinion expressions at segment level. Katiyar and
Cardie (2016) used deep bidirectional LSTMs for
joint extraction of opinion entities and relations
(e.g., the IS-FROM, IS-ABOUT) that connect the
entities to extract expressions with their associated
holders and targets. Zhang et al. (2019) presented
a transition-based end-to-end method to extract the
elements (e.g., holders, targets, and expressions)
with their relationships. Then, to take the sentiment
polarity into account, systems like IMN (He et al.,

2019), SK-GCN (Zhou et al., 2020b) and RACL
(Chen and Qian, 2020) have been developed.

Moreover, Barnes et al. (2021) introduced a
parsing-based algorithm that implements a real uni-
fied structured sentiment analysis. They regarded
structured sentiment analysis as a dependent pars-
ing problem to model the relatedness among the
holder, target, expression, and polarity. Different
from these works, we translate structured sentiment
analysis to an event-extraction framework.

2.2 Multilingual Sentiment Classification

Traditional methods for multilingual sentiment
analysis are based on machine translation. Then,
neural-based models product the source and target
languages into a common space via parallel data or
dictionaries. Lample and Conneau (2019) proposed
two methods to learn cross-lingual language mod-
els: one unsupervised that uses cross language mod-
eling to learn cross language representation. And
one supervised that leverages parallel data with a
new cross-lingual language model objective. Tellez
et al. (2017) trained an SVM classifier by leverag-
ing language-dependent and independent features.
However, these machine learning approaches also
require a feature extraction phase. We eliminate
by incorporating deep learning approaches since
they can learn features automatically. Furthermore,
(Wan, 2008) designed a new approach to improve
Chinese sentiment analysis using reliable English
datasets. Recently, multi-lingual pre-trained lan-
guage models (e.g., mBert (Devlin et al., 2019))
obtains state-of-the-art performance for crosslin-
gual tasks.

3 Our Approach

In this paper, we propose a simple and unified
model to extract the structured sentiment analy-
sis. This section describes how we redefine the
sentiment classification task to an event extraction
task, detail the pipeline method. Fig. 3 shows the
framework of our model, which consists of three
components, expression extraction, arguments ex-
traction (including holder extraction and target ex-
traction), sentiment classification. First, we ex-
tract the expression based on (multi-lingual) pre-
trained language models (PLMs) (See Subsection
3.2). Second, we design a conditional layer normal-
ization strategy to extract the holders and targets by
incorporating the expression. Finally, we perform
sentiment classification tasks based on the sentence
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Sentence

Expression Extraction

Arguments Extraction

Sentiment Classification 

 Tuple (h, t, e, p)

Figure 2: The process of our solution, It consists of
three parts: Expression Extraction, Argument Extrac-
tion, Sentiment classification.

representation learned by the previous part (See
Subsection 3.3 and 3.4).

3.1 Task Definition
Given a sentence s = {w1, ..., w|s|}, where wi is
the i-th word in the sentence s, which contains
|s| words. The goal of this task is to extract all
the sentiment tuples O = {O1, ...,O|O|} in the
text, where the tuple (e, a, p) consists of expression
e, arguments a (target t, holder h) and sentiment
polarities c tuple. The event sentiment polarity
class c ∈ {P,N,O}, which represents positive,
negative and neutral.

3.2 Expression Extraction
Through the data analysis, we found that the ex-
pression uniquely identifies the tuple O since the
targets and holders may not exist in the text. Thus,
we extract the expression first by regarding it as
the trigger. We first obtain the contextual word
embedding based on the PLMs. For the monolin-
gual setting, we use language-specific PLMs. For
crossligual setting, we use the multi-lingual PLMs.
Particularly, we input the sentence s into PLMs to
obtain the word embedding X = {x1, x2, ..., x|s|},

X = PLM(s) (1)

Then, we extract the expression by two token-
level binary classifiers to predict the start and end
indices of the expression. A linear layer with an
activation function is adopted as the classifier,

pse = Sigmoid(W s
eX + bse)

pee = Sigmoid(W e
eX + bee)

(2)

where pse and pee are the predicted probability dis-
tribution of expression e’s start and end indices,
W s

e ,W
e
e , b

s
e, b

e
e are the learnable weights.

BERT

  Some others  give   the   new  UMUC  5    stars -  don't  believe them.

Conditional Layer Norm

Expression-Aware Text Representation

Classification

Some others the new UMUC

Figure 3: The framework of our model

3.3 Argument Extraction

The key challenge for extracting targets and hold-
ers with respect to the extracted expression is how
to integrate the expression into the extractor model.
Inspired by (De Vries et al., 2017), we design a
conditional layer normalization method to take the
expression into account 3. Specifically, we use the
representation of the expression to control the β
and γ in the layer normalization. In this way, we
can obtain the expression-aware representation for
target and holder extraction. The word represen-
tation hi after the conditional layer normalization
(CLN) is computed as,

hi = CLN(xi) = γ
ei − µ
σ

+ β,

γ =Wγ [xes ;xee ],

β =Wβ[xes ;xee ],

(3)

where µ, σ are the mean and standard deviation of
the elements in xi, es and ee are the start and end
indices of the expression e, Wγ and Wβ are the
trainable parameters. We use the concatenation of
the expression’s start and end word representation
as the expression representation.

Based on the expression-aware representation
H = {h1, h2, ..., h|s|}, we train two classifiers to
predict the probability distribution of the start and
end indices for targets and holders respectively.

pst = Sigmoid(W s
t H + bst )

pet = Sigmoid(W e
t H + bet )

psh = Sigmoid(W s
hH + bsh)

peh = Sigmoid(W e
hH + beh)

(4)

where pst /psh and pet /peh are the predicted probability
distribution of target t/holder h’s start and end in-
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Table 1: The statistics information of datasets.

Dataset Language # sents # holders # targets # expr.
NoReCFine Norwegian 11437 1128 8923 11115
MultiBEU Basque 1521 296 1775 2328
MultiBCA Catalan 1678 235 2336 2756
OpeNeres Spanish 2057 255 3980 4388
OpeNeren English 2494 413 3850 4150
MPQA English 10048 2279 2452 2814
DSUnis English 2803 86 1119 1119

dices,W s
t ,W

e
t , b

s
t , b

e
t /W s

h ,W
e
h , b

s
h, b

e
h are the learn-

able weights.

3.4 Sentiment Classification
Finally, we infer the sentiment polarity of the struc-
tured tuple (h, t, e). Since the text representation
contains the expression information that can repre-
sent the tuple, we use a max pooling operator based
on H to obtain the tuple representation r,

r = MaxPooling(H) (5)

We input the tuple representation r into a sen-
timent classifier to predict the sentiment polarity
distribution towards the target,

pc = Softmax(Wcr + bc) (6)

where Wc and bc are the parameters.

4 Experiments

In this section, we first give the experimental setup,
including datasets, implementation details and eval-
uation metrics (Section 4.1). Then, we present the
experimental results and analysis on both the mono-
lingual and multilingual settings (See Section 4.2).

4.1 Experimental Setup
Datasets To evaluate the effectiveness of our
model, we conduct our experiments on datasets
of multiple languages, including English, Basque,
Catalan, Norwegian. MultiBEU, MultiBCA (Barnes
et al., 2018) and NoReCFine (Øvrelid et al., 2020)
are the reviews data in Basque, Catalan, and Nor-
wegian. MPQA (Wiebe et al., 2005) is a En-
glish dataset that contains expressions, holders, tar-
gets and their relationships. DSUnis (Toprak et al.,
2010) contains labeled opinions for user reviews
about universities and services. The OpenNER
dataset consists of labeled reviews of hotels from
the guests. And it’s divided into two languages:

OpeNeren in English, OpeNeres in Spanish. The
statistics of the datasets are shown in Table 1. We
can find that the size of the labeled data is limited,
especially the number of labeled holders. For ex-
ample, in DSUnis dataset, there are only 86 holders,
which limits the performance of the neural models
largely.

Implementation Details For the monolingual
setting, we utilize the language-specific pre-trained
language models (PLMs) as the word embedding,
which are downloaded from Huggling Face 1. We
finetune the parameters on the training data for
this setting. For the crosslingual setting, we use
the multi-lingual PLMs (e.g., mBEER, XLM) and
fix the parameters on the training phase. We use
Adam optimizer with the learning rates of 1e-5.
The dimensions of word embedding are 128. The
max sequence length is 512. The dropout is 0.1.
We train all models for 100 epochs and keep the
model that performs best regarding F1 on the dev
set. We use default hyperparameters from Kurtz
et al. (2020) and run all of our models five times
with different random seeds. The reported test re-
sults are based on the parameters that obtain the
best performance on the development.

Evaluation Metrics Following the previous
works (Barnes et al., 2021), as we are interested not
only in extraction or classification but rather in the
full structured sentiment task, we use Sentiment
Graph F1 as the final metric.

4.2 Experimental Results and Analysis
For experimental results, we report the majority
baseline for each language. Our unified model
can perform on both the monolingual and crosslin-
gual settings and obtain good performance on these
tasks, our main experimental results are presented
in Table 2 and 3. We follow metrics in (Barnes

1https://huggingface.co/models
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Table 2: Top 15 Results for the monolingual setting.

Monolingual
User NoReCFine MultiBCA MultiBEU OpeNeren OpeNeres MPQA DSUnis

zhixiaobao 0.529 (2) 0.728 (1) 0.739 (1) 0.760 (2) 0.722 (4) 0.447 (1) 0.494 (1)
Cong666 0.524 (3) 0.728 (1) 0.739 (1) 0.763 (1) 0.742 (1) 0.416 (2) 0.485 (2)
gmorio 0.533 (1) 0.709 (3) 0.715 (3) 0.756 (3) 0.732 (3) 0.402 (3) 0.463 (3)
colorful 0.504 (4) 0.681 (6) 0.723 (2) 0.747 (4) 0.735 (2) 0.375 (5) 0.410 (9)
whu_stone 0.483 (8) 0.711 (2) 0.681 (6) 0.727 (5) 0.686 (7) 0.379 (4) 0.373 (13)
KE_AI 0.483 (8) 0.711 (2) 0.681 (6) 0.727 (5) 0.686 (7) 0.364 (7) 0.373 (13)
Fadi 0.484 (7) 0.704 (4) 0.703 (4) 0.725 (6) 0.698 (5) 0.254 (20) 0.420 (5)
lys_acoruna 0.462 (9) 0.653 (9) 0.680 (7) 0.698 (9) 0.692 (6) 0.349 (10) 0.414 (8)
QiZhang 0.496 (5) 0.684 (5) 0.686 (5) 0.676 (10) 0.623 (11) 0.351 (8) 0.409 (10)
luxinyu 0.487 (6) 0.658 (8) 0.651 (9) 0.710 (7) 0.669 (8) 0.269 (19) 0.416 (7)
rafalposwiata 0.459 (10) 0.650 (10) 0.653 (8) 0.670 (11) 0.663 (9) 0.326 (13) 0.395 (12)
evanyfyang 0.213 (21) 0.635 (12) 0.639 (10) 0.703 (8) 0.642 (10) 0.350 (9) 0.449 (4)
robvanderg 0.366 (12) 0.648 (11) 0.605 (11) 0.632 (14) 0.614 (13) 0.296 (16) 0.344 (14)
psarangi 0.343 (15) 0.634 (13) 0.559 (12) 0.634 (13) 0.595 (14) 0.283 (17) 0.320 (17)
chx.dou 0.395 (11) 0.583 (14) 0.506 (13) 0.626 (15) 0.622 (12) 0.309 (14) 0.280 (20)

Table 3: Top 15 Results for crosslingual setting.

Crosslingual
User EN-ES EN-CA EN-EU
Cong666 0.644 (1) 0.643 (1) 0.632 (1)
colorful 0.618 (3) 0.562 (7) 0.584 (2)
gmorio 0.628 (2) 0.607 (3) 0.527 (4)
whu_stone 0.604 (5) 0.596 (4) 0.512 (7)
QiZhang 0.551 (10) 0.615 (2) 0.530 (3)
Fadi 0.589 (6) 0.593 (5) 0.516 (6)
hades_d 0.617 (4) 0.544 (10) 0.522 (5)
lys_acoruna 0.570 (7) 0.554 (8) 0.509 (8)
rafalposwiata 0.564 (8) 0.586 (6) 0.444 (12)
KE_AI 0.561 (9) 0.552 (9) 0.463 (11)
etms.kgp 0.542 (11) 0.506 (11) 0.431 (13)
jylong 0.375 (12) 0.474 (12) 0.504 (9)
ouzh 0.375 (12) 0.474 (12) 0.504 (9)
SPDB_Inn... 0.356 (13) 0.470 (13) 0.486 (10)
gerarld 0.321 (14) 0.269 (14) 0.303 (14)

et al., 2021) to use Graph F1 scores to evaluate
structured sentiment extraction and classification.

In detail, Table 2 shows the results of the mono-
lingual setting. For English, the top 15 partici-
pants lie between 62.6% and 76.0%, 30.9% and
44.7%, 28.0% and 49.4% F1 score on the OpeNeren,
MPQA, DSUnis datasets. For the Spanish dataset,
the top 15 F1 scores lie between 62.2% and 72.2%.
The participants in the middle of the table are quite
close to each other. For Catalan, F1 scores range
from 58.3% to 72.8%. For the Basque language,

F1 scores range from 50.6% to 73.9% , with a gap
of 20 points between first and last place. For the
Basque dataset, F1 scores range from 50.6% to
73.9%, and most are in mid 60%. In this setting,
we obtain ninth place based on the average score
of all the datasets.

Table 3 shows the performance of crosslingual
setting, which trains on English datasets and tests
on the target languages including MultiBooked
datasets and the OpeNER Spanish dataset. For
Spanish, the top 15 F1 scores between 32.1% and
64.4%. For Catalan, F1 scores between 26.9% and
64.3%, which span a wide range. For the Basque
dataset, the F1 scores range from 30.3% to 63.2%.
Particularly, our model obtains the second and third
places on the MultiBCA and MultiBEU languages.

5 Conclusions

In this paper, we propose a simple and unified
model for both the monolingual and crosslingual
structured sentiment analysis tasks. Different from
the previous studies, we transform this task into an
event extraction task. Mainly, we first design an
expression extraction for extracting the expression,
just like extracting the trigger words in the event
extraction task. Then we predict the holder and tar-
get based on the extraction results of the previous
step. The model performs well on seven datasets
in five languages.
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Abstract

This paper presents our submission to task 10,
Structured Sentiment Analysis of the SemEval
2022 competition. The task aims to extract all
elements of the fine-grained sentiment in a text.
We cast structured sentiment analysis to the
prediction of the sentiment graphs following
(Barnes et al., 2021), where nodes are spans
of sentiment holders, targets and expressions,
and directed edges denote the relation types be-
tween them. Our approach closely follows that
of semantic dependency parsing (Dozat and
Manning, 2018). The difference is that we use
pre-trained language models (e.g., BERT and
RoBERTa) as text encoder to solve the prob-
lem of limited annotated data. Additionally,
we make improvements on the computation
of cross attention and present the suffix mask-
ing technique to make further performance im-
provement. Substantially, our model achieved
the Top-1 average Sentiment Graph F1 score
on seven datasets in five different languages in
the monolingual subtask.

1 Introduction

SemEval 2022 task 10 is a structured sentiment
analysis task, aiming to predict all of the opinion tu-
ples in a text. Each opinion O is a tuple (t, h, e, p),
where h is a holder who expresses a polarity p to-
wards a target t through a sentiment expression
e. In practical, the task of structured sentiment
analysis can help machines understand how people
perceive ideas, policy etc.

This paper describes the system developed by the
team ZHIXIAOBAO for SemEval-2022 Task 10.
We follow the work of (Barnes et al., 2021) to cast
the task as dependency graph parsing problem. The
predicted opinion tuples are denoted by a directed
graph, G = (V, E), for each sentence. As shown
in Figure 1, all tokens in a sentence are presented
as nodes and there are directed edges between the

∗ The first two authors contributed equally to this work.
† Corresponding author.

nodes to represent their relations. Each node in V
can point to multiple nodes, and can have multiple
incoming edges too. Sentiment expressions are re-
garded as roots in the structured sentiment graph
(e.g., the token “5” and “don’t” in Figure 1). Notice
that not all nodes connect to the other nodes (e.g.,
the token “give” in Figure 1). The isolated tokens
are the none-sentiment elements in the sentence,
thus we should be able to predict the edge type of
“null” in our model. Original edge types are de-
fined as holder, target, and expression. Following
the work of (Barnes et al., 2021), we also tried the
“+inlabel” style of definition, where none-“null”
edge types consist of holderin, holderout, targetin,
targetout, expressionin, expressionout. Foot mark-
ers in, out denotes the in-span and out-span edges
respectively. For example, the edge from “5” to
“some” belongs to holderout, while the edge from
“Some” to “others” belongs to holderin.

As demonstrated in previous work (Barnes et al.,
2021), formulating the task as a graph structure
prediction problem is superior to that of solving
it by the span extraction and relation prediction
approaches. The former can better extract overlap-
ping spans than the latter. Thus, our model mainly
follows the solution of dependency parsing to di-
rectly predict between-word relations. The model
consists of a text encoder to extract contextual fea-
tures of tokens, and a classifier to predict edges
between each pair of tokens. A bilinear or biaffine
cross attention is applied in the classifier layer to
make multiplicative interactions between the fea-
tures of a pair of tokens. In our model, pre-trained
language models (e.g., BERT and RoBERTa) are
used as the text encoder. We discover that fine-
tuning the pre-trained language model brings huge
enhancements in our experiments. In addition, as
the meaning of in-span and out-span edge types are
totally different, we leverage two cross attention
for in-span edge types and out-span edge types pre-
diction respectively. We also present a suffix mask-
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Some others give
the new UMUC 5
stars, don’t believe
them.

Text Encoder

Cross Attention

Edge Score

Some others give the new UMUC 5 stars - don’t believe them.

expout : pos expout : neg

targetout
targetin

targetin

targetout

expin : pos expin : neg

holderout

holderin

Figure 1: The framework of our model.

Dataset Language train dev test
NoReCFine Norwegian 8634 1531 1272
MultiBCA Catalan 1174 168 336
MultiBEU Basque 1064 152 305
OpeNERES Spanish 1438 206 410
OpeNEREN English 1746 249 499
MPQA English 4500 1622 1681
DSUnis English 2253 232 318

Table 1: Summary of the datasets.

ing technique to reduce noise in the data. These
techniques greatly improve the performance of our
model compared with the original dependency pars-
ing model.

Our model ranked 1st out of 32 participating
teams on monolingual subtask and got the highest
average F1 score on 4 datasets.

2 Task Description

SemEval task 10 focuses on predicting all elements
of the structured sentiment in a text, represented by
opinion tuples (t, h, e, p), where h is a holder who
expresses a polarity p towards a target t through a
sentiment expression e. The evaluation is on seven
datasets in five languages, the statistics of which
are shown in Table 1.

NoReCFine (Øvrelid et al., 2019) is the largest
structured sentiment multi-domain dataset with
professional reviews in Norwegian. MultiBEU
and MultiBCA (Barnes et al., 2018) are hotel re-
views datasets in Basque and Catalan, respectively.
OpeNEREN and OpeNERES (Agerri et al., 2013)
are polarity-enhanced datasets with customer re-
views in Spanish and English respectively. MPQA
(Wiebe et al., 2005) annotates news articles in En-
glish from the world press. Finally, DSUnis (Toprak
et al., 2010) is an annotated English reviews dataset
of online universities and e-commerce.

Previous shared tasks on Aspect-Based Senti-
ment Analysis (ABSA) focus on extracting senti-
ment targets and classifying the polarity directly.
Most previous methods follow the information ex-

traction pipeline, which firstly extract the span of
holders, targets, expressions and subsequently pre-
dict the relations. However, splitting structured
sentiment analysis into subtasks may cause the er-
ror propagation problem. We follow the work that
solving the problem by dependency graph parsing
(Barnes et al., 2021) to achieve better performance
in our model.

3 System Overview

The overview of our system is shown in Figure
1. We use a pre-trained language model to extract
text information as the node features in the graph.
Then, a cross attention layer is used to compute the
predicted score of each edge type. After we get
the edge score for each token pair, a graph parsing
algorithm is presented to transform the predicted
score to opinion tuples.

3.1 Text Encoder

We use the pre-trained language models, BERT
and RoBERTa, to generate the contextual features
of the text in multiple languages. Both of them are
Transformer-based language models using a huge
amount of text with a masked language model ob-
jective. These pre-trained language models have
shown great superiority in a low-resource scenario
like this task. Compared with BERT, RoBERTa
removes next sentence prediction(NSP) loss and
applies larger batch size and sequence length dur-
ing the pre-training step, leading to a better perfor-
mance in most cases. We tried the monolingual
version of RoBERTaLARGE (Liu et al., 2019a) and
BERTLARGE (Devlin et al., 2019) for each dataset,
as our feature extractor. Our experimental results
demonstrate that RoBERTaLARGE performs better
than BERTLARGE in all the datasets.

3.2 Discrete Cross Attention

After extracting the text features, we can then use
bilinear or biaffine attention to produce a score for
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each pair of tokens. The score includes multiplica-
tive interactions among pairs, and can be used to
predict edge types. Different from the previous
work (Barnes et al., 2021), we model heads and
dependents of in-span and out-span separately, be-
cause we think it is better to cast the in-span and
out-span label prediction as two “different” tasks.
According to our observation, they have different
properties in the corpus. Thus, inspired by the
multi-task learning framework, we propose to use
Discrete Cross Attention (DCA) to make them
share same bottom features in the text encoder, but
have non-shared parameters in the computation of
cross attention.

The contextual features C extracted from text
encoder are processed with four layers of the feed-
forward neural networks(FNN), FNNin

head, FNNin
dep,

FNNout
head and FNNout

dep creating representations of
potential heads and dependents for in-span and
out-span respectively. And then a bilinear score
is computed for each kind of edge types using a
trainable parameter matrix A. The discrete cross
attention can be formulated as bellow,

hini = FNN in
head(ci) (1)

dini = FNN in
dep(ci) (2)

scoreinij = hinTi Aind
in
j (3)

houti = FNNout
head(ci) (4)

douti = FNNout
dep(ci) (5)

scoreoutij = houtTi Aoutd
out
j (6)

scoreij = softmax(scoreinij ⊕ scoreoutij ) (7)

scoreij represents the final score list for each
edge type, which is the softmax score of the con-
catenation of in-span edge scores scoreinij and out-
span scores scoreoutij .

3.3 Graph Parsing
We set a threshold θ to determine whether the
edge exists, i.e., if max(scoreij) > θ, we set
the predicted edge type to be argmax(scoreij),
or we make the predicted edge to be “null”. We

Algorithm 1: Graph parsing
Input: Sentiment graph G
Output: Opinion Tuples (H,T,E)
Data: Opinion set Opset

1 for er,i in G do
2 if er,i ∈ ExpTypes then
3 E← FindSpan(i, Type(er,i));

newHset, Tset;
4 for ei,j in G do
5 if Type(ei,j) ∈ HolTypes then
6 Hset ← FindSpan(j, hol)

7 if Type(ei,j) ∈ TrgTypes then
8 Tset ← FindSpan(j, trg)

9 for H in Hset do
10 for T in Tset do
11 Opset ← (H,T,E)

set θ = 0.5 in our experiments. We use two
kinds of graph parsing representations, head-first
and head-final, following (Barnes et al., 2021).
For head-first, we use the first token in the tar-
get/holder/expression spans as the head of the span
and the other tokens within the span as the depen-
dent. For head-final, we take the opposite way, i.e.,
set the final token of the target/holder/expression
spans as the heads.

The algorithm of converting structured sentiment
graph to opinion tuples (H,T,E) is in shown in
Algorithm 1. H , T , E denote holder, target and
expression respectively. ExpTypes, HolTypes,
TrgTypes are the edge type sets for expression,
holder, target respectively. ei,j denotes the pre-
dicted edge type between token i and token j,
and r is the root nodes. FindSpan(·) is a func-
tion to find the complete span for a certain edge
type, which can be simply implemented by merg-
ing linked tokens with the same edge type. As
shown in Algorithm 1, we should first find the
expressions, and then add the linked holders and
targets for each expression to the opinion tuples.
Notice that if we cannot find holder or target spans
for an expression, we shall append an empty token
into Hset or Tset.

3.4 Suffix Masking Trick

In both training and predicting procedure, a sen-
tence is first tokenized by byte-pair encoding (BPE)
before it is inputted into the text encoder, i.e., BERT
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The universiti are satisfac<cls>
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are

satisfac

##tory

Figure 2: Suffix masking.

and RoBERTa. Some words are splitted into pre-
fixes and suffixes in the procedure. For example,
"universities" is tokenized to "universiti", "##es" as
shown in Figure 2. We think these suffixes are of-
ten noises and provide few supervision signals for
the edge prediction, since they are shared by many
distinguished words. Inspired by this intuition, we
mask these suffixes in the computation of edge
scores. As shown in Figure 2, we mask the suffix,
"##es" and "##tory", before the prediction of edges.
In this way, the edges only exist between the pair of
(< cls >, satisfac) and (universiti, satisfac).

4 Experiments

The experiments details and main results are shown
in this section.

4.1 Experiment Details
The implementation of our model depends on
pytorch and huggingface. In our experiments,
BERTLARGE represents the monolingual version
for each dataset, which all can be found in the
huggingface website. As for RoBERTaLARGE, the
version of xlm-roberta-large (Conneau et al., 2019)
is used on models for MultiBCA, MultiBEU and
OpeNERES, and roberta-large-en-cased (Liu et al.,
2019b) is used on the English datasets, i.e., MPQA,
OpeNEREN and DSUnis.

We use Adam as our optimizer with the learning
rate to be 1e-5 for the fine-tuning of pre-trained
language models and 1e-4 for the other parameters
in the model. The batch size is set to 12 with the
gradient accumulation steps to be 48. The dropout
rate is 0.3 and the hidden state size of FNN layers

is set to 256. Our models are run on a maximum
of 1000 epochs. We train all the models with 5
different seeds on the training set released by the
orginizer and choose the best results based on the
performance on development datasets. The training
run on two Tesla V100 GPUs with 32G memory.

It has to be noted that we add a “<cls>” token
when encoding the sentences and set the “<cls>”
token as the root of the sentiment graph. In Figure
1, there actually exists an edge between <cls> token
and the head of expression spans.

4.2 Metrics

To measure how well a system is able to capture
the full sentiment graph, submitted systems are
evaluated on sentiment graph F1 (SF1) following
(Barnes et al., 2021). A true positive is defined as
an exact match at graph-level, weighting the over-
lap in predicted and gold spans for each sentiment
element, averaged across all three kinds of spans,
i.e., expression, holder, target. For precision we
weight the number of correctly predicted tokens
divided by the total number of predicted tokens
(for recall, we divide instead by the number of gold
tokens).

4.3 Main Results

The main experimental results are shown in Table 2.
It can be seen that using monolingual BERTLARGE
pre-trained on larger language-specific corpus
as text encoder is better than the multilingual
BERTbase used in (Barnes et al., 2021), and fine-
tuning the pre-trained language models brings more
improvements than freezing the parameters. An in-
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Methods NoReCFine MultiBCA MultiBEU OpeNERES OpeNEREN MPQA DSUnis

mBERTbase w/o fine-tune + lstm (Barnes et al., 2021) 39.4 55.8 57.4 - - 18.8 27.3
BERTLARGE w/o fine-tune + lstm 42.9 63.7 62.1 65.4 65.0 33.5 36.7
BERTLARGE fine-tune + lstm 50.4 69.1 65.2 67.1 69.2 42.1 40.8
BERTLARGE fine-tune 50.8 70.7 65.7 68.6 70.8 43.5 42.4
BERTLARGE fine-tune + inlabel 50.9 70.5 65.9 68.4 71.5 43.3 42.8
BERTLARGE fine-tune + inlabel + DCA 51.7 71.1 67.3 69.1 73.1 43.6 44.5
BERTLARGE fine-tune + inlabel + DCA + mask 52.9 71.7 70.5 71.6 75.4 43.9 47.2
RoBERTaLARGE fine-tune + inlabel + DCA + mask - 72.8 73.9 72.2 76.0 44.7 49.4

Table 2: Main results. mBERTbase denotes the multilingual BERT (Xu et al., 2019). “+lstm” denotes adding an
LSTM layer after the text encoder. “+inlabel”, “DCA” and “mask” denote the “+inlabel” style of edge types, the
discrete cross attention and the suffix masking technique presented in last section.

teresting discovery is that adding an LSTM layer
between text encoder and cross attention leads the
decreasing of SF1 score. Thus, we remove the
LSTM layer in our final submitted models. In addi-
tion, we can see that the “+inlabel” style definition
of edge types is indeed helpful in this task. Fur-
thermore, the presented discrete cross attention and
suffix masking technique significantly improve the
performance of our model.

The results prove the effectiveness of fine-
tuning RoBERTa in this task. As shown in
the Table 2, methods with RoBERTaLARGE as
the text encoder on six datasets achieve the best
performance. The best SF1 scores on MPQA,
OpeNEREN and DSUnis are 44.7, 76.0, and 49.4,
where roberta-large-en-cased is used in the model.
For MultiBCA, MultiBEU and OpeNERES, xlm-
roberta-large (Conneau et al., 2019) outperforms
BERTLARGE and we have 72.8 on MultiBCA, 73.9
on MultiBEU and 72.2 on OpeNERES. The re-
sults demonstrate that a pre-trained language model
with more parameters and trained on the larger
corpus performs very well in downstream tasks
as feature extractor. For NoReCFine, we use nb-
bert-large (Kummervold et al., 2021) and the SF1

score is 52.9. We do not get results on NoReCFine
in the last line of the table because monolingual
RoBERTaLARGE for Norwegian is not available at
the time of our experiments. We guess that the
model on NoReCFine using RoBERTaLARGE will
achieve a better result.

There are some failed attempt during the period
of competition, too. We tried to enrich the contex-
tual features of a sentence with word embedding,
POS tag embedding, lemma embedding by using
tools like SpaCy (Honnibal et al., 2020), Stanza
(Qi et al., 2020) and UDPipe (Straka and Straková,
2017). But, we find that it is not superior to directly
fine-tuning the pre-trained language model. We

also tried to pre-train the RoBERTa-large on a Nor-
wegian corpus, then the SF1 score continuously
grows with the increasing of training steps. How-
ever, due to the limitation of computation resources
and time, we only trained the model with 2M steps.
The final version does not outperform that using
BERTLARGE because of the inadequate training.

5 Conclusion

In this paper, we have presented the implementa-
tion of the ZHIXIAOBAO system submitted to the
SemEval-2022 Task 10. We propose an enhanced
dependency parsing model for sentiment graph
analysis. We leverage the fine-tuning technique
of pre-trained language models, BERTLARGE and
RoBERTaLARGE to increase the ability of model
generalization. Furthermore, we present the dis-
crete cross attention and suffix masking technique
to achieve a significant performance improvement.
Our model ranked 1st out of 32 participating teams
on the monolingual subtask with the highest SF1

score on 4 datasets.
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Abstract

This paper describes our participation in
SemEval-2022 Task 10, a structured sentiment
analysis. In this task, we have to parse opin-
ions considering both structure- and context-
dependent subjective aspects, which is differ-
ent from typical dependency parsing. Some
of the major parser types have recently been
used for semantic and syntactic parsing, while
it is still unknown which type can capture
structured sentiments well due to their sub-
jective aspects. To this end, we compared
two different types of state-of-the-art parser,
namely graph-based and seq2seq-based. Our
in-depth analyses suggest that, even though
graph-based parser generally outperforms the
seq2seq-based one, with strong pre-trained
language models both parsers can essentially
output acceptable and reasonable predictions.
The analyses highlight that the difficulty de-
rived from subjective aspects in structured sen-
timent analysis remains an essential challenge.

1 Introduction

SemEval-2022 Task 10 (Barnes et al., 2022) aims
at extracting structured sentiment from a given
sentence. Different from other sentiment analy-
sis tasks, structured sentiment analysis is formu-
lated as an information extraction problem with at
least three elements, namely a holder, a target and
a sentiment expression. The shared task has two
subtasks. In Subtask 1 (monolingual), we evaluate
the performance on seven monolingual corpora, i.e.,
MPQA (Wiebe et al., 2005), OpeNER, OpeNER_es
(Agerri et al., 2013), DSu (Toprak et al., 2010),
MultiB_ca, MultiB_eu (Barnes et al., 2018)
and NoReC (Øvrelid et al., 2020). In Subtask 2
(crosslingual), we evaluate the zero-shot predic-
tion performance on three non-English corpora,
i.e., OpeNER_es, MultiB_ca and MultiB_eu,
generated by a model trained with an English cor-
pus. One significant difference between syntactic
parsing and structured sentiment analysis is that

cannot open [Negative] 
windows [TGT] [SRC] 
No [Negative] balcony 
[TGT] [SRC]

“No balcony, cannot 
open windows. “

No
[0:2]

balcony
[3:10]

cannot 
open

[13:24]

windows
[25:32]

Negative Negative

Target Target

Seq2Seq
(T5)

Graph parser
(RoBERTa+
biaffine)

Input text

Serialized output

Span
aligner

Output opinion1
Polarity = Negative
Expression [0:2]
Source = null
Target=[3:10]

Output opinion2
Polarity = Negative
Expression=[13:24]
Source = null
Target=[25:32]

Parsed graph

Figure 1: Overview of the two parsers: (Top) Graph
and (Bottom) Seq2Seq.

the former is based on certain well-defined rules,
whereas the latter forms an information structure
on the basis of subjective opinions. Given the na-
ture of the sentiment structure, Barnes et al. (2021)
formulated the problem as a dependency parsing
task.

Our motivation here is to throw light upon how
subjective opinions affect parsing performance and
how well recent strong parsing models can cap-
ture them. To this end, we compare two types
of parsing model: graph- and generation-based1

models. Though these parsers have shown compet-
itive performance under various conditions (Oepen
et al., 2020; Ozaki et al., 2020; Samuel and Straka,
2020), each of them has its own advantages and
disadvantages. Graph-based parsers (McDonald
et al., 2005) directly model token-to-token rela-
tions; therefore, they are suitable for modeling
structured sentiment with surface anchors. On the
other hand, generation-based parsers output a se-
quence to reconstruct the graph structure of the
target meaning representation. Recent advances in
deep neural networks have allowed us to generate a
serialized graph directly from an input sentence by
using pre-trained generation models (Ozaki et al.,

1We regard a transition-based parser (Dyer et al., 2015) to
be a kind of seq2seq-based parser, as it generates an action
sequence based on its states.
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2020; Procopio et al., 2021). Specifically, we fo-
cus on state-of-the-art seq2seq-based models like
T5 (Raffel et al., 2020). Because pre-trained gen-
eration models (e.g. text summarization models)
have been trained to generate a summarized state-
ment from a given input sentence, it may be easier
for the generation-based parsers to model seman-
tic relations including subjective opinions than the
graph-based ones.

In this paper, we briefly introduce our ap-
proaches together with a comparison of the two
different parsers: (i) Graph: We use a model that
jointly solves two different problems, namely span
identification, and relation extraction of spans. (ii)
Seq2Seq: We design a serialization for sentiment
structures generated by our seq2seq-based parser.
We simply use pre-trained text generation models
and fine-tune them with the serialized sentiment
structures.

Experiments showed that Graph and Seq2Seq
achieved reasonable levels of performance on both
subtasks. Our submitted systems are based on
Graph and ranked third in both the monolingual
and cross-lingual tasks. We further conducted in-
depth analyses for the two parsers. Our findings
are twofold:

1. Multilingual performance tends to depend
more on the type of pre-trained model used
than on the model architecture, while Graph
outperformed Seq2Seq in non-English cor-
pora.

2. Graph is somewhat recall-focused, whereas
Seq2Seq is more precision-focused in specific
corpora.

The first finding suggests that Graph with a strong
pre-trained model has an advantage for multilin-
gual training when compared to Seq2Seq. Given
that mT5 (Xue et al., 2021) is not trained on any su-
pervised tasks such as translation or summarization,
it may be difficult for multilingual Seq2Seq to gen-
erate (and possibly copy) sentiment tokens from
the input text. Other considerations such as the
decoder architecture and training time of Seq2Seq
seem to favor Graph.

Regarding the second finding, we found that
Graph performs well on complex structured opin-
ions. However, on the other side of the coin, it sug-
gests that Graph sometimes causes over-detection
(though these over detected opinions may be accept-
able to humans). We found that this happens partic-

ularly for MPQA polar expressions. This could be
due to the nature of MPQA, which usually includes
context-dependent expressions.

As a result, we argue that it is difficult to de-
cide which type of parser is better because: (i)
the decision criteria rely on how we define the
sentiment structure, e.g., structured sentiments
in some corpora are semantically complex and
context-dependent, while those in other corpora
are not, making the corpus less context-dependent.
(2) Whether to use Graph or Seq2Seq depends on
whether we want to cover as much of the struc-
tured sentiments as possible or whether we want
to emphasize precision. (3) In regard to metric-
dependent choices, Seq2Seq is at a disadvantage in
the shared task because the metric requires anchor-
ing to the surface of the input text. We also have
to decide which parser to use from various other
perspectives, such as (4) whether or not we are tar-
geting English, and (5) whether the training speed
is important. These considerations make structured
sentiment analysis challenging.2

2 Models

This section explains the Graph and Seq2Seq meth-
ods used in this work.

2.1 Graph model

We formulate the problem as a joint task of span
identification and relation extraction. This ap-
proach can be classified as a graph-based approach
(Dozat et al., 2017; Falenska et al., 2020), which
is known to perform well in fields such as syntac-
tic dependency parsing. Although there are var-
ious approaches to this problem, we simply use
the architecture of Morio et al. (2022). The archi-
tecture generates BIO tags to predict spans using
pre-trained language models such as Longformer
(Beltagy et al., 2020). The span representation of
each predicted span is generated by average pool-
ing of the predicted span and subsequently fed into
biaffine classifiers (Dozat and Manning, 2017) to
predict relations.

Because the architecture was originally designed
to predict argument structures (Lawrence and Reed,
2019), so-called argument mining, it needs a little
tweaking. We thus designed a dedicated encod-
ing for structured sentiment analysis. As shown in
Figure 1 (Top), the opinions for the input text can

2We plan to release our code at https://github.
com/hitachi-nlp/graph_parser
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be represented as a graph. We represent a repre-
sentative polarity expression as a root node, and
its polarity as a self-loop (e.g., a no node and its
negative self-loop). We represent the other polar-
ity expressions, target and source via child nodes
linked to the polarity nodes (e.g., balcony is a child
node for the no node). Overlapping spans are di-
vided up using the start and end indexes of the
overlap, and each span can have multiple labels
(e.g., Positive_Source is a combined label for posi-
tive and source spans). Although this graph encod-
ing cannot fully represent structured sentiments3,
we confirmed that the data reconstructed from the
graph encoding achieves about 99% F-score (so
there is practically no problem.) We convert all the
given datasets using this graph encoding, and given
a text input, the model is trained to parse the graph.

2.2 Seq2Seq model
Seq2Seq Generation Here, we formulate the
problem as a summarization task to output serial-
ized tuples of structured sentiment. We preferably
utilize pre-trained summarization language models,
such as T5 (Raffel et al., 2020), and fine-tune them
with the serialized tuples.

Serialization system A seq2seq model outputs
serialized tuples of structured sentiment regardless
of their position on the surface (see Figure 1). For
example, when an input text is “No balcony, cannot
open windows”, we have two tuples of structured
sentiment; each of them is serialized as follows:� �
No[NEG] balcony[TGT] [SRC]
cannot open[NEG] windows[TGT] [SRC]� �

We serialize a tuple into a polar expression, a target,
and a holder order. The polar expression ends with
[NEG], [NEU] or [POS] tokens according to its
polarity. The target and holder expressions end
with [TGT] and [SRC], respectively. If multiple
spans are in a tuple, we concatenate them with
a special separator ([SEP]) token. Since each
expression is marked with these special tokens, we
can simply concatenate all tuples without confusing
them with each other.

Reconstruction from serialization Although
our serialization preserves semantically sufficient
information on sentiment structures, there is a piece

3Our graph encoding cannot distinguish a case where one
polar expression forms a single opinion with multiple targets
from a case where a polar expression forms multiple opinions
with a single target.

of missing information, i.e., anchors. To recon-
struct the anchor information, we utilize a word
aligner based on a pre-trained language model:
SimAlign (Jalili Sabet et al., 2020). Because
SimAlign provides a zero-shot alignment model,
we utilize it for obtaining the alignment between
the input text and its serialized sentiment struc-
ture. For ease of explanation, we define span
s = [ti, ti+1, . . . , ti+j ] as a single phrase appearing
as a holder, a target, or a polar expression, where
t is a generated token. First, we pick a single
opinion; then, we extract all tokens in the opin-
ion and form a token sequence [t1, . . . , tn]. Sec-
ond, we calculate the token alignments [a1, . . . , an]
between the input text and the token sequence
to point out the corresponding tokens in the in-
put, where a > 0 and a ∈ N. Lastly, we
recover the span s = [ti, . . . , ti+j ] location by
[min (ai, . . . , ai+j),max (ai, . . . , ai+j)]

4.
Furthermore, we add a heuristic procedure to

improve the reconstruction accuracy. When an
expression extracted from a reconstructed anchor
is different from its original generated expression,
we apply a greedy search to find the part where the
original expression appears as is in the input text. If
we find the part, we use an anchor that points to the
part instead of the reconstructed anchor. With this
heuristic, we achieved an F-score of around 97%
between gold and reconstructed opinions from the
serialized outputs5.

3 Experiments

3.1 Experimental setup
Implementation details We implemented
Seq2Seq and Graph with PyTorch (Paszke et al.,
2019) and the Huggingface Transformers library
(Wolf et al., 2020). All models were trained with
a fixed number of steps (about 10,000 steps). We
used a learning rate of 2e-5 for Graph and 5e-5
for Seq2Seq, with a warmup (Howard and Ruder,
2018) ratio of 0.1. The batch size was set to 16
for Graph and 32 for Seq2Seq. We set the beam
width to 5 for Seq2Seq. We did not conduct
hyperparameter tuning or model selection and did
not use any development data during training and
validation.

Pre-trained models To fully utilize the repre-
sentative power of Graph and Seq2Seq, we used

4Because actual anchors are character-level, we need to
convert the spans from the token level to the character level.

5Without this heuristic, the F-score is about 91%.
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Dev DSu OpeNER MPQA OpeNER_es MultiB_eu MultiB_ca NoReC
en en en es eu ca no

Graph RoBERTa-large 38.6 72.3 42.8
InfoXLM-large 71.1 64.7 71.0 50.7

Seq2Seq T5-large 38.0 69.4 42.3
mT5-large 66.0 61.4 67.9 48.8

Test

Graph RoBERTa-large 42.2 75.0 39.3
+ensemble (submitted) 46.3 75.6 40.2
InfoXLM-large 71.7 70.5 69.8 51.2
+ensemble (submitted) 73.2 71.5 70.9 53.3

Seq2Seq T5-large 40.5 67.1 40.9
mT5-large 65.6 66.2 65.5 48.0

Best team 49.4 76.0 44.7 72.2 73.9 72.8 52.9

Table 1: Evaluation results of Subtask 1 (monolingual) in Sentiment Graph F1 (SF1) for the development and
test sets. Graph and Seq2Seq represent graph-based and seq2seq-based parsers, respectively. We submitted
the InfoXLM-large+ensemble model in the evaluation phase. Note that en=English, es=Spanish, eu=Basque,
ca=Catalan, and no=Norwegian.

Dev OpeNER_es MultiB_eu MultiB_ca
en→es en→eu en→ca

Graph InfoXLM-large 62.8 46.2 62.3
Seq2Seq mT5-large 56.9 41.3 53.5

Test

Graph InfoXLM-large 61.9 51.6 60.1
+ensemble (submitted) 62.8 52.7 60.7

Seq2Seq mT5-large 57.4 44.7 53.5

Best team 64.4 63.2 64.3

Table 2: Evaluation results of Subtask 2 (crosslingual zero-shot) in SF1. We submitted the InfoXLM-
large+ensemble version in the evaluation phase.

pre-trained language models based on Transformer
(Vaswani et al., 2017). For Graph, we used
RoBERTa-large (Liu et al., 2019) in Subtask 1
(monolingual) and InfoXLM-large (Chi et al.,
2021) in Subtask 2 (cross-lingual). RoBERTa is a
well-tuned model based on BERT (Devlin et al.,
2019), and it has shown state-of-the-art perfor-
mance in various classification tasks. InfoXLM
is a recently proposed model, which is pre-trained
with contrastive learning. For Seq2Seq, we used
T5-large (Raffel et al., 2020) in Subtask 1 and mT5-
large (Xue et al., 2021) in Subtask 2. T5 uses a
unified text-to-text framework to deal with various
text-based tasks.

Submitted models In our preliminary experi-
ments, we found that the development scores of
the monolingual Graph models were slightly better
than those of the Seq2Seq ones (the reasons will be
discussed later). Thus, we only used Graph models
for our submission. However, to discuss Graph

and Seq2Seq in detail, we show the results of both
Graph and Seq2Seq below.

3.2 Main results
Table 1 shows the overall results of Subtask 1
(i.e., monolingual), including the scores for the
development and test data in Sentiment Graph F1
(SF1) (Barnes et al., 2021). We tried three dif-
ferent seeds for each model to minimize the ef-
fects of random seeds and averaged the scores. For
the ensemble methods, the scores are those from
the ensemble of models with the three seeds. For
reference, we also include the results of the best-
performing team for the test data. Overall, Graph
mostly outperformed Seq2Seq with significant dif-
ferences observed in non-English corpora, such as
OpeNER_es and MultiB_eu. This suggests that
Graph has an advantage for multilingual training
when compared to Seq2Seq. That is, while T5 is
trained on summarization and its related tasks, mT5
is not. This difference might cause a disadvantage
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Figure 2: Misalignment ratio of Seq2Seq, where mis-
alignment means Seq2Seq predicted correct surface to-
kens, but the aligned spans for the original text were
incorrect.

wherein Seq2Seq generates (and possibly copies)
sentiment tokens from the input text.

Although not surprising, Table 1 indicates that
the ensemble models of Graph outperform the non-
ensemble ones. The submitted ensemble models
have comparable SF1 to those of the best team on
the test set of some corpora.

Subtask 2 In this subtask, we used OpeNER
English for training and conducted zero-shot
prediction for OpeNER_es, MultiB_eu, and
MultiB_ca. Table 2 shows SF1 of Subtask 2
(i.e., cross-lingual zero-shot). Overall, it seems
that Graph is still a better choice than Seq2Seq.
There is a significant difference in MultiB_eu,
i.e., Seq2Seq (44.7) and Graph (51.6). This differ-
ence may be due to the pre-trained language mod-
els (i.e., InfoXLM vs. mT5) and the misalignment
problem of Seq2Seq. On the other hand, Graph and
Seq2Seq performed poorly compared with the top-
performing team, so neither model seems suitable
for the zero-shot setting.

3.3 Analysis and Discussion

This section compares Seq2Seq and Graph and
points out that one is not superior to the other. Our
argument is supported by an analysis of the align-
ment errors of Seq2Seq and the structural/semantic
properties of the parsers. To simplify the discus-
sion, we focus only on non-ensemble and mono-
lingual models for the English corpora (i.e., MPQA,
DSu and OpeNER).

3.3.1 Does Graph really outperform
Seq2Seq?

Alignment error in Seq2Seq A major drawback
of Seq2Seq is the alignment error caused by the
aligner. That is, Seq2Seq can produce the correct
surface tokens of the polar expression, source or
target, but the aligner may align incorrect spans

Figure 2 shows the misalignment ratio (i.e., the ra-
tio of predicted elements where the surface tokens
generated by Seq2Seq are correct, but the spans
generated by the aligner are incorrect). There is a
certain amount of alignment error in MPQA, DSu
and OpeNER. We can see that the ratio of OpeNER
is larger than those of the others. We explain this
in Table 3. In case #1, a polar expression chic! was
correctly predicted, but the aligner did not include
the exclamation mark. In #2, minutes from numer-
ous... was correctly predicted, but the beginning
word minutes was unfortunately not included in the
span. We found that the large misalignment ratio
of the source in OpeNER was caused by pronoun
words, as illustrated in #3, where our system could
not resolve which I (i.e., the former or the latter in
the two I tokens) to align. Case #4 shows a similar
phenomenon for the term hate.

If we had remedied some of the misalignments,
Seq2Seq would have produced 41.8 SF1 and 42.6
SF1 on the test data of DSu and MPQA, respectively.
These results are comparable or better than those
of the Graph models shown in Table 1; thus, we
can not simply conclude that Graph is better than
Seq2Seq. Moreover, Seq2Seq might be the best
choice for an evaluation metric that does not empha-
size anchoring spans of the input sentence (which
may be enough for practical purposes). On the
other hand, it seems that Seq2Seq for OpeNER still
has a significant performance gap against Graph, as
shown in Table 1. We focus on this aspect below.

3.3.2 How do Graph and Seq2Seq differ
from each other?

Here, we discuss the differences between Graph
and Seq2Seq on the basis of structural and semantic
complexity. We also discuss the limitations of the
parsers.

Complexity of sentiment structure We sup-
pose that the number of opinions in an input text
can be used as a proxy metric showing the com-
plexity of the sentiment structure. Figure 3 shows
the relationship between the number of opinions in
an input sentence and SF1. Overall, the two parsers
exhibit similar trends; that is, the more opinion
numbers there are, the harder the prediction be-
comes. However, the performance of Graph seems
to be less dependent on the number of opinions,
while Seq2Seq generally exhibits a negative trend,
especially for OpeNER. These results suggest that
Graph is a good choice for handling complicated
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# Corpus Text Gold span (and its
text)

Generated
surface by
Seq2Seq

Mis-aligned span
(and its text)

1 OpeNER hotel chic ! [6:12] (chic !) chic! [6:10] (chic)
2 OpeNER It is minutes from numerous restaurants ,

bars , etc. and centrally located between
the Prado and the Palace · · great for
walking .

[6:53] (minutes from
numerous restaurants,
bars, etc.)

minutes from
numerous
restaurants,
bars, etc.

[14:53] (from numer-
ous restaurants , bars
, etc.)

3 OpeNER I was forced to stay in this area due to my
business reason , but oterwise I would
not suggest to come here to spend your
holidys .

[75:76] (I) I [0:1] (I)

4 MPQA " We do n’t hate the sinner , " he says , "
but we hate the sin . "

[51:55] (hate) hate [12:16] (hate)

Table 3: Case study of misalignments where Seq2Seq produced correct surface tokens but the reconstruction
system aligned incorrect spans.
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Figure 3: Relationship between the number of opinions included in a sentence (X-axis) and SF1 (Y-axis). The green
line shows the total number of samples in the evaluation set; it is evident that the larger the number of opinions is,
the fewer the number of samples is. Note that All indicates the evaluation for full sentences, for reference.
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Figure 4: Precision and recall of Graph and Seq2Seq
for target (top) and polar expression (bottom) outputs.

structures.
However, Graph has another disadvantage: over-

detection. Figure 4 shows the precision and recall
values for target and polar expression in MPQA and
OpeNER. As shown, there is a possible trend that
Graph is more recall-focused, and Seq2Seq is more
precision-focused. In other words, Graph may over-
detect opinion fragments for specific corpora. Case
#1 in Table 4 shows an example of over-detection.
The over-detected phrases are a means of “threat-
ened” and may not be a target.

However, we find that, even for complex struc-
tures with multiple opinions, both Graph and
Seq2Seq produce reasonable predictions. In case
#1 in Table 4, the means of “threatened” is seman-
tically a target; thus, this would be an acceptable
case. Case #2 shows a long polar expression which
does not appear in the gold standard, i.e., let alone
the 4 stars, while the prediction seems to be cor-
rect in a sense. Through these observations, both
Graph and Seq2Seq seem to try to output plausible
outputs.

Semantic complexity Here, we begin by focus-
ing on the difference between corpora (i.e., MPQA
and OpeNER), because it is difficult to evaluate
the semantic complexity directly. MPQA is anno-
tated on the basis of the private state frame and
distinguishes subjective information from mate-
rial presented as fact (Wiebe et al., 2005). This
makes MPQA semantically complex and context-
dependent. On the other hand, OpeNER project
originally focuses on lexicon creation (Agerri et al.,
2013), making the corpus probably less context-
dependent.

Again, let us investigate the precision and re-
call in Figure 4. A significant score gap between
precision and recall in the figure can be found in
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# Corpus Text Method Polarity Polar exp. Source Target
1 MPQA But after the Chinese side released

all the US crew members , major
US political figures changed their
stance immediately and threatened
to use human rights , trade , and
Olympics hosting issues to " retali-
ate " against China .

Gold Negative threatened major US
political
figures

China

Graph Negative threatened major US
political
figures

1. China, 2. trade ,
and Olympics host-
ing

Seq2Seq Negative threatened major US
political
figures

China

2 OpeNER I would never ever come back to
this hotel even if they paid me.
simply it ’s not worth the money ,
let alone the 4 stars .

Gold Negative would never ever
come back

I this hotel

Negative not worth the money
Graph Negative would never ever

come back
I this hotel

Negative not worth the money
Seq2Seq Negative never ever come

back
I this hotel

Negative not worth I the money
Negative let alone the 4 stars it

3 MPQA AOL would never have existed if it
had been founded here , I am sure
, since its employees would have
been mocked into obscurity by the
digerati .

Gold Negative mocked into obscu-
rity

digerati its employees

Graph Negative mocked the digerati its employees
Seq2Seq ⊥ ⊥ ⊥ ⊥

4 MPQA In the complaint , Hobeika had not
yet been called by name .

Gold Negative the complaint
Graph Negative complaint
Seq2Seq ⊥ ⊥

5 DSu I had a programming class with no
lectures which is always fun for
beginners to try to learn concepts
without any sort of interactivity .

Gold Negative 1.always, 2.fun for
beginners

everyone no lectures

Graph ⊥ ⊥ ⊥ ⊥
Seq2Seq ⊥ ⊥ ⊥ ⊥

Table 4: Case study of outputs by graph-based and seq2seq-based models. Magenta colored text indicates incorrect
outputs. For visibility, we have omitted some of the outputs. ⊥ represents a false-negative prediction.

the polar expression of MPQA; i.e., for Seq2Seq,
the polar expression’s precision of MPQA is quite
higher than its recall. Interestingly, the gap was
not so large in the polar expression of OpeNER.
We presume that this is due the semantic complex-
ity (or context-dependent nature) of MPQA. That is,
since Seq2Seq always refers to the context of the
input side when generating an output, the output
could be more context-dependent, and as a result,
Seq2Seq may not output less-confident opinions.

Since it is difficult to test the hypothesis that
Seq2Seq may not output less-confident opinions in
a statistical manner, we present several case stud-
ies. Cases #3 and #4 in Table 4 show errors where
Graph predicted correct or incorrect opinions but
Seq2Seq did not. In #3, the term mocked is a neg-
ative word as is, and can be predicted only with a
lexical perspective. However, the polar expression
is located in a fictional speculation in insubstan-
tial text, which may have confused Seq2Seq. In
#4, Graph predicted complaint as a negative polar
expression, since the complaint could be a nega-

tive lexicon as is, while Seq2Seq did not output
any opinions. Considering the context in the entire
article, it might be difficult to for Seq2Seq to de-
termine if the complaint is an opinion. In this way,
Seq2Seq might enable more context-aware predic-
tions, but may not be suitable for structured senti-
ment analysis based on lexicons. Graph seems to be
good at handling lexicons and context-independent
phrases.

Limitation of both parsers Another semanti-
cally complex case illustrates an interesting error
that neither Graph nor Seq2Seq could parse. Case
#5 in Table 4 shows an irony expression that might
illustrate a limitation of pre-trained models.

Which is superior? As discussed above, each
model has its own advantages depending on the
perspective. However, we cannot decide which is
better, because the decision criteria rely on how
we define the sentiment structure. MPQA defines
structured sentiment on the basis of private state
frames, while OpeNER focuses more on lexical
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↓ Sec. per step DSu OpeNER MPQA
en en en

Graph RoBERTa-large 0.2 0.2 0.3
Seq2Seq T5-large 2.0 2.0 1.8

↓ Sec. per epoch

Graph RoBERTa-large 34.0 26.9 92.8
Seq2Seq T5-large 138.6 105.3 332.1

Table 5: Training speed (in sec.) for each parser.

SF1

(Barnes et al., 2021) mBERT 31.2
(Peng et al., 2021) mBERT 31.9
PERIN NC (Samuel et al., 2022) XLM-R-base 39.3
PERIN LE (Samuel et al., 2022) XLM-R-base 40.4
PERIN OT (Samuel et al., 2022) XLM-R-base 41.6

Graph (ours) XLM-R-base 44.8

Table 6: Comparison with state-of-the-art methods for
NoReC test data. Note that NC, LE, and OT mean the
node-centric, labeled edge, and opinion-tuple variants
of PERIN.

semantics. This would make a difference with syn-
tactic parsing, which is based on a certain type of
well-defined grammar, and would cause the pars-
ing performance to be lower than that of syntactic
parsers. To cover the variety of definitions of struc-
tured sentiment, an abstraction of the sentiment
structure might be needed, as is done in abstract
meaning representation (AMR; Banarescu et al.
2013).

3.3.3 Energy efficiency approximated by
training time

Finally, we discuss the energy efficiency of Graph
and Seq2Seq as an estimate of their financial and
environmental impact (Strubell et al., 2019). We
evaluated the approximated energy consumption
in terms of the training time on NVIDIA V100
GPUs. Table 5 shows step-normalized and epoch-
normalized training speed in seconds, given that
a different batch size was used for Graph and
Seq2Seq. As shown, Graph is usually faster than
Seq2Seq on all English corpora. We suppose this
is because Seq2Seq has a decoder part, which has a
computational cost. The results suggest that Graph
is preferable in terms of energy efficiency.

4 Related work and state-of-the-art

Sentiment analysis, such as aspect-based sentiment
analysis (Chen and Qian, 2020), is a popular re-
search area in natural language processing. Most

recently, we have seen attention focusing on pars-
ing full representations of sentiment from text,
i.e., structured sentiment analysis (Barnes et al.,
2021), as we have tackled in this study. Most
methods (Barnes et al., 2021; Peng et al., 2021)
for this task are motivated by graph-based parsers
that can parse the structured sentiment using a
technique similar to dependency parsing. On the
other hand, the state-of-the-art graph-based parser,
PERIN (Samuel et al., 2022), utilizes the idea
of meaning representation parsing (Oepen et al.,
2020; Samuel and Straka, 2020), which remedies
the lossy dependency graphs of the previous work
(Barnes et al., 2021). Our graph-based method (i.e.,
Graph) is one such study. The differences between
Graph and the related literature are in the graph
encoding method and model architecture.

To directly compare our Graph with the state-
of-the-art methods, we trained Graph with XLM-
RoBERTa-base (XLM-R; Conneau et al. (2020)).
We tried three different seeds and averaged the
scores. Because the corpora provided in the shared
task were slightly modified from those used in the
related studies, it is difficult to make a direct com-
parison. Thus, we evaluated only on the unaffected
NoReC. Table 6 suggests that our Graph outper-
forms state-of-the-art baselines; however, we can-
not conclude that our method is state-of-the-art
based solely on an evaluation on NoReC. We hope
that more extensive studies will clarify this situa-
tion.

On the other hand, an alternative to the tra-
ditional graph-based methods, we proposed a
generation-based method (i.e., Seq2Seq) that
showed promising results. Generation-based meth-
ods have been recently utilized in meaning rep-
resentation parsing (Ozaki et al., 2020; Procopio
et al., 2021); this framework offers more research
options in terms of architecture and graph encod-
ings for structured sentiment analysis. Our study
can be positioned within this framework.

5 Conclusion

This paper showed two different parsers (i.e., graph-
based and seq2seq-based parsers) for SemEval-
2022 Task 10, structured sentiment analysis. The
parsers were compared in various aspects such as
complexity in structure and semantics. Experi-
ments and analyses showed that both parsers output
reasonable predictions, but that it is hard to decide
which is better. This could be because the deci-
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sion criteria rely on how the sentiment structure is
defined. This makes structured sentiment analysis
challenging. To deal with this difficulty, it may
be helpful to apply an abstract representation of
structured sentiment.
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Abstract

This paper describes the system submitted
by our team (UFRGSent) to SemEval-2022
Task 10: Structured Sentiment Analysis. We
propose a multilingual approach that relies on a
Question Answering model to find tuples con-
sisting of holder, target, and opinion expression.
The approach starts from general questions and
uses the extracted tuple elements to find the
remaining components. Finally, we employ an
aspect sentiment classification model to clas-
sify the polarity of the entire tuple. Despite our
method being in a mid-rank position in the Se-
mEval competition, we show that the question-
answering approach can achieve good coverage
retrieving sentiment tuples, allowing room for
improvements in the technique.

1 Introduction

Opinions abound on the Internet nowadays. They
are a valuable source of information since people
often rely on them for making purchases. Com-
panies can also benefit from this vast amount of
opinions, as they do not need to conduct opinion
polls or focus groups to measure the acceptance of
a particular product (Liu, 2011). The large volume
of opinions available becomes hard for humans to
process. This leads to the study of ways of au-
tomating the processing of opinions, in order to
summarize them.

Sentiment Analysis is the field of study which
aims at processing the information conveyed by un-
structured texts, providing structured information
that facilitates the understanding of the opinions, at-
titudes, or emotions towards a particular entity (Liu,
2011). Sentiment Analysis can be performed at
different levels of granularity (entire review, sen-
tence, or aspect). Aspect-Based Sentiment Analy-
sis (ABSA) aims to identify and rate the features
(or aspects) of the entity being evaluated. Typically,
ABSA involves the following phases: (i) identify
and extract entities in reviews; (ii) identify and

extract the aspects of an entity; (iii) cluster simi-
lar aspects; and (iv) determine the polarity of the
sentiment over the entities and the aspects. Most
of the research in Sentiment Analysis focuses on
solving only one of these phases at a time.

Task 10 in SemEval 2022 – Structured Senti-
ment Analysis (Barnes et al., 2022) proposes a new
approach to tackle the Sentiment Analysis problem,
where the elements that constitute an opinion are
identified together, in a structured way through a
graph. Thus, Structured Sentiment Analysis can
be seen as an information extraction task since we
want to find the text spans where opinions about
a particular feature are expressed (Barnes et al.,
2021).

In this paper, we describe UFRGSent, a multilin-
gual approach that relies on a question answering
system to find the elements of an opinion present in
review texts and a fine-tuned model to classify the
polarity of the sentiment tuple. Our average results
ranked 20th out of 31 participating systems. Never-
theless, we believe there is room for improvement
in our technique.

2 Background and Related Work

An opinion can be defined as a tuple O =
(h, t, e, p), where h represents the opinion holder
(person who emits the opinion), t is the aspect tar-
get of the entity being reviewed, e is the opinion
that is being expressed, and p is the sentiment re-
lated to the aspect expressed on the review (Liu,
2012).

While many works treat each opinion compo-
nent separately, some approaches extract them all
together, taking advantage of the components be-
ing interconnected. Graph neural networks (Barnes
et al., 2021; Qian et al., 2021), transition-based
neural models (Zhang et al., 2019), and multi-task
learning (Chen and Qian, 2020) can be used to
accomplish this task. There are also works apply-
ing co-extraction to find correlated opinion com-
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ponents, such as aspect words and corresponding
polarities (Luo et al., 2019; He et al., 2019), aspect
and opinion terms (Wu et al., 2020), or aspects,
opinions, and polarities (Wang et al., 2017; Chen
et al., 2021).

Question Answering is a challenging and well-
studied problem in the Natural Language Process-
ing field, gaining attention in the last years due to
the use of pre-trained Language Models. One of
the most popular subtasks of question answering
is the Machine Reading Comprehension task. This
task consists of, from a text piece (also known as
context) and a question, finding the answer to the
question in context (Zeng et al., 2020). Chen et al.
(2021) proposed using a machine reading compre-
hension system to solve the problem of aspect sen-
timent triplet extraction. They use three-turn ques-
tions to extract aspects and opinions (in the first two
turns) and sentiments (in the last turn), achieving
state-of-the-art performance on standard Aspect-
Based Sentiment Analysis (ABSA) datasets.

3 UFRGSent

3.1 Task Description

The Structured Sentiment Analysis task consists in
identifying a sentiment graph from a review text r.
Such graph can be seen as tuple t = (h, t, e, p),
composed by the the holder (h), the target (t), the
opinion expression (e), and the sentiment polarity
(p). Components h, t, and p are text spans over r,
while s ∈ {Positive,Negative,Neutral}. A review
r can contain none or multiple sentiment tuples.

3.2 Solution Overview

An overview of UFRGSent can be seen in Figure 1.
A two-phase process was employed to identify sen-
timent tuples in a review text r. First, we use a
pre-trained question answering model fine-tuned
with opinionated texts in order to identify the spans
in r that correspond to holder, targets, and opinion
expressions. Next, we use another pre-trained as-
pect sentiment classification model fine-tuned on
the training datasets, in order to predict the polarity
of each extracted sentiment tuple.

The extraction of sentiment tuples from the re-
view text was made using a question answering
model. We iteratively submit three kinds of ques-
tions to the model, in order to extract candidates to
sentiment tuples.

Tier 1 Questions: the following questions were
the first questions posed to the model. As shown,

Review

Question 
Answer
Model

Tier 1 
Question Templates

Tuple’s 1st 
component 

Tier 2 
Question Templates

Tier 3
Question Templates

Tuple’s 2nd 
component 

Tuple’s 3rd 
component 

List of Candidate Tuples Tuples sorting / 
ranking

Tuples Selection

(ℎ, 𝑡, 𝑒)

Best ranked tuple(s)

Candidate Tuples Generation

Aspect Sentiment 
Classification Model

(ℎ, 𝑡, 𝑒, 𝑝)

Final Tuples

Figure 1: Overview of UFRGSent

each of the questions allows us to obtain one com-
ponent of the sentiment tuple.

Who is the holder?
Answer: (h, __, __)

What is the aspect expression?
Answer: (__, t, __)

What is the opinion word?
Answer: (__, __, e)

We extract the n most likely answers predicted
by the model for each question. The model can
also predict that the question has no answer on r.
When this happens, we interpret it as the absence
of sentiment in the sentence and produce the null
tuple (__, __, __) as a candidate.

Tier 2 Questions: after the first extraction itera-
tion, we obtain a list of candidate tuples containing
just one component. This step aims to extract the
second tuple component based on the existing one.
These are the templates of questions used in this
step, and the candidate tuples that were generated
in this phase.
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Who has an opinion about <target>?
Answer: (h, t, __)

What is the feeling about <target>?
Answer: (__, t, e)

What is <holder> opining about?
Answer: (h, t, __)

What is the opinion expressed by
<holder>?

Answer: (h, __, e)
What is <opinion> about?

Answer: (__, t, e)
Who thinks <opinion>?

Answer: (h, __, e)

We do not use the null tuple in this iteration.
If the QA Model returns that a question has no
answer in this phase, we create a tuple without the
remaining components, which will not be used in
the next phase.

Tier 3 Questions: finally, we use the candidate
tuples obtained in the previous step, with two com-
ponents of the tuple, to obtain the remaining ex-
pression. These are the templates of questions for
this step.

How <holder> feels about <target>?
Who thinks <target> is <opinion>?
What <holder> expressed <opinion>
about?

There are two possible outcomes for this phase –
a complete tuple (h, t, e) or a tuple with two com-
ponents, for the cases in which the question pro-
duces no answer.

Candidate Ranking and Selection: At the end
of the Tier 3 questions, UFRGSent produces a list
of candidate tuples, containing all answers gener-
ated by the iterative procedure previously described.
The next step is ranking these tuples according to
some criteria. Finally, based on the final ranking,
we select the top-k answers to find the subset of
tuples that best represent the structured sentiment
on that review. If the null tuple were selected as
the best answer in this phase, we conclude that the
review has no sentiment.

Aspect Sentiment Classification: After deter-
mining the first three components of the sentiment
tuple, we use an aspect sentiment classification
model. This model receives the review and the
aspect-phrase as inputs and outputs the polarity of
the aspect in the review.

4 Experimental Setup

4.1 Question Answering Model

We fine-tuned BERT multilingual (Devlin et al.,
2019) for the Question Answering task using the

training data provided. To convert the original data
into a question-answer dataset, we employed the
following technique: Each sentence becomes a con-
text. For each sentence, we generate the questions
following the templates presented in Section 3.2.
If a sentence does not have any sentiment annota-
tion, we only generate Tier-1 questions with the
null answer. Otherwise, we generate the three tiers
of questions for the sentences containing structured
sentiment annotations. For the sentences whose
tuples do not contain some component (i.e., part of
the sentiment graph is not in the sentence), we do
not generate questions with the missing component.
For example, we only include the question Who
has an opinion about <target>? for
the sentences that have the aspect annotations.

The QA model was fine-tuned for two epochs,
using the script provided by HuggingFace Trans-
formers (Wolf et al., 2020)1. We tested the final
model over dev datasets provided in the task, ob-
taining an F-1 score of 74.68.

4.2 Aspect Sentiment Classification Model

For the polarity prediction task, we used LCF-
BERT (Zeng et al., 2019), which is provided by
PyABSA2. We used an existing trained model cre-
ated over 14 datasets in two languages (English and
Chinese) as our base model. The base model was
fine-tuned for ten epochs on the training dataset.
The tests over the dev datasets yielded an F1 score
of 75.13% and an Accuracy of 88.54%. The model
only accepts as input a review and an aspect. In
the case of sentences which not contain the target
component, we feed the model with the opinion
expression. The holder information is not used in
this task.

4.3 Ranking and Tuple Selection

Our team employed two simple heuristics to sort
the candidate tuples and select the final tuples. To
sort the candidate tuples, we ranked them accord-
ing to the number of times that the tuple was gen-
erated by the question answering procedure. Since
we make multiple questions, it is common for an
answer to be generated many times.

Once the candidate tuples are sorted, we selected
the most frequent answers as our final tuples. If
the most frequent was the null answer, we assume

1https://github.com/huggingface/
transformers/tree/main/examples/pytorch/
question-answering

2https://github.com/yangheng95/PyABSA
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the review has no sentiment. On the other hand, if
our technique generated more than one answer, we
prune the answer set by removing the occurrence
of the null tuple and removing overlapping tuples,
i.e., the tuples that have conflicting spans over the
review. For example, in the sentence "I love the
food." the spans "food" and "the food" overlap. In
that case, we only keep the first tuple that appears
in the ranking.

4.4 Datasets
We evaluated UFRGSent using seven datasets,
namely NoReC (Øvrelid et al., 2020) that con-
tains professional reviews in Norwegian; Multi-
Booked_eu and MultiBooked_ca (Barnes et al.,
2018) with hotel reviews in Basque and Catalan, re-
spectively; OpeNER_en and OpeNER_es (Agerri
et al., 2013) that contain hotel reviews in English
and Spanish, respectively; MPQA (Wiebe et al.,
2005) a dataset of news wires in English; and Darm-
stadt Service Reviews (Toprak et al., 2010) with
English reviews from online universities. Table 1
shows statistics of the datasets.

Dataset Lang # sent #h #t #e
NoReC NO 11,437 1,128 8,923 11,115

MultiBooked_eu EU 1,521 296 1,775 2,328
MultiBooked_ca CA 1,678 235 2,336 2,756

OpeNER_es ES 2,057 255 3,980 4,388
OpeNER_en EN 2,494 413 3,850 4,150

MPQA EN 10,048 2,279 2,452 2,814
Darmstadt_unis EN 2,803 86 1,119 1,119

Table 1: Statistics of Datasets (obtained
from https://github.com/jerbarnes/
semeval22_structured_sentiment).

4.5 Evaluation Metric
The evaluation metric used to assess the quality of
the participating systems was the Sentiment Graph
F1 (Barnes et al., 2021). This metric evaluates an
entire tuple (h, t, e, p). A true positive is an exact
match between the predicted and golden graphs,
weighting the overlaps of the spans for each tu-
ple component, averaged across the three spans.
Precision is calculated by weighting the number
of correctly predicted tokens divided by the total
predicted tokens, while Recall is the ratio between
the number of correctly predicted tokens and the
number of golden tokens.

5 Results

Table 2 shows the official results of UFRGSent.
We varied two parameters of our method during the

runs – the types of questions used in the question-
answering model to extract tuple candidates and
the number of answers retrieved for each question.
The run that achieved the best average result uses
the target and opinion questions and one answer
to generate the candidate tuples. The same result
was obtained when we generated five or ten an-
swers. This run produced the best result in four
out of seven datasets – MultiBooked_ca, NoReC,
OpeNER_es, and OpeNER_en.

Considering the Darmstadt_unis dataset, the best
result was when we just considered the aspect ques-
tions and generated one answer. On the other hand,
the best results for MPQA and MultiBooked_eu
datasets were obtained using the three types of
questions and one, five, or ten answers.

We noticed a significant loss in performance
when generating three answers. We conclude that
this happened because the first answer generated is
the expected response most of the time. Producing
additional answers tends to introduce noise in the
candidate tuples. However, increasing the number
of answers makes the correct answer be generated
more times, yielding the right tuple choice.

In comparison with other participants, our aver-
age score was the 20th result out of 31 participating
systems. The dataset in which we achieved the best
rank was MultiBooked_ca (15th), while our worst
results were Darmstadt_unis and MPQA datasets
(20th out of 31). Although our team did not submit
results for the cross-lingual task, we emphasize that
our solution is entirely multilingual – there is only
one model, which extracted sentiment tuples for all
datasets simultaneously. Therefore, our solution
can be extended to any other language among the
104 languages present in multilingual BERT.

In order to assess the quality of our candidate
tuple extraction, we measured the coverage of the
question-answering results (i.e., the percentage of
gold tuples present in the set of candidate tuples).
This measurement was done on the development
dataset, for which we know beforehand the gold
sentiment graphs. The results of the experiment
can be seen in Table 3.

We set the hyper-parameter k to one, extracting
only one answer per question. The evaluation was
made in two ways – the exact match between gold
tuple and candidates and the overlap, in which a
pair of tuples containing an overlap between their
tokens is considered a correct match. The experi-
ment was repeated, varying the type of questions
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Configuration Dataset
Avg.
Score

Question
Types

# Ans Darmstadt_unis MPQA MultiBooked_ca MultiBooked_eu NoReC OpeNER_en OpeNER_es

1 0.230 0.232 0.505 0.467 0.251 0.431 0.399 0.359
3 0.061 0.071 0.217 0.226 0.088 0.151 0.133 0.135
5 0.230 0.232 0.505 0.467 0.251 0.431 0.399 0.359

H - T - E

10 0.005 0.232 0.505 0.467 0.251 0.431 0.399 0.327
1 0.242 (20) 0.217 (20) 0.521 (15) 0.463 (17) 0.270 (19) 0.452 (18) 0.427 (19) 0.370 (20)
3 0.082 0.042 0.284 0.286 0.135 0.232 0.204 0.18
5⋆ 0.242 0.217 0.521 0.463 0.270 0.452 0.427 0.370T - E

10⋆ 0.242 0.217 0.521 0.463 0.270 0.452 0.427 0.370
1 0.283 0.231 0.456 0.374 0.241 0.399 0.338 0.332
3 0.007 0.009 0.050 0.038 0.019 0.041 0.035 0.029
5⋆ 0.283 0.231 0.456 0.374 0.241 0.399 0.338 0.029

T

10⋆ 0.283 0.231 0.456 0.374 0.241 0.399 0.338 0.029
1 0.244 0.206 0.486 0.459 0.252 0.417 0.383 0.35
3 0.029 0.011 0.141 0.148 0.100 0.063 0.086 0.083
5⋆ 0.244 0.206 0.486 0.459 0.252 0.417 0.383 0.35

E

10⋆ 0.244 0.206 0.486 0.459 0.252 0.417 0.383 0.35

Table 2: Official Results of UFRGSent in terms of Sentiment Graph F1. Best results for a given dataset are in bold.
⋆ denotes that the results were obtained in the post-evaluation phase. The numbers between parentheses indicate the
position achieved by UFRGSent in the competition.

H - T - E T E H
Dataset

Exact Overlap Exact Overlap Exact Overlap Exact Overlap
Darmstadt_unis 65.7% 76.2% 58.9% 67.7% 56.9% 67.3% 58.9% 63.3%

MPQA 75.1% 87.3% 72.2% 82.9% 71.2% 82.5% 72.7% 83.9%
MultiBooked_ca 41.1% 77.9% 30.2% 61.1% 32.6% 64.9% 10.9% 24.9%
MultiBooked_eu 42.1% 77.4% 29.8% 58.3% 33.6% 58.7% 13.6% 33.2%

NoReC 42.0% 79.7% 33.1% 64.9% 31.9% 66.3% 32.4% 42.2%
OpeNER_en 37.9% 76.5% 28.6% 57.2% 29.7% 58.5% 12.2% 42.8%
OpeNER_es 35.8% 72.8% 27.7% 50.4% 27.4% 57.8% 0.1% 26.0%

Table 3: Coverage of Extraction for Question-Answering System

used to extract the candidates. We first use the three
types of questions together, and then we evaluate
the coverage achieved by each type of question
individually.

The results show that our question-answering
technique provides good coverage of sentiment tu-
ples. For darmstadt_unis and mpqa, we have an
exact match with over 65% coverage. We also
improved the measure on datasets with less cover-
age in the exact match experiments, considering
tuple overlap. All datasets achieved at least 70%
coverage in the overlap experiments.

Using only one component to extract candidate
tuples reduces coverage for the question answering
for all datasets. While the mpqa dataset was less
affected by removing the components (loss of 2.9%
in coverage using targets, 3.9% using opinion ex-
pressions, and 2.4% using holder questions). Other
datasets had significant drops in coverage, espe-
cially when just holder questions were considered.

6 Conclusion
In this paper, we described our system submitted
to SemEval-2022 Task 10. We designed a multilin-
gual approach that relies on a QA system and an
ASC model to find the Sentiment Graphs. The key
idea is that the joint and incremental extraction of
holder, target, and opinion helps to achieve a good
coverage for UFRGSent.

In these preliminary experiments, we could not
establish the quality of our tuple ranking and se-
lection methods and we leave it for future work.
Additionally, we are interested in understanding
how well our multilingual model performs against
a monolingual version of our technique, and how
other state-of-the-art QA models can improve the
extraction of sentiment tuples.
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Abstract
This paper presents our solution for SemEval-
2022 Task 10: Structured Sentiment Analy-
sis. The solution consisted of two modules:
the first for sequence tagging and the second
for relation classification. In both modules
we used transformer-based language models.
In addition to utilizing language models spe-
cific to each of the five competition languages,
we also adopted multilingual models. This
approach allowed us to apply the solution to
both monolingual and cross-lingual sub-tasks,
where we obtained average Sentiment Graph
F1 of 54.5% and 53.1%, respectively. The
source code of the prepared solution is available
at https://github.com/rafalposwiata/structured-
sentiment-analysis.

1 Introduction

Structured Sentiment Analysis (SSA) can be
formulated as an information extraction task in
which one attempts to find all of the opinion tu-
ples O = Oi, ..., On in a text. Each opinion Oi is a
tuple (h, t, e, p) where h is a holder who expresses
a polarity p towards a target t through a senti-
ment expression e, implicitly defining pairwise
relationships between elements of the same tuple
(Barnes et al., 2021). An example of such tuples
as a structure sentiment graph was shown in Figure
1. This problem is relatively new and there has
been little work published on the subject to date.
To stimulate interest in this issue among the NLP
community the SemEval-2022 Task 10: Structured
Sentiment Analysis (Barnes et al., 2022) competi-
tion was organized. The contest consisted of two
sub-tasks: monolingual and cross-lingual. In the
monolingual sub-task, the systems were trained and
then tested on the datasets in the same languages.
In the cross-lingual sub-task, systems had to be
prepared for Catalan, Basque and Spanish datasets,
while data in these languages could not be used for
training. This setup is often known as zero-shot
cross-lingual transfer (Hu et al., 2020).

In this paper we present our system for this com-
petition. We mainly focused on the solution for
the monolingual track, however, it has also been
successfully applied to the cross-lingual. The rest
of the paper is organized as follows. Section 2
briefly describes related work. Section 3 shows
an overview of used datasets. Section 4 elabo-
rates on our solution. Experiments showing the
effectiveness of the created system performed on
development and test sets are presented in Section
5. The next section briefly describes the mistakes
and limitations of our system. Finally, Section 7
concludes this paper.

2 Related Work

Structured Sentiment Analysis can be broken down
into five sub-tasks: a) expression (opinion) extrac-
tion, b) target (aspect) extraction, c) holder extrac-
tion, d) defining the relationship between these
elements, and e) assigning polarity (Barnes et al.,
2021).2

A few years ago, the main focus was on Aspect-
Based Sentiment Analysis (ABSA), which only
concerned on targets extraction (task b) and clas-
sifying the polarity towards them (task e) (Pontiki
et al., 2014, 2015, 2016). Sequence tagging so-
lutions have proven to be effective in this issue
(Li et al., 2019a). An extension of this problem
was End2End Aspect-Based Sentiment Analysis
(E2E-ABSA), which adds the issue of expression
extraction (task a). He et al. (2019) propose an in-
teractive multi-task learning network (IMN) which
is able to jointly learn multiple related tasks simul-
taneously, to resolve this problem. Chen and Qian
(2020) also use multi-task learning, but with rela-
tion propagation mechanisms and create Relation-
Aware Collaborative Learning (RACL) framework.
Tagging-based solutions also work well in this case

1Picture based on figure from Barnes et al. 2021.
2Phrases in parentheses indicate alternative names used

interchangeably in the sentiment analysis literature.
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Figure 1: SSA example as a structure sentiment graph.1

# sentences # tags

Dataset all w/o
opinion

w/ one
opinion

w/ two
or more
opinions

w/ mixed
tags

w/ nested
tags

w/ opposite
polarity exp. holders targets expressions

neg. neu. pos.

train 5873 4619 917 337 92 108 0 1425 1481 698 337 671
MPQA dev 2063 1647 304 112 49 38 0 406 494 215 124 231

test 2113 1724 289 100 31 36 0 434 462 229 124 165

train 2253 1572 583 98 3 0 1 63 806 364 102 340
DSUnis dev 232 150 69 13 0 0 0 9 98 54 15 29

test 318 214 84 20 0 0 0 12 130 62 12 56

train 1744 344 638 762 0 0 0 266 2679 783 0 2101
OpeNERen dev 249 51 83 115 0 0 0 49 371 116 0 284

test 499 92 178 229 0 0 0 98 793 269 0 596

train 1438 186 500 752 0 0 0 176 2748 570 0 2472
OpeNERes dev 206 32 77 97 0 0 0 23 363 70 0 317

test 410 48 159 203 0 0 0 56 849 189 0 768

train 1174 172 508 494 0 0 0 169 1705 716 0 1273
MultiBca dev 167 27 79 61 0 2 0 15 211 107 0 151

test 335 54 143 138 0 0 0 53 434 204 0 319

train 1063 164 478 421 0 0 0 205 1277 278 0 1401
MultiBeu dev 152 32 68 52 0 0 0 33 152 36 0 167

test 305 65 126 114 0 0 0 58 331 65 0 372

train 8634 4079 2406 2149 802 472 173 898 6778 2753 0 5695
NoReCFine dev 1531 710 441 380 119 87 32 120 1152 444 0 988

test 1272 598 353 321 123 79 14 110 993 359 0 876

Table 1: Statistics of the datasets. Mixed tags means a situation where a given term in different opinions plays a
different role, e.g. once it is a target and once it is a holder. Nested tags are when a term in one opinion is part of a
term in another opinion. Opposite polarity expressions refers to the case where a sentence contains an expression
that has a different sentiment depending on the opinion.

(Li et al., 2019b; Hu et al., 2019). The tasks listed
above did not require resolving relationships be-
tween extracted tags.

The recently proposed, Aspect Sentiment
Triplet Extraction (ASTE) fill this gap (Peng
et al., 2020). The task is to extracting all aspects
terms with their corresponding opinion terms and
sentiment polarity (tasks a, b, d and e). Peng et al.
(2020) propose two stage model. In the first stage,
it extracts opinions and aspects along with senti-
ment using sequence tagging based on the unified
BIO scheme. The second stage pairs up the pre-
dicted terms from the first stage to output triplets.
ASTE is most similar to SSA, missing only the
holder extraction.

For SSA, the subject of the competition, there
are few solutions. Barnes et al. (2021) cast the
structured sentiment problem as dependency graph

parsing. Peng et al. (2021) extend this work and
propose a sparse and fuzzy attention scorer with
pooling layers which improves parser performance.

3 Datasets

Seven structured sentiment datasets in five lan-
guages were selected for the competition. The
MPQA dataset (Wiebe et al., 2005) contains news
documents from the world press in English. DSUnis
(Toprak et al., 2010) are English reviews of on-
line universities and e-commerce. OpeNERen and
OpeNERes (Agerri et al., 2013) consist of ho-
tel reviews in English and Spanish, respectively.
MultiBeu and MultiBca (Barnes et al., 2018) are
also hotel reviews, but in Basque and Catalan. The
last dataset is NoReCFine (Øvrelid et al., 2020),
a multi-domain dataset of professional reviews in
Norwegian. The statistics of each dataset are sum-
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Figure 2: Architecture of the proposed solution.

marized in Table 1.

4 System Overview

The architecture of our solution is shown in Figure
2. This solution was inspired by the works of Li
et al. (2019a,b); Hu et al. (2019), and especially
the work of Peng et al. (2020). It consists of two
main components: Extraction Module and Rela-
tion Classification Module. The first module is
based on sequence tagging and is used to extract
targets, holders and expressions with polarity. This
is accomplished by using a suitable tagset which
is a modification of the BIO scheme, consisting of
the following tags: {B-holder, B-targ, B-exp-Neg,
B-exp-Neu, B-exp-Pos, I-holder, I-targ, I-exp-Neg,
I-exp-Neu, I-exp-Pos, O}. Transformer-based Lan-
guage Model with a linear classification layer was
used as an implementation. Having already ex-
tracted entities, the role of the second module is
to classify whether there is a relationship between
them. Specifically, it is about verifying that there
is a holder and/or target associated with a particu-

lar expression. We utilized the R-BERT (Wu and
He, 2019) model to accomplish this task. Based
on a sentence with two appropriately marked en-
tities (expression and holder/target), it determines
whether or not they are related.3 Entities that are
related are combined and form an output. Extrac-
tion and Relation Classification modules are trained
independently.

5 Experiments

5.1 Experimental Setup
To conduct the experiments, we first utilized the
Simple Transformers library (Rajapakse, 2019) for
the implementation of the Extraction Module. For
the Relation Classification Module we modify pub-
licly available source code of R-BERT.4 The hyper-
parameters used in learning each of these modules
are presented in Table 2. All models were run five
times on a single GPU Tesla V100.

3For all the details, we would refer you to Wu and He 2019
paper.

4https://github.com/monologg/R-BERT
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Parameter Extraction Relation
Classification

Optimizer AdamW AdamW

Learning rate 5e-5 2e-5

Batch size 32 16

Dropout 0.1 0.1

Epochs 10 12
Validation after
no. steps 200 200

Table 2: Parameter used for Extraction and Relation
Classification modules during training.

5.2 Pretrained Language Models

We chose two types of language models based on
transformer architecture for experiments: monolin-
gual (at least one for each of the five competition
languages) and multilingual. The use of multilin-
gual models allowed us to obtain a more general
solution and was necessary for the cross-lingual
sub-task. Table 3 gives a brief summary of the
models used. All models were downloaded from
the Hugging Face hub5.

Language Model Size Source

English
BERT base Devlin et al. 2019
RoBERTa large Liu et al. 2019
XLNet large Yang et al. 2019

Spanish
BERTIN base de la Rosa et al. 2021
RoBERTa-BNE large Gutiérrez-Fandiño et al. 2021

Catalan Catalan-BERTa base Armengol-Estapé et al. 2021
Basque BERTeus base Agerri et al. 2020

Norwegian
NorBERT base Kutuzov et al. 2021
NB-BERT large Kummervold et al. 2021

Multilingual
mBERT base Devlin et al. 2019
XLM-R large Conneau et al. 2020

Table 3: Transformer-based language models used in
experiments.

5.3 Metrics

Following the works on Named Entity Recognition
problem (Akbik et al., 2018; Yamada et al., 2020;
Zhou and Chen, 2021), we used micro-average F1
score as our main measure for the Extraction Mod-
ule. In addition for this module we added a detailed
measure for each tag type i.e. F1 score for hold-
ers, targets and expressions with sentiment classes,
separately. For the Relation Classification Module,
we used Accuracy and macro-average F1 measures.
Evaluation of the overall system was based on the
official competition metric i.e. Sentiment Graph
F1.

5https://huggingface.co/models

5.4 Development Results

Table 4 shows the results on the development sets
for each module. For the Extraction Module, the
XLM-R model was the best on five of the seven
datasets. In only two cases (MPQA and DSUnis)
language-specific models were found to be supe-
rior: XLNet and RoBERTa, respectively. For the
Relation Classification Module, we only used mod-
els based on the BERT architecture, following the
original R-BERT work (Wu and He, 2019). The
mBERT usually proved to be the best (5/7 cases),
except for two cases (MultiBeu and NoReCFine)
where BERTeus and NB-BERT were the best. The
best models for each module were used to test the
overall system. A summary of this experiment can
be found in Table 5. The average Sentiment Graph
F1 was 55.0%.

5.5 Test Results

The best models verified on the development sets
were used on the test sets which are the official
competition sets. For the monolingual sub-task,
we used exactly the same configuration of models
as in Table 5. For the cross-lingual sub-task, we
used models trained on the OpeNERen set, namely
XLM-R for extraction and mBERT for relation
classification. There were two reasons for this
choice. First is the use of multilingual models in
both modules. Second, from the fact that the re-
sults on the development sets were high compared
to the results for other models trained on English
language sets. The results are summarized in Table
6. We achieved average SF1 scores of 54.5% and
53.1% for the monolingual and cross-lingual sub-
tasks, respectively. This allowed us to rank 11th
and 9th out of the 32 teams in these sub-tasks.

6 Errors Analysis

As a result of the used architecture, most errors are
due to incorrect tagging. In particular, this is rele-
vant to expressions where a correct sentiment is ad-
ditionally required. The results were significantly
worse for expressions limited in a given set, e.g.,
neutrals in the MPQA or DSUnis sets. Furthermore,
by using a single extraction model, the solution
is not able to correctly handle more complicated
cases such as mixed or nested tags or opposite po-
larity expressions. This is most noticeable in the
NoReCFine dataset.
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Extraction Relation
Classification

Dataset Model Holder F1 Target F1 Exp. F1 F1 Acc F1
neg. neu. pos.

MPQA

BERT 50.4 39.3 44.3 16.9 43.6 41.9 82.1 79.0
RoBERTa 58.8 48.4 51.0 17.9 45.8 48.8 - -
XLNet 57.9 49.1 51.7 25.5 48.5 49.9 - -
mBERT 49.3 41.5 40.0 15.7 44.4 42.0 82.6 79.4
XLM-R 56.8 46.9 50.8 17.4 47.8 48.3 - -

DSUnis

BERT 22.2 42.6 38.2 13.8 47.1 39.7 86.3 77.2
RoBERTa 50.0 47.4 44.1 14.3 57.1 46.1 - -
XLNet 66.7 47.5 43.1 6.2 53.0 44.6 - -
mBERT 18.2 44.3 34.4 13.3 49.4 39.3 92.1 88.2
XLM-R 28.6 47.8 40.6 6.5 58.5 44.1 - -

OpeNERen

BERT 70.1 73.2 56.9 - 67.7 68.2 94.6 94.0
RoBERTa 68.4 76.1 61.1 - 73.3 72.0 - -
XLNet 68.9 73.8 63.2 - 72.5 71.3 - -
mBERT 71.6 70.8 53.5 - 68.7 67.2 94.8 94.3
XLM-R 71.4 77.2 66.1 - 72.6 73.3 - -

OpeNERes

BERTIN 77.4 66.7 39.5 - 60.0 61.1 - -
RoBERTa-BNE 71.4 69.7 44.0 - 62.7 64.0 - -
mBERT 66.7 68.2 38.4 - 59.5 61.3 92.6 90.9
XLM-R 75.0 73.1 46.8 - 65.1 66.9 - -

MultiBca

Catalan-BERTa 69.2 72.8 55.0 - 74.5 69.2 - -
RoBERTa-BNE 47.1 69.3 48.7 - 74.7 65.7 - -
mBERT 61.5 70.1 57.5 - 73.4 67.9 94.0 92.7
XLM-R 72.7 73.4 63.7 - 79.0 73.0 - -

MultiBeu

BERTeus 71.7 76.7 46.0 - 59.3 64.1 89.5 89.3
RoBERTa-BNE 52.6 59.8 21.1 - 48.0 49.4 - -
mBERT 54.9 64.1 36.1 - 53.0 55.0 87.3 87.2
XLM-R 69.4 74.1 48.7 - 65.8 66.9 - -

NoReCFine

NorBERT 62.0 51.6 23.4 - 36.6 39.8 85.5 85.3
NB-BERT 64.6 56.0 28.1 - 40.6 44.1 88.0 87.8
mBERT 54.7 51.2 18.2 - 31.2 36.2 86.2 86.0
XLM-R 63.4 60.3 32.3 - 40.7 46.5 - -

Table 4: Results for the Extraction and Relation Classification modules on development sets. Underlined and bolded
numbers indicate the best result for the metric and dataset.

Dataset Extraction
Model

Relation
Classification
Model

SF1

MPQA XLNet mBERT 37.7

DSUnis RoBERTa mBERT 34.5

OpeNERen XLM-R mBERT 69.1

OpeNERes XLM-R mBERT 66.5

MultiBca XLM-R mBERT 65.7

MultiBeu XLM-R BERTeus 64.7

NoReCFine XLM-R NB-BERT 47.0

Average score 55.0

Table 5: Overall system results on development sets.

7 Conclusion

In this paper, we presented a solution to the
SemEval-2022 Task 10: Structured Sentiment
Analysis. A simple architecture based on sequence
tagging and relation classification achieved good

Dataset Monolingual Cross-lingual

MPQA 32.6 -

DSUnis 39.5 -

OpeNERen 67.0 -

OpeNERes 66.3 56.4

MultiBca 65.0 58.6

MultiBeu 65.3 44.4

NoReCFine 45.9 -

Average score 54.5 53.1

Table 6: Overall system results on test sets (official
results of the competition).

results. The use of multilingual language models
enabled the solution to be used for monolingual
and cross-lingual sub-tasks. At the same time it
can be easily extended e.g. by using an additional
CRF layer (Souza et al., 2019) in the Extraction
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Module or by using other multilingual language
models e.g. InfoXLM (Chi et al., 2021).
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Abstract

Structured Sentiment Analysis (SSA) deals
with extracting opinion tuples in a text, where
each tuple (h, e, t, p) consists of h, the holder,
who expresses a sentiment polarity p towards a
target t through a sentiment expression e. While
prior works explore graph-based or sequence
labeling-based approaches for the task, we in
this paper present a novel unified generative
method to solve SSA, a SemEval-2022 shared
task. We leverage a BART-based encoder-
decoder architecture and suitably modify it to
generate, given a sentence, a sequence of opin-
ion tuples. Each generated tuple consists of
seven integers respectively representing the in-
dices corresponding to the start and end posi-
tions of the holder, target, and expression spans,
followed by the sentiment polarity class asso-
ciated between the target and the sentiment ex-
pression. We perform rigorous experiments for
both Monolingual and Cross-lingual subtasks,
and achieve competitive Sentiment F1 scores
on the leaderboard in both settings.

1 Introduction

Structured Sentiment Analysis (SSA) is the task of
extracting structured information around sentiment
expressions present in text in the form of opinion
tuples O = {O1, O2, ..., On}, where each opinion
tuple Oi = (h, t, e, p) consists of h, the holder
(or source, used interchangeably) who expresses a
sentiment polarity p towards a target (or aspect) t
using an opinion or sentiment expression e (Barnes
et al., 2021a). Prior works (Liu, 2012; Peng et al.,
2020) have highlighted the importance of address-
ing sentiment analysis as a structured prediction
problem in order to capture the complete informa-
tion around various opinions expressed in the text.
The task of SSA thus expects to exploit the pair-
wise interactions between the members of the same
opinion tuple during the extraction process.

∗Equal contribution

With the exponential growth of online market-
places and user-generated content therein, SSA
or near similar tasks of aspect-sentiment-opinion
triplet extraction (Peng et al., 2020; Mukherjee
et al., 2021a; Yan et al., 2021), and aspect-category-
sentiment-opinion quad extraction (Cai et al.,
2021), the newest additions under the broader um-
brella of aspect-based sentiment analysis (ABSA)
(Pontiki et al., 2014a,b) have become more impor-
tant than ever (Mukherjee et al., 2021b). In the face
of ever-expanding choices, it becomes a challeng-
ing necessity to take educated explainable decisions
from past user reviews. SSA guides the learning
in the proper direction by facilitating an automated
way to focus on major sentiment or opinion indi-
cators. As a result, the task has wide applications
in various market segments, such as e-commerce,
food delivery, healthcare, ride sharing, travel and
hospitality, to name a few.

Previous efforts on SSA have primarily fo-
cused on two approaches: sequence labeling-based
(He et al., 2019), and graph-based (Barnes et al.,
2021b). The former tries to first predict the pres-
ence/absence of targets and expressions in the
text by sequentially labeling each text token us-
ing BIOES1 tags, before modeling their interac-
tion to predict the sentiment polarity. The latter
models the task as a dependency graph parsing
problem, where the sentiment expression is con-
sidered as the root node, and the other elements
are connected via arcs that represent their relation-
ships. Different from these, we present a novel
generative approach to solve SSA. More specifi-
cally, we take motivation from a unified generative
framework recently proposed by Yan et al. (2021)
to solve several ABSA tasks. We suitable modify
their BART-based encoder-decoder architecture to
adapt it for SSA. Given a sentence, the model is

1BIOES is a tagging scheme commonly used for sequence
labeling tasks. B, I, E, O, and S respectively denote the begin,
inside, outside, end, and single tags corresponding to an entity.
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Dataset Name Language % Null (Train, Dev) Size (Train, Dev, Test)
NoReC_fine (Øvrelid et al., 2020) Norwegian (47.24%, 46.37%) (8634, 1531, 1272)
MultiBooked_eu (Barnes et al., 2018) Basque (15.43%, 21.05%) (1064, 152, 305)
MultiBooked_ca (Barnes et al., 2018) Catalan (14.65%, 16.17%) (1174, 168, 336)
OpeNER_es (Agerri et al., 2013) Spanish (12.93%, 15.53%) (1438, 206, 410)
OpeNER_en (Agerri et al., 2013) English (19.72%, 20.48%) (1744, 249, 499)
MPQA (Wiebe et al., 2005) English (77.92%, 79.18%) (5873, 2063, 2112)
Darmstadt_unis (Toprak et al., 2010) English (69.77%, 64.66%) (2253, 232, 318)

Table 1: Dataset Statistics

Figure 1: Annotation Format. The value of "opinions" in the JSON is a list of opinion tuples present in the "text".
Each item in the list is a dictionary, with keys being the tuple elements, and the values corresponding to their
representation in the text. Source, Target and Polar_expression are annotated with the the actual word spans
appearing in the text along and their respective character indices. Polarity represents the sentiment expressed in the
tuple, and Intensity represents its strength.

trained to generate a sequence of tuples, each con-
sisting of seven integer outputs corresponding to
the start and end indices of the holder, target and
sentiment expression spans appearing in the text,
and finally the polarity class. An example is shown
and described in Figure 2.

We participate in the SemEval 2022 Task 10:
Structured Sentiment Analysis (Barnes et al., 2022)
hosted on CodaLab. In order to demonstrate the
efficacy of our proposed solution, we attempt both
the monolingual and cross-lingual subtasks and
achieve competitive performance on the leader-
board in both settings. As part of the (sub)tasks, we
testify our approach on multiple datasets spanning
across five different languages - English (Darm-
stadt_unis, OpeNER_en, MPQA), Basque (Multi-
Booked_eu), Catalan (MultiBooked_ca), Norwe-
gian (NoReC_fine) and Spanish (OpeNER_es). A
summary of dataset statistics is reported in Table 1.
While the evaluation scripts were made available

to us by the task organizers to analyze our perfor-
mance, the final leaderboard scores were obtained
on a hidden test set.

2 Task Overview

2.1 Task Definition
SSA aims to predict all the structured sentiment
graphs present in a given text. A graph is formally
represented by opinion tuples O = O1, O2, ..., On,
where each opinion tupleOi consists of a quadruple
of the holder h, the target t, the sentiment expres-
sion e, and the sentiment polarity p.

2.2 Datasets
As summarized in Table 1, we are provided with a
total of 7 datasets, as part of the shared task, span-
ning across 5 different languages. Each dataset is
a collection of sentences, along with their corre-
sponding annotated opinion tuples, each consisting
of (Source, Target, Polar Expression, and Polarity).
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Figure 2: Model Architecture. The above figure shows an example where the input is "<s> I would not suggest this
book </s>", and the corresponding output is "5, 6, 2, 4, 1, 1, 10" (Only partial decoder sequence is shown. Here, 7
(</s>) should be the next generation index). The "Index2Token Conversion" module converts the pointer indices
back to the corresponding tokens in the source text, and the class index to the corresponding sentiment polarity.

While the Intensity of the expressed sentiment is
also provided as part of the annotations, intensity
classification/regression is not included as part of
the task. An example is shown in Figure 1. All the
data is provided through CodaLab, and GitHub.

3 Methodology

3.1 Task Formulation

We take a generative approach to formulate SSA
as a structured prediction problem. We note here
that predicting the holder (source), target (aspect),
and polar expression spans correspond to extraction
tasks, whereas sentiment polarity prediction is a
classification task. Following (Yan et al., 2021),
we model both these tasks in a unified generative
framework by representing span entities with their
start and end pointer indices corresponding to the
text, and sentiment polarity with a class index.

We denote the holder, target, polar expression
and sentiment polarity as h, t, pe, and sp respec-
tively. The start and end index of each term is
represented using superscripts s and e. For an input
X = [x1, ..., xn], where xi is the ith word in the
text, the target Y = [tsi , t

e
i , pe

s
i , pe

e
i , h

s
i , h

e
i , spi, ...]

is defined as a sequence of tuples, each consisting
of seven indices corresponding to an opinion tuple

(h, t, pe, sp). An example sentence along with its
target sequence are shown in Figure 2.

3.2 System Overview

Our model, as shown in Figure 2, consists of an
encoder-decoder architecture with BART (Lewis
et al., 2019) as its backbone. Given an input
X = [x1, ..., xn], the model is trained to produce
an output Y = [y1, ..., ym] (with y0 representing
the start-of-sequence token, < s >). The probabil-
ity distribution is modeled as:

P (Y |X) =
m∏

t=1

Pt (1)

Here Pt = P (yt|X,Y<t) represents the index
probability distribution for the tth time step.

3.2.1 Encoder
BART comprises of a bi-directional encoder. We
denote the encoded vector of the input sentence X
as He. For the sake of simplicity, we ignore the
start-of-sequence token (< s >) in the equations.

He = BARTEncoder([x1, ..., xn]) (2)

Here He ∈ Rn×d, with d as the hidden dimension.
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Dataset % Null Instances
NoReC_fine 47.24% (As in the dataset)
MultiBooked_eu 10%
MultiBooked_ca 14.65 % (As in the dataset)
OpeNER_es 4%
OpeNER_en 14%
MPQA 50%
Darmstadt_unis 69.77 % (As in the dataset)

Table 2: % null instances in processed train sets.

3.2.2 Index2Token Conversion
Since the entity spans are decoded as correspond-
ing start and end indices, and the sentiment polarity
is decoded as corresponding class index, the in-
dices need to be converted back to tokens before
the BART Decoder can use them along with the
encoder hidden state He for generating the next to-
ken (index) in the tth time step. For each yt ∈ Y<t,
we therefore use the following conversion strategy:

ŷt =

{
Xyt if yt is a pointer index,
Polyt−n if yt is a class index

(3)

where Pol = [p1, p2, p3] is the list of polarity
classes. In our implementation, yt ∈ [1, n + 3].
The first sentence token x1 has the pointer index 1.

3.2.3 Decoder
Our BART decoder now usesHe and the converted
decoder outputs Ŷ<t to obtain the tth decoder hid-
den state:

Hd
t = BARTDecoder(He, Ŷ<t) (4)

where Hd
t ∈ Rd. Finally, Hd

t is used to predict the
token probability distribution Pt. We request our
readers to refer to (Yan et al., 2021) for additional
details.

3.2.4 Training and Workflow
Teacher forcing with negative log likelihood as the
loss function is used to train the model. During
inference, beam search is used to generate the target
sequence Y in an auto-regressive manner. Finally,
the generated sequence is translated back into the
phrase spans and sentiment polarity. As shown
in Figure 2, we now illustrate the working of our
proposed method using an example sentence:
I would not suggest this book .

1. The input <s> I would not suggest this book
</s> is sent as input to the BART Encoder.

As specified in Section 3.2.2, the word "I"
is mapped to position index 1. Accordingly,
</s> is mapped to index 7. Thereafter, each
sentiment polarity is assigned a class index
in sequence. In this case, the polarity values
neutral, positive, and negative, are assigned
class indices 8, 9 and 10 respectively.

2. The BART Decoder is trained to generate a
sequence of indices till the end-of-sequence
index (here 7) is generated. Corresponding to
each opinion tuple, the decoder respectively
predicts the start and end word indices for
the target, polar expression, and source and
finally, the polarity class index.

3. In our case, the expected target sequence is
5, 6, 2, 4, 1, 1, 10, 7. Here, (5, 6) represents
the target phrase "this book", (2, 4) represents
the polarity expression phrase "would not sug-
gest", (1, 1) represents the holder phrase "I",
and 10 represents the negative polarity class.

4. During inference, a decoding algorithm is em-
ployed making use of the Index2Token Con-
version module to respectively convert the in-
dices back to the text tokens and polarities
before presenting to the end user.

4 Experiments

4.1 Data Preprocessing

In addition to fully annotated sentences, we ob-
serve the following two kinds of instances in all
the datasets: (a) no opinion tuples at all - hereby
referred to as the null examples, and (b) few empty
entities in a single opinion tuple. We note here
that our tuple representation scheme expects po-
sition indices of words appearing in the sentence.
In order to accommodate for the above mentioned
cases, we add a string None in the beginning of
every sentence. This helps us to map the missing
entities (e.g. holder or aspect in an opinion tuple)
to a phrase present in the sentence.

After rigorous experiments, we set an optimal
threshold for the proportion of null examples to
be used for training in each of the datasets as re-
ported in Table 2. During training, we found that
limiting the proportion of null examples to the re-
ported values significantly helped us in achieving
the best performance on the respective datasets
across monolingual and cross-lingual settings.
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Dataset % null Batch Size LR F1 Score Best Epoch
NoReC_fine 10 16 1E-04 0.320 35
NoReC_fine 10 16 2E-05 0.310 8
NoReC_fine 10 16 5E-05 0.323 11
OpeNER_es 10 8 1E-04 0.351 33
OpeNER_es 10 8 2E-05 0.482 36
OpeNER_es 10 8 5E-05 0.566 33
OpeNER_en 10 8 1E-04 0.674 43
OpeNER_en 10 8 2E-05 0.661 32
OpeNER_en 10 8 5E-05 0.675 7

Darmstadt_unis 10 16 1E-04 0.259 30
Darmstadt_unis 10 16 2E-05 0.276 34
Darmstadt_unis 10 16 5E-05 0.289 19

Table 3: Learning Rate Tuning

Dataset % null Batch Size LR F1 Score Best Epoch
NoReC_fine 15 8 5E-05 0.317 8
NoReC_fine 30 16 5E-05 0.295 17
NoReC_fine As in Dataset 16 5E-05 0.357 28

MultiBooked_eu 5 8 5E-05 0.422 20
MultiBooked_eu 10 8 5E-05 0.427 21
MultiBooked_eu As in Dataset 8 5E-05 0.401 19
MultiBooked_ca 5 8 5E-05 0.552 35
MultiBooked_ca 10 8 5E-05 0.545 32
MultiBooked_ca As in Dataset 8 5E-05 0.556 46

OpeNER_es 4 8 5E-05 0.572 31
OpeNER_es 8 8 5E-05 0.57 4
OpeNER_es As in Dataset 8 5E-05 0.571 25
OpeNER_en 7 16 5E-05 0.677 24
OpeNER_en 14 16 5E-05 0.678 25
OpeNER_en As in Dataset 16 5E-05 0.674 39

MPQA 25 8 5E-05 0.355 20
MPQA 50 16 5E-05 0.366 44
MPQA As in Dataset 16 5E-05 0.359 42

Darmstadt_unis 25 16 5E-05 0.268 42
Darmstadt_unis 45 16 5E-05 0.277 33
Darmstadt_unis As in Dataset 16 5E-05 0.312 36

Table 4: Null Parameter Tuning for each dataset

4.2 Experimental Setup

For the monolingual setting, we used the train, val-
idation, and test splits of the same datasets. While
experimenting on the English datasets (Darm-
stadt_unis, MPQA, and OpeNER_en), we use
BART-base2 as the backbone. For the Non-English
datasets (OpeNER_es, Multibooked_eu, Multi-
booked_ca, and NoReC_fine), we use BART-large-
MNLI 3 as the backbone. In the cross-lingual set-
ting, we trained our models using the combined
training data from all English datasets and evalu-
ated them on the test sets of respective Non-English
datasets (NoReC_fine not included as part of this
setting). Here, we used BART-large-MNLI as the

2https://huggingface.co/facebook/
bart-base

3https://huggingface.co/facebook/
bart-large-mnli

backbone for all our cross-lingual experiments.
Although predicting the intensities of sentiment

polarities was not included as part of the shared
task, we hypothesized that additionally learning
the intensity prediction task would help the model
in predicting the other entities (h, t, e, p) better
in a multi-task setting. We performed additional
experiments to verify our hypothesis. However,
we observed little to no difference in the final re-
sults. Accordingly, we excluded intensity predic-
tion from further consideration while performing
our final experiments. We make our code repository
publicly available at https://github.com/
Sherlock-Jerry/SSA-SemEval.

4.3 Hyperparameter Tuning

We train all our models on Tesla P100-PCIE 16GB
GPU. We perform extensive tuning experiments to
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Parameters English Non-English
Batch Size 16 8
Learning Rate 5E-05 5E-05
Epochs 50 50
BART Model Base Large-MNLI
% Null Varies with Dataset

Table 5: Final set of hyperparameters

obtain the optimal set of hyperparameters. To de-
termine the optimal learning rate, we ran monolin-
gual experiments on two English and Non-English
datasets respectively, as elucidated in Table 3.
Based on our observations, we fixed a common
learning rate of 5e − 5 for our final experiments
across both the settings, monolingual as well as
cross-lingual. For obtaining the optimal proportion
of null instances to be used for training the final
models, we perform three iterations of monolin-
gual experiments on each dataset, each time with
a different proportion of null instances used for
training the models, as reported in Table 4. The
final null thresholds are reported in Table 2. Table
5 summarizes the set of hyperparameters used for
reporting our final results for both the subtasks. For
all our experiments, the model selected according
to the best F1 score on the validation data was used
to evaluate on the test data.

4.4 Evaluation Metrics
Sentiment Graph F1 (SG-F1) is used to evaluate the
models. True Positive is defined as an exact match
(including polarity) at graph-level, weighted by the
token-level overlap between the gold and predicted
spans for holder, target, and polar expression, aver-
aged across all three spans. Precision is calculated
by weighting the number of correctly predicted
tokens divided by the total number of predicted
tokens. Recall is calculated by dividing the num-
ber of correctly predicted tokens by the number of
gold tokens, thereby allowing for empty holders
and targets which exist in the gold standard.

5 Results

5.1 Monolingual Subtask
We report the results for our monolingual experi-
ments in Table 6 and compare them with the ex-
isting state-of-the-art (SOTA) results reported in
Barnes et al. (2021b). Amongst the given datasets,
our model performs the best on OpeNER_en and
OpeNER_es, and has a relatively poor performance

Dataset Ours Barnes et al. (2021b)
NoReC_fine 0.351 0.312

MultiBooked_eu 0.438 0.547
MultiBooked_ca 0.508 0.568

OpeNER_es 0.544 Not available
OpeNER_en 0.626 Not available

MPQA 0.327 0.188
Darmstadt_unis 0.330 0.265

Table 6: Monolingual SubTask: Test Set SG-F1 Scores.

on MPQA, Darmstadt_unis and NoReC_fine. De-
spite this, we comfortably outperform the existing
SOTA on these datasets. On the public leaderboard
hosted on CodaLab, we achieved 18th rank out of
32 entries for this task.

5.2 Crosslingual Subtask
We report the results for our crosslingual experi-
ments in Table 7. In this paradigm, we used all
the English datasets for training our model, and
tested our best trained models on the test sets of the
respective Non-English datasets.

Dataset SG-F1
EN-EU

0.431
(MultiBooked_eu)

EN-CA
0.506

(MultiBooked_ca)
EN-ES

0.542
(OpeNER_es)

Table 7: Corsslingual SubTask: Test Set SG-F1 Scores.

Here, we achieved 11th rank out of 32 entries.

5.3 Qualitative Analysis
• In the monolingual subtask, we observed that

our model performs poorly on the datasets
with large proportions of empty opinion tu-
ples (null instances). As can be confirmed
from Table 2, MPQA, Darmstadt_unis, and
NoRec_fine have high empty tuple proportion
as against OpeNER_en, and OpeNER_es with
low proportion of null instances.

• We observed that for datasets having lengthy
sentences, our model performs relatively poor.
A comparison between the distribution of test
sentence lengths and the Sentiment Graph F1
scores for each dataset is shown in Figure 3.

• We also observed annotation errors in the
datasets. For instance, given the test sentence
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Label Type Source Target Polar Expression Polarity
Gold - The size of room reasonable Positive
Prediction - The size reasonable Positive
Gold - walls in very poor conditions Negative
Prediction - walls very poor Negative
Gold - floor in very poor conditions Negative
Prediction - floor in very poor conditions Negative
Gold - ceiling in very poor conditions Negative
Prediction - ceiling in very poor conditions Negative

Table 8: Ground truth opinion tuples and model predictions for the sentence: "The size of room is reasonable , but
floor , walls and ceiling are in very poor conditions".

Figure 3: Comparing the distribution of test sen-
tence lengths with best-obtained SG-F1 scores for each
dataset. The "Example point" shows that there 51 sen-
tences in the test set for NoRec_fine with length 100.

"So wonderful to see people go to work smil-
ing and leave work still smiling and happy.",
our trained generative model correctly pre-
dicts an opinion tuple with "see people go
to work" as the target, and "So wonderful"
as the opinion expression with a "Positive"
sentiment. However, no ground truth opinion
tuples are associated with the sentence.

• As reported in Table 8, we found a few in-
stances where our model correctly predicts
the necessary entities; but due to ambiguity in
labelling (even at human level), we saw a mis-
match. Here, our model predicts "The size"
as the target whereas the gold standard ex-
pects "The size of room". Similar is the case
with "in very poor conditions" (gold standard)
versus the predicted phrase "very poor".

6 Related Work

Previous efforts on SSA have primarily focused on
two approaches: sequence labeling-based (He et al.,
2019), and graph-based (Barnes et al., 2021b). The
corresponding scores for both these approaches are
considered as baselines by the task organizers.

6.1 Sequence Labelling

In this approach, (He et al., 2019) propose a
pipeline of sequence labelling and relation clas-
sification tasks. More specifically, three different
sequence labellers based on BIOES tags are trained
to predict the three span-based opinion entities, i.e.
the holder, the target, and the polar expression. Fi-
nally, their relationship is exploited using a separate
classification layer on top to predict the connect-
ing sentiment polarity. However, such an approach
inherently suffers from error propagation between
the steps. Also, the inter-dependency especially
between the target and the polar expression is not
captured when the spans are predicted in isolation.

6.2 Dependency Graph Parsing

(Barnes et al., 2021b) have treated this task as a
bilexical dependency graph prediction problem.
They present two different versions of their pro-
posed approach - (a) head-first and (b) head-final,
as shown in Figure 4.

Figure 4: Dependency Graph Parsing

In both cases, the sentiment expression is con-
sidered as the root node, and the other elements are
connected via arcs that represent their relationships.
This approach builds upon the Dozat and Manning
parser, implemented in (Kurtz et al., 2020).
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7 Conclusion

Different from prior methods, we in this work
present a novel generative approach to tackle the
task of Structured Sentiment Analysis. We formu-
late the task as a structured prediction problem.
Our BART-based encoder-decoder architecture is
trained to predict a sequence of indices correspond-
ing to each opinion tuple present in the text. The
generated indices suitably represent the holder, tar-
get, and polar expression spans by their start and
end token positions, and the sentiment polarity
by its corresponding class. As part of SemEval
2022 Task 10, we participate in both monolingual
and crosslingual subtasks, and achieve competitive
performance on the leaderboard for both settings.
In future, we would like to explore paraphrasing-
based generative methods for the task.
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Abstract

Sentiment analysis is a useful problem which
could serve a variety of fields from business
intelligence to social studies and even health
studies. Using SemEval 2022 Task 10 formu-
lation of this problem and taking sequence la-
belling as our approach, we propose a model
which learns the task by finetuning a pre-
trained transformer, introducing as few param-
eters ( 150k) as possible and making use of pre-
computed attention values in the transformer.
Our model improves shared task baselines on
all task datasets.

1 Introduction

Sentiment analysis has many applications in dif-
ferent fields. From social and political studies
(Rodrı́guez-Ibáñez et al., 2021) to business intel-
ligence and even health studies (Alamoodi et al.,
2021). SemEval 2022 Task 10 (Barnes et al., 2022)
formulates this problem as to extract a graph of
sentiment-related entities and names that, Struc-
tured Sentiment Analysis. An example of such
graph is depicted in figure2 Specifically given an in-
put sentence, one should extract a list of quadruples.
Each quadruple consists of a sentiment expression,
a target expression, a holder expression and the
polarity. SemEval 2022 Task 10 has two subtasks,
monolingual and cross-lingual. We participated in
the first track. Shared task data is consisted of seven
datasets in English, Spanish, Norwegian, Catalan
and Basque. We trained and evaluated our model
on each of these datasets.1

2 Related Work

Structured sentiment analysis aims to extract
sentiment, target and holder expressions along

1Our code is available at https:
//github.com/sadra-barikbin/
novel-solutions-for-sentiment-analysis

with their relations and also sentiment polarities.
(Barnes et al., 2021) solves this problem by taking
dependency graph parsing approach. It uses BiL-
STM and multilingual BERT (Devlin et al., 2019)
to encode input sentence and a neural dependency
parser to jointly predict expressions and relations.
Every sentiment, target or holder expression in the
sentence would become a star-shaped subtree in
the output graph, with last token of expression as
its root and its edges labelled with type of entity.
Relation between a sentiment expression and a tar-
get or holder expression is also represented with
an edge from the former’s root to that of the latter.
This work evaluates its model on five datasets in
four languages namely, NoReCFine (Øvrelid et al.,
2020), MultibookedEU, MultibookedCA (Barnes
et al., 2018), MPQA (Wiebe et al., 2005) and
DarmstadtUnis (Toprak et al., 2010). Its main evalu-
ation metrics are Targeted F1 and Sentiment Graph
F1. First one measures exact prediction of target ex-
pression and polarity, and the second one measures
exact match at graph level, weighting overlap be-
tween gold and predicted entities, averaged across
three entity types.

A less comprehensive formulation of sentiment
analysis is End2End sentiment analysis which
aims to predict target and sentiment expression
along with polarity but does not consider relation
between expressions. (He et al., 2019) uses this
formulation. Taking sequence labelling as its ap-
proach, it predicts target expression together with
sentiment expression by one module and polar-
ity by another one. Both modules along with a
feature extraction module make use of a CNN to
make their specific and shared latent vectors respec-
tively. Furthermore, polarity prediction module has
a self-attention layer which gets predicted probabil-
ity of tokens’ being in sentiment expression from
the other module and incorporates it in computing
attention values so as to tokens with higher proba-
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bility get more attention. Beside its main task, this
work employs two auxiliary document-level tasks
to enjoy the benefits of multi-task learning. This
work also uses a mechanism called message pass-
ing in which, predicted probabilities of all modules
is iteratively fed back into model to make the model
like a RNN. For data, they use review datasets
from (Pontiki et al., 2014) and (Pontiki et al., 2015)
which are annotated with sentiment expressions by
(Wang et al., 2016, 2017). Among their evalua-
tion metrics, F1-I is equivalent with Targeted-F1 of
(Barnes et al., 2021).

(Chen and Qian, 2020), similarly attempts to
solve end2end sentiment analysis and takes se-
quence labelling approach. It introduces a layer
called RACL which consists of three separate but
interconnected modules for sentiment and target
extraction and polarity prediction. Each module
makes a module-specific representation of input
using a CNN and information is exchanged among
them through attention mechanism. The work uses
a stack of RACL layers as its model in which fea-
tures in a layer is fed to upper layer and finally
prediction is done by average pooling over predic-
tion of all layers. This work has used same data
and evaluation metrics as (He et al., 2019).

Finally (Li et al., 2019) solves targeted senti-
ment analysis which aims to extract only target
expression and polarity. To this end, it has used
BERT (Devlin et al., 2019) along with a task spe-
cific layer. Here BERT makes a contextual and rich
representation of input words and the task-specific
layer performs sequence labelling. For this layer,
different types such as fully connected, CRF (Laf-
ferty et al., 2001), GRU and self-attention layer are
examined that the last two outperformed the others.

3 Datasets and Evaluation

Shared task is on seven datasets in five languages.
We trained and evaluated our model on each one
separately. General and detailed information of
datasets is shown in table1 and table2 respec-
tively. NoReCFine is norwegian professional re-
views in multiple domains. MultiBCA, MultiBEU,
OpenerEN and OpenerES (Agerri et al., 2013)
are hotel reviews in Catalan, Basque, English
and Spanish respectively. DarmstadtUnis consists
of English online university reviews and finally
MPQA contains annotated news articles in En-
glish. Evaluation metric of the task is Sentiment
Graph F1. Prediction and gold answer of prob-

lem are a list of quadroples q = (qs, qt, qh, qpol)
in which the first three entities are sets of tokens
for sentiment, target, and holder expressions re-
spectively. qpol is polarity with value among
Negative,Neutral, Positive. Match score of
two given source and target quadroples namely,
score(src, tgt) is as follows.

∑
e∈{s,t,h}

|srce∩tgte|
|srce|

3
∗ 1{srcpol = tgtpol} (1)

As it can be seen, this is a weighted match
over amount of overlap between entities, aver-
aged across three entity types. Polarities should
be strictly equal. Denominator |srce| is for score
to be comparable with another one having different
source quadrople. As target and holder expressions
could be empty, |srce| is replaced with 1 in the
case srce is empty. |srce ∩ tgte| is also set to 1
when |srce| and |tgte| are empty. Given N input
sentences, predn as the list of predicted quadroples
for n-th sentence and goldn as its gold counterpart,
Precision is computed as follows.

∑N
n=1

∑
p∈predn maxq∈goldn score(p, q)∑N

n=1 |predn|
(2)

max is to select score of best matching gold
quadrople for a given predicted one. Similarly,
Recall is computed as follows.

∑N
n=1

∑
q∈goldn maxp∈predn score(q, p)∑N

n=1 |goldn|
(3)

Finally, Sentiment Graph F1 is measured as fol-
lows.

GraphF1 =
2 ∗ Precision ∗Recall
Precision+Recall

(4)

4 System Description

Our model is comprised of a base pre-trained
model that is supposed to extract rich contextual-
ized features and two separate modules for extract-
ing expressions and predicting edges. For english
datasets (OpenerEN , DarmstadtUnis and MPQA)
we used RoBERTabase (Liu et al., 2019) model
and for non-english ones (OpenerES, NorecFine,
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# avg. max
NoReCFine train 8634 21.3 125

dev 1531 21.4 86
MultiBCA train 1174 18.7 238

dev 167 16.3 129
MultiBEU train 1063 14.5 105

dev 152 14.6 60
MPQA train 5873 25.6 134

dev 2063 25.5 228
DarmstadtUnis train 2253 21.6 226

dev 232 19.5 80
OpenerEN train 1744 15.6 131

dev 249 15.2 129
OpenerES train 1438 19.3 175

dev 206 18.9 108

Table 1: General information of shared task datasets.
First five datasets are used in (Barnes et al., 2021). Max
and average are measures of tokens’ counts.

MultibookedCA and MultibookedEU), we used
LaBSE (Feng et al., 2020) as model’s base.

We treat quadruples in a sentence as a graph
which its nodes are expressions and its edges con-
nect expressions within a quadruple. We name the
module for extracting expression, Node Extrac-
tor and the module for determining edges, Edge
Predictor. System structure is depicted in figure
1. Firstly, input sentence is fed into model base.
Then node extractor gets the encoded input and
for each one of three entity types, predicts expres-
sions in the sentence. Polarities are also predicted
by this module. Edge predictor, then, gets the ex-
pressions and for every pair of sentiment-target and
sentiment-holder expressions, predicts if there is an
edge between them. Finally a sentiment expression
plus its polarity along with all of target and holder
expressions connected thereto would become one
of predicted quadroples.

4.1 Node Extractor
This module consists of three feed forward neural
networks for predicting label of each token in BIO
scheme, each network for an entity type. Using
these three networks, sequence tokens are labeled
for sentiment, target and holder expressions inde-
pendently. In this networks, ReLU is used as activa-
tion and each network has less than 50k parameters.
Loss function of the module is cross entropy. We
integrate predicting polarity of sentiment expres-
sions in sequence labelling task by replicating BIO
labels for negative, neutral and positive polarities.

Figure 1: System architecture

Note that node extractor and jointly predicting sen-
timent expression and polarity is inspired of what
is being used in one of our baselines, the one using
sequence labelling approach.

4.2 Edge Predictor

Aimed for leveraging pretrained model’s knowl-
edge as much as possible, we simply used its com-
puted attentions to predict edges. To this end, we
examined different settings that are as follows:

Base: This is the base setting of edge predic-
tor. We use attention values of a predetermined
head in a specific layer in this way that we compute
sum of attentions of two given expressions to each
other and apply sigmoid to predict being an edge
between them. More specifically, we choose head 7
in layer 8 of RoBERTabase for english datasets and
head 9 layer 11 of LaBSE for others. This choice
was based on the observation that those heads were
more semantic-aware in the sense that sentiment
expression tokens attend more to target expression
tokens. Those heads are also less position depen-
dant, meaning that a token’s attention distribution
does not lean toward a specific position in the se-
quence.

Consider two nodes a and b which span intervals
(abegin, aend) and (bbegin, bend) in the sentence re-
spectively. Probability of being an edge being be-
tween a and b, Peab in the is computed as follows:

Peab = σ(

aend∑

i=abegin

bend∑

j=bbegin

Al∗h∗ij +Al∗h∗ji) (5)
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holders targets sent. expr. polarity
# avg. max # avg. max # avg. max + neu -

NoReCFine train 898 1.3 18 6778 3.0 44 8448 6.8 51 5695 0 2753
dev 120 1.1 4 1152 3.0 22 1432 7 38 988 0 444

MultiBCA train 169 1.3 4 1705 3.0 20 1989 3.2 21 1273 0 716
dev 15 1.8 8 211 2.9 11 258 3.2 12 151 0 107

MultiBEU train 204 1.4 8 1277 2.3 14 1679 3.2 14 1401 0 278
dev 33 1.5 5 152 2.3 9 203 3.6 13 167 0 36

MPQA train 1425 3.2 43 1479 7.0 52 1706 2.2 16 671 337 698
dev 405 3.3 28 494 6.1 44 570 2.2 9 231 124 215

DarmstadtUnis train 63 1.2 4 806 1.5 6 806 2.2 25 340 102 364
dev 9 1.3 2 98 1.7 4 98 2.4 13 29 15 54

OpenerEN train 266 1.0 3 2679 1.9 11 2884 2.6 18 2101 0 783
dev 49 1.0 2 371 2.0 10 400 2.6 14 284 0 116

OpenerES train 176 1.0 3 2748 2.4 13 3042 2.6 16 2472 0 570
dev 23 1.0 2 363 2.6 11 387 2.6 17 317 0 70

Table 2: Details of shared task datasets. First five datasets are used in (Barnes et al., 2021). Max and average are
measures of tokens’ counts in expressions.

Figure 2: A sentiment graph example. Entities of a quadrople are connected with edges and sentiment expressions
are labeled with polarity. Image is from (Barnes et al., 2022)

A is the pretrained model’s computed attention.
l∗ and h∗ determine prespecified head and layer re-
spectively. σ is the sigmoid function. This equation
simply means attention of two nodes to each other
determines probability of being an edge between
them.

+AvgH: In this setting we do not rely only on
specific heads and use attention values of all heads
in all layers. To this end we introduce new learn-
able weights, one for each head, and compute linear
combination of attention values across all heads.
Total number of new weights is number of layers
times number of heads in each layer, which is 144
in both RoBERTabase and LaBSE. So in this setting,

Peab becomes

σ(

nl,hl∑

l,h=1

aend∑

i=abegin

bend∑

j=bbegin

wlh∗(Alhij+Alhji)) (6)

in which nl and nh are number of layers and
heads in the pretrained Model respectively. w is the
learned weight assigned to each head. At training
start w is set to 1 in setting one head and 0 in other
heads.

+SepH: We use separate heads for predicting
edges for sentiment-target expression pair and
sentiment-holder expression pair. Specifically, for
predicting and edge between a sentiment and a tar-
get expression, we use head 7 in layer 8 for english
datasets and head 9 in layer 11 for non-english
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OpenerEN OpenerES NorecFine DarmstadtUnis MultiBEU MultiBCA MPQA Average
base 0.64 0.65 0.44 0.45 0.67 0.64 0.38 0.55
+AvgH -0.03 -0.02 -0.05 -0.14 0.02 0.01 -0.31 -0.07
+SepH 0.03 0.02 -0.05 -0.03 -0.00 -0.02 -0.08 -0.02
+SepH+AvgH 0.01 -0.00 -0.03 -0.07 -0.02 -0.00 -0.24 -0.05

Table 3: Performance of different variants of our model. First row is the default variant and numbers in other rows
show increase or decrease in comparison with the default variant. Results are based on evaluation on development
data.

ones. For predicting an edge between a sentiment
expression and a holder expression, we use head
10 in layer 11 for english datasets and head 4 in
layer 11 for non-english ones.

+SepH+AvgH: This is the mixture of last two
settings. We use all heads in all layers but we
consider separate linear combinations of them for
sentiment-target and sentiment-holder expression
pairs. So the number of introduced weights is dou-
bled to 288 in this setting.

5 Experiments

5.1 Baselines

We compare our model with two baselines pro-
posed in the shared task. First one is basically
(Barnes et al., 2021) which is described in section
2. The second one takes sequence labelling ap-
proach. It sets two modules for predicting expres-
sions and relations respectively. Expression pre-
diction module consists of three BiLSTMs which
predict sentiment, target and holder expressions
respectively. This module is fed by an embed-
ding layer which is initialized with pretrained word
embeddings. Relation prediction module, given
two extracted expressions and the input sentence,
uses separate BiLSTMs and max pooling to make
contextualized representations from them. Then
it feeds concatenation of three max pooling layers
to a linear layer and sigmoid to predict if there is
relation between two expressions or not. In the
comparisons we call the baselines, GP (for graph
parsing) and SL-BiLSTM (for sequence labelling)
respectively.

5.2 Settings

We trained each variant of our model 5 times, each
with different random seed on every dataset for at
most 20 epochs. learning rate was 1e-4 and 1e-3
for pretrained model and newly introduced weights
respectively. We did warm-up in epoch 1 and ap-
plied step LR scheduling with gamma as .1 and
step size as 9. Baselines were also trained using

Dataset Attentionist GP SL-BiLSTM
NoReCFine 0.32 0.28 0.19
MultiBCA 0.61 0.54 0.33
MultiBEU 0.59 0.57 0.34
MPQA 0.26 0.15 0.02
DarmstadtUnis 0.25 0.21 0.13
OpenerEN 0.58 0.52 0.31
OpenerES 0.55 0.50 0.26

Table 4: Test results of our model and baselines. Eval-
uation metric is Sentiment Graph F1

script given by shared task organizers. Evaluation
measure being used was Sentiment Graph F1. Eval-
uation was done using the script given by shared
task organizers. We used PyTorch (Paszke et al.,
2019) plus Pytorch-Ignite (Fomin et al., 2020) as
training framework and WandB (Biewald, 2020) as
Experiment Tracking tool.

6 Results

Results are shown in table4. Attentionist is our
proposed model. For our model, only result of the
best variant is shown. As it can be seen, our model
outperforms the baseline in all datasets.

7 Ablation Study

In order to assess and compare performance of
different variants of our model, we trained each
variant four times using different random seeds on
each dataset and compared them on development
data. Results are depicted in table3.
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Abstract

This paper addressed the problem of structured
sentiment analysis using a bi-affine semantic
dependency parser, large pre-trained language
models, and publicly available translation mod-
els. For the monolingual setup, we considered:
(i) training on a single treebank, and (ii) relax-
ing the setup by training on treebanks coming
from different languages that can be adequately
processed by cross-lingual language models.
For the zero-shot setup and a given target tree-
bank, we relied on: (i) a word-level translation
of available treebanks in other languages to get
noisy, unlikely-grammatical, but annotated data
(we release as much of it as licenses allow), and
(ii) merging those translated treebanks to obtain
training data. In the post-evaluation phase, we
also trained cross-lingual models that simply
merged all the English treebanks and did not
use word-level translations, and yet obtained
better results. According to the official results,
we ranked 8th and 9th in the monolingual and
cross-lingual setups.

1 Introduction

Sentiment Analysis (SA, Pang and Lee, 2008) deals
with the automatic processing of subjective infor-
mation in natural language texts. Early work on
SA focused on conceptually simpler tasks, such
as polarity classification at the sentence or docu-
ment level. With the advances in natural language
processing (NLP), more fine-grained and complex
tasks have been proposed, such as detecting the
entity that expresses an opinionated chunk of text,
or the entity that was targeted. More particularly,
Barnes et al. (2021) consider sentiment analysis
as a (graph) structured task, and discuss up to five
subtasks: (i) sentiment expression extraction, (ii)
sentiment target extraction, (iii) sentiment holder
extraction, (iv) defining the relationship between
these elements, and (v) assigning a polarity label.
They discuss that although these tasks have been
extensively studied by different authors (Turney,

2002; Pontiki et al., 2015; Zhang et al., 2019, in-
ter alia), they are not addressed all together. They
also discuss that such subdivision into subtasks
might have a negative impact in the general analy-
sis of the sentence, and that a joint analysis could
translate into a holistic approach. To do so, they
propose to encapsulate all these tasks in the form
of a sentiment graph. Formally, the goal is to find
the set of opinion tuples {O1, . . . , Oi, . . . , On} in
a given text, where each opinionOi is a tuple of the
form (h, t, e, p) where h is a holder who expresses
a polarity p towards a target t through a sentiment
expression e, implicitly defining pairwise relation-
ships between elements of the same tuple. We
illustrate an example in Figure 1.

Figure 1: An example of sentiment graph as defined by
Barnes et al. (2021). The sentence has a holder (‘I’),
two sentiment expressions (‘got’ and ‘at no cost’) and
one target (‘an upgrade to Executive suite’)

More particularly, for the SemEval-2022 Task
10 (Barnes et al., 2022), the organizers proposed
both a monolingual1 and a cross-lingual (zero-shot)
setup. They considered 5 languages (and 7 tree-
banks): English, Spanish, Catalan, Basque, and
Norwegian. For the zero-shot setup Basque, Cata-
lan, and Spanish were the target languages.

Our approach is based on the idea of viewing
this task as semantic dependency parsing (Oepen
et al., 2015), since both tasks are structurally simi-
lar even if the graphs have different meaning. More

1We use the term monolingual as it was the term used by
the organizers, but this setup allowed the use of any resource,
including resources in different languages.
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specifically, we rely on a bi-affine graph-based
parser (Dozat and Manning, 2018) and different
large pre-trained language models (LM), such as
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) or XLM-R (Conneau et al., 2020). For the
monolingual setup we train a semantic parsing
model on single and merged treebanks, and com-
pare the performance using different LMs. For
the cross-lingual setup, we first do a word-level
translation of the datasets in a different language
than the target treebank, and then proceed similarly
to the monolingual setup. Overall, the approach
relies on off-the-shelf tools already available, but
traditionally used for other purposes. We here re-
purpose them for their use for sentiment analysis
as graph-based parsing.

2 The role of parsing in SA

Parsing has been used in the past for SA, with dif-
ferent motivations, such as integrating syntactic
knowledge as a component of the model’s architec-
ture, or producing structured sentiment outputs.

Polarity classification. Since early times, au-
thors have studied the importance of language struc-
ture to deal with relevant linguistic phenomena
for polarity classification, first focusing on sim-
pler strategies such as the use of n-grams or lexical
rules (Pang et al., 2002; Taboada et al., 2011). Later
on, more complex syntactic structures were incor-
porated as well, both for rule-based and machine
learning approaches.

For instance, for the rule-based paradigm, Poria
et al. (2014) used dependency relations for concept-
level sentiment analysis, so sentiment could flow
from one concept to another to better contextualize
polarity. Vilares et al. (2015a, 2017) proposed a
model to compute the sentiment of sentences that
was driven by syntax-based rules to deal with spe-
cific relevant phenomena in SA, and that could be
easily re-purposed for any language for which a
dependency parser was available. Kanayama and
Iwamoto (2020) built on top of Vilares et al.’s idea,
and proposed a multilingual syntax-based system
that achieved a high precision for 17 languages.

From the machine learning perspective, Joshi
and Rosé (2009); Vilares et al. (2015b) used de-
pendency triplets to train data-driven (pre-neural)
models and obtain slight improvements over purely
lexical approaches. Socher et al. (2013) collected
sentiment labels for phrases and sentences that
were previously automatically represented as con-

stituent (sub)trees, to then train a compositional
model that used a recursive neural network. This
work has some relevant resemblances with Barnes
et al. (2021)’s proposal for structured sentiment
analysis. Socher et al. were among the first to pro-
vide tree-shaped annotated sentiment data (in this
case just for polarity classification), while most of
previous work had focused on using tree knowl-
edge as external information to the models, but
with sentiment annotations only associated with
plain texts. This publicly available data later en-
couraged many authors to design models that could
exploit tree-shaped annotated data to obtain better
performing models (Tai et al., 2015; Zhang and
Zhang, 2019, inter alia).

Aspect-based sentiment analysis (ABSA).
ABSA is a task that is particularly suitable for
the integration of syntactic information, since its
main goal is to associate sentiment with specific
entities and aspects that occur in the sentence
(Pontiki et al., 2015). Related to this, Popescu
and Etzioni (2005) already used dependency
trees to constrain an unsupervised sentiment
analysis system that extracted a set of product
features and their sentiment, given a particular
item. More recently, with the wide adoption of
neural networks in NLP, different authors have
integrated syntactic knowledge and syntactic
structures in different network architectures,
such as long short-term memory networks
(LSTMs, Tang et al., 2016), recursive neural
networks (Nguyen and Shirai, 2015), convolutional
networks (Xue and Li, 2018), and graph atten-
tion networks (Huang et al., 2020; Sun et al., 2019).

Overall, it is clear that parsing has had a high rel-
evance in SA. Yet, the novelty of the shared task
is in using graphs to represent richer annotations.
This makes it possible to use parsing algorithms
as sentiment models, i.e. not just to use them as
a component of the model architecture, but as the
model responsible of producing the whole senti-
ment structure of the chunk of text. Also, this is
especially relevant in the era of large neural mod-
els, where the utility of parsers for downstream
tasks is sometimes questioned, with some studies
questioning its need in the presence of pretrained
models that implicitly learn syntax (Tenney et al.,
2019; Glavaš and Vulić, 2021; Dai et al., 2021)
while others still achieve extra accuracy from their
use in conjuntion with such models (Sachan et al.,
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2021; Xu et al., 2021; Li et al., 2021; Zhang et al.,
2022). In any case, tasks like this one show that
graph structures can be also useful to re-purpose
traditional tasks such as SA, while taking advan-
tage of research that the NLP community has done
on parsing algorithms for decades.

3 Brief overview of the shared task

The goal of the task is to produce graph struc-
tures that reflect the sentiment of a sentence, as
we showed in Figure 1. More particularly, the orga-
nizers released 7 treebanks in 5 different languages:
OpeNER (Agerri et al., 2013, English and Span-
ish), MPQA (Wiebe et al., 2005, English), Darm-
stadt_unis (Toprak et al., 2010, English), Multi-
Booked (Barnes et al., 2018, Basque and Cata-
lan), and NoReC_fine (Øvrelid et al., 2020, Nor-
wegian).2 Table 1 details the main statistics for the
datasets.

Dataset Language # sents # holders # targets # expr.
NoReC_fine Norwegian 11437 1128 8923 11115
MultiBooked Basque 1521 296 1775 2328
MultiBooked Catalan 1678 235 2336 2756
OpeNER Spanish 2057 255 3980 4388
OpeNER English 2494 413 3850 4150
MPQA English 10048 2279 2452 2814
Darmstadt_unis English 2803 86 1119 1119

Table 1: General statistics of the treebanks used in the
shared task.

The sentiment of a sentence is composed of all
the opinions, Oi, that make it up. Each opinion
can have up to four elements: a holder (h) who
expresses a polarity (p) towards a target (t) through
a sentiment expression (e). These four elements
implicitly define the pairwise relationships between
the elements of a tuple. The previous example,
Figure 1, shows a sentence with two sentiment
expressions (got and at no cost) that express the
polarity (Positive) of the sentiment that a holder (I)
has towards one target (an upgrade to Executive
suite).

Preprocessing The organizers of the shared task
proposed two possible ways to address the task: as
a sequence labeling or as graph-based parsing prob-
lem. As mentioned above, we opted for the latter.
We use the scripts available in the official reposi-
tory to transform the JSON files to the CoNLL-U
based format and vice versa, and we applied the
needed changes to make it compatible with supar

2For more detailed information see https:
//github.com/jerbarnes/semeval22_
structured_sentiment

(see §4).3 Under the graph-based paradigm, the
problem is approached as a bilexical dependency
graph prediction task, with some assumptions. To
convert the data, the organizers suggest two possi-
ble conversions, namely head-first and head-final.
In head-first, it is assumed that the first token of
the sentiment expression is a root node, and that
the first token of each holder or target spans is the
head node of such span, while the other ones are
dependents. Meanwhile, in head-final, the final to-
ken of the holder and target spans is set as the head
of the span, and the final token of the sentiment
expression as a root node (Figure 1 is a head-final
example). In this work, we have chosen head-final,
which is the default option for the shared task and
also delivered better results than head-first in the
experiments carried out by Barnes et al. (2021) (see
Table 3 in that paper).

Subtasks More in detail, the challenge is divided
into two subtasks:

1. Monolingual setup: When training and de-
velopment data is available for the same tree-
bank/language, i.e. the goal is to train one
model per treebank. It was allowed to use
extra resources or tools that could boost per-
formance, even from different languages.

2. Cross-lingual, zero-shot setup: It is assumed
that there is no gold training data in the lan-
guage of the target treebank. The organizers
specified that it is possible to use treebanks
in other languages, translation tools, and any
other resources that do not include sentiment
annotations in the target language.

Metrics Each subtask is evaluated independently,
and the ranking metric was sentiment graph F1
(Barnes et al., 2021), where true positives are exact
matches at the graph level, weighting the overlap
between the predicted and gold spans for each el-
ement, and averaged across all three spans. To
compute precision, it weights the number of cor-
rectly predicted tokens divided by the total number
of predicted tokens, while for recall it weights the
number of correctly predicted tokens divided by the
total number of gold tokens. Also, as mentioned
earlier, it is possible to have tuples with empty
holders and targets.

3https://github.com/MinionAttack/
conllu-conll-tool
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4 Our model

We rely on the Dozat and Manning (2018) parser,
a widely used state-of-the-art model both for syn-
tactic and semantic dependency parsing. Inspired
in previous graph-based parsers (McDonald et al.,
2005; Kiperwasser and Goldberg, 2016), the parser
first computes contextualized representations for
each word using bidirectional LSTMs (biLSTMs;
Hochreiter and Schmidhuber, 1997; Schuster and
Paliwal, 1997). After that, the model computes a
head and a dependent representation for each term,
to establish through a bi-affine attention whether
an edge exists between each pair of tokens, and if
so, what is the semantic relationship between them.
In particular, in this paper we follow the implemen-
tation used in the supar4 package, as it has been
widely adopted by the community and it is avail-
able for other flavors of parsing as well, such as
constituent or dependency parsing. We preferred
this implementation over the graph-based baseline
provided in the SemEval repository, since early ex-
periments showed a superior performance, and it
also offered a simpler integration of large language
models. We left the parser hyperparameters, except
the learning rate, at their default value.

Pre-trained language models For each lan-
guage we looked for avaliable monolingual
and multilingual pre-trained LMs at https://
huggingface.co/. Specifically, for each lan-
guage, we included:

• Basque: berteus-base-cased, RoBasquERTa.

• Catalan: julibert, roberta-base-ca, calbert-
base-uncased.

• English: bert-base-cased, bert-base-
uncased, bert-large-cased, bert-large-uncased,
roberta-base, roberta-large, albert-base-v2,
albert-large-v2, xlnet-base-cased, xlnet-
large-cased, electra-base-discriminator,
electra-large-discriminator, electra-base-
generator, electra-large-generator.

• Norwegian: norbert, nb-bert-base, nb-
bert-large, electra-base-norwegian-uncased-
discriminator.

• Spanish: bio-bert-base-spanish-wwm-
uncased, bert-base-spanish-wwm-cased,
roberta-base-bne, roberta-large-bne, selec-
tra_medium, zeroshot_selectra_medium.

4https://github.com/yzhangcs/parser

With respect to the cross-lingual LMs, we consid-
ered: xlm-roberta-base and xlm-roberta-large.

4.1 Monolingual models
For this task, we use: (i) pre-trained language mod-
els, (ii) supar, and (iii) the official training and
development files to build our models. Also note
that we train end-to-end models, using words as
the only input (later tokenized into subword pieces
by the language models), but ignoring the part-of-
speech tags and syntactic information provided in
the sentiment treebanks. We did not use part-of-
speech tags (or other morphosyntactic annotations)
since these are not used in supar together with
BERT encoders, and using them would require to
adapt the code, which was exactly what we tried to
avoid in this work.

Training procedure We fine-tuned parsing mod-
els considering for each treebank the proposed
LMs, and combining them with supar. Since
training is time-consuming, many model configura-
tions are proposed, and the performance of supar
is stable independently of the seed, we decided to
train a single model per LM. Specifically, all mod-
els have been trained with the default seed used
by supar, which is 1. The only parameter that
was modified was the learning rate (lr), as we ob-
served that for some models (specially the larger
language models) the fine-tuning process did not
converge. We started with 5 · 10−5, and did a small
grid search down to 1 · 10−6, where if a model still
did not converge it was discarded.5 Additionally,
to train the parsing models, we considered three
strategies:

1. Single monolingual training and development
files: We train each model on a single tree-
bank and validate its performance in the cor-
responding dev set, i.e., the standard monolin-
gual training and development methodology.

For the best model obtained for each treebank
according to strategy 1, we explored a couple of
harmonized training strategies (harmonized in the
sense that different treebanks follow the same an-
notation guidelines):

2. Merged training and development files from
different treebanks: We considered to merge

5For both monolingual and cross-lingual subtasks, all the
selected models used a lr of 5 · 10−5. The only exception is
Norwegian in the monolingual subtask, for which we used
5 · 10−6.
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all the available training files and all the avail-
able development files, treating them as a sin-
gle dataset. Thus, we trained a single model
that could predict all test files, but with the
disadvantage that model selection is based on
multilingual performance, which could hurt
the performance in this setup.

3. Merged training files, single development file:
Similar to 2, but merging only the training
files. For the development phase, we pro-
ceeded as in 1 and used each dataset’s dev
file for model selection. The idea was to
have training data that can benefit from mul-
tilingual information, but that still considers
a monolingual file for a language-dependent
model selection, i.e., given n treebanks, we
still need to train n models, one per treebank.

We detail the experimental results for the train-
ing/development phase in §5.

4.2 Cross-lingual (zero-shot) models

In this setup, we rely on two main components:
(i) available translation systems to perform word-
level translations from source language to target
language treebanks, and (ii) both monolingual and
cross-lingual language models. Our goal with (i)
is to obtain noisy, unlikely-grammatical data, but
that still can provide sentiment annotations for a
given target language, exploring the viability of
this approach. Regarding the learning rate, we used
5 · 10−5 in all cases.

Auxiliary translation models From the CoN-
LLU converted files6, we translated the sentences
at the word level using the Helsinki-NLP transla-
tion models7 (Tiedemann and Thottingal, 2020)
available at huggingface. Table 2 lists the lan-
guage pairs for which we could obtain translated
versions for the cross-lingual setup.

Dataset Language Basque Catalan Spanish
NoReC_fine Norwegian ✓
MultiBooked Basque ✓
MultiBooked Catalan ✓
OpeNER Spanish ✓ ✓
OpeNER English ✓ ✓ ✓
MPQA English ✓ ✓ ✓
Darmstadt_unis English ✓ ✓ ✓

Table 2: Treebanks and the languages to which they
were translated for the cross-lingual experiments.

6https://github.com/MinionAttack/
corpus-translator

7https://huggingface.co/Helsinki-NLP

Then, to train the models we proceeded similarly
to strategy 2 used in the monolingual setup: we
combined the translated training and validation files
coming from treebanks in other languages, and
used the micro-averaged F1-score on the translated
development set for model selection.

Post-evaluation (and better) baseline After the
deadline to submit proposals, we also tested a
baseline consisting on training, using an XLM-
RoBERTa LM as the base component, a cross-
lingual model that uses all the English datasets
(without any kind of translation) as the source data.
We discuss these results as well in §5.2.

5 Results

Here, we detail and discuss the results that we got
for both subtasks (see §5.1 and 5.2) on: (i) the
official development sets, and (ii) the official test
sets of the shared tasks.

5.1 Monolingual setup

Tables 3 and 4 show the results for the development
phase on the English and non-English datasets, re-
spectively, including different LMs and training
setups.

With respect to the results on the English tree-
banks, an interesting trend is that despite being
the monolingual setup, using cross-lingual lan-
guage models, and in particular XLM-RoBERTa,
performed surprisingly well. Combined with the
training strategy 3 (merged training sets, single
development set), such models obtained the best
results for 2 out of 3 English corpora (OpeNER
and Darmstadt), while they still ranked well in the
other dataset (MPQA). Across monolingual LMs,
we also observe trends: electra-base-discriminator
and (both base and large) RoBERTa models obtain
overall the best results. On the other hand, we did
not obtain equally robust results with ALBERT, and
to a lesser extent, with BERT architectures. This is
not totally surprising, since among the tested LMs,
BERT is among the oldest ones, and ALBERT is a
lite BERT, so some computational power is lost and
it is understandable that this translates into some
performance loss too, compared to larger LMs.

With respect to the experiments on the non-
English datasets, we observe certain similarities,
although the number of available models is much
smaller than in the English cases. Again, XLM-
RoBERTa overall obtains the best results. The only
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Corpus Model Strategy F1

OpeNER_en

xlm-roberta-large
electra-base-discriminator

xlm-roberta-large
xlm-roberta-base

roberta-large
xlnet-base-cased
xlm-roberta-base
xlm-roberta-base

roberta-base
electra-large-discriminator

bert-large-uncased
electra-large-generator

xlm-roberta-large
bert-base-uncased
bert-large-cased
xlnet-large-cased
bert-base-cased

electra-base-generator
albert-base-v2
albert-large-v2

3
1
1
2
1
1
3
1
1
1
1
1
2
1
1
1
1
1
1
1

0.714
0.710
0.707
0.686
0.683
0.681
0.679
0.673
0.663
0.662
0.660
0.652
0.643
0.640
0.640
0.639
0.612
0.612
0.590
0.297

MPQA

roberta-base
roberta-large

electra-base-discriminator
xlm-roberta-large
xlnet-base-cased
xlm-roberta-large
bert-base-cased

xlm-roberta-base
electra-large-generator

xlm-roberta-large
bert-large-uncased
bert-base-uncased
xlm-roberta-base
xlm-roberta-base
bert-large-cased

electra-base-generator
albert-base-v2

xlnet-large-cased

1
1
1
1
1
3
1
2
1
2
1
1
3
1
1
1
1
1

0.374
0.365
0.351
0.346
0.338
0.327
0.306
0.303
0.301
0.298
0.297
0.294
0.285
0.277
0.269
0.253
0.236
0.209

Darmstadt_unis

xlm-roberta-large
xlm-roberta-large

electra-base-discriminator
xlm-roberta-base
xlm-roberta-large

roberta-base
xlm-roberta-base
xlnet-base-cased
xlnet-large-cased

roberta-large
electra-large-generator

electra-large-discriminator
xlm-roberta-base

bert-large-uncased
bert-base-uncased
bert-large-cased

electra-base-generator
albert-base-v2
bert-base-cased

3
1
1
3
2
1
1
1
1
1
1
1
2
1
1
1
1
1
1

0.329
0.309
0.306
0.306
0.301
0.301
0.276
0.276
0.269
0.268
0.267
0.264
0.262
0.257
0.251
0.237
0.229
0.217
0.212

Table 3: Scores on the development set for the English
treebanks and the monolingual setup. Models trained
on the training data before its updated version.

exception is the Norwegian dataset, where we ob-
tained the best results with a BERT architecture.

Yet, a more thoughtful discussion would be
needed to determine if some architectures truly
behave better than others. Note that all these LMs
are usually pre-trained using different and hetero-
geneous text sources, and specially for the less-
resourced languages, some constraints are usually
imposed during training. For instance, it is hard to
conclude that berteus-base-cased (BERT) (Agerri
et al., 2020) is worse than XLM-RoBERTa (Con-
neau et al., 2020), since the amount of resources to

Corpus Model Strategy F1

NoReC_fine

nb-bert-large
nb-bert-base

xlm-roberta-large
xlm-roberta-large
xlm-roberta-large
xlm-roberta-base
xlm-roberta-base
xlm-roberta-base

electra-base-norwegian
-uncased-discriminator

norbert

1
1
1
3
2
3
2
1
1

1

0.479
0.459
0.450
0.439
0.427
0.414
0.411
0.401
0.382

0.298

MultiBooked_eu

xlm-roberta-large
xlm-roberta-large
xlm-roberta-base

berteus-base-cased
xlm-roberta-base
xlm-roberta-base
xlm-roberta-large

RoBasquERTa

3
2
3
1
2
1
1
1

0.662
0.623
0.613
0.602
0.597
0.571
0.569
0.496

MultiBooked_ca

xlm-roberta-base
xlm-roberta-large
xlm-roberta-large
xlm-roberta-large
xlm-roberta-base
roberta-base-ca

xlm-roberta-base
julibert

calbert-base-uncased

1
1
2
3
2
1
3
1
1

0.694
0.683
0.679
0.679
0.674
0.672
0.653
0.590
0.579

OpeNER_es

xlm-roberta-large
xlm-roberta-base
xlm-roberta-base
xlm-roberta-large
xlm-roberta-base
xlm-roberta-large

bert-base-spanish-wwm-cased
selectra_medium
roberta-base-bne

zeroshot_selectra_medium
roberta-large-bne

bio-bert-base-spanish-wwm-uncased

3
2
3
2
1
1
1
1
1
1
1
1

0.666
0.662
0.657
0.639
0.635
0.635
0.630
0.622
0.616
0.610
0.605
0,457

Table 4: Scores on the development set for the non-
English treebanks and the monolingual setup. Models
trained on the training data before its updated version.

train the former was more constrained.
Finally, a few days before the submission dead-

line, the training files of some treebanks were
slightly updated by the organizers, due to minor
bugs in the segmentation process that corrupted
some sentences. As we did not have time to re-
run all models and update the results, we chose to
re-train only the model that obtained the best per-
formance on the previous version of the treebanks.
Therefore, all the outputs submitted for the test
sets correspond to models trained on the updated,
uncorrupted files. In Table 5 we compare the per-
formance of the models trained on the updated and
deprecated versions of the training files. Overall,
we observed relatively small, but non-negligible
differences, usually obtaining a better performance
with the updated version of the treebank.

Official results on the test sets In Table 6 we
show the performance on the test sets of our sub-
mitted models, i.e. those that achieved the highest
score in the corresponding development phase. The
performance is stable across different test sets, ob-
taining slightly better results for Iberian languages.
For a detailed comparison against the rest of partic-
ipants, we refer the users to Appendix 11 and the
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Corpus Model Strategy Old F1 New F1
NoReC_fine nb-bert-large 1 0.479 0.492

MultiBooked_eu xlm-roberta-large 3 0.662 0.648
MultiBooked_ca xlm-roberta-base 1 0.694 0.699

OpeNER_es xlm-roberta-large 3 0.666 0.709
OpeNER_en xlm-roberta-large 3 0.714 0.716

MPQA roberta-base 1 0.374 0.374
Darmstadt_unis xlm-roberta-large 3 0.329 0.357

Table 5: Scores on the development set for the mod-
els trained on the corrupted and uncorrupted versions
of the training files, on the monolingual setup. For
each treebank, we only did the comparison for the best
performing model, based on the performance on the
corrupted version.

Dataset Model Strategy Score
NoReC_fine nb-bert-large 1 0.462(10)

MultiBooked_eu xlm-roberta-large 2 0.680(7)
MultiBooked_ca xlm-roberta-base 1 0.653(8)

OpeNER_es xlm-roberta-large 3 0.692(6)
OpeNER_en xlm-roberta-large 3 0.698(9)

MPQA roberta-base 1 0.349(10)
Darmstadt_unis xlm-roberta-large 3 0.414(8)

Table 6: Scores of our models, for the monolingual
subtask, on each test set. Our ranking on the shared task
for each test set is indicated as a subscript.

official shared task paper (Barnes et al., 2022).
The datasets of the shared task belong to dif-

ferent domains: OpeNER and MultiBooked deal
with hotel reviews, NoReC with professional re-
views in multiple domains, Darmstadt_unis (the
dataset for which we obtain the second lowest
scores) contains English online university reviews,
and MPQA (the dataset for which we obtain the
lowest scores) is about news articles annotated
with opinions and other private states (i.e., beliefs,
emotions, sentiments, speculations, . . . ). For the
two lowest-scoring datasets, they have in common
that they mostly contain single-opinion sentences,
whereas the other datasets tend to have more va-
riety in the number of opinions and their distribu-
tion. For instance, ∼85% and ∼74% of the train-
ing sentences of the Darmstadt_unis and MPQA
datasets have only one opinion, while the next
most ‘single-opinion’ dataset is multibooked_eu
with only ∼53% of the sentences. However, we
need to perform more detailed analysis as future
work to extract more robust conclusions.

5.2 Cross-lingual setup

Table 7 shows the results for the development phase
for the three target languages and their datasets.
Again, XLM-RoBERTa models obtain overall the
best performance, although in this case it is less
surprising since cross-lingual LMs are expected to
suit well this kind of challenges. Similar to the

Corpus Model F1

Basque
xlm-roberta-base

berteus-base-cased
RoBasquERTa

0.434
0.416
0.323

Catalan

roberta-base-ca
xlm-roberta-base

julibert
calbert-base-uncased

0.564
0.519
0.486
0.385

Spanish

xlm-roberta-base
xlm-roberta-large

bert-base-spanish-wwm-cased
zeroshot_selectra_medium

selectra_medium
roberta-base-bne
roberta-large-bne

bio-bert-base-spanish-wwm-uncased

0.605
0.593
0.583
0.555
0.536
0.515
0.438
0.386

Table 7: Scores on the development set for the translated
English treebanks and the cross-lingual setup. Models
trained on the training data before its updated version.

Language Model Old F1 New F1

Basque berteus-base-cased
xlm-roberta-base

0.416
0.434

0.424
0.416

Catalan roberta-base-ca 0.564 0.572

Spanish xlm-roberta-large
xlm-roberta-base

0.593
0.605

0.570
0.569

Table 8: Scores on the development set for the models
trained on the corrupted and uncorrupted versions of
the translated training files, on the cross-lingual setup.
For each treebank, we only did the comparison for the
best performing model, based on the performance on
the corrupted version.

case of the monolingual setup, we decided to re-
train the best-performing model with the updated
versions of the training files. In Table 8, we show
the comparison between the corrupted and uncor-
rupted versions of the datasets, which contrarily to
the monolingual setup, often turned out into worse
performing models.

Finally, Table 9 shows the scores for the post-
evaluation baseline (model trained on the English
datasets with XLM-RoBERTa) on the dev set. Very
interestingly, the results show that this baseline out-
performed our word-level translation approaches.
We need more analysis to understand why this hap-
pens, but we hypothesize that the larger amount of
English texts XLM-RoBERTa was pre-trained on
could be playing an important role.

Official results on the test sets Finally, in Table
10 we show our results on test sets of the cross-
lingual, zero-shot setup, for which we obtain again
stable results. Appendix 12 contains the results for
all participants.
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Language Model Score

Basque xlm-roberta-base
xlm-roberta-large

0.678
0.677

Catalan xlm-roberta-base
xlm-roberta-large

0.598
0.625

Spanish xlm-roberta-base
xlm-roberta-large

0.663
0.638

Table 9: Scores on the development set of the trained
English models (trained on MPQA, OpeNER_en and
Darmstadt_unis corpora, without word-level translation)
for the cross-lingual subtask.

Language Model Score
Models using word-level translation

Basque berteus-base-cased 0.509(8)

Catalan roberta-base-ca 0.554(8)

Spanish xlm-roberta-large 0.570(7)

Combined English corpora without word-level translation

Basque xlm-roberta-base
xlm-roberta-large

0.649(2)*
0.641(2)*

Catalan xlm-roberta-base
xlm-roberta-large

0.647(2)*
0.655(2)*

Spanish xlm-roberta-base
xlm-roberta-large

0.670(1)*
0.638(2)*

Table 10: Scores of our models, for the cross-lingual
subtask, on each test set. Our ranking on the shared task
for each test set is indicated as a subscript. * indicates
the ranking that we would obtain in the shared task using
the post-evaluation baseline models.

6 Conclusion

This paper describes our participation at the Sem-
Eval Shared Task 10 on structured sentiment anal-
ysis. We participated both in the monolingual
and cross-lingual (zero-shot) setups. We applied a
simple, but effective approach, relying on off-the-
shelf tools, traditionally used for other purposes,
and used them to predict sentiment graphs instead.
More particularly, for the monolingual setup, we
linked pre-trained language models with bi-affine
graph parsing and training over single and multiple
treebanks. In the zero-shot setup, we followed a
similar approach, but relied on publicly available
translation models to obtain training data, by apply-
ing a word-level translation of treebanks, to then
train models similarly to the monolingual setup.
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User Team NoReC_fine MultiBooked_ca MultiBooked_eu OpeNER_en OpeNER_es MPQA Darmstadt_unis Average
zhixiaobao 0.529 (2) 0.728 (1) 0.739 (1) 0.760 (2) 0.722 (4) 0.447 (1) 0.494 (1) 0.631 (1)
Cong666 0.524 (3) 0.728 (1) 0.739 (1) 0.763 (1) 0.742 (1) 0.416 (2) 0.485 (2) 0.628 (2)
gmorio Hitachi 0.533 (1) 0.709 (3) 0.715 (3) 0.756 (3) 0.732 (3) 0.402 (3) 0.463 (3) 0.616 (3)
colorful 0.497 (5) 0.678 (6) 0.723 (2) 0.745 (4) 0.735 (2) 0.375 (5) 0.380 (12) 0.590 (4)

whu_stone sixsixsix 0.483 (9) 0.711 (2) 0.681 (6) 0.727 (6) 0.686 (7) 0.379 (4) 0.373 (13) 0.577 (5)
KE_AI 0.483 (9) 0.711 (2) 0.681 (6) 0.727 (6) 0.686 (7) 0.364 (7) 0.373 (13) 0.575 (6)

Fadi SeqL 0.488 (7) 0.699 (4) 0.701 (4) 0.730 (5) 0.700 (5) 0.245 (20) 0.394 (11) 0.565 (7)
lys_acoruna LyS_ACoruña 0.462 (10) 0.653 (8) 0.680 (7) 0.698 (9) 0.692 (6) 0.349 (10) 0.414 (7) 0.564 (8)

QiZhang ECNU_ICA 0.496 (6) 0.684 (5) 0.686 (5) 0.676 (10) 0.623 (11) 0.351 (8) 0.409 (8) 0.561 (9)
luxinyu ohhhmygosh 0.487 (8) 0.658 (7) 0.651 (9) 0.710 (7) 0.669 (8) 0.269 (19) 0.416 (6) 0.551 (10)

rafalposwiata OPI 0.459 (11) 0.650 (9) 0.653 (8) 0.670 (11) 0.663 (9) 0.326 (13) 0.395 (10) 0.545 (11)
evanyfyang 0.213 (22) 0.635 (11) 0.639 (10) 0.703 (8) 0.642 (10) 0.350 (9) 0.449 (4) 0.519 (12)
robvanderg 0.366 (13) 0.648 (10) 0.605 (11) 0.632 (14) 0.614 (13) 0.296 (15) 0.344 (14) 0.501 (13)

psarangi AMEX AI Labs 0.343 (15) 0.634 (12) 0.559 (12) 0.634 (13) 0.595 (14) 0.283 (17) 0.320 (17) 0.481 (14)
chx.dou abondoned 0.395 (12) 0.583 (13) 0.506 (13) 0.626 (15) 0.622 (12) 0.309 (14) 0.280 (19) 0.474 (15)
zaizhep MMAI 0.329 (16) 0.525 (14) 0.478 (17) 0.623 (16) 0.539 (16) 0.367 (6) 0.342 (15) 0.458 (16)
janpf 0.280 (19) 0.517 (15) 0.439 (19) 0.651 (12) 0.504 (17) 0.338 (11) 0.417 (5) 0.449 (17)

etms.kgp ETMS@IITKGP 0.351 (14) 0.508 (16) 0.438 (20) 0.626 (15) 0.544 (15) 0.327 (12) 0.330 (16) 0.446 (18)
jylong 0.323 (18) 0.474 (19) 0.504 (14) 0.476 (17) 0.375 (21) 0.274 (18) 0.223 (21) 0.379 (19)
ouzh 0.323 (18) 0.474 (19) 0.504 (14) 0.476 (17) 0.375 (21) 0.274 (18) 0.223 (21) 0.378 (20)

SPDB_Innovation_Lab Innovation Lab 0.325 (17) 0.469 (20) 0.486 (16) 0.471 (18) 0.362 (22) 0.289 (16) 0.202 (22) 0.372 (21)
lucasrafaelc 0.251 (21) 0.505 (17) 0.467 (18) 0.431 (19) 0.399 (19) 0.232 (21) 0.230 (20) 0.359 (22)
foodchup 0.265 (20) 0.493 (18) 0.491 (15) 0.415 (20) 0.480 (18) 0.149 (22) 0.139 (24) 0.347 (23)
jzh1qaz 0.186 (25) 0.431 (21) 0.385 (21) 0.381 (21) 0.393 (20) 0.094 (23) 0.092 (26) 0.280 (24)
hades_d Mirs 0.504 (4) 0.678 (6) 0.000 (25) 0.000 (25) 0.000 (26) 0.375 (5) 0.400 (9) 0.280 (24)

huyenbui117 0.194 (23) 0.341 (22) 0.374 (22) 0.316 (23) 0.245 (25) 0.009 (26) 0.053 (27) 0.219 (25)
karun842002 SSN_MLRG1 0.191 (24) 0.323 (23) 0.331 (23) 0.306 (24) 0.257 (24) 0.015 (25) 0.104 (25) 0.218 (26)

gerarld nlp2077 0.000 (26) 0.269 (24) 0.303 (24) 0.354 (22) 0.321 (23) 0.019 (24) 0.180 (23) 0.207 (27)
michael_wzhu91 kobe4ever 0.000 (26) 0.000 (25) 0.000 (25) 0.000 (25) 0.000 (26) 0.000 (27) 0.306 (18) 0.044 (28)

normalkim 0.000 (26) 0.000 (25) 0.000 (25) 0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
UniParma UniParma 0.000 (26) 0.000 (25) 0.000 (25) 0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)
whu_venti 0.000 (26) 0.000 (25) 0.000 (25) 0.000 (25) 0.000 (26) 0.000 (27) 0.000 (28) 0.000 (29)

Table 11: Leaderboard of all participants in the monolingual task

User Team OpeNER_es MultiBooked_ca MultiBooked_eu Average
Cong666 0.644 (1) 0.643 (1) 0.632 (1) 0.640 (1)
luxinyu ohhhmygosh 0.620 (3) 0.605 (4) 0.569 (2 0.598 (2)
gmorio Hitachi 0.628 (2) 0.607 (3) 0.527 (4) 0.587 (3)

whu_stone sixsixsix 0.604 (5) 0.596 (5) 0.512 (7) 0.571 (4)
QiZhang ECNU_ICA 0.551 (10) 0.615 (2) 0.530 (3) 0.566 (5)

Fadi SeqL 0.589 (6) 0.593 (6) 0.516 (6) 0.566 (5)
colorful 0.620 (3) 0.543 (11) 0.527 (4) 0.563 (6)
hades_d Mirs 0.617 (4) 0.544 (10) 0.522 (5) 0.561 (7)

lys_acoruna LyS_ACoruña 0.570 (7) 0.554 (8) 0.509 (8) 0.544 (8)
rafalposwiata OPI 0.564 (8) 0.586 (7) 0.444 (12) 0.531 (9)

KE_AI 0.561 (9) 0.552 (9) 0.463 (11) 0.525 (10)
etms.kgp ETMS@IITKGP 0.542 (11) 0.506 (12) 0.431 (13) 0.493 (11)

jylong 0.375 (12) 0.474 (13) 0.504 (9) 0.451 (12)
ouzh 0.375 (12) 0.474 (13) 0.504 (9) 0.451 (12)

SPDB_Innovation_Lab SPDB Innovation Lab 0.362 (13) 0.469 (14) 0.486 (10) 0.439 (13)
gerarld nlp2077 0.321 (14) 0.269 (15) 0.303 (14) 0.298 (14)
janpf 0.315 (15) 0.259 (16) 0.243 (15) 0.272 (15)

chx.dou abondoned 0.013 (16) 0.009 (17) 0.004 (16) 0.009 (16)
jzh1qaz 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)

zhixiaobao 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)
psarangi AMEX AI Labs 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)

normalkim 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)
zaizhep MMAI 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)

lucasrafaelc 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)
evanyfyang 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)
robvanderg 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)

michael_wzhu91 kobe4ever 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)
UniParma UniParma 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)

huyenbui117 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)
karun842002 SSN_MLRG1 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)

whu_venti 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)
foodchup 0.000 (17) 0.000 (18) 0.000 (17) 0.000 (17)

Table 12: Leaderboard of all participants in the cross-lingual task
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Abstract

Sentiment analysis is a classical problem of nat-
ural language processing. SemEval 2022 sets
a problem on the structured sentiment analysis
in task 10, which is also a study-worthy topic
in research area. In this paper, we propose a
method which can predict structured sentiment
information on multiple languages with lim-
ited data. The ERNIE-M pretrained language
model is employed as a lingual feature extrac-
tor which works well on multiple language pro-
cessing, followed by a graph parser as a opinion
extractor. The method can predict structured
sentiment information with high interpretabil-
ity. We apply data augmentation as the given
datasets are so small. Furthermore, we use
K-fold cross-validation and DeBERTaV3 pre-
trained model as extra English embedding gen-
erator to train multiple models as our ensemble
strategies. Experimental results show that the
proposed model has considerable performance
on both monolingual and cross-lingual tasks.

1 Introduction

Sentiment analysis (Liu, 2012) is widely used in
many aspects of computer science nowadays, such
as human computer interaction, lingual feature ex-
traction, etc. Affective computing techniques en-
able us to explore the sentiment message, which
depicts the preference, emotion or even idea of
people, behind the sentence itself.

Sentiment analysis task can be classified into
text level, sentence level, entity level and opinion
tuple level. The goal of text or sentence level senti-
ment analysis is to predict sentiments of given doc-
uments or sentences. On the other hand, entity level
sentiment analysis needs to consider sentiments be-
tween each entity in given sentence. Furthermore,
a sentence may contain multiple entities with dif-
ferent sentiments (positive or negative). Therefore,
in comparison to entity level sentiment analysis,

opinion tuple level sentiment analysis requires ad-
ditional extraction of relations between entities and
opinions.

Structured sentiment analysis (Barnes et al.,
2022) is a task to predict a sentiment graph for
given sentences. It can be theoretically cast as
an information extraction problem in which one
attempts to find all of the opinion tuples O =
O1, ..., On in a text. As we can see in Figure 1,
each opinion Oi is a tuple (h, t, e, p) where h is a
holder who expresses a polarity p towards a target t
through a sentiment expression e, implicitly defin-
ing pairwise relationships between elements of the
same tuple.

The structure of the paper is as follows. Sec-
tion 2 briefly reviews recent works on similar tasks;
Section 3 describes our model structure in detail.
Section 4 shows the analysis of the given datasets;
Section 5 introduces our experimental setting and
results. And finally in Section 6, we make a con-
clusion and give the ideas about future works.

2 Background

Dividing structured sentiment analysis into multi-
ple subtasks is a traditional approach, by first iden-
tifying holders, targets and expressions through
Named Entity Recognition (NER) module, then
predicting relations among the entities. (Peng et al.,
2020; Li et al., 2019) are baselines with good per-
formance. On the other hand, the end-to-end senti-
ment analysis is a straight-forward approach, which
directly extracts target and expression without split-
ting them into sub-tasks. (He et al., 2019) presents
an interactive multi-task learning network(IMN)
implemented by a series of a multi-layer CNN mod-
ules. Recently, (Barnes et al., 2021) cast the struc-
tured sentiment problem as the dependency graph
parsing problem, and proposed a method that out-
performs the SOTA(state-of-the-art) baselines on
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Figure 1: A structured sentiment graph is composed of a holder, target, sentiment expression, their relationships and
a polarity attribute. Holders and targets can be none.

extensive experimental results.
In this task, 7 small datasets involving 5 differ-

ent languages are given, which means our method
needs to support multiple languages with limited
data. Therefore, in this work, we use ERNIE-M
pretrained model as word embedding generator, as
it shows SOTA performances in various of NLP
tasks in multiple languages. Because of the out-
standing performance of (Barnes et al., 2021), we
employ a similar network structure to extract the
sentiment information.

3 Model structure

The model structure is similar to the head-final
model structure in (Barnes et al., 2021), while we
use a pretrained model in this work. A bert-style
(ERNIE-M (Ouyang et al., 2020)) pretrained model
takes sentences starting with “[CLS]” token as in-
put. We connect “[CLS]” token with the last word
of the expression, which is the root node of the
tuple (h, t, e). The connection type is related to the
sentiment polarity, “exp:pos” for positive polarity,
“exp:neu” for neutral polarity, and “exp:neg” for
negative corresponding to polarity, such that we
are able to predict sentence polarity based on the
connection type. As shown in Figure 1, a connec-
tion from “[CLS]” to “stars” and a connection from
“[CLS]” to “believe” are established, with a connec-
tion type of “exp:pos” and “exp:neg” respectively.
We describe the model structure in detail below.

For a given sentence −→x = (x1, x2, ..., xn),
where xi(1 ≤ i ≤ n) represents a single word.
In this work, we use ERNIE-M pretrained model
as a text feature extractor, which takes subword to-
kens as the model input. We apply subword-based
tokenization on the input words.

As shown in Figure 2, we apply subword-based

tokenization on the input sentence, getting −→t =
(t1, t2, ..., tm) for any tj(1 ≤ j ≤ m) representing
a subword token. For instance, word “restful” will
be split into ”rest” and ”##ful”, where ”##” indi-
cates that the token is not the start of a word. And
the process can be easily inversed by these special
characters, such as we can restore [“Great”, “and”,
“rest”, “##ful”, “place”, “to”, “stay”, “.”] to its orig-
inal status [“Great”, “and”, “restful”, “place”, “to”,
“stay” “.”]. After that, we input the subword tokens
into the ERNIE-M model and get the embedding of
the subword tokens. Then, we apply average pool-
ing on the subword embeddings(−→v in equation 1)
which belong to a same original word to get the
word representation −→c = (c1, c2, ..., cn).

After obtaining the word representations of the
sentence, we perform a position-wise feed-forward
networks to obtain the representation of the heads
and dependents, where heads represent head nodes,
and the dependents represent follower nodes. Then
we use Bilinear Attention Network (Kim et al.,
2018) to calculate the pairwise correlation between
each two words in the sentence.

−→v = (v1, ..., vm) = ERNIE-M(t1, ..., tm) (1)

hheadi = FFNhead(ci) (2)

hdepj = FFNdep(cj) (3)

scorei,j = Bilinear(hheadi , hdepj ) (4)

In equation 4, we obtain a score matrix that in-
dicates the relationship between each word in the
input sentence pair-wisely, by passing head and
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ALL Valid Polarity
# avg # avg Opinion Holder Target Exp pos neu neg

Darmstadt unis train 2,253 19.99 681 21.25 806 63 806 806 340 102 364
dev 232 18.09 82 20.21 98 9 98 98 29 15 54

MPQA train 5,873 23.39 1,254 29.83 1,706 1,425 1,481 1,706 671 337 698
dev 2,036 23.22 416 31.33 570 406 494 570 231 124 215

MultiBooked ca train 1,174 15.62 1,002 16.14 1,989 169 1,705 1,989 1,273 0 716
dev 167 13.37 140 14.21 258 15 211 258 151 0 107

MultiBooked eu train 1,063 10.52 899 10.77 1,679 205 1,277 1,679 1,401 0 278
dev 152 10.70 120 10.51 203 33 152 203 167 0 36

NoReC fine train 8,634 16.71 4,555 19.55 8,448 898 6,778 8,448 5,695 0 2,753
dev 1,531 16.92 821 19.12 1,432 120 1,152 1,432 988 0 444

OpeNER en train 1,744 14.72 1,400 14.99 2,884 266 2679 2,884 2,101 0 783
dev 249 14.22 198 14.98 400 49 371 400 284 0 116

OpeNER es train 1,438 17.13 1,252 17.58 3,042 176 2748 3,042 2,472 0 570
dev 206 17.08 174 17.71 387 23 363 387 317 0 70

Table 1: Statistic of the given datasets, including the number of samples and average word count of all samples and
valid samples(where opinions are not empty), as well as number of opinion, holder, target, expression and polarity
in each dataset.

dependent embedding into a bilinear attention net-
work, followed by a softmax layer. We apply cross-
entropy loss as the loss function during model train-
ing.

Figure 2: The process of generating the word represen-
tations.

4 Data

SemEval-2022 task 10 provides a to-
tal of 7 datasets: NoRec fine(Øvrelid
et al., 2020), MultiBooked eu(Barnes
et al., 2018), MultiBooked ca(Barnes et al.,
2018), OpeNER es(Agerri et al., 2013),
OpeNER en(Agerri et al., 2013), MPQA(Wiebe
et al., 2005), Darmstadt unis(Toprak et al.,
2010), involving different languages (en, ca,
eu, no, es) and a couple of domains. Multi-
Booked ca (Catalan), MultiBooked eu (Basque),

Opener en(English), and Opener es(Spanish)
belong to hotel reviews domain. NoRec is a
Norwegian dataset in literature, movies, video
games, restaurants, music and theater domains.
Darmstadt unis is an English dataset in university
domain, and MPQA is an English dataset in news
domain. Our data analysis on the given datasets is
shown in Table 1.

We can see that there are three different types of
sentiment(positive, neutral, negative) in the opin-
ions of Darmstadt unis and MPQA, while others
only contain Positive and Negative sentiments. In
addition, we find that the number of expressions is
always larger than or equal to the number of hold-
ers and targets for all datasets, which means there
is at least one expression in each opinion. We can
draw a conclusion that in a quadruple (h, t, e, p),
both h and t may be missing, but e and p are not.
Therefore, the expression(more precisely, the last
word of expression) is defined as the root node of a
(h, t, e) triplet.

5 Experiment and result

5.1 Data preprocessing
We process the labels of the original data into the
format that the model required. Taking the sentence
shown in Figure 1 as an example, the preprocessed
result is shown in Table 2. We truncated the sen-
tence due to the length of the sentence.

5.2 Experiments
In model validation period, we introduce two strate-
gies, i.e., data augmentation and focal loss, which

1403



[CLS] Some others give the new UMUC 5 stars .
[CLS] - - - - - - - - exp:pos -
Some - - - - - - - - - -
others - holder - - - - - - - -
give - - - - - - - - - -
the - - - - - - - - - -
new - - - - - - - - - -
UMUC - - - - target target - - - -
5 - - - - - - - - - -
stars - - holder - - - target exp:pos - -
. - - - - - - - - - -

Table 2: The processed label for the model, where “-” indicates that there is no relationship between two words.
The words on the y-axis are heads, and the words on the x-axis are dependents.

origin +aug +aug+focal
NoRec 0.4798 0.4939 -
Multib ca 0.7182 0.7281 -
Multib eu 0.6781 0.7070 -
OpeNER en 0.7271 0.7321 -
OpeNER es 0.6758 0.7202 -
MPQA 0.3375 0.3564 0.3582
Dm unis 0.3981 0.4412 0.4073

Table 3: The results on the dev dataset, origin means
that there is no extra strategy applied, +aug means a
mixed training set merged by other training sets and
itself, and +aug+focal means that the strategy of focal
loss is applied based on +aug.

are described in detail below.

Data augmentation As shown in Table 1, the
dataset is small. The largest dataset given is the
NoRec dataset with 8,634 pieces of data, and only
4,555 pieces of data are left after removing the sam-
ples with empty opinions. Therefore, we use all
datasets with the same polarity types for training
with the help of ERNIE-M model, which supports
multiple languages. For instance, we find that the
Darmstadt unis and MPQA have three categories
of sentiment polarity, while the others have two
categories of sentiment polarity. Hence, we merge
Darmstadt unis and MPQA into one dataset, and
merge the others into another dataset. The results
are shown in Table 3, and the evaluation method1

is based on (Barnes et al., 2021). There is an aver-
age improvement of 2.36% after training the model
with merged dataset, and a most significant im-
provement on the Opener es at 4.44%.

1https://github.com/jerbarnes/semeval22 structured senti
ment

dataset score
NoRec fine 0.497
Multib ca 0.678
Multib eu 0.723
OpeNER en 0.745
OpeNER es 0.735
MPQA 0.375
Dm unis 0.380

dataset score
EN-ES 0.620

EN-CA 0.543

EN-EU 0.527

Table 4: The left table is the result of monolingual, and
the right table is the result of cross-lingual.

Focal loss As shown in Table 2, we can see the
imbalance of the labels. The relationship between
most words are none. Therefore, we introduce
focal loss strategy, which reduces the loss weight
of the “none” and increases the loss weight of the
other labels. Because of the baseline scores on the
MPQA and Darmstadt unis are relatively lower,
we test focal loss strategy on these two datasets.
However, as we can see in Table 3, the performance
is not good on Darmstadt unis. Therefore, we do
not use the focal loss strategy in the Darmstadt unis
solution.

5.3 Ensemble

We apply K-fold cross-validation and ensemble on
the results of different pretrained models.

K-fold cross-validation For each dataset, we
merge the original training set and the validation
set, and perform K-fold segmentation after shuf-
fling. The selection of K is related to the propor-
tion of the original dataset training set and valida-
tion set. Notice that the proportion of the training
set and the validation set after the segmentation
should be approximated to their original propor-
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tion. We repeat this operation K times and obtain
K different models. Finally, we ensemble K dif-
ferent models to get the final model.

Usage of other pretrained models For English
datasets (Darmstadt unis, MPQA, Opener en), we
train additional model by replacing the ERNIE-M
model with the DeBERTaV3(He et al., 2021) model
as the lingual feature extractor, and keep the other
parts unchanged. Then we perform K-fold cross-
validation strategy on both models and ensemble
them in the same way. The results are shown in
Table 4.

6 Conclusion

In order to solve the issues of small dataset and
cross language in SemEval-2022 task 10, we in-
troduce a multilingual pretrained model ERNIE-M
as a lingual feature extractor to the given baseline
model. Furthermore, we use multiple strategies
such as data augmentation, K-fold cross-validation,
focal loss and ensemble to improve the model per-
formance. In the future, we can take other tech-
niques to do further optimization, such as differ-
ent data augmentation technieques, fine-tuning the
pretrained model with the in-domain dataset, and
changing the label from word level to subword level
to fit the subword representation of the pretrained
model.
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Abstract

This paper describes our system that partici-
pated in the SemEval-2022 Task 10: Structured
Sentiment Analysis, which aims to extract opin-
ion tuples from texts. A full opinion tuple gen-
erally contains an opinion holder, an opinion
target, the sentiment expression, and the cor-
responding polarity. The complex structure
of the opinion tuple makes the task challeng-
ing. To address this task, we formalize it as a
span-relation extraction problem and propose
a two-stage extraction framework accordingly.
In the first stage, we employ the span module to
enumerate spans and then recognize the type of
every span. In the second stage, we employ the
relation module to determine the relation be-
tween spans. Our system achieves competitive
results and ranks among the top-10 systems in
almost subtasks.

1 Introduction

Sentiment analysis, also called opinion mining,
aims to analysis people’s attitudes and emotions
towards specific targets, such as products, orga-
nizations, events, etc (Liu, 2012). It has become
an important research field in natural language pro-
cessing (Medhat et al., 2014; Hussein, 2018; Zhang
et al., 2018).

Structured sentiment analysis. Barnes et al.
(2021) formally defines a complete opinion as a
quadruple (h, t, e, p) where h is a holder who ex-
presses a polarity p towards a target t through a
sentiment expression e. Figure 1 presents examples
of opinion quadruples. On the basis of this defi-
nition, Barnes et al. (2022) formally establishes a
benchmark for structured sentiment analysis. This
benchmark consists of two tracks, the monolingual
track and the crosslingual track, and we participate
the monolingual track.

In this paper, we cast this task as a span-relation
extraction problem (Jiang et al., 2020), which is a
formalization that has been widely used in many

Figure 1: Examples of opinion quadruples (Barnes et al.,
2021).

information extraction tasks (Eberts and Ulges,
2019; Xu et al., 2021; Lu and Ng, 2021; Li et al.,
2021). With the span-relation formalization, opin-
ion quadruple extraction is divided into two stages.

• In the first stage, we extract “meaningful” text
spans and recognize their types. Specifically
for this task, the type space is {h, t, e}. For
those spans classified as e, we additionally
detect the sentiment polarity they express.

• In the second stage, we determine the rela-
tions between spans. The relation space is
set to {eh, et, ee, none}. eh and eh are used
to facilitate the matching of sentiment expres-
sions, holders, and targets during the decoding
process. ee is used to deal with discontinuous
sentiment expressions, which is inspired by
(Li et al., 2021).

In addition, we employ span pruning (Xu et al.,
2021) to reduce the computation of the second
stage. Finally, opinion quadruples are decoding
from the results of two stages. Our system achieves
competitive results and ranks among the top-10
systems in almost subtasks.

2 Related Work

Span extraction is a fundamental method for many
tasks, such as named entity recognition, aspect-
level sentiment analysis, etc. This method per-
forms element extraction by enumerating all possi-
ble spans and then determining the type of spans.
Xu et al. (2017) attempts to determine the type of
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spans by encoding all possible spans into a rep-
resentation of the same size. Sohrab and Miwa
(2018) also enumerate all potential spans and then
use a deep network to classify them. Luan et al.
(2019) leverage the coreference and relation type
confidences to enhance the representation of spans.
Tan et al. (2020) added the task of span boundary
detection to improve the sensitivity of the model
to span boundaries. This approach was able to
produce higher quality candidate spans.

Span-relation extraction for sentiment tasks fo-
cuses on extracting categories of spans and rela-
tionships between spans, such as extracting rela-
tionships between entities and extracting aspect
sentiment triplet. Peng et al. (2020) try to solve the
aspect sentiment triplet extraction problem using
a two-stage pipeline. The first stage extracts the
target as well as its polarity and opinion, using the
BIOES annotation method.The second stage then
couples the extracted target and opinion terms to
determine their paired sentiment relation. How-
ever, This method may suffer from the problem of
error propagation. End-to-end methods(Wu et al.,
2020; Xu et al., 2020) can extract both span and
their relationships. However, previous work has
usually used word-to-word interactions to predict
sentiment relationships. The disadvantage of this
approach is that it ignores the sentiment consis-
tency of the entire span. The method proposed by
Xu et al. (2021) can accurately enumerate all the
span representations with high likelihood and then
predict the sentiment relationship between them.
This approach can mitigate the impact of errors in
the span extraction step on subsequent relationship
prediction, while it also preserves the sentiment
consistency of the entire span when predicting rela-
tionships

3 Our System

Given the input text, we first obtain its contextual-
ized representation through a pre-trained language
model, BERT (Devlin et al., 2019) or RoBERTa
(Liu et al., 2019). Then we input the contextual-
ized representation into the span module and the
relation module in turn to extract spans and detect
relations.

3.1 Span Module

Span module roughly follows the idea of Tan et al.
(2020). First we employ two binary classifiers to
detect the start and end position of the “meaning-

ful” spans respectively. Then another classifier is
adopted to match the start and end positions and
determine the category.

3.1.1 Start and End Prediction
Suppose H ∈ Rn×d is the contextualized represen-
tation output by the language model, where n is
the length of the input text. Then We calculate the
probability of each position being the start or end
position:

Pstart = sigmoid(H ·Wstart) ∈ Rn×1, (1)

Pend = sigmoid(H ·Wend) ∈ Rn×1. (2)

where Wstart,Wend ∈ Rd×1 are learnable parame-
ters. Afterwards, we can decode the candidate start
and end positions:

Istart(>t) = {i | P (i)
start > t, i = 1, · · · , n}, (3)

Iend(>t) = {i | P (i)
end > t, i = 1, · · · , n}, (4)

where threshold t ∈ (0, 0.5] is hyper-parameter.

3.1.2 Start-End Matching and Classification
We adopt a classifier to match the start and end
positions and determine the category. If the start
position i ∈ Istart(>t) and the end position j ∈
Iend(>t) satisfy i ≤ j, then we predict the category
of span (i, j):

rij = [hi;hj ; fwidth(i, j)] ∈ R3d, (5)

P (i,j)
span = softmax(FFNNs(rij)) ∈ R4, (6)

where fwidth(i, j) ∈ Rd denotes a learnable em-
bedding based on width j− i, and FFNN denotes a
feed-forward neural network with non-linear activa-
tion. The span category space is {h, t, e, invalid},
where h denotes the opinion holder, t denotes the
opinion target, and e denotes the sentiment expres-
sion.

For those spans classified as e, we predict its
sentiment polarity additionally:

P
(i,j)
polarity = softmax(FFNNp(rij)) ∈ R3, (7)

where the polarity space is {POS,NEG,NEU}.

3.2 Relation Module
Relation module aims to determine the relations
between spans. For a span pair, we first construct
a relation representation based on the span repre-
sentations and then feed it into a relation classifier.
Notice that we employ span pruning (Xu et al.,
2021) to reduce the computation.
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Language Pretrained Model
English roberta-large (Liu et al., 2019)
Spanish BSC-TeMU/roberta-base-bne (Gutiérrez-Fandiño et al., 2021)
Norwegian pere/norwegian-roberta-base
Basque ixa-ehu/berteus-base-cased (Agerri et al., 2020)
Catalan BSC-TeMU/roberta-base-ca (Armengol-Estapé et al., 2021)

Table 1: Pretrained language model for 5 different languages.

3.2.1 Span Pruning
Considering the large number of the predicted
spans, it is not computationally practical to con-
sider all possible pairwise relations. Following Xu
et al. (2021), we prune spans in the relation clas-
sification stage. The holder, target, and sentiment
expression candidates are selected based on the
scores of the mention types for each span:

Φ
(i,j)
holder = P (i,j)

span(m = h), (8)

Φ
(i,j)
target = P (i,j)

span(m = t), (9)

Φ
(i,j)
expression = P (i,j)

span(m = e). (10)

We use the mention scores Φsource, Φtarget and
Φexpressionto select the top k candidates and obtain
the holder candidate pool Sh, the target candidate
pool St, and the sentiment expression candidate
pool Se, respectively. The value of k is related to
the length of the sentence n:

k = max(n · z, kmin), (11)

where z, kmin are hyper-parameters.

3.3 Datasets

Language Domain Train Dev Test
MPQA English news 5873 2063 2112
DSUnis English e-commerce 2252 232 318
OpenNEREN English hotel 1745 250 499
OpenNERES Spanish hotel 1439 206 410
NoReCFine Norwegian multi-domain 8634 1531 1272
MultiBEU Basque hotel 1064 152 305
MultiBCA Catalan hotel 1174 168 335

Table 2: Data statistics.

3.3.1 Relation Classification
For most datasets, we only detect two
relations, expression-holder and
expression-holder. For datasets with
discontinuous sentiment expressions, we detect
expression-expression relation addition-
ally. We obtain the candidate pair representation by

coupling each expression candidate representation
sea,b with the other candidate representation. For
an expression candidate (a, b) ∈ Se and a holder
candidate (c, d) ∈ Sh, their pair representation is:

ge,h(a,b),(c,d) =[ra,b; rc,d; fdistance(a, b, c, d)

fcontext(a, b, c, d); ftype(e); ftype(h)]

where fdistance ∈ Rd denotes a learnable embed-
ding based distancemin(|b−c|, |a−d|), fcontext ∈
Rd is obtained by performing max-pooling oper-
ation on the context between the two spans, and
ftype is a learnable embedding for indicating the
span type. We construct ge,t, ge,e in a similar way.

Then we input the pair representation to a feed-
forward neural network to determine the sentiment
relation:

P
((a,b),(c,d))
relation = softmax(FFNNr(g

e,h
(a,b),(c,d))),

where the relation space is {eh, et, ee, none}.

3.4 Training
During training, we utilize the cross-entropy func-
tion to calculate the loss of start & end prediction,
span classification(SC), polarity classification(PC),
and relation classification(RC). The overall opti-
mization objective is to minimize the summation
of these losses:

L = LS + LE + LSC + LPC + LRC . (12)

3.5 Sentiment Structure Decoding
We first decode the sentiment expressions and their
sentiment polarities from the results of the span
module. Then we obtain the holder candidate pool
and the target candidate pool by span pruning. For
each sentiment expression, we determine whether
it has a relation with each holder candidate and tar-
get candidate. Finally, the opinion quadruplets are
produced based on the result of the relation classi-
fication. In addition, for discontinuous sentiment
expressions, sentiment expressions are merged ac-
cording to the relation between sentiment expres-
sions.
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Model MPQA DSUnis OpenNEREN OpenNERES NoReCFine MultiBEU MultiBCA

head first 17.40 25.00 - - 29.50 56.80 54.70
head final 18.80 26.50 - - 31.20 53.70 54.70
Span-Relation 35.00(9) 44.90(4) 70.30(8) 64.20(10) 21.30(21) 63.90(10) 63.50(12)

Table 3: Results on the test dataset (Sentiment Graph F1, %).

4 Experiments

The monolingual track (Barnes et al., 2022) pro-
vides 7 structured sentiment datasets in five lan-
guages. Their statistics are listed on Table 2.

It is worth noting that there are discontinuous
spans in the NoReCFine and DSUnis datasets. For
example, in “It looks again like UMUC will do any-
thing for money”, “looks again” and “do anything”
are annotated as the same sentiment expression.

4.1 Experiment Settings
We use BERT or RoBERTa as the text encoders.
Since this task has datasets in different languages,
different pre-training models are used for different
language, which is detailed in Table 1.

We used Adam as our optimizer. The maximum
number of epochs is set to 15, z is set to 0.3, and
kmin is set to 5. We train our model on the training
set and keep the model that performs best on the
validation set. We evaluate our model on Senti-
ment Graph F1 (Barnes et al., 2021) and compare
our model with sentiment graph approaches (Head-
first/Head-final) (Barnes et al., 2021).

4.2 Main Results
The comparison results of opinion quadruple ex-
traction are listed in Table 3. According to these
results, our approach achieves better performance
on most datasets than baselines, especially on
MPQA exceeding baseline by 16.2%. This demon-
strates the effectiveness of our approach for opinion
quadruple extraction.

4.3 Ablation Study

Model MPQA DSUnis OpenNEREN

Full Model 40.67 40.04 72.38
w/o fwidth 37.50 37.40 71.14
w/o fdistance 38.83 36.42 71.46
w/o fcontext 37.54 39.47 69.39

Table 4: Ablation results on the dev dataset.

We conduct an ablation study to examine the
impact of some components in the proposed model

and list the results in Table 4. It can be observed
that the removal of width embedding, position em-
bedding, and context all degrade the performance,
indicating their necessity.

Model OpenNERES NoReCFine MultiBEU MultiBCA

62.40 23.26 61.53 54.26
w mBERT 61.62 36.22 57.17 63.35

Table 5: Effect of mBERT representations.

In addition, we also compare the performance
of the multilingual pre-trained model mBERT(bert-
base-multilingual-cased)(Devlin et al., 2019) for
this task. To this end, we compare the experimen-
tal performance of monolingual pre-trained mod-
els with mBERT on minor language datasets and
list the results in Table 5. It can be observed that
mBERT achieves similar performance to the mono-
lingual pre-trained model for most minor languages.
In addition, for the Norwegian and Catalan datasets,
the performance of the models with mBERT im-
proves considerably, which may be due to the lack
of corpus in these two languages when training the
monolingual pre-trained models.

5 Conclusions

This paper describes our system for structured sen-
timent analysis. We formalize the task as a span-
relation extraction problem and propose a two-
stage extraction approach, which consists of a span
module and a relation module. Experimental re-
sults demonstrate the effectiveness of our approach.
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Abstract

We present the findings of SemEval-2022 Task
11 on Multilingual Complex Named Entity
Recognition MULTICONER.1 Divided into 13
tracks, the task focused on methods to identify
complex named entities (like media titles, prod-
ucts, and groups) in 11 languages in both mono-
lingual and multi-lingual scenarios. Eleven
tracks were for building monolingual NER
models for individual languages, one track fo-
cused on multilingual models able to work
on all languages, and the last track featured
code-mixed texts within any of these languages.
The task used the MULTICONER dataset, com-
posed of 2.3 million instances in Bangla, Chi-
nese, Dutch, English, Farsi, German, Hindi, Ko-
rean, Russian, Spanish, and Turkish. Results
showed that methods fusing external knowl-
edge into transformer models achieved the best
performance. The largest gains were on the Cre-
ative Work and Group entity classes, which are
still challenging even with external knowledge.
MULTICONER was one of the most popular
tasks in SemEval-2022 and it attracted 377 par-
ticipants during the practice phase. The final
test phase had 236 participants, and 55 teams
submitted their systems.

1 Introduction

Processing complex and ambiguous Named En-
tities (NEs) is a challenging NLP task in practi-
cal and open-domain settings but has not received
sufficient attention from the research community.
Complex NEs, like the titles of creative works
(movie/book/song/software names) are not simple
nouns and are harder to recognize (Ashwini and
Choi, 2014). They can take the form of any lin-
guistic constituent, like an imperative clause (“Dial
M for Murder”), and do not look like traditional
NEs (Person names, locations, organizations). This
ambiguity makes it challenging to recognize them

∗These authors contributed equally to this work.
1https://multiconer.github.io/

based on their context. Such titles can also be se-
mantically ambiguous, e.g. “On the Beach” can
be a preposition or refer to a movie.2 Finally, such
entities usually grow at a faster rate than traditional
categories, and emerging entities pose yet another
challenge.

Neural models (e.g. Transformers) have pro-
duced high scores on benchmark datasets like
CoNLL03/OntoNotes (Devlin et al., 2018). How-
ever, as noted by Augenstein et al. (2017), these
scores are driven by the use of well-formed news
text, the presence of “easy” entities (e.g. person
names), and memorization due to entity overlap
between train/test sets; these models perform sig-
nificantly worse on complex/unseen entities (Meng
et al., 2021; Fetahu et al., 2021). Researchers us-
ing NER on downstream tasks have also noted that
a significant proportion of their errors are due to
NER systems failing to recognize complex enti-
ties (Luken et al., 2018; Hanselowski et al., 2018).
Examples of such challenges are highlighted in
Table 1.

For this task, we created the MULTICONER
dataset (Malmasi et al., 2022) to address the afore-
mentioned challenges. MULTICONER provides
data from three domains (Wikipedia sentences,
questions, and search queries) across 11 different
languages, which are used to define 11 monolin-
gual subsets of the shared task. Additionally, the
dataset has multilingual and code-mixed subsets.

We received 1,884 submissions from 55 teams
during the test phase and 34 system description
papers were submitted. Results showed that usage
of external data and ensemble strategies played a
crucial role in the strong performance on in-domain
data and also contributed to domain adaptation.
External knowledge brought large improvements
on classes containing names of creative works and
groups, allowing these systems to achieve the best
overall performance.

2https://www.imdb.com/title/tt0053137
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Challenge Description
Complex Entities
Relevant to all
domains

Not all entities are proper names: some types (e.g. creative works) can be linguistically com-
plex. They can be complex noun phrases (Eternal Sunshine of the Spotless Mind), gerunds
(Saving Private Ryan), infinitives (To Kill a Mockingbird), or full clauses (Mr.Smith Goes

to Washington). Syntactic parsing of such nouns is hard, and most current parsers/NER systems
fail to recognize them. The top system from WNUT 2017 achieved 8% recall for creative work
entities (Aguilar et al., 2017). Effective evaluation requires corpora with many such entities.

Ambiguous Entities
and Contexts
Particularly for voice
and search domains

Some NEs are ambiguous: they are not always entities, e.g. “Inside Out”, “Among Us”, and
“Bonanza” may refer to NEs (a movie, video game, and TV show) in some contexts, but not in
others. Such NEs often resemble regular syntactic constituents. News texts have long sentences
discussing many entities, but other use cases (search queries, questions) have shorter inputs. Data
with minimal context is needed to assess performance of such use cases. Capitalization/punctuation
features are large drivers of success in NER (Mayhew et al., 2019), but short inputs (ASR, queries)
often lack such surface features. An uncased evaluation is needed to assess model performance.

Emerging Entities
For domains with
growing entities

All entity types are open classes (new ones are added), but some groups have a faster growth rate,
e.g. new books/songs/movies are released weekly resulting in a long-tail distribution. Assessing
true generalization requires test sets with many unseen entities, to mimic an open-world setting.

Table 1: Challenges not tackled by current work/datasets, but addressed by the MULTICONER task and data.

2 MultiCoNER Dataset

The MULTICONER dataset was designed to ad-
dress the NER challenges described in §1. It repre-
sents three domains (wiki sentences, questions, and
search queries) and includes 11 languages, plus
multilingual and code-mixed subsets. For a de-
tailed description of the MultiCoNER dataset, we
refer the reader to the dataset paper (Malmasi et al.,
2022). The dataset is publicly available.3

2.1 NER Taxonomy
MULTICONER leverages the WNUT 2017 (Der-
czynski et al., 2017a) taxonomy entity types, which
defines the following NER tag-set with six classes:

1. PER: Names of people
2. LOC: Location or physical facilities
3. CORP: Corporations and businesses
4. GRP: All other groups
5. PROD: Consumer products
6. CW: Titles of creative works like movie, song,

and book titles

This taxonomy allows us to capture a wide ar-
ray of entities, including those with more complex
entity structures, such as creative works.

2.2 Languages and Subsets
Eleven languages are included in MULTICONER:

1. Bangla (BN)
2. Chinese (ZH)
3. Dutch (NL)

3https://registry.opendata.aws/
multiconer

4. English (EN)

5. Farsi (FA)

6. German (DE)

7. Hindi (HI)

8. Korean (KO)

9. Russian (RU)

10. Spanish (ES)

11. Turkish (TR)

These languages were chosen to include a diverse
typology of languages and writing systems, and
range from well-resourced (EN) to low-resourced
ones (FA).

MULTICONER contains 13 different subsets:
11 monolingual subsets for the above languages,
a multilingual subset (denoted as MULTI), and a
code-mixed one (MIX).

Monolingual Subsets Each of the 11 languages
has its own subset, which includes data from all
three domains.

Multilingual Subset This contains randomly
sampled data from all the languages mixed into
a single subset. This subset is designed for evalu-
ating multilingual models, and should ideally be
used under the assumption that the language for
each sentence is unknown.

Code-mixed Subset This subset contains code-
mixed instances, where the entity is from one lan-
guage and the rest of the text is written in another
language. Like the multilingual subset, this subset
should also be used under the assumption that the
languages present in an instance are unknown.
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Class Split EN DE ES RU NL KO FA ZH HI TR BN MULTI MIX

PER
Train 5,397 5,288 4,706 3,683 4,408 4,536 4,270 2,225 2,418 4,414 2,606 43,951 296
Dev 290 296 247 192 212 267 201 129 133 231 144 2,342 96
Test 55,682 55,757 51,497 44,687 49,042 39,237 35,140 26,382 25,351 26,876 24,601 111,346 19,313

LOC
Train 4,799 4,778 4,968 4,219 5,529 6,299 5,683 6,986 2,614 5,804 2,351 54,030 325
Dev 234 296 274 221 299 323 324 378 131 351 101 2,932 108
Test 59,082 59,231 58,742 54,945 63,317 52,573 45,043 43,289 31,546 34,609 29,628 141,013 23,111

GRP
Train 3,571 3,509 3,226 2,976 3,306 3,530 3,199 713 2,843 3,568 2,405 32,846 248
Dev 190 160 168 151 163 183 164 26 148 167 118 1,638 75
Test 41,156 40,689 38,395 37,621 39,255 31,423 27,487 18,983 22,136 21,951 19,177 77,328 16,357

CORP
Train 3,111 3,083 2,898 2,817 2,813 3,313 2,991 3,805 2,700 2,761 2,598 32,890 294
Dev 193 165 141 159 163 156 160 192 134 148 127 1,738 112
Test 37,435 37,686 36,769 35,725 35,998 30,417 27,091 25,758 21,713 21,137 20,066 75,764 18,478

CW
Train 3,752 3,507 3,690 3,224 3,340 3,883 3,693 5,248 2,304 3,574 2,157 38,372 298
Dev 176 189 192 168 182 196 207 282 113 190 120 2,015 102
Test 42,781 42,133 43,563 39,947 41,366 33,880 30,822 30,713 21,781 23,408 21,280 89,273 20,313

PROD
Train 2,923 2,961 3,040 2,921 2,935 3,082 2,955 4,854 3,077 3,184 3,188 35,120 316
Dev 147 133 154 151 138 177 157 274 169 158 190 1,848 117
Test 36,786 36,483 36,782 36,533 36,964 29,751 26,590 28,058 22,393 21,388 20,878 75,871 20,255

#sentences
Train 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 15,300 168,300 1,500
Dev 800 800 800 800 800 800 800 800 800 800 800 8,800 500
Test 217,818 217,824 217,887 217,501 217,337 178,249 165,702 151,661 141,565 136,935 133,119 471,911 100,000

Table 2: MULTICONER dataset statistics for the different languages for the Train/Dev/Test splits. For each NER
class we show the total number of entity instances per class on the different data splits. The bottom three rows show
the total number of sentences for each language.

2.3 Dataset Creation

The MultiCoNER dataset consists of 11 languages,
and three domains (encyclopedia sentences, ques-
tions from QA, and Web queries). A detailed
overview of the MultiCoNER dataset is provided
in the dataset paper (Malmasi et al., 2022).

LOWNER: represents the encyclopedic sen-
tences extracted from the different localized ver-
sions of Wikipedia. We select low-context sen-
tences and the interlinked entities are resolved to
the entity types using Wikidata as a reference, ac-
cording to the NER class taxonomy from (Derczyn-
ski et al., 2017b). Manual inspection of 400 sam-
pled English sentences shows that the NER gold
labels are 94% accurate.

MSQ-NER: from the MS-MARCO Q&A cor-
pus (Bajaj et al., 2016) question templates are ex-
tracted by replacing the entities with their NER
type (from the MultiCoNER NER taxonomy). En-
tities in a question are identified using spaCy.4 The
templates are translated from English into the rest
of the languages.

ORCAS-NER: similar ot MSQ-NER, templates
from Web user queries are extracted from the OR-
CAS dataset (Craswell et al., 2020). The templates
are translated into the respective languages, and fi-
nally, multiple instances are constructed from each
template by simply replacing the template slots
with actual named entities in the target languages.

4https://spacy.io/

2.4 Dataset Statistics

Table 2 shows some statistics of the dataset. For
all the tracks, we have released 15,300 training and
800 development instances. In the training splits,
the absolute majority of instances are from the
Wikipedia domain (i.e. LOWNER), whereas a small
number of 100 instances are domain-adaptation
data, with 50 instances coming from the Web Ques-
tions (i.e. MSQ-NER) and Web Query (i.e. ORCAS-
NER) domains, respectively.

The test splits on the other hand are much larger.
This is done for mainly two reasons: (1) to be able
to assess the generalizability of NER models on
unseen and complex entities, and (2) to assess the
cross-domain adaptation performance of NER mod-
els. For practical reasons, we cap the number of test
instances to be at a maximum of 200k per subset,
with the exception of the Code-Mixed and Mul-
tilingual subsets. The Multilingual test split was
generated from the language-specific test splits and
was downsampled to contain only 471k instances.
On the other hand, for the Code-Mixed subset, we
sample test sentences from the language-specific
test split, and replace the original entity surface
forms with the surface form of the entity in another
language, picked at random.

More details on the dataset construction process
are available in Malmasi et al. (2022).
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3 Task Description and Evaluation

The shared task is composed of 11 monolingual
and 2 multilingual tracks. The monolingual tracks
invited participants to build monolingual models
for 11 languages addressed by the shared task. The
multilingual track invited multilingual models capa-
ble of identifying entities from monolingual texts
from any of the 11 languages. The code-mixed
track called for models to identify entities in mixed-
language texts (any language pair from the 11 lan-
guages). That means the multilingual models for
multilingual and code mixed tracks should be able
to process texts from any language and show com-
petitive performance for all the languages.

We used the macro-averaged F1 scores to eval-
uate and rank systems. Additionally, we report
precision, recall, and per-domain performance.

4 Baseline System

We train and evaluate a baseline NER system us-
ing on XLM-RoBERTa (XLM-R) (Conneau et al.,
2020), a multilingual Transformer model. The
XLM-R model computes a representation for each
token, which is then used to predict the token tag us-
ing a CRF classification layer (Sutton et al., 2012).

The XLM-R baseline is highly suited for multi-
lingual application scenarios, such as our. It sup-
ports up to 100 languages and provides a solid
baseline upon which the participants can build. The
baseline was trained with a learning rate of 2e− 5
and a maximum number of 50 epochs, with an early
stopping criterion of a non-decreasing validation
loss for 5 epochs. The code and scripts for the
baseline system were provided to the participants
to use its functionalities and further extend it with
their approaches.5

5 Participating Systems and Results

We have received submissions from 55 different
teams. Among the monolingual tracks, we have
observed the highest participation of 30 teams in
the English track. Ordered by the number of
participating teams, the other monolingual tracks
are Chinese (21), Bangla (18), Spanish
(18), Hindi (17), Korean (17), German (16),
Dutch (15), Farsi (15), Turkish (15), and
Russian (14). The number of participating teams
for the Multilingual and Code-mixed tracks are 25

5
https://github.com/amzn/multiconer-baseline

and 21, respectively. Table 3 shows the final rank-
ings for all tracks. Detailed performance break-
down is available in Appendix A.

Most of the top-performing teams aimed at build-
ing their system targeting the multilingual track,
and then retrained it for the other tracks separately
and made submissions to all the 13 tracks. There-
fore, in the rest of this section, we will first discuss
the approaches by focusing on the multilingual
track. Then, we will discuss teams that built their
systems for one or more monolingual tracks. Fi-
nally, we will summarize the methods (e.g. lan-
guage models, toolkits) and resources used.

5.1 Top Multilingual Systems

DAMO-NLP (Wang et al., 2022) ranked 1st in the
multilingual (MULTI) track and all the monolin-
gual tracks except BN (2nd) and ZH (4th). Given
a text, they used a knowledge retrieval module to
retrieve K most relevant paragraphs from a knowl-
edge base (i.e. Wikipedia). Paragraphs were con-
catenated together with the input, and token repre-
sentations were passed through a CRF to predict
the labels. They employed multiple such XLM-
RoBERTa models with random seeds and then used
a voting strategy to make the final prediction.
USTC-NELSLIP (Chen et al., 2022a) ranked

1st in three tracks (MIX, ZH, BN), and 2nd for all
the other tracks. The average performance gap be-
tween USTC-NELSLIP and DAMO-NLP is≈3%
for all the 13 tracks. USTC-NELSLIP aimed at
fine-tuning a Gazetteer enhanced BiLSTM network
in such a way that the representation produced
for an entity has similarity with the representation
produced by a pre-trained language model (LM).
They developed a two-step process with two par-
allel networks, where a Gazetteer-BiLSTM uses
a Gazetteer search to produce one-hot labels for
each token in a given text and a BiLSTM produces
a dense vector representation for each token. An-
other network uses a frozen XLM-RoBERTa to
produce an embedding vector for each token. A
KL divergence loss is applied to make the Gazetteer
network’s output similar to the LM. These two net-
works are jointly trained together again and their
outputs are fused together for the final prediction.
QTrade AI (Gan et al., 2022) ranked 3rd in

MULTI, 4th in MIX, and 8th in ZH. They used an
XLM-RoBERTa encoder and applied sample mix-
ing for data augmentation, along with adversarial
training through data noising. For the multilingual
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English (EN) 16 Sartipi-Sedighin 0.584 14 CSECU-DSG 0.558 4 RACAI 0.663
Team F1 Russian (RU) 15 BASELINE 0.522 5 Infrrd.ai 0.64

1 DAMO-NLP 0.912 Team F1 16 B.E.P. 0.513 6 YNUNLP 0.638
2 USTC-NELSLIP 0.855 1 DAMO-NLP 0.915 German (DE) 7 Sliced 0.63
3 PAI 0.784 2 USTC-NELSLIP 0.838 Team F1 8 Team Atreides 0.598
4 ML-HUB 0.781 3 RACAI 0.746 1 DAMO-NLP 0.906 9 brotherhood 0.586
5 RACAI 0.758 4 Sliced 0.737 2 USTC-NELSLIP 0.89 10 MaChAmp 0.565
6 Infrrd.ai 0.747 5 YNUNLP 0.73 3 RACAI 0.794 11 MarSan 0.542
7 EURECOM 0.746 6 MaChAmp 0.724 4 Sliced 0.789 12 EURECOM 0.526
8 Sliced 0.745 7 brotherhood 0.703 5 MaChAmp 0.784 13 AaltoNLP 0.518
9 MaChAmp 0.745 8 NetEase.AI 0.698 6 YNUNLP 0.773 14 silpa_nlp 0.514
10 Raccoons 0.742 9 EURECOM 0.682 7 L3i 0.772 15 CSECU-DSG 0.505
11 YNUNLP 0.732 10 MarSan 0.675 8 ML-HUB 0.761 16 B.E.P. 0.451
12 LMN 0.725 11 L3i 0.667 9 brotherhood 0.759 17 L3i 0.448
13 brotherhood 0.724 12 CSECU-DSG 0.631 10 Infrrd.ai 0.759 18 Enigma 0.427
14 L3i 0.72 13 B.E.P. 0.6 11 EURECOM 0.744 19 BASELINE 0.394
15 Multilinguals 0.717 14 BASELINE 0.596 12 MarSan 0.731 Multilingual (MULTI)
16 KDDIE 0.717 15 AutoNER 0.527 13 CSECU-DSG 0.725 Team F1
17 MarSan 0.715 Turkish (TR) 14 AaltoNLP 0.714 1 DAMO-NLP 0.853
18 Cardiff NLP 0.709 Team F1 15 PA Ph&Tech 0.667 2 USTC-NELSLIP 0.853
19 Lone Wolf 0.698 1 DAMO-NLP 0.887 16 B.E.P. 0.666 3 QTrade AI 0.777
20 MIDAS 0.696 2 USTC-NELSLIP 0.855 17 BASELINE 0.637 4 SeqL 0.755
21 UC3M-PUCPR 0.692 3 SU-NLP 0.72 Chinese (ZH) 5 CMB AI Lab 0.737
22 CSECU-DSG 0.692 4 RACAI 0.704 Team F1 6 UM6P-CS 0.725
23 Sartipi-Sedighin 0.675 5 Sliced 0.688 1 USTC-NELSLIP 0.817 7 RACAI 0.721
24 Enigma 0.672 6 MaChAmp 0.676 2 CASIA 0.797 8 Cardiff NLP 0.717
25 DANGNT-SGU 0.669 7 YNUNLP 0.668 3 OPDAI 0.795 9 Sliced 0.711
26 AaltoNLP 0.668 8 ML-HUB 0.658 4 DAMO-NLP 0.781 10 IIE_KDSEC 0.709
27 SPDB I.L. 0.651 9 L3i 0.643 5 NetEase.AI 0.778 11 B.E.P. 0.707
28 silpa_nlp 0.634 10 MarSan 0.611 6 CMB AI Lab 0.764 12 OPDAI 0.695
29 B.E.P. 0.632 11 brotherhood 0.597 7 NCUEE-NLP 0.742 13 brotherhood 0.694
30 BASELINE 0.614 12 EURECOM 0.566 8 QTrade AI 0.74 14 MarSan 0.693
31 AutoNER 0.557 13 CSECU-DSG 0.553 9 CSECU-DSG 0.672 15 Infrrd.ai 0.692

Spanish (ES) 14 Sartipi-Sedighin 0.527 10 Multilinguals 0.669 16 HaveNoIdea 0.688
Team F1 15 BASELINE 0.463 11 L3i 0.669 17 EURECOM 0.681

1 DAMO-NLP 0.899 16 B.E.P. 0.45 12 Sliced 0.652 18 MaChAmp 0.677
2 USTC-NELSLIP 0.854 Korean (KO) 13 Infrrd.ai 0.647 19 YNUNLP 0.668
3 RACAI 0.756 Team F1 14 MaChAmp 0.638 20 DS4DH 0.652
4 Infrrd.ai 0.753 1 DAMO-NLP 0.886 15 EURECOM 0.634 21 UPB 0.647
5 MaChAmp 0.752 2 USTC-NELSLIP 0.864 16 RACAI 0.627 22 CSECU-DSG 0.644
6 Sliced 0.751 3 RACAI 0.717 17 YNUNLP 0.614 23 NSU-AI 0.642
7 YNUNLP 0.732 4 CMB AI Lab 0.707 18 brotherhood 0.609 24 SPDB I.L. 0.632
8 brotherhood 0.707 5 Sliced 0.707 19 MarSan 0.566 25 L3i 0.612
9 L3i 0.689 6 YNUNLP 0.703 20 SPDB I.L. 0.557 26 BASELINE 0.478
10 PA Ph&Tech 0.689 7 C-3PO 0.675 21 B.E.P. 0.528 Code-Mixed (MIX)
11 MarSan 0.683 8 UA-KO 0.675 22 BASELINE 0.513 Team F1
12 SPDB I.L. 0.673 9 brotherhood 0.674 Hindi (HI) 1 USTC-NELSLIP 0.929
13 CSECU-DSG 0.656 10 Infrrd.ai 0.673 Team F1 2 DAMO-NLP 0.918
14 EURECOM 0.628 11 MaChAmp 0.654 1 DAMO-NLP 0.862 3 CMB AI Lab 0.846
15 Multilinguals 0.612 12 EURECOM 0.65 2 USTC-NELSLIP 0.846 4 QTrade AI 0.844
16 Sartipi-Sedighin 0.607 13 L3i 0.627 3 RACAI 0.681 5 SeqL 0.803
17 B.E.P. 0.601 14 MarSan 0.623 4 Sliced 0.67 6 IIE_KDSEC 0.796
18 BASELINE 0.578 15 CSECU-DSG 0.621 5 NetEase.AI 0.666 7 RACAI 0.794
19 UC3M-PUCPR 0.568 16 AaltoNLP 0.618 6 Infrrd.ai 0.657 8 UM6P-CS 0.792

Dutch (NL) 17 B.E.P. 0.59 7 brotherhood 0.642 9 EURECOM 0.776
Team F1 18 BASELINE 0.552 8 YNUNLP 0.634 10 OPDAI 0.775

1 DAMO-NLP 0.905 Farsi (FA) 9 OPDAI 0.629 11 YNUNLP 0.768
2 USTC-NELSLIP 0.877 Team F1 10 MaChAmp 0.617 12 UC3M-PUCPR 0.764
3 RACAI 0.784 1 DAMO-NLP 0.897 11 CSECU-DSG 0.577 13 brotherhood 0.759
4 Sliced 0.777 2 USTC-NELSLIP 0.871 12 MarSan 0.563 14 MaChAmp 0.745
5 MaChAmp 0.77 3 RACAI 0.704 13 EURECOM 0.528 15 Sliced 0.727
6 Infrrd.ai 0.764 4 Sliced 0.687 14 silpa_nlp 0.515 16 CMNEROne 0.704
7 YNUNLP 0.758 5 YNUNLP 0.672 15 B.E.P. 0.499 17 L3i 0.687
8 brotherhood 0.73 6 brotherhood 0.657 16 L3i 0.497 18 Cardiff NLP 0.681
9 PA Ph&Tech 0.721 7 C-3PO 0.655 17 Enigma 0.486 19 B.E.P. 0.68
10 MarSan 0.711 8 L3i 0.651 18 BASELINE 0.482 20 SPDB I.L. 0.673
11 L3i 0.71 9 MarSan 0.621 Bangla (BN) 21 MarSan 0.67
12 CSECU-DSG 0.679 10 MaChAmp 0.607 Team F1 22 CSECU-DSG 0.64
13 EURECOM 0.667 11 AaltoNLP 0.589 1 USTC-NELSLIP 0.842 23 BASELINE 0.581
14 B.E.P. 0.632 12 Sartipi-Sedighin 0.577 2 DAMO-NLP 0.835
15 BASELINE 0.62 13 EURECOM 0.559 3 NetEase.AI 0.709

Table 3: Ranking for all of the tracks based on Macro F1. Full forms of the team names “B.E.P.” and “SPDB I.L.”
are BaselineExtendinPokemons and SPDB Innovation Lab, respectively.
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track, they leveraged an architecture with shared
and per-language representations. Finally, they cre-
ated an ensemble of models trained with different
approaches.
SeqL (Hassan et al., 2022) ranked 4th in MULTI

5th in MIX. They train seven XLM-RoBERTa-large
and Infoxlm-large models and then used an ensem-
ble approach with voting and score fusion to predict
the final labels. They found that the ensemble ap-
proach is slightly better than the best single model,
and score fusion worked better than simple voting.
CMB AI Lab (PU et al., 2022) ranked 5th in

MULTI, 3rd in MIX, 4th in KO, and 6th in ZH. They
first utilized a biaffine layer to identify potential
entity spans in a sentence, and the extracted spans
are then processed with another classifier to obtain
their class label. Finally, an ensemble is created by
combining different pre-trained encoders and data
augmentation techniques based on translations of
the original training data. In terms of pre-trained
LMs, they used XLM-RoBERTa and mT5.

5.2 Other Noteworthy Systems

RACAI (Pais, 2022) (3rd in ES, NL, RU, KO, FA,
DE, HI; 4th in BN, TR; 5th in EN; 7th in MULTI,
MIX; 16th in ZH) used XLM-RoBERTa as pre-
trained LM and a lateral inhibition layer inspired
by the biological mechanism of lateral inhibition.
They achieved strong performance in most of the
tracks without using any external data.
Sliced (Plank, 2022) (4th in NL, RU, FA, DE,

HI; 5th in KO, TR; 6th in ES; 7th in BN; 8th in
EN; 9th in MULTI; 12th in ZH; 15th in MIX) used
the MaChAmp toolkit (van der Goot et al., 2021)
that enables easy exchange of pre-trained LMs for
fine-tuning as well as multi-task learning. Within
this framework, they have experimented with four
different pre-trained LMs and found that XLM-
RoBERTa is more efficient for training their system
and provides stronger performance.
MaChAmp (van der Goot, 2022) (5th in DE,

ES, NL; 6th in RU, TR; 9th in EN; 10th in FA, BN,
HI; 11th in KO; 14th in ZH, MIX; 18th in MULTI)
first trained a multi-task model on 7 SemEval tasks
and then fine-tuned for each task individually. They
report that such a multi-tasking and fine-tuning
approach is beneficial for a subset of the tasks.
OPDAI (Chen et al., 2022b) (3rd in ZH; 9th in

HI; 10th in MIX; 12th in MULTI) used a hybrid
technique with multiple stages involving model en-
semble using neural model, soft templates, and

Wikipedia lexicons. Their strong performance
in ZH is powered by RoBERTa-wwm (Cui et al.,
2021) pre-trained on Chinese data and Chinese
word embeddings (Song et al., 2018).

CASIA (Fu et al., 2022) only participated in ZH
and ranked 2nd. They built a hybrid system based
on RoBERTa-wwm and used three training mecha-
nisms (adversarial training, child-Tuning training,
and continued pre-training). Additionally, they per-
formed a series of data augmentation steps.
PAI (Ma et al., 2022) (3rd in EN) used string

matching to retrieve entities with types from the
LUKE entity dictionary (Yamada et al., 2020) for
a given text. Then they concatenated the entity
information with the input text and fed it to a pre-
trained BERT model to build the NER system.
SU-NLP (Çarık et al., 2022) only participated in

TR and ranked 3rd. Given an input text, they query
an information retrieval (IR) system that indexes
Wikipedia articles. Retrieved documents are used
as context and a Turkish BERT variant (BERTurk)
is used to encode the context and candidate men-
tions, with classifier heads for NER.
Infrrd.ai (He et al., 2022) participated in nine

tracks (EN, ES, NL, KO, DE, ZH, HI, BN, MULTI)
and their best rank is 4th for ES. They trained a
multilingual model with an XLM-RoBERTa base
encoder, whose embeddings were passed into a
BiLSTM encoder, which finally passed the encoded
tokens to a CRF layer for classification. They also
used an ensemble strategy with majority voting.
UM6P-CS (Mekki et al., 2022) ranked 6th in

MULTI and 8th in MIX. They introduced several
self-training and auxiliary tasks that aim to improve
NER classification performance on top of XLM-
RoBERTa. The auxiliary task of span classification
focused on addressing the mention detection perfor-
mance of the model, which essentially ensures that
the model has good coverage of all named entities,
regardless of their type. In terms of self-training,
the authors predicted weak labels on the unlabelled
test set and concatenated both datasets into one.
The impact of self-training seems to have a sig-
nificant impact with 3% improvement in terms of
Precision, and 2.24% in terms of F1 score.
Multilinguals (Pandey et al., 2022a,b) partici-

pated in EN, ES, and ZH and best rank is 10th in ZH.
They applied a BERT encoder with different clas-
sification heads: a linear layer, a CRF layer, and a
BiLSTM-CRF. BERT and linear approach worked
best for EN. For ES and ZH, they pre-trained BERT
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using the Whole Word Masking (WWM) learning
objective over Wikipedia data and the CRF classifi-
cation head worked best for these tracks.
L3i (Boros et al., 2022) participated in all tracks

and best rank is 7th in DE. They used Sentence-
BERT (Reimers and Gurevych, 2019) to retrieve
the most similar sentence from the training set and
used it as context by adding it to the test text. Their
model consists of a BERT encoder with a Trans-
former layer and a CRF head for classification.
MarSan (Tavan and Najafi, 2022) participated in

all tracks and best rank is 9th in FA. They used T5
(monolingual and multilingual) to create feature
vector for an input text. Then they performed a
subtoken check step to mark the first subword as 1
and others as 0 (Subtoken check increased 4% F1).
At the final stage, a Transformer layer is followed
by a token prediction layer to perform NER.
TEAM-Atreides (Tasnim et al., 2022) only par-

ticipated in BN and ranked 8th. They used an en-
semble of mono-lingual ELECTRA-based models
with majority voting. They also used data augmen-
tation using translation and conducted experiments
with non-contextual word embeddings.

UA-KO (Song and Bethard, 2022) ranked 8th

in the KO track. They used GeoNames and the
Encyclopedia of Korean Culture to incorporate en-
tity names in the training set. Their model uses
an ensemble approach with a soft-voting mecha-
nism, combining the monolingual and multilingual
models’ predictions.
CSECU-DSG (Aziz et al., 2022) participated

in all tracks and the best rank is 9th for ZH. The
authors propose two approaches: (1) a BiLSTM-
CRF that leverages stacked token embeddings from
different sources, and (2) a Transformer-based en-
coder with a feed-forward classification head.
PA Ph&Tech (Lin et al., 2022) participated in

ES, DE, and NL and best rank is 9th for NL. They
used ensemble embedding from multiple transform-
ers and reinforcement learning was also applied to
maximize model accuracy. In an additional setting
(Hou et al., 2022), they experimented with an en-
semble approach, where they leveraged multiple
transformers by assigning different weights in the
transformer layers. Meanwhile, data augmentation
is also applied to enlarge the training data.
Raccoons (Dogra et al., 2022) ranked 10th in

the EN track. They focused on improving word
representations for NER through a reinforcement
trainer. This was done through a task model and

controller that repeatedly interact to update the em-
beddings.
AaltoNLP (Pietiläinen and Ji, 2022) partici-

pated in five tracks (EN, DE, FA, BN, KO) and the
best rank is 11th for FA. Their approach consists
of an ensemble strategy where they train two en-
coders jointly, allowing the models to combine the
scores from the different encoders via a linear layer.
Different models used different random seeds.
LMN (Lai, 2022) ranked 12th in the EN track.

They applied a transfer-based encoder with a feed-
forward classification head with a CRF layer. Their
best variant used the ALBERT-xxlarge model.
They also experimented with entity linking with
Wikipedia and augmenting data with entities of the
same type.
UC3M-PUCPR (Schneider et al., 2022) partic-

ipated in EN, ES, MIX, and their best rank is 12th

for MIX. They have used an ensemble of language-
specific pre-trained LMs with soft-voting to make
the final predictions.
NamedEntityRangers (Miftahova et al., 2022)

ranked 16th in the MULTI track. They used Rem-
BERT and mT5 to experiment with two approaches,
where the first approach is the classical token clas-
sification method and the second method uses
a template-free paradigm in which an encoder-
decoder model translates the input sequence of
words to a special output, encoding named enti-
ties with the predefined label.
CMNEROne (Dowlagar and Mamidi, 2022)

ranked 16th in MIX. Their approach involves fine-
tuning multilingual BERT on code-mixed data. To
learn language-agnostic features, they pre-trained
the model for a downstream task of language iden-
tification using the multilingual dataset.
KDDIE (Martin et al., 2022) only participated in

the EN track and ranked 16th. They experimented
by fine-tuning BERT and DeBERTa-based models
and their best system is a fine-tuned DeBERTa-
XLarge model.

DS4DH (Rouhizadeh and Teodoro, 2022)
ranked 20th in the MULTI track. Their approach
involves fine-tuning different pre-trained LMs
(Multilingual-BERT, XLM-RoBERTa-base, XLM-
RoBERTa-Large, Distilbert-Multilingual) with dif-
ferent classification heads like CRF and fully-
connected layer.
NCUEE-NLP (Lee et al., 2022) ranked 7th

in the ZH track. They used external data col-
lected from MSRA, Weibo, People Daily, Boson,
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Class Baseline DAMO-NLP USTC-NELSLIP QTrade AI
PER 63.88 92.07 (+28) 90.76 (+27) 87.20 (+23)
LOC 51.87 86.52 (+35) 86.81 (+35) 80.79 (+29)
CORP 49.61 84.55 (+35) 87.86 (+38) 77.23 (+28)
PROD 44.36 84.32 (+40) 81.05 (+37) 75.23 (+31)
GRP 39.28 79.90 (+41) 81.52 (+42) 71.66 (+32)
CW 37.68 84.49 (+47) 83.81 (+46) 73.85 (+36)

Table 4: F1 scores of the baseline and top three systems
in the MULTI track for each class.

CLUNER, and LG, and trained a BiLSTM-CRF
model with embeddings from a BERT model pre-
trained on Chinese data.
DANGNT-SGU (Nguyen and Huynh, 2022)

ranked 25th in the EN track by fine-tuning
RoBERTa on the training data.
silpa_nlp (Singh et al., 2022) ranked 14th in HI

and BN by fine-tuning XLM-R on the training set.

6 Insights from the Systems

6.1 Advancing the State of the Art
Identifying Complex Entities From the rank-
ing in Table 3, we see that almost all the teams
could outperform the official baseline system de-
scribed in Section 4 in all the tracks. For most of
the tracks, the top two teams DAMO-NLP and
USTC-NELSLIP’s performance gap is very small
compared to third place. To btter understand this
difference, we look at per-class performance. In
Table 4, we show per-class F1 scores for the top
three teams in the MULTI track. Although the sys-
tems performed better than the official baseline
by a large margin, complex entities like creative
works, products, and groups are still the most diffi-
cult ones to identify. This analysis shows that the
largest gains by the top systems leveraging external
knowledge came from classes containing complex
NEs, e.g. CW and GRP.

Domain Adaptation The official baseline sys-
tem performed poorly in terms of domain adapta-
tion and achieved much lower F1 in MSQ-NER and
ORCAS-NER compared to LOWNER. Intuitively,
augmenting the training data with interrogative sen-
tences could be a way to perform better in these
domains. However, we observe that the participants
could overcome the challenge of domain adaptation
without especially including questions and queries

6
https://huggingface.co/bert-base-chinese

7
https://github.com/SKTBrain/KoBERT

8
https://github.com/monologg/KoELECTRA

9
https://huggingface.co/kykim/bert-kor-base

10
https://huggingface.co/wietsedv/bert-base-dutch-cased

11
https://huggingface.co/dbmdz/bert-base-german-uncased

Multilingual
XLM-RoBERTa (XLM-R; Conneau et al. (2020)) :
DAMO-NLP, USTC-NELSLIP, QTrade AI, SeqL, CMB AI Lab,
RACAI, Sliced, Infrrd.ai, UM6P-CS, UA-KO, CSECU-DSG,
PA Ph&Tech, Raccoons, AaltoNLP, UC3M-PUCPR, DS4DH,
silpa_nlp
mT5 (Xue et al., 2021): CMB AI Lab, MarSan,
NamedEntityRangers
mBERT (Devlin et al., 2019): Sliced, L3i, PA Ph&Tech,
UC3M-PUCPR, CMNEROne, DS4DH
RemBERT (Chung et al., 2021): Sliced,
NamedEntityRangers

English
BERT (Devlin et al., 2019): PAI, Multilinguals, CSECU-DSG,
PA Ph&Tech, Raccoons, UC3M-PUCPR, KDDIE
BigBird RoBERTa (Zaheer et al., 2021): L3i
T5 (Raffel et al., 2020): MarSan
XLNet (Yang et al., 2019): PA Ph&Tech
ALBERT (Lan et al., 2020): LMN
RoBERTa (Liu et al., 2019): UC3M-PUCPR, DANGNT-SGU
DistillBERT (Sanh et al., 2019), ELECTRA (Clark
et al., 2020): UC3M-PUCPR
DeBERTa (He et al., 2021): KDDIE

Spanish
Spanish BERT (Canete et al., 2020): Multilinguals
BERT-wwm: L3i
Beto (Cañete et al., 2020), Spanish RoBERTa
(Gutiérrez-Fandiño et al., 2021): UC3M-PUCPR

Chinese
RoBERTa-wwm (Cui et al., 2021): OPDAI, CASIA,
Multilinguals
BERT 6: L3i, NCUEE-NLP

Korean
KoBERT 7, Ko-ELECTRA8, KR-BERT (Lee et al.,
2020), KLUE-RoBERTa (Park et al., 2021): UA-KO
BERT 9 : L3i

Bangla
BanglaBERT (Bhattacharjee et al., 2022): TEAM-Atreides

Dutch
BERT 10: L3i

Farsi
ParsBERT (Farahani et al., 2020): L3i

German
BERT 11: L3i

Hindi
IndicBERT (Kakwani et al., 2020): silpa_nlp

Russian
RuBERT: L3i

Turkish
BERTurk (Schweter, 2020): SU-NLP, L3i

Table 5: Pre-trained Transformer language models used
by the teams for different languages. BERT models for
non-English languages are trained on the specific lan-
guages’ data with BERT architecture by the community.
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in their external data. For example, DAMO-NLP
found that their approach of retrieving Wikipedia
paragraphs not only provided a strong performance
on LOWNER, but also helped with cross-domain
transferability.

Adapting to MSQ was easier compared
to ORCAS-NER for all the tracks except
Bangla. The top systems like DAMO-NLP
and USTC-NELSLIP struggled in MSQ-NER for
Bangla, while they typically had higher F1 scores
for MSQ-NER than ORCAS-NER for the other
tracks. This could be an interesting direction to
explore in the future.

6.2 Other Insights

External Data In Section 5 we observe that such
superior performance by these top systems became
possible by exploiting external knowledge during
learning and inference. While USTC-NELSLIP
used knowledge from pre-trained language models
to fine-tune Gazetteer presentations, DAMO-NLP
directly used raw texts from Wikipedia to in-
ject context and it gave them an advantage over
USTC-NELSLIP in most tracks.

As the availability of external data is higher for
English compared to other languages, most of the
teams participating in other languages used pub-
licly available pre-trained models for other lan-
guages, or translated data from other languages.
For example, CASIA augmented data from other
languages with translation, and it helped them to se-
cure second place in the Chinese track. In general,
a large portion of the participating teams showed
that they can do better if they can go beyond the
provided training data, and use external data or pre-
trained language models for different languages to
inject external knowledge in some way.

Modeling Approaches Almost all participating
systems relied on publicly available Transformer
(Vaswani et al., 2017) based pre-trained language
models (Table 5). XLM-RoBERTa (a.k.a. XLM-R)
was the most popular choice for building multilin-
gual models. Most of the teams participating in
non-English monolingual tracks preferred this par-
ticular model to the multilingual variant of BERT.

Other recent language models like T5, ELEC-
TRA, XLNet, and ALBERT were used by some
of the teams, but mostly for English. We observed
that for non-English languages, many teams used
community-developed pre-trained models for other
languages like Chinese, Hindi, Spanish, Korean,

Bangla, Turkish, Russian, Farsi, Dutch, and Ger-
man. Most of such models are trained using the
BERT architecture with data for the respective lan-
guages. A lot of teams relied on the strength of
Conditional Random Field (CRF; Lafferty et al.
2001) for sequence labeling problems and adopted
it to gain stronger performance. Very few teams
used architectures like LSTMs.

Teams that simply fine-tuned pre-trained lan-
guage models performed similarly to the baseline
system for most of the tracks. Apart from the pre-
viously mentioned role of external data, another
vital component for strong performance is using
ensemble learning strategies. Almost all the strong
performing teams trained multiple models and en-
sembled them for making the final predictions. We
have also observed some teams experimenting with
adversarial training and reinforcement learning.

7 Conclusion

In this paper, we have presented an overview of the
SemEval shared task on identifying complex enti-
ties in multiple languages. In this shared task, we
have received system submissions from 55 compet-
ing teams, and 34 system description papers. On
average, the wining systems for all the tracks out-
performed the baseline system by a large margin
of 35% F1.

Most of the top-performing teams in
MULTICONER utilized external knowledge
bases like Wikipedia and Gazetteer. They also tend
to use XLM-RoBERTa as the pre-trained language
model. In terms of modeling approaches, ensemble
strategies helped the systems to achieve strong
performance. Results from the top teams indicate
that identifying complex entities like creative
works is still difficult among all the classes even
with the usage of external data.
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Appendix

In this section, we provide the domain specific per-
formance of the teams on each track. For each team,
we report precision, recall, and F1 for the three
domains, i.e., LOWNER, ORCAS, and MSQ. We
also highlight the baseline system’s performance
breakdown for each track. Each track’s result is
presented in its individual table as listed here:

• Table 6 Bangla (BN)

• Table 7 German (DE)

• Table 8 English (EN)

• Table 9 Spanish (ES)

• Table 10 Farsi (FA)

• Table 11 Hindi (HI)

• Table 12 Korean (KO)

• Table 13 Dutch (NL)

• Table 14 Russian (RU)

• Table 15 Turkish (TR)

• Table 16 Chinese (ZH)

• Table 17 Code-Mixed (MIX)

• Table 18 Multi-lingual (MULTI)
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A Detailed Results

A.1 Bangla (BN)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 USTC-NELSLIP 87.32 85.82 86.56 84.2 81.78 82.37 77.21 73.44 75.12 85.84 83.43 84.24
2 DAMO-NLP 86.42 86.21 86.31 83.24 81.25 82.13 73.45 70.9 72.0 84.63 82.53 83.51
3 NetEase.AI 85.83 84.53 85.16 70.32 64.64 67.17 63.36 61.69 62.14 73.78 68.39 70.88
4 RACAI 83.09 83.48 83.28 63.62 60.98 61.6 63.36 58.51 60.69 68.08 65.33 66.28
5 Infrrd.ai 81.52 81.82 81.66 61.59 58.48 59.5 56.06 57.36 56.45 65.68 62.99 63.99
6 YNUNLP 81.46 81.01 81.21 60.64 58.68 59.12 58.58 56.63 57.45 65.11 63.14 63.8
7 Sliced 82.88 83.36 83.1 59.71 57.88 58.06 57.1 57.77 57.12 64.24 62.8 63.05
8 Team Atreides 84.23 82.8 83.48 56.8 52.85 54.23 55.12 58.34 55.44 62.09 58.25 59.75
9 brotherhood 81.56 80.71 81.12 55.18 52.0 53.3 50.91 54.78 51.86 60.33 57.24 58.63
10 MaChAmp 78.44 79.84 79.13 52.18 51.52 51.02 54.05 52.96 52.87 57.25 56.61 56.46
11 MarSan 79.04 79.04 78.98 51.83 48.05 48.83 42.42 50.57 43.92 56.48 53.77 54.22
12 EURECOM 75.36 73.45 74.37 49.33 47.05 48.12 45.52 50.4 45.28 53.78 51.51 52.57
13 AaltoNLP 79.09 78.46 78.74 49.19 43.34 45.78 48.42 47.42 45.84 55.09 49.27 51.79
14 silpa_nlp 76.37 75.97 76.16 47.42 44.68 45.61 44.86 48.77 45.52 53.0 50.34 51.39
15 CSECU-DSG 74.96 74.96 74.95 46.84 43.8 44.85 45.6 48.63 46.14 52.21 49.42 50.55
16 BaselineExtendingPokemons 72.49 75.55 73.96 38.86 40.68 39.2 40.13 44.07 40.97 44.48 46.3 45.07
17 L3i 73.5 72.57 73.01 40.52 38.43 39.08 39.87 42.34 39.82 46.08 43.94 44.81
18 Enigma 73.2 73.34 72.96 41.16 36.48 37.1 39.47 40.82 36.11 46.64 42.03 42.68
19 Baseline 69.27 69.88 69.54 34.12 34.67 34.16 34.03 37.57 34.56 39.29 39.81 39.41

Table 6: Detailed results for Bangla track.

A.2 German (DE)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 94.87 94.92 94.89 84.74 84.4 84.4 84.94 87.8 86.18 90.85 90.5 90.65
2 USTC-NELSLIP 95.8 95.03 95.41 80.5 78.8 79.33 87.06 86.65 86.83 89.88 88.35 89.05
3 RACAI 91.76 91.15 91.44 62.79 61.99 61.89 70.38 73.61 71.61 80.01 78.97 79.39
4 Sliced 90.94 91.04 90.99 61.53 62.81 61.53 71.32 72.85 71.9 78.84 79.18 78.9
5 MaChAmp 89.51 89.87 89.69 61.85 63.71 62.16 69.0 73.04 70.63 78.13 78.83 78.38
6 YNUNLP 90.22 89.6 89.9 59.59 60.56 59.23 70.62 70.7 70.23 77.51 77.42 77.32
7 L3i 90.71 90.72 90.71 60.0 56.23 57.46 64.26 67.57 65.32 78.58 76.18 77.23
8 ML-HUB 88.39 87.7 88.03 59.73 58.93 59.06 60.55 69.53 63.48 76.63 75.8 76.14
9 brotherhood 90.05 89.66 89.85 56.83 55.8 55.78 64.29 67.98 65.53 76.57 75.52 75.94
10 Infrrd.ai 90.65 85.64 88.06 63.26 54.19 57.6 70.52 65.87 67.84 80.05 72.47 75.9
11 EURECOM 88.89 88.68 88.77 56.16 54.01 53.87 62.18 64.02 62.58 75.61 73.84 74.43
12 MarSan 88.4 89.05 88.7 52.14 52.92 51.53 57.75 61.82 58.54 73.1 73.6 73.12
13 CSECU-DSG 86.43 84.81 85.6 56.79 50.75 53.01 61.93 60.99 61.15 74.93 70.47 72.49
14 AaltoNLP 86.49 87.0 86.73 52.31 46.07 48.37 58.33 60.85 59.04 73.16 69.92 71.37
15 PA Ph&Tech 86.08 74.14 79.5 53.42 45.67 48.58 56.6 57.15 55.79 72.65 62.35 66.75
16 BaselineExtendingPokemons 83.81 85.25 84.52 40.75 44.29 42.04 47.58 56.25 50.58 65.44 67.99 66.59
17 Baseline 80.64 81.16 80.83 39.86 41.06 39.96 46.89 55.54 49.6 63.45 64.41 63.74

Table 7: Detailed results for German track.
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A.3 English (EN)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 96.68 96.87 96.78 84.27 83.51 83.72 81.76 85.69 83.5 91.54 90.95 91.22
2 USTC-NELSLIP 92.83 91.38 92.09 76.78 75.05 75.59 80.1 83.66 81.74 86.41 84.67 85.47
3 PAI 90.87 91.05 90.96 62.2 60.08 60.58 64.79 68.2 65.91 79.09 77.88 78.37
4 ML-HUB 90.27 87.61 88.9 68.47 56.88 61.6 73.17 67.47 69.46 82.24 74.68 78.14
5 RACAI 88.67 88.08 88.37 59.37 57.87 57.84 67.77 70.11 68.75 76.54 75.35 75.78
6 Infrrd.ai 88.29 87.05 87.65 58.0 55.11 56.15 64.7 68.89 65.83 75.97 73.6 74.71
7 EURECOM 88.82 89.06 88.94 54.1 55.31 54.25 62.55 65.93 63.41 74.43 74.9 74.57
8 Sliced 87.47 87.99 87.73 56.99 57.19 56.17 67.39 69.0 68.06 74.53 74.93 74.54
9 MaChAmp 86.21 87.25 86.72 57.3 58.18 57.11 64.97 69.55 66.75 74.16 74.97 74.48
10 Raccoons 87.66 89.39 88.5 53.63 55.09 54.02 63.57 68.39 65.42 73.43 75.05 74.18
11 YNUNLP 86.75 86.92 86.83 53.96 55.4 53.98 64.99 68.33 65.78 72.99 73.64 73.17
12 LMN 87.05 88.71 87.87 50.96 52.17 51.2 58.43 63.84 60.45 71.78 73.33 72.5
13 brotherhood 87.16 86.41 86.78 52.76 51.48 51.67 61.74 65.7 62.73 73.18 71.71 72.35
14 L3i 87.21 87.34 87.26 54.6 47.87 49.71 61.33 64.08 62.57 73.82 70.8 71.96
15 Multilinguals 86.47 87.43 86.94 53.03 48.86 50.16 59.4 59.55 59.11 72.71 71.09 71.74
16 KDDIE 86.65 87.7 87.17 50.36 51.15 50.4 58.29 63.63 60.57 71.34 72.26 71.73
17 MarSan 85.75 86.21 85.96 50.83 52.24 51.16 58.91 64.9 60.64 71.11 71.91 71.45
18 Cardiff NLP 85.93 87.6 86.75 47.63 51.41 49.24 56.23 64.49 58.55 69.72 72.28 70.94
19 Lone Wolf 85.08 85.96 85.51 47.36 48.76 47.75 56.33 62.44 58.47 69.35 70.31 69.77
20 MIDAS 84.68 81.79 83.19 54.75 46.84 49.73 60.63 57.45 58.34 72.95 66.95 69.62
21 UC3M-PUCPR 86.6 87.12 86.84 46.23 46.28 44.25 54.95 57.3 54.07 69.95 69.73 69.24
22 CSECU-DSG 84.76 86.08 85.41 47.0 47.79 47.22 50.45 60.14 54.01 68.72 69.81 69.24
23 Sartipi-Sedighin 82.95 84.69 83.78 44.4 47.16 45.6 46.42 58.19 49.72 66.34 68.79 67.51
24 Enigma 82.55 83.19 82.86 46.14 46.04 45.45 57.07 61.73 58.17 66.97 67.74 67.19
25 DANGNT-SGU 83.6 84.7 84.1 43.14 44.68 43.28 51.75 58.74 53.38 66.51 67.7 66.89
26 AaltoNLP 83.27 84.19 83.73 48.89 33.87 39.24 53.95 54.21 53.51 71.57 63.0 66.85
27 SPDB Innovation Lab 81.35 81.74 81.54 42.16 43.57 42.63 49.45 57.98 52.18 64.52 65.77 65.11
28 silpa_nlp 81.48 80.54 80.99 39.58 38.98 38.65 48.81 54.1 49.95 64.13 63.06 63.42
29 BaselineExtendingPokemons 80.03 82.27 81.11 38.13 42.3 39.96 43.97 57.67 48.84 61.36 65.35 63.24
30 Baseline 78.25 78.0 78.11 38.89 37.47 37.61 46.21 52.2 48.26 62.07 60.97 61.36
31 AutoNER 72.29 74.77 73.35 30.6 33.53 31.02 45.77 49.65 47.21 54.73 57.68 55.72

Table 8: Detailed results for English track.
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A.4 Spanish (ES)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 96.23 96.15 96.19 82.45 80.91 81.33 82.25 84.51 83.1 90.58 89.41 89.94
2 USTC-NELSLIP 90.15 88.08 89.1 80.99 79.17 79.68 84.49 85.95 85.1 86.64 84.39 85.44
3 RACAI 85.29 85.31 85.29 63.37 62.39 61.74 71.98 72.92 72.35 76.21 75.43 75.62
4 Infrrd.ai 85.21 85.55 85.37 62.06 61.71 61.32 66.18 70.93 67.82 75.59 75.11 75.26
5 MaChAmp 84.71 85.34 85.01 61.53 62.99 61.49 67.99 72.11 69.5 74.94 75.66 75.2
6 Sliced 85.68 85.92 85.79 60.74 61.6 60.39 69.21 71.57 70.18 75.15 75.32 75.11
7 YNUNLP 84.18 85.45 84.8 57.41 58.71 56.95 68.33 68.64 68.17 72.93 73.8 73.17
8 brotherhood 85.66 84.73 85.19 51.7 51.52 51.08 59.55 62.29 60.31 71.23 70.35 70.69
9 L3i 83.73 84.32 84.01 48.98 50.03 48.94 52.25 58.52 54.73 68.71 69.34 68.93
10 PA Ph&Tech 82.95 81.48 82.21 51.11 52.8 51.49 51.07 64.25 55.15 68.89 69.23 68.93
11 MarSan 83.12 82.84 82.96 49.26 50.7 48.52 56.64 60.4 57.46 68.65 68.71 68.3
12 SPDB Innovation Lab 83.57 81.69 82.55 49.62 48.7 46.57 60.29 57.49 57.59 68.96 67.24 67.31
13 CSECU-DSG 82.87 79.64 81.2 47.04 41.64 43.17 55.04 53.7 53.72 68.94 63.13 65.62
14 EURECOM 80.25 80.44 80.31 40.24 41.26 40.25 40.59 48.14 43.16 62.49 63.26 62.77
15 Multilinguals 81.13 80.52 80.81 36.73 34.24 34.69 42.77 45.66 43.57 62.27 60.46 61.2
16 Sartipi-Sedighin 77.29 79.74 78.36 37.11 39.41 37.62 42.44 47.33 43.67 59.82 62.03 60.7
17 BaselineExtendingPokemons 77.3 80.34 78.76 34.47 38.82 36.01 40.95 50.19 44.0 58.32 62.22 60.08
18 Baseline 75.66 77.0 76.24 33.32 36.11 33.58 41.34 45.99 43.08 57.07 59.08 57.84
19 UC3M-PUCPR 73.93 72.16 72.89 37.33 36.14 35.42 40.39 41.63 40.88 58.38 56.22 56.79

Table 9: Detailed results for Spanish track.

A.5 Farsi (FA)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 95.96 97.01 96.48 84.99 84.92 84.84 86.79 88.15 87.36 89.81 89.66 89.7
2 USTC-NELSLIP 86.13 84.49 85.29 88.2 86.57 87.2 92.45 91.11 91.75 88.16 86.1 87.05
3 RACAI 80.5 82.15 81.31 63.18 61.96 62.02 70.05 72.19 70.87 70.77 70.45 70.42
4 Sliced 79.17 82.11 80.61 59.39 61.16 59.93 64.35 69.55 66.23 67.83 69.77 68.66
5 YNUNLP 79.54 80.54 80.02 58.25 58.55 57.78 67.51 68.33 67.65 67.29 67.57 67.19
6 brotherhood 81.16 81.69 81.41 56.13 54.41 54.7 61.28 64.6 62.35 66.46 65.53 65.74
7 C-3PO 78.94 81.67 80.27 55.55 55.46 55.08 59.7 65.57 61.84 65.14 66.28 65.51
8 L3i 79.18 80.65 79.89 54.78 55.18 54.63 56.26 63.86 59.08 64.91 65.59 65.11
9 MarSan 76.49 80.84 78.59 51.54 50.99 50.61 55.71 57.7 56.29 61.8 63.06 62.14
10 MaChAmp 75.36 78.68 76.98 48.89 51.69 49.72 50.36 58.05 53.13 59.4 62.43 60.71
11 AaltoNLP 76.46 79.88 78.1 48.19 46.28 46.37 48.18 56.85 51.39 59.19 59.58 58.93
12 Sartipi-Sedighin 75.79 79.59 77.63 44.49 44.77 44.41 45.79 53.09 47.63 57.08 58.64 57.73
13 EURECOM 75.0 77.28 76.06 43.2 42.14 42.28 43.79 48.69 45.16 56.07 56.08 55.91
14 CSECU-DSG 75.96 79.15 77.5 41.98 41.09 41.06 43.58 49.03 45.55 55.8 56.17 55.81
15 Baseline 69.25 74.5 71.67 41.12 39.84 39.03 45.79 48.2 46.59 52.7 53.46 52.24
16 BaselineExtendingPokemons 70.89 77.3 73.91 36.59 39.87 37.62 34.33 46.97 39.02 49.15 54.33 51.26

Table 10: Detailed results for Farsi track.
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A.6 Hindi (HI)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 84.85 83.54 84.18 86.82 84.85 85.75 88.54 89.94 89.2 87.27 85.28 86.23
2 USTC-NELSLIP 86.49 83.93 85.18 84.66 82.87 83.16 91.89 90.14 90.94 86.0 83.92 84.64
3 RACAI 82.04 81.99 82.01 64.17 62.46 62.65 75.62 75.96 75.55 69.05 67.77 68.08
4 Sliced 81.48 81.81 81.64 62.82 61.48 61.32 73.49 75.32 73.75 67.93 66.98 67.0
5 NetEase.AI 85.69 82.75 84.15 63.24 57.65 59.88 72.61 73.95 72.38 69.67 64.27 66.63
6 Infrrd.ai 79.87 80.01 79.93 61.41 60.08 59.99 71.21 75.78 72.9 66.58 65.6 65.72
7 brotherhood 82.17 81.01 81.58 59.76 56.88 57.68 68.91 74.4 70.59 65.72 63.35 64.23
8 YNUNLP 79.67 79.89 79.77 58.21 57.96 57.35 69.94 72.85 70.7 63.8 63.69 63.39
9 OPDAI 74.82 75.9 75.28 57.86 59.07 57.86 67.39 70.83 68.76 63.03 63.58 62.94
10 MaChAmp 76.31 77.7 76.99 56.15 56.27 55.5 67.53 72.36 69.47 61.9 62.21 61.73
11 CSECU-DSG 75.97 71.45 73.56 55.49 48.73 51.54 66.57 65.47 65.16 61.46 54.77 57.68
12 MarSan 75.09 75.61 75.27 49.77 50.46 49.34 62.45 66.61 63.72 56.39 57.01 56.31
13 EURECOM 68.92 69.69 69.27 48.59 46.71 47.17 53.28 59.51 54.73 53.84 52.36 52.78
14 silpa_nlp 73.9 73.75 73.81 45.53 43.87 44.32 51.24 58.5 51.16 52.44 51.22 51.49
15 BaselineExtendingPokemons 70.78 72.33 71.49 42.34 43.21 42.33 55.07 61.31 55.57 49.68 50.68 49.9
16 L3i 72.38 71.34 71.8 44.0 42.07 42.26 51.0 58.13 52.89 51.01 49.24 49.73
17 Enigma 71.14 71.84 71.03 44.43 39.86 40.47 56.21 58.85 55.9 51.61 48.28 48.62
18 Baseline 65.67 66.44 65.96 41.38 42.59 41.55 54.03 56.67 53.26 48.08 48.98 48.22

Table 11: Detailed results for Hindi track.

A.7 Korean (KO)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 96.58 97.1 96.83 81.1 81.41 81.06 79.44 84.96 81.96 88.55 88.7 88.59
2 USTC-NELSLIP 90.64 90.11 90.37 83.23 81.15 81.82 88.45 87.97 88.19 87.39 85.56 86.36
3 RACAI 85.26 86.81 86.02 58.82 58.58 57.79 69.52 69.63 69.38 72.06 71.93 71.74
4 CMB AI Lab 88.93 88.23 88.57 60.73 47.02 52.7 64.9 58.35 61.09 75.92 66.33 70.7
5 Sliced 84.81 86.93 85.85 55.92 58.41 56.44 65.28 68.6 66.81 69.82 71.94 70.66
6 YNUNLP 84.74 85.42 85.05 57.39 57.11 56.36 66.48 68.39 67.34 70.69 70.51 70.33
7 C-3PO 86.24 87.42 86.8 51.02 49.85 49.69 56.08 57.72 56.27 68.15 67.4 67.49
8 UA-KO 85.91 87.78 86.83 50.59 49.63 49.67 55.92 59.24 56.92 67.72 67.52 67.49
9 brotherhood 85.83 86.67 86.24 50.8 50.69 50.23 57.33 61.72 58.98 67.61 67.5 67.41
10 Infrrd.ai 84.15 86.13 85.13 50.75 52.07 50.99 58.9 63.65 60.55 66.69 68.17 67.29
11 MaChAmp 81.48 83.99 82.71 49.31 51.21 49.6 53.61 62.55 57.03 64.68 66.55 65.45
12 EURECOM 86.4 86.63 86.5 46.68 46.14 45.87 50.13 54.66 51.57 65.25 65.14 64.96
13 L3i 83.92 84.93 84.38 42.92 45.9 43.97 48.18 55.21 50.82 61.57 64.09 62.68
14 MarSan 81.58 84.79 83.14 43.31 45.49 43.75 47.76 54.49 49.99 61.13 63.92 62.26
15 CSECU-DSG 82.99 85.12 84.04 43.2 42.04 42.11 48.96 50.41 48.72 62.27 62.14 62.05
16 AaltoNLP 82.06 83.23 82.61 44.96 43.38 42.86 48.62 53.42 50.35 62.72 61.92 61.82
17 BaselineExtendingPokemons 77.42 82.93 80.06 39.65 41.7 40.06 41.75 51.34 44.83 57.46 60.84 58.95
18 Baseline 76.2 76.86 76.46 36.64 38.75 37.0 37.71 46.29 40.03 54.77 56.38 55.25

Table 12: Detailed results for Korean track.
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A.8 Dutch (NL)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 97.92 98.0 97.96 81.16 80.39 80.46 83.17 84.26 83.65 90.95 90.14 90.5
2 USTC-NELSLIP 92.14 90.74 91.43 82.63 81.09 81.64 86.3 87.87 86.95 88.56 86.86 87.67
3 RACAI 89.68 89.73 89.7 63.9 63.4 62.83 70.34 72.81 71.2 78.82 78.3 78.41
4 Sliced 89.08 89.42 89.25 61.81 63.1 61.87 69.15 72.56 70.41 77.55 77.95 77.66
5 MaChAmp 88.03 88.65 88.33 61.35 62.83 61.44 67.87 71.78 69.47 76.72 77.43 76.99
6 Infrrd.ai 91.32 85.54 88.31 64.73 56.72 59.74 70.51 68.1 69.08 80.5 73.04 76.4
7 YNUNLP 88.95 88.21 88.56 59.39 59.79 58.78 67.04 70.12 68.25 76.19 75.82 75.82
8 brotherhood 88.86 88.05 88.44 53.74 52.63 52.35 58.5 63.87 60.22 73.96 72.46 73.04
9 PA Ph&Tech 87.49 86.76 87.11 51.28 55.73 52.76 56.39 66.13 59.98 71.06 73.32 72.05
10 MarSan 86.5 87.67 87.06 52.0 52.51 50.26 56.61 61.27 58.27 71.18 71.98 71.13
11 L3i 86.65 87.73 87.15 50.22 50.15 49.39 54.56 60.34 56.74 70.96 71.32 70.96
12 CSECU-DSG 84.82 81.82 83.24 50.84 42.96 45.53 59.8 55.21 57.11 71.74 65.0 67.94
13 EURECOM 82.05 84.25 83.1 45.27 46.43 44.8 49.11 56.91 52.23 66.11 67.75 66.7
14 BaselineExtendingPokemons 81.63 84.91 83.22 37.41 39.6 38.11 40.77 52.49 44.79 61.77 65.07 63.25
15 Baseline 80.66 81.63 81.12 37.16 36.88 36.44 43.4 49.9 45.95 62.04 62.25 62.01
16 Sartipi-Sedighin 80.21 81.07 80.6 29.57 30.59 29.78 34.69 45.4 36.96 57.86 59.07 58.37

Table 13: Detailed results for Dutch track.

A.9 Russian (RU)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 96.37 96.84 96.6 85.89 84.55 85.0 86.89 87.42 87.03 91.93 91.14 91.5
2 USTC-NELSLIP 85.22 83.22 84.2 83.16 81.71 82.23 85.37 86.71 85.91 84.85 82.89 83.82
3 RACAI 82.19 82.07 82.12 66.92 63.51 63.93 76.5 72.78 74.2 75.86 73.83 74.6
4 Sliced 80.65 82.48 81.55 63.54 63.66 62.97 72.14 71.22 71.27 73.59 74.11 73.73
5 YNUNLP 81.41 80.01 80.67 64.38 62.83 62.64 71.95 69.98 70.17 74.09 72.28 72.99
6 MaChAmp 78.65 81.28 79.94 62.64 63.11 62.04 68.82 69.12 68.38 72.0 73.06 72.37
7 brotherhood 80.59 80.92 80.75 57.67 56.22 56.26 64.75 65.26 63.52 71.0 69.84 70.27
8 NetEase.AI 81.07 77.42 79.19 60.42 54.74 56.89 64.69 65.51 63.45 72.61 67.44 69.79
9 EURECOM 80.26 80.11 80.17 54.56 51.04 51.82 63.33 63.7 61.24 69.74 67.19 68.21
10 MarSan 77.99 79.42 78.68 52.33 55.01 53.1 57.5 63.79 58.09 66.83 68.44 67.49
11 L3i 78.64 78.91 78.77 52.76 49.85 50.69 56.76 60.27 57.01 67.89 65.82 66.72
12 CSECU-DSG 75.86 78.26 77.04 44.29 45.97 44.57 53.87 58.07 54.23 62.6 63.9 63.08
13 BaselineExtendingPokemons 71.28 76.78 73.92 41.76 45.55 43.03 44.28 53.55 47.22 58.04 62.4 60.0
14 Baseline 70.58 74.55 72.47 42.57 44.93 43.45 46.36 52.95 48.01 58.42 60.96 59.59
15 AutoNER 62.52 65.16 63.66 37.35 40.19 37.88 51.05 55.08 52.22 51.79 54.33 52.7

Table 14: Detailed results for Russian track.
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A.10 Turkish (TR)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 DAMO-NLP 96.45 96.42 96.43 86.86 85.39 85.85 89.22 88.4 88.76 89.79 87.82 88.69
2 USTC-NELSLIP 90.32 89.8 90.05 84.22 82.7 83.17 87.64 88.1 87.83 86.62 84.7 85.52
3 SU-NLP 83.53 85.11 84.29 76.0 61.07 67.57 75.13 64.87 68.73 78.86 66.43 72.02
4 RACAI 87.45 88.83 88.13 65.72 64.73 64.04 74.65 73.1 73.59 71.81 70.25 70.42
5 Sliced 86.72 88.51 87.6 62.81 63.47 62.31 70.77 71.38 70.92 69.17 69.22 68.77
6 MaChAmp 84.63 86.93 85.75 61.48 62.81 61.37 65.26 68.63 66.63 67.55 68.3 67.58
7 YNUNLP 86.59 86.99 86.78 61.14 61.04 59.66 73.32 69.45 70.8 68.17 67.05 66.81
8 ML-HUB 84.31 86.92 85.55 61.11 59.47 59.62 56.0 68.23 59.21 66.51 65.98 65.79
9 L3i 85.6 86.99 86.28 57.3 57.15 56.65 63.23 65.47 63.89 64.85 64.26 64.28
10 MarSan 84.73 86.67 85.68 52.39 56.12 53.49 56.27 60.51 57.01 60.22 62.7 61.09
11 brotherhood 85.27 86.86 86.01 50.88 52.78 51.18 57.21 62.29 58.72 59.42 60.68 59.71
12 EURECOM 82.97 85.45 84.18 47.75 50.08 48.41 48.96 55.71 50.97 55.93 57.86 56.57
13 CSECU-DSG 81.86 79.8 80.76 56.5 40.42 46.26 58.08 48.79 52.18 64.57 49.25 55.3
14 Sartipi-Sedighin 79.69 85.74 82.52 42.23 47.34 43.71 45.77 53.34 48.6 50.77 55.81 52.69
15 Baseline 75.87 79.21 77.49 36.2 39.91 37.0 39.19 44.33 40.62 45.31 48.28 46.25
16 BaselineExtendingPokemons 77.39 82.64 79.86 33.63 38.92 35.4 35.41 43.94 38.09 42.74 48.32 44.97

Table 15: Detailed results for Turkish track.

A.11 Chinese (ZH)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 USTC-NELSLIP 92.76 89.42 91.01 77.96 74.73 75.64 85.94 84.84 85.37 83.94 80.07 81.69
2 CASIA 88.52 81.48 84.61 81.04 72.75 75.88 86.56 80.62 83.37 84.77 76.13 79.7
3 OPDAI 85.14 85.44 85.27 75.46 75.81 74.69 80.9 83.93 82.24 80.54 79.47 79.54
4 DAMO-NLP 89.75 87.87 88.77 74.41 73.09 72.24 80.57 80.97 80.1 80.64 77.45 78.06
5 NetEase.AI 89.73 85.48 87.47 75.69 70.89 72.01 77.71 78.92 77.84 81.52 75.63 77.77
6 CMB AI Lab 90.18 86.67 88.37 74.36 64.08 68.54 76.66 75.66 75.53 81.28 72.29 76.36
7 NCUEE-NLP 85.28 81.26 83.1 70.9 68.38 68.5 75.33 76.8 75.27 77.01 72.99 74.18
8 QTrade AI 88.76 85.43 86.98 69.19 66.37 66.3 76.88 77.45 76.88 76.91 72.82 74.0
9 CSECU-DSG 84.85 83.33 84.04 59.16 59.61 58.05 65.15 71.02 66.86 68.55 67.61 67.22
10 Multilinguals 84.48 83.01 83.72 59.48 59.2 57.91 61.93 71.1 64.78 68.39 67.22 66.95
11 L3i 84.5 82.14 83.25 59.63 59.46 58.07 63.71 70.65 65.08 68.62 67.07 66.91
12 Sliced 85.54 84.25 84.86 58.6 56.1 55.02 64.92 67.65 65.09 67.99 65.07 65.21
13 Infrrd.ai 82.98 77.89 80.19 59.28 56.65 56.03 62.74 70.05 64.26 67.83 64.16 64.68
14 MaChAmp 83.38 81.82 82.55 57.16 55.83 54.48 61.16 65.41 61.14 66.45 63.88 63.81
15 EURECOM 83.53 81.39 82.25 57.51 54.4 53.25 63.81 68.65 64.31 66.89 63.43 63.4
16 RACAI 86.53 83.53 84.91 58.07 52.36 51.29 65.45 65.12 63.34 68.17 62.05 62.7
17 YNUNLP 83.01 82.63 82.79 53.44 51.46 50.3 64.27 67.0 64.48 63.99 61.41 61.38
18 brotherhood 85.04 81.55 83.11 53.03 49.84 49.69 58.74 62.61 59.25 64.08 60.05 60.86
19 MarSan 81.95 80.59 81.19 48.76 46.19 44.49 57.56 61.96 58.11 60.15 57.1 56.64
20 SPDB Innovation Lab 80.88 79.4 80.06 45.56 46.47 43.97 53.92 59.42 54.94 57.25 57.09 55.74
21 BaselineExtendingPokemons 74.57 78.13 76.23 43.8 44.51 41.39 52.72 56.93 51.41 54.44 55.06 52.8
22 Baseline 73.7 73.18 73.29 43.39 42.43 40.54 45.66 53.57 46.53 53.51 52.32 51.3

Table 16: Detailed results for Chinese track.
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A.12 Code-Mixed (MIX)

Rank Team LOWNER ORCAS-NER MSQ-NER Average

P R F1 P R F1 P R F1 P R F1

1 USTC-NELSLIP 95.5 94.99 95.21 89.1 88.64 88.74 93.32 93.39 93.22 93.21 92.61 92.9
2 DAMO-NLP 93.88 93.36 93.57 88.37 87.25 87.68 91.39 90.24 90.56 92.35 91.24 91.79
3 CMB AI Lab 93.68 91.22 92.35 79.89 68.21 73.2 85.02 76.56 80.0 88.4 81.27 84.62
4 QTrade AI 93.21 90.36 91.65 78.06 71.21 73.93 82.86 77.44 79.42 87.12 82.01 84.35
5 SeqL 91.55 90.92 91.16 67.04 65.81 65.89 76.32 75.28 74.93 81.1 79.72 80.29
6 IIE_KDSEC 87.45 88.35 87.8 67.28 67.25 66.88 75.48 76.15 75.29 79.52 79.74 79.59
7 RACAI 89.43 89.6 89.42 65.78 65.48 65.29 74.53 74.51 73.87 79.58 79.23 79.37
8 UM6P-CS 87.7 88.16 87.82 67.08 66.62 66.5 75.06 74.57 74.11 79.38 79.08 79.21
9 EURECOM 86.63 87.25 86.82 63.58 62.71 62.71 73.99 74.11 73.28 77.84 77.37 77.6
10 OPDAI 87.26 85.98 86.45 61.87 61.12 61.0 72.78 71.82 71.49 77.79 77.23 77.46
11 YNUNLP 85.85 87.03 86.33 62.48 62.85 62.12 72.23 72.62 71.77 76.64 76.98 76.78
12 UC3M-PUCPR 87.8 86.74 87.15 60.94 58.86 59.48 71.92 70.74 70.57 77.15 75.64 76.36
13 brotherhood 87.84 87.51 87.57 60.83 60.13 59.87 71.28 70.51 70.0 76.62 75.45 75.91
14 MaChAmp 85.37 86.66 85.82 58.05 60.8 58.66 69.41 69.87 68.55 73.85 75.4 74.52
15 Sliced 86.96 88.05 87.41 54.91 55.8 54.4 68.51 67.59 66.63 72.67 73.23 72.74
16 CMNEROne 83.05 83.24 82.97 51.68 52.34 51.36 63.81 64.02 63.05 70.41 70.62 70.44
17 L3i 73.32 71.49 71.9 56.08 56.22 55.53 66.74 66.4 65.79 68.93 68.73 68.7
18 Cardiff NLP 72.56 73.5 72.66 57.17 58.84 57.45 67.71 69.29 67.96 67.4 69.03 68.07
19 BaselineExtendingPokemons 72.97 72.47 72.31 56.13 55.7 55.45 67.01 66.59 66.01 67.92 68.27 67.99
20 SPDB Innovation Lab 76.07 76.58 76.08 51.73 52.82 51.78 64.59 65.22 64.05 66.96 67.8 67.32
21 MarSan 73.27 70.17 70.76 54.73 56.43 54.75 65.63 66.03 64.59 67.36 67.41 67.03
22 CSECU-DSG 68.11 68.02 67.62 53.46 53.4 52.53 63.54 63.26 62.32 64.23 64.36 64.03
23 Baseline 74.03 74.23 73.72 38.85 37.13 37.15 51.45 50.92 49.86 59.1 57.66 58.14

Table 17: Detailed results for Code-Mixed track.
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A.13 Multilingual (MULTI)

Team LOWNER ORCAS-NER MSQ-NER Avg.
P R F1 P R F1 P R F1 P R F1

1.
D

A
M

O
-N

L
P

BN 86.4 85.64 86.01 79.18 76.72 77.77 71.85 69.23 70.28 79.14 77.2 78.02
DE 94.29 94.51 94.4 81.87 82.11 81.62 84.91 86.01 85.31 87.02 87.54 87.11
EN 96.52 96.66 96.59 82.26 81.45 81.57 82.4 83.87 83.04 87.06 87.33 87.06
ES 95.63 95.82 95.72 79.61 79.07 78.85 83.16 86.22 84.48 86.13 87.04 86.35
FA 95.94 96.97 96.45 82.98 82.85 82.69 86.15 86.4 86.11 88.36 88.74 88.42
HI 84.64 83.8 84.2 82.42 80.96 81.46 87.74 88.59 88.1 84.93 84.45 84.58
KO 96.59 97.07 96.83 79.29 79.7 79.18 80.88 84.72 82.6 85.59 87.17 86.2
NL 97.65 97.78 97.72 79.1 79.03 78.56 84.46 84.16 84.27 87.07 86.99 86.85
RU 96.0 96.6 96.3 82.19 81.52 81.42 86.19 85.92 85.9 88.12 88.01 87.87
TR 97.66 97.87 97.77 82.66 82.18 82.0 87.69 84.86 86.17 89.34 88.31 88.65
ZH 88.37 87.9 88.12 67.74 66.83 65.59 78.02 79.74 78.09 78.05 78.16 77.27

Avg. 93.61 93.69 93.65 79.94 79.31 79.16 83.04 83.61 83.12 85.53 85.54 85.31

2.
U

ST
C

-N
E

L
SL

IP

BN 87.48 85.7 86.57 83.99 81.65 82.29 76.6 73.16 74.71 82.69 80.17 81.19
DE 95.8 95.1 95.45 80.0 79.0 79.25 87.47 85.36 86.33 87.76 86.49 87.01
EN 93.02 91.63 92.32 77.19 76.11 76.36 80.01 84.03 81.69 83.41 83.92 83.46
ES 90.05 88.11 89.06 80.65 79.38 79.62 84.84 87.69 86.09 85.18 85.06 84.92
FA 86.23 84.9 85.54 87.81 86.34 86.9 93.02 91.14 92.04 89.02 87.46 88.16
HI 86.74 83.83 85.25 84.65 82.8 83.17 91.51 90.64 91.04 87.63 85.76 86.48
KO 90.62 90.44 90.53 83.34 81.15 81.87 87.36 87.29 87.27 87.11 86.29 86.55
NL 91.93 90.93 91.43 82.65 81.4 81.81 86.89 86.71 86.58 87.16 86.35 86.61
RU 84.8 83.42 84.1 82.57 81.15 81.62 86.88 86.67 86.64 84.75 83.75 84.12
TR 90.32 89.77 90.04 83.52 82.58 82.82 86.43 87.53 86.94 86.76 86.63 86.6
ZH 92.99 89.98 91.44 77.42 72.83 74.39 85.02 82.84 83.87 85.14 81.88 83.23

Avg. 90.0 88.53 89.25 82.16 80.4 80.92 86.0 85.73 85.75 86.06 84.89 85.3

3.
Q

Tr
ad

e
A

I

BN 85.09 85.1 85.08 70.37 68.98 69.22 65.93 63.96 64.69 73.8 72.68 73.0
DE 93.08 92.36 92.72 73.04 72.64 72.36 77.95 76.61 76.69 81.36 80.54 80.59
EN 89.84 89.02 89.42 67.71 67.3 67.14 72.03 72.45 71.82 76.53 76.26 76.13
ES 87.98 86.53 87.24 72.32 71.78 71.51 77.0 80.07 78.03 79.1 79.46 78.93
FA 81.96 81.97 81.94 71.21 70.69 70.59 75.71 76.16 75.42 76.29 76.27 75.99
HI 84.18 83.48 83.81 72.33 70.98 71.3 79.48 81.06 80.13 78.66 78.5 78.41
KO 87.57 87.49 87.52 68.01 67.34 67.08 74.83 75.64 75.0 76.81 76.82 76.53
NL 90.99 90.1 90.54 72.66 72.37 72.06 76.97 77.82 77.05 80.21 80.1 79.88
RU 83.38 82.4 82.89 74.83 72.91 73.03 80.89 76.97 78.38 79.7 77.43 78.1
TR 88.81 88.64 88.72 74.18 73.22 73.09 79.34 77.84 78.41 80.78 79.9 80.07
ZH 88.06 85.55 86.74 68.26 66.02 65.88 77.85 77.3 77.34 78.06 76.29 76.65

Avg. 87.36 86.6 86.97 71.36 70.38 70.3 76.18 75.99 75.72 78.3 77.66 77.66

4.
Se

qL

BN 86.08 84.98 85.51 67.19 64.55 65.63 60.09 61.73 60.53 71.12 70.42 70.56
DE 92.87 91.98 92.42 69.63 68.72 68.75 72.43 76.2 73.71 78.31 78.97 78.29
EN 90.42 88.95 89.67 64.87 63.63 63.9 69.69 72.79 70.85 74.99 75.12 74.81
ES 88.39 86.19 87.26 69.13 68.01 68.19 72.47 78.55 74.79 76.66 77.58 76.75
FA 83.53 81.32 82.38 69.12 67.58 68.15 70.29 73.81 70.87 74.31 74.24 73.8
HI 84.84 82.7 83.73 69.59 67.18 68.01 76.47 80.6 78.26 76.97 76.82 76.67
KO 87.59 87.27 87.42 65.93 64.75 64.9 70.51 75.32 72.58 74.68 75.78 74.97
NL 91.14 89.69 90.41 68.73 67.82 67.92 73.22 76.14 74.11 77.7 77.89 77.48
RU 84.08 81.8 82.91 72.86 69.85 70.68 78.32 76.7 76.91 78.42 76.12 76.83
TR 89.37 88.01 88.68 70.95 69.69 69.88 73.83 76.25 74.8 78.05 77.98 77.79
ZH 88.15 85.89 86.95 63.15 59.56 59.44 71.81 72.57 71.1 74.37 72.67 72.5

Avg. 87.86 86.25 87.03 68.29 66.49 66.86 71.74 74.61 72.59 75.96 75.78 75.5

5.
C

M
B

A
IL

ab

BN 89.09 81.88 85.32 72.13 52.88 60.4 66.07 55.27 59.97 75.76 63.34 68.56
DE 94.33 89.61 91.9 73.18 58.05 63.61 81.46 69.55 74.44 82.99 72.4 76.65
EN 91.86 87.1 89.4 68.42 51.66 57.75 77.06 64.82 70.07 79.12 67.86 72.4
ES 89.97 84.68 87.21 71.83 56.53 62.11 78.19 70.48 73.89 80.0 70.56 74.4
FA 85.07 80.51 82.66 72.96 56.35 62.92 77.93 65.99 70.8 78.65 67.62 72.13
HI 87.89 79.94 83.66 73.64 57.26 63.76 82.92 74.45 78.35 81.48 70.55 75.26
KO 89.46 84.83 87.06 71.92 55.66 61.62 79.96 67.73 72.91 80.45 69.41 73.86
NL 92.65 88.07 90.29 72.96 57.99 63.43 80.4 68.32 73.26 82.0 71.46 75.66
RU 84.39 80.89 82.57 73.96 59.41 64.69 84.19 69.33 75.59 80.85 69.88 74.28
TR 90.65 87.57 89.07 74.6 58.82 64.69 81.79 69.13 74.55 82.35 71.84 76.11
ZH 91.05 83.63 87.11 70.03 50.03 57.0 76.11 64.96 69.57 79.06 66.21 71.23
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Avg. 89.67 84.43 86.93 72.33 55.88 62.0 78.73 67.28 72.13 80.25 69.19 73.69

6.
U

M
6P

-C
S

BN 81.82 81.7 81.75 62.2 59.46 60.15 61.75 58.43 59.8 68.59 66.53 67.24
DE 90.69 90.55 90.62 63.99 64.33 63.51 73.59 72.19 72.64 76.09 75.69 75.59
EN 87.81 87.46 87.63 59.2 58.28 58.05 69.68 68.15 68.81 72.23 71.3 71.5
ES 86.06 85.57 85.81 63.52 63.03 62.49 73.01 73.74 73.13 74.2 74.11 73.81
FA 80.46 80.72 80.58 63.04 62.53 62.37 69.88 71.14 70.07 71.13 71.46 71.01
HI 81.21 80.49 80.83 64.59 61.92 62.33 79.6 76.31 77.83 75.13 72.91 73.66
KO 84.56 86.02 85.28 59.03 58.9 58.33 66.54 70.03 67.97 70.04 71.65 70.53
NL 89.13 88.99 89.05 63.86 63.77 63.09 72.86 71.28 71.91 75.28 74.68 74.69
RU 81.19 81.65 81.41 66.65 64.66 64.71 76.58 72.15 73.96 74.81 72.82 73.36
TR 87.33 87.73 87.53 65.65 65.2 64.58 76.34 74.47 75.28 76.44 75.8 75.8
ZH 84.55 83.4 83.97 60.37 57.44 56.97 69.06 71.16 69.74 71.32 70.67 70.22

Avg. 84.98 84.93 84.95 62.92 61.77 61.51 71.72 70.82 71.01 73.21 72.51 72.49

7.
R

A
C

A
I

BN 82.81 82.79 82.79 62.85 60.41 61.11 59.47 60.58 59.86 68.38 67.93 67.92
DE 91.27 91.07 91.17 63.67 63.11 62.63 70.67 72.1 71.04 75.2 75.43 74.95
EN 87.83 88.18 88.01 59.72 58.49 58.29 67.49 69.47 68.27 71.68 72.04 71.52
ES 83.38 83.45 83.4 61.91 61.09 60.66 67.61 73.13 69.95 70.96 72.56 71.34
FA 79.7 82.46 81.03 63.68 62.93 62.85 68.12 70.83 68.97 70.5 72.07 70.95
HI 82.33 81.99 82.15 65.02 63.16 63.46 75.29 77.86 76.27 74.21 74.34 73.96
KO 85.51 87.23 86.34 59.83 59.88 58.95 67.11 70.08 68.36 70.82 72.4 71.22
NL 89.08 89.5 89.29 63.63 63.22 62.66 69.13 70.72 69.75 73.95 74.48 73.9
RU 80.36 82.19 81.26 66.4 63.83 63.98 75.57 73.34 74.1 74.11 73.12 73.11
TR 86.53 88.54 87.52 65.51 64.64 64.21 72.34 73.61 72.8 74.79 75.6 74.84
ZH 84.72 84.42 84.57 59.53 57.11 56.4 66.33 70.17 67.17 70.19 70.56 69.38

Avg. 84.87 85.62 85.23 62.89 61.62 61.38 69.01 71.08 69.69 72.25 72.78 72.1

8.
C

ar
di

ff
N

L
P

BN 82.43 83.67 83.02 60.67 60.32 60.1 59.19 59.87 59.05 67.43 67.95 67.39
DE 91.24 91.47 91.35 62.09 63.47 62.06 70.23 72.8 71.19 74.52 75.91 74.87
EN 87.7 88.63 88.16 57.69 58.55 57.49 66.69 68.7 67.5 70.69 71.96 71.05
ES 85.4 86.71 86.04 61.36 62.47 61.2 68.96 74.82 71.23 71.91 74.67 72.82
FA 79.43 82.98 81.16 60.08 61.88 60.55 66.17 71.89 68.33 68.56 72.25 70.01
HI 82.11 82.29 82.18 63.18 63.07 62.6 73.93 78.68 75.94 73.07 74.68 73.57
KO 84.79 87.72 86.22 55.74 58.53 56.38 66.13 70.77 68.25 68.88 72.34 70.29
NL 89.03 90.18 89.59 61.04 62.53 61.12 68.23 72.6 70.03 72.77 75.1 73.58
RU 79.89 82.87 81.35 62.96 62.97 62.03 73.59 72.84 72.74 72.14 72.89 72.04
TR 86.6 89.3 87.92 62.78 63.69 62.28 72.14 73.33 72.59 73.84 75.44 74.26
ZH 85.06 85.05 85.05 55.35 55.0 53.08 64.74 69.65 66.51 68.38 69.9 68.21

Avg. 84.88 86.44 85.64 60.27 61.13 59.9 68.18 71.45 69.4 71.11 73.01 71.64

9.
Sl

ic
ed

BN 82.89 83.11 82.97 59.22 57.37 57.58 56.15 57.69 56.51 66.09 66.06 65.68
DE 90.83 90.88 90.85 61.76 62.8 61.72 70.31 71.86 70.87 74.3 75.18 74.48
EN 87.58 87.91 87.74 57.15 57.24 56.36 67.62 68.84 67.97 70.78 71.33 70.69
ES 85.59 85.81 85.69 60.51 61.49 60.28 69.32 73.36 70.77 71.81 73.55 72.25
FA 79.75 82.35 81.03 59.67 61.46 60.2 63.45 68.85 65.38 67.62 70.89 68.87
HI 81.16 81.29 81.21 62.7 61.39 61.23 73.22 76.61 74.29 72.36 73.1 72.24
KO 84.49 86.53 85.5 55.3 57.96 55.91 64.05 68.25 65.92 67.95 70.91 69.11
NL 88.7 89.21 88.95 61.48 62.92 61.64 69.04 72.58 70.42 73.07 74.9 73.67
RU 80.34 82.38 81.34 64.09 64.0 63.41 74.2 73.51 73.43 72.88 73.29 72.73
TR 86.6 88.45 87.5 62.71 63.5 62.27 70.09 70.85 70.33 73.13 74.27 73.36
ZH 85.86 84.44 85.1 58.35 55.95 54.95 65.57 68.28 65.85 69.93 69.56 68.63

Avg. 84.89 85.67 85.26 60.27 60.55 59.6 67.55 70.06 68.34 70.9 72.09 71.06

10
.I

IE
_K

D
SE

C

BN 82.17 81.64 81.86 59.9 56.97 57.87 58.43 57.74 57.53 66.84 65.45 65.75
DE 90.17 90.43 90.3 62.06 62.48 61.57 69.19 72.44 70.21 73.8 75.12 74.02
EN 87.3 87.48 87.39 57.62 57.44 56.75 66.92 69.35 67.66 70.61 71.42 70.6
ES 85.51 85.07 85.28 61.75 62.09 61.25 67.08 73.81 69.43 71.45 73.66 71.98
FA 79.36 81.72 80.5 60.97 60.08 59.99 63.57 68.11 64.71 67.96 69.97 68.4
HI 81.06 80.14 80.59 63.67 61.61 62.21 73.87 77.78 75.2 72.86 73.18 72.66
KO 84.54 86.11 85.3 57.64 58.01 57.34 65.12 70.12 67.09 69.1 71.41 69.91
NL 88.41 89.01 88.7 61.86 62.45 61.45 68.59 71.4 69.5 72.95 74.28 73.22
RU 79.81 81.62 80.7 65.4 64.32 64.15 72.79 72.06 71.48 72.67 72.66 72.11
TR 86.37 88.14 87.24 63.1 62.88 62.25 68.35 70.43 68.9 72.61 73.82 72.8
ZH 85.15 82.83 83.91 58.91 54.57 54.43 66.85 68.59 66.58 70.31 68.66 68.31

Avg. 84.53 84.93 84.71 61.17 60.26 59.93 67.34 70.17 68.03 71.01 71.78 70.89
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11
.B

.E
.P

BN 82.24 82.26 82.23 60.92 57.93 58.85 59.92 56.44 57.4 67.7 65.54 66.16
DE 90.68 90.47 90.57 61.17 61.23 60.51 70.51 71.47 70.36 74.12 74.39 73.82
EN 87.72 87.39 87.55 57.43 55.95 55.79 66.24 66.78 65.91 70.46 70.04 69.75
ES 86.07 85.34 85.7 61.03 60.65 60.09 68.97 73.12 70.36 72.02 73.04 72.05
FA 80.28 80.42 80.34 59.67 59.43 58.96 65.17 66.57 65.2 68.37 68.81 68.17
HI 80.81 80.26 80.5 63.6 60.79 61.29 76.33 75.39 75.51 73.58 72.15 72.43
KO 84.97 85.84 85.4 57.15 57.65 56.65 65.8 68.49 66.7 69.31 70.66 69.58
NL 88.97 88.79 88.87 61.39 61.5 60.85 67.05 70.13 68.06 72.47 73.47 72.59
RU 81.67 80.97 81.32 64.11 63.15 62.83 73.87 72.41 72.28 73.22 72.18 72.14
TR 86.98 87.56 87.26 62.79 61.74 61.23 72.42 71.26 71.45 74.06 73.52 73.31
ZH 84.83 83.46 84.12 58.83 53.95 53.3 67.71 67.5 65.38 70.46 68.3 67.6

Avg. 85.02 84.8 84.9 60.74 59.45 59.12 68.54 69.05 68.06 71.43 71.1 70.69

12
.O

PD
A

I

BN 82.79 82.06 82.42 59.68 50.37 54.03 58.27 53.76 55.55 66.92 62.06 64.0
DE 90.97 90.33 90.65 59.6 56.78 57.75 67.82 68.07 67.45 72.8 71.73 71.95
EN 87.98 87.95 87.97 51.85 49.03 49.94 63.56 65.24 64.06 67.8 67.4 67.32
ES 84.12 83.18 83.64 53.54 50.86 51.5 64.2 66.7 64.98 67.29 66.91 66.71
FA 80.9 81.79 81.33 57.93 52.49 54.77 62.88 63.56 62.62 67.24 65.95 66.24
HI 81.59 80.68 81.13 61.16 53.24 56.5 72.25 72.98 72.45 71.67 68.97 70.02
KO 85.44 86.11 85.77 58.73 51.67 54.56 65.73 65.7 65.58 69.96 67.83 68.63
NL 89.39 89.03 89.21 58.69 56.36 57.07 66.34 68.08 66.93 71.47 71.16 71.07
RU 81.44 81.61 81.53 63.88 55.46 58.98 70.79 66.93 68.21 72.04 68.0 69.57
TR 86.58 87.47 87.02 60.69 56.24 57.92 66.58 66.02 66.1 71.28 69.91 70.35
ZH 86.47 85.8 86.08 68.15 66.7 66.1 82.63 84.11 83.11 79.08 78.87 78.43

Avg. 85.24 85.09 85.16 59.45 54.47 56.28 67.37 67.38 67.0 70.69 68.98 69.48

13
.b

ro
th

er
ho

od

BN 82.62 82.8 82.7 60.63 57.71 58.47 57.14 57.33 56.89 66.79 65.95 66.02
DE 90.46 89.99 90.22 59.96 59.81 59.29 68.52 70.3 68.86 72.98 73.37 72.79
EN 87.53 87.65 87.59 56.32 55.8 55.43 63.92 66.72 64.83 69.26 70.06 69.28
ES 83.11 82.3 82.7 57.19 56.52 56.11 63.23 69.44 65.8 67.85 69.42 68.2
FA 80.22 82.03 81.11 57.32 56.51 56.39 61.97 66.71 63.37 66.5 68.42 66.95
HI 81.19 80.59 80.88 61.79 59.02 59.66 72.26 76.23 73.69 71.74 71.95 71.41
KO 85.03 86.45 85.74 56.45 56.91 55.95 63.5 68.34 65.33 68.33 70.57 69.01
NL 88.79 88.94 88.86 59.28 59.62 58.89 64.91 68.78 66.29 70.99 72.44 71.35
RU 80.39 81.61 80.99 60.8 59.46 59.18 65.77 67.56 66.18 68.99 69.54 68.79
TR 86.41 88.05 87.22 60.66 59.96 59.59 67.52 70.86 68.66 71.53 72.95 71.82
ZH 85.77 83.95 84.8 58.11 53.34 53.1 64.98 68.96 66.02 69.62 68.75 67.97

Avg. 84.68 84.94 84.8 58.96 57.7 57.46 64.88 68.29 65.99 69.51 70.31 69.42

14
.M

ar
Sa

n

BN 81.56 81.36 81.42 59.37 56.93 57.76 55.92 56.57 54.9 65.62 64.95 64.69
DE 90.43 90.55 90.46 62.24 63.31 62.27 69.96 73.92 70.82 74.21 75.93 74.52
EN 86.88 87.4 87.1 57.16 56.77 56.27 63.0 67.82 64.38 69.02 70.66 69.25
ES 85.62 85.01 85.27 59.28 60.47 59.45 64.83 73.28 67.66 69.91 72.92 70.79
FA 78.55 79.51 78.97 55.59 54.98 54.96 58.27 63.37 59.0 64.14 65.95 64.31
HI 79.63 78.53 79.01 58.95 57.04 57.49 71.59 74.39 71.75 70.06 69.99 69.42
KO 83.58 84.05 83.78 55.49 55.08 54.6 61.29 65.69 62.36 66.79 68.28 66.91
NL 88.09 88.54 88.29 60.07 61.31 60.12 67.07 72.15 68.55 71.74 74.0 72.32
RU 80.59 79.57 80.04 61.8 59.8 60.18 69.08 70.0 67.99 70.49 69.79 69.4
TR 85.94 86.8 86.34 62.51 62.63 62.0 65.92 69.66 67.05 71.46 73.03 71.8
ZH 84.14 83.3 83.68 58.8 55.43 55.24 66.48 70.16 67.09 69.81 69.63 68.67

Avg. 84.09 84.06 84.03 59.21 58.52 58.21 64.86 68.82 65.6 69.39 70.47 69.28

15
.I

nf
rr

d.
ai

BN 79.97 80.51 80.18 59.53 55.61 56.49 58.78 55.59 56.88 66.09 63.9 64.52
DE 88.97 88.84 88.9 60.59 59.98 59.48 67.99 68.85 67.77 72.52 72.56 72.05
EN 86.12 86.47 86.29 57.76 55.14 55.44 65.26 67.91 66.29 69.72 69.84 69.34
ES 84.4 84.64 84.51 60.32 59.01 58.59 64.46 69.94 66.42 69.73 71.2 69.84
FA 78.94 81.21 80.04 58.66 56.92 57.06 63.36 65.37 63.88 66.99 67.83 66.99
HI 78.69 78.11 78.37 61.63 58.28 59.05 72.43 76.04 73.63 70.92 70.81 70.35
KO 82.69 84.76 83.69 57.2 56.44 55.88 64.15 67.99 65.73 68.01 69.73 68.43
NL 87.77 87.82 87.79 61.02 60.09 59.71 67.85 70.08 68.79 72.21 72.66 72.1
RU 78.57 81.61 80.04 63.47 61.07 61.3 72.86 71.51 71.29 71.63 71.4 70.88
TR 84.87 87.51 86.16 61.93 60.12 59.97 67.84 68.31 67.87 71.54 71.98 71.33
ZH 81.81 81.9 81.78 56.59 53.22 52.84 62.12 65.99 62.94 66.84 67.04 65.86

Avg. 82.98 83.94 83.43 59.88 57.81 57.8 66.1 67.96 66.5 69.65 69.9 69.24
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16
.H

av
eN

oI
de

a

BN 82.01 80.5 81.17 57.25 51.15 52.6 56.97 52.24 53.64 65.41 61.3 62.47
DE 91.22 90.04 90.61 63.33 61.86 61.18 75.42 72.88 73.66 76.66 74.93 75.15
EN 88.34 87.01 87.65 58.52 55.63 55.5 67.91 66.85 67.23 71.59 69.83 70.13
ES 87.7 84.1 85.82 61.96 59.84 59.27 70.31 70.84 70.51 73.33 71.59 71.87
FA 79.44 76.16 77.65 53.27 50.53 50.87 60.15 60.02 58.97 64.28 62.24 62.49
HI 80.84 78.05 79.34 57.6 53.9 54.46 74.25 71.63 72.43 70.89 67.86 68.74
KO 83.01 81.49 82.16 51.96 47.59 48.03 63.46 63.07 62.57 66.14 64.05 64.26
NL 89.99 87.36 88.63 63.26 61.13 60.44 72.94 70.77 71.56 75.39 73.09 73.55
RU 82.66 80.28 81.41 65.65 61.35 61.82 77.69 70.21 73.32 75.33 70.61 72.19
TR 87.22 86.57 86.87 63.86 61.5 61.22 72.33 68.81 70.2 74.47 72.29 72.76
ZH 83.1 71.09 76.34 56.85 48.15 49.48 65.75 63.87 63.44 68.57 61.03 63.09

Avg. 85.05 82.06 83.42 59.41 55.69 55.9 68.83 66.47 67.05 71.1 68.07 68.79

17
.E

U
R

E
C

O
M

BN 79.9 78.85 79.33 54.31 53.41 53.54 54.12 55.24 53.31 62.78 62.5 62.06
DE 89.29 89.02 89.15 59.53 60.47 59.52 67.38 71.35 68.7 72.06 73.61 72.46
EN 86.11 86.01 86.06 55.55 55.49 55.0 62.94 66.83 64.13 68.2 69.44 68.4
ES 85.28 84.32 84.8 59.56 60.08 59.23 65.83 69.89 67.37 70.22 71.43 70.47
FA 77.82 78.34 78.06 55.33 54.92 54.87 57.17 62.99 58.75 63.44 65.42 63.89
HI 78.35 76.35 77.29 55.74 54.91 55.04 69.25 72.53 69.84 67.78 67.93 67.39
KO 82.15 83.8 82.96 53.99 53.35 53.26 58.34 65.45 61.01 64.83 67.53 65.74
NL 87.59 87.71 87.65 59.47 60.39 59.45 65.7 69.59 67.04 70.92 72.56 71.38
RU 79.1 79.66 79.37 60.59 59.66 59.48 69.16 69.25 68.08 69.62 69.52 68.97
TR 84.83 86.71 85.76 60.28 60.43 59.82 65.44 69.03 66.69 70.18 72.05 70.75
ZH 83.34 82.02 82.66 57.82 54.94 54.48 64.36 68.51 65.12 68.51 68.49 67.42

Avg. 83.07 82.98 83.01 57.47 57.1 56.7 63.61 67.33 64.55 68.05 69.13 68.08

18
.M

aC
hA

m
p

BN 78.09 79.68 78.87 52.07 51.38 50.89 53.49 53.03 52.46 61.22 61.36 60.74
DE 89.24 89.56 89.4 62.45 64.2 62.79 70.25 72.33 71.08 73.98 75.36 74.42
EN 85.93 86.97 86.44 58.08 58.48 57.7 64.65 69.39 66.2 69.56 71.62 70.11
ES 84.81 85.53 85.15 61.77 63.48 61.94 67.16 72.73 69.23 71.25 73.91 72.1
FA 75.24 78.49 76.82 49.14 51.84 49.9 49.79 58.31 52.85 58.06 62.88 59.86
HI 76.69 78.04 77.35 56.29 56.45 55.72 67.68 73.68 70.04 66.89 69.39 67.7
KO 81.05 83.76 82.38 49.07 51.05 49.34 53.97 62.91 57.36 61.36 65.91 63.03
NL 87.56 88.34 87.94 61.45 63.0 61.62 68.38 72.58 70.23 72.46 74.64 73.26
RU 78.31 81.24 79.74 62.04 62.51 61.46 68.92 68.97 68.14 69.75 70.91 69.78
TR 84.48 87.23 85.81 61.76 63.15 61.68 64.52 67.95 65.9 70.25 72.78 71.13
ZH 79.96 80.37 80.13 49.66 48.44 46.96 58.89 63.62 59.88 62.83 64.15 62.32

Avg. 81.94 83.56 82.73 56.71 57.63 56.36 62.52 66.86 63.94 67.06 69.36 67.68

19
.Y

N
U

N
L

P

BN 79.19 77.07 78.05 57.95 51.59 53.7 55.19 55.49 53.56 64.11 61.38 61.77
DE 87.61 86.41 86.99 59.12 58.75 57.98 69.29 69.04 67.19 72.01 71.4 70.72
EN 85.67 84.19 84.9 54.77 52.48 52.38 64.73 63.75 63.04 68.39 66.81 66.77
ES 85.22 81.31 83.2 57.7 56.3 55.91 66.15 68.41 66.0 69.69 68.67 68.37
FA 79.42 75.53 77.39 56.48 54.03 54.38 63.67 64.01 62.28 66.52 64.52 64.68
HI 77.69 74.36 75.93 59.47 56.21 57.07 71.12 73.9 71.03 69.43 68.16 68.01
KO 81.56 80.87 81.18 56.52 54.11 54.28 59.42 65.49 60.53 65.83 66.82 65.33
NL 87.43 84.81 86.08 58.73 57.78 57.11 67.24 67.15 66.17 71.14 69.91 69.78
RU 81.74 75.93 78.72 62.54 58.78 59.31 70.27 68.38 67.57 71.52 67.69 68.53
TR 84.4 83.52 83.95 60.08 57.53 57.37 66.84 67.32 65.46 70.44 69.46 68.93
ZH 80.19 77.99 79.0 51.79 47.17 47.22 61.37 63.07 61.05 64.45 62.75 62.42

Avg. 82.74 80.18 81.4 57.74 54.98 55.16 65.03 66.0 63.99 68.5 67.05 66.85

20
.D

S4
D

H

BN 79.42 75.85 77.57 53.09 45.66 47.87 54.34 48.87 50.71 62.29 56.79 58.71
DE 88.21 85.58 86.87 55.3 52.95 52.98 66.38 63.79 64.55 69.96 67.44 68.13
EN 86.21 82.8 84.44 52.18 48.88 49.18 61.27 57.99 59.06 66.55 63.22 64.23
ES 85.31 80.72 82.92 55.12 51.71 52.0 63.9 62.0 62.66 68.11 64.81 65.86
FA 81.89 74.94 78.22 56.3 51.66 53.26 63.25 61.66 61.71 67.15 62.75 64.4
HI 79.81 74.44 76.95 57.56 51.0 53.0 71.66 69.79 70.06 69.68 65.08 66.67
KO 84.45 81.23 82.8 52.55 49.93 49.99 62.8 60.73 61.42 66.6 63.96 64.74
NL 88.16 84.7 86.38 55.24 52.71 52.7 65.16 62.9 63.74 69.52 66.77 67.61
RU 82.52 75.96 79.09 59.17 54.36 55.35 68.95 62.22 64.87 70.22 64.18 66.44
TR 86.83 83.17 84.96 56.56 52.84 53.15 67.34 62.2 64.38 70.25 66.07 67.5
ZH 83.24 78.17 80.52 53.77 47.15 48.15 61.73 61.21 60.78 66.25 62.18 63.15

Avg. 84.19 79.78 81.88 55.17 50.8 51.6 64.25 61.21 62.18 67.87 63.93 65.22
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21
.U

PB

BN 79.84 80.64 80.2 52.51 51.07 50.88 52.09 50.36 49.95 61.48 60.69 60.34
DE 87.67 88.32 87.99 52.24 53.77 52.18 60.43 65.32 61.79 66.78 69.14 67.32
EN 85.14 86.16 85.64 50.6 51.15 50.14 57.73 62.56 59.02 64.49 66.62 64.93
ES 83.81 84.02 83.91 52.05 52.73 51.33 57.96 64.4 60.21 64.61 67.05 65.15
FA 77.06 80.14 78.57 53.26 53.7 52.46 57.45 62.04 58.86 62.59 65.29 63.3
HI 77.53 77.68 77.58 55.0 54.26 53.98 65.64 69.92 66.47 66.06 67.29 66.01
KO 81.16 84.35 82.71 50.74 51.9 50.41 56.73 62.38 58.56 62.88 66.21 63.89
NL 86.73 87.61 87.14 53.31 53.99 52.73 59.68 64.38 61.06 66.57 68.66 66.98
RU 77.93 80.93 79.39 57.27 57.01 56.06 63.2 65.12 62.73 66.13 67.69 66.06
TR 83.19 85.37 84.26 53.39 52.94 52.04 58.02 59.78 57.85 64.87 66.03 64.72
ZH 82.89 82.21 82.49 52.98 50.47 48.96 58.15 63.05 58.42 64.67 65.24 63.29

Avg. 82.09 83.4 82.72 53.03 53.0 51.92 58.83 62.66 59.54 64.65 66.36 64.73

22
.C

SE
C

U
-D

SG

BN 77.5 76.82 77.12 51.42 46.24 47.93 52.23 52.55 51.63 60.38 58.54 58.89
DE 87.12 86.34 86.72 52.5 53.92 52.52 62.89 65.57 63.82 67.5 68.61 67.69
EN 84.06 83.34 83.69 49.84 49.8 48.91 58.88 60.99 59.47 64.26 64.71 64.02
ES 82.93 81.62 82.26 51.62 52.18 51.02 60.08 64.29 61.72 64.88 66.03 65.0
FA 77.28 77.87 77.55 52.12 51.76 51.45 58.85 63.0 59.66 62.75 64.21 62.88
HI 76.99 75.54 76.23 56.3 54.03 54.51 67.76 70.11 67.08 67.01 66.56 65.94
KO 80.51 82.81 81.62 49.44 50.17 49.04 58.58 61.56 59.6 62.85 64.85 63.42
NL 86.53 85.57 86.05 53.53 54.14 53.05 62.14 65.41 63.34 67.4 68.37 67.48
RU 77.98 78.23 78.09 54.22 53.26 52.63 66.57 63.92 64.18 66.26 65.14 64.97
TR 83.99 84.09 84.03 54.47 54.08 53.26 61.25 63.19 61.46 66.57 67.12 66.25
ZH 81.91 80.29 81.03 50.09 48.27 47.08 56.59 60.81 57.6 62.86 63.12 61.9

Avg. 81.53 81.14 81.31 52.32 51.62 51.04 60.53 62.85 60.87 64.79 65.21 64.4

23
.N

SU
-A

I

BN 77.78 77.27 77.49 52.46 49.81 50.37 49.13 48.34 48.07 59.79 58.47 58.64
DE 87.9 87.79 87.84 53.35 53.64 52.74 58.78 63.51 60.52 66.68 68.31 67.03
EN 84.65 85.02 84.83 50.6 50.22 49.68 54.44 59.15 56.25 63.23 64.8 63.59
ES 83.59 82.96 83.27 52.78 52.49 51.58 55.14 61.31 57.59 63.84 65.59 64.15
FA 75.33 77.73 76.47 50.9 51.12 50.45 54.1 60.42 56.47 60.11 63.09 61.13
HI 77.1 76.02 76.53 55.3 52.65 53.21 65.03 67.59 65.28 65.81 65.42 65.01
KO 81.62 83.14 82.35 53.53 52.63 52.3 57.73 61.64 59.15 64.29 65.8 64.6
NL 87.03 86.79 86.91 54.37 54.41 53.51 59.23 64.16 61.11 66.88 68.45 67.17
RU 78.68 79.38 79.01 58.83 56.94 57.01 64.38 66.72 64.85 67.29 67.68 66.96
TR 83.23 84.38 83.79 54.85 53.59 53.2 57.77 59.41 58.08 65.28 65.79 65.02
ZH 81.64 80.89 81.19 52.25 49.82 48.45 60.37 62.88 59.94 64.76 64.53 63.19

Avg. 81.69 81.94 81.79 53.57 52.48 52.05 57.83 61.38 58.85 64.36 65.27 64.23

24
.S

PD
B

In
no

va
tio

n
L

ab

BN 75.59 75.54 75.54 45.87 41.92 42.27 53.4 47.64 49.55 58.29 55.03 55.79
DE 85.92 84.87 85.38 50.94 51.48 50.04 65.47 64.83 64.63 67.45 67.06 66.68
EN 83.15 82.06 82.59 47.89 46.77 46.15 59.29 58.03 58.41 63.44 62.29 62.38
ES 82.49 80.59 81.5 49.9 49.15 48.04 61.47 61.4 61.13 64.62 63.71 63.56
FA 76.55 76.23 76.35 50.3 48.04 48.11 58.45 57.38 56.84 61.76 60.55 60.43
HI 75.35 73.81 74.51 55.39 51.67 52.38 72.27 68.99 70.21 67.67 64.83 65.7
KO 79.77 80.56 80.14 47.68 47.32 46.18 58.55 59.16 58.25 62.0 62.34 61.52
NL 85.65 84.98 85.31 51.67 52.05 50.66 66.56 63.74 64.68 67.96 66.92 66.88
RU 78.46 76.82 77.63 56.74 54.1 53.82 68.18 60.85 63.58 67.8 63.92 65.01
TR 83.54 83.65 83.58 53.9 53.08 52.11 64.62 61.86 62.75 67.35 66.2 66.15
ZH 81.39 78.83 80.02 51.15 46.6 46.01 60.06 59.38 57.95 64.2 61.61 61.33

Avg. 80.71 79.81 80.23 51.04 49.29 48.71 62.57 60.3 60.73 64.78 63.13 63.22

25
.L

3i

BN 73.57 72.55 72.84 47.0 42.43 43.79 38.16 39.75 38.04 52.91 51.58 51.56
DE 89.55 88.49 89.01 57.48 56.04 55.68 62.63 65.6 63.51 69.89 70.04 69.4
EN 85.81 85.55 85.67 53.37 50.62 50.86 54.89 55.68 54.55 64.69 63.95 63.69
ES 84.27 83.74 83.98 55.13 53.47 53.37 57.22 62.82 59.23 65.54 66.68 65.53
FA 75.71 75.4 75.51 47.17 43.21 44.43 48.19 53.31 49.09 57.02 57.31 56.34
HI 70.72 68.68 69.54 46.78 42.45 43.33 49.58 56.2 50.6 55.69 55.78 54.49
KO 80.02 78.75 79.37 45.4 41.19 42.21 47.43 50.83 47.26 57.62 56.92 56.28
NL 87.12 87.18 87.13 57.05 55.68 55.37 60.83 64.2 61.96 68.33 69.02 68.15
RU 77.55 77.69 77.59 54.56 50.71 51.51 58.71 60.39 57.88 63.6 62.93 62.33
TR 83.21 85.44 84.3 54.03 50.87 51.34 53.43 56.44 53.88 63.56 64.25 63.18
ZH 82.39 80.96 81.59 54.62 50.17 49.54 57.08 61.1 56.76 64.7 64.08 62.63

Avg. 80.9 80.4 80.59 52.05 48.8 49.22 53.47 56.94 53.89 62.14 62.05 61.23
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26
.B

as
el

in
e

BN 73.32 74.14 73.54 39.28 36.45 37.49 39.87 41.36 40.03 50.83 50.65 50.35
DE 83.69 82.35 82.93 41.91 40.47 40.63 49.96 53.5 50.94 58.52 58.77 58.17
EN 79.78 78.97 79.29 41.19 38.93 39.36 44.36 49.88 45.8 55.11 55.93 54.82
ES 67.52 64.25 65.53 36.1 33.13 33.33 36.75 39.54 37.08 46.79 45.64 45.32
FA 47.01 45.37 45.46 32.2 26.58 28.23 34.42 35.25 34.46 37.88 35.74 36.05
HI 72.06 71.1 71.38 44.95 41.59 42.63 52.53 55.79 53.4 56.51 56.16 55.8
KO 42.84 37.41 39.8 39.07 34.38 35.76 35.81 41.62 36.13 39.24 37.8 37.23
NL 68.94 65.02 66.73 40.6 38.48 38.59 45.62 49.21 46.64 51.72 50.9 50.65
RU 51.22 53.0 51.17 35.76 30.7 32.65 32.34 34.37 32.27 39.77 39.36 38.7
TR 57.51 53.81 55.17 36.67 33.55 34.09 37.01 39.82 37.62 43.73 42.39 42.29
ZH 77.29 77.5 77.36 42.83 42.68 41.32 46.75 54.27 49.89 55.62 58.15 56.19

Avg. 65.56 63.9 64.4 39.14 36.09 36.73 41.4 44.96 42.21 48.7 48.32 47.78

Table 18: Detailed results for the Multi-lingual track. Full form of B.E.P. is BaselineExtendingPokemons.
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Abstract
Processing complex and ambiguous named en-
tities is a challenging research problem, but it
has not received sufficient attention from the
natural language processing community. In this
short paper, we present our participation in the
English track of SemEval-2022 Task 11: Mul-
tilingual Complex Named Entity Recognition.
Inspired by the recent advances in pretrained
Transformer language models, we propose a
simple yet effective Transformer-based base-
line for the task. Despite its simplicity, our
proposed approach shows competitive results
in the leaderboard as we ranked 12 over 30
teams. Our system achieved a macro F1 score
of 72.50% on the held-out test set. We have
also explored a data augmentation approach us-
ing entity linking. While the approach does not
improve the final performance, we also discuss
it in this paper.

1 Introduction

Recognizing complex named entities (NEs) is a
challenging research problem, but it has not re-
ceived sufficient attention from the natural lan-
guage processing community (Meng et al., 2021a;
Fetahu et al., 2021). Complex NEs can be com-
plex noun phrases (e.g., National Baseball Hall of
Fame and Museum), gerunds (e.g., Saving Private
Ryan), infinitives (e.g., To Build a Fire), or even
full clauses (e.g., I Capture The Castle). This am-
biguity makes it difficult to recognize them based
on their context (Aguilar et al., 2017; Luken et al.,
2018; Hanselowski et al., 2018).

In this paper, we describe our participation in the
English track of SemEval-2022 Task 11: Multilin-
gual Complex Named Entity Recognition (Malmasi
et al., 2022a,b). Inspired by the recent success of
Transformer-based pre-trained language models in
many NLP tasks (Devlin et al., 2019; Joshi et al.,
2019; Lai et al., 2019; Joshi et al., 2020; Tran et al.,
2020; Yu et al., 2020; Wen et al., 2021; Lai et al.,
2021; Monaikul et al., 2021), we propose a simple

but effective Transformer-based baseline for the
task. Despite its simplicity, our proposed approach
shows promising results: the official ranking indi-
cated that our system achieved a macro F1 score of
72.50% on the test set and ranked 12th out of 30
teams. We have also explored a data augmentation
approach using entity linking. While the approach
does not improve the final performance, we also
discuss it in this paper.

In the following sections, we first describe the
related work in Section 2 and the proposed method
in Section 3. We then describe the experiments
and their results in Section 4. Finally, Section 5
concludes this work and discusses potential future
research directions.

2 Related Work

Many previous named entity recognition (NER)
methods are based on the sequence labeling ap-
proach (Collobert et al., 2011; Ma and Hovy, 2016;
Lample et al., 2016; Chiu and Nichols, 2016; Lee
et al., 2019; Yang et al., 2018; Yang and Zhang,
2018; Lai et al., 2020a; Li et al., 2020). For exam-
ple, Collobert et al. (2011) introduced a neural ar-
chitecture that uses convolutional neural networks
(CNNs) to encode tokens combined with a CRF
layer for the classification. Many other studies
used recurrent neural networks (RNNs) instead of
CNNs to encode the input and a CRF for the pre-
diction (Ma and Hovy, 2016; Lample et al., 2016).
With the recent rise of pre-trained language models,
recent NER models typically make use of context-
dependent embeddings such as ELMo (Peters et al.,
2018) or BERT (Devlin et al., 2019).

While neural-based models have achieved im-
pressive results on popular benchmark datasets like
CoNLL03 and OntoNotes (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003; Pradhan
et al., 2012), these models typically do not per-
form well on complex/unseen entities (Augenstein
et al., 2017). Complex named entities (e.g., titles
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Figure 1: Overview of our Transformer-based model.

Tag Description
{B,I}-PER A named entity of a person
{B,I}-LOC A named entity of a location
{B,I}-GRP A named entity of a group
{B,I}-CORP A named entity of a corporation
{B,I}-PROD A named entity of a product
{B,I}-CW A named entity of a creative work
O Not a named entity

Table 1: The label set.

of creative works) are typically not simple nouns
and are harder to recognize. The challenges of
NER for recognizing complex entities and in low-
context situations was recently outlined by Meng
et al. (2021b). Other work has extended this to
multilingual and code-mixed settings (Fetahu et al.,
2021).

3 Method

3.1 Baseline model

Similar to many previous studies (Lample et al.,
2016; Chiu and Nichols, 2016), we formulate the
task as a sequence labeling problem. Given an input
sequence consisting of n tokens (x1, ..., xn), the
goal is to predict a sequence of labels (y1, ..., yn),
where yi is the label corresponding to token xi.
Table 1 describes the label set. We follow the BIO
format: B denotes the beginning of a named entity,
I denotes the continuation of a named entity, and
O corresponds to tokens that are not part of any
named entity.

Figure 1 shows a high-level overview of our
Transformer-based model. Our model first forms a
contextualized representation for each input token
using a Transformer encoder (Devlin et al., 2019).
Let H = (h1, ...,hn) be the output of the encoder

where hi ∈ Rd. After that, we can predict the final
label yi for each input token xi:

yi = softmax(FFNNθ(hi))

yi = argmax
j

yij (1)

where FFNNθ is a trainable feedforward network.
yi is the predicted probability distribution over
the label set for the token xi. The model is fine-
tuned end-to-end via minimizing the typical cross-
entropy loss.

Unlike many previous studies (Lample et al.,
2016; Chiu and Nichols, 2016), our model does
not have a CRF layer (Lafferty et al., 2001). A re-
cent paper suggested that when using a pretrained
Transformer language model for sequence labeling,
adding a CRF layer may not improve the perfor-
mance substantially (Chen et al., 2019).

3.2 Data Augmentation
To increase the size of the training set, we have
also experimented with a simple data augmentation
approach (Figure 2). For example, consider the
sentence “The main contractor was Ssangyong En-
gineering and Construction.”, which is an example
in the training set of the English track of Multi-
CoNER. In this case, “Ssangyong Engineering and
Construction” is a named mention referring to a
Korean corporation. To create a new training ex-
ample, we can replace the named mention with a
different entity that is also a corporation.

More specifically, in this example, we first use an
entity linker1 to link the named mention to its cor-
responding entity in Wikidata, a large-scale knowl-
edge graph. From the found Wikidata page, we

1https://github.com/laituan245/
EL-Dockers

1439



Figure 2: Our data augmentation approach.

can extract all types of information about the entity.
We can utilize these types of information to find
a new entity that is different but highly similar to
the original entity. For simplicity, in this work, we
simply try to find a new entity of the same Wiki-
data type as the original entity. At the end, we will
have a new example (e.g., “The main contractor
was Yazd Tire.”).

4 Results

4.1 Data and Experimental Setup

The learning rate is set to be 2e-5, and the batch size
is 32. We experimented with different numbers of
training epochs, 10 and 20. We use Huggingface’s
Transformer library (Wolf et al., 2020) to experi-
ment with various Transformer language models:

• BERT. Devlin et al. (2019) introduced a lan-
guage representation model named BERT,
which is pre-trained using two tasks: masked
language modeling (MLM) and next sentence
prediction (NSP). We used the large version of
BERT (i.e., bert-large-uncased) in this work.

• RoBERTa. Liu et al. (2019) proposed an im-
proved recipe for training BERT models. The
modifications include: (1) training the model
longer, with bigger batches, over more data;
(2) removing the NSP objective; (3) train-
ing on longer sequences; and (4) dynamically
changing the masking pattern applied to the
training data. We used the large version of
RoBERTa (i.e., roberta-large) in this work.

• ALBERT. Lan et al. (2020) introduced AL-
BERT, a BERT-based model with two param-
eter reduction techniques: factorized embed-
ding parameterization and cross-layer param-
eter sharing. We used the xxlarge version of
ALBERT (i.e., albert-xxlarge-v2) in this work.

4.2 Results on the Development Set
Table 3 shows the overall results on the develop-
ment set of the English track of MultiCoNER. We
see that ALBERT-xxlarge trained with 20 epochs
outperforms all other baseline models on the devel-
opment set. As such, we use this model to generate
predictions for the test set. The model achieved a
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Original Example Generated Example

the guardian described the album ’s release as one of the
50 key events ...

metro described the album ’s release as one of the 50 key
events ...

the game uses a battery packed random-access memory
in order to save progress .

the game uses a battery packed delay line memory in
order to save progress .

in the end the best placed rider was wilfried cretskens
who finished 61st .

in the end the best placed rider was harald andersson
who finished 61st .

it was broadcast on the channel animal planet , with
episodes having aired between 2001 and 2003 .

it was broadcast on the channel true4u , with episodes
having aired between 2001 and 2003 .

Table 2: Some of the newly generated examples.

Prec. Recall F1

RoBERTa-large (10 epochs) 85.63 87.82 86.68

BERT-large (10 epochs) 86.02 88.34 87.14

ALBERT-xxlarge (10 epochs) 86.81 88.7 87.7

ALBERT-xxlarge (20 epochs) 86.47 89.49 87.91

Table 3: Overall results on the development set. Macro
scores (%) are shown.

macro F1 score of 72.50% on the held-out test set.
Note that the baseline models shown in Table 3 are
trained using only the original training set (without
any data augmentation).

4.3 Analysis of the Data Augmentation
Approach

For each example in the training set, we used the
data augmentation approach (Section 3.2) to gen-
erate a new example. Table 2 shows some of the
newly generated examples.

We used all of the original and newly generated
examples to train a new RoBERTa-large model
(the number of epochs is 10). The model performs
worst than the RoBERTa-large model trained with
only the original examples. Nevertheless, we still
believe the approach has a lot of potential, and we
leave further exploration to future work.

5 Conclusion

In future work, we plan to conduct a thorough er-
ror analysis and apply visualization techniques to
understand our models better (Murugesan et al.,
2019). In addition, as pretrained Transformer mod-
els are typically computationally expensive and
have many parameters, we are also interested in
reducing the computational complexity of our base-

line models using compression techniques (Sanh
et al., 2019; Lai et al., 2020b; Sun et al., 2020).
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Abstract

From pretrained contextual embedding to
document-level embedding, the selection and
construction of embedding have drawn more
and more attention in the NER domain in recent
research. This paper aims to discuss the per-
formance of ensemble embeddings on complex
NER tasks. Enlightened by Wang’s methodol-
ogy, we try to replicate the dominating power of
ensemble models with reinforcement learning
optimizor on plain NER tasks to complex ones.
Based on the composition of semeval dataset,
the performance of the applied model is tested
on lower-context, QA, and search query scenar-
ios together with its zero-shot learning ability.
Results show that with abundant training data,
the model can achieve similar performance on
lower-context cases compared to plain NER
cases, but can barely transfer the performance
to other scenarios in the test phase.

1 Introduction

Named Entity Recognition (NER) as a typical topic
in the NLP field, has displayed numerous outstand-
ing outcomes in recent years, especially benefiting
from development of pretrained models. However,
there are still challenging aspects that remain to be
tackled, such as short texts (low-context), emerging
entities, and complex entities. In this task, corpus
from low-context, QA and search query scenarios
are collected to represent different complex NER
tasks (Meng et al., 2021). Wang et al. (2021) pro-
posed an automated concatenation model on plain
NER tasks with benchmark dataset like CONLL03,
which automatically generates optimized concate-
nation of stack embeddings with reinforcement
learning strategies for structure prediction tasks
like NER. A similar methodology is applied on the
given dataset to test if the challenges mentioned
above can be properly addressed.

2 Related Work

The development of sequence tagging models can
be concluded mainly into two separate parts: en-
coder and decoder. Ever since the BiLSTM-CRF
model (Ma and Hovy, 2016) was brought up, it
has been widely used as the decoder end of NER
models, while researchers shifted increasing atten-
tion to the structure of encoder. Various categories
of embeddings have been raised, including char-
acter embeddings, non-contextual embedding like
word2vec (Mikolov et al., 2013) and pretrained con-
textualized embeddings like ELMo (Peters et al.,
2018) and Flair (Akbik et al., 2018). With the emer-
gence of Transformers, the performance of large
pretrained contextualized models (Devlin et al.,
2019)have sweeped the leaderboard in lots of NLP
tasks. In terms of language, Multilingual BERT(M-
BERT) (Pires et al., 2019) demonstrates excellent
representation of multilingual embeddings, which
was later surpassed by XLM-R (Conneau et al.,
2020), a more powerful and comprehensive mul-
tilingual model. To better allocate these embed-
ding methods, many recent researchers have tried
different methods like ensemble, weighting and
concatenation. Automated concatenation (Wang
et al., 2021) is a superior method that automati-
cally generates optimized concentration of stack
embeddings with reinforcement learning strategies.
It uses result accuracy as reward for the controller
to decide which embeddings to drop.

3 Data

As described by Fetahu et al. (2021), the dataset
(Malmasi et al., 2022a) of this semeval task (Mal-
masi et al., 2022b) mainly consists of three sources:
Low-Context Wikipedia, MS-MARCO Question
(Bajaj et al., 2018) and ORCAS Search Query
(Craswell et al., 2020). Sentences from Wikipedia
are parsed and linked pages are resolved to their re-
spective Wikidata entities, to create a corpus of 1.4
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million low-context sentences with annotated enti-
ties. Part of them form the train and dev dataset. By
templating questions in MS-MARCO QnA dataset
and 10 million Bing user queries from the ORCAS
dataset, and slotting with random entities based on
frequency, 17, 868 questions and 471, 746 queries
are generated to form the test set together with the
rest of Low-context sentences.

Several data processing and augmenting is con-
ducted before training to cater for the applied
model. Since document-level embeddings have
been proved to be effective for performance im-
provement in NLP tasks, we adopt Yamada et al.
(2020)’s method and extract features by sending
the adjacent sentences in corpus together as a doc-
ument to pretrained models. The number of sen-
tences that each document contains is defined by
grid search and eventually set to 30. Although
the adjacent sentences are not sentimental related
as a document, the document level representation
still enriches the context and greatly resolves the
low-context situation.

Another novelty of the semeval dataset is the
unbalance between train and test set, in terms of
quantity and content. To solve the quantity un-
balancing, we manage to augment the train set by
slotting the entities in sentences and altering with
another one from the same type. In case of overfit-
ting, we eventually augment the train set to 3 times
of its original size.

4 Methodology

After dealing with data, a common approach for
better results is to fine-tune the transformer-based
embeddings first, where sentences are sent to the
model which is connected to a linear layer for tag
prediction. Different language embeddings are
selected for different tracks of the task. For En-
glish models, we fine-tune BERT-base, BERT-large,
M-BERT, XLNET (Yang et al., 2019), Roberta
(Liu et al., 2019), XLM-R separately and concate-
nate these embeddings with basic settings of other
embeddings like ELMo, Flair and fastText (Bo-
janowski et al., 2017), for final training. For Dutch,
Spanish and German models, we fine-tine M-BERT,
XLM-R and BERT for each language respectively.
The parameters for the fine-tuning process are 10
max epochs with batch size of 1 and learning rate
of 5.0× 10−06.

The concatenated embeddings are used as inputs
for a sequence tagging model with BiLSTM lay-

Dutch Spanish German
XLM-R+Fine-tune 0.8985 0.8502 0.8983
Final+Fine-tune 0.9030 0.8612 0.9106

Table 1: Dev Results

ers and CRF layer. The accuracy of the model is
used as the reward for reinforcement learning to
train the controller, which uses the policy gradient
method to maximize the expected reward. We refer
to Wang’s search space algorithm for the design
of reward function and gradient update. The pa-
rameters for the training process are 25 maximum
episodes, 70 maximum epochs with batch size of
32 and learning rate of 5.0× 10−06.

5 Results

Due to limitations in time and calculation resources,
we only present the results on non-English lan-
guage models. Table 1 shows the comparison be-
tween fine-tuning marco-F1 scores and final marco-
F1 scores on dev set for each language in our ex-
periment. It clearly shows that the automatic con-
catenation method is effective in improving the per-
formance of fine-tuned embeddings. We can also
find that XLM-R model plays a vital important role
in the concatenated embeddings for non-English
models.

Table 2 shows detailed final results on the test
set for each language. All scores are calculated as
F1 scores. As mentioned in the data section, apart
from the performance on low-context NER tasks,
the dataset also focuses on the zero-shot learning
ability of models on QA and search query scenarios.
It can be seen that with fine-tune and reinforcement
learning training on low-context corpus, the model
achieves high performance on the responsive part in
test set, but fails to maintain the performance when
making predictions on corpus from other sources.

6 Conclusion

We focus on the performance of automatic concate-
nated embedding model on semeval complex NER
task, and draw the conclusion that with proper data
processing methods, the model can learn excellent
sequence tagging ability from low-context corpus
and achieve outstanding performance on correspon-
sive part in test set, but cannot transfer such ability
to QA and search query domains in test set. Mean-
while, document-level feature extraction and data
augmenting by slotting and altering entities are
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Dutch Spanish German
LOWNER MSQ-NER ORCAS-NER LOWNER MSQ-NER ORCAS-NER LOWNER MSQ-NER ORCAS-NER

LOC 0.9222 0.7061 0.4618 0.8519 0.6700 0.4608 0.8230 0.6797 0.4051
PER 0.9432 0.8429 0.6993 0.9315 0.8210 0.6195 0.8837 0.8000 0.6663
PROD 0.7930 0.5456 0.6178 0.7170 0.4327 0.5721 0.7311 0.4307 0.5223
GRP 0.8716 0.3515 0.4148 0.8175 0.3771 0.4662 0.8085 0.4308 0.4462
CORP 0.8791 0.5062 0.5121 0.8567 0.4811 0.5008 0.7631 0.4937 0.4592
CW 0.8176 0.6466 0.4601 0.7578 0.5273 0.4084 0.7603 0.5122 0.4155
macro-F1 0.8711 0.5998 0.5276 0.8221 0.5515 0.5149 0.7950 0.5579 0.4858
overall
macro-F1 0.7205 0.6966 0.6675

Table 2: Cross-language Test Results

proved to be reproductably effective for common
NER tasks.

References
Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.

Contextual string embeddings for sequence label-
ing. In Proceedings of the 27th International Con-
ference on Computational Linguistics, pages 1638–
1649, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-
drew McNamara, Bhaskar Mitra, Tri Nguyen, Mir
Rosenberg, Xia Song, Alina Stoica, Saurabh Tiwary,
and Tong Wang. 2018. Ms marco: A human gener-
ated machine reading comprehension dataset.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Nick Craswell, Daniel Campos, Bhaskar Mitra, Em-
ine Yilmaz, and Bodo Billerbeck. 2020. Orcas: 18
million clicked query-document pairs for analyzing
search.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Besnik Fetahu, Anjie Fang, Oleg Rokhlenko, and
Shervin Malmasi. 2021. Gazetteer Enhanced Named
Entity Recognition for Code-Mixed Web Queries. In

Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1677–1681.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022a. MultiCoNER: a
Large-scale Multilingual dataset for Complex Named
Entity Recognition.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022b. SemEval-2022
Task 11: Multilingual Complex Named Entity Recog-
nition (MultiCoNER). In Proceedings of the 16th
International Workshop on Semantic Evaluation
(SemEval-2022). Association for Computational Lin-
guistics.

Tao Meng, Anjie Fang, Oleg Rokhlenko, and Shervin
Malmasi. 2021. GEMNET: Effective gated gazetteer
representations for recognizing complex entities in
low-context input. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1499–1512.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionality.
In Advances in neural information processing sys-
tems, pages 3111–3119.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

1446



Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Automated Concatenation of Embeddings for Struc-
tured Prediction. In the Joint Conference of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP 2021). Association for Computational Lin-
guistics.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442–6454, On-
line. Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. CoRR, abs/1906.08237.

1447



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1448 - 1456
July 14-15, 2022 ©2022 Association for Computational Linguistics

UC3M-PUCPR at SemEval-2022 Task 11: An Ensemble Method of
Transformer-based Models for Complex Named Entity Recognition

Elisa Terumi Rubel Schneider1, Renzo M. Rivera-Zavala2,
Paloma Martinez2, Claudia Moro1 and Emerson Cabrera Paraiso1

1Graduate Program on Informatics, Pontifícia Universidade Católica do Paraná, Brazil
paraiso@ppgia.pucpr.br

2Computer Science and Engineering Department, Universidad Carlos III de Madrid, Spain
pmf@inf.uc3m.es

Abstract

This study introduces the system submitted to
the SemEval 2022 Task 11: MultiCoNER (Mul-
tilingual Complex Named Entity Recognition)
by the UC3M-PUCPR team. We proposed an
ensemble of transformer-based models for en-
tity recognition in cross-domain texts. Our
deep learning method benefits from the trans-
former architecture, which adopts the attention
mechanism to handle the long-range dependen-
cies of the input text. Also, the ensemble ap-
proach for named entity recognition (NER) im-
proved the results over baselines based on indi-
vidual models on two of the three tracks we par-
ticipated in. The ensemble model for the code-
mixed task achieves an overall performance of
76.36% F1-score, a 2.85 percentage point in-
crease upon our individually best model for this
task, XLM-RoBERTa-large (73.51%), outper-
forming the baseline provided for the shared
task by 18.26 points. Our preliminary results
suggest that contextualized language models
ensembles can, even if modestly, improve the
results in extracting information from unstruc-
tured data.

1 Introduction

Named Entity Recognition (NER) is a Natural Lan-
guage Processing (NLP) technique to extract rel-
evant information from unstructured natural lan-
guage data, identifying and categorizing entities in
texts and thereby supporting other NLP tasks.

However, processing complex and ambiguous
entities is a challenging task that has not received
sufficient attention from the research community
(Meng et al., 2021). These complex entities can
be formed by any linguistic constituent (long noun
phrases and sometimes complete sentences), as ti-
tles of creative works such as books and movies,
different from traditional entities like person names
and locations. As the creative work titles can be se-
mantically ambiguous, the challenge is recognizing
entities based mainly on their context.

The SemEval 2022 Task 11: MultiCoNER
(Multilingual Complex Named Entity Recognition)
(Malmasi et al., 2022b) targets the recognition
of lowercase complex entities in multilingual and
multi-domain texts, encouraging researchers to de-
velop new approaches to extract diversified entity
types. The challenge involves the use of human lan-
guage modeling in the NER task, on cross-domain
texts. The semantic structure has six types of enti-
ties: person, location, group, corporation, product
and creative work. The dataset was provided for
11 languages, and, in addition, this task also pro-
vided multi-language and code-mixed 1 features,
encouraging the development of more generic and
adaptive systems.

As the contextualized pre-trained language mod-
els based on the transformer architecture have
reached the state-of-the-art in several NLP tasks
(Vaswani et al., 2017), in our method, we explore
transformer-based models and combined the results
into an ensemble, which can make better predic-
tions and have a superior performance than any
single contributing model (as demonstrated by Co-
para et al. (2020), Knafou et al. (2020) and Hernan-
dez et al. (2021)). The models were fine-tuned to
NER task on the English, Spanish and code-mixed
datasets.

The paper is organised as follows: Section 2 pro-
vides a brief explanation of related works, Section 3
provides details about the data used for training our
models, Section 4 describes the proposed method
with implementation details, Section 5 presents our
results with some discussions, and in Section 6 we
present the conclusions obtained from the observed
results.

2 Related Works

Context-dependent representations models, pre-
trained on large-scale unstructured data, particu-

1With entities in a different language than the rest of the
query, as explained in (Fetahu et al., 2021).
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larly those supported by the transformer architec-
ture (Vaswani et al., 2017), have been reached the
state-of-the-art performance in NLP problems, in-
cluding NER task.

These contextual word embedding models use
the learned representations over the large data and,
in a process called fine-tuning, have their last layers
updated to adapt for a downstream task, using task-
specific training data.

The Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) is a lan-
guage representation model designed to pre-train
deep bidirectional representations from unlabeled
text conditioning on both left and right context in
all layers. A Transformer is a encoder-decoder
architecture, but in BERT-based models only the
encoder is used, with the attention mechanism that
learns contextual relationships between words in a
text. The BERT-based models are pre-trained using
two language generic tasks: masked language mod-
eling (MLM) and next-sentence-prediction (NSP)
tasks.

RoBERTa was built on BERT’s language mask-
ing strategy, where the system learns to predict hid-
den sections of text within otherwise unannotated
language examples. RoBERTa modifies key hyper-
parameters in BERT, as removing next-sentence
pretraining objective. Also, it was trained with
much larger mini-batches and learning rates, im-
proving the masked language modeling objective
and leading to better downstream task performance
(Conneau et al., 2020).

DistilBERT learns a distilled version of BERT,
maintaining almost all performance but using only
half the number of parameters with a technique
called distillation, which approximates the large
neural network by a smaller one (Sanh et al., 2019).
We also chose DistilBERT on our ensemble be-
cause, although it has 40% less parameters than
BERT-base and runs 60% faster, can preserve over
95% of BERT’s performances (Sanh et al., 2019).

XLM-RoBERTa is a transformer-based masked
language model trained on one hundred languages,
which outperformed multilingual BERT on a va-
riety of cross-lingual benchmarks (Conneau et al.,
2020).

Some researches have focused on the combina-
tion of transformer-based models into an ensemble,
for NLP tasks. In the work of Copara et al. (2020),
the ensemble of contextualized language models
resulted in an effective approach for NER in chem-
ical patent documents, outperforming individual
transformer models. Knafou et al. (2020) achieved
high results with ensemble approach for NER and
their study indicates that the more models were
used in the ensemble, the more the performances
tend to be high and stable. The research of Her-
nandez et al. (2021) shows that the combination of
three BERT-based models obtained superior results
than the individual models, in the classification of
texts from social media.

Motivated by the success of transformer-based
models along with the ensemble approach, we
trained several models and combined the results
into an ensemble.

3 Data

This shared task encourages NLP researchers to
develop complex NER systems for 11 languages,
with semantically ambiguous and complex entities
in short and low-context settings. Complex entities
as creative works are really challenging as they are
harder to recognize. An example of entities for
English and Spanish can be seen in Figure 1.

According to the organizers (Malmasi et al.,
2022a), 15,300 sentences were made available
for training and 800 sentences for evaluation in
the mono-lingual tracks. The training file has
15,000 sentences for code-mixed and the evaluation
dataset has 500 sentences. Test files have varying
sizes, with 219,652 sentences for English, 272,887
sentences for Spanish, and 100,000 for code-mixed
tracks.
Data enrichment: To improve the performance

of our models, we enriched our datasets with other
NER annotated corpus containing similar entities.
For English, we concatenated to the original Mul-
tiCoNER dataset the corpus CoNLL-2003 (Tjong
Kim Sang and De Meulder, 2003), emerging en-
tities (Derczynski et al., 2017), and In Media Res
(Braşoveanu et al., 2020). CoNLL-2003 is a NER
dataset released in CoNLL-2003 shared task for

Figure 1: Example of data for English and Spanish (Malmasi et al., 2022a).
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language-independent NER. We used the English
data (Tjong Kim Sang and De Meulder, 2003), pro-
vided from Reuters Corpus containing entities of
location, person, organization, and miscellaneous.
We converted this data into MultiCoNER format,
transforming organization into corporation. The
emerging entities (Derczynski et al., 2017) is a
corpus released by WNUT2017 Shared Task with
focus on rare and emerging entity recognition from
noisy user-generated data. This corpus contains
the entities person, location, corporation, product,
creative-work, and group, the same entity types we
have on MultiCoNER. In Media Res is a corpus
for evaluating named entity linking with creative
works (Braşoveanu et al., 2020), annotated from
Wikipedia articles with entities like person, organi-
zation, location, (creative) work, event and other.
We converted it to MultiCoNER format, excluding
events and others and converting work to creative
work.

For Spanish, we enriched the dataset with
CoNLL-2002 (Tjong Kim Sang, 2002) and Wikiner
(Nothman et al., 2012). CoNLL-2002 contains enti-
ties of type persons, organizations, locations, times
and quantities. We use the Spanish texts, convert-
ing organization to corporation, and eliminating
entities we do not use. Wikiner (Nothman et al.,
2012) is an annotated dataset of Wikipedia texts
for 9 languages. It has entities of person, loca-
tion, organization, and other (misc). We used the
texts in Spanish, and we did the conversion from
organization to corporation and an analysis of en-
tities of type misc, where could be categorized as

products, creative works and others (ignored). Be-
cause of this analysis of misc-type entities, we only
processed 10% of the corpus.

All the datasets were converted to lowercase for-
mat, and concatenated to the original MultiCoNER
train dataset.

4 System Description

Our method consists on an ensemble of
transformer-based models, trained for NER
task and joined by the soft voting method (Figure
2). From the 11 languages, we decided to
participate in the English and Spanish tracks, since
we already have some related research on them
(Rivera and Martinez (2021) and Akhtyamova
et al. (2020)), and also in the multilingual and
code-mixed tracks to assess our strategy on
multilingual texts.

In this section, we detail the development of
NER models with its parameters and training setup,
the ensemble method, and metrics used in this
shared task.

4.1 NER models

We use the transformer-based pre-trained models
as checkpoint for fine-tuning on the NER task,
with the enriched MultiCoNER datasets. In
the fine-tuning step, the existing models were
specialized for NER task, where a fully connected
layer was added on top of the hidden states
of each token to classify tokens according to
the named-entities classes. For each track we

Figure 2: Architecture of our ensemble approach.

1450



Pretrained Models #Params Track
Beto-uncased (Cañete et al., 2020) 110M Spanish
BERT-base (Devlin et al., 2019) 110M English
BERT-large (Devlin et al., 2019) 340M English
BERT-base-multilingual(Devlin et al., 2019) 110M English, Spanish, code-mixed
DistilBERT-base (Sanh et al., 2019) 66M English, Spanish, code-mixed
Electra-discriminator (Clark et al., 2020) 110M English
RoBERTa-base (Liu et al., 2019) 110M English
RoBERTa-large (Liu et al., 2019) 340M English
RoBERTa-base-bne (Gutiérrez-Fandiño et al., 2022) 125M Spanish
RoBERTa-large-bne (Gutiérrez-Fandiño et al., 2022) 355M Spanish
XLM-RoBERTa-base (Conneau et al., 2020) 270M English, Spanish, code-mixed

Table 1: Pretrained models features.

participated, we performed the fine-tuning for
NER on the pre-trained models. Table 1 shows all
the models used in the ensembles and their number
of parameters.

English track: The following pre-trained mod-
els, trained on a large corpus of English text, were
fine-tuned on English train dataset: BERT-base-
uncased (Devlin et al., 2019), BERT-large-uncased
(Devlin et al., 2019), DistilBERT-base-uncased
(Sanh et al., 2019), RoBERTa-base (Liu et al.,
2019), RoBERTa-large (Liu et al., 2019), Electra-
discriminator (Clark et al., 2020), in addition to
the multilingual BERT-base-multilingual-uncased
(Devlin et al., 2019) and XLM-RoBERTa-base
(Conneau et al., 2020).

Spanish track: We fine-tuned on Spanish train
dataset the following pre-trained models, trained
on a large corpus of Spanish text: Beto un-
cased (Cañete et al., 2020), RoBERTa-base-bne
(Gutiérrez-Fandiño et al., 2022), RoBERTa-large-
bne (Gutiérrez-Fandiño et al., 2022), in addition to
the multilingual BERT-base-multilingual-uncased
(Devlin et al., 2019), XLM-RoBERTa-base (Con-
neau et al., 2020) and DistilBERT (Sanh et al.,
2019).

For English and Spanish, we also pre-trained
and fine-tuned a Megatron model (Shoeybi et al.,
2019), however, it was not possible to incorporate
it in the ensemble on time, and therefore it was
separately evaluated as an unofficial result.

Multilingual and code-mixed track: We first
fine-tuned models on the multilingual dataset pro-
vided by the shared task and then fine-tuned again
on the code-mixed dataset, as the code-mixed train-
ing dataset is too small and training just with it
could have lower performance. We fine-tuned these

multilingual models2: BERT-base-multilingual-
uncased (Devlin et al., 2019), XLM-RoBERTa
(Conneau et al., 2020), and DistilBERT (Sanh et al.,
2019). Due to time constraints, although we had
trained models for the multilingual track, we could
not run the predictions on the test dataset on time
to submit to the multilingual track (since it was
large files), so our results on multilingual track are
unofficial.

All language models were fine-tuned on the
training dataset explained in the previous section.
We fine-tuned for 10 epochs, with a sequence
length of a maximum of 128 tokens, a learning
rate of 4e-5, warmup proportion of 0.06, and
Adam optimizer for the deep learning training. We
used the Pytorch implementation of Hugging Face
library (Wolf et al., 2020).

Evaluation metrics: The metric returned by the
shared task submission system is F1 macro average
performance. For a better analysis and discussion,
the performance is also examined per class label.

4.2 Ensemble method

Our ensemble method is based on a soft voting
strategy (Schwenker, 2013), where each model re-
turns its predicted probabilities and the class label
is obtained by an argmax of the sum of all probabil-
ities (in contrast to hard voting, where the system
uses predicted class labels for majority rule voting).

In other words, for a given document, all models
infer their predictions independently for each entity
and return the probabilities of each label, i.e., their
logits3. For each token, we sum the logits of all
models of the ensemble for this given token and

2Which attends all languages of the multilingual and code-
mixed tracks.

3Logits are the model outputs before application of an
activation function (e.g. softmax).
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then apply an argmax function, to assign a label to
this passage.

The final label output for a token n is given by:

yn(xn) = argmax(
T∑

i=1

wihi(xn)) (1)

where T is the number of models participating in
the ensemble, wi is the weight of a model i, and
hi(xn) is a list with the probabilities for all classes
of the model i for the token n.

For each track, we performed three ensemble
experiments.

Experiment 1: As explained above, the
token label is an argmax of the sum of predicted
probabilities of all models. In this experiment, all
models have the same weight (w).

Experiment 2: Each model receives a score
ranging from 0.1 to 1, which indicates its efficiency
in the evaluation dataset (best overall F1-score).
To identify the label of each token, we sum the
output of all models, i.e., the probabilities of
the token belonging to each class, in a weighted
way. In other words, the predicted class proba-
bilities for each classifier are multiplied by the
classifier weight, summed across all models, and
averaged. Thus, the final class label is then de-
rived from the higher average probability (argmax).

Experiment 3: As in experiment 2, we also
calculate weights for each model according to its
effectiveness in the evaluation set, but on this ex-
periment, we also calculate weights for each class
as well (entity type). The model that performed
better for that specific class has the highest weight,
also values between 0.1 and 1.

5 Results and Discussion

Official results: The share-task proceedings re-
ports the results (macro F1-score) by the partici-
pating systems in the SemEval 2022 Task 11 (Mal-
masi et al., 2022b), where our results are shown as
UC3M-PUCPR team. These results, as well as the
analysis performed in the discussion section, are
exclusively computed on the test set. Our results
refer to experiment 2 (where we used weights for
each model), which performed better for all tracks.
For the English track, our approach was ranked
in 21th place from 30 participants, with a F-Score
of 69.24, outperforming the baseline provided for

Named entity English Spanish (*) Multilingual Code-mixed
Location 0.6821 0.5807 0.7312 0.7925
Person 0.8470 0.7522 0.8017 0.8631
Product 0.6695 0.5102 0.6266 0.7692
Group 0.6953 0.5287 0.5945 0.7051
Creative work 0.6171 0.4350 0.6020 0.6937
Corporation 0.6437 0.6003 0.6741 0.7570

All 0.6924 0.5679 0.6641 0.7636

Table 2: Our F1 results for each class. (*) Multilingual
results are unofficial.

the shared task by 8.04 points. On the other hand,
for the Spanish track, our system had a significant
drop, ranking in the last position (18th from 18
teams), with a F1-Score of 56.79, i.e., 33.15 points
behind first place and 0.6 points behind baseline.
Our Megatron-trained model performed better than
the ensemble in this track, with 60.45 of F1 (unoffi-
cial result). In the code-mixed track, our approach
ranked in 12th place from 22 participants, with
an F1-Score of 76.36, outperforming the baseline
by 18.26. For the multilingual track, we achieved
66.41 of F1, 12.31 points higher than baseline, but
this result are not official since it was obtained after
the competition deadline. Table 2 shows the official
F1-scores of our submissions separated by classes,
which allows the performance analysis of each en-
tity individually, for all tracks. In table 3, we can
assess the performance of each model separately,
per class, for English track.

Discussion: The ensemble method modestly
improved the F1 performance in relation to the
use of individual models for English (1.92 of en-
semble improve in relation to the best individual
model, BERT-large) and code-mixed (2.85 of en-
semble improve in relation to the best individual
model, XLM-RoBERTa-large). However, for Span-
ish track, no improvement was seen in the ensemble
compared to Beto individually.

For English track, where we work with eight
different pre-trained models, the ensemble model
outperforms the other models for all classes, as can
be seen in table 3, where the F1 seem relatively
stable across all the pre-trained models.

To help understand the reason for the low re-
sults in Spanish, we present a confusion matrix,
in figure 3. In this track, an analysis of the errors
indicates that the model had difficulty recognizing
the entities products, groups and creative works.
By labeling them with "O" instead of the correct
class, lowers the recall value for this entities.

When analyzing the performance of the entities
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Language Models Location Person Product Group Creative work Corporation F1
BERT-base 0.6703 0.8268 0.6283 0.6602 0.5777 0.6018 0.6608
BERT-large 0.6706 0.8309 0.6412 0.6766 0.5971 0.6228 0.6732
BERT-base-multilingual 0.6703 0.8268 0.6283 0.6602 0.5777 0.6018 0.6608
DistilBERT-base 0.6531 0.8189 0.5996 0.6445 0.5476 0.5869 0.6418
Electra-discriminator 0.6550 0.8323 0.6435 0.6570 0.5958 0.6130 0.6661
(*) Megatron 0.5860 0.7302 0.5242 0.5535 0.4374 0.5424 0.5623
RoBERTa-base 0.6203 0.7669 0.5565 0.6047 0.5256 0.5334 0.6012
XLM-RoBERTa-base 0.6623 0.7868 0.5930 0.6072 0.5355 0.5697 0.6258

Ensemble 0.6821 0.847 0.6695 0.6953 0.6171 0.6437 0.6924

Table 3: F1-score by model on the English track test set. (*) Megatron model was not part of the ensemble.

Figure 3: Confusion matrix on Spanish test data.

separately, we noticed that the creative work class
had the worst F1 value for English, Spanish and
code-mixed tracks, while the person class had the
best performance. This is a sign that even in lower
case, the trained models could still identify a per-
son’s name, i.e., they improved their ability to clas-
sify the token based on its context, which is a plus
point for transformer-based contextualized mod-
els. The creative work entity was already expected
to be the most challenging, since movie and book
names are not simple noun phrases and are harder
to recognize. As noted by Meng et al. (2021), the
use of well-formed text with “easy” entities per-
form better than unseen entities or noisy text. Fig-
ure 4 shows how different models detected person
and creative work entities, from English evaluation
dataset, where we can see correct and incorrect de-
tection in relation to creative work entity. Although
some individual models incorrectly predicted the
creative work entity, the ensemble achieved the
correct answer.

Furthermore, we believe that the prediction of
group, corporation, and product entities caused
overlap between them because they can be seman-
tically similar, which led to lower than expected
results. The datasets we used to enrich the original
MultiCoNER datasets do not have these entities so
clearly.

For English and code-mixed tracks, we noticed

that the large models performed better than the
base models, which was already expected, agreeing
with the results of previous research. For English,
the best-isolated model was BERT-large-uncased,
and for code-mixed, XLM-RoBERTa-large, both
for evaluation and testing phases. On the other
hand, on Spanish track, the uncased version of Beto
model performed better than the new RoBERTa
models generated from more than 201 million docu-
ments (570 Gb) from the Spanish National Library.

Despite improving performance, only the ensem-
ble strategy may not be enough to have competitive
results, when analyzing the results of the other
teams, especially for the Spanish task, which had
poor results.

The enrichment of the train databases may have
helped for some entities, but it was not enough to
significantly improve performance either, since our
best results were precisely in code-mixed track, in
which we did not use this technique. The entity
types between the external databases may have
minor semantic differences, for example, there is a
fine line between group and organization. Maybe a
closely analyze and even manual re-annotation on
these entities could have improved performance.

Also, given such a large amount of test data (files
with more than 200,000 sentences), the use of en-
semble with transformer-based models may not be
the most suitable for processing on regular com-
puters, without much processing GPU power, due
to the need to process this large amount of data
with several models. In addition to the prediction
process, the weighted sum of probabilities also con-
sumes much memory. Our team could not process
the test files for the multilingual track before the
deadline, and we could not process the Megatron
model on time to put into the ensembles (which
could improve the results).

We realize that complex entities still represent
a great challenge to the NLP community. In ad-
dition, lowercase texts, sentences without punc-
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Figure 4: An example of predictions by different models
from English evaluation dataset, where blue represents
person entity type, green represents creative works and
pink, group type.

tuation or grammatically incomplete, in a cross-
domain dataset without any standardization of sen-
tence length, make it even more challenging to
extract information from unstructured data, as was
the case in this task.

6 Conclusions

We presented our method for recognizing complex
entities, which consists in a transformer-based mod-
els ensemble. Although our team’s results are not
among the first, the ensemble method worked for
both English and code-mixed tracks, in which we
obtained an improvement in the F1 value compared
to individual transformer models. Our method out-
performed in macro F1 the baseline provided by the
organizers in 8.04 points on English track, 18.26 on
code-mixed track and 12.31 on multilingual track
(unofficial).

As our method is based only on machine learn-
ing, without fixed rules, this indicates that the trans-
former models were able to take advantage of natu-

ral language contexts to capture the most relevant
features, on lowercase cross-domain texts.

Since extraction of complex entities represents
a challenge and these entities are increasingly
present, we would like to continue improving our
method. Future work intends to train models us-
ing a different split (hold out) of the data, training
models with more data and for more epochs. Also,
since creative works had the worst performance on
the three tracks, a hybrid approach that includes
a dictionary with creative works can contribute to
better results. Furthermore, an analysis of which
models should participate in the ensemble can lead
to better results and lower processing costs. For ex-
ample, less robust models like DistilBERT that are
faster and lighter, but do not improve performance,
possibly do not contribute to the improvement of
the results.

Despite having the lowest task evaluation score
for the Spanish track, this method exhibited com-
petitive performance at English and code-mixed
tracks.
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Adrian M. P. Braşoveanu, Albert Weichselbraun, and
Lyndon J. B. Nixon. 2020. In media res: A corpus for
evaluating named entity linking with creative works.
In CONLL.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-
ish pre-trained bert model and evaluation data. In
PML4DC at ICLR 2020.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Pre-training trans-
formers as energy-based cloze models. In EMNLP.

1454



Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Jenny Copara, Nona Naderi, Julien Knafou, Patrick
Ruch, and Douglas Teodoro. 2020. Named entity
recognition in chemical patents using ensemble of
contextual language models. In Working notes of the
CLEF 2020, 22-25 September 2020.

Leon Derczynski, Eric Nichols, Marieke van Erp, and
Nut Limsopatham. 2017. Results of the WNUT2017
shared task on novel and emerging entity recogni-
tion. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 140–147, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Besnik Fetahu, Anjie Fang, Oleg Rokhlenko, and
Shervin Malmasi. 2021. Gazetteer Enhanced Named
Entity Recognition for Code-Mixed Web Queries. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1677–1681.

Asier Gutiérrez-Fandiño, Jordi Armengol-Estapé, Marc
Pàmies, Joan Llop-Palao, Joaquin Silveira-Ocampo,
Casimiro Pio Carrino, Carme Armentano-Oller, Car-
los Rodriguez-Penagos, Aitor Gonzalez-Agirre, and
Marta Villegas. 2022. MarIA: Spanish language mod-
els. Procesamiento del Lenguaje Natural, 68(0):39–
60.

Luis Alberto Robles Hernandez, Rajath Chikkatur Srini-
vasa, and Juan M Banda. 2021. A pharmacovigilance
application of social media mining: An ensemble ap-
proach for automated classification and extraction of
drug mentions in tweets. In NeurIPS 2021 Workshop
LatinX in AI.

Julien Knafou, Nona Naderi, Jenny Copara, Douglas
Teodoro, and Patrick Ruch. 2020. BiTeM at WNUT
2020 shared task-1: Named entity recognition over
wet lab protocols using an ensemble of contextual
language models. In Proceedings of the Sixth Work-
shop on Noisy User-generated Text (W-NUT 2020),
pages 305–313, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022a. MultiCoNER: a
Large-scale Multilingual dataset for Complex Named
Entity Recognition.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022b. SemEval-2022
Task 11: Multilingual Complex Named Entity Recog-
nition (MultiCoNER). In Proceedings of the 16th
International Workshop on Semantic Evaluation
(SemEval-2022). Association for Computational Lin-
guistics.

Tao Meng, Anjie Fang, Oleg Rokhlenko, and Shervin
Malmasi. 2021. GEMNET: Effective gated gazetteer
representations for recognizing complex entities in
low-context input. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1499–1512.

Joel Nothman, Nicky Ringland, Will Radford, Tara Mur-
phy, and James R. Curran. 2012. Learning multilin-
gual named entity recognition from Wikipedia. In
Artificial Intelligence, volume 194, pages 151–175.
Elsevier.

Renzo Rivera and Paloma Martinez. 2021. Analyzing
transfer learning impact in biomedical cross-lingual
named entity recognition and normalization. BMC
Bioinformatics, 22.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC2Workshop.

Friedhelm Schwenker. 2013. Ensemble methods: Foun-
dations and algorithms [book review]. Computa-
tional Intelligence Magazine, IEEE, 8:77–79.

Mohammad Shoeybi, Mostofa Ali Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
ArXiv, abs/1909.08053.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. In COLING-02: The 6th
Conference on Natural Language Learning 2002
(CoNLL-2002).

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

1455



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, undefine-
dukasz Kaiser, and Illia Polosukhin. 2017. Attention
is all you need. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing
Systems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

1456



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1457 - 1468
July 14-15, 2022 ©2022 Association for Computational Linguistics

DAMO-NLP at SemEval-2022 Task 11:
A Knowledge-based System for Multilingual Named Entity Recognition

Xinyu Wang⋄⋆, Yongliang Shen♠⋆, Jiong Cai⋄⋆, Tao Wang, Xiaobin Wang†, Pengjun Xie†
Fei Huang†, Weiming Lu♠, Yueting Zhuang♠, Kewei Tu⋄, Wei Lu‡, Yong Jiang†∗

†DAMO Academy, Alibaba Group
⋄School of Information Science and Technology, ShanghaiTech University

♠College of Computer Science and Technology, Zhejiang University
‡StatNLP Research Group, Singapore University of Technology and Design

{wangxy1,caijiong,tukw}@shanghaitech.edu.cn
{syl,luwm}@zju.edu.cn, luwei@sutd.edu.sg

yongjiang.jy@alibaba-inc.com

Abstract

The MultiCoNER shared task aims at detecting
semantically ambiguous and complex named
entities in short and low-context settings for
multiple languages. The lack of contexts makes
the recognition of ambiguous named entities
challenging. To alleviate this issue, our team
DAMO-NLP proposes a knowledge-based sys-
tem, where we build a multilingual knowledge
base based on Wikipedia to provide related con-
text information to the named entity recogni-
tion (NER) model. Given an input sentence,
our system effectively retrieves related contexts
from the knowledge base. The original input
sentences are then augmented with such con-
text information, allowing significantly better
contextualized token representations to be cap-
tured. Our system wins 10 out of 13 tracks in
the MultiCoNER shared task.1

1 Introduction

The MultiCoNER shared task (Malmasi et al.,
2022b) aims at building Named Entity Recognition
(NER) systems for 11 languages, including English,
Spanish, Dutch, Russian, Turkish, Korean, Farsi,
German, Chinese, Hindi, and Bangla. The task has
three kinds of tracks including one multilingual
track, 11 monolingual tracks and one code-mixed
track. The multilingual track requires training mul-
tilingual NER models that are able to handle all
languages. The monolingual tracks require training
individual monolingual models where each model
works for only one language. The code-mixed
track requires handling code-mixed samples (sen-
tences that may involve multiple languages). The
datasets mainly contain sentences from three do-
mains: Wikipedia, web questions and user queries,

∗: project lead. ⋆: equal contributions.
1Our code is publicly available at https://github.

com/Alibaba-NLP/KB-NER.

köpings is rate
Input Sentence: Retrieve 

in KB

Predict
with

knowledge

Predict
without

knowledge

köpings | LOC is rate köpings is | GRP rate

Retrieval Results:

1. Kis: Köpings IS, a Swedish sports club 
2. Köping, Sweden: Köpings IS, association club, 

bandy and handball
3. Kalle Samuelsson: Kalle Samuelsson (born 

February 15, 1986) is a Swedish Bandy player who 
plays for Västerås SK as a goalkeeper.  Kalle was a 
youth product of Köpings IS.

4. …

Figure 1: A motivating example from the English test
set. In the retrieval results, the bold phrases are the title
of the retrieved page and the underlined phrases contain
the hyperlinks to other pages. LOC and GRP are entity
labels representing location and group respectively.

which are usually short and low-context sentences.
Moreover, these short sentences usually contain se-
mantically ambiguous and complex entities, which
makes the problem more difficult. In practice,
professional annotators usually use their domain
knowledge to disambiguate such kinds of entities.
They may retrieve the related documents from a
knowledge base (KB) or from a search engine to
better guide them the annotation of ambiguous
named entities (Wang et al., 2019). Therefore, we
believe retrieving related knowledge can help the
NER model to disambiguate hard samples in the
shared task as well. A motivating example is shown
in Figure 1, which shows how the retrieval results
could help to improve the prediction in practice.

In this paper, we propose a general knowledge-
based system for the MultiCoNER shared task. We
propose to retrieve the related documents of the in-
put sentence so that the recognition of difficult enti-
ties can be significantly eased. Based on Wikipedia
of the 11 languages, we build a multilingual KB
to search for the related documents of the input
sentence. We then feed the input sentence and the
related documents into the NER model. Moreover,
we propose an iterative retrieval approach to im-
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prove the retrieval quality. During training, we
propose multi-stage fine-tuning. We first train a
multilingual model so that the NER model can
learn from all annotations. Next, we train the
monolingual models (one for each language) and a
code-mixed model by using the fine-tuned XLM-
RoBERTa (XLM-R) (Conneau et al., 2020) embed-
dings in the multilingual model as initialization to
further boost model performance on monolingual
and code-mixed tracks. For each track, we train
multiple models with different random seeds and
use majority voting to form the final predictions.

Besides the system description, we make the
following observations based on our experiments:
1. Knowledge-based systems can significantly im-

prove both in- and out-of-domain performance
compared with system without knowledge in-
puts.

2. Our multi-stage fine-tuning approach can help
improve model performance in all the monolin-
gual and code-mixed tracks. The approach can
also reduce the training time to speed up our
system building at different stages.

3. Our iterative retrieval strategy can further im-
prove the retrieval quality and result in signifi-
cant improvement on the performance of code-
mixed track.

4. Searching over Wikipedia KB performs better
than using online search engines on the Multi-
CoNER datasets.

5. Comparing with other model variants we have
tried, our NER model enjoys a good balance
between model performance and speed.

2 Related Work

NER (Sundheim, 1995) is a fundamental task in nat-
ural language processing. The task has a lot of ap-
plications in various domains such as social media
(Derczynski et al., 2017), news (Tjong Kim Sang,
2002; Tjong Kim Sang and De Meulder, 2003), E-
commerce (Fetahu et al., 2021; Wang et al., 2021b),
and medical domains (Doğan et al., 2014; Li et al.,
2016). Recently, pretrained contextual embeddings
such as BERT (Devlin et al., 2019), XLM-R and
LUKE (Yamada et al., 2020) have significantly im-
proved the NER performance. The embeddings
are trained on large-scale unlabeled data such as
Wikipedia, which can significantly improve the
contextual representations of named entities. Re-
cent efforts (Peters et al., 2018; Akbik et al., 2018;
Straková et al., 2019) concatenate different kinds

of pretrained embeddings to form stronger token
representations. Moreover, the embeddings are
trained over long documents, which allows the
model to easily model long-range dependencies
to disambiguate complex named entities in the sen-
tence. Recently, a lot of work shows that utilizing
the document-level contexts in the CoNLL NER
datasets can significantly improve token representa-
tions and achieves state-of-the-art performance (Yu
et al., 2020; Luoma and Pyysalo, 2020; Yamada
et al., 2020; Wang et al., 2021a). However, the lack
of context in the MultiCoNER datasets means the
embeddings cannot take advantage of long-range
dependencies for entity disambiguation. Recently,
Wang et al. (2021b) use Google search to retrieve
external contexts of the input sentence and success-
fully achieve state-of-the-art performance across
multiple domains. We adopt this idea so that the
embeddings can utilize the related knowledge by
taking the advantage of long-range dependencies
to form stronger token representations. Comparing
with Wang et al. (2021b), we build the local KB
based on Wikipedia because the KB matches the in-
domain data of the shared task and is fast enough
to meet the time requirement in the test phase2.

Fine-tuning pretrained contextual embeddings is
a useful and effective approach to many NLP tasks.
Recently, some of the research efforts propose to
further train the fine-tuned embeddings with spe-
cific training data or in a larger model architecture
to improve model performance. Shi and Lee (2021)
proposed two-stage fine-tuning, which first trains
a general multilingual Enhanced Universal Depen-
dency (Bouma et al., 2021) parser and then fine-
tunes on each specific language separately. Wang
et al. (2021a) proposed to train models through con-
catenating fine-tuned embeddings. We extend these
ideas as multi-stage fine-tuning, which improves
the accuracy of monolingual models that use fine-
tuned multilingual embeddings as initialization in
training. Moreover, multi-stage fine-tuning can
accelerate the training process in system building.

3 Our System

We introduce how our knowledge-based NER sys-
tem works in this section. Given a sentence of
n tokens x = {x1, · · · , xn}, the sentence is fed
into our knowledge retrieval module. The knowl-
edge retrieval module takes the sentence as the
query and retrieves top-k related paragraphs in KB.

2There are only 7 days for the test phase.
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Figure 2: The architecture of our knowledge-based NER
system.

The system then concatenates the input sentence
and the related paragraphs together and feeds the
concatenated sequence into the embeddings. The
output token representations of the input sentence
are fed into a linear-chain conditional random field
(CRF) (Lafferty et al., 2001) layer and the CRF
layer produces the label predictions. Given the
label predictions of multiple NER models with dif-
ferent random seeds, the ensemble module uses
a voting strategy to decide the final predictions
ŷ = {ŷ1, · · · , ŷn} of the sentence. The architec-
ture of our framework is shown in Figure 2.

3.1 Knowledge Retrieval Module

Retrieval-augmented context is effective for named
entity recognition tasks (Wang et al., 2021b), as ex-
ternal relevant contexts can provide auxiliary infor-
mation for disambiguating complex named entities.
We construct multilingual KBs based on Wikipedia
pages of the 11 languages, and then retrieve rele-
vant documents by using the input sentence as a
query. These retrieved documents act as contexts
and are fed into the NER module. To enhance the
retrieval quality, we further designed an iterative
retrieval approach, which incorporates predicted
entities of NER models into the search query.

Knowledge Base Building Wikipedia is an
evolving source of knowledge that can facilitate
many NLP tasks (Chen et al., 2017; Verlinden et al.,
2021). Wikipedia provides a rich collection of men-
tion hyperlinks (referred to as wiki anchors). For
example, in the sentence “Steve Jobs founded Ap-
ple”, entities “Steve Jobs” and “Apple” are linked to
the wiki entries Steve_Jobs and Apple_Inc
respectively. For the NER task, these anchors pro-
vide useful clues on where the entities are to the
model. Based on Wikipedia we can build local
Wikipedia search engines to retrieve the relevant

context of the input sentences for each language.
We download the latest (2021-12-20) version of

the Wikipedia dump from Wikimedia3 and convert
it to plain texts. Then we use ElasticSearch (ES)4

to index them. ElasticSearch is document-oriented,
and the document is the least searchable unit. We
define the document in our local Wikipedia search
engines with three fields: sentence, paragraph and
title. We create inverted indexes on both the sen-
tence field and the title field. The former is used
as a sentence-level full-text retrieval field, while
the latter indicates the core entity described by the
wiki page and can be used as an entity-level re-
trieval field. The paragraph field stores the con-
texts of the sentence. To take advantage of the rich
wiki anchors in Wikipedia paragraphs, we marked
them with special markers. For example, to in-
corporate the hyperlinks [Apple→ Apple Inc]
and [Steve Jobs → Steve Jobs] to the para-
graph, we transformed “Steve Jobs founded Ap-
ple” into “<e:Steve Jobs>Steve Jobs</e> founded
<e:Apple_inc>Apple</e>”5.

Sentence Retrieval Retrieval at the sentence
level takes the input sentence as a query and re-
trieves the top-k documents on the sentence field.
Given an input sentence, we select the correspond-
ing search engine according to the language of the
sentence.

Iterative Entity Retrieval The core of the NER
task lies in the entities, while retrieval at the sen-
tence level overlooks the key entities in the sen-
tences. For this reason, we consider the relevance
of the entities in the sentence to the title field in
the documents during retrieval. We concatenate
the entities in the sentences with “|” and then re-
trieve them on the title field. On the training and
development sets, we utilize the ground-truth enti-
ties directly. On the test set, we first perform the
sentence retrieval and then use the entity mentions6

predicted by the model for entity retrieval. This
bootstrapping manner can be applied for T turns.

Context Processing After top-k results from the
KB are retrieved, the system post-processes the
retrieved documents into the contexts of the in-
put sentence. There are three options of utilizing

3https://dumps.wikimedia.org/
4https://www.elastic.co/
5<e:XXX>YYY</e>: where XXX is the title of the linked

page and YYY is the phrase with hyperlink in the sentence.
6Here we define mentions as the named entities ignoring

the entity types.
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the texts in the documents, which are: 1) use the
matched paragraph; 2) use the matched sentence;
3) use the matched sentence but remove the wiki
anchors. We compare the performance of each op-
tion in section 5.4. In each retrieved document, we
concatenate the title and texts together to form the
context x̂i. The results are then concatenated into
{x̂1, · · · , x̂k} based on the retrieval ranking.

3.2 Named Entity Recognition Module
In our system, we use XLM-R large as the embed-
ding for all the tracks. It is a multilingual model
and is applicable to all tracks. Given the input sen-
tence x and the retrieved contexts {x̂1, · · · , x̂k},
we add the separator token (i.e., “</s>” in XLM-R)
between them and concatenated them together to
form the input x̃ of the NER module. We chunk re-
trieved texts to avoid the amount of subtoken in the
sequence exceeding the maximum subtoken length
in XLM-R (i.e., 512 in XLM-R).

Our system regards the NER task as a sequence
labeling problem. The embedding layer in the
NER module encode the concatenated sequence
x̃ and output the corresponding token representa-
tions {v1, · · · ,vn, · · · }. The module then feeds
the token representations {v1, · · · ,vn} of the in-
put sentence into a linear-chain CRF layer to obtain
the conditional probability pθ(y|x̃):

ψ(y′, y,vi) = exp(WT
y vi + by′,y) (1)

pθ(y|x̃) =

n∏
i=1

ψ(yi−1, yi,vi)

∑
y′∈Y(x)

n∏
i=1

ψ(y′i−1, y
′
i,vi)

where θ represents the model parameters and Y(x)
denotes the set of all possible label sequences given
x. In the potential function ψ(y′, y,vi), WT

y vi is
the emission score and by′,y is the transition score,
where WT ∈ Rt×d and b ∈ Rt×t are parameters
and the subscripts y′ and y are the indices of the ma-
trices. During training, the negative log-likelihood
loss LNLL(θ) = − log pθ(y

∗|x̃) for the concate-
nated input sequence with gold labels y∗ is used.
During inference, the model prediction ŷθ is given
by Viterbi decoding.

3.3 Ensemble Module
Given predictions {ŷθ1 , · · · , ŷθm} from m models
with different random seeds, we use majority vot-
ing to generate the final prediction ŷ. We convert
the label sequences into entity spans to perform

majority voting. Following Yamada et al. (2020),
the module ranks all spans in the predictions by the
number of votes in descending order and selects
the spans with more than 50% votes into the final
prediction. The spans with more votes are kept
if the selected spans have overlaps and the longer
spans are kept if the spans have the same votes.

4 Experimental Setup

4.1 Data and Evaluation Methodology

We use the official MultiCoNER dataset (Mal-
masi et al., 2022a) in all tracks to train our NER
models. There are mainly three domains in the
dataset: LOWNER (Low-Context Wikipedia NER)
contains low-context sentences from Wikipedia;
MSQ (MS-MARCO Question NER) is based on
MS-MARCO web question corpus (Nguyen et al.,
2016) containing a lot of natural language ques-
tions; ORCAS (Search Query NER) contains user
queries from Microsoft Bing (Craswell et al., 2020).
The MSQ and ORCAS samples are taken as out-of-
domain data in the shared task. The training and
development sets only contain a small collection
of samples of these two domains and mainly con-
tain data from the LOWNER domain. The test set,
however, contains much more MSQ and ORCAS
samples to assess the out-of-domain performance.

The results of the shared task are evaluated with
the entity-level macro F1 scores, which treat all the
labels equally. In comparison, most of the publicly
available NER datasets (e.g., CoNLL 2002, 2003
datasets) are evaluated with the entity-level micro
F1 scores, which emphasize common labels.

4.2 Training

NER Model Training Before building the final
system, we compare a lot of variants of the system.
We train these variant models on the training set
for 3 times each with different random seeds and
compare the averaged performance of the models.
According to the dataset sizes, we train the mod-
els for 5 epochs, 10 epochs and 100 epochs for
multilingual, monolingual and code-mixed models
respectively. Our final NER models are trained on
the combined dataset including both the training
and development sets on each track to fully utilize
the labeled data. For models trained on the training
set, we use the best macro F1 on the development
set during training to select the best model check-
point. For models trained on the combined dataset,
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System EN ES NL RU TR KO FA DE ZH HI BN MULTI MIX AVG.

Ours: Baseline 77.81 76.80 80.51 74.65 72.83 70.81 72.68 81.92 65.56 67.80 65.27 74.19 77.75 73.74
Sliced 74.54 75.11 77.66 73.73 68.77 70.66 68.66 78.90 65.21 67.00 63.05 71.07 72.74 71.32
RACAI 75.78 75.62 78.41 74.60 70.42 71.74 70.42 79.39 62.70 68.08 66.28 72.10 79.37 72.69
USTC-NELSLIP 85.47 85.44 87.67 83.82 85.52 86.36 87.05 89.05 81.69 84.64 84.24 85.30 92.90 86.09
Ours 91.22 89.94 90.50 91.50 88.69 88.59 89.70 90.65 78.06 86.23 83.51 85.31 91.79 88.13

Table 1: Part of the official results and the post-evaluation results of our baseline system.

we use the final model checkpoint after training7.

Multi-stage Fine-tuning Besides our final set-
tings, we have a lot of stages of KB settings dur-
ing our system building. Multi-stage fine-tuning
aims at transferring the parameters of fine-tuned
embeddings in a model at an early stage into other
models in the next stage. The approach stores the
checkpoint of fine-tuned XLM-R embeddings at
the early stage and uses it as the initialization of
XLM-R embeddings for model training at the next
stage. One benefit of multi-stage fine-tuning is the
monolingual and code-mixed models, can utilized
the annotations of all the tracks to further improve
the model performance. XLM-R embedding is a
multilingual embedding with strong cross-lingual
transferability over all 11 languages. Therefore,
we use the checkpoint of fine-tuned multilingual
model for continue fine-tuning on the monolingual
and code-mixed models. Another benefit of multi-
stage fine-tuning is that it accelerates the training
speed. As the size of the multilingual dataset is rel-
atively large, it is quite time-consuming to train a
multilingual model. When we try different types of
KB, we can utilize the checkpoints of multilingual
models at the previous stage to train the monolin-
gual and code-mixed models with new types of
contexts without training new multilingual models.
Moreover, we can reduce the training epochs for
faster speed since the XLM-R checkpoints have
already learned from all the datasets.

Continue Pretraining To make XLM-R learn
the data distribution of the shared task, we combine
the training and development sets on the monolin-
gual tracks to build a corpus to continue pretrain
XLM-R. Specifically, we collocate all sentences
according to their languages, then cut the text into
chunks of fixed length, and train the model on these
text chunks using the Masked Language Model-
ing objective. We continue pretrain XLM-R for
5 epochs. We use the continue pretrained XLM-
R model as the initialization of the multilingual

7Please refer to Appendix A for detailed settings.

models during training.

5 Results and Analysis

In this section, we use language codes8 to represent
languages, and use MULTI and MIX to represent
multilingual and code-mixed tracks respectively9.

5.1 Main Results

There are 55 teams that participated in the shared
task. Due to limited space, we only compare
our system with the systems from teams USTC-
NELSLIP, RACAI and Sliced10. In the post-
evaluation phase, we evaluate a baseline system
without using the knowledge retrieval module to
further show the effectiveness of our knowledge-
based system. The official results and the results
of our baseline system are shown in Table 1. Our
system performs the best on 10 out of 13 tracks and
is competitive on the other 3 tracks. Moreover, our
system outperforms our baseline by 14.39 F1 on
average, which shows the knowledge retrieval mod-
ule is extremely helpful for disambiguating com-
plex entities leading to significant improvement on
model performance.

5.2 How Significant is the Role of
Knowledge-based System on Each
Domain?

To further show the effectiveness of our knowledge-
based system, we show the relative improvements
of our system over our baseline system on each
domain in Table 2. We observe that in most of the
cases, the two out-of-domain test sets have more
relative improvements than the in-domain test set.
This observation shows that the knowledge from
Wikipedia can not only improve the performance
of the LOWNER domain which is the same domain
as the KB, but also has very strong cross-domain

8https://en.wikipedia.org/wiki/List_
of_ISO_639-1_codes

9Please refer to Appendix B for more analysis.
10Please refer to https://multiconer.github.

io/results for more details about the results.
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EN ES NL RU TR KO FA DE ZH HI BN AVG.
In

-d
om

ai
n

L
O

W
N

E
R Baseline 88.70 86.54 89.92 81.52 88.52 86.25 81.85 91.71 85.43 83.13 82.69 86.02

Ours 96.78 96.19 97.96 96.60 96.43 96.83 96.48 94.89 88.66 84.18 86.31 93.76
∆ +8.08 +9.65 +8.04 +15.08 +7.91 +10.58 +14.63 +3.18 +3.23 +1.05 +3.62 +7.74

O
ut

-o
f-

do
m

ai
n

M
S

Q

Baseline 70.49 71.86 72.63 72.31 75.49 68.57 71.54 74.63 67.38 73.57 58.66 70.65
Ours 83.50 83.10 83.34 87.03 88.76 81.96 87.36 86.18 79.80 89.20 72.00 83.84
∆ +13.01 +11.24 +10.71 +14.72 +13.27 +13.39 +15.82 +11.55 +12.42 +15.63 +13.34 +13.19

O
R

C
A

S Baseline 62.07 62.71 67.39 64.83 66.92 56.08 65.52 67.52 55.34 62.03 60.68 62.83
Ours 83.72 81.33 80.29 85.00 85.85 81.06 84.84 84.40 72.11 85.75 82.13 82.41
∆ +21.65 +18.62 +12.90 +20.17 +18.93 +24.98 +19.32 +16.88 +16.77 +23.72 +21.45 +19.58

Table 2: Per-domain macro F1 score on the test set of our system and our baseline system for each language. ∆
represents the relative improvements of our system over the baseline system.

transferability to other domains such as web ques-
tions and user queries. According to the baseline
performance over the three domains, the ORCAS
domain has the lowest score, which shows the chal-
lenges in recognizing named entities in user queries.
However, our retrieved documents in KB can sig-
nificantly ease the challenges in this domain and
results in the highest improvement out of the three
domains.

5.3 How Relevant Are the Retrieval Results to
the Queries?

To evaluate the relevance of the retrieval results
to the query, we define a character-level rele-
vance metric, which calculates the Intersection-
over-Union (IoU) between the characters of query
and result. Assuming that the character sets11 of
query and retrieval result are A and B respectively,
then the character-level IoU is A∩B

A∪B . We calculate
the character-level IoU of the sentence and its top-1
retrieval result on all tracks, and plot its distribu-
tion on the training, development and test set in
Figure 3. We have the following observations: 1)
the IoU values are concentrated around 1.0 on the
training and development sets of EN, ES, NL, RU,
TR, KO, FA, which indicates that most of the sam-
ples were derived from Wikipedia. Therefore, by
retrieving, we can obtain the original documents for
these samples. 2) the distribution of data on the test
set is consistent with the training and development
sets for most languages, except for TR. On TR, the
character-level IoU values of the samples and query
results cluster at around 0.5. We hypothesize that
this is because the source of the test set for TR is
different from the training set. However, the model
still performs strongly on this language, suggesting
that the model can mitigate the difficulties caused

11The sets take repeat characters as different characters.

by inconsistent data distribution by retrieving the
context from Wikipedia.

5.4 How Important Can the Types of KB be?

We compare several types of KBs and contexts
during our system building.

Online Search Engine In the early stage, we
tried to use the knowledge retrieved from Google
Search, which can retrieve related knowledge from
a large scale of webs and is believed to be a strong
multilingual search engine.

Three Context Types Retrieved from Wikipedia
As we mentioned in Section 3.1, there are three
context processing options, which are: 1) use the
matched paragraph; 2) use the matched sentence;
3) use the matched sentence but remove the wiki
anchors. We denote the three options as PARA,
SENT and SENT-LINK respectively.

Entity Retrieval with Gold Entities We use
gold entities on the development set to see whether
the model performance can be improved. This can
be seen as the most ideal scenario for iterative re-
trieval. We denote this process as ITERG and use
PARA for the context type.

In Table 3, we can observe that: 1) For the three
context options, PARA is the best option for EN, ES,
NL, RU, TR, KO, FA, MIX and MULTI. SENT-LINK

is the best option for HI and BN. For DE and ZH,
SENT and SENT-LINK are competitive. As a result,
we choose SENT for the two languages since we
believe the wiki anchors from the Wikipedia can
help model performance; 2) Comparing with the
baseline, the knowledge from Google Search can
improve model performance. Based on the best
context option of each track, the knowledge from
Wikipedia is better than the online search engine; 3)
For ITERG, we can find that the context can further
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Figure 3: The distribution of the character-level IoU between the query and its top-1 result. Each subplot is a
histogram on the corresponding dataset, where the x-axis indicates the IoU values ranging from 0 to 1.

EN ES NL RU TR KO FA DE ZH HI BN MULTI MIX

Baseline 87.13 85.88 88.87 82.38 86.22 85.98 81.25 91.21 87.65 82.62 82.80 85.78 77.92
Google Search 92.46 88.68 91.58 85.88 89.83 88.95 82.96 93.56 89.16 84.27 84.38 87.84 86.26
Wiki-PARA 95.82 94.19 97.53 95.53 97.40 96.05 95.93 92.83 87.10 82.78 83.35 93.51 85.16
Wiki-SENT 87.62 89.33 92.90 79.41 89.00 91.49 95.99 94.42 89.47 84.55 84.12 89.34 78.65
Wiki-SENT-LINK 86.83 87.65 91.86 79.15 86.66 86.36 84.37 94.46 89.32 84.78 84.83 87.35 80.07
Wiki-PARA+ITERG 94.89 94.44 97.45 95.59 96.89 96.34 95.83 94.62 88.47 86.43 85.85 93.60 90.52

Table 3: A comparison of the models utilizing different types of knowledge on the development set.

HI BN MIX

Wiki-PARA+ITERG 86.43 85.85 90.52
Wiki-SENT+ITERG 85.69 86.57 91.38
Wiki-SENT-LINK+ITERG 86.15 86.13 91.38

Wiki-OptBest 84.78 84.83 85.16
Wiki-OptBest+ITERP 83.36 84.37 88.97

Table 4: Effectiveness of iterative retrieval. OptBest rep-
resents using the best context option for each language.

HI BN MIX

Wiki-OptBest 90.02 90.81 96.72
Wiki-OptBest-Mention 90.76 90.75 96.71

Table 5: A comparison of mention detection F1 score
over NER models and mention detection models.

Module Sentences/Second

Local Knowledge Base Retrieval 64.52
Google Search Retrieval 1.50
NER Module - Training 2.91
NER Module - Prediction 8.13

Table 6: Model speed of the knowledge retrieval module
and NER module in our system.

improve the performance over 8 out of 13 tracks.
However, there are only significant improvements
for HI, BN and MIX.

Iterative Entity Retrieval with Predicted Enti-
ties Based on the results in Table 3, we further
analyze how the predicted entity mentions can im-
prove the retrieval quality. We denote the iterative

entity retrieval with predicted mentions as ITERP .
In the experiment, we set T = 2.12 We extract the
predicted mentions of the development sets from
the models based on the best context option for
each track. We conduct the experiments over HI,
BN and MIX which have significant improvement
with ITERG. In Table 4, we also list the perfor-
mance of ITERG for reference, which can be seen
as using the predicted mentions with 100% accu-
racy. From the results, we observe that only MIX
can be improved.

Since iterative entity retrieval uses predicted
mentions as a part of retrieval query, the perfor-
mance of mention detection directly affects the
retrieval quality. To further analyze the observation
in Table 4, we evaluate the mention F1 score of the
NER models with sentence retrieval. For compari-
son with mention detection performance of NER
models, we additionally train mention detection
models by discarding the entity labels during train-
ing. From the results in Table 5, we suspect the
low mention F1 introduces noises in the knowledge
retrieval module for BN and HI, which lead to the
decline of performance as shown in Table 4. More-
over, the mention F1 of mention detection models
(second row of Table 5) only outperform that of the
NER models (first row of Table 5) in a moderate
scale. Therefore, we train the ITER models only
for the code-mixed track and use the NER models
with sentence retrieval to predict mentions.

12Our preliminary experiments show that there is no signifi-
cant improvement for T = 3.
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EN ES NL RU TR KO FA DE ZH HI BN MIX AVG.

XLM-R 92.46 88.68 91.58 85.88 89.83 88.95 82.96 93.56 89.16 84.27 84.38 84.52 88.02
CE 92.49 88.97 92.20 86.21 90.47 89.01 83.53 93.96 89.40 84.86 85.38 87.35 88.65

Table 7: A comparison of CE models and XLM-R models. Both kinds of models utilize the knowledge from Google
Search. The scores are the averaged macro F1 score on the development set.

EN ES NL RU TR KO FA DE ZH HI BN MIX AVG.

Baseline w/ MF 87.13 85.88 88.87 82.38 86.22 85.98 81.25 91.21 87.65 82.62 82.80 77.92 84.99
Baseline w/o MF 85.88 84.28 87.98 81.01 84.61 83.98 79.98 89.54 85.57 79.90 81.18 68.21 82.68

Table 8: A comparison of training the NER models with and without multi-stage fine-tuning (MF) for our baseline
system on the development set.

EN ES NL RU TR KO FA AVG.

XLM-R 95.82 94.19 97.53 95.53 97.40 96.05 95.93 96.07
Ensem 96.56 95.11 97.83 96.48 97.57 96.54 96.15 96.61
ACE 96.69 95.80 98.22 96.46 98.01 96.79 96.75 96.96

Table 9: A comparison of ACE models, XLM-R models
and an ensemble of the XLM-R models on the develop-
ment set.

5.5 Model Efficiency

Table 6 shows the speed of each module in our
system. In the table, we also show that the re-
trieval speed of our local KB is significantly faster
than that of Google Search. The bottleneck of the
system speed is the NER module rather than the
knowledge retrieval module. The main reason for
the slow speed of the NER module is that the input
length of the knowledge-based system is signifi-
cantly longer than the original input. Taking the
EN test set as an example, there are on average 10
tokens for each input sentence in the original test
set while there are 218 tokens for the input of our
knowledge-based system. The longer inputs slow
down the encoding at XLM-R embeddings.

5.6 Effect of Embedding Concatenation

We compare with some variants of our system that
we designed but did not use in the test phase.

CE (Concatenation of Embeddings) CE is one
of the usual approaches to NER, which concate-
nates different kinds of embeddings to improve the
token representations. In the early stage of our
system building, we compare CE with only using
the XLM-R embeddings based on the knowledge
retrieved from the Google Search. Results in Table
7 show that CE models are stronger than the mod-
els using XLM-R embeddings only in all the cases,
which show the effectiveness of CE.

ACE (Automated Concatenation of Embed-
dings) ACE (Wang et al., 2021a) is an improved
version of CE which automatically selects a bet-
ter concatenation of the embeddings. We use the
same embedding types as CE and the knowledge
are from our Wikipedia KB. We experiment on EN,
ES, NL, RU, TR, KO and FA, which are strong with
PARA contexts. In Table 9, we further compare
ACE with ensemble XLM-R models. Results show
ACE can improve the model performance and even
outperform the ensemble models13.

The results in Table 7 and 9 show the advantage
of the embedding concatenation. However, as we
have shown in Section 5.5, the prediction speed
is quite slow with the single XLM-R embeddings.
The CE models further slow down the prediction
speed since the models contain more embeddings.
The ACE models usually have faster prediction
speed than the CE models. However, training the
ACE models is quite slow. It takes about four days
to train a single ACE model. Moreover, the ACE
models cannot use the development set to train
the model since they use development score as
the reward to select the embedding concatenations.
Therefore, due to the time constraints, we did not
use these two variants in our submission during the
shared task period.

5.7 Effectiveness of Multi-stage Fine-tuning

In Table 8, we show the effectiveness of multi-
stage fine-tuning on the development set for our
baseline system. The result shows that multi-stage
fine-tuning can significantly improve the model
performance for all the tracks.

13Please refer to Appendix A.3 for detailed settings.
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6 Conclusion

In this paper, we describe our knowledge-based
system for the MultiCoNER shared task, which
wins 10 out of 13 tracks in the shared task. We
construct multilingual KBs and retrieve the related
documents from KBs to enhance the token repre-
sentations of input text. We show that the NER
models can use the retrieved knowledge to facil-
itate complex entity prediction, significantly im-
proving both the in-domain and out-of-domain per-
formance. Multi-stage fine-tuning can help the
monolingual models learn from the training data
of all the languages and improve the model per-
formance and training efficiency. We also show
that the system presents a good balance between
the model performance and prediction efficiency to
meet the time requirement in the test phase. We be-
lieve this system can be widely applied to other do-
mains for the task of NER. For future work, we plan
to improve the retrieval quality and adopt the sys-
tem to support other kinds of entity-related tasks.
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A Detailed Experimental Setup

The detailed statistics of the MultiCoNER dataset
are listed in Table 10 and the statistics of our KBs
ares shown in Table 11.
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A.1 Statistics of Datasets and Knowledge
Bases

Track Train Dev Test

English 15,300 800 217,818
Spanish 15,300 800 217,887
Dutch 15,300 800 217,337
Russian 15,300 800 217,501
Turkish 15,300 800 136,935
Korean 15,300 800 178,249
Farsi 15,300 800 165,702
German 15,300 800 217,824
Chinese 15,300 800 151,661
Hindi 15,300 800 141,565
Bangla 15,300 800 133,119
Multilingual 168,300 8,800 471,911
Code-mixed 1,500 500 100,000

Table 10: Statistics of the the MultiCoNER dataset (# of
sentences). Note that the training and development sets
of the multilingual dataset are a mixture of monolingual
training and development sets respectively.

Language Pages Paragraphs ES Docs

English 8,075,229 138,259,937 224,077,884
Spanish 1,813,109 29,767,543 47,248,391
Dutch 2,234,442 18,007,520 29,442,016
Russian 2,437,595 44,536,255 77,903,362
Turkish 728,950 8,196,825 12,685,674
Korean 905,976 11,965,418 16,326,787
Farsi 1,502,301 13,723,218 17,342,825
German 3,147,933 54,315,261 98,386,199
Chinese 1,659,253 20,342,685 14,888,964
Hindi 196,745 1,926,636 3,279,827
Bangla 203,869 2,526,333 4,342,959

Table 11: Detailed statistics on 11 languages.

A.2 System Configurations

For the knowledge retrieval module, we retrieve
top-10 related results from the KB. For iterative
entity retrieval, we set T = 2. In masked lan-
guage model pretraining, we use a learning rate of
5× 10−5. For the NER module, we use a learning
rate of 5 × 10−6 for fine-tuning the XLM-R em-
beddings and use a learning rate of 0.05 to update
the parameters in the CRF layer following Wang
et al. (2021b). Each NER model built by our sys-
tem can be trained and evaluated on a single Tesla
V100 GPU with 16GB memory. For the ensemble
module, we train about 10 models for each track.

A.3 Settings of CE and ACE models

In Section 5.6, we compare our NER model with
CE and ACE models. In CE and ACE mod-
els, we concatenate monolingual fastText (Bo-

DE ZH HI BN MIX AVG.

Voting 94.65 89.18 85.51 85.22 86.57 88.23
CRF 94.04 88.96 85.37 85.12 85.33 87.76

Table 12: A comparison of ensemble approaches on the
development set.

janowski et al., 2017) word embeddings, monolin-
gual/multilingual Flair embeddings (Akbik et al.,
2018), ELMo embeddings (Peters et al., 2018; Che
et al., 2018), XLM-R embeddings fine-tuned on
the whole training data and XLM-R embeddings
fine-tuned on the language data by multi-stage fine-
tuning. We only feed the knowledge-based input
into XLM-R embeddings and feed the original in-
put into other embeddings because it is hard for
the other embeddings (especially for LSTM-based
embeddings such as Flair and ELMo) to encode
such a long input. We use Bi-LSTM encoder to
encode the concatenated embeddings with a hid-
den state of 1,000 and then feed the output token
representations into the CRF layer. Following most
of the previous efforts, we use SGD optimizer with
a learning rate of 0.01. For ACE, we search the
embedding concatenation for 30 episodes.

B More Analysis

B.1 Majority Voting Ensemble and CRF
Level Ensemble

As we state in Section 3.3, we use majority voting
as the ensemble algorithm in our system. We show
an experiment about how the voting threshold af-
fect the ensemble model performance during our
system building on the development set. We en-
semble the models on DE, ZH, HI, BN, MIX with
PARA since these five tracks have relatively lower
performance than the other 7 tracks. In Figure 4,
we show how the threshold of the majority voting
affects the model performance. From the figure,
we can see that the best threshold varies over the
language. Therefore, we simply choose 0.5 as there
is no best threshold value. Moreover, we compare
the majority voting ensemble and CRF level ensem-
ble in Table 12. The CRF level ensemble averages
the emission and transition scores in the Eq. 1 pre-
dicted by the candidate models and uses the Viterbi
algorithm to get the prediction. The results show
that CRF level ensemble performs inferior to the
majority voting ensemble. The possible reason is
that training with different random seeds may lead
to different emission transition scores at different
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Figure 4: An illustration of majority voting threshold versus the ensemble model performance.

Test Context PARA OptBest
Search KB All Language All Language

Wiki-PARA 84.57 84.94 - -
Wiki+OptBest - 84.96 84.38 84.78

Table 13: Test results for multilingual models with dif-
ferent context options and different KB size.

scales. As a result, the models with larger scales
have higher weights in the ensemble.

B.2 How the Search Space and the Context
Type Affects Multilingual Model
Performance?

In the multilingual test set, we can find 304,905
sentences in the other monolingual test sets while
there are 167,006 sentences that cannot be found.
For these sentences, we can either search on the
whole KB of all languages or first detect the lan-
guage of the input sentence and then search in the
specific language KB14. Moreover, as we discussed
in Section 5.4, using different kinds of retrieved
knowledge affects the model performance. As a
result, we train two types of multilingual models.
One is only using the PARA contexts for all lan-
guage and another is using the best option for each
language based on Table 3. From the results in Ta-
ble 13, we can observe that: 1) searching over the
language specific KB performs better than search-
ing the whole KB, 2) using the language specific
context option cannot improve the model perfor-
mance. Therefore, we ensemble both types of the
model for the final submission.

14We determine the language of the input sentence us-
ing the langdetector (https://pypi.org/project/
langdetect/) tool.
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Abstract

We leverage pre-trained language models to
solve the task of complex NER for two low-
resource languages: Chinese and Spanish. We
use the technique of Whole Word Masking
(WWM) to boost the performance of masked
language modeling objective on large and un-
supervised corpora. We experiment with multi-
ple neural network architectures, incorporating
CRF, BiLSTMs, and Linear Classifiers on top
of a fine-tuned BERT layer. All our models
outperform the baseline by a significant margin
and our best performing model obtains a com-
petitive position on the evaluation leaderboard
for the blind test set.

1 Introduction

The Named Entity Recognition (NER) task aims
to identify the named entities in an input sequence
and categorize them into certain predefined cate-
gories or class labels. The task of NER can be
further broken down into two subtasks: 1) identifi-
cation of the entity span and 2) classification of the
identified entity span into predefined class labels.
For example, in the sentence: New York City is the
most densely populated major city in the United
States., New York City is a named entity of type
LOCATION with an entity span of 3 tokens.

The most popular NER task in the English lan-
guage is CoNLL (Baevski et al., 2019), which is
widely used as a benchmark for most NER mod-
els. Multiple models have been able to obtain
sufficiently high performances in this task setting
(Wang et al., 2021a; Zhou and Chen, 2021; Lu-
oma and Pyysalo, 2020; Schweter and Akbik, 2020;
Ye et al., 2021; Yamada et al., 2020; Wang et al.,
2021b). The CoNLL training set consists of 14,987
train sentences, which comprise 203,621 tokens
in total for English data. The entity space con-
sists of 4 different types of entity type labels (loca-
tions, persons, organizations, and miscellaneous)

*Equal Contribution

to classify each named token. The English data
was taken from the Reuters Corpus, which com-
prises of Reuters News Stories for one year. The
training data source, and by extension the labeled
named entities, comprises of majorly popular en-
tities found in the general English textual content
prevalent in the media. Hence, these entities were
easier to classify into the correct classes due to
the large prevalence of training data. With the use
of pre-trained transformer-based language models,
which are already trained on a large unlabelled
corpus of English text, this task became even less
challenging, as the nature of textual structure in
these corpora largely overlap with that of CoNLL.

However, this task becomes challenging in prac-
tical settings where a multitude of varieties of
named entities is possible. Many of these entities,
like Creative Works (CW) and Products (PROD)
have complex and ambiguous textual structural con-
tent. Such complex named entities rarely appear
even in the large training data sets, and the length
and structure of the named entities keep changing.

We investigate the task of complex, semantically
ambiguous, and low-resource NER (Malmasi et al.,
2022b). This task is based on the complex NER,
search query and code-mixing NER challenges in-
troduced by Meng et al. (2021) and Fetahu et al.
(2021). The shared task of MultiCoNER (stands for
multilingual complex NER) adds additional chal-
lenge by introducing rarer label types (like Creative
Work, Product, etc.).

Another way to increase the difficulty of NER
task is to perform it for low-resource languages.
There is a significant dearth of both labeled and un-
labelled data for such languages. The complexity
is further enhanced by using rarer entity types in
such languages. Therefore, the scarcity of training
data, along with the rarity of entity types, makes it
difficult for the models to perform better in the low-
resource setting. The shared task of MultiCoNER
introduces datasets in multiple low-resource lan-
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guages.
We leverage large pre-trained language models

trained on low-resource language corpora to ob-
tain competitive performances in the low-resource
and complex NER setting. We show that simpler
architectures successfully outperform other heav-
ier counterparts. We use standard BERT+CRF-
based models to obtain high performances in
the evaluation set. We experiment on two low-
resource datasets: Spanish and Chinese. The
code is available at https://github.com/
AmitPandey-Research/Complex_NER

We compare multiple architectures on the test
and validation set of the shared task. The organisers
provide a baseline of XLM-RoBERTa model (Con-
neau et al., 2019) finetuned on the training dataset
of the specified language for the given task. In this
paper, we treat the finetuned XLM-RoBERTa as
baseline (two separate models are trained for Span-
ish and Chinese language) and compare the perfor-
mances against our models. All our models beat
the baseline by a significant margin. We describe
the prior research work done with respect to both
general and low-resource NER tasks in Section 2.
We provide the formal task description in Section
3, the dataset details in Section 4, the method and
the model architecture in Section 5. We provide
details about the experimental implementation in
Section 6. We discuss the results obtained and er-
ror analysis in Sections 7 and 8 respectively, and
finally, we conclude the paper in Section 9.

2 Related Work

The task of low-resource NER has been investi-
gated before by multiple researchers. This line of
research focuses mainly on leveraging the cross-
lingual contextual information obtained from low-
resource languages. (Feng et al., 2018) use cross-
lingual knowledge transfer to train the NER model
for the low-resource target language. (Xie et al.,
2018) use bilingual dictionaries to tackle the task of
low-resource NER. (Rahimi et al., 2019b) proposes
a Bayesian graphical model approach to improve
performance on NER tasks.

NER models often use gazetteers (list of named
entities) to improve performance in NER tasks.
(Rijhwani et al., 2020) creates soft-gazetteers for
low-resource languages, leveraging English Knowl-
edge Bases. (Bari et al., 2019) focuses on an un-
supervised approach for NER for to circumvent
the label scarcity problem in low-resource lan-

guages. (Rahimi et al., 2019a) leverages multilin-
gual transfer learning from multiple languages for
low-resource NER tasks. (Hedderich et al., 2021)
uses distant supervision in the low-resource setting
for NER.

There are multiple approaches that have been
undertaken in the recent past to improve the state-
of-the-art in NER tasks. (Wang et al., 2020) uses
concatenation of embeddings to outperform the
state-of-the-art in NER tasks, as they infer that con-
catenation of embeddings leads to a better word
representation. Their method automates the pro-
cess of finding meaningful embeddings to concate-
nate for improved performance. (Zhou and Chen,
2021) propose a co-regularization framework for
entity extraction comprising of multiple models
with different architectures but different parameter
initializations. This helps to tackle overfitting of
large neural network-based models on low-resource
training data for NER. (Schweter and Akbik, 2020)
use document-level features to improve informa-
tion extraction on entity-centric tasks.

NER and Relation Extraction are the core infor-
mation extraction tasks in NLP. (Ye et al., 2021)
models this as a span-pair classification problem,
and they further improve the pair representations
by considering the dependencies between the spans
(pairs) by strategically packing the markers in the
encoder. (Yamada et al., 2020) proposes a novel
entity-aware self-attention framework for trans-
former based models for NER. (Wang et al., 2021b)
extracts document-level context for sentences for
which document information is absent. They treat
the sentence as a query and use a search engine to
extract the document level contextual information.
(Luoma and Pyysalo, 2020) uses multiple neigh-
bouring sentences as the contextual information for
NER.

Pre-trained Language Models for NER : Ever
since the introduction of BERT (Devlin et al.,
2019), transformer based pre-trained language
models have effectively utilized transfer learning
for downstream NLP tasks. NER has been tra-
ditionally modeled as a sequence labeling prob-
lem. (Huang et al., 2015) proposed a Bidirectional
LSTM with a CRF layer on top for classifying to-
kens as entities. (Jadhav, 2020) use a pretrained
BERT model with a CRF layer on top for perform-
ing NER on the DailyHunt news dataset. We use
a BERT-based model with a CRF layer on top and
achieve competitive performance on low-resource
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Label Description
PER Person
LOC Location
GRP Group

CORP Corporation
PROD Product

CW Creative Work

Table 1: Entity types in the label space

NER tasks on multiple languages, beating the base-
line by a significant margin in each case.

3 Task Description

In this task, we attempt complex NER for two low-
resource languages: Spanish and Chinese. This
task presents additional challenges in the form of
test instances consisting of short search queries and
low-context sentences. For this task, the systems
had to identify the B-I-O format (Ramshaw and
Marcus, 1999) (short for beginning, inside, outside)
tags for six NER entity type labels: 1) Person, 2)
Product, 3) Location, 4) Group, 5) Corporation,
and 6) Creative Work. The description of these
labels is shown in Table 1.

4 Dataset

The MultiCoNER dataset (Malmasi et al., 2022a)
consists of multiple low-resource languages. We
consider Chinese and Spanish languages in this
paper. For the monolingual track, the participants
have to train a model that works for a single lan-
guage. We fine-tune the language model on the
train set to obtain predictions on dev and test set.
The labels from the blind test set are not disclosed.
The dataset follows a BIO tagging scheme and
there are 6 entity types in the label space. The
statistics for the Chinese and Spanish datasets in
the monolingual track for the train and dev set are
provided in Table 2. The total number of test in-
stances for both Spanish and Chinese languages
exceed 150,000.

Train Dev
# sentences 15300 800

Table 2: Total sentences in Chinese and Spanish mono-
lingual track

5 System Overview

At first, we pre-train the BERT language model on
unlabelled corpora for the target low resource lan-
guage. For Chinese, we use the strategy outlined by
(Cui et al., 2020). BERT uses the WordPiece tok-
enizer (Wu et al., 2016) to split tokens into smaller
fragments. It is easier for the masked language
model to predict these masked fragments. How-
ever, for the Chinese textual texture, the Chinese
characters are not formed by alphabet-like symbols,
so the WordPiece tokenizer is unable to split the
words into small fragments. Hence, we use the
Chinese Word Segmentation (CWS) tool to split
the text into separate words and then use Whole
Word Masking (WWM) strategy for the masked
language model objective. In comparison to mask-
ing small fragments, this Whole Word Masking
strategy makes it harder for the model to predict
whole masked words, leading to more robustness.

For the Spanish variant, we adopt the strategy
outlined by Cañete et al. (2020). Similar to (Cui
et al., 2020), they use the strategy of whole word
masking for pre-training BERT language model on
unlabelled Spanish corpus.

We adopt the strategy of finetuning these pre-
trained BERT models on the downstream NER task
for each language.

5.1 BERT+CRF

Conditional random fields (CRFs) are statistical
modeling methods used for pattern recognition.
They are better suited for tasks such as Part-of-
Speech (POS) tagging and NER compared to clas-
sifiers based on softmax normalization. Classifiers
based on softmax normalization assume the likeli-
hood of the labels to be conditionally independent,
and this causes label bias. CRF alleviates this issue
of label bias by capturing inter-token dependencies
in a graphical model and learning transition scores
in addition to the hidden states. In our model, we
use linear-chain CRF. In linear CRFs, prediction
for each token is dependent only on its immediate
neighbors. As shown in equation 2, CRF tries to
maximize the ratio of the probability of an optimal
sequence of labels to the probability sum of all the
possible sequences of labels. Since CRF focuses
on the sequence of labels, it can avoid errors like
B-PER followed by an I-PROD. Therefore, based
on emission scores provided by BERT layer, we
calculate the log-likelihood of a sequence of labels.
Now we explain the steps involved BERT+CRF
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Figure 1: BERT+CRF architecture

architecture that is shown in Figure 1.
Firstly, we obtain token-level dense representa-

tions using a fine-tuned BERT-based embedding
layer. For an input sequence of tokens w =
(w1, w2, w3, ..., wn), we obtain the ith token rep-
resentation xi of dimension d, where d is the di-
mension of BERT embeddings. The token embed-
ding xi is passed to a dense linear layer to trans-
form the representation from d to k dimensional
space (emission score), where k is the number of
labels. We calculate emission scores for all the to-
kens of the given sequence. We then pass these
emission scores to the CRF layer to obtain the
probability for a sequence of labels. The emis-
sion scores, obtained from the previous layer as
P ∈ Rn×k, are passed to the CRF layer whose
parameters are A ∈ Rk+2×k+2. Element Aij de-
notes the transition score from the ith to the jth
label. 2 additional states are added to the start
and end of the sequence. For a series of tokens
w = (w1, w2, w3, ..., wn) we obtain a series of pre-
dictions y = (y1, y2, y3, ..., yn).

As described in (Lample et al., 2016), the score
of the entire sequence is defined as :

s(w, y) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Pi,yi (1)

The model is trained to maximise the log proba-
bility of the correct label sequence:

log(p(y|w)) = s(w, y)− log(
∑

ỹ∈Yw

es(w,ỹ)) (2)

where Yw are all possible label sequences.

5.2 BERT+BiLSTM+CRF

We obtain token-level contextual dense representa-
tions (BERT embeddings) using fine-tuned BERT

layer. These embeddings are then passed to a BiL-
STM layer which further extracts bidirectional in-
formation from the given sequence of vectors. The
information is encoded in the hidden-state represen-
tations of the BiLSTM. We pass these hidden states
to the CRF layer to obtain the likelihood of a se-
quence of labels. We use the pre-trained language
model to map the tokens in each input sentence to a
dense embedding representation. The BERT-based
dense embeddings are passed to the BiLSTM-CRF
layer, which is used to obtain the predicted label for
each token in the entire sequence. More formally,
for a sequence of tokens w = (w1, w2, w3, ..., wn),
we obtain the ith token representation xi of dimen-
sion d, which is the dimension of the dense vector
representations of the BERT-based embeddings ob-
tained from the pre-trained language model. The se-
quence of token embeddings is taken as an input to
the BiLSTM in each time step, and the forward hid-
den states

−→
hf = (

−→
h1,
−→
h2,
−→
h3, ...,

−→
hn) and the back-

ward hidden states
←−
hb = (

←−
h1,
←−
h2,
←−
h3, ...,

←−
hn) are

concatenated to form the combined hidden state
representation h = [

−→
hf ,
←−
hb]. The combined hidden

state representation h ∈ Rn×m, where m is the
total dimension of BiLSTM, is transformed to a k
dimensional space using a linear layer, where k is
the total number of labels. Finally, the CRF layer
outputs predicted sequence of labels.

5.3 BERT+Linear

This is the simplest architecture based on fine-tuned
BERT layer. The input token sequence is mapped
to a vector space of d dimension using a pre-trained
BERT layer. These embeddings are then passed
to a classifier that consists of two Fully Connected
(FC) layers followed by a softmax normalization
function. The classifier maps the d dimensional
BERT embeddings to k dimensions, where k is
the number of labels. These k dimensional vectors
generated by the fully connected layers are soft-
maxed to provide a probability distribution across
all labels.

6 Implementation Details

We implement all our transformer based models
using Pytorch and Huggingface library. The Chi-
nese language model with the Whole Word Mask-
ing (WWM) objective is trained on the Chinese
Wikipedia unlabelled text corpus. We use the same
training corpus of 3 billion unannotated Spanish
tokens as Cañete et al. (2020) to pre-train the BERT
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BERT+CRF BERT+BiLSTM+CRF BERT+Linear
Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.8368 0.8796 0.8577 0.8219 0.8759 0.8481 0.8194 0.8613 0.8399
PER 0.9065 0.9028 0.9047 0.9177 0.9028 0.9102 0.8933 0.9150 0.9040

PROD 0.6970 0.7468 0.7210 0.7278 0.7468 0.7372 0.6864 0.7532 0.7183
GRP 0.7952 0.7857 0.7904 0.7751 0.7798 0.7774 0.8061 0.7917 0.7988
CW 0.7965 0.7135 0.7527 0.7654 0.7135 0.7385 0.8107 0.7135 0.7590

CORP 0.8657 0.8227 0.8436 0.8397 0.7801 0.8088 0.8529 0.8227 0.8375
Average 0.8163 0.8085 0.8117 0.8079 0.7998 0.8034 0.8115 0.8096 0.8096

Table 3: Results of our models on validation dataset for Spanish language

BERT+CRF BERT+BiLSTM+CRF BERT+Linear
Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.9465 0.9365 0.9415 0.9239 0.9312 0.9275 0.9186 0.9259 0.9223
PER 0.8497 0.9225 0.9084 0.8971 0.9457 0.9208 0.8955 0.9302 0.9125

PROD 0.8867 0.8285 0.8566 0.8662 0.8504 0.8582 0.8593 0.8248 0.8417
GRP 0.7500 0.6923 0.7200 0.7727 0.6538 0.7083 0.6923 0.6923 0.6923
CW 0.8265 0.8617 0.8437 0.8556 0.8191 0.8370 0.8370 0.8191 0.8280

CORP 0.8615 0.8750 0.8682 0.8808 0.8854 0.8831 0.8883 0.8698 0.8789
Average 0.8610 0.8527 0.8564 0.8660 0.8476 0.8558 0.8485 0.8437 0.846

Table 4: Results of our models on validation dataset for Chinese language

language model on Spanish data. We implement 3
models: BERT+CRF, BERT+BiLSTM+CRF, and
BERT+Linear, for our low resource NER task
setting. We run our experiments between 1-100
epochs. We find that the best results are obtained
at 10 epochs of training for each model after which
the model starts to overfit. We use a dropout from
0.2 to 0.5 for all models. We employ Adam opti-
mizer with default parameters for all experiments.
We also experiment with a cyclic learning rate
between 1e−4 to 1e−6 to avoid getting stuck in
local minima. The size of each of the FC lay-
ers in the BERT+Linear model is 512. We vali-
date the results of all models using our validation
dataset. The hidden layer size of BiLSTM used in
the BERT+BiLSTM+CRF model is 256.

7 Results

We compare the performances of all models in the
low-resource setting for both Chinese and Spanish
languages. From tables 3 and 4 we observe that
the BERT+CRF model performs the best across
both languages on validation set. We choose the
best performing model to evaluate our results on
the blind test set. The baseline model chosen by
the organisers of this task is XLM-RoBERTa (Con-
neau et al., 2019)(base model). It is pre-trained

on 2.5TB of filtered CommonCrawl data contain-
ing 100 languages (Conneau et al., 2019). Our
approach beats the baseline by a significant margin
and outperforms multiple models in the competi-
tion. We present the precision, recall and F1 scores
for all 3 models in the Tables 3 and 4 for Span-
ish and Chinese language respectively. We also
compare the results between the baseline and our
models for the validation dataset in the Tables 5
and 6.

For the Spanish language, we observe that the
BERT+CRF (0.8117 F1 score) beats BERT+Linear
(0.8096 F1 score) by a slender margin. This can
be attributed to the addition of the CRF layer,
which exploits inter-token dependencies. The
BERT+BiLSTM+CRF model is much heavier with
a larger number of parameters and overfits the train-
ing dataset due to the smaller number of training
instances.

For the Chinese language, we observe that
both the BERT+CRF (0.8564 F1 score) and
BERT+BiLSTM+CRF (0.8558 F1 score) beat
BERT+Linear (0.846 F1 score).

Our models outperform the baseline for both the
languages. Our best performing model BERT+CRF
beats the baseline F1 score by around 5% for Span-
ish and by around 10% for Chinese.

The details of the performance of the
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Prec Rec F1
Baseline System 0.764 0.763 0.767
BERT + Linear 0.811 0.809 0.809
BERT+BiLSTM+CRF 0.807 0.799 0.803
BERT + CRF 0.816 0.808 0.811

Table 5: Comparison of models’ performances with
baseline on validation dataset for Spanish language

Prec Rec F1
Baseline System 0.758 0.762 0.755
BERT + Linear 0.848 0.843 0.846
BERT+BiLSTM+CRF 0.866 0.847 0.855
BERT+CRF 0.861 0.852 0.856

Table 6: Comparison of models’ performances with
baseline on validation dataset for Chinese language

BERT+CRF
Class Label Prec Rec F1

LOC 0.5768 0.6571 0.6144
PER 0.7641 0.7739 0.7690

PROD 0.6292 0.5141 0.5659
GRP 0.5727 0.5560 0.5642
CW 0.5331 0.5257 0.5294

CORP 0.6605 0.6005 0.6291
Average 0.6227 0.6046 0.6120

Table 7: Performance of Spanish model on test dataset

BERT+CRF
Class Label Prec Rec F1

LOC 0.6930 0.7955 0.7407
PER 0.7952 0.6377 0.7078

PROD 0.6853 0.7232 0.7038
GRP 0.7254 0.4608 0.5636
CW 0.5520 0.6798 0.6093

CORP 0.6526 0.7361 0.6918
Average 0.6839 0.6722 0.6695

Table 8: Performance of Chinese model on test dataset

BERT+CRF model in the evaluation phase
are shown in Table 7 for the Spanish language and
the Table 8 for the Chinese language. We observe
a drop in performance on the test dataset compared
to the performance on the validation dataset. The
model scores 0.6120 F1 for Spanish and 0.6695 F1
for the Chinese language.

8 Error Analysis

We perform error analysis on all 3 different mod-
els. We qualitatively analyze the predictions on the
validation dataset for both languages. As the final
evaluation test set in blind, we are unable to per-
form analysis on the same. We find that the labels
GRP (Group), PROD (Product), and CW (Creative
Work) are the most inaccurately predicted labels
for the Spanish models. This conforms to our hy-
pothesis that the long-tailed nature of these entities
(which means the frequency of occurrence of such
entity types in the general literature of the target
language is rare). Hence, the model has the most
difficulty in recognizing these entities from the con-
textual sentences. The other label types are more
common and were present in the CoNLL dataset as
well. We also notice that the BERT+Linear does
marginally better than BERT+CRF on predicting
such labels (for the Spanish language), despite it
not being the best performing model overall. This
can be attributed to it being a lighter model, im-
parting it the capability of generalizing better while
training on a relatively lower amount of training

instances. BERT+CRF benefits from having CRF
along with the lower number of parameters com-
pared to the BERT+BiLSTM+CRF model. This
results in it having a better performance compared
to both the other models. The drop in the perfor-
mance of the model on the blind test dataset can
be attributed to the model not generalizing well
to handle instances of questions and short search
queries in the additional test set.

9 Conclusion and Future Work

We have introduced strong improvements over the
baseline for the shared task of complex NER for
low resource languages. We leverage the Whole
Word Masking objective to obtain a better perfor-
mance in this low-resource setting. We perform
extensive experiments and find that simple BERT-
CRF based models perform strongly against other
heavier models even in such low resource seman-
tically ambiguous setting as evident by the final
evaluation rankings. We find this approach to give
a higher performance as it is able to utilize the
contextual information from a sequence of tokens
and learn inter-token dependencies to accurately
predict the named entity labels. We also conduct
qualitative error analysis and describe our findings.
For future work, we aim to leverage these findings
to circumvent the label scarcity problem in other
low-resource languages and code mixed data.
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Abstract

This paper presents the system description of
team AaltoNLP for SemEval-2022 shared task
11: MultiCoNER. Transformer-based models
have produced high scores on standard Named
Entity Recognition (NER) tasks. However,
accuracy on complex named entities is still
low. Complex and ambiguous named entities
have been identified as a major error source
in NER tasks. The shared task is about multi-
lingual complex named entity recognition. In
this paper, we describe an ensemble approach,
which increases accuracy across all tested lan-
guages. The system ensembles output from
multiple same architecture task-adaptive pre-
trained transformers trained with different ran-
dom seeds. We notice a large discrepancy be-
tween performance on development and test
data. Model selection based on limited devel-
opment data may not yield optimal results on
large test data sets.

1 Introduction

SemEval-2022 shared task 11: MultiCoNER (Mal-
masi et al., 2022b) was about complex Named En-
tity Recognition (NER) in the multilingual context.
Transformer-based models such as BERT (Devlin
et al., 2019) have reached high accuracy in standard
NER tasks. However, the models still struggle with
complex and code-mixed named entities (Meng
et al., 2021; Fetahu et al., 2021). The shared task
tries to address the challenges regarding complex
NER in a multilingual context. Out of the 13 avail-
able tracks, we focus on 5 monolingual tracks. We
build models for Bangla, English, Farsi, German,
and Korean.

Our strategy is to build an ensemble approach to
increase accuracy compared to the baseline model.
To tackle multilingualism, we build an approach
that starts from the same XLM-RoBERTa (Con-
neau et al., 2019) encoder and after fine-tuning,
achieves good performance across languages. We

propose two ensembling approaches: (1) naive en-
sembling and (2) end-to-end (E2E) ensembling.
Naive ensembling is a test-time ensembling where
class scores from individually trained models are
added together. E2E ensembling trains two encoder
models jointly by concatenating their results and
passing the concatenated predictions to the final
layer. In addition to these strategies, we adapt the
encoder model to data context using continued pre-
training (Gururangan et al., 2020).

We discover that naive ensembling produces
good results with few models and by just using
different random seeds for training. We also dis-
cover that performance can drastically vary be-
tween data sets and model selection based on de-
velopment data may not yield good results on large
test sets. Our final rankings are 11th for Farsi, 12th
for Bangla, 13th for German, 15th for Korean, and
25th for English. For each language, our ranking is
on the lower half of the participants. The code for
our submission has been released 1.

2 Background

In NER, complex and ambiguous entities are hard
to classify correctly. Out of the 13 available
tracks, we participated in the monolingual tracks
for Bangla, English, Farsi, German, and Korean.
For training, we used only the competition data sets
(Malmasi et al., 2022a) provided by the organizers.
The task is to detect named entities in given sen-
tences. Figure 1 contains an example of the task
setting. This example can be considered complex,
as Madagascar is ambiguous as it could refer to the
country or the movie.

Transformer-based models (Vaswani et al., 2017)
such as BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) produce state-of-the-art results
on variety of natural language processing (NLP)
tasks including NER. Transformer models trained

1Code is available here https://github.com/
aapop/multiconer_AaltoNLP
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it is known from madagascar .

O O O O B-LOC O

Figure 1: An example of NER task. A sentence from
the development data set and the corresponding labels.

on multilingual data, such as XLM (Conneau and
Lample, 2019), can be used for cross-lingual tasks.
XLM-RoBERTa (XLM-R) (Conneau et al., 2019)
combines the XLM and RoBERTa architectures
and produces state-of-the-art results across lan-
guages. XLM-R is used as the basis in our system,
which we built on top of.

Gururangan et al. (2020) showed that continu-
ing pretraining of a transformer model with the
domain or task-specific data often increases the
performance. We utilize this finding and apply
task-adaptive pretraining on multilingual models to
increase performance in a specific language.

Ensemble learning is widely used in machine
learning, in which, predictions from several dif-
ferent models are combined. The ensemble learn-
ing method combines multiple weak learners and
provides a strong learner (Mohri, 2012). This
works especially well when the weak learners 2

are diverse and make different errors. Speck
and Ngonga Ngomo (2014) showed that ensemble
methods can significantly increase NER accuracy.
Combining transformer-based model predictions
has been shown to increase NER accuracy (Li et al.,
2020; Zhao et al., 2021; Souza et al., 2020). To
keep applicability on languages with limited num-
ber of pretrained models, our approach is to form an
ensemble model based on training the same model
with different random seeds.

3 System overview

The motivation for our system is to produce an ap-
proach that can be applied across languages. Initial
testing with the baseline system provided by the or-
ganizers suggested that XLM-Rlarge (Conneau et al.,
2019) produces comparable or even better perfor-
mance than tested monolingual pretrained models
for targeted languages. Therefore, we resort to
building on top of a multilingual encoder model
XLM-RLARGE and the provided baseline system.

Inspired by results using task-adaptive pretrain-
ing (Gururangan et al., 2020), we start by training

2also called base models

task-adaptive language models. We hypothesize
that task-adaptive pretraining could provide two
sources of improvement: (1) adapting to the data
domain and (2) improving the capability in the
specific language. Task-adaptive pretraining is con-
ducted for the XLM-RLARGE using the provided
training data, which we prepare for pretraining by
removing labels and constructing line-by-line sen-
tences. The pretraining is applied to each language
separately yielding us five encoder models named
koala/xlm-roberta-large-XX. The XX is replaced
with the corresponding language identifier. The pre-
training is continued from the XLM-Rlarge check-
point with only the preprocessed task data. The pre-
training objective remains the same. The models
are available at the Huggingface model repository
3. In this paper, we refer to the models as koala-
XLM-Rlarge interchangeably for all languages.

After obtaining the enhanced encoder models,
we propose two ensemble learning approaches, i.e.,
naive ensemble and E2E ensemble.

3.1 Naive ensemble
As the first ensemble strategy, we combine predic-
tions from multiple independently trained models
at test time. Randomness and choosing a random
seed can have a significant effect on the model train-
ing and final accuracy. Based on that, our hypothe-
sis was to leverage this randomness to increase the
accuracy.

To ensure applicability in languages, where a
limited number of available models are available,
we train the models using the same architecture
and only vary the random seed associated with
training. The koala-XLM-Rlarge is used as the en-
coder model for each language respectively. Af-
ter the encoder model, we use the linear layer as
the prediction head and apply softmax transforma-
tion to obtain class probabilities. The models were
trained separately and optimized with AdamW op-
timizer (Loshchilov and Hutter, 2018) and negative
log-likelihood loss function (NLLLoss).

The ensembling is conducted during test time.
We simply add the class probabilities together from
each of the models,

y∗ = argmaxj
∑

n

pnj , (1)

where pnj is the probability of model n for the class
j. The predicted class y∗ is the class with the high-
est sum of probabilities. For the ensemble weights,

3https://huggingface.co/koala
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koala-XLM-RLARGE

 
 

koala-XLM-RLARGE
 
 

 
 

koala-XLM-RLARGE
 
 

Input sentence

Class probabilities Class probabilities Class probabilities Class probabilities

Argmax for each token

Token predictions

 
 

koala-XLM-RLARGE
 
 

Linear + softmax Linear + softmax Linear + softmax Linear + softmax

Figure 2: System diagram for the Naive ensemble
model. Each of the models are trained separately with
different random seeds and ensembling conducted at
test time.

we also tried entropy minimized ensemble (Wang
et al., 2021), which is based on the intuition that
good ensemble weights should decrease entropy
(Shannon, 1948; Wang et al., 2020). The algorithm
is elaborated in Algorithm 1. This approach did not

Algorithm 1 Entropy minimization for ensembling

1: Inputs: scores p, uniform weights w0

2: for t in 0, 1, . . . steps = T do
3: Calculate entropy of scores E ←

Entropy(
∑

nw
t
n ∗ pnj)

4: Compute gradient gt = ∇wE
5: Update weights wt+1 ← Update(wt, gt)
6: end for
7: Output: final prediction y∗ =

∑
nw

T
n ∗ pnj

provide noticeable improvement in our tests and
thus, we proceeded with uniform weights.

Our ensemble model consists of four distinct
models. The number of four models was chosen as
a compromise on the trade-off between accuracy
and inference time. The model system is illustrated
in Figure 2.

3.2 E2E ensemble

Our second ensemble strategy centered around the
idea of jointly training the models. The idea is
to include sub-networks (encoder models) in the
model, ensemble their predictions, and optimize
the loss function jointly. Our system uses koala-
XLM-Rlarge and XLM-Rbase as the encoder models.

The input data is passed to both encoder models.
After that, we apply linear and softmax layers. For
the second encoder model, the linear layer outputs
2 ∗ num classes scores. We made this deci-

Input sentence

Token predictions

koala-XLM-RLARGE XLM-RBASE

Linear + softmax Linear + softmax

Class scores Scores (2*num_classes)(Concatenation)

Linear

CRF

Figure 3: System diagram for the E2E ensemble model.

sion to add variation between the two sub-networks.
The choice to use twice the amount of parameters
was arbitrary. We tried a different number of pa-
rameters but the performance seemed similar.

After outputting the scores from the two sub-
networks, the scores are concatenated together.
Also, summation was tested when using same-sized
outputs, but concatenation seemed to perform bet-
ter. After that, the concatenated scores are passed
to linear and CRF layers. The architecture of E2E
ensemble model is illustrated in Figure 3.

The E2E ensemble model consists of two sub-
networks. We tried using also three and four sub-
networks but adding more models did not improve
the performance. Therefore, we settled on using
two sub-networks, which also help with the com-
putational burden. We experimented with different
sub-network architectures and noticed that using
different encoder models provided the best perfor-
mance despite varying the linear layer size. Also,
using koala-XLM-Rlarge instead of XLM-Rbase as
the second sub-network did not improve accuracy.
Hence, the smaller model was used.

The model was optimized using AdamW opti-
mizer with Viterbi loss as the loss function.

4 Experimental setup

Our experimental setup was based on the provided
baseline model (Malmasi et al., 2022b) and the data
splits (Malmasi et al., 2022a). Models were trained
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only using the training data and the best model was
selected based on performance on development
data. After selecting the best model, we did not do
any training with development data. For continued
pretraining, we preprocessed the training data. The
data were converted from CoNLL format into line-
by-line text. Hence, we removed the labels and
reconstructed the sentences into a single line of
text data.

We selected suitable hyperparameters based on
performance on the development data. We selected
two learning rates, first for the encoder model and
a second one for all subsequent layers (decoder).
We set the encoder learning rate to 10−6 and the de-
coder learning rate to 10−3. To prevent overfitting,
we used a dropout rate of 0.1. We also used early
stopping with development data. The training was
stopped when accuracy on development data had
not increased in the last three epochs. We selected
batch size based on the hardware constraints. For
baselines and sub-models in the naive ensemble,
we used batch size 64. For E2E ensemble, batch
size is 20.

The main Python libraries we used are PyTorch,
PyTorch Lightning, AllenNLP, and Transformers.
Further details available in the repository 4.

The performance in this shared task is evaluated
using prediction accuracy on unseen test data set.
The teams are ranked by their macro-averaged F1
classification score.

5 Results

The official metrics were based on the evaluation
phase with test data. The participants were ranked
by their Macro F1 scores. The performance of built
models on test data is shown in Table 1. The best
score is bolded and is the model used for ranking.
It can be seen that the naive ensemble model per-
forms better than the best individual model across
all languages. E2E ensemble model shows mixed
results and performance varies run by run. It out-
performs naive ensemble on Korean and Farsi test
data.

We noticed a rather large discrepancy in accura-
cies between the development and test data set. The
details of model performance on development data
are presented in Table 2. Compared to the results
on test data, the performance on development data
was significantly better. The discrepancies between

4https://github.com/aapop/multiconer_
AaltoNLP/blob/master/requirements.txt

Model en ko fa de bn
XLM-Rlarge 0.639 0.589 0.515 0.695 0.465
koala-XLM-Rlarge 0.653 0.590 0.527 0.695 0.476
Naive ensemble 0.669 0.610 0.569 0.714 0.518
E2E ensemble 0.623 0.618 0.589 0.678 0.511
Final rank 25 15 11 13 12

Table 1: Macro F1 scores and final ranking on test data.

Model en ko fa de bn
XLM-Rlarge 0.830 0.802 0.756 0.870 0.763
koala-XLM-Rlarge 0.829 0.805 0.745 0.861 0.758
Naive ensemble 0.841 0.824 0.764 0.864 0.782
E2E ensemble 0.821 0.811 0.764 0.856 0.755

Table 2: Macro F1 scores on development data.

performance on development and test data suggest
that model selection on such limited development
data yields sub-optimal results.

Our systems suffer with some of the classes.
As can be seen from Figures 4 and 5, PROD and
CW classes have significantly lower accuracy than
other classes. Performance on GRP, LOC, and PER
classes is much higher. Our systems suffer with
the no-tag-class O, which has the majority of the
misclassifications.

5.1 Task-adaptive pretraining

We hypothesized that task-adaptive pretraining
would adapt the multilingual encoder model into
the data and language domains. We tested the per-
formance by training the model four times using
different random seeds and comparing the average
micro F1 score between XLM-Rlarge and koala-
XLM-Rlarge models. The results of task-adaptive
pretraining are elaborated in Table 3. The improve-
ments on this task are small and compared to the
original paper, in which, the accuracy increase was
considerably larger on some data sets. For German,
the accuracy even decreased significantly. The de-
crease is mainly caused by random variation as one
of the four models for koala-XLM-Rlarge achieved
only accuracy of 0.81 when all other models (XLM-
Rlarge and koala-XLM-Rlarge) were in the range of
0.85− 0.88.

Model en ko fa de bn
XLM-Rlarge 0.836 0.788 0.757 0.873 0.738
koala-XLM-Rlarge 0.837 0.793 0.761 0.850 0.746
Improvement 0.1% 0.6% 0.5% -2.6% 1.1%

Table 3: Average micro F1 scores for four models.
Models trained with different random seeds.
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Figure 4: Confusion matrix of Farsi Naive ensemble
model normalized on the true labels.
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Figure 5: Confusion matrix of Farsi E2E ensemble
model normalized on the true labels.

EMEA Steps Lr Batch size F1
No - - - 0.782
Yes 10 10 3 0.779
Yes 10 100 3 0.776
Yes 10 500 3 0.777
Yes 25 10 1 0.771
Yes 30 15 3 0.775
Yes 100 10 3 0.777

Table 4: EMEA ensemble for Bangla

5.2 EMEA

As discussed earlier, we tried to improve our en-
sembling strategy using entropy minimization. The
results are reported in Table 4. Despite testing
different approaches, no sign of improvement is
present. The testing was conducted on the Bangla
development data set. Our setting differs from the
original authors as we are not using off-the-shelf
language adapters. We probably have too few mod-
els and they are not diverse enough.

6 Conclusion

From our efforts, we conclude that naive ensem-
bling improves accuracy with just four models of
the same architecture trained with different ran-
dom seeds. The ensemble of four models out-
performs the best individual model across all the
tested languages. The E2E ensemble model can
provide good accuracy, but the results vary dras-
tically between runs. Task-adaptive pretraining,
which has in some cases improved accuracy signif-
icantly, yielded only a slight improvement in this
task. We also notice a large difference between
performance in development and test data. With
such limited development data and a large test set,
model selection on solely development data yields
sub-optimal results. More attention should be paid
to model selection and model’s generalizability.

Acknowledgments

We thank the Aalto Science-IT project and CSC -
IT Center for Science, Finland, for providing the
computational resources, that were necessary to
participate in this task. We would like to thank
the shared task organizers for the excellent arrange-
ments. We thank Feiyi Wang for the initial discus-
sion.

1481



References
Alexis Conneau, Kartikay Khandelwal, Naman Goyal,

Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
Cross-lingual Representation Learning at Scale.
CoRR, abs/1911.02116.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Advances in
neural information processing systems, 32.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Besnik Fetahu, Anjie Fang, Oleg Rokhlenko, and
Shervin Malmasi. 2021. Gazetteer Enhanced
Named Entity Recognition for Code-Mixed Web
Queries. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1677–1681.

Suchin Gururangan, Ana Marasović, Swabha
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Abstract 

This paper describes a system that we 
built to participate in the SemEval 2022 
Task 11: MultiCoNER Multilingual 
Complex Named Entity Recognition, 
specifically the track Mono-lingual in 
English. To construct this system, we 
used Pre-trained Language Models 
(PLMs). Especially, the Pre-trained 
Model base on BERT is applied for the 
task of recognizing named entities by 
fine-tuning method. We performed the 
evaluation on two test datasets of the 
shared task: the Practice Phase and the 
Evaluation Phase of the competition. 

1 Introduction 

In natural language processing, Named Entity 
Recognition (NER) is traditionally a funda-
mental task that aims to recognize groups of 
words used to identify people, organizations, 
places, times, etc. in documents. SemEval-
2022 Task 11 focuses on detecting semanti-
cally complex and ambiguous entities (Mal-
masi et al., 2022b). This is a challenging NLP 
task that has not sufficiently received atten-
tion from the research community. In prac-
tice, available named entity recognition mod-
els find it hard to recognize complex named 
entities, such as titles of works 
(movie/book/song/software titles) that are not 
simple nouns (Malmasi et al., 2022b). 

  
Type Description 

Complex 
entities 

Not all entities are proper 
noun 
-Noun phrases: Eternal Sun-
shine of the Spotless Mind 
-Gerunds: Saving private 
Ryan 
-Full clauses: Mr. Smith goes 
to Washington… 

Ambigu-
ous enti-
ties and 
Contexts 

Not always entities 
-Inside out (movie), 
-Bonanza (game) 
-On the Beach (movie)… 

Emerging 
Entities 

New books/songs/movies re-
leased daily, weekly… 

Table 1: SemEval-2022 Task 11 illustrates some 
types of complex and ambiguous entities  

To enable the recognition of such entities, 
we believe that it is necessary to make full use 
of Pre-trained Language Models (PLMs) to in-
crease efficiency as well as reduce training 
time, which is also the method we applied in 
this study.  

2 Related Work 
 

Nowadays, there are many NER works and dif-
ferent approaches to solving this problem, such 
as LSTM (Long Short-Term Memory) (Nut 
Limsopatham and Nigel Collier, 2016), Trans-
formers (Ashish Vaswani et al., 2017). In par-
ticular, the BERT model (Jacob Devlin et al., 
2019). Many relevant studies also approach the 
direction of combining deep learning models and 
adjusting model parameters to improve the effi-
ciency of named entity recognition in the text 
(Zheng Yuan et al., 2021). However, entities 
with complex and ambiguous names appear con-
tinuously in increasing numbers. This has posed 
emerging challenges for the natural language 
processing field. Many research show that clari-
fies that named substance acknowledgement is 
particularly troublesome in circumstances with a 
low context or in scenarios where the named sub-
stances are especially complex (Meng et al., 
2021). The misrecognition of entities with com-
plex and ambiguous names significantly affects 
the performance of natural language processing 
systems (Andreas Hanselowski et al., 2018). In 
this paper, we will use PLMs to find ways to im-
prove accuracy in such cases. 

PLMs are Pre-trained Language Models 
with large datasets to be utilized in specific 
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tasks. In particular, BERT has drawn great at-
tention and it is the favorite research direction 
of the NLP community after achieving state-
of-the-art on 11 NLP tasks (Jacob Devlin et 
al., 2019). Based on BERT, there have been 
many research directions from the NLP re-
search community: distilBERT (Victor Sanh 
et al., 2019), RoBERTa (Yinhan Liu et al., 
2019), and so on. 

3 Data 
 

We will use the training and evaluation Eng-
lish dataset provided at SemEval 2022 Task 
11: MultiCoNER Multilingual Complex 
Named Entity Recognition to conduct the re-
search with 15300 training examples and 800 
validation examples (Malmasi et al,. 2022a).  

Language Train Dev 
BN-Bangla 15,300 800 
DE-German 15,300 800 
EN-English 15,300 800 
ES-Spanish 15,300 800 
FA-Farsi 15,300 800 
HI-Hindi 15,300 800 
KO-Korean 15,300 800 
NL-Dutch 15,300 800 
RU-Russian 15,300 800 
TR-Turkish 15,300 800 
ZH-Chinese 15,300 800 
Total 168,300 8,800 

 
Table 2: Lists the sizes of the datasets 

 
The data will be formatted according to 
CoNLL (Malmasi et al., 2022a) 
 

Text Format 
kingdom B_CW 
hospital I-CW 

, O 
lewiston B-LOC 

from O 
stephen B-PER 

king I-PER 
of O 
the O 

same O 
name O 

 
Table 3: Data Format use in Task 11: Multi-
CoNER Multilingual Complex Named Entity 
Recognition  

For the missions of the competition, we 

will focus on 6 types of entities: 
• PER: Person 
• LOC: Location 
• GRP: Group 
• CORP: Corporation 
• PROD: Product 
• CW: Creative Work 

In total, there are 13 tags: B-PER, I-PER, 
B-LOC, I-LOC, B-GRP, I-GRP,  B-CORP, 
I-CORP,  B-PROD, I- PROD, B-CW, I-CW, 
and O with B is the beginning of a named 
entity, I is all the words inside an entity  and 
all words outside an entity (Malmasi et al., 
2022b) 

4 Methodology 
 

In this paper, we use the Transformer library 
of HuggingFace (Wolf et al.,2020). Currently, 
the HuggingFace library is considered the 
most powerful and widely accepted Pytorch 
interface to deal with BERT. In addition to the 
support for a wide range of pre-trained lan-
guage models, the library also includes pre-
built modifications of BERT tailored to spe-
cific tasks. Then we tested several models 
based on BERT downloaded from Hugging-
face as BERT, RoBERTa, and XML-RoB-
ERTa with different versions.  

4.1 BASE-BERT 
 

BERT is a transformers model pretrained on a 
large corpus of English data in a self-super-
vised fashion (Jacob Devlin et al., 2019). We 
use the most basic version of BERT and are 
downloaded from Huggingface with two ver-
sions which are bert-base-uncased and bert-
large-uncased. 

4.2 RoBERTa 
 

BERT is trained simultaneously with 2 tasks 
called Masked LM (to predict the missing 
word in a sentence) and Next Sentence Predic-
tion (NSP-to predict the next sentence in the 
current sentence). Meanwhile, to enhance the 
training process, instead of using the next sen-
tence prediction mechanism from BERT, 
RoBERTa uses a dynamic masking tech-
nique, thereby the mask tokens will be 
changed during the process. The use of a 
larger batch size shows better performance in 
training (Yinhan Liu et al., 2019), we applied 
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on roberta-base version from Hugging face. 

4.3 XML-RoBERTa 
 
XLM-RoBERTa model pre-trained on 
2.5TB of filtered CommonCrawl data con-
taining 100 languages. It was introduced in 
(Conneau, Alexis et al., 2019). The xlm-rob-
erta-large version we chose to use. 

4.4 Experimental Setup 
 
Resources are required to get started; as a 
large neural network will have to be trained, 
we use Google Colab Pro to make the best use 
of the GPU and TPU resources from this en-
vironment. 

Regarding the hyper-parameter, we have 
inspected many different values around the 
“work well across all tasks” value recom-

mendations (according to Jacob Devlin et al., 
2019) and this is the parameter set that gives 
the best results: Batch size: 64, Learning rate: 
2e-5, Number of epochs: 10, Maximum se-
quence length: 128.  Besides, with the de-
sire to increase the recognition efficiency, we 
try to add a Linear layer and a softmax layer 
on top to recognize the entity, however, it has 
no effect on the results. 

We import BERT's word tokenizer, which 
is used to convert text into tokens correspond-
ing to BERT's vocabulary set. BERT requires 
specifically formatted inputs. For each en-
coded input sentence, we need to generate in-
put ids, segment mask, attention mask, label 

When the input data is correctly formatted, 
there comes the fine-tuning stage of the BERT 

models. For this task, we start with the modi-
fication of the pre-trained BERT model to pro-
vide outputs for the named entity recognition 
task, and then we continue to train the model 
on the dataset until the whole model is corre-
spondent to the task. This is a prominent ad-
vantage of using Huggingface Pytorch library 
which already contains a set of interfaces de-
signed for many NLP tasks.  

To evaluate the model, we will use the 
Macro Precision, Recall, and F1-score in-
dexes. The Precision ratio of the number of 
positive points correctly predicted by the 
model to the total number of points predicted 
by the model is Positive. The Recall is the ratio 
of the number of positive points the model cor-
rectly predicted to the total number of points 
that are actually Positive. F1-score is the har-
monic mean of precision and recall (assuming 
these two quantities are different from 0) 
(Powers, David, 2008) 

𝑚𝑎𝑐𝑟𝑜 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑚𝑎𝑐𝑟𝑜 − 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

𝑚𝑎𝑐𝑟𝑜 − 𝐹1 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

5 Results 
 

This section describes the evaluation results of 
our system with PLMs based on BERT. These 
results are calculated using the script provided 
by SemEval 2022 Task 11: MultiCoNER Mul-
tilingual Complex Named Entity Recognition 
(Malmasi et al., 2022b) 

 
Model PER LOC CW GRP CORP PROD 

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 
base-bert-uncased 0.924 0.959 0.941 0.823 0.893 0.857 0.667 0.761 0.711 0.827 0.879 0.852 0.860 0.798 0.828 0.658 0.864 0.747 

bert-large-uncased 0.959 0.966 0.962 0.852 0.910 0.880 0.743 0.790 0.766 0.848 0.937 0.890 0.904 0.829 0.865 0.706 0.735 0.720 

roberta-large 0.906 0.897 0.901 0.863 0.889 0.876 0.674 0.716 0.694 0.793 0.847 0.819 0.875 0.798 0.835 0.687 0.776 0.728 

xml-roberta-large 0.956 0.976 0.966 0.857 0.893 0.874 0.772 0.830 0.800 0.874 0.911 0.892 0.859 0.819 0.838 0.671 0.789 0.725 

 

Table 4: Summary of the scores of all the models tested with 6 types of entities in this paper use dataset on 
the SemEval 2022 Task 11 (Malmasi et al., 2022a) 

 
Based on the results of table 4, the two 

models bert-large-uncased and xml-roberta-
large are slightly better than the other two 

models in each entity type. In which xml-
roberta-large gives the best results in 3 entity 
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types: PER, CW, GRP, while bert-large-un-
cased is slightly better in two entity types 
LOC, CORP and interestingly base-bert-un-
cased gave the best results in the PROD type. 

According to the results in the table 5, it 
can be observed that testing with the XML-
RoBERTa model (Conneau, Alexis et al., 
2019). with version xml-roberta-large gives 
good results compared to the rest of the 
models when it comes to average perfor-
mance, followed by the bert-large-uncased 
model (Jacob Devlin et al., 2019).  

 
Model Precision Recall F1-score 

base-bert-un-
cased 

0.804 0.869 0.835 

bert-large-
uncased 

0.849 0.876 0.863 

roberta-large 0.812 0.832 0.822 
xml-roberta-
large 

0.845 0.882 0.863 

  
Table 5: Summary of the scores of all the models 
tested with the value of macro average perfor-
mance in this paper on the SemEval 2022 Task 
11 (Malmasi et al., 2022a) 

 
However, in general, the results between 

the models are not much different, so to im-
prove the efficiency of the NER model, in 
addition to using PLMs, it is necessary to 
learn more about other improvement meth-
ods to achieve positive results. When analyz-
ing each measure, the BERT model with the 
bert-large-uncased version gave the highest 
Precision result (0.849), showing that the 
BERT model has the highest accuracy in en-
tity labeling. Among the tested models, xml-
roberta-large gives the best results in 2 
measures: recall and F1-score. Therefore, to 
participate in the Evaluation phase of 
SemEval 2022 Task 11: MultiCoNER Mul-
tilingual Complex Named Entity Recogni-
tion (Malmasi et al., 2022b) we selected the 
model with PLM xml-roberta-large per-
formed on the data set of this phase. with 
data size of 15300 training examples and 
217.818 test examples (Malmasi et al., 
2022a), the result is F1-score of 0.67, details 
as below table 6:  

 
 Precision Recall F1-score 

Type  0.6651 0.677 0.6689 
LOC 0.6401 0.7405 0.6866 
PER 0.8233 0.8729 0.8474 
PROD 0.6092 0.6433 0.6258 
GRP 0.6448 0.6449 0.6448 
CW 0.5508 0.5781 0.5641 
CORP 0.7222 0.5823 0.6448 

Table 6: Results of our system evaluation in da-
taset validation of Evaluation Phase (Malmasi 
et al., 2022a) 

 
In Evaluation Phase, the test dataset in this 

phase is 14 times larger in size than the training 
dataset (217,818 vs 15300 examples), which is 
a big challenge for this year’s competition. 

6 Conclusion 
 
In this paper, we proudly introduced our se-
mantically complex and ambiguous entity 
recognition system. We tested on different 
PLMs to evaluate the effectiveness of entity 
recognition. We trained each model with the 
dataset provided by the contest (Malmasi et al., 
2022a): model BERT with two versions bert-
base-uncased and bert-large-uncased, model 
RoBERTa with roberta-large version and 
model XML-RoBERTa with xml-roberta-
large, and we also tried to fine-tune the hy-
perparameters to increase recognition effi-
ciency, but there were no significant changes. 
The evaluation results in the Practice Phase are 
quite positive. Finally, based on the evaluation 
results, we used the xml-roberta-large model to 
participate in the Evaluation phase of the com-
petition, but the results were not good.  

In future work, we plan to continue testing 
on other PLMs. In addition, we will also ex-
tend the approach by applying deep learning 
techniques and theories of language to im-
prove the accuracy in the task of recognizing 
possible entities, especially complex entities 
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Abstract
This article describes the OPDAI submission to
SemEval-2022 Task 11 on Chinese complex
NER. First, we explore the performance of
model-based approaches and their ensemble,
finding that fine-tuning the pre-trained Chinese
RoBERTa-wwm model with word semantic
representation and contextual gazetteer repre-
sentation performs best among single models.
However, the model-based approach performs
poorly on test data because of low-context and
unseen-entity cases. Then, we extend our sys-
tem into two stages: (1) generating entity can-
didates by using neural model, soft-templates
and Wikipedia lexicon. (2) predicting the fi-
nal entity results within a feature-based rank
model. For the evaluation, our best submission
achieves an F1 score of 0.7954 and attains the
third-best score in the Chinese sub-track.

1 Introduction

Named Entity Recognition (NER)(Yadav and
Bethard, 2019) aims to detecting the boundaries
of named entities and recognizing their cate-
gories(e.g., person or location). It plays an im-
portant role in many downstream tasks, such as
information extraction and question answering.

SemEval-2022 Task 11: Multilingual Complex
Named Entity Recognition(MultiCoNER) (Mal-
masi et al., 2022b) is a shared task which en-
courages participants to develop NER system to
detect semantically ambiguous and complex enti-
ties in short and low-context settings for 11 lan-
guages. Participants can build a NER model that
works only for one language or for all the lan-
guages. And an additional track with code-mixed
data are offered in this task. Different from ordi-
nary NER, this task focuses on complex and unseen
entities. Complex entities, like the titles of creative
works(movie/book/software names) are harder to
recognize. Additional test sets on questions and
short search queries are offered in the test phase,
which contains large proportion of unseen entities.

Our main interest is to build a NER system which
can process complex entities and adapt to other do-
mains in practical scenarios in Chinese language.
This paper describes our two-stage hybrid approach
for Chinese NER. A description of datasets pro-
vided in this shared task and additional datasets
adopted in our system is given in Section 3. The
implementation details of our system are listed in
Section 4. We first experiment with model-based
methods and integrate word semantic feature and
gazetteer feature with neural model to improve in-
ference performance. Further, we extend our model
system to a two-stage prediction system: entity
candidates generation and entity confidence rank-
ing. Confidence ranking is used to pick out high-
confidence entities from candidates. With the help
of Wikipedia lexicon and soft templates for gener-
ating entity candidates, our hybrid system shows
good performance and great domain adaption capa-
bility in the final evaluation phase.

2 Related Work

Our work is mainly related to the pre-trained
language models and some specific strategies for
Chinese NER task.

2.1 Pre-trained language models

Transformer-based Language Models e.g BERT
(Devlin et al., 2018) have demonstrated that
rich, unsupervised pre-training is an integral part
of many natural language processing system.
RoBERTa(Liu et al., 2019) is a BERT-based model
with better performance which bring by different
training strategies including training the model
longer; bigger batches over more data; removing
the next sentence prediction objective; training
on longer sequences; and dynamically changing
the masking pattern applied to the training data.
RoBERTa-wwm (Cui et al., 2021) is a pre-trained
language model which modifies the masked lan-
guage model (MLM) task as a language correction
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manner and mitigates the discrepancy of the pre-
training and fine-tuning stage. It could give signifi-
cant gains in most various Chinese NER task (Yin
et al., 2021).

2.2 Chinese NER

Compared with NER in English, Chinese NER
is more difficult since there are no explicit word
boundaries in sentences. Word-level information
cannot be well modeled. Some approaches resort
to performing Chinese NER directly at character-
level (Sui et al., 2019; Ding et al., 2019) and some
others perform word segmentation first (He and
Sun, 2017). However, incorrect word segmentation
will result in propagation errors in entity detection,
and purely char-based approach will miss the word
information. Pre-trained language models, such as
BERT, can generate contextual embedding which
can outperform other character or word-based ap-
proaches (Hu et al., 2020). More importantly,
BPE subword segmentation method is employed
by BERT-based models and word-level information
is not explicitly modeled. Consequently, some re-
searches introduce lexicon information into neural
models which results in significant improvement
(Ma et al., 2019; Liu et al., 2021). In this task, we
implement similar strategies to integrate discrete
lexicon and neural representation.

3 Data

We experiment using the datasets shared by Mul-
tiCoNER(Malmasi et al., 2022a) on Chinese mono-
lingual track, which consist of 15300 training sen-
tences, 800 validation sentences and 151661 test
sentences. Entities are labeled using BIO scheme,
and six entity types are involved: person(PER),
location(LOC), group(GRP), corporation(CORP),
product(PROD) and creative work(CW).

In order to make our model better adapt to am-
biguous semantics and insufficient context, we built
an entity lexicon from Wikipedia data. We parsed
a Wikidata dump and mapped all the entities to
our NER taxonomy following the rule from Ta-
ble 1. We extracted about 3.8 million entities for
Chinese language which were mapped to the en-
tity types. Wikipedia entities with multiple cate-
gories can be mapped to different entity types in
MultiCoNER. Moreover, pre-trained static word
embeddings (Song et al., 2018), which provides
200-dimension vector representations for over 12
million Chinese words and phrases pre-trained on

MultiCoNER Entity Types Wikidata Entity Types

PER human
fictional human

GRP

music organization
sports organization

newspaper
educational organization

cultural institution

CORP business
enterprise

CW creative work
LOC location

PROD product

Table 1: The entity types mapping between Wikipedia
and MultiCoNER

large-scale high-quality data, are adopted in this
work for integrating the word-level information.

4 Methodology

Our system classifies NER task into two stages:
entity candidates generation and entity confidence
ranking. Based on BERT-based model ensembles,
soft-template methods and Wikipeida lexicon, we
can first generate entity candidates. And then, hand-
crafted features for each entity candidate are ex-
tracted. Finally, a machine learning based rank
model is used for entity confidence rank, the enti-
ties whose confidence score is above the threshold
are regarded as the final predictions. Figure 1 gives
an overview of our hybrid approach.

candidates  generation

neural 
models

soft 
templates

wikipedia 
lexicon

entity confidence ranking

candidates

feature extractor

features

predictions

entity 1  entity n

Figure 1: Overview of our hybrid approach

4.1 Entity Candidates Generation
Three approaches are adopted for entity candi-

dates generation: model-based, template-based and
lexicon-based. BERT-based model ensembles can
achieve named entities recognition, however, its
recall performance significantly decreases when
dealing with low-context or new-entity cases. To
alleviate this effect, soft templates and Wikipedia
lexicon is integrated for candidates recall.
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4.1.1 Model based approach
Figure 2 gives a glimpse of our model architec-

ture, which consists of three layers: encoding layer,
aggregation layer and inference layer. Pre-trained
language models are adopted for sentence encoding
which can grasp contextual information. However,
sentences in Chinese are not naturally segmented,
resulting in difficulties in Chinese NER task. There-
fore, word semantic representation and contextual
gazetteer representation are used in aggregation
module for incorporating word lexicon information
and boundary information into character represen-
tations. For further improvement, model ensemble
methods are tried for prediction.

Pre-trained Model
Encoding 

Aggregation 

Inference

[CLS] TOK1 TOK2 TOK3 ... ... ... [SEP] PAD PAD[CLS]

...

BiLSTM

...

+

+

+

+

+

+

+

+

+

+

...

CRF tagging

word semantic 
representation

contextual gazetteer 
representation

output from encoding

Figure 2: Model Architecture

Encoding: This layer is meant for sequence mod-
eling to capture contextual semantic representation.
BERT-based pre-trained models, such as BERT,
RoBERTa and RoBERTa-wwm, which have been
shown to capture implicit syntactic and semantic
knowledge, are tried here.
Aggregation: This layer focuses on incorporating
word-level information and boundary-dependent
features. We use a BiLSTM neural architecture
to integrate encoding output with word semantic
representation (Ma et al., 2019) and contextual
gazetteer representation (Fetahu et al., 2021). An
example is presented in Figure 3 for feature con-
structions. For each character ci in the input sen-
tence s = c1, c2, ..., cn, three word sets(B/I/E) are
constructed by:

B(ci) = {wi,k,∀wi,k ∈ eL, i < k ≤ n}

I(ci) = {wj,k,∀wi,k ∈ eL, 1 ≤ j < i < k ≤ n}
E(ci) = {wj,k,∀wi,k ∈ eL, 1 ≤ j < i}

Here, eL represents the Wikipedia entity lexicon.
wi,k stands for the span that begins with ci and ends

with ck. The average word embeddings of each
word set are concatenated as a 600-dimension vec-
tor(200 for each word set) is regarded as the final
word semantic representation. Contextual gazetteer
representation for each character is a 13-dimension
binary vector, which is introduced by Meng et al.
(2021) .

游戏
Game

热爱者
enthusiast

热爱
enthusiastic
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B I E B I EB I EB I E B I EB I EB I E

戏
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热
Hot

爱
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游
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者
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易
Ease

网
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(a) word semantic representation

戏
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热
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游
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者
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B-CORP

I-CORP

B-PER

0 0 00 0
0 0 01 0
0 0 00 0

易
Ease

1
1
0

网
Net

1
0
0

I-PER 0 0 00 000
 0 0 00 000
O 0 0 00 000

(b) contextual gazetteer representation

Figure 3: Features introduced in Aggregation Layer

Inference: Sequential conditional random
field(CRF), which can capture the dependency
between successive labels, is used in the inference
layer for final prediction.
Ensemble: Majority voting method is applied to
integrate different model results. In detail, for N
different models, if more than N/2 models consider
a predicted span belongs to the same entity
category, the span is used for final prediction.

4.1.2 Lexicon based approach
An entity lexicon is built from wikidata with cat-

egory mapping rule listed in Table 1. And then Aho-
Corasick algorithm 1 is applied for span extraction.
When predicting, word span in that Wikipedia lexi-
con is extracted as an entity candidate, if that word
span maps to multiple entity categories, multiple
candidates are generated.

4.1.3 Soft-templates based approach
Soft-templates are mined from training data by

a simple statistical strategy. More specifically, we
first replace entities in sentences with entity cate-
gory placeholders, and those replaced frequently
occurring sentences are regarded as soft-templates
without manually labeled. To make improvements,
templates differ only in placeholders are removed.

1https://pyahocorasick.readthedocs.io/
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In the evaluation phase, additional soft-templates
are mined from test data. Different from the pro-
cedures on training data, pseudo entity labels are
generated from model prediction results.

4.2 Entity Confidence Ranking
The following paragraphs describe how we se-

lect high confident ones from entity candidates for
the final predictions. We build a machine learn-
ing model with hand-crafted features to calculate
the confidence score of each entity candidate. The
hand-crafted features consist of 6-dimension lexi-
cal features and 16-dimension statistical features.
An example of features extracted for an entity can-
didate in a sentence is given in figure 4.

entity candidate

她 还 玩 迷 雾 岛之 和 vii .

input sentence

statistical features

concat features

lexical features

lexical features statistical features

IDF

14.94

type 
num

1

max 
linknum

5

min 
linknum

0

normalization  link numberlink number

PER CORP

0 0

LOC

0 0

CW

5

GRP

0 0 0 0

PROD

05 0

PER CORP

0 0

LOC

0

CW

5

GRP

0 0 0 0

PROD

01 0

国 王 秘 使

entity
length

entity
position  

sentence
length

length
 ratio

4 8 14 4 / 14

punctuation feature

0 0

end with start with 

Figure 4: Handcraft Features

A. Lexical Features

• entity length: the length of the entity candidate.
• entity position: the start position of first charac-

ter of entity candidate in the input sentence.
• sentence length: the length of the input sentence.
• length ratio: length ratio between entity candi-

date and the sentence.
• punctuation feature: a two-dimension binary

feature indicating whether there is a punctuation
at the beginning or end of the entity candidate.

B. Statistical Features
These features are extracted from wiki pages,

which can capture entity type information from the
link relationships among wiki entities. Two entities
are thought to have a link relationship if there
is any sitelink in one page which can link to the
other. For each entity candidate ei, the associated
wiki pages P (ei) = {p1, p2, ..., pn} are those who
have the same label name or alias name to ei.
The number of links which redirect to an entity

whose type is etypej in page pt is represented
as linknum(pt, etypej). etypej , j = 0, ..., 5 is
one of the six entity types(e.g. PER,LOC,etc.).
Therefore, the total number of links for ei
are calculated as linknum(ei, etypej) =∑n

t=1 linknum(pt, etypej).

• IDF: inverse document frequency of an entity
candidate is calculated from wiki pages.

• link number: {linknum(ei, etypej), j =
0, 1, ..., 5}, a six-dimension vector, indicating the
number of links in the associated wiki pages of
six entity types separately.

• normalization link number: normalization
value of link number based on entity types,
{ linknum(ei,etypej)∑

j linknum(ei,etypej)
, j = 0, 1, ..., 5}

• maximum link number: maximum value of link
number, max

0≤j≤5
linknum(ei, etypej)

• minimum link number: minimum value of link
number, min

0≤j≤5
linknum(ei, etypej)

• number of link types: the number of entity types
where linknum(ei, etypej) > 0

Then, we adopt LightGBM (Ke et al., 2017) as
the multi-label classifier, which is a gradient boost-
ing tree model and performs well on unbalanced
classification tasks. For an entity candidate, the
confidence on its entity type is calculated by this
classifier. If the confidence score is greater than the
threshold, ei is used for the final prediction.

5 Experiments and Results

5.1 Experiment Setup
Our implementation is based on a powerful NLP

framework Flair(Akbik et al., 2019), and the Trans-
formers library by HuggingFace(Wolf et al., 2019)
for the pre-trained models and corresponding tok-
enizers.

We first experiment on development dataset with
different encoding and aggregation strategies, and
we later do an ensemble of these models. During
training, the data is processed by batches of size
32 and the maximum length of each sentence is set
to 256. In all experiments, we use AdamW opti-
mizer with learning rate set to 2e-5 and train our
models for a maximum of 30 epochs. Then, we im-
plement LightGBM for entity confidence ranking
with learning rate set to 5e-2, maximum number of
leaves set to 50, max-depth set to 6. For the evalua-
tion phase, we mix train and development data and
split it randomly for 10-fold cross validation.
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Model Dev
P

Dev
R

Dev
F1

BERT 0.824 0.840 0.832
RoBERTa 0.850 0.837 0.842
RoBERTa-wwm 0.851 0.846 0.847
RoBERTa-wwm-large (I) 0.856 0.860 0.858

+ WE (II) 0.854 0.863 0.859
+ GZ (III) 0.887 0.842 0.859

+ WE + GZ(IV) 0.867 0.858 0.861
Ensemble (V) 0.913 0.853 0.875

Table 2: Best results achieved by each model on dev
dataset, WE and GZ are the shorthand of word semantic
representation and gazetteer representation separately

Methods Dev
P

Dev
R

Dev
F1

Ensemble(V) 0.913 0.853 0.875
Lexicon + LightGBM 0.842 0.779 0.810

Lexicon + V + LightGBM 0.904 0.881 0.890

Table 3: Hybrid results on dev dataset

5.2 Neural Model Results

Table 2 shows the performance of different mod-
els and their ensemble approach. The experimen-
tal results show that RoBERTa with whole word
mask(RoBERTa-wwm) can outperform others in
this Chinese language task. The first four rows
show the performance of pre-trained Chinese lan-
guage models. Model I to IV represent different
aggregation strategies: no feature introduced, word
semantic feature(WE for short) only, gazetteer fea-
ture(GZ for short) only, combination of word se-
mantic representation and gazetteer feature repre-
sentation. We find that the pre-trained model with
WE introduced can achieve higher recall and with
GZ introduced can achieve higher precision. The
last row gives us the results of an ensemble(V)
of model I to IV. Model ensemble results in an
improvement of about 0.6% on macro-F1 score,
indicating that predictions of model I to IV have
good complementarity.

5.3 Hybrid Approach Results

Table 3 shows the results of the hybrid approach
on dev dataset. We can find that the recall value of
model ensemble(V) is far less than precision from
the first row. By integrating lexicon-based and en-
semble model-based results for entity candidates
generation, and adopting LightGBM for entity con-
fidence ranking, the recall value improves more
than 3% and the macro-F1 increases by 1.4%.

The results of hybrid approaches on test dataset
are given in Table 4. We can find that with lexicon-

Methods Test
P

Test
R

Test
F1

Ensemble(V) 0.710 0.673 0.678
Lexicon + LightGBM 0.484 0.858 0.359

Lexicon + V + LightGBM 0.786 0.806 0.786
+ soft-template(Hybrid) 0.805 0.794 0.795

Table 4: Results of different approaches on test

Methods LOWNER
F1

Orcas
F1

MSQ
F1

Ensemble(V) 0.854 0.582 0.683
Hybrid 0.852 0.747 0.822

Table 5: Results of different domains on test

based entity candidates generation, the recall im-
proves a lot. By integrating lexicon, model V with
a LightGBM confidence ranking model, the F1
score increases more than 10%. To make further
improvements, soft templates are used for addi-
tional candidates generation, which helps gain an
improvement of 0.9% on F1 socre.

To further analyze the differences and respective
advantages of different approaches, detail results
of different domains are listed in Table 5. For the
ensemble model V, when compared to LOWNER
results, the results for MSQ and ORCAS are worse.
This large gap shows that the existing model ap-
proach cannot generalize well.

6 Conclusion

In this paper, we introduce a hybrid approach
for Chinese NER, which contains two stages: en-
tity candidates generation and confidence ranking.
We find that integrating word semantic representa-
tion and gazetteer representation can improve the
performance of neural model-based approach. In
particular, our ensemble model of different aggre-
gation strategies performs better. However, due
to the limitation of training data, the performance
of neural model-based approach drops sharply in
other new domains.

Considering that there are new entities and other
domain sentences in test sets, we can use Wikipeida
lexicon and soft templates to help recall unseen
entities, and an entity confidence ranking model
is built which results in significant improvement
on test sets. For future work, semi-supervised ap-
proaches or data augmentation methods could be
explored to alleviate the limitation of training data.
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Abstract

Massively multilingual language models
(MMLMs) have become a widely-used
language representation method, and multiple
large MMLMs were proposed in recent years.
A trend is to train MMLMs on larger text
corpora or with more layers. In this paper we
set out to evaluate recent popular MMLMs
on detecting semantically ambiguous and
complex named entities with an academic
GPU budget. Our submission of a single
model for 11 languages on the SemEval
Task 11 MultiCoNER shows that a fine-tuned
XLM-Rlarge outperforms the more recent
RemBERT, ranking 9th from 26 submissions
in the multilingual track. Compared to Rem-
BERT, the XLM-R model has the additional
advantage to fit on a slice of a multi-instance
GPU. As contrary to expectations and recent
findings, we found RemBERT to not be the
best MMLM, we further set out to investigate
this discrepancy with additional experiments
on multilingual Wikipedia NER data. While
we expected RemBERT to have an edge on
that dataset as it is closer to its pre-training
data, surprisingly, our results show that this is
not the case.

1 Introduction

Pre-trained language models have revolutionized
the field of Natural Language Processing (NLP) in
recent years (Peters et al., 2018; Devlin et al., 2019;
Zhuang et al., 2021). Especially for cross-lingual
transfer learning or creating a single multilingual
model, pre-trained massively multilingual language
models (MMLMs) have become a de-facto stan-
dard (Conneau et al., 2020; Chung et al., 2021).

MMLMs such as BERT and XLM-R share the
same underlying idea: multilingual representations
are obtained by learning from large text collections
in multiple languages and are trained using a lan-
guage modeling objective. MMLMs, in contrast
to alternative cross-lingual transfer strategies, thus

do not rely on explicit alignment via parallel data
and explicit transfer via translations with e.g. anno-
tation projection. MMLMs, together with the pre-
training and fine-tuning paradigm, have enabled
impressive results (Conneau et al., 2020; Lauscher
et al., 2020; Müller-Eberstein et al., 2021).

This paper describes our submission to Task 11
on Multilingual Complex Named Entity Recogni-
tion (MultiCoNER) (Malmasi et al., 2022b,a). We
evaluate several recent MMLMs in a fine-tuning
regime to answer the following main research ques-
tion (RQ1): To what extent are more recent larger
LMs outperforming earlier MMLMs for the task of
multilingual complex NER? To do so, we test four
MMLMs (mBERT, XLM-R base and large and the
most recently proposed RemBERT). As other NER
datasets exists, albeit with different labels, we fur-
ther explore multi-task learning (RQ2): To what
extent can we improve upon MultiCoNER by using
cross-lingual cross-domain NER data as auxiliary
data? Finally, as the MMLMs were pre-trained on
different kinds of data, we include experiments on
a second NER dataset, to answer RQ3: To what
extent does RemBERT outperform XLM-R when
the pre-training data is a closer match?

Our contributions are:

• We train a single multilingual model on Mul-
tiCoNER, which to our knowledge, is the
largest multilingual NER evaluation campaign
to date in terms of manually-annotated multi-
lingual training data availability. We compare
four MMLMs for the task and examine task
performance and GPU budget (here: 20gb).

• Surprisingly, we find that RemBERT does not
work well. To shed more light on this, we run
additional experiments on a NER benchmark
which is closer to RemBERT’s pre-training
data and prior work. Overall we find XLM-
Rlarge to provide the best performance and a
good space/training-time trade-off.
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Model Model Name Language Variety Languages Vocab H_dim Layers Params

mBERT bert-base-multilingual-cased Wikipedia 104 120k 768 12 110M
XLM-Rbase xlm-roberta-base CommonCrawl 100 250k 768 12 270M
XLM-Rlarge xlm-roberta-large CommonCrawl 100 250k 1024 24 550M
RemBERT google/rembert CommonCrawl+Wikipedia 110 250k 1152 32 559M

Table 1: Overview of pre-trained massively multilingual language models (MMLMs) used in this work. All 12
languages used in MultiCoNer are part of the pre-training data of all MMLMs.

2 Experimental Setup

This section describes the model, all data sets and
the multilingual language models used in this work.

2.1 Transformer-CRF

We use a transformer-CRF model for NER, imple-
mented in the MaChAmp toolkit (van der Goot
et al., 2021) (v0.3 beta). The toolkit enables easy
exchange of pre-trained LM for fine-tuning as well
as multi-task learning. Our model is a single
MMLM fine-tuned with a single CRF decoder.

To train MaChAmp, we use the proposed default
parameters (van der Goot et al., 2021), which have
shown to work well across tasks with a learning
rate of lr = 0.0001. We train the model for 20
epochs and select the best checkpoint using the
provided dev data (multi_dev).

2.2 MMLMs

As our main RQ is to test the effect of using dif-
ferent pre-trained massively multilingual language
models, we opted for four well-known variants:
multilingual BERT (Devlin et al., 2019), XLM-R
with both the base (XLM-Rb) and large (XLM-Rl)
version (Conneau et al., 2020), and the more re-
cently introduced RemBERT (Chung et al., 2021).

An overview of the MMLMs is provided in Ta-
ble 1, and summarized as follows:

• mBERT: trained using both Masked-
Language Model (MLM) and next-sentence
prediction tasks on Wikipedia data and trained
with an exponentially decaying smoothing
distribution over languages with α = 0.7, i.e.,
to down-scale high-resource languages and
up-scale lower-resource languages; 12 layers.

• XLM-R: trained using only MLM on Com-
monCrawl data and trained with an exponen-
tially decaying smoothing distribution with
α = 0.3 (more aggressive smoothing); with
12 (base) or 24 (large) layers.

• RemBERT: trained using only MLM1 on
Wikipedia and CommonCrawl data, with an
exponentially decaying smoothing distribu-
tion α = 0.5; trained with decoupled input
and output embeddings and parameters re-
distributed over 32 layers.

We observe that the MMLMs are trained on 100,
104 and 110 languages, where RemBERT is the
MMLM with the largest amount of language cov-
erage (110). We note that for MultiCoNER, all 11
target languages are included in the the pre-training
material of all four MMLMs. What differs amongst
others is the vocabulary size, the number of layers,
the pre-training method, the pre-training data and
the number of parameters. XLMlarge and Rem-
BERT are closest in terms of total number of pa-
rameters, with RemBERT having an additional 9M
parameters over XLM-Rlarge; mBERT and XLM-
Rbase are a fifth and half of the number of param-
eters, respectively. What stands out is the type of
pre-training data, as the language variety that these
MMLMs were trained on differs. While the ones
created by researchers at Google opted mainly for
Wikipedia data (mBERT, RemBERT), the XLM-R
models from FAIR research are trained on a cleaned
CommonCrawl dump (Wenzek et al., 2020).

2.3 MultiCoNER Data

The training dataset provided by MultiCoNER or-
ganizers is one of the largest and most diverse mul-
tilingual NER datasets available to date in terms of
training/dev/test sizes and language/domain cover-
age (presumably manually annotated).2

In contrast, the Panx (WikiAnn) dataset (Pan
et al., 2017; Rahimi et al., 2019) covers a much
larger span of languages (over 200) but its cover-
age is limited to Wikipedia data, and it contains
fewer entity types and semi-automatic annotation.
Moreover, MultiCoNER is set up for complex NER,

1shorturl.at/pwyFQ
2At the time of writing this system paper we did not have

further information on how the data was annotated.
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Multilingual Train dev test

sentences 168.3k 8,800 472k
token 2,752,814 144,641 4,565,160
word types 360,679 47,570 556,102
type/token 0.13 0.33 0.12
entities 237,212 12,513 n/a

PER 43,953 2,342 n/a
PROD 25,001 1,848 n/a
CORP 32,890 1,738 n/a
CW 38,373 2,015 n/a
LOC 54,030 2,932 n/a
GRP 32,846 1,638 n/a

Table 2: Overview of the MultiCoNER dataset. Every
sentence in train and dev contains at least one entity.

which include further challenges such as detecting
named entities on search queries and code-mixed
data (Meng et al., 2021; Fetahu et al., 2021). Mul-
tiCoNER contains 6 entity types (person, location,
product, corporation, groups but also complex enti-
ties) for the following 11 languages: English (en),
Spanish (es), Dutch (nl), Russian (ru), Turkish (tr),
Korean (ko), Persian/Farsi (fa), German (de), Chi-
nese (zh), Hindi (hi), and Bangla (bn). While we
focus on the multilingual track, and the data pro-
vided for it (multi), the shared task further fea-
tures monolingual tracks and a code-mixed track
containing data of some of these languages.

Table 2 provides an overview of the Multi-
CoNER multilingual data. It is a very large training
set of 168.3k sentences, 2.7M tokens and over 237k
entities spanning 11 languages. Table 6 in Table 2
shows the size of the dev and test portions (note the
very large test data with 472k sentences) and the
distribution over the 6 entity types in the training
and dev data. Location (LOC) and person names
(PER) constitutes the largest portion of entities, fol-
lowed by CW, corporate names (CORP) and group
names (GRP) and the least frequent entity type is
product names (PROD). The appendix lists sizes
of individual language test files.

2.4 Auxiliary or Matching Data?

For RQ2, we use a multi-task learning setup, and
model the MultiCoNER task as the main task with
a CRF output decoder, and add a second CRF-
decoder that predicts NER types from the union of
three cross-lingual cross-domain datasets. In partic-
ular, we use German data (Benikova et al., 2014),

Model micro F1 train h GPU m fits?

lr = 0.00001

mBERT 81.31 4h20 8gb !

RemBERT 83.89 7h40 27gb %

lr = 0.0001

RemBERT 85.03 7h30 21gb %

XLM-Rb 83.89 7h13 10gb !

XLM-Rl 86.32 10h30 16gb !

RemBERT+aux 85.00 9h30 23gb %

XLMl+aux 85.89 11h30 19gb !

Table 3: Result of training the transformer-CRF with
different MMLMs on the multilingual development set.
Training time (in hours), GPU max memory usage (ap-
proximate) and whether the training fits a single slice of
a A100 GPU (the GPU was partitioned into two 20gb
slices using NVIDIA’s mig mode). XLMl takes more
time but less memory, which enables parallel training
of two XLMl models on a single sliced GPU.

and two recently proposed derivatives annotated
on top of Danish (Plank et al., 2020) and EWT-
NNER on top of the English Web Treebank (Plank,
2021). While all three data sources were annotated
for nested NERs (a two-level annotation scheme,
which annotates e.g., a location for “Birmingham"
inside “University of Birmingham"), we here use
only their inner layer entities. In addition, these
data contain slightly different entity types with
finer-grained subsets: location, person, organiza-
tion and miscellaneous entities with two additional
suffixes that add derivations (e.g., adjectival forms
like “Brasilian" and partial NERs like “Nintendo-
based"). The total auxiliary training data (we take
the union of English, Danish and German data) con-
sists of a total of 21.4k sentences (roughly 8% of
the MultiCoNER main task data) with 42.6k entity
annotations. We train the multi-task model jointly
by full-parameter sharing, no loss weighting and
selecting the best checkpoint using the sum over
both main and auxiliary task development span-F1.

For RQ3, we compare the two best MMLMs on
a NER benchmark derived from Wikipedia (Pan
et al., 2017) (WikiAnn/Panx). We follow the setup
of Lauscher et al. (2020) and use 12 languages:
Indian (in), English (en), Arabic (ar), Finnish (fi),
Hindi (hi), Japanese (ja), Russian (ru), Turkish (tr),
Basque (eu), Hebrew (he), Italian (it), Korean (ko),
Swedish (sv) and Chinese (zh), which use the same
splits as RemBERT (Chung et al., 2021), which
were provided by Rahimi et al. (2019).
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2.5 NER evaluation: macro-F1 vs micro-F1

For evaluation and model selection, we use the
CoNLL span-F1 which is a micro-F1 over span-
based entity F1 scores. We note that some earlier
work report Accuracy, which can be misleading for
NER due to the high number of non-entity tokens
typical for the task. The MultiCoNER organizers
opted for span-based macro F1. While both micro
and macro F1 consider entities correct only if both
the entity boundaries and the labels match, the Mul-
tiCoNER macro entity-based F1 is typically lower
and hence a more conservative measure, particu-
larly when entity types are unbalanced, which is
the case for MultiCoNER. Hence, we adapted a
Python-version of the Conlleval scorer to include
macro-F1.3 We report macro-F1 for the aggregated
evaluation measures.

3 Results

Table 3 provides the main results of a single model
trained on the MultiCoNER multi_train data
and evaluated on the multi_dev portion.

Bigger is not always better From the MMLM
comparison in Table 3 we first observe that mBERT
is outperformed substantially by more recent
MMLMs. As expected, XLM-Rl outperforms
XLM-Rb. However, regarding RQ1 our results
show that bigger is not always better: XLM-Rl

outperforms the more recent and even larger Rem-
BERT model. Surprisingly, this is consistently the
case over all target languages.

XLM-Rl is more space efficient While XLM-Rl

is the best MMLM in terms of F1 on multilingual
complex NER, for an academic GPU budget XLM-
Rl is also more efficient: it still just fits a single
20gb GPU slice (NVIDIA A100 40GB GPU split
into two slices), at a cost of slightly longer training
duration. This means we can fine-tune 2 XLM-R
large models in parallel, while only one RemBERT.
Further details are given in Table 3.

Test set results Table 4 provides the re-
sults on the MultiCoNER test set (last column,
multi_test). The results confirm the findings
from dev: XLM-Rl results in the best model, and
substantially outperforms RemBERT. This model
ranks 9th in the multilingual track out of 26 par-
ticipating systems. The auxiliary task (RQ2) fails

3Available at https://github.com/bplank/
conlleval

to provide additional signal, which we hypothesize
might be due to the high-resource setup (already a
high amount of training data exists), but this would
need further investigation. While multi_test
already contains test data from all 11 languages,
the shared task provides further monolingual (and
code-mixed) test sets, which is not equal to the sum
in multi_test. We submitted runs of the best
models on these individual test sets which confirm
that XLM-Rl remains the strongest MMLM for
NER on MultiCoNER.

4 Discussion

In this section, we provide a deeper analysis of
our results, adding an additional experiment on
data outside of the shared task. First, we exam-
ine the per-class F1 score on MultiCoNER, to rule
out that the strong results of XLM-Rl are purely
due to strong results on a few frequent entity types.
Second, we compare RemBERT vs XLM-Rl on
a Wikipedia NER dataset to answer RQ3. Previ-
ous findings suggest that RemBERT is a stronger
model for multilingual NER (Chung et al., 2021)
by testing it on on Wikipedia data, which is also
closer to its pre-training data. So we test whether
this is the case with our model as well.

Test set results per entity Figure 1 provides a
breakdown of the three best models, showing the
per-class F1 scores for RemBERT, XLM-Rl and
XLM-Rl+aux. The results show that XLM-Rl out-
performs RemBERT over all six entity classes, and
that the multi-task setup consistently hurts over all
entity types.

Figure 1: Per-class F1 score on the multilingual test set.

Bigger and better because of better pre-training
match? Contrary to our findings, previous work
suggests that RemBERT outperforms XLM-R on
NER (Chung et al., 2021). We hypothesize that this
is not the case on MultiCoNER due to the more
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macro-F1 bn de en es fa hi ko nl ru tr zh mix multi

RemBERT 57.14 77.94 73.39 73.62 61.49 60.77 64.59 76.24 70.99 64.97 62.46 70.99 67.61
RemBERT+aux 58.06 77.19 73.27 73.48 62.39 60.09 65.03 75.55 71.10 65.42 62.61 70.79 67.66
XLM-Rl 63.05 78.90 74.54 75.11 68.66 67.00 70.66 77.66 73.73 68.77 65.21 72.74 71.07

Table 4: Results on the test set. XLMl is the model that achieved the 9th rank in the multilingual track. Evaluation
of this model on all single language and the code-mixed test set included for completeness.

diverse data. A manual inspection reveals that the
MulitCoNER data includes both Wikipedia-style
data, but also questions without question symbols
and short search queries. Therefore, we investigate
whether RemBERT instead outperforms XLM-R
on a Wikipedia NER benchmark, which matches
RemBERT’s pre-training data better, cf. Table 1.

EN ZH TR RU AR HI EU
RB 86.2 82.4 94.1 90.9 90.7 90.7 92.9
XLM 85.9 83.0 93.9 91.3 91.5 92.2 93.2

FI HE IT JA KO SV avg
RB 92.0 89.5 93.2 76.6 89.6 95.6 89.5
XLM 92.5 90.3 93.1 77.9 90.9 95.9 90.1

Table 5: RemBERT (RB) vs XLM-Rl (XLM) on
Wikipedia/Panx. Except for EN, TR and IT, XLM-R out-
performs RB. Macro-averaged span micro F1 of 90.1.

Table 5 show the results on 13 languages (aver-
aged over 3 runs). The results show that RemBERT
has a slight advantage on 3 out of the 13 languages
(EN, TR, IT), but overall and on 9 out of the 13 lan-
guages XLM-Rl performs substantially better. This
additional experiment surprisingly dis-confirms our
hypothesis that RemBERT would have an advan-
tage on this Wikipedia/Panx NER data due to the
better pre-training data match. While this is in con-
trast to previous findings on Panx (Chung et al.,
2021), the reason is less clear. We studied the lit-
erature and found a study on another task (quality
estimation) that similarly reports negative results:
replacing the XLM-R decoder with a RemBERT de-
coder performs better only for 1 language pair out
of 4 in quality estimation (Treviso et al., 2021). We
conclude that XLM-Rl remains the best MMLM
for multlingual NER, as tested across two bench-
marks (MultiCoNER and WikiAnn).

5 Limitations

We provided a study on four MMLMs for
transformer-based multilingual complex NER to
shed lights on MMLMs and GPU usage. Our study
is limited in number of MMLMs tested, and the fact

that we provide only approximate GPU memory
consumption figures.

6 Conclusions

We test four massively multlingual language mod-
els as encoders for multilingual complex NER. Our
results show that XLM-Rl results in the overall best
model, and surprisingly outperforms the more re-
cently proposed RemBERT, also in terms of GPU
memory consumption. While auxiliary-task train-
ing did not further prove promising, we additionally
studied the discrepancy between RemBERT and
XLM-R on a second benchmark (PANX/WikiAnn
data). While we hypothesized that RemBERT
would outperform XLM-R, our results show that
this is not the case. Overall, a bigger model might
not be the best choice, especially not for an aca-
demic GPU budget.

Code, scripts and shared task prediction files
(labels only) available at: https://github.
com/bplank/multiconer2022
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A Data statistics MultiCoNER

Lang Sentences/entities
dev test

ba 800/800 133,119/-
de 800/1,239 217,824/-
en 800/1,230 217,818/-
es 800/1,176 217,887/-
fa 800/1,213 165,702/-
hi 800/828 141,565/-
ko 800/1,302 178,249/-
nl 800/1,157 217,337/-
ru 800/1,042 217,501/-
tr 800/1,245 136,935/-
zh 800/1,281 151,661/-

multi 8,800/12,513 471,911/-

Table 6: Data statistics of dev/test of MultiCoNER.
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Abstract

In low-resource languages, the amount of train-
ing data is limited. Hence, the model has to
perform well in unseen sentences and syntax on
which the model has not trained. We propose a
method that addresses the problem through an
encoder and an ensemble of language models.
A language-specific language model performed
poorly when compared to a multilingual lan-
guage model. So, the multilingual language
model checkpoint is fine-tuned to a specific lan-
guage. A novel approach of one hot encoder
is introduced between the model outputs and
the CRF to combine the results in an ensemble
format. Our team, Infrrd.ai, competed in the
MultiCoNER competition. The results are en-
couraging where the team is positioned within
the top 10 positions. There is less than a 4%
percent difference from the third position in
most of the tracks that we participated in. The
proposed method shows that the ensemble of
models with a multilingual language model as
the base with the help of an encoder performs
better than a single language-specific model.

1 Introduction

In conll-2003 (Sang and De Meulder, 2003), a
shared task was conducted to identify the named
entities such as person (PER), location (LOC), orga-
nization (ORG), and miscellaneous (MISC). Over
a period of time, there was an improvement in the
developed systems (Marrero et al., 2009) which
resulted in an improved performance that resulted
in an increased number of entities. The named en-
tities which needed to be identified and extracted
were now six. They are person (PER), location
(LOC), organization (ORG), group (GRP), prod-
uct (PROD), and creative work (CW). Some of
these named entities are created by coining a new
word that may be non-existent or a combination
of existing words in the entire corpus of words in
a language. People are most likely interested in
coining a new term from the list of words to have

an identity tag of a location, an event, or similar
concepts. The newly coined words become novel
or emerging entities in the list of entities (Derczyn-
ski et al., 2017). These words form a most part
of ambiguous words, where the word belongs to a
particular entity or not, and is difficult to judge. For
example, Microsoft is an organization, Windows
is a product, and Microsoft Windows is a software
product. Apart from this, creating a non-existent
word as an entity is an expression of the creativity
of the creator which belongs to the creative word
entities. A competition was conducted in WNUT
2017 to identify the novel and emerging entities
that look for unseen entities as described earlier
(Derczynski et al., 2017). These types of entities
are complex enough that even a person may miss
the context of the entity and represent them differ-
ently.

The MultiCoNER competition brings in the ad-
ditional dimension of complexity of low resources
(Malmasi et al., 2022a,b). In a low resource lan-
guage, the amount of training data available is lim-
ited within which the model has to learn to dis-
criminate between the entities and identify them
correctly. The model is exposed in this scenario
to understand the unseen word that was not part
of the training data and doesn’t have annotated in-
formation to predict. Hence, the development of a
model to examine the competition test data is more
challenging than ever.

Our contributions and observations are summa-
rized as follows:

• We explore various word-level data augmen-
tation strategies such as LwTR, SR, MR,
SiS, and bert-based token augmentation to
improve the dataset size when training the
transformer-based sequence labeling models.
It is shown that the data augmentation in-
creases the model generalization on the test
set.
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• Performing transfer learning using a multi-
lingual sequence labeling model as an initial-
izer improves the performance on language-
specific tracks.

• Introduced the ensemble learning model, ‘En-
sembleCRF,’ that solves the IOB scheme con-
straint when using majority voting. By learn-
ing to optimally combine the model predic-
tions, EnsembleCRF also learns to avoid mis-
takes made by single sequence labeling mod-
els.

2 Related Work

The transformer-based language models fared bet-
ter in the identification and extraction of entities
from a given text. Since there is a necessity for
a large amount of training data which provides
a much-needed boost in accuracy. Sometimes, a
model trained on a huge data in one or more lan-
guages is used in another or different language.
These types of models are commonly known as
cross-lingual language model (Conneau and Lam-
ple, 2019) or multilingual language model (Con-
neau et al., 2019). A fine-tuned language model
has a better performance compared to a multilin-
gual language model. But, the multilingual lan-
guage model is more adaptable across different
languages, which is not available for a fine-tuned
language model. The researchers started explor-
ing the amount of data required to train a language
model. In some cases, the amount of data available
in a language with annotation is very limited. These
languages are termed low-resource languages. Due
to this limitation, the model may not be aware
of the complete set of words in the low-resource
languages. Here, we are exploring to understand
the performance of a transformer-based language
model in low-resource constraints. The challenges
involved in recognizing complex entities in low-
resource environments (Meng et al., 2021; Fetahu
et al., 2021) have led to the creation of the compe-
tition data (Malmasi et al., 2022a,b).

In low-resource scenarios, different approaches
have been adapted to overcome the constraints. The
available fine-tuned transformer-based model such
as BERT is bootstrapped to improve the accuracy
of NER (Yu et al., 2020). A prompt-guided atten-
tion layer is used as part of a transformer model by
creating a semantic-aware answer space for tuning
the model for further betterment (Chen et al., 2021).
Sentence reconstruction approach to enhance low

resource sequence tagging by utilizing the knowl-
edge of high resource data (Perl et al., 2020). A
common approach used on low resource languages
is to use cross-lingual transfer learning, where a
model trained on high resource language is used as
the reference. An active learning mechanism was
used to improve the performance of NER (Chaud-
hary et al., 2019). A teacher-student knowledge
transfer model technique has shown to give effec-
tive results on low resource NER tasks (Izsak et al.,
2019). An unsupervised cross-language transfer
learning method where the encoders trained on the
source and target language together using adver-
sarial learning followed by augmented fine-tuning
technique (Bari et al., 2020).

3 Methodology

Individual pre-trained models were used to evaluate
the training and the dev set. Based on the empirical
results, we decided to train a baseline language
with multiple languages for 20 epochs and then
perform transfer learning to train the monolingual
models.

3.1 Main architecture

The training set with the following split, 151470
train + 8800 dev + 16830 test sentences, is to-
kenized and fed to the model xlm-roberta-large
to generate the baseline multilingual checkpoint.
The embeddings of the transformer model are then
passed through the dropout layers. We have three
types of dropouts in the mix as shown in Figure
1. The standard dropout with the probability of
0.3, the word dropout with the probability of 0.05,
and finally the locked dropout with the probability
of 0.5 were used. These embeddings are then lin-
early reprojected into a vector of size 1024. The
reprojected vector is passed through a BiLSTM
layer with 256 nodes, which generates a vector of
size 512. This output vector is then passed through
a CRF layer to generate the class label with IOB
sequence tags.

The model is trained for 20 epochs to obtain the
starting checkpoint for all the monolingual models.
The performance of the monolingual models got a
significant boost with cross-language training. We
tried to train the last, the last two, the last three, and
the last four layers of the transformer but did not get
a significant boost while training more layers, so
for the final step of training, we resorted to training
the last layer of the transformer.
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Figure 1: The architecture of the multilingual model was
developed to train the training set of the competition
data.

The generated baseline multilingual checkpoint
is loaded and fed with the augmented dataset for
each monolingual task to obtain the respective lan-
guage models. We have used different augmenta-
tion techniques described in the Training and Eval-
uation section. All the sentences provided by the
competition organizers were used to generate the
augmented data.

3.2 Ensemble architecture

A simple ensemble strategy of Majority Voting is
developed. Given a set of M sequence labeling
models denoted as C = {c1, c2, ..., cM} and an
input sentence denoted as S = {w1, w2, ..., wn},
where eachw is a word from S. Each model fromC
will output a sequence of predictions for each word
w in sentence S. Let Os

ci = {Oci
w1
, Oci

w2
, ..., Oci

wn
}

denote the prediction output of model Ci on sen-
tence S. Oci

wj
denotes the prediction of model Ci

on word wj in IOB format. The set of outputs for
all models in C on sentence S will be denoted as

OS = {Os
c1 , O

s
c2 , ..., O

s
cM
} (1)

The Majority Voting strategy takes all model’s
predictions of word wj and outputs the most fre-

Figure 2: The architecture of EnsembleCRF model.
Given a sentence as input, each of the sequence labeling
models will output the name entity prediction in IOB
format. One hot encoder combines them to generate en-
semble output from a Conditional Random Field model.

quent prediction as to the final prediction for wj .
An obvious issue with Majority Voting is the IOB
scheme constraint. The final ensemble result is not
guaranteed to be passing all the constraints where
(I) tag must follow and (B) tag and the entity of
neighbor (B) and (I) tag must be the same. We
introduce an ensemble learning approach via se-
quence labeling called ‘EnsembleCRF’ as shown
in Figure 2.

The model outputs are stacked together and
passed through a one-hot encoder, three linear lay-
ers, and CRF. The CRF layer is trained to optimally
combine the model predictions to form a new set
of predictions. The addition of the three linear lay-
ers helped in the performance improvement. The
EnsembleCRF model is of the form

Cen = EnsembleCRF (C = {c1, c2, ..., cM},
Den = {X,Y })

(2)
Den is the ensemble learning dataset composed

of X and Y . X = {Os1 , Os2 , ..., Osk} is created
by using model set C and set of input sentences
{S} = {S1, S2, ..., Sk} with size K. Each element
of X is defined as equation (1). Y is the ground
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Table 1: The language models used for different languages with the strategies adapted and the hyperparameters used
for training the model. The last column shows the macro-averaged F1 score on the competition test set.

Model Language BiLSTM CRF Transfer External Aug. Train Learning F1-
No Model Learning Dataset Data with Dev Rate score

English
1 roberta-large Y Y N N Y N 3e-3 0.7072
2 roberta-large Y Y N N Y Y 3e-3 0.715
3 xlm-roberta-large Y Y Y N Y N 1e-3 0.739
4 xlm-roberta-large Y Y Y Y Y Y 3e-3 0.7273

Spanish
1 xlm-roberta-large + flair-es Y Y N N N N 1e-3 0.6031
2 xlm-roberta-large Y Y N N N N 3e-3 0.6505
3 mbert-uncased Y N N N N N 3e-3 0.6724
4 xlm-roberta-large Y Y Y N Ya Y 3e-3 0.738

Dutch
1 dutchembedding + Y Y Y N N N 3e-3 0.7603

xlm-roberta-base
2 xlm-roberta-large Y Y Y N N Y 3e-3 0.7603
3 xlm-roberta-base Y Y Y N Y Y 3e-3 0.7246

Korean
1 xlm-roberta-base N N N N N N 3e-3 0.6315
2 xlm-roberta-base Y Y N N N N 3e-3 0.6481
3 xlm-roberta-base Y Y Y N Y N 3e-3 0.6407
4 xlm-roberta-large Y Y Y N N Y 3e-3 0.6729
5 xlm-roberta-large Y Y Y N Y Y 3e-3 0.6688

German
1 germanembedding + Y Y Y N N N 3e-3 0.7683

xlm-roberta-base
2 xlm-roberta-large Y Y Y N N Y 3e-3 0.7446
3 xlm-roberta-base Y Y Y N Y Y 3e-3 0.7402

aadditionally translated sentences are used

truth entity label in IOB format. During the train-
ing phase for some models in set C, we included
both provided training and dev datasets. Thus, we
choose to perform the ensemble learning using an
augmented dev set created using the data augmen-
tation strategies explained in Section 4. Since the
second layer classifier is a CRF layer, we solved
the problem of breaking the IOB constraints. By
learning to optimally combine the model predic-
tions, EnsembleCRF also learns to avoid mistakes
made by single sequence labeling models.

We experimented with creating Den with not
only the augmented dev dataset but also the aug-
mented training dataset. However, we found that
there is no positive correlation between the number
of models in C and the macro-averaged F1 score
on the test dataset. Treating every possible com-
bination of set C as a hyperparameter to optimize
will yield the optimal result.

4 Training and Evaluation

We have used the flair framework (Akbik et al.,
2019) which uses pytorch and huggingface trans-
formers to build and experiment with our ap-
proaches. The roberta transformer model was used
as the base model. However, for some monolingual
language training, we stacked a language-specific
embedding layer provided by flair. For Dutch, Ger-

man, and Spanish, flair language-specific embed-
dings were prepended before transformer embed-
ding for experimentation.

We experimented with two different initial
checkpoints loaded to train the transformer model.
One checkpoint was from the huggingface library
(hug), for both roberta-base and roberta-large. The
other was to load the xlm-roberta model trained
on the competition dataset as the initial checkpoint
for the training of monolingual tasks. However,
the models trained with the initial checkpoint from
xlm-roberta performed better due to the transfer
of knowledge from the multilingual checkpoint to
the monolingual checkpoint. The language models
used in the experiment for different languages with
hyperparameters and macro averaged F1-score on
the competition test set are tabulated in Tables 1
and 2.

4.1 Competition Data

The dataset provided by the competition organizers
had 15300 train sentences and 800 dev sentences
for each language. However, the entity distribution
per language varied (Malmasi et al., 2022a,b). The
number of sentences used for training is very less
when compared to the number of sentences for
testing, which provides the low-resource constraint
designed by the competition organizers.
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Table 2: The language models used for different languages with the strategies adapted and the hyperparameters used
for training the model. The last column shows the macro-averaged F1 score on the competition test set (cont.).

Model Language BiLSTM CRF Transfer External Aug. Train Learning F1
No Model Learning Dataset Data with Dev Rate score

Chinese
1 bert-base-chinese Y Y N N N Y 3e-5 0.6468
2 bert-base-chinese N N N N N N 3e-3 0.608
3 yechen/ Y Y N N N Y 1e-3 0.6237

bert-large-chinese
4 hfl/ Y Y N N N Y 1e-3 0.617

chinese-roberta-wwm-ext
5 xlm-roberta-large Y Y Y N N Y 3e-3 0.645

Hindi
1 monsoon-nlp/hindi-bert Y Y N N N N 3e-3 0.501
2 mbert-cased Y Y N N N N 3e-3 0.493
3 neuralspace-reverie/ Y Y N N N N 3e-2 0.4846

indic-transformers-hi-bert
4 indic-distilbert Y Y N N N N 3e-2 0.5087
5 flax-community/roberta-hindi Y Y N N N N 3e-3 0.2448

roberta-hindi
Bangla

1 indic-distilbert Y Y N N N N 1e-3 0.4121
2 xlm-roberta-large Y Y N N N N 3e-3 0.5915
3 xlm-roberta-large Y Y Y N N N 3e-3 0.6019

Multilingual
1 xlm-roberta-large N N N N N N 3e-3 0.6648
2 xlm-roberta-large Y Y N N N N 3e-3 0.6829
3 xllm-roberta-large Y Y N N N Y 3e-3 0.6924
4 xlm-roberta-large Y Y N N Y Y 3e-3 0.6704

4.2 Data Augmentation

Transformer-based language models require huge
amounts of data to produce a good performance,
but this requires a lot of labeled data. In the real
world, such large labeled datasets are not avail-
able easily, especially in some specific domains.
We need expert knowledge to annotate the data,
which is time-consuming. However, we made use
of simple data augmentation techniques for token-
level (Dai and Adel, 2020). Here, the method
concentrates on expanding the training data using
smaller training sets and applying transformations
to the training instances without changing their la-
bels. We made use of all the techniques (Dai and
Adel, 2020) namely Label-wise token replacement
(LwTR), Synonym replacement (SR), Mention re-
placement (MR), Shuffle within segments (SiS), as
well as the mixture of all the techniques to augment
the training and development datasets. This pro-
duced improvement for a few of the languages even
over strong baselines, where no augmentation was
used. Although there is no clear single winner, ap-
plying all augmentation techniques outperformed
single augmentation techniques on an average. We
have tabulated the results and their explanation in
Section 5.

We also made use of other open-source datasets
(Samal, 2021) which were related to different do-
mains like history, political parties, and particularly

different from the competition training datasets
in context. In addition to this, we made use of
nlpaug (Ma, 2019) to generate the synthetic data
without manual effort. A bert-based model was
used to augment the original sentences which were
later processed to match the number of token labels.
These external datasets did not provide improve-
ments to the performance of the baseline model.

5 Discussion and Results

The training strategies for all the tracks fall into
these categories namely external dataset, data aug-
mentations, model architecture searching, transfer
learning, and ensemble learning as described in
Sections 3 and 4. We used a gazetteer as the last
option, which didn’t improve the performance.

5.1 English
We trained 12 models using a combination of data
augmentation, transfer learning, ensemble learn-
ing, and model architecture search. Out of the 12
trained models, we observed that using a multilin-
gual model checkpoint for transfer learning on En-
glish data gives better performance on the dev set.
We also observed that adding BiLSTM and CRF
layer gives slightly better performance than using
the linear layer as the classifier. Data augmentation
didn’t show any difference in the performance on
the dev set but the model trained using data aug-
mentation performs better in the test set evaluation.
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Table 3: The macro-averaged F1 score for English lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.9122
2 USTC-NELSLIP 0.8547
3 PAI 0.7837
4 ML-HUB 0.7814
5 RACAI 0.7578
6 Infrrd.ai 0.7471
7 EURECOM 0.7457
8 Sliced 0.7454
9 MaChAmp 0.7448
10 Raccoons 0.7418
11 YNUNLP 0.7317
12 LMN 0.725
13 brotherhood 0.7235
14 L3i 0.7196
15 Multilinguals 0.7174
16 KDDIE 0.7173
17 MarSan_AI 0.7145
18 Cardiff NLP 0.7094
19 Lone Wolf 0.6977
20 MIDAS 0.6962
21 UC3M-PUCPR 0.6924
22 CSECU-DSG 0.6924
23 Sartipi-Sedighin 0.6751
24 Enigma 0.6719
25 DANGNT-SGU 0.6689
26 AaltoNLP 0.6685
27 SPDB Innovation 0.6511

Lab
28 silpa_nlp 0.6342
29 BaselineExtending- 0.6324

Pokemons
30 MultiCoNER Baseline 0.612
31 AutoNER 0.5572

The final model is an EnsembleCRF model trained
with 4 Sequence Labeling models. There was a
drop in the F1 score when all 12 models were used.
So, we eventually kept the 2 models trained with
the dev set and for the rest 10 models, we picked
the best 2 models on the dev set. For all models
in Table 1, we set the maximum epoch to be 100
with a mini-batch size of 50. We used stochastic
gradient descent as the optimizer. We skipped the
warmup learning rate as it did not show any im-
provement on the macro-averaged F1 score of the
dev dataset. We observed the training to terminate
in around the 15th to 20th epoch. For the Ensem-
bleCRF model, we used Adam optimizer with a
learning rate of 1e-3 and a weight decay of 0.01.
We set the model to train for a maximum of 100
epochs with a mini-batch size of 126. The results
of the proposed method for the English language
are tabulated in Table 3.

Table 4: The macro-averaged F1 score for Spanish lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.8994
2 USTC-NELSLIP 0.8544
3 RACAI 0.7562
4 Infrrd.ai 0.7526
5 MaChAmp 0.752
6 Sliced 0.7511
7 YNUNLP 0.7317
8 brotherhood 0.7069
9 L3i 0.6893
10 PA Ph&Tech 0.6893
11 MarSan_AI 0.683
12 SPDB Innovation 0.6731

Lab
13 CSECU-DSG 0.6562
14 EURECOM 0.6277
15 Multilinguals 0.612
16 Sartipi-Sedighin 0.607
17 BaselineExtending- 0.6008

Pokemons
18 MultiCoNER Baseline 0.574
19 UC3M-PUCPR 0.5679

Table 5: The macro-averaged F1 score for Dutch lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.905
2 USTC-NELSLIP 0.8767
3 RACAI 0.7841
4 Sliced 0.7766
5 MaChAmp 0.7699
6 Infrrd.ai 0.764
7 YNUNLP 0.7582
8 brotherhood 0.7304
9 PA Ph&Tech 0.7205
10 MarSan_AI 0.7113
11 L3i 0.7096
12 CSECU-DSG 0.6794
13 EURECOM 0.667
14 BaselineExtending- 0.6325

Pokemons
15 MultiCoNER Baseline 0.616
16 Sartipi-Sedighin 0.5837

5.2 Spanish

Since Spanish and English languages have a lexical
similarity of about 30–50%, we tried translating
the English dataset to Spanish and included it in the
model training. Unfortunately, the translation ex-
periment did not help in improving the performance
of the model. The final model for the Spanish lan-
guage included all the 4 techniques of token-level
augmented data (Dai and Adel, 2020) along with
train and dev datasets. We added up augmented
datasets to our training pipeline to provide more
exposure and to increase the diversity of available
data. We used stochastic gradient descent as the op-
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timizer and trained for about 20 epochs after which
the performance turned out to be constant. The
results on the test set are tabulated in Table 4.

5.3 Dutch

All the strategies with a language-specific embed-
ding layer were used for experimentation namely
roberta-base, roberta-large, and xlm-roberta-large
models. The final model is an ensemble CRF model
trained with 2 sequence labeling models, an xlm-
roberta trained on the Dutch dataset and an xlm-
roberta trained on the multilingual dataset. We
trained the Dutch model on both the train and dev
datasets provided by the competition organizers. A
test set is created by splitting the (train and dev)
dataset internally while training. The model was
trained for 20 epochs. The generated predictions
on the test set are propagated through an Ensemble-
CRF model to ensure consistency in labeling and
to improve the labeling accuracy. The results are
tabulated in Table 5.

5.4 Korean

We trained 6 models using a combination of strate-
gies as mentioned in Sections 3 and 4. The final
model is an xlm-roberta-large followed by a BiL-
STM and CRF while using the multilingual model
as an initial checkpoint. The Korean model was
trained with the training and dev set provided for
30 epochs with a learning rate of 1e-3 and a weight
decay of 0.10. Monte Carlo Dropout (MCD) en-
semble (Gal and Ghahramani, 2016) was also used

Table 6: The macro-averaged F1 score for Korean lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.8859
2 USTC-NELSLIP 0.8636
3 RACAI 0.7174
4 CMB AI Lab 0.707
5 Sliced 0.7066
6 YNUNLP 0.7033
7 C-3PO 0.6749
8 UA-KO 0.6749
9 brotherhood 0.6741
10 Infrrd.ai 0.6729
11 MaChAmp 0.6545
12 EURECOM 0.6496
13 L3i 0.6268
14 MarSan_AI 0.6226
15 CSECU-DSG 0.6205
16 AaltoNLP 0.6182
17 BaselineExtending- 0.5895

Pokemons
18 MultiCoNER Baseline 0.546

Table 7: The macro-averaged F1 score for German lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.9065
2 USTC-NELSLIP 0.8905
3 RACAI 0.7939
4 Sliced 0.789
5 MaChAmp 0.7838
6 YNUNLP 0.7732
7 L3i 0.7723
8 ML-HUB 0.7614
9 brotherhood 0.7594
10 Infrrd.ai 0.759
11 EURECOM 0.7443
12 MarSan_AI 0.7312
13 CSECU-DSG 0.7249
14 AaltoNLP 0.7137
15 PA Ph&Tech 0.6675
16 BaselineExtending- 0.6659

Pokemons
17 MultiCoNER Baseline 0.634

for Korean as an ensemble strategy, 15 different in-
ferences were done with varying architecture with
a dropout of 0.3 and a majority voting strategy was
used for the final submission. Upon analysis, the
best performing model and the entire 15 model en-
semble had similar performances. We could poten-
tially cherry-pick models from all the 15 possible
candidates to improve the scores but time being
a limiting factor, it was dropped. The results are
tabulated in Table 6.

5.5 German

The German language embedding layer was used
with roberta-base, roberta-large, and xlm-roberta
models, and all the strategies were evaluated. The
submitted model is an ensemble CRF model trained
with 2 sequence labeling models, an xlm-roberta
trained on the German dataset and an xlm-roberta
trained on the multilingual dataset. We trained the
German model on both the train and dev datasets
provided by the competition organizers. A test set
is created by splitting the (train and dev) dataset
internally while training. The model was trained
for 20 epochs. The generated predictions on the test
set are propagated through an EnsembleCRF model
to ensure consistency in labeling and to improve
the labeling accuracy. The results are tabulated in
Table 7.

5.6 Chinese

The amount of work carried out on the Chinese
dataset is limited due to time limitations. Most of
the experiments were limited to model architecture
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Table 8: The macro-averaged F1 score for Chinese lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 USTC-NELSLIP 0.8169
2 CASIA 0.797
3 OPDAI 0.7954
4 DAMO-NLP 0.7806
5 NetEase.AI 0.7777
6 CMB AI Lab 0.7636
7 NCUEE-NLP 0.7418
8 QTrade AI 0.74
9 CSECU-DSG 0.6722
10 Multilinguals 0.6695
11 L3i 0.6691
12 Sliced 0.6521
13 Infrrd.ai 0.6468
14 MaChAmp 0.6381
15 EURECOM 0.634
16 RACAI 0.627
17 YNUNLP 0.6138
18 brotherhood 0.6086
19 MarSan_AI 0.5664
20 SPDB Innovation 0.5574

Lab
21 BaselineExtending- 0.528

Pokemons
22 MultiCoNER Baseline 0.511

searching and transfer learning. We tried various
pre-trained Chinese language models that include
pre-trained Chinese language models trained on
other NER datasets. The best architecture observed
is a Chinese BERT model followed by BiLSTM
and CRF. Our final model was set to train for a
maximum of 50 epochs with a mini-batch size of
24. We use AdamW optimizer (Loshchilov and
Hutter, 2017) with a weight decay rate of 0.01. We
also used Warmup Learning Rate Scheduler with
10% total training steps as a linear warmup period
and rest steps with linear decay. The training ter-
minates at the 24th epoch due to an early stopping
mechanism. Our final model with the proposed
method was trained for 24 epochs, and the results
are tabulated in 8.

5.7 Hindi

We tried various Hindi language-based transformer-
word-embeddings to include in the flair framework.
Word-embeddings like hindi-bert from monsoon-
nlp, multilingual-bert-cased, hindi-bert, and distil-
bert of indic transformers were evaluated on the
dev set. But none of these outperformed our pro-
posed architecture model. We also tried adding
language-specific embeddings which would usu-
ally help the model better understand the data. But
this did not improve our baseline model perfor-
mance. Hence, we did not include any additional

Table 9: The macro-averaged F1 score for Hindi lan-
guage sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.8623
2 USTC-NELSLIP 0.8464
3 RACAI 0.6808
4 Sliced 0.67
5 NetEase.AI 0.6663
6 Infrrd.ai 0.6572
7 brotherhood 0.6423
8 YNUNLP 0.6339
9 OPDAI 0.6294
10 MaChAmp 0.6173
11 CSECU-DSG 0.5768
12 MarSan_AI 0.5631
13 EURECOM 0.5278
14 silpa_nlp 0.5149
15 BaselineExtending- 0.499

Pokemons
16 L3i 0.4973
17 Enigma 0.4862
18 MultiCoNER Baseline 0.469

Table 10: The macro-averaged F1 score for Bangla
language sentences.

Position Team Name Macro-averaged
F1 score

1 USTC-NELSLIP 0.8424
2 DAMO-NLP 0.8351
3 NetEase.AI 0.7088
4 RACAI 0.6628
5 Infrrd.ai 0.6399
6 YNUNLP 0.638
7 Sliced 0.6305
8 Team Atreides 0.5975
9 brotherhood 0.5863
10 MaChAmp 0.5646
11 MarSan_AI 0.5422
12 EURECOM 0.5257
13 AaltoNLP 0.5179
14 silpa_nlp 0.5139
15 CSECU-DSG 0.5055
16 BaselineExtending- 0.4507

Pokemons
17 L3i 0.4481
18 Enigma 0.4268
19 MultiCoNER Baseline 0.391

language-specific embeddings. Our final model is
xlm-roberta, which was trained using multilingual
train and dev datasets. The model was trained for
30 epochs, and the results are tabulated in Table 9.

5.8 Bangla

It was a challenging task to find good embeddings
to represent the Bangla language. We performed a
few experiments by including Bangla Indic trans-
former word embeddings in the flair framework.
Similar to the Hindi language, even this embedding
did not perform better than our proposed method.
We also tried adding language-specific embeddings
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Table 11: The macro-averaged F1 score for multiple
language sentences.

Position Team Name Macro-averaged
F1 score

1 DAMO-NLP 0.8531
2 USTC-NELSLIP 0.853
3 QTrade AI 0.7766
4 SeqL 0.7549
5 CMB AI Lab 0.7369
6 UM6P-CS 0.7249
7 RACAI 0.721
8 Cardiff NLP 0.7165
9 Sliced 0.7107
10 IIE_KDSEC 0.7089
11 BaselineExtending- 0.7069

Pokemons
12 OPDAI 0.6948
13 brotherhood 0.6942
14 MarSan_AI 0.6928
15 Infrrd.ai 0.6924
16 HaveNoIdea 0.6879
17 EURECOM 0.6808
18 MaChAmp 0.6768
19 YNUNLP 0.6685
20 DSUG 0.6522
21 UPB 0.6473
22 CSECU-DSG 0.644
23 NSU-AI 0.6423
24 SPDB Innovation 0.6322

Lab
25 L3i 0.6123
26 MultiCoNER Baseline 0.541
27 HaveNoIdea 0.5403

which would usually help the model better under-
stand the data. But this did not improve our base-
line model performance. Hence, we did not include
any additional language-specific embeddings. Our
final model is xlm-roberta, which was trained using
multilingual train and dev datasets. The model was
trained for 40 epochs, and the results are tabulated
in Table 10.

5.9 Multilingual

The multilingual task was challenging in itself and
our choice of framework made it even harder since
we did not have a multi gpu support to conduct all
the experiments. The experiments conducted are
bucketed mainly into three parts, the architecture
search, the data strategy, and the ensemble strategy.
After experimenting with various architectures and
embeddings, we resorted to xlm-roberta-large for
the task. The data strategy was tricky consider-
ing all the languages. Open source datasets and
translation APIs didn’t provide improvements.

We decided to train a stable model and use it
as an initial checkpoint for all the other languages.
The model was trained for 30 epochs with a learn-
ing rate of 1e-3. The final model is xlm-roberta-

large followed by a BiLSTM and CRF trained with
the entire corpus of train and dev set. Various at-
tempts were made to include the above-mentioned
data augmentation techniques but due to the huge
model and data along with limited time and re-
sources, we could only do very limited experiments
for this model. We tried with the MCD ensemble
and took 15 inferences through the varying architec-
tures and used the majority voting strategy to obtain
the final submissions. The single best-performing
model was at par with the MCD ensemble with
majority voting. The results for multiple language
sentences are tabulated in Table 11.

6 Conclusion

The recognition of entities from multiple languages
with low resources is more complex. The problem
lies with the ambiguous entities formed by newly
coined words. The syntax of grammar in the sen-
tences was not followed to capture the context be-
tween the words. We tried a single multilingual
transformer approach, which didn’t provide much-
expected results. We had used gazetteers for all the
languages sourced from the training and wiki data.
Both of them didn’t produce improvements over
the model results.

We trained a multilingual transformer model and
performed transfer learning to the individual lan-
guages. Since there were multiple languages in the
task. We performed unique experiments on one
language and then adapted it to the others based on
the performance. In the discussion section, the ap-
proaches used for experiments are covered and vary
for the individual languages. Overall, we created an
ensemble of different models which resulted in im-
provements over the single model. The ensemble
architecture covered different types of transformer-
based language models. The results reached closer
to the top positions with this approach. We also ob-
served that the data augmentation used to improve
the performance for a few languages and drop in the
performance for the other languages. Our results
are above 15% on an average in the participated
sub-tasks over the MultiCoNER Baseline results.

We would like to explore the multilingual T5
transformer model, which couldn’t be covered dur-
ing the competition. We would like to explore
different augmentation techniques with external
data, which couldn’t be completed due to time con-
straints.
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Abstract

Building real-world complex Named Entity
Recognition (NER) systems is a challenging
task. This is due to the complexity and ambi-
guity of named entities that appear in various
contexts such as short input sentences, emerg-
ing entities, and complex entities. Besides,
real-world queries are mostly malformed, as
they can be code-mixed or multilingual, among
other scenarios. In this paper, we introduce
our submitted system to the Multilingual Com-
plex Named Entity Recognition (MultiCoNER)
shared task. We approach the complex NER
for multilingual and code-mixed queries, by re-
lying on the contextualized representation pro-
vided by the multilingual Transformer XLM-
RoBERTa. In addition to the CRF-based to-
ken classification layer, we incorporate a span
classification loss to recognize named entities
spans. Furthermore, we use a self-training
mechanism to generate weakly-annotated data
from a large unlabeled dataset. Our proposed
system is ranked 6th and 8th in the multilingual
and code-mixed MultiCoNER’s tracks respec-
tively.

1 Introduction

Recent named entity recognition (NER) models
have achieved great performance for many lan-
guages and using various benchmark datasets such
as CoNLL2003 and OntoNotes 5.0 (Devlin et al.,
2019). However, it is unclear whether or not these
systems can handle ambiguous and complex enti-
ties, especially in the case of short and low-context
settings (Augenstein et al., 2017). It is also un-
clear weather these systems can be deployed in
real-world scenarios where the input data can be
in different languages or code-mixed (Luken et al.,
2018; Hanselowski et al., 2018). In fact, to illus-
trate these issues, if consider the example of com-
plex named entities such as the titles of creative
works (movies, songs, books ...), they are hard to
be recognized by simple NER systems. This is

due to their syntactic ambiguity and the form they
can take from one context to another. For instance,
they can be as an imperative clause ("Dial M for
Murder") or a proposition ("On the beach") which
refers to the name of a movie. Thus, it is important
to check the performance of NER systems in these
scenarios.

The complexity of named entities can be due to
three main reasons:

1. Complex entities: These entities can be repre-
sented as complex infinitives (To Kill a Mock-
ingbird) or full clauses (Mr.Smith Goes to
Washington). Additionally, they can be rep-
resented as noun phrases or gerunds. State-
of-the-art systems (Aguilar et al., 2017) have
shown that it is hard to recognize such entities.

2. Ambiguous entities and contexts: These
types of entities are context-dependent as they
can refer to named entities in some contexts,
but not in others. “Among Us” which refers to
the name of a video game is an example of this
challenge. This situation is even more chal-
lenging (Mayhew et al., 2019) in the case of
short sentences with minimal context such as
questions or search queries, which most of the
time lack some features such as capitalization
or punctuation.

3. Emerging entities: This challenge mimics
the real-world scenario with many unseen enti-
ties, as new named entities are always appear-
ing due to the release of new books, songs, or
movies within a short period of time.

It is well known that the state-of-the-art perfor-
mance reached by current NER systems is mainly
due to the presence of easy entities and well-formed
input texts (Augenstein et al., 2017). Neverthe-
less, they yield weak performance when applied
in multilingual/code-switched input texts having
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complex or unseen entities. It is also worth men-
tioning that the reached state-of-the-art results by
current NER systems have been achieved using
Transformers-based pre-trained language models
(Devlin et al., 2019) that are known to encode the
context of input texts and tokens.

In this paper, we introduce our participating sys-
tem to the MultiCoNER shared task (Malmasi et al.,
2022b), in particular, the complex MultiCoNER
tracks of multilingual and code-switched queries.
Our system relies on a deep learning model based
on the multilingual Transformer-based pre-trained
language model XLM-RoBERTa (Conneau et al.,
2020). To handle the complexity of the two tracks,
our model is trained using two optimization ob-
jectives, as well as for self-training. The main
components of our system can be summarized as
follow:

• Optimization of entities span loss: We train
our model to recognize entities spans as an
auxiliary task. The aim is to help the model
detect the full entities expressions in an input
sentence.

• Incorporation of Conditional Random
Field (CRF) (Lafferty et al., 2001) layer:
We incorporate a CRF layer on top of the
Transformer representations to fully exploit
the mutual information between tokens in an
input sentence.

• Self-training on unlabeled data: we create
a weakly-supervised data based on the model
predictions on unlabeled data.

The rest of this paper is organized as follows.
Section 2 presents the related work. Section 3 de-
scribes the dataset and the sub-tasks of SemEval-
2022 Task 11 (Malmasi et al., 2022b). In section
4, we present our system overview. Section 5 sum-
marizes and discusses the obtained results for both
multilingual and code-mixed tracks. Finally, Sec-
tion 5 concludes the paper.

2 Related Work

During the last years, neural network-based ap-
proaches have contributed to improving the per-
formance of NER systems (Panchendrarajan and
Amaresan, 2018; Devlin et al., 2019). This was
mainly achieved thanks to word embeddings. Static
word embeddings are fed to BiLSTM-CRF models

and have helped eliminate manual feature engineer-
ing while achieving better performance. On the
other hand, Transformer-based Language Models
(Devlin et al., 2019; Conneau et al., 2020) have
greatly improved the NER results thanks to their
contextualized word representations.

However, these models may fail when recogniz-
ing new or complex entities (Luken et al., 2018;
Hanselowski et al., 2018). These challenges are
reflecting the real-world setting. Recently, Meng
et al. (2021) have proposed an approach to tackle
these challenges by using a contextual Gazetteer
Representation encoder which can be fused with
word-level models. The results have shown that
this method enhances the F1-score by +49% in
the uncased setting. This work has been mainly
applied to the English language. Finally, in an-
other work, Fetahu et al. (2021) have explored
the code-mixed NER scenario using multilingual
Transformers. They have combined the Mixture-
of-Experts model with existing multilingual Trans-
formers models to incorporate the multi-lingual
gazetteers. The experiments have demonstrated
that their proposed approach enhances the F1-score
by +31% in the Code-Mixed NER over the baseline
model.

3 Data

The dataset of the MultiCoNER (Multilingual Com-
plex Named Entity Recognition) shared task (Mal-
masi et al., 2022a) is provided to tackle thirteen
different tracks, eleven tracks cover the monolin-
gual cases, while the remaining two tracks cover
code-mixed and multilingual data. In this paper,
we focus on the last two tracks.

The multilingual track covers eleven languages
(English, Spanish, Dutch, Russian, Turkish, Ko-
rean, Farsi, German, Chinese, Hindi, and Bangla),
while the code-mixed track covers a subset of these
languages. In both tracks, the entities are annotated
into six types: PER, LOC, GRP, CORP, PROD,
and CW. Table 1 presents the size of the train and
test datasets provided for these tracks. We notice
that the multilingual track has more data than the
code-mixed track, and the test datasets are larger
than the train datasets for both tracks.

The provided datasets are labeled using the IOB
format which is used for sequence labeling tasks.
Table 2 presents the distribution of the entities and
the spans in the train datasets for both tracks.
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Multilingual Code-mixed
Train 168300 1500
Test 471911 100000

Table 1: The size of the train and the test datasets for
the multilingual and code-mixed tracks.

4 Methodology

Before discussing the methodology of our pro-
posed system, we assume that we have n labeled
sentences with named-entities D = {(xti, yti)}n1
and m unlabeled sentences U = {(xui )}m1 , where
xi = {xi,1, xi,2, ..., xi,l} represents a sentence con-
taining l tokens, while yi = {yi,1, yi,2, ..., yi,l} are
the l labels corresponding to these l tokens.

The proposed system incorporates 4 components
used on top of the pre-trained Transformer encoder.
In the following, we describe each component of
our system.

4.1 Multilingual Transformer encoder

To encode each word in the input sentence, we
use the XLM-RoBERTa (XLM-R) (Conneau et al.,
2020). It is a multilingual pre-trained transformer
encoder network. We choose to use this encoder
for the following reasons: 1) XLM-R is the state-
of-the-art encoder in the multilingual and code-
mixed settings, and 2) It has been trained on 100
languages including the languages covered in the
multilingual and code-mixed tracks. This ensures
a good contextualized representation for the input
sentences despite their language.

This model was mainly trained using the Mask
Language Modeling (Devlin et al., 2019). For an
input sentence, 15% of the words are randomly
masked, then the model tries to predict the masked
words. As a result of this training process, the
model learns the representations of dimension d for
the input words of 100 languages that can be fine-
tunned on a downstream tasks such as sequence
classification or sequence labeling.

4.2 Span classification module

Span classification is a span-wise classifier, where
the aim is to classify whether or not, a sequence of
tokens are representing a named entity span based
on their semantics. It is a binary classification task
as the model predicts 1 if the span is a named entity
while it predicts 0 if not.

Given H = [h1, h2, ..., hk], the vector represen-
tations of the k sub-tokens contained in a span S, to

learn a representation that encodes all the span to-
kens, we follow the same approach used in (Essefar
et al., 2021; El Mekki et al., 2021b; El Mahdaouy
et al., 2021), where an attention layer (Bahdanau
et al., 2015) learns the span representations SH
based on its tokens, as follows:

C = tanh(HW a)

α = softmax(CTWα)

SH = α ·HT

where W a ∈ Rd×1, Wα ∈ Rk×k are the train-
able parameters of the attention layer, C ∈ Rk×1

and α ∈ [0, 1]k weights the word representations
according to their importance for the task at hand.

The vector representations SH of all the spans
in an input sentence are then fed to a feed-forward
neural network which classifies whether or not, the
input representation refers to a named-entity span.

As illustrated in table 2, we notice that the ma-
jority of spans do not represent a named entity. To
tackle this imbalanced data issue, we follow (Li
et al., 2020) in using the Focal Loss (FL) (Lin et al.,
2017). The FL is given by:

FL(y, p̂) = −αy (1− p̂y)γ log(p̂y) (1)

where, y ∈ {0, 1} denotes the span’s label,
p̂ = (p̂0, p̂1) is a vector representing the predicted
probability distribution over the labels, αy is the
weight of label y, and γ controls the contribution
of high-confidence predictions in the loss. The per-
formed experiments showed that γ = 0.5 gives the
best result.

As the provided dataset in this shared task has
been annotated based on named entities, we adjust
it for the span classification task. Therefore, we
label all the named entities spans as 1 while the rest
of spans has been labeled as 0.

4.3 NER classification using CRF-Layer

Most NER systems using Transformers rely on
using the first sub-token of each word as input to
the classification layer (Devlin et al., 2019). In our
system, we follow the work of (Ács et al., 2021) in
using a pooling of the sub-tokens of each word in
the input sentence.

Given H = [h1, h2, ..., hp], the vector represen-
tations of the all the sub-tokens contained in a word
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Classification tasks
Named entity Entity Span

Class LOC PER PROD GRP CORP CW Entity Span Not Entity
Span

Mutilingual % 22.02 18.76 15.0 14.0 14.11 16.12 38.82 61.17
Code-Mixed % 18.27 16.63 17.88 13.9 16.63 16.69 41.71 58.28

Table 2: The distribution of named entities and entities spans in the train dataset for the multilingual and code-mixed
tracks

w, an attention layer learns the word pooled rep-
resentations based on its sub-tokens following the
same method explained in section 4.2.

The pooled representations are then fed to the
classification layer which is a Conditional Random
Field (CRF) layer in our system. We opt for CRF
mainly because the Softmax layer does not take
into consideration the dependencies between to-
kens. The self-attention mechanism, performed
by the Transformer encoder, encodes these depen-
dencies in the output vectors of the input sentence.
While the CRF which is common in sequence label-
ing tasks ensures output consistency, it transforms
the sequence of input word representations to a se-
quence of probability distributions, therefore, each
label prediction depends on the other predictions
in the same input sentence.

4.4 Self-training

To take profit from the provided unlabeled dataset
in this shared task, we generate a weakly-annotated
dataset and re-train the developed model on it.
This method has been applied differently in sev-
eral works (Khalifa et al., 2021; El Mekki et al.,
2021a; Huang et al., 2021). In our work, we apply
the following pipeline:

1. We train a model M (based on span classifica-
tion and NER-CRF explained in the previous
subsections) using the provided labeled data
D.

2. We use the trained model M to predict the
labels of the provided unlabeled data. Then
we build a weakly-annotated data U

3. We concatenate the datasets T and U and re-
train the sequence labeling model.

It is worth mentioning that during the self-
training phase, we remove the span classification
module.

5 Experiments and results

5.1 Experimental setup

We use the PyTorch framework and the Transform-
ers libraries for the implementation of our proposed
system. The training of the model is performed
on a server with a single Nvidia Tesla P100 with
16GB of RAM. XLM-RoBERTa Large is used as
our multilingual Transformer encoder. Adam op-
timizer with a learning rate of 1e − 5 is used for
all experiments. The system is trained with a batch
size of 16 and for 20 epochs.

For the multilingual track, we train our model on
the provided labeled multilingual data, then we use
the best epoch’s model to leverage pseudo-labels
from the unlabeled test data, and we re-train the
model again from scratch. Besides, for the code-
mixed track, we combine the provided data with the
training data of the multilingual track and we fol-
low the same training pipeline of the multilingual
track.

5.2 Results

Table 3 presents the submitted results for the mul-
tilingual and code-mixed tracks using our system.
The first row in the table presents the baseline re-
sults on the test set published by the shared task
organizers. The performance achieved by our best
submission largely outperforms the baseline results
in both tracks. In fact, the performance using our
model boosts the baseline score by 18.39 and 21.11
F1-score points in the multilingual track and the
code-mixed track, respectively. The table also re-
ports the performance of our system during the
three stages (ablation study):

• The BERT-CRF model that incorporates the
named-entity recognition classification layer
with CRF,

• The span classification objective, and

• The self-training.
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Multilingual track Code-mixed track
Precision Recall F1 Precision Recall F1

Baseline - - 54.10 - - 58.10
BERT-CRF 68.59 69.30 68.00 78.47 78.92 78.78

+ Span Classification 70.71 70.56 70.25 78.30 78.77 78.52
+ Self-training 73.21 72.51 72.49 79.38 79.08 79.21

Table 3: Official Complex NER F1-scores on the multilingual and code-mixed tracks using the proposed system.

Multilingual track Code-mixed track
Precision Recall F1 Precision Recall F1

LOC 72.24 81.41 76.01 80.37 83.04 81.68
PER 85.20 81.40 83.13 88.02 88.67 88.35
PROD 70.54 70.24 70.00 82.68 80.51 81.58
GRP 69.78 63.6 66.26 70.85 73.02 71.92
CW 67.58 68.74 67.95 75.00 74.27 74.63
CORP 73.91 69.68 71.60 79.36 74.99 77.11

Table 4: Official Complex NER F1-scores per entity on the multilingual and code-mixed tracks using the proposed
system.

The results show that the span classification stage
enhances the performance of both tracks: the F1-
scores achieved using the span classification are
70.25% for multilingual track and 78.52 % for the
code-mixed track. However, we notice that the span
classification has significantly boosted the F1-score
compared to the BERT-CRF model for the multi-
lingual track, while there is a small performance
loss in the case of the code-mixed track. When per-
forming self-training on the predictions extracted
from the model using the span classification stage,
a large gain has been achieved in both tracks. For
the multilingual track, the F1-score obtained using
self-training is 72.49% with a gain of 3.18% com-
pared to the system without self-training. For the
code-mixed track, our system has achieved the F1-
score of 79.21% with a gain of 0.87% compared to
the system without self-training.

Finally, Table 4 presents the performance of
our best submission for the multilingual and code-
mixed tracks. The proposed system fails the most
in predicting the GRP entities for both tracks,
meanwhile, it gives its best performance when pre-
dicting the PER entities.

6 Conclusion

In this paper, we present our Named Entity Recog-
nition (NER) system for complex scenarios on mul-
tilingual and code-mixed queries. Our system relies
on 4 components: a multilingual transformer en-

coder, an entity span classification module, a CRF-
layer, and a self-training mechanism that leverages
information from unlabeled data. We use our sys-
tem to submit our predictions in the SemEval-2022
Task 11 within the multilingual and code-mixed
tracks. The results show that the use of multilingual
Transformer and self-training enhances the results
in both multilingual and code-mixed cases. More-
over, the incorporation of the span classification
module and the CRF layer allow better recognition
of complex named entities.
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Abstract

This paper describes our approach to develop
a complex named entity recognition system
in SemEval 2022 Task 11: MultiCoNER
Multilingual Complex Named Entity Recog-
nition,Track 9 - Chinese. In this task, we need
to identify the entity boundaries and category
labels for the six identified categories of CW,
LOC, PER, GRP, CORP, and PORD.The task
focuses on detecting semantically ambiguous
and complex entities in short and low-context
settings. We constructed a hybrid system based
on Roberta-large model with three training
mechanisms and a series of data augmentation.
Three training mechanisms include adversarial
training, Child-Tuning training, and continued
pre-training. The core idea of the hybrid sys-
tem is to improve the performance of the model
in complex environments by introducing more
domain knowledge through data augmentation
and continuing pre-training domain adaptation
of the model. Our proposed method in this pa-
per achieves a macro-F1 of 0.797 on the final
test set, ranking second.

1 Introduction

SemEval-2022 Task 11: MultiCoNER Multilingual
Complex Named Entities Recognition(Malmasi
et al., 2022b). This task aims to address the prob-
lem of complex and ambiguous named entities in
practical and open domain environments .

The task has 13 tracks, with track 1 being a multi-
lingual track where participants need to train a mul-
tilingual model using data from 11 languages. The
model should be able to handle monolingual data
from any of the languages and code-mixed cases.
Tracks 2-12 are monolingual tracks, including En-
glish, Spanish, Dutch, Russian, Turkish, Korean,
Farsi, German, Chinese, Hindi and Bengali. Par-
ticipants are required to train a model for only one
language. Track 13 is Code-mixed(Fetahu et al.,

2021). This test data contains code-mixed sam-
ples. These samples include tokens from any of
the 11 mentioned languages in the shared task. We
participated in the Chinese monolingual track.

Dealing with complex and ambiguous entities
in practical and open domain environments is a
challenging NLP task(Meng et al., 2021),however,
which has not received sufficient attention from the
research community. The challenges of this task
are mainly in three facts: 1)The complex entities
problem, in which complex noun phrases, verbs, in-
finitives, or complete sentences, and other entities
lack proper nouns, making it difficult to identify
them(Ashwini and Choi, 2014).2)The ambiguous
entities problem, in which some words are enti-
ties in some fields but not in others, especially in
search, ASR (Automatic Speech Recognition), and
other fields.3)The emerging entities problem, such
as books, songs and movies, new works are re-
leased every week, and the problem in these fields
is that the entities are growing faster, and it is more
difficult to identify these newly growing entities.

For the complex entities problem, we use ad-
versarial training and Child-Tuning to increase the
representation capability at the parameter level, pre-
venting the model from overfitting due to complex
entities, so that the model does not simply remem-
ber the complex entities. For the ambiguous entities
problem, we use a context-independent data aug-
mentation strategy to replace entities in the data
for semantic augmentation, so that the model can
reduce the context dependency.For the emerging
entities problem, we propose a progressive domain-
adaptive pre-training mechanism to improve the
performance of the model, so that the preceding
methods yielded considerable results, with the F1
value in the Chinese monolingual track reaching
0.797.
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2 Related Work

2.1 Named Entity Recognition

Named Entity Recognition is a fundamental prob-
lem in natural language processing, and it’s a
key component of many Natural Language Pro-
cessing(NLP) activities like information extraction,
question-answer systems, syntactic analysis, and
machine translation. In general, the aim of named
entity identification is to detect three major cate-
gories (entity, time, and number) of named entities
in the text, as well as seven minor categories (per-
son, institution, location, time, date, currency, and
percentage).

NER usually consists of two parts: (1) entity
boundary identification and (2) entity category de-
termination. Entity boundaries are easier to identify
in English because named entities have more vis-
ible indicators (the first letter of each word in the
entity should be capitalized), and the work concen-
trates on establishing entity categories. In contrast
to the entity category labeling subtask, the Chinese
named entity identification task is more complex,
and identifying entity boundaries is more challeng-
ing.

2.2 Complex and Ambiguous NER

For complex entities, such as titles of creative
works (movie/book/song/software titles), not sim-
ple nouns and more difficult to identify. They
can be any language component, such as a gerund
("Dial M for Murder"), and they don’t appear to
be traditional entities (names of people, places, or-
ganizations). Because of the syntactic ambiguity,
identifying them based on their context is difficult.
Finally, these entities increase at a quicker rate than
traditional categories.

In datasets like CoNLL03/OntoNots, neural net-
work models (e.g., Transformers) have gotten high
scores(Devlin and Ming-Wei Chang, 2019). How-
ever these scores are driven by the usage of well-
formed news texts, the existence of "easier" entities
(e.g., names), and memorization due to entity over-
lap between training and test sets(Augenstein et al.,
2017). These models perform significantly worse
on complex/unseen entities. The failure of the NER
system to recognize complicated items is responsi-
ble for a huge portion of their errors(Hanselowski
et al., 2018).

Figure 1: Overall system structure.

3 Our Method

3.1 Overall Approach
The structure of the base model we use is Roberta-
wwm-ext-large+BiLSTM+CRF. The sequence sam-
ples are pre-trained to obtain their embedding rep-
resentation, which is then contextually encoded
by the BiLSTM(Xu et al., 2017; Ma and Hovy,
2016; Lample et al., 2016) layer, and the contex-
tual encoding is decoded by the CRF(Lafferty et al.;
Sutton et al., 2012) to obtain the final annotation
result.

In addition, based on the structure of the base
model, we first use a back-translation approach
to introduce more domain-relevant training data.
Related studies have shown that domain-adapted
pre-training can improve the performance of the
model for the corresponding domain-specific tasks,
both with low and high resources. Second, data
augmentation is used to extract entities in other lan-
guages translated into Chinese and match different
contexts to obtain new data, and allow the model to
do supervised training using the new data. Finally,
we used five-fold cross-training, adversarial train-
ing, and child-tuning to improve the performance
of the model. Our overall system structure is shown
in Figure 1.

3.2 Model Structure
Our basic model structure is shown in Figure 2.
The sequence samples get their embedding repre-
sentation through the pre-training model. Then
BiLSTM is connected to the embedding represen-
tation for context encoding, and CRF is used to
decode the context representation. Finally the an-
notation result is obtained.

The Bert model, among them, uses Roberta-
wwm-ext-large, a joint publication of Harbin In-
stitute of Technology and Pengcheng Lab that
uses a full-word Mask scheme in the pre-training
phase(Cui et al., 2020). If part of a complete word
WordPiece subword is masked, other parts of the
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Figure 2: Our basic model structure.

same word will be masked as well, cancels the Next
Sentence Prediction, and uses the training model
with max len=512.

The underlying model structure is of the form
Roberta-wwm-ext-large+BiLSTM+CRF.

3.3 Training Method
Five-fold Cross-voting:We use five-fold cross-
validation to divide the training set into five dif-
ferent datasets, and the inconsistencies of entity
labeling in each dataset are various. We fix the
same model structure, train five models on five
training sets, and integrate their prediction results
on the same test set by hard voting.
Adversarial Training: To obtain a model with
better robustness, we use adversarial training to
improve the stability of the model.Referring to
the FGM(Miyato et al., 2016) adversarial training
mechanism, we directly impose a small disturbance
on the embedding representation of the model and
assume the embedding representation of the input
text sequence [v1, v2, . . . , vT ] as x. Then the small
disturbance radv applied each time is:

radv = ϵ · g/∥g∥2 (1)

g = ∇xL(θ, x, y) (2)

The meaning of the formulas is to move the in-
put one step further in the direction of rising loss,
which will make the model loss rise in the fastest
direction, thus forming an attack. In contrast, the
model needs to find more robust parameters in the
optimization process to deal with attacks against
samples.

Among them, applying a small disturbance to the
embedding characterization simulates the natural

error of the dataset in the labeling to a certain extent.
It encourages the model to find more robust param-
eters during the training process to weaken the im-
pact of aleatoric uncertainty. Then the model’s em-
bedding representation will be optimized together
with the model. Adversarial training will make the
model more tolerant of changes brought about by
model parameter fluctuations, thereby decreasing
the impact of epistemic uncertainty.
Child-Tuning: In the Fine-tuning process，there
is a mismatch between the "high number of param-
eters" of the large-scale pre-trained model and the
"limited number of labeled samples" in the Fine-
tuning phase. Child-Tuning proposes, like regular
Fine-tuning, using the entire model’s parameters to
encode the input samples in the forward direction,
but without adjusting the huge number of parame-
ters when updating the parameters in the backward
direction, i.e. using only a portion of the Child
Network. Child-Tuning can be divided into two
stages:

• Confirmation of Child Network is found in the
pre-trained model, and 0-1Mask of Gradients
corresponding to Weights is generated;

• After the gradient is calculated by backward
propagation, only the parameters in Child Net-
work are updated, while the other parameters
remain unchanged.

Among the above steps,Step 2 is the simplest of
the above steps to change the parameters. It’s done
with a gradient mask, which means that after com-
puting the gradient of each parameter position, it’s
multiplied by a 0-1 matrix gradient mask, with the
positions belonging to the Child Network parame-
ters corresponding to 1 and those not belonging to
0, and the parameters are updated.

The key to this method is to identify the Child
Network mentioned in the preceding steps, one
of which is the task-independent algorithm Child-
Tuning F, whose main advantage is that it is sim-
ple and effective; in the Fine-tune process, it only
needs to get a Gradients Mask by sampling from
the Bernoulli distribution in each update iteration,
which is equivalent to randomly discarding part
of the gradients when the network parameters are
updated.

wt+1 = wt − η
∂ζ(wt)

∂wt
⊙Mt (3)

Mt ∼ Bernoulli(PF ) (4)
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Another is the task-related algorithm Child-
Tuning-D, which overcomes the disadvantage that
Child-Tuning-F treats different downstream tasks
with the same policy and treats different model
parameters equally.Child-Tuning uses the Fisher
Information Matrix (FIM)(Tu et al., 2016) to es-
timate the importance of each parameter for the
downstream task, and, in line with previous work,
approximates the diagonal matrix of FIM to calcu-
late the importance score of each parameter relative
to the downstream task (i.e., assuming that the pa-
rameters are independent of each other), and then
selects the parameter with the highest score as the
Child-Network.

F (i)(w) =
1

|D|

|D|∑

i=1

(
∂logp(yi|xj ;w)

∂w(i))2
(5)

3.4 Data Augmentation
Since the amount of data in the test set is 10 times
the amount of data in the training set, the amount
of data in the training set is obviously insufficient,
so we use data augmentation to get more data. Data
augmentation techniques are already standard in
the image field, and data augmentation is achieved
by techniques such as flipping, rotating, mirroring,
and Gaussian white noise on images. However,
in the field of NLP, there are four ways of data
augmentation: synonym substitution, random in-
sertion, random swapping, and random deletion. In
this paper, we use random swapping, i.e., random
replacement of entities in a sentence with other
entities of the same type. We extract entities in En-
glish, German, and Dutch translated into Chinese
as replacement entities.

4 Experiment

4.1 Dataset Introduction
SemEval 2022 Task 11: MultiCoNER Multilin-
gual Complex Named Entity Recog- nition,Track
9 - Chinese provide 15,300 training data, 800
validation sets, and at least 150,000 final test
data(Malmasi et al., 2022a). Six types of entities
are included: people, places, organizations, prod-
ucts, companies, and creative works.The sentence
and character statistics of the training set, develop-
ment set, and test set are shown in Table 1.

4.2 Evaluation Metrics
This task takes strict macro F1 as the evaluation
metric. The macro F1 evaluation metric looks at

Dataset Type Train Dev Test

Chinese Sentence 15.3K 0.8K 153K
Char 382.1K 20K 1835K

Table 1: Statistics of dataset.

each entity category equally compared to micro F1,
and for the strict F1 evaluation metric, it is consid-
ered correct only when both entity boundaries and
entity types agree with the standard answer.

4.3 Pre-Processing
Text Expansion: Inevitably there are many com-
binations of number strings, English and Chinese
in Chinese datasets, which are usually done in Chi-
nese ner based on a single character. To maintain
uniformity, we expand the English and number
strings into a single English letter and a single num-
ber.
Labeling Scheme: The annotation scheme is

a method for marking character sequences in se-
quence annotation tasks, by which the type and
location of entities in a sentence can be uniquely
determined. Moreover, the annotation scheme af-
fects the named entity recognition performance.
We use the BIOES annotation scheme which has
better performance compared to the BIO annotation
scheme.

4.4 Model Parameters
The basic model structure is RoBERTa-wwm-ext-
large+BiLSTM-CRF. The batch size is set to 64,
the BERT learning rate is set to 1e-5, the BiL-
STM+CRF learning rate is set to 1e-3, the training
epoch is set to 50, AdamW is used as the optimizer,
and a dropout of 0.3 is used.

For the dev set, we used the basic model
of RoBERTa-wwm-ext-large+BiLSTM+CRF with
two training methods: Child-Tuning and adversar-
ial training.

For the test set, the training data from 10 ad-
ditional languages were first translated into Chi-
nese using the back-translation approach to do con-
tinue pre-training, and then a further pre-training
model with 7 epochs and 15 epochs was obtained
by changing the training duration.

For the model after continued pre-training, we
used data augmentation to extract entities from
other languages and translate them into Chinese,
and divided the Chinese training set of 15,300 data
into five parts, each containing 3,600 training data,
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Type CW PER LOC GRP CORP PROD

Num 8732 14851 7610 7250 5220 4354

Table 2: Number of entities for data augmentation.

Model Precision Recal F1

roberta-large 0.8810 0.8510 0.8648
Roberta+fgm 0.8840 0.8600 0.8710

Roberta+child-tuning-F 0.8775 0.8553 0.8656
Roberta+child-tuning-D 0.8722 0.8629 0.8668

Roberta-large+child-tuning-F+fgm 0.8900 0.8424 0.8629
Roberta-large+child-tuning-D+fgm 0.8929 0.8491 0.8686

Table 3: Results on the Chinese dev set.

and replaced the entities in each part with the trans-
lated entities, and added the development set to
each data augmentation to get the new five-fold
data. Since the total number of entities contained
in the other 10 languages is large, we selected three
languages with high Baseline scores, English, Ger-
man and Dutch, to do the data augmentation. Since
there are more entities appearing in the three lan-
guages, we need to do some filtering by downsam-
pling method.We use the down-sampling method,
retaining once for entities that appear once and
twice for those that appear twice or more. The final
number of entities obtained is shown in Table 2.

4.5 Experimental Results and Analysis
We have conducted a large number of experiments
locally and the results are shown in Table 3.

The experimental results of the final test set are
shown in Table 4. "+" represents the final results
using the fifty-fold cross-validation results of the
model to participate in hard voting, and "-" repre-
sents not using.

Looking at the results of the local experiments
and the test set, we found the following two prob-
lems:

• Why does the use of adversarial train-
ing and Child-Tuning in local experiments
show a drop in scores? According to our
previous experience, adversarial training and
Child-Tuning are effective for improving sys-
tem performance. We believe this is because
local experiments use the development set as
the test set for validation, and the number of
GRP tags in the Chinese development set is
very small, resulting in a strong influence of
GRP tags on the results and the score drop
phenomenon.

• Why does the score drop when using data

(1) (2) (3) (4) (5) (6)

7epoch-micro + - + + - +
15epoch-micro + - + - + +
7epoch-macro + + - - - +
15epoch-macro + + - - - +

Data Augmentation + + + + + -

F1 0.7844 0.7835 0.7823 0.7792 0.7812 0.7970

Table 4: Results on the Chinese test set.

魔 鬼 军 团 博 物 馆

True Table B-CW I-CW I-CW I-CW O O O
Baseline O O O O O O O

Other Method B-GRP I-GRP I-GRP I-GRP O O O
Our Method B-CW I-CW I-CW I-CW O O O

F1 0.7844 0.7835 0.7823 0.7792 0.7812 0.7970

Table 5: Case Study.

augmentation in a test set? After using the
data augmentation method, the score showed
a decreasing trend, which we believe is due
to the overfitting phenomenon of adding too
many entities, resulting in an imbalance be-
tween the number of entities and the number
of sentences. Later, we’ll experiment with
changing the amount of data enhanced entities
to see if we can improve the model’s perfor-
mance.

5 Case Study

Our model undergoes the above approach and the
above challenges are effectively improved. It is
able to identify ambiguous and complex entities in
shorter contexts.The case study is shown in Table 5.
As you can see, our method can easily predict en-
tities like creative work compared to Baseline and
other methods.

6 Conclusion and Future Work

To address the challenges of complex entities, am-
biguous entities and emerging entities problem,
we propose adversarial training and Child-Tuning
training methods, context-independent data aug-
mentation strategies, and a progressive domain-
adaptive pre-training mechanism to improve the
performance of the named entity recognition sys-
tem.

In the future, we will focus our efforts on strate-
gies and methods to enhance the use of data and
hope to make a good progress.
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Abstract

Biological and healthcare domains, artistic
works, and organization names can all have
nested, overlapping, discontinuous entity men-
tions that may be syntactically or semantically
ambiguous in practice. Traditional sequence
tagging algorithms are unable to recognize
these complex mentions because they violate
the assumptions upon which sequence tagging
schemes are founded. In this paper, we de-
scribe our contribution to SemEval 2022 Task
11 on identifying such complex named entities.
We leveraged an ensemble of ELECTRA-based
models exclusively pretrained on the Bangla
language with ELECTRA-based monolingual
models pretrained on English to achieve com-
petitive performance. Besides providing a sys-
tem description, we also present the outcomes
of our experiments on architectural decisions,
dataset augmentations and post-competition
findings.

1 Introduction and Related Works

The task of identifying and classifying entities in
text is known as named entity recognition (NER).
Some named entities are easy to distinguish in En-
glish since each of their words is capitalized; e.g.
"The capital of Bangladesh is Dhaka". In this sen-
tence, both "Bangladesh" and "Dhaka" are capi-
talized named entities. But there are other entity
mentions that are not simple nouns and are more
difficult to recognize. In the SemEval Task 11:
MultiCoNER Multilingual Complex Named Entity
Recognition (Malmasi et al., 2022b), the organizers
concentrated on the more unusual Named Entities,
which can be difficult to identify accurately from
the text.

*These authors contributed equally

NER tasks have received much attention from
the research community due to its crucial role in
different NLP problems like information retrieval
(Etzioni et al., 2005), Question Answering (Banko
et al., 2002) (Toral et al., 2005), Relation extrac-
tion, Entity linking (Limsopatham and Collier,
2016) and searching (Pasca, 2004). However, there
is such a conceptual difference between an ordi-
nary named entity and a complex named entity
that traditional tagging strategies cannot be used
to recognize these mentions (Brown et al., 1992).
Complex NERs can be any language element (sin-
gle word, abbreviations, imperative clauses, ques-
tions) of ambiguous (Multi-type or Overlapping)
and non-regular forms (Nested or Discontinuous
or Overlapping) (Ashwini and Choi, 2014). What
makes the task more challenging is, Complex NER
is part of the open-domain with ever expanding and
emerging entity sets and categories.

In recent days, Transformer-based models (De-
vlin et al., 2018) (Liu et al., 2019) (Yang et al.,
2019) have been performing as the state-of-the-art
(Yamada et al., 2020) (Yan et al., 2019) models
in different NER benchmark datasets. Although,
Augenstein and colleagues, demonstrate in their
paper that these powerful models are only good
at picking up the conventional NERs from well
formed texts (Augenstein et al., 2017), while for
complex NERs we still need to integrate external
knowledge sources. A recent paper on integrating
external sources or Gazetteer features in combina-
tion with contextual information, has shown that
this can indeed improve performance on complex
NER tasks (Meng et al., 2021). Gazetteer-based
solutions also show good performance improve-
ments in extracting NERs from both normal and
code-mixed webqueries (Fetahu et al., 2021).
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In tasks like NER, Bangla NLP has not made
significant progress. Many linguistic issues arise
while training models on Bangla because it is a
rich language in terms of both usability and vocabu-
lary (Ekbal and Bandyopadhyay, 2009). In Bangla,
there are few markers for tags, such as capitaliza-
tion (Karim et al., 2019). The same words can
have a variety of meanings and types of entities. In
addition, because Bangla is a somewhat free word
order language, words can exist in any place inside
a phrase without changing their meaning (Ekbal
et al., 2008). Affixes that are added to the root
word to cause complex inflections can modify the
meaning and type of the word as well (Ekbal and
Bandyopadhyay, 2009). Despite these issues, trans-
fomer models have been used with considerable
success for NER tasks in Bangla (Bhattacharjee
et al., 2021) (Ashrafi et al., 2020).

In this work, we demonstrate our approaches in
tackling the concerns raised in the SemEval Task
11, as well as the obstacles posed by the Bangla
language’s intrinsic complexity. In our proposed
architecture, we used a variety of methodologies,
primarily focusing on transfer-learning with state-
of-the-art deep learning architectures. In particu-
lar, we submitted the results obtained from mono-
lingual ELECTRA models, while we also ran ex-
periments with non-contextual word embeddings
and multilingual language models.

2 Dataset Description

According to the organizers, the data were gath-
ered from Wikipedia and Microsoft Orcas, which
included both statements and queries (Malmasi
et al., 2022a). The train set contains about 100
domain adaption instances, whereas the test set has
significantly more out-of-domain data to measure
out-of-domain performance. The test dataset is a
large file of 130k+ sentences, with a preset training
dataset of 15300 Bangla sentences and a develop-
ment dataset of 800 sentences. Other important
statistics about the dataset is presented in ??. The
distribution of NER classes in the training set is
shown in figure 1.

To perform the experiments, we augmented our
datasets in several stages. At first we token-wise
translated a portion of our non-Bangla dataset to
Bangla using google translate API1. In the first
stage, we combined translated Hindi and Farsi
dataset with our Bangla dataset, as all three lan-

1https://cloud.google.com/translate
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Figure 1: Frequency of each NER Classes

Type Frequency

Train 15300
Dev 800
Test 133119

Single Word Tokens 4824
Multi Word Tokens 10481

Table 1: Dataset Statistics

guages come from the Indo-Iranian (Wikipedia con-
tributors, 2022) family. Bangla contains borrowed
words from Farsi and it has the same sentence struc-
tures as Hindi. In the next step, we combined sub-
sets of translated sentences from all the non-Bangla
dataset. This process is repeated for English as well.
However, for English, we only combined English,
Hindi and Bangla datasets. A summary of our aug-
mented datasets is given in table 2.

3 System Description

The system we proposed for complex Bangla
Named Entity Recognition is an ensemble of
ELECTRA based models trained on the augmented
datasets mentioned in table 2 and a combination of
hyperparameters shown in table 3. The representa-
tion of each token is fed into our sequence tagging
algorithms, which generate a label for each token.
The tag of one token is determined by the attributes
of that token in context as well as the tag of the
token before it. To execute joint inference, these
local decisions are connected together.

The implementation of our mono-lingual
ELECTRA-based systems can broadly be catego-
rized based on the decision of using non-contextual
embeddings (word2vec) with a contextual pre-
trained weight (Bhattacharjee et al., 2021). We de-
fined the vanilla token classification system which
is largely based on the huggingface token classifi-
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Language Dataset Version Dataset Constituents Train Set (Sentences)

Bangla
D1 Bangla 15300
D2 Bangla + Hindi(tr.) + Farsi(tr.) 21673
D3 Bangla + All(tr.) 82552

English
D4 Bangla(tr.) 15300
D5 Bangla(tr.) + Hindi(tr.) 30600
D6 Bangla(tr.) + Hindi(tr.) + English 45900

Table 2: Default and Agumented Dataset Summary

cation scripts 2, as S1. The more advanced NER
system incorporating non-contextual embedding
and optionally, character CNN (Chiu and Nichols,
2016) and CRF (Qin et al., 2008) is defined as
S2. Finally, we developed a majority voting based
ensemble scheme, S3, to obtain our final prediction
for each token.

3.1 S1 : Vanilla ELECTRA-based token
classification

The input to S1 is first normalized using a spe-
cific normalization pipeline developed for Bangla
mentioned in the (Hasan et al., 2020) paper. The
normalized data is then tokenized and aligned with
labels. S1 has 12 hidden layers, each with 12 at-
tention heads. A standard training loop, with the
hyperparameters mentioned in table 3 is used in
different combinations. Since the original hugging-
face script does not include an early stopping mech-
anism, we wrote a custom callback based on evalu-
ation loss and a patience of 5. High-level overview
of S1 is shown in figure 2.

Dense
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Figure 2: System Overview of S1

2https://github.com/huggingface/transformers/blob/master/
examples/pytorch/token-classification/run_ner.py

System Settings

S1

Tokenizer csebuetnlp/banglabert
Dropout 0.1

Batch Size [4,8,16]
Epoch [10,20,30]

Patience 5
Learning Rate 1.00e-5
Weight Decay 0.01

S2

Tokenizer csebuetnlp/banglabert
Dropout [0.0, 0.1, 0.2]

LSTM layer [2, 4]
Batch Size [8,16]

Epoch [30,40,60,100]
Patience [5,7,10]

Use Character CNN [True, False]
Char CNN Kernel Size [3,6,9]

Learning Rate [1e-05, 5e-o5]
Weight Decay 0.01

Use CRF Layer [True, False]

S1.A

Tokenizer google/electra-base-discriminator
Dropout 0.1

Batch Size 64
Epoch 20

Patience 5
Learning Rate 1e-4, 1e-5

Table 3: Hyperparameter Settings for S1 S1.a and S2

3.1.1 S1.a : Vanilla ELECTRA-based token
classification on ENGLISH translated
data

As a preprocessing step for this approach, the in-
put dataset was tokenized and translated to english
using Google Translate API. The translated input
set is then used with the standard huggingface base
Electra model with different combination of hy-
perparameters, as presented in table 3. We experi-
mented with several token-translated language here
with early stopping mechanism at patience of 5.
The overall architecture is similar to S1.

3.2 S2: Advanced NER system

For this system, character and word level features
were first extracted and combined with word2vec
and ELECTRA embeddings. To generate the final
embedding these extracted input features passed
through a combination of layers including non-
contextual embedding layer, contextual pretrained
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Figure 3: System Overview of S2

embedding layer, character embedding layer, parts-
of-speech (POS) embedding layer, BiLSTM layer
and an additional multi-headed attention(MHA)
layer. This is projected through a linear layer and
optionally goes through a CRF decoding layer to
produce the final predictions. This system also
included an early stopping mechanism based on
evaluation f1 score. An overview of S2 is presented
in figure 3.

3.3 S3 : Majority Voting Ensemble

The basic concept behind this type of classifica-
tion is that the final output class is chosen based
on the most votes. This ensemble technique has
previously been used to overcome the constraints
of a single classifier, as presented by the authors in
(Siddiqua et al., 2016). Before majority voting, we
performed a thresholding on the prediction score
for each token from each of the 8 models trained
using a variety of augmented datasets, pretrained
weights, and hyperparameters. We only considered
a token label for majority voting if it had a predic-
tion score over 50%. Then, we counted the number
of times the distilled labels appeared in the set. A
label was added to the final list of labels if it ap-
peared in the majority of the models. Overview of
the S3 is shown in 4.

S1 S2 S1.A

Prediction
Threshold > 0.5

Majority Voting

Final Prediction

Figure 4: System Overview of S3

4 Experimental Setup

As we have previously discussed in section 2, we
augmented our training data in multiple steps which
extended the dataset several times compared to orig-
inal. We split each version of these dataset into a
70%-30% ratio during training. The default dev
set containing 800 sentences is used for the final
validation, in choosing the best performing model
during test phase. We employed accuracy, preci-
sion, recall, and F1 score as evaluation metrics,
with the macro averaged F1 score as the primary
and official metric, as per the benchmark of Sem-
Eval 2022 Task 11: MultiCoNER (Malmasi et al.,
2022b).

We defined each of our best performing model
configurations in table 4. While training both S1
and S2 we utilized all versions of the Bangla aug-
mented data. Additionally, to train S1.a we used all
versions of the English translated dataset. In table
3 we have provided the range of hyperparameters
used for each of our systems. The performance
of these individual models is also demonstrated
in table 5. However, in case of the English mod-
els, we have only presented the configuration and
prediction score for the best performing model. It
should be noted that, these models were submitted
for evaluation after competition deadline.

5 Results

We made 4 submissions during the test phase, by
applying majority voting scheme on various combi-
nations of model predictions. The performance of
the final ensemble outputs are presented in 6. As
we can observe, the final ensembles of all models
performs the highest and it is ranked 8th among all
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Model Versions

M1 S1 + D1 + MHA
M2 S1 + D2
M3 S1 + D4
M4 S2 + D1 + CRF
M5 S2 + D2 + CRF
M6 S2 + D4 + CRF + MHA
M7 S2 + D4 + character CNN
M8 S1 + D6

Table 4: Individual Model Configurations

Attempt Precision Recall macro F1

M1 0.4873 0.3783 0.402
M2 0.6121 0.6053 0.6072
M3 0.5437 0.5135 0.5248
M4 0.5184 0.487 0.4971
M5 0.5433 0.5253 0.526
M6 0.5605 0.5376 0.5431
M7 0.5514 0.5464 0.5472
M8 0.5357 0.5316 0.5333

Table 5: Individual Model Performance Summary

the other teams in Track 11. From the table 7, it is
visible that our ensemble model does not perform
very well in comparison with the top 3 models and
in fact, has a difference of over 20% with the best
performing model.

Models Precision Recall macro F1

M1 - M3 0.5924 0.566 0.5768
M4 - M7 0.5926 0.5449 0.5597
M1 - M7 0.5972 0.5578 0.5717
All Models 0.6209 0.5825 0.5975

Table 6: System Ensemble Summary

Team Name Score

USTC-NELSLIP (1st) 0.8424
DAMO-NLP(2nd) 0.8351
NetEase.AI (3rd) 0.7088
Sliced (7th) 0.6305
Team Atreides (8th) 0.5975
brotherhood (9th) 0.5863

Table 7: Leaderboard for Track-11

6 Discussion and Future Directions

From section 5 we see that, there’s hardly any dif-
ference among the variations of the S2 models,
while major fluctuations can be observed among
the variations of S1 models. Furthermore, sepa-
rately grouped ensembles of S1 and S2 performs
almost identically, with the combined ensemble of
S1 and S2. However, the performance improves
upon including the predictions from S1.a models,
which are trained on English translated datasets.
Despite this, the final best model is clearly overfit-
ting because it had over 80% score on the develop-
ment dataset, while performing significantly worse
(approximately 60%) during the test phase of the
competition. This outcome may be attributed to
several factors, including the choice of hyperpa-
rameters, dataset augmentations and splitting pro-
cess, early stopping criteria etc. As per the rules
of the competition, we only experimented with
mono-lingual models to obtain our results. How-
ever, we ran the baseline XLM-RoBERTa model
which achieves an f1-score of approximately 68%
on the development dataset. There are many scopes
of expanding this work. For starters, we would like
to refine our data augmentation pipeline to gener-
ate more well-formed instances. We would explore
and compare the performance of cross-lingual and
mono-lingual models. We also believe that, the
dataset requires further analysis and should receive
both quantitative and qualitative error analysis. In
addition, we want to do elaborate ablation studies
on the components of our systems. In this paper,
we have majorly focused on transfer learning and
so, in the future, we want to compare the perfor-
mance of simpler statistical and shallow models
with these deep models. Another thing we don’t
mention empirically in this paper is the class-wise
performance of each of our models. From general
observation, we find that all the models perform
the worst in identifying CW (creative works) tags,
while simpler tags like PER (person) and LOC (lo-
cation) was the easiest to tag. In future, we look
forward to investigate more into the reasons behind
this behaviors. Finally, we only exploited a simple
majority voting based ensemble scheme during this
competition. For our future directions, we would
also experiment on fusioning the layers of our mod-
els to develop a more sophisticated and informed
ensembling scheme.
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Abstract

In this work, we introduce our system to the
SemEval 2022 Task 11: Multilingual Com-
plex Named Entity Recognition (MultiCoNER)
competition. Our team (KDDIE) attempted the
sub-task of Named Entity Recognition (NER)
for the language of English in the challenge and
reported our results. For this task, we use trans-
fer learning method: fine-tuning the pre-trained
language models (PLMs) on the competition
dataset. Our two approaches are the BERT-
based PLMs and PLMs with additional layer
such as Condition Random Field. We report
our finding and results in this report.

1 Introduction

In today’s world there is an ever-growing supply of
unstructured data, a lot of it in the form of free text.
Named Entity Recognition (NER) is a process that
seeks to gather information from free text, by ex-
tracting and labeling the named entities. SemEval
2022 Task 11 is a competition where NER systems
are trained and then they compete against each
other for the best scores (Malmasi et al. (2022b)).
The task is split into 13 tracks: one for each of
11 different languages, a multi-lingual track, and a
mixed language track (Malmasi et al. (2022b)). In
this paper we will be focusing on track 1, which is
monolingual English NER. For this SemEval Task
participants were asked to have their system both
identify named entities and then label them with
one of the six provided labels. The six labels to
be used were person, location, group, corporation,
product, and creative work (Malmasi et al. (2022b)).
Figure 1 shows an example of these words being
tagged with their appropriate labels.

For this paper our strategy involved trying var-
ious transformer models from the HuggingFace
library (Wolf et al. (2020)) and training them on
the training data provided. We then tried adding
a conditional random field layer to some different
models to see if that would improve the scores that

Figure 1: Example of labeling named entities in a
sentence using the SemEval 2022 Task 11 tagging
scheme. These two sentences are taken directly from
the SemEval 2022 Task 11 training set (Malmasi et al.
(2022a)).

we received. With all the models we trained we
also fine-tuned many different training parameters
to obtain the best scores possible. We tried using
different number of epochs, different learning rates,
different batch sizes, and changing many additional
parameters.

In the research we have done leading up to this
paper we have learned many things. One is that
adding a CRF layer to a BERT model (Devlin
et al. (2018)) helps its performance, but adding a
CRF layer to a DeBERTa model (He et al. (2021))
doesn’t help and actually hurts its performance for
NER. We also learned through our testing that a
DeBERTa model (He et al. (2021)) is one of the
best transformer models for NER, specifically on
the SemEval 2022 Task 11 dataset (Malmasi et al.
(2022a)).

2 Related Work

There are many challenges that can make NER ex-
tremely difficult. In Meng et al. (2021) they explain
that named entity recognition is especially difficult
in situations with low-context or in scenarios where
the named entities are exceptionally complex and
unique. Also as stated in Li et al. (2020) NER
requires well annotated data and lots of it. This
a major obstacle because annotating data can be
extremely time consuming and expensive.

Some older approaches to NER include rule-
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based systems and unsupervised learning systems,
however both of these fall short of the perfor-
mance of modern feature-based supervised meth-
ods, which often use transformer models (Li et al.
(2020)). According to Li et al. (2020) using pre-
trained transformer models with other possible lay-
ers and then fine tuning these transformers is be-
coming the standard for NER. Within this paper
we will be using pre-trained transformer models to
help us achieve the best results.

Another related work (Souza et al. (2019)) shows
the use of a BERT transformer model (Devlin et al.
(2018)) for named entity recognition. They also
added a conditional random field (CRF) layer on
top the BERT model which ended up improving
results. This paper (Souza et al. (2019)) shows that
both BERT is good for NER and that adding a CRF
layer can also help a transformer model perform
better.

3 System Overview

For this paper our main strategy will be fine-tuning
some large feature-based transformer models on
the training data provided. We used the Hugging-
Face library (Wolf et al. (2020)) to download and
train the transformer models. To train our models
we used the HuggingFace default optimizer called
AdamW. For the most part, we left the AdamW
optimizer parameters at the default values. Also,
for all of the models we used a linear learning rate
scheduler with zero warm up steps.

3.1 BERT

For this competition we experimented with several
different systems and methodologies. The first and
most basic was to train a BERT model on the data
provided (Devlin et al. (2018)). To do this we took
a BERT-large-uncased model and trained it for 5
epochs at a learning rate of 2e-5 on the competition
training data. With this model we received a preci-
sion of 0.870, a recall of 0.811, and a F1-score of
0.839.

3.2 BERT-CRF

Next, we tried improving the score of the BERT
model (Devlin et al. (2018)), by adding a condi-
tional random field (CRF) layer after the BERT
model. Following the work in (Yang and Hsu
(2021)), using the CRF layer should help the model
learn the specific parameters of the task, and thus
increase the score. We trained this model for 6

epochs at a learning rate of 2e-5 and with a weight
decay of 0.01. With this model we received a pre-
cision of 0.851, a recall of 0.862, and a F1-score of
0.856.

3.3 DeBERTa-Large
The third model was created using a DeBERTa
pre-trained language model. DeBERTa is a BERT
(Devlin et al. (2018)) based transformer model that
uses disentangled attention and enhanced decoding
to improve performance (He et al. (2021)). Within
DeBERTa they used a two-vector approach where
they split the position encoding and the token en-
coding into two separate vectors. This allowed
the attention layers to be disentangled and learn
from each encoding vector separately. They also
used enhanced decoding where they give the model
both the relative word positions within the sentence
and their absolute positions. These improvements
allow DeBERTa to outperform BERT in many sce-
narios (He et al. (2021)). It achieves state of the art
scores in many Natural Language Processing tasks
including NER (He et al. (2021)).

For this paper we took a DeBERTa model and
trained it on the SemEval 2022 Task 11 training
data. We got the best results when training the De-
BERTa large model for 5 epochs with a learning
rate of 2e-5. With this model we received a preci-
sion of 0.870, a recall of 0.872, and a F1-score of
0.871.

3.4 DeBERTa-XLarge
This model is similar to the DeBERTa Large except
with more parameters. This model has twice the
number of layers and parameters. We also got
the best results when training the DeBERTa xlarge
model for 5 epochs with a learning rate of 2e-5.
With this model we received a precision of 0.868,
a recall of 0.876, and a F1-score of 0.872.

3.5 DeBERTa-CRF
For this model we decided to follow in the ideas
of the BERT-CRF model (Yang and Hsu (2021))
and try to add a CRF layer to our DeBERTa large
model (He et al. (2021)). We thought since the
CRF layer improved the score of the BERT model
that it might do the same for a DeBERTa model.
We made a DeBERTa-CRF model and trained it on
the task training data for 5 epochs with a starting
learning rate of 5e-5 and a weight decay of 0.01.
Unfortunately, this model performed quite poorly
with a final score precision of 0.820, a recall of
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0.830, and a F1-score of 0.825 on the validation
dataset (Malmasi et al. (2022a)).

4 Experimental Setup

The data that the organizers provided was in text
files in CoNLL format (Malmasi et al. (2022a)).
For the English language there was 15300 training
examples and 800 validation examples (Malmasi
et al. (2022a)). All of the examples provided were
in BIO format. BIO is a scheme where all words at
the beginning of a named entity are labeled with a
B, all the words inside an entity are labeled with a
I, and all words outside an entity are labeled with
an O. In total that means there are 13 possible tags:
O, B/I-PER, B/I-LOC, B/I-GRP, B/I-CORP, B/I-
PROD, and B/I-CW (Malmasi et al. (2022b)). The
following is the meaning of the abbreviations: PER
is person, LOC is location, GRP is group, CORP is
corporation, PROD is product, and CW is creative
work.

To process that data file first we split the text into
each example and then split each example into a list
of tokens and labels. Then we mapped each label
to a specific number to represent it, 0-12. Finally,
from these lists of lists we created a Hugging Face
dataset (Wolf et al. (2020)). We left the data sets
in the default train/eval splits of 15300 training
examples and 800 validation examples.

To evaluate our models, we used the metrics
macro precision, recall, and f1-score. Precision
deals with how accurate the model is when it does
predict a label. Recall corresponds to how good
the model is at predicting labels compared to the
total number of actual entities. Macro f1-score
is the harmonic mean of these two, and gives the
best single number representation of how well the
model is performing. To calculate these, we used a
python library called seqeval (Nakayama (2018)).
To use seqeval we simply provide it a list of the pre-
dicted values and a list of the ground truth values.
The equations seqeval (Nakayama (2018)) uses are
shown below with tp being true positives, fp being
false positives, and fn being false negatives:

Macro Precision =
tp

tp+ fp

Macro Recall =
tp

tp+ fn

Macro F1 =
2 ∗ Precision ∗Recall
Precision+Recall

5 Results

Based on the results shown in Table 1 the
DeBERTa-XLarge model (He et al. (2021)) per-
formed the best. The BERT-CRF model was signif-
icantly better than the BERT model (Devlin et al.
(2018)), but it still wasn’t better than the DeBERTa
models. As expected, the DeBERTa-XLarge model
slightly outperformed the DeBERTa-Large model
since it had more parameters. The DeBERTa-CRF
model performed much worse than we had hoped
and was worse than even the base BERT model.

Model Precision Recall F1

BERT 0.870 0.811 0.839
BERT-CRF 0.851 0.862 0.856

DeBERTa-Large 0.870 0.872 0.871
DeBERTa-XLarge 0.868 0.876 0.872

DeBERTa-CRF 0.820 0.830 0.825

Table 1: Summary of the scores of all the models tested
in this paper. All the scores are from testing on the
SemEval 2022 Task 11 validation data set (Malmasi
et al. (2022a)).

Interestingly the BERT base model (Devlin et al.
(2018)) was tied for the highest precision score
even though its recall and F1 scores were relatively
low. This means that when it did make a predic-
tion the BERT model was the most accurate at
labeling that entity. Out of all the models tried the
DeBERTa-XLarge model (He et al. (2021)) ended
up as the best scoring model overall and had the
highest recall score.

For the official results we used our best model
which was the DeBERTa-XLarge model (He et al.
(2021)) and made predictions on the provided test
data set (Malmasi et al. (2022a)). According to
those official SemEval 2022 Task 11 metrics our
model had a macro F1 score of 0.717 on the test
data. This score put us in 16th place in the compe-
tition results.

5.1 Category Results

Table 2 displays the results of our best model, the
DeBERTa-XLarge model, on each tag category.
Person and location both have high scores with
creative work and product being much lower. This
makes sense because person and location had the
most instances in the training data. Intuitively it
also makes sense because person and location are
generally simpler entities to identify.
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Model Precision Recall F1

Corporation 0.82 0.84 0.83
Creative Work 0.71 0.74 0.73

Group 0.80 0.88 0.84
Location 0.88 0.93 0.91
Person 0.94 0.96 0.95

Product 0.78 0.81 0.80

Table 2: The results of our best model the DeBERTa-
XLarge model on each possible label. These scores
are on from evaluating on the SemEval 2022 Task 11
validation data set (Malmasi et al. (2022a)).

5.2 Error Analysis

Figure 2 shows a confusion matrix for out best
model, the DeBERTa-XLarge model. It shows
a couple of key areas where our model is strug-
gling. The matrix shows that while our model is
doing well most of the time, there are a couple of
labels it commonly confuses. For example it strug-
gles distinguishing between group and corporation.
As seen in the matrix when our model predicts B-
CORP it is right 88.1% of the time and its most
common error is B-GRP which it mistook for B-
CORP 4.1% of the time. Logically this makes
sense because those labels are quite semantically
similar. Interestingly for the entities the model is
the worst at predicting (product and creative work),
the most common mistake is labeling them PROD
or CW when in reality it isn’t an entity and is O.

Another surprising error is the number of I or
inside entities the model struggles with. It was
expected that the model would figure out that the
for example an inside entity like I-PER can not
follow a start entity of a different type like B-LOC.
In an ideal case the model shouldn’t mistake an I
entity with another I entity, it should just match the
B entity. However there are cases in the output of
this happening. This would be a good problem to
fix in future work.

6 Conclusion

We tried many different types of models for this Se-
mEval 2022 Task 11 competition. We tried training
each of these models on the training data, a BERT
model, a BERT-CRF model, a DeBERTa-Large
model, a DeBERTa-XLarge model, and lastly a
DeBERTa-CRF model. In the end the fine-tuned
DeBERTa-XLarge model achieved the highest F1-
score. We also found out that adding a CRF layer

Figure 2: This figure shows a confusion matrix for the
different entities that the DeBERTa-XLarge model had
to identify. These scores are on from evaluating on the
SemEval 2022 Task 11 validation data set (Malmasi
et al. (2022a)).

to a DeBERTa pre-trained model didn’t help its
performance at all.

For any future work or improvements on our cur-
rent work, we would like to try adding some other
layers to the DeBERTa model and work on fixing
some commmon errors our model has. Since the
DeBERTa model seems to be the best at NER, we
would like to modify it in some way or modify the
data in some way to help it perform better. With
further adjustments and experimentation, we be-
lieve that the performance of our DeBERTa model
could improve.
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Abstract

We present Transformer based pretrained mod-
els, which are fine-tuned for Named Entity
Recognition (NER) task. Our team par-
ticipated in SemEval-2022 Task 11 Multi-
CoNER: Multilingual Complex Named En-
tity Recognition task for Hindi and Bangla.
Result comparison of six models (mBERT,
IndicBERT, MuRIL (Base), MuRIL (Large),
XLM-RoBERTa (Base) and XLM-RoBERTa
(Large) ) has been performed. It is found that
among these models MuRIL (Large) model
performs better for both the Hindi and Bangla
languages. Its F1-Scores for Hindi and Bangla
are 0.69 and 0.59 respectively.

1 Introduction

Named Entity Recognition (NER) is one of the
hot topic in natural language processing (NLP).
NER is a task of identification of named entities
from given sentence and their classification into
predefined classes like Person, Location, Organi-
sation, Corporation etc. For below sentence:

राम Ǒदल्ली में गूगल में काम करता है।,
राम is Person, Ǒदल्ली is Location and गूगल is
Corporation.

The application of NER can be found in
other NLP tasks such as text summarization
(Toda and Kataoka, 2005), information retrieval,
machine translation (Babych and Hartley, 2003),
question-answering (Molla Aliod et al., 2009).
The researchers have come up with many ap-
proaches for NER task such as Rule-based
(Krupka and IsoQuest, 2005), feature-based
Supervised approach (Liao and Veeramachaneni,
2009), Unsupervised approach and Deep learning
based approach (Li et al., 2020) and Transformer
based approach (Vaswani et al., 2017).

∗ Authors equally contributed to this work.

The Transformer models are good at capturing
features from lengthy sentences compared to re-
current neural networks (Vaswani et al., 2017).
RoBERTa model (Liu et al., 2019) performed
good for NER task for rich resource languages like
English.

For Hindi and Bangla languages, we applied
XLM-RoBERTa, which is a multilingual version
of RoBERTa pre-trained in 100 languages (in-
cluding Hindi and Bangla). We also applied In-
dicBERT (Kakwani et al., 2020) and mBERT (De-
vlin et al., 2018). At last, we applied MuRIL
(Khanuja et al., 2021; Sharma et al., 2022) which
is specifically pre-trained in the text of 17 Indic
languages and it gave better result than above mod-
els for the NER task.

This paper consists of a total of six sections
apart from the introduction. Section 2 briefly de-
fines the problem definition and task provided by
organizers. Section 3 discusses the work done till
now on the NER task. Section 4 mentions the
dataset being used in this paper. Section 5 de-
scribes the general Transformer architecture for
the NER task, along with prepossessing and post-
processing. Section 6 discusses the results ob-
tained by used models on both Hindi and Bangla
languages and the error analysis. Finally, Section
7 concludes this paperwork.

2 Problem Definition

The organisers (Malmasi et al., 2022b) have ar-
ranged 13 tasks according to language. They have
provided a separate dataset for each task. Each
dataset is comprised of training, development and
testing. Respective named entity tags were pro-
vided in the training and development dataset.
Only tokens were provided in the testing dataset.
Participants were required to train the models us-
ing the training and development dataset and pre-
dict NER tags on the testing dataset. We have
worked on Hindi and Bangla tasks.

1536



3 Related Work

Several works have been done on NER that can
be categorized under two broad categories: tradi-
tional and deep learning methods.

3.1 Traditional NER approaches

In this approach, feature engineering is carried out
by the researchers (Li et al., 2020). Under this
category comes the rule-based, feature-based su-
pervised learning, and unsupervised learning ap-
proaches.

In the rule-based method, the hand-crafted se-
mantic and syntactic features are provided to rec-
ognize the entities (Krupka and IsoQuest, 2005;
Aone et al., 1998). These rules-based systems can
not be extended to other domains because they
depend on domain-specific rules (Appelt et al.,
1995).

In the feature-based supervised approach, fea-
ture engineering plays a critical role. Features
such as word-level features (Liao and Veeramacha-
neni, 2009; Settles, 2004) and document-level fea-
tures (Ravin and Wacholder, 1997; Zhu et al.,
2005) are used. These features are then passed
through supervised models: HMM (Eddy, 1998),
Decision trees (Quinlan, 1986), SVM (Hearst
et al., 1998) and CRF (Lafferty et al., 2001) for
the classification in the labeled corpus.

In the unsupervised approach, the lexical pat-
terns and statistical features are computed, which
helps in the clustering (Collins and Singer, 1999).
The clustering approach is applied as the data is
not labeled in these cases. They extract named en-
tities by making clusters depending on the context
similarity (Nadeau et al., 2006).

3.2 Deep Learning NER approaches

As compared to the traditional NER approach, this
approach does not explicitly need features. These
models automatically extract the hidden features,
due to which the accuracies of these models are
high compared to the traditional NER approaches.
This approach involves the work done using multi-
level perceptrons, CNN (Wu et al., 2015), and BiL-
STM (Wei et al., 2016; Lin et al., 2017). Recently
the Transformer-based models have gained signif-
icant advancement in this field (Wolf et al., 2020).
The Transformer-based models are good at cap-
turing features in lengthy sentences as compared
to recurrent neural networks. The Transformer
(Vaswani et al., 2017) is equipped with parallel

training and made up of a pair of an encoder and a
decoder (to get sequence to sequence prediction).
For NER task encoder is used.

In paper (Devlin et al., 2019), the authors
have performed NER task on CoNLL-2003 dataset
(Tjong Kim Sang and De Meulder, 2003). The au-
thors applied both variants of BERT (Large and
Base). The Large variant achieved an F1-score
of 92.8 on the test set, whereas the base variant
achieved F1-score of 92.4 on the test set. The au-
thors have used BERT as word embedding and fed
this to the BiLSTM. XLM-RoBERTa (Conneau
et al., 2020) outperform the mBERT (Devlin et al.,
2019) and XLM (CONNEAU and Lample, 2019)
and show strong improvements over low-resource
languages.

4 Data

The dataset (Malmasi et al., 2022a) for Hindi
and Bangla contains six different NER entities,
namely Location (LOC), Person (PER), Produc-
tion (PROD), Group (GRP), Corporation (CORP)
and Creative Work (CW). The dataset is in stan-
dard CONLL format, which uses BIO (Beginning-
Inside-Outside) tagging. The dataset provided
was of three types, namely training, develop-
ment and testing. The training and development
data contains tokens with tags, whereas testing
data contains only tokens. For both Hindi and
Bangla tracks, there were 15300 samples in train-
ing and 800 samples in development. In the test-

Tag Training Development
B-LOC 2614 131
B-PER 2418 133
B-PROD 3077 169
B-GRP 2843 148
B-CORP 2700 134
B-CW 2304 113
I-LOC 1604 77
I-PER 2836 166
I-PROD 2295 107
I-GRP 5821 297
I-CORP 2917 138
I-CW 3592 151
O 209545 10882
Total 244566 12646

Table 1: Entity distribution for Hindi track

ing dataset, for Hindi and Bangla track there were
141565 (with 933273 total tokens) and 133119
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(with 693886 total tokens) samples, respectively.
Tables 1 and 2 shows the number of each entity in
the training and development dataset for Hindi and
Bangla, respectively.

Tag Training Development
B-LOC 2351 101
B-PER 2606 144
B-PROD 3188 190
B-GRP 2405 118
B-CORP 2598 127
B-CW 2157 120
I-LOC 1453 61
I-PER 3132 180
I-PROD 1964 129
I-GRP 4248 226
I-CORP 2701 122
I-CW 2844 161
O 160250 8654
Total 191897 10333

Table 2: Entity distribution for Bangla track

5 Methodology

This work fine tuned 6 Transformer (Vaswani
et al., 2017) based pre-trained model for the
task. IndicBERT (Kakwani et al., 2020) is Al-
bert based model which is pre-trained on 11 In-
dic languages, including Hindi and Bangla. We
also fine-tuned XLM-RoBERTa (Base) and XLM-
RoBERTa (Large) (Conneau et al., 2020), which is
pre-trained on text in 100 languages. Other mod-
els are mBERT (Devlin et al., 2018) which is pre-
trained on text in 104 languages and MuRIL Base
and MuRIL Large (Khanuja et al., 2021) which is
pre-trained on text in 17 languages with explicitly
augmented monolingual text corpora with trans-
lated and transliterated document pairs. All the
corpora describe above include Hindi and Bangla
languages.

Figure 1 shows the architecture of this work,
which is divided into 3 sections: Preprocessing,
Fine tuning and Post processing.

5.1 Preprocessing
XLM-RoBERTa (Conneau et al., 2020) model and
IndicBERT (Kakwani et al., 2020) uses Senten-
cePiece tokeniser (Kudo and Richardson, 2018),
which is language independent subword tokeniser
and detokeniser. mBERT, MuRIL Base and
MuRIL Large model uses WordPiece tokeniser

Figure 1: Generalized transformer-based model

(Wu et al., 2016). As all models use subword to-
keniser, any token may get divided into more than
one subword. Therefore an alignment of the la-
bel is required for that token. Each subword is as-
signed with the same label as the tokenised word.
In figure 2, the token पैंजर is divided by tokeniser
into two subwords: 'पै' and '◌ंजर', both subwords
gets B-CW as their label and the token थी। is di-
vided by tokeniser into two subwords: 'थी' and '।',
both subwords gets O as their label. Tokenised sen-

Figure 2: Label alignment

tences are added with special tokens along with
padding tokens, and thereafter, all the tokens re-
placed with their ID values for feeding into the
models.

5.2 Fine tuning

Architecture in Figure 1 shows that a fully con-
nected layer added on final output hidden vector of
the model. This layer takes word embedding cor-
responding to each token generated by the model
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(base models generate word embedding of 768 di-
mension and large models generate word embed-
ding of 1024 dimension) and maps each embed-
ding to the output layer of size (13,), which is
the number of unique labels of our task. Fur-
ther, we calculate loss using the cross-entropy loss
function. This model is optimized with Adamw
(Loshchilov and Hutter, 2019) and L2 weight de-
cay of 0.01. It is fine-tuned with the dynamic learn-
ing rate with linear learning rate scheduler with
max learning rate 4e-5, and also, batch size varies
from 8 to 64 for different models subject to op-
timization and a dropout of 0.1 on all layers ap-
plied. Maximum token length is taken between
84 to 128 depending on the maximum length of
tokenised sentences, which helps in faster train-
ing. Number of epochs for training were 30 for
all the models in this experiment. We chose best
model based on calculated F1-score on valid data.
This work predicts the sequence of labels by the
argmax of the final layer for each tokens. All
models along with the fully-connected layer im-
plemented by XXXForTokenClassification (Wolf
et al., 2020), where XXX refers the corresponding
model.

5.3 Post processing
After the generation of labels from the model, la-
bels are realigned according to the detokenised
sentence. This is reverse of label alignment, dis-
cussed in the Preprocessing section. The labels of
all the tokens which are first tokens of their origi-
nal word, are taken as generated labels.

Model Precision Recall F1-Score
(%) (%) (%)

M1 47.99 45.77 46.42
M2 51.05 48.08 48.97
M3 62.59 61.49 61.81
M4 70.06 69.07 69.08
M5 47.31 45.98 46.01
M6 51.90 47.90 49.55

Table 3: Results of each model on Hindi test data
(M1: mBERT, M2: IndicBERT, M3: MuRIL Base, M4:
MuRIL Large, M5: XLM-RoBERTa Base M5: XLM-
RoBERTa Large)

6 Results and Analysis

Table 3 and 4 shows the macro average of Preci-
sion, Recall and F1-score of each model on testing

Model Precision Recall F1-Score
(%) (%) (%)

M1 45.28 41.54 42.47
M2 43.40 37.48 38.55
M3 56.98 56.73 56.71
M4 60.25 59.27 59.52
M5 34.75 32.26 33.37
M6 38.74 33.07 35.45

Table 4: Results of each model on Bangla test data
(M1: mBERT, M2: IndicBERT, M3: MuRIL Base, M4:
MuRIL Large, M5: XLM-RoBERTa Base M5: XLM-
RoBERTa Large)

dataset for Hindi and Bangla respectively.
Tables 6 and 7 present the Entity-wise F1 score

for Hindi and Bangla testing dataset correspond-
ing to each NER model. It has been found that
MuRIL (Large) is showing the highest F1 score for
each entity. It has also been observed that the F1
score for CW (Creative work) is the least among
all the entities. It indicates that predicting CW is
the most difficult for the model.

Sentence अब तक का सबसे बड़ा
बािलका बधू (1976 Ǒफ़ल्म)

Gold
annotation

[ O, O, O, O, O, B-CW, I-CW,
I-CW, I-CW ]

mBERT
[ O, O, O, O, O, O, B-CW,

I-CW, I-CW ]

IndicBERT
[ O, O, O, O, O, O, B-CW,

I-CW, I-CW ]

MuRIL
[ O, O, O, O, O, B-CW, I-CW,

I-CW, I-CW ]
XLM-
RoBERTa
Large

[ O, O, O, O, O, O, B-CW,
I-CW, I-CW ]

Table 5: Comparative analysis of a sentence from test
corpus

Finally, Table 5 presents the comparative results
obtained using different transformer models. Here,
the MuRIL output is close to Ground annotation
compared to other models.

7 Conclusion

Results show that large models are better than
their corresponding base models. MuRIL (Large)
model is the best among all six models described
above and the second-best model is MuRIL (Base).
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Entity M1 M2 M3 M4 M5 M6
LOC 51.13 52.44 61.52 67.43 49.06 5077
PER 51.50 58.11 71.09 77.86 51.76 5589
PROD 40.57 47.78 59.54 69.01 38.93 4302
GRP 46.74 49.92 63.78 71.48 50.37 5357
CW 38.83 31.64 51.49 56.95 33.97 3942
CORP 49.77 53.95 63.46 71.78 51.96 5466
Avg. 46.42 48.97 61.81 69.08 46.01 49.55

Table 6: Entity-wise F1-score of each model for Hindi dataset
(M1: mBERT, M2: IndicBERT, M3: MuRIL Base, M4: MuRIL Large,

M5: XLM-RoBERTa Base, M6: XLM-RoBERTa Large)

Entity M1 M2 M3 M4 M5 M6
LOC 48.91 43.38 54.56 55.93 37.99 38.03
PER 56.35 56.71 74.98 78.21 45.10 48.28
PROD 39.28 40.66 55.03 63.54 37.60 37.53
GRP 35.79 29.62 53.77 48.03 23.45 26.75
CW 30.44 22.79 40.78 48.38 18.11 20.97
CORP 44.09 38.17 61.14 63.04 38.00 41.14
Avg. 42.47 38.55 56.71 59.52 33.37 35.45

Table 7: Entity-wise F1-score of each model for Bangla dataset
(M1: mBERT, M2: IndicBERT, M3: MuRIL Base, M4: MuRIL Large,

M5: XLM-RoBERTa Base M5: XLM-RoBERTa Large)

Predicting labels corresponding to Creative Work
(CW) is most challenging for all the models and
predicting labels corresponding to Person (PER)
is easier than predicting other labels.
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Abstract

In this paper, we describe our proposed method
for the SemEval 2022 Task 11: Multilingual
Complex Named Entity Recognition (Multi-
CoNER). The goal of this task is to locate and
classify named entities in unstructured short
complex texts in 11 different languages. After
training a variety of contextual language mod-
els on the NER dataset, we used an ensemble
strategy based on a majority vote to finalize our
model. We evaluated our proposed approach
on the multilingual NER dataset at SemEval-
2022. The ensemble model provided consistent
improvements against the individual models
on the multilingual track, achieving a macro
F1 performance of 65.2%. However, our re-
sults were significantly outperformed by the
top ranking systems, achieving thus a baseline
performance.

1 Introduction

Named entity recognition (NER) is the process of
identifying pre-defined categories of named enti-
ties, such as people, places, organizations, from
unstructured text. NER usually serves as an im-
portant first component in various natural language
processing (NLP) tasks, such as question answer-
ing (Mollá et al., 2006), information retrieval (Guo
et al., 2009) and machine translation (Babych and
Hartley, 2003). Thus, the performance of the NER
system can influence the quality of many down-
stream NLP applications. Despite the high perfor-
mance achieved by the current NER systems, they
still face some critical challenges(Augenstein et al.,
2017). NER models are typically trained on a well-
formed news text containing a variety of entities
within a relatively long context. In addition, most
of the existing NER datasets usually include a large
number of common entities between train set and
test set. As a result, the performance of the models
drops dramatically in the real world applications
as they must deal with unseen entities and noisy

texts. Furthermore, previous studies on NER have
mostly focused on English and as a result, many
other languages specially low-resource ones, such
as Turkish, Korean, and Persian, have not been
as well studied (Rouhizadeh et al., 2021a,b). In
this context, SemEval-2022 proposes the task of
Multilingual Complex Named Entity Recognition
(MultiCoNER) (Malmasi et al., 2022b), which is
concerned with detecting semantically ambiguous
and complex entities in short and low-contextual
settings for 11 languages (i.e. English, Spanish,
Dutch, Russian, Turkish, Korean, Farsi, German,
Chinese, Hindi, and Bangla). In this paper, we
present a multilingual NER method based on en-
semble of deep neural language models. We first
trained multiple NER models on the official train-
ing dataset and then utilized an ensemble strategy
based on a majority of votes from the top-3 best-
performing models. Based on the macro-average
F1-score of 65.2, achieved by our model, we placed
20th in the multilingual track of the competition.
The rest of the paper is organized as follows. Sec-
tion 2 reviews published work related to the NER
task. Section 3 and section 4 explain our proposed
NER system and the experimental setup respec-
tively. The results and detailed analysis of the
model performance are discussed in section 5 and
the conclusion and future work are reported in sec-
tion 6.

2 Related Work

Over the last decade, deep learning approaches
have significantly improved the results of different
NER tasks (Baevski et al., 2019; Akbik et al., 2018).
The most recent works on NER utilize pre-trained
language models like BERT in a supervised setting
(Yamada et al., 2020; Wang et al., 2020; Schnei-
der et al., 2020; Shaffer, 2021). These models use
pre-trained language models that have been trained
on a large monolingual or multilingual corpus to
fine-tune NER models. Meng et al. (2021) intro-
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duced a number of current challenges of developed
NER datasets and systems. The challenges include
the presence of long-tail entities, i.e., entities with
large distribution and millions of values, emerg-
ing entities, i.e., domains with growing entities, or
complex entities, i.e., linguistically complex enti-
ties such as gerunds and full clauses, in the context
of the systems’ inputs. In addition, as discussed in
Jayarao et al. (2018) the context of search queries
and questions usually include a short amount of
words which could be problematic for NER sys-
tems. To overcome the above issues, Meng et al.
(2021) created three new NER datasets, includ-
ing short sentences, questions, and search queries,
and a novel NER system which uses a contextual
gazetteer representation (CGR) encoder and a mix-
ture of experts (MoE) gating network to feed a CRF
layer for final predictions. Fetahu et al. (2021) also
tackled the challenge of the code-mixed queries
in which entities and non-entity query terms co-
exist simultaneously. They developed a large-scale
NER dataset in six languages with four different
scripts as well as a novel multi-lingual NER method
for code-mixed queries which integrates external
knowledge into the multilingual setting.

3 Method

Our multilingual NER system takes sentences in
11 different languages and automatically identifies
and classifies named entities within each sentence.
For each sentence, the system utilizes three differ-
ent BERT-like models (fined-tuned on the multi-
lingual NER dataset) to perform entity prediction
independently. Next, for each entity, the label with
the majority of votes will be chosen as the final
prediction. In the following, we provide details
on different NER models we used in our pipeline
and our ensemble strategy for label prediction in
section 3.1 and section 3.2, respectively.

3.1 Training NER Models

To build our NER model, we first fine-tune a
number of pre-trained multilingual transformer-
based models, i.e., Multilingual-BERT (Pires et al.,
2019), XLM-RoBERTa-base, XLM-RoBERTa-
Large (Conneau et al., 2019) and Distilbert-
Multilingual (Sanh et al., 2019), on the official
training dataset (see section 4.1 for more details
about the dataset). We fine-tune each particular
model by adding (1): a fully connected neural net-
work (FCNN) layer or (2): a conditional random

fields (CRF) layer (Lafferty et al., 2001) on the
top of the transformer architecture. Transformer-
based models usually use the byte-pair encoding
for the tokenization. In other words, each token
might be divided into more than one sub-token. To
deal with this, during training, among the subto-
kens labels of a given word, the label of the fisrt
sub-token has been considered as the label of the
word. We also use the BERT-like models to train
a simple BiLSTM model with an additional linear
classifier on the dataset 1 Following Reimers and
Gurevych (2019), we calculate the vector represen-
tation for each context word by taking the average
of the layer output embeddings of the pre-trained
language model and feed them to a BiLSTM neural
network as input2.

As the next step, we select three of the best-
performing NER models and use an ensemble strat-
egy (discussed in section 3.2) to finalize our model.

3.2 Ensemble of the NER Models

Having trained multiple NER models, we use an
ensemble strategy based on a majority vote to as-
sign the predictions (Copara et al., 2020b,a; Knafou
et al., 2020; Naderi et al., 2021). More in detail,
for a given sentence S, three NER models infer
their predictions independently. Thus, we will have
three labeled instances of S associated with several
entity labels. Next, for each identified entity, we
choose the label that gets the majority of votes (at
least two votes) as the final prediction. Note that as
we use three different NER models in our pipeline,
three different labels might be assigned to a given
entity. In such cases, we choose the predicted label
of the best-performing model (evaluated on the dev
set) as the final prediction.

4 Experimental Setup

This section discusses the dataset we used to con-
duct our experiments, followed by the parameters
we used to train the models.

4.1 Data

Our experiments were conducted using the multilin-
gual dataset provided by the SemEval-2022 Task 11
organizers (Malmasi et al., 2022a). The dataset con-
sists of entity annotated sentences from eleven dif-

1We used the code provided by Adelani et al. (2021) to
perform BiLSTM experiments.

2We only report the results when we feed the BiLSTM
with XLM-RoBERTa-large as it performed best compared to
the other models
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Entity Train Dev Test
Person 35091 18.4% 8862 18.6% 2342 18.7%

Location 43052 22.6% 10978 23.1% 2932 23.4%
Group 26373 13.8% 6473 13.6% 1638 13.0%

Creative Work 30817 16.2% 7556 15.9% 2015 16.1%
Production 28170 14.8% 6949 14.6% 1848 14.7%
Corporation 26315 13.8% 6575 13.8% 1738 13.8%

All 189818 100% 47393 100% 12513 100%

Table 1: General statistics of the dataset including the number and the distribution of each entity.

Entity / Model m-BERT XLM-RoBERTa-base XLM-RoBERTa-large m-DistillBERT BiLSTM Ensemble
Person 69.2 | 70.8 88.8 | 89.2 90.1 |90.8 83.0 | 82.1 74.3 91.3

Location 69.4 | 69.9 86.9 | 87.6 88.0 | 89.3 83.0 | 79.9 75.7 89.9
Group 60.7 | 71.1 80.3 | 81.7 84.2 | 85.5 74.0 | 73.4 61.3 86.2

Creative Work 58.3 | 59.1 75.0 | 77.4 80.7 | 82.3 67.0 | 73.2 51.1 81.7
Production 55.0 | 56.6 74.8 | 76.1 79.6 | 80.6 67.0 | 63.5 54.6 80.6
Corporation 69.1 | 69.4 82.7 | 83.9 85.5 | 87.1 76.0 | 75.2 61.5 88.1

All 63.8 | 64.9 82.5 | 84.0 84.7 | 85.8 75.7 | 75.2 64.2 86.3

Table 2: The F1 performance of different multilingual NER models. Each cell include the results when we used a
FFCN (the number of the left side) or a CRF layer (the number of the right side) in the model.

ferent languages: English, Spanish, Dutch, Russian,
Turkish, Korean, Farsi, German, Chinese, Hindi,
and Bangla. The six entity types of the dataset are
Person, Location, Production, Corporation, Group,
and Creative Work. The organizers provided the
competitors with NER-tagged training and devel-
opment sets, and then released an unlabeled test
set for the final prediction. To fine-tune our hyper-
parameters and evaluate our models in the devel-
opment phase, we divided the training set into two
parts - 0.80% for the train set and 0.20% for the
dev set - and used the official dev set (i.e., provided
by the organizers) to test the models and analyse
our model results as the labels of the official test
set are not released. The number and distribution
of occurrences of each entity in the training (train
and dev) and test (official dev) datasets are reported
in Table 1, where we can notice a relatively good
class distribution among the training examples.

4.2 Parameters

In our experiments, we fine-tuned different multi-
lingual pre-trained language models including bert-
base-multilingual-uncased, XLM-Roberta-base,
XLM-Roberta-large, distilbert-base-multilingual-
cased, and also trained a simple BiLSTM model on
the dataset. We trained each particular model for
6 epochs using Adam optimizer (Kingma and Ba,
2014), a batch size of 16, the learning rate of 2e-5,
and the maximum sequence length of 256 tokens.

We computed the F1 performance of the model on
each epoch and finally saved the parameters of the
epoch with the best performance to perform NER
on the test set.

5 Results and Discussion

5.1 Results

In Table 2, we show the macro-averaged F1 perfor-
mance of the NER models on the different entities
of the unofficial test dataset. We use the three
best performing models identified in the dev set,
i.e., XLM-RoBERTa-large + CRF, XLM-RoBERTa-
base + CRF and XLM-RoBERTa-large + FCNN,
to create our ensemble strategy. As shown in Ta-
ble 2, the ensemble model outperforms the other
single transformer-based models, improving the
F1-score of the top-performer models by around
1% point. The results also indicate that the models
fine-tuned on the XLM-RoBERTa (both large and
base) outperform the other models by a wide mar-
gin. In addition, a comparison between the results
of each particular model with and without CRF on
the test set shows that adding a CRF layer to the
models could be helpful as it improves the model
performance in most cases. The results show that
all models perform best in inferring Person and
Location entities. This can be due to the large
number of instances of both entities in the training
set. In Table 1, it is shown that the number of oc-
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Sentence Length 1 ≤ N ≤ 5 6 ≤ N ≤ 10 11 ≤ N ≤ 15 16 ≤ N ≤ 20 N > 20 All
Number of Sentences 85 1988 2517 1964 2246 8800
Ratio of the sentences 0.1% 22.5% 28.6% 22.3% 25.5% 100%

Table 3: Number and ratio of sentences with different length (in words) in the test set.

Figure 1: Performance of our ensemble model according
to the sentence length (in words).

currences of these entities in the dataset is greater
than the other ones. The BiLSTM model also per-
forms significantly worse than the fine-tuned XLM-
RoBERTa-large models, despite using the same
word vectors.

5.2 Discussion

Effect of the context length One of the most im-
portant factors affecting the performance of the
NER systems is the context length (Meng et al.,
2021). To analyze the effect of the input context
on our NER system, we divided the (unofficial)
test set into 5 different groups: (1): sentences with
five or fewer words, (2): sentences with a context
length of at least 6 and less than 11, (3) sentences
including at least 10 and less than 15 context words,
(4) sentences containing between 15 and 20 words,
and (5) sentences containing more than 20 context
words. The number and ratio of sentences in each
group is reported in Table 3. Figure 1 shows the
performance of the ensemble NER model on the
different groups of sentences. As it can be seen,
the model has the worse performance when the sen-
tences contain 5 or less words. Surprisingly, the

model performs best in the second group (sentences
containing between 5 and 10 words) showing the
strength of the model even in the short the sen-
tences.

6 Conclusion

In this paper, we presented our multilingual NER
method that uses an ensemble of different fine-
tuned models to identify the named entities in the
unstructured texts. Using a variety of multilingual
pre-trained language models, we first fine-tuned
several NER models and then applied a vote-based
ensemble strategy to make the final prediction. Our
submission achieved an overall F1 score of 65.2,
ranking 20th in the multilingual track of task 11 of
SemEval-2022. Our next step would be to examine
other possible types of ensemble strategies as it
has shown to be effective in the performance of the
NER models.

References
David Ifeoluwa Adelani, Jade Abbott, Graham Neu-

big, Daniel D’souza, Julia Kreutzer, Constantine Lig-
nos, Chester Palen-Michel, Happy Buzaaba, Shruti
Rijhwani, Sebastian Ruder, Stephen Mayhew, Is-
rael Abebe Azime, Shamsuddeen H. Muhammad,
Chris Chinenye Emezue, Joyce Nakatumba-Nabende,
Perez Ogayo, Aremu Anuoluwapo, Catherine Gitau,
Derguene Mbaye, Jesujoba Alabi, Seid Muhie Yi-
mam, Tajuddeen Rabiu Gwadabe, Ignatius Ezeani,
Rubungo Andre Niyongabo, Jonathan Mukiibi, Ver-
rah Otiende, Iroro Orife, Davis David, Samba Ngom,
Tosin Adewumi, Paul Rayson, Mofetoluwa Adeyemi,
Gerald Muriuki, Emmanuel Anebi, Chiamaka Chuk-
wuneke, Nkiruka Odu, Eric Peter Wairagala, Samuel
Oyerinde, Clemencia Siro, Tobius Saul Bateesa,
Temilola Oloyede, Yvonne Wambui, Victor Akin-
ode, Deborah Nabagereka, Maurice Katusiime, Ayo-
dele Awokoya, Mouhamadane MBOUP, Dibora Ge-
breyohannes, Henok Tilaye, Kelechi Nwaike, De-
gaga Wolde, Abdoulaye Faye, Blessing Sibanda, Ore-
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi
Ogueji, Thierno Ibrahima DIOP, Abdoulaye Diallo,
Adewale Akinfaderin, Tendai Marengereke, and Sa-
lomey Osei. 2021. MasakhaNER: Named Entity
Recognition for African Languages. Transactions
of the Association for Computational Linguistics,
9:1116–1131.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018.

1546



Contextual string embeddings for sequence labeling.
In Proceedings of the 27th international conference
on computational linguistics, pages 1638–1649.

Isabelle Augenstein, Leon Derczynski, and Kalina
Bontcheva. 2017. Generalisation in named entity
recognition: A quantitative analysis. Computer
Speech & Language, 44:61–83.

Bogdan Babych and Anthony Hartley. 2003. Improving
machine translation quality with automatic named
entity recognition. In Proceedings of the 7th Interna-
tional EAMT workshop on MT and other language
technology tools, Improving MT through other lan-
guage technology tools, Resource and tools for build-
ing MT at EACL 2003.

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke
Zettlemoyer, and Michael Auli. 2019. Cloze-driven
pretraining of self-attention networks. arXiv preprint
arXiv:1903.07785.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jenny Copara, Julien Knafou, Nona Naderi, Claudia
Moro, Patrick Ruch, and Douglas Teodoro. 2020a.
Contextualized french language models for biomed-
ical named entity recognition. In Actes de la 6e
conférence conjointe Journées d’Études sur la Pa-
role (JEP, 33e édition), Traitement Automatique des
Langues Naturelles (TALN, 27e édition), Rencontre
des Étudiants Chercheurs en Informatique pour le
Traitement Automatique des Langues (RÉCITAL, 22e
édition). Atelier DÉfi Fouille de Textes, pages 36–48.

Jenny Copara, Nona Naderi, Julien Knafou, Patrick
Ruch, and Douglas Teodoro. 2020b. Named en-
tity recognition in chemical patents using ensem-
ble of contextual language models. arXiv preprint
arXiv:2007.12569.

Besnik Fetahu, Anjie Fang, Oleg Rokhlenko, and
Shervin Malmasi. 2021. Gazetteer Enhanced Named
Entity Recognition for Code-Mixed Web Queries. In
Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1677–1681.

Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. 2009.
Named entity recognition in query. In Proceedings
of the 32nd international ACM SIGIR conference on
Research and development in information retrieval,
pages 267–274.

Pratik Jayarao, Chirag Jain, and Aman Srivastava. 2018.
Exploring the importance of context and embeddings
in neural ner models for task-oriented dialogue sys-
tems. arXiv preprint arXiv:1812.02370.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Julien Knafou, Nona Naderi, Jenny Copara, Douglas
Teodoro, and Patrick Ruch. 2020. Bitem at wnut
2020 shared task-1: Named entity recognition over
wet lab protocols using an ensemble of contextual
language models. In Proceedings of the Sixth Work-
shop on Noisy User-generated Text (W-NUT 2020),
pages 305–313.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Proba-
bilistic models for segmenting and labeling sequence
data.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022a. MultiCoNER: a
Large-scale Multilingual dataset for Complex Named
Entity Recognition.

Shervin Malmasi, Anjie Fang, Besnik Fetahu, Sudipta
Kar, and Oleg Rokhlenko. 2022b. SemEval-2022
Task 11: Multilingual Complex Named Entity Recog-
nition (MultiCoNER). In Proceedings of the 16th
International Workshop on Semantic Evaluation
(SemEval-2022). Association for Computational Lin-
guistics.

Tao Meng, Anjie Fang, Oleg Rokhlenko, and Shervin
Malmasi. 2021. GEMNET: Effective gated gazetteer
representations for recognizing complex entities in
low-context input. In Proceedings of the 2021 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1499–1512.

Diego Mollá, Menno Van Zaanen, and Daniel Smith.
2006. Named entity recognition for question answer-
ing. In Proceedings of the Australasian Language
Technology Workshop 2006, pages 51–58.

Nona Naderi, Julien Knafou, Jenny Copara, Patrick
Ruch, and Douglas Teodoro. 2021. Ensemble of
deep masked language models for effective named
entity recognition in health and life science corpora.
Frontiers in research metrics and analytics, 6.

Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
How multilingual is multilingual BERT? In Proceed-
ings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4996–5001, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084.

Hossein Rouhizadeh, Mehrnoush Shamsfard, Mahdi
Dehghan, and Masoud Rouhizadeh. 2021a. Persian
semcor: A bag of word sense annotated corpus for
the persian language. In Proceedings of the 11th
Global Wordnet Conference, pages 147–156.

1547



Hossein Rouhizadeh, Mehrnoush Shamsfard, Vahideh
Tajalli, and Masoud Rouhziadeh. 2021b. Persian-
wsd-corpus: A sense annotated corpus for persian
all-words word sense disambiguation. arXiv preprint
arXiv:2107.01540.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Elisa Terumi Rubel Schneider, Joao Vitor Andrioli
de Souza, Julien Knafou, Lucas Emanuel Silva
e Oliveira, Jenny Copara, Yohan Bonescki Gumiel,
Lucas Ferro Antunes de Oliveira, Emerson Cabr-
era Paraiso, Douglas Teodoro, and Cláudia Maria
Cabral Moro Barra. 2020. Biobertpt-a portuguese
neural language model for clinical named entity
recognition. In Proceedings of the 3rd Clinical Natu-
ral Language Processing Workshop, pages 65–72.

Kyle Shaffer. 2021. Language clustering for multilin-
gual named entity recognition. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 40–45.

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,
Xuanjing Huang, Guihong Cao, Daxin Jiang, Ming
Zhou, et al. 2020. K-adapter: Infusing knowledge
into pre-trained models with adapters. arXiv preprint
arXiv:2002.01808.

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. Luke: deep con-
textualized entity representations with entity-aware
self-attention. arXiv preprint arXiv:2010.01057.

1548



Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022), pages 1549 - 1555
July 14-15, 2022 ©2022 Association for Computational Linguistics

CSECU-DSG at SemEval-2022 Task 11: Identifying the Multilingual
Complex Named Entity in Text Using Stacked Embeddings and

Transformer based Approach
Abdul Aziz, Md. Akram Hossain, and Abu Nowshed Chy

Department of Computer Science and Engineering
University of Chittagong, Chattogram-4331, Bangladesh
{aziz.abdul.cu, akram.hossain.cse.cu}@gmail.com,

and nowshed@cu.ac.bd

Abstract

Recognizing complex and ambiguous named
entities (NEs) is one of the formidable tasks
in the NLP domain. However, the diversity of
linguistic constituents, syntactic structure, se-
mantic ambiguity as well as differences from
traditional NEs make it challenging to identify
the complex NEs. To address these challenges,
SemEval-2022 Task 11 introduced a shared task
MultiCoNER focusing on complex named en-
tity recognition in multilingual settings. This
paper presents our participation in this task
where we propose two different approaches in-
cluding a BiLSTM-CRF model with stacked-
embedding strategy and a transformer-based
approach. Our proposed method achieved com-
petitive performance among the participants’
methods in a few languages.

1 Introduction

Named entity recognition (NER) is a popular se-
quence labeling task in the natural language pro-
cessing (NLP) arena. It has numerous applications
in several computational linguistic tasks including
designing efficient search systems, data mining,
and document indexing. However, prior studies
mostly focused on identifying traditional named
entities (NEs) recognition e.g. person names, lo-
cations, and organizations names (Murthy et al.,
2018).

The ever-growing generation of unstructured so-
cial media data contains a huge amount of com-
plex (Meng et al., 2021) and ambiguous(Fetahu
et al., 2021) named entities. This is because so-
cial media data is severely induced by noise as
well as the linguistic constituent, syntactic and se-
mantic ambiguity exists in this data source. Be-
sides, the social media data mostly have multilin-
gual data. Therefore it poses new challenges to the
traditional named entity recognizer system (Aguilar

**The first two authors have equal contributions.

et al., 2019; Ashwini and Choi, 2014). To ad-
dress the challenges of recognizing such complex
and ambiguous named entities in multilingual set-
tings, (Malmasi et al., 2022b) introduced a shared
task at SemEval-2022 named as MultiCoNER. The
task is composed of three category of tracks includ-
ing multi-lingual, mono-lingual, and code-mixed
tracks. A multilingual dataset (Malmasi et al.,
2022a) containing data from 11 languages is used
to assess the participants’ system. To illustrate a
clear view of the task definition, we articulate two
examples from English languages and correspond-
ing labels in Table 1.

English

Text#1: Adaptation of seinen series by kenichi
sonoda.
Tag: [O, O, B-CW, O, O, B-PER, I-PER, O]

Text#2: It was designed by kohn pedersen fox.
Tag: [O, O, O, O, B-CORP, I-CORP, I-CORP,
O ]

Table 1: Data sample.

We articulate the rest of the contents as fol-
lows: Section 2 describes our proposed approach
whereas, in Section 3, we present our experimental
setup and conduct performance analysis against the
various settings and participants’ methods. Finally,
we conclude our work with some future directions
in Section 4.

2 Proposed Framework

In this section, we describe our proposed approach
for the MultiCoNER shared task. Our goal is to
identify the complex and ambiguous named enti-
ties in multilingual settings. The task is articulated
into multi-lingual, mono-lingual, and code-mixed
tracks. To address the task challenges, we employ
two different approaches including a BiLSTM-CRF
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Figure 1: Overview of our proposed BiLSTM-CRF based framework.
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[SEP]
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[SEP]
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Figure 2: Overview of our proposed transformer-based
NER framework.

based approach and a transformer-based approach.
The overview diagrams of these approaches are de-
picted in Figure 1 and Figure 2, respectively. In the
BiLSTM-CRF model, we employ the Flair’s (Ak-
bik et al., 2019) implementation of stacked embed-
ding technique for effective word representation.

Whereas in our transformer-based approach, we
employ the available monolingual BERT for each
of the languages. However, for some of the lan-
guages and for the multilingual and code-mixed
settings, we employ the XLM-RoBERTa.

2.1 BiLSTM-CRF with Stacked Embedding

The BiLSTM-CRF model is well-known for the
named entity recognition (NER) task. For the train-
ing purpose, we use the sentence represented as
CoNLL -U format containing BIO tag for each to-
ken. A token tagged as O means it is not part of an
entity, B-X denotes the first token of an X entity,
I-X denotes the token is within the X type entity
having multiple tokens. The tokens are then sent
to the embedding layer. We employ Flair’s (Akbik
et al., 2019) implementation of stacked embedding
strategy that concatenates embedding vectors of
different models together for the effective represen-
tation of tokens. To choose the optimal ones in the
stacking, we explore various embedding models.
The list of embedding models used in our stacked-
embedding approach is presented in Table 2. The
embedding vectors are concatenated and send to the
BiLSTM encoder to distill the contextual dimen-
sion of each token. The BiLSTM encoder is fol-
lowed by a linear-chain conditional random fields
(CRF) classifier that generate predictions with the
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Track
Word Embeddings Used in Stack Em-
bedding Model (BiLSTM-CRF based
System)

Used Transformer Model (Trans-
former based System)

English
(en)

Globe, News-forward, News-
backward (Akbik et al., 2018)

bert-base-uncased (Devlin et al.,
2019)

Spanish
(es)

FastText (es), es-forward, es-backward
dccuchile/bert-base-spanish-
wwm-cased (Cañete et al., 2020)

Dutch
(nl)

FastText (nl), nl-forward, nl-backward
GroNLP/bert-base-dutch-
cased (de Vries et al., 2019)

Russian
(ru)

FastText (ru), Byte Pair Embedding (ru),
Character Embedding

DeepPavlov/rubert-base-cased-
sentence

Turkish
(tr)

FastText (tr), Byte Pair Embedding (tr)
dbmdz/bert-base-turkish-128k-
cased

Korean
(ko)

FastText (ko), Byte Pair Embedding
(ko), Character Embedding

klue/bert-base (Park et al., 2021)

Farsi
(fa)

FastText (fa), fa-forward, fa-backward
HooshvareLab/bert-fa-base-
uncased (Farahani et al., 2020)

German
(de)

FastText (de), de-forward, de-backward -

Chinese
(zh)

FastText (zh), Byte Pair Embedding
(zh), character Embedding

bert-base-chinese

Hindi
(hi)

FastText (hi), hi-forward, hi-backward xlm-roberta-base

Bangla
(bn)

Byte Pair Embedding (bn), Character
Embedding

xlm-roberta-base

Multi-
linguall
(multi)

Byte Pair Embedding (multi), multi-
Forward, multi-Backward

xlm-roberta-base

Code-
mixed
(mix)

- xlm-roberta-base

Table 2: Used word embeddings and transformer models in our CSECU-DSG system.

BIO tagging scheme.

2.2 Transformer based System

In our transformer-based approach, we employ
the monolingual BERT model for each of the lan-
guages that are available in the Huggingface repos-
itory (Wolf et al., 2019). To choose the optimal
transformers, we explore various embedding mod-
els. However, for some of the languages, XLM-
RoBERTa performed better compared to the mono-
lingual BERT. In such cases and also for the code-

mixed and multilingual data, we employ the XLM-
RoBERTa model.

The Facebook AI launched the XLM-RoBERTa
as an upgrade to their initial XLM-100 model (Con-
neau et al., 2020). It is a scaled cross-lingual sen-
tence encoder. Using self-supervised training ap-
proaches, it offers state-of-the-art performances
in cross-lingual understanding where a model is
taught in one language and then applied to multiple
languages with no additional training data. This
model showed increased performance on numerous
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NLP applications. Utilizing just monolingual data,
XLM-RoBERTa was trained with a multilingual
masked language model (MLM) objective.

With users publishing content in over 160 lan-
guages on Facebook, XLM-RoBERTa is a ma-
jor leap toward the goal of offering the greatest
possible experience on this platform for every-
body, regardless of their native language. XLM-
RoBERTa creates the possibility for a one-model-
for-many-languages approach rather than a sin-
gle model per language. There are two versions
of XLM-RoBERTa. The base version of XLM-
RoBERTa contains 250M parameters, whereas the
large version has 560M. The vocabulary in both
versions is 250K. In our framework, we use the
XLM-RoBERTa-base version to extract the effec-
tive transfer learning features. The list of trans-
former models used in our transformer-based ap-
proach is presented in Table 2.

3 Experiment and Evaluation

3.1 Dataset Description
The organizers of the SemEval-2022 MultiCoNER
shared task 11 (Malmasi et al., 2022b,a) provided
a benchmark dataset to evaluate the performance
of the participants’ systems. The dataset comprises
data of 11 languages along with a code-mixed
dataset. The dataset statistics are summarized in
Table 3.

Track Training validation Test

BN-Bangla 15,300 800 133,119
DE-German 15,300 800 217,824
EN-English 15,300 800 217,818
ES-Spanish 15,300 800 217,887
FA-Farsi 15,300 800 165,702
HI-Hindi 15,300 800 141,565
KO-Korean 15,300 800 178,249
NL-Dutch 15,300 800 217,337
RU-Russian 15,300 800 217,501
TR-Turkish 15,300 800 136,935
ZH-Chinese 15,300 800 151,661
MULTI-Multilingual 168,300 8,800 471,911
MIX-Code_mixed 1500 500 100000

Total 338,100 18,100 2,567,509

Table 3: The statistics of the datasets used in different
lingual track.

3.2 Experimental Settings
We now describe the the set of parameters that we
have used to design our proposed CSECU-DSG

https://huggingface.co/xlm-roberta-base

systems for the MultiCoNER task. We employ
two different approaches including a BiLSTM-
CRF based approach and a transformer-based ap-
proach. We employ Flair’s (Akbik et al., 2019)
implementation of the BiLSTM-CRF approach and
Huggingface (Wolf et al., 2019) implementation
of the monolingual and multilingual transformer
models with fine-tuning. We finetune these mod-
els with the provided training data. We also tune
several hyper-parameters to obtain the optimal per-
formances. Our hyper-parameters search space is
presented in Table 4 and default settings are used
for the others.

Hyper-parameters Search Space

Training batch size {8, 16, 32}

Learning rate
{0.1, 1e − 3, 1e −
5, ..., 3e− 6}

Number of epochs {3, 5, ......, 100}
BiLSTM output size {64, 128, 256, 512}

Table 4: The hyper-parameters search space.

3.3 Evaluation Measures

To assess the performance of the participants’ sys-
tems, SemEval-2022 MultiCoNER shared task
11 (Malmasi et al., 2022b) used different strate-
gies and metrics. Since the evaluation file con-
tains instances from all 11 languages and two other
language settings including multilingual and code-
mixed, the macro averaged F1 score of all these
languages is used as the primary evaluation metric
to rank the participants’ systems. However, the
organizers reported the results based on precision
and recall evaluation measures too.

3.4 Results and Analysis

In this section, we analyze the performance of our
proposed approaches in the MultiCoNER shared
task. We have employed two different approaches
including a BiLSTM-CRF based approach and
a transformer-based approach. The dataset com-
prises of 11 different languages and two other lan-
guage settings including multilingual and code-
mixed. The overall performance of the system is
estimated considering the macro average F1 score
obtains in each languages dataset. Considering this,

https://huggingface.co/models
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Track
BiLSTM-CRF based System Transformers based System

F1-macro Precision Recall F1-macro Precision Recall

EN 0.6403 0.6871 0.6033 0.6924 0.6872 0.6981
ES 0.6562 0.6894 0.6313 0.6138 0.6069 0.6232
NL 0.6794 0.7174 0.650 0.5981 0.5985 0.6026
RU 0.6177 0.6971 0.5578 0.6308 0.626 0.639
TR 0.553 0.6457 0.4925 0.538 0.5285 0.558
KO 0.6128 0.681 0.5616 0.6205 0.6227 0.6214
FA 0.5454 0.5941 0.5094 0.5581 0.558 0.5617
DE 0.7249 0.7493 0.7047 - - -
ZH 0.387 0.5461 0.3372 0.6722 0.6855 0.6761
HI 0.5768 0.6146 0.5477 0.5563 0.5638 0.5551
BN 0.428 0.4858 0.395 0.5055 0.5221 0.4942
MULTI 0.3505 0.4926 0.3065 0.644 0.6479 0.652
MIX - - - 0.6403 0.6423 0.6436

Table 5: CSECU-DSG results of both systems on all tracks.

Model Type Parameter
Track Name

ES NL TR DE HI EN RU KO FA ZH BN MULTI MIX

BiLSTM-CRF
based system

learning rate 0.1 0.1 0.1 0.1 0.1 - - - - - - - -
epoch 50 100 100 100 100 - - - - - - - -
batch size 32 32 32 32 32 - - - - - - - -
hidden size 256 128 256 128 256 - - - - - - - -

Transformer
based system

learning rate - - - - - 3e-5 3e-5 3e-5 3e-5 3e-5 3e-5 3e-5 3e-5
epoch - - - - - 7 10 10 7 10 10 6 25
batch size - - - - - 16 16 16 16 16 16 16 16

Table 6: Experimental settings best performing system of all track.

we analyze the performance of our proposed sys-
tems, based on each language. The corresponding
results are reported in Table 5.

Results showed that the transformer-based ap-
proach obtained better performances in most of
the languages compared to the BiLSTM-CRF with
stacked embedding approach in terms of primary
evaluation measure F1-macro. However, in terms
of precision BiLSTM-CRF performed better and
in terms of recall transformer-based system per-
formed better in most of the languages dataset.
Considering the diverse performances in these two
approaches the optimal parameter settings of the
best-performing ones are articulated in Table 6 and
default settings used for the other parameters.

However, comparative performance analysis in
most of the languages dataset showed that our pro-
posed system did not perform well to address the

task challenges. However, the best performing re-
sults of our proposed CSECU-DSG system in the
MultiCoNER shared task for the Chinese(ZH) and
Hindi (HI) languages along with other top perform-
ing and competitive participants systems are articu-
lated in Table 7. Following the benchmark of the
MultiCoNER shared task, participants’ systems are
ranked based on the primary evaluation measures
F1-macro. For these two languages, our proposed
CSECU-DSG system obtained comparatively bet-
ter performances.

4 Conclusion and Future Directions

In this paper, we presented our proposed systems to
address the challenges of the MultiCoNER shared
task. We employed a BiLSTM-CRF with a stacked
embedding-based approach and a transformer-
based approach. Experimental results demonstrate
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Team (Rank) F1-macro

Chinese (ZH)

CSECU-DSG (9th) 0.6722

Performance of other participants’

USTC-NELSLIP (1st) 0.8169
OPDAI (3rd) 0.7954
QTrade AI (8th) 0.7400
RACAI (16th) 0.6270
MarSan_AI (19th) 0.5664

Hindi (HI)

CSECU-DSG (11th) 0.5768

Performance of other participants’

DAMO-NLP (1st) 0.8623
RACAI (3rd) 0.6808
YNUNLP (8th) 0.6339
silpa_nlp (14th) 0.5149
Enigma (17th) 0.4862

Table 7: Comparative results with other selected partici-
pants on Chinese and Hindi track.

that transformer-based approach performed better
compared to the other approach in most of the lan-
guages dataset.

In the future, we have a plan to incorporate the
task-specific features and technologies to address
the challenges properly. We also have a plan to ex-
plore the existing NER technologies and fuse them
in a unified architecture to overcome the limitations
of the current approaches.
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Abstract

Identifying named entities is, in general, a prac-
tical and challenging task in the field of Natural
Language Processing. Named Entity Recog-
nition on the code-mixed text is further chal-
lenging due to the linguistic complexity re-
sulting from the nature of the mixing. This
paper addresses the submission of team CM-
NEROne to the SEMEVAL 2022 shared task
11 MultiCoNER. The Code-mixed NER task
aimed to identify named entities on the code-
mixed dataset. Our work consists of Named
Entity Recognition (NER) on the code-mixed
dataset by leveraging the multilingual data.
We achieved a weighted average F1 score of
0.7044, i.e., 6% greater than the baseline.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal task in NLP. It aims to identify and classify
entities in a text into predefined types. It is an
essential tool for information retrieval, question
answering, (Banerjee et al., 2019) and text summa-
rization tasks (Patil et al., 2016; Li et al., 2020).
However, except for some resource-rich monolin-
gual languages, NER annotated data for most other
languages are still very limited (Kruengkrai et al.,
2020). Moreover, it is usually time-consuming to
annotate such data, particularly for low-resource
languages such as multilingual and code-mixed
(Liu et al., 2021). Therefore, transfer learning and
leveraging the other datasets for multilingual and
code-mixed NER has attracted growing interest re-
cently, especially with the influx of deep learning
methods.

This paper presents the system description
for named entity recognition on the code-mixed
dataset. Code-mixing is defined as using two or
more languages in a single sentence or utterance
(Dowlagar and Mamidi, 2021). The use of code-
mixed language is prevalent in most multilingual
societies. Due to linguistic complexity arising

Sentence hameM this magic moment
Languge Hi En En En
NER tags O B-CW I-CW I-CW

Table 1: An example of the code-mixed NER annotated
sentence. The Hindi words are converted from utf to wx
format and are italicized

from mixing two languages, the processing of code-
mixed sentences is a challenging task (Bali et al.,
2014). So, the models that are trained on mono-
lingual and multilingual datasets typically fail to
handle code-mixed inputs (Khanuja et al., 2020).
Therefore, to encourage research on code-mixing,
the speech and NLP communities are organizing
several shared tasks. The shared tasks have con-
centrated on language identification, POS-tagging,
sentiment analysis, hate speech detection, and sev-
eral datasets exist for these as well. Similarly, SE-
MEVAL 2022’s Task 11 sub-task 13 was devoted
to identifying named entities in code-mixed lan-
guages (Malmasi et al., 2022b). This task aims to
classify the given tokens in the code-mixed sen-
tences as persons, corporation, location, and others.
An example is shown in Table 1.

The lack of annotated data is a crucial issue for
code-mixed datasets. Lack of data poses a prob-
lem of data overfitting and poor entity recognition.
The language models trained on such low resource
datasets cannot generalize the training data, thus
performing low on the test datasets. Several previ-
ous studies have used monolingual data as training
signals for transfer learning, and these data can also
be used in the form of pre-training. Thus, we used
a similar approach of including the multilingual
data along with the code-mixed dataset.

We used the multilingual pre-trained BERT
model as our model for code-mixed NER. The
model uses code mixed training data along with
the multilingual training and mulilingual validation
data.
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sIriyala naMbara xvArA kleding in de oudheid kI pahacAna kareM
O O O B-PROD I-PROD I-PROD I-PROD O O O
what city is dig me out in?
O 0 O B-CW I-CW I-CW O
AmAra das testament mUlya kawa?
0 B-CW I-CW O O

Table 2: An example of the code-mixed NER annotated sentence. The multilingual words are converted from utf to
wx format and are italicized

We have analyzed that Bi-LSTM with CRF mod-
els has shown an improved accuracy on the token
classification tasks such as POS tagging, language
identification, and NER. The ensemble of BERT
or XLM-RoBERTa with Bi-LSTM and CRF would
have shown a further improvement in the code-
mixed NER. Also, using language identification as
a downstream task with the current method might
have improved the NER’s accuracy.

The paper is organized as follows. Section 2
provides related work on Named Entity Recogni-
tion on CM social media text. Section 3 provides
information on the task and examples of datasets.
Section 4 describes the proposed work. Section
5 presents the experimental setup and Section 6
project the performance of the model. Section 7
concludes our work.

2 Related Work

Code-mixed NER has attracted a lot of attention
in the NLP community this decade. This section
lists the latest works on code-mixed named entity
recognition.

Priyadharshini et al. (2020); Winata et al. (2019)
generated multilingual meta representations from
pre-trained monolingual word embeddings. The
model learned to construct the best word represen-
tation by mixing multiple sources without explicit
language identification.

Aguilar et al. (2019) presented a shared task on
named entity recognition in the CALCS workshop.
The language pairs used were English-Spanish
(ENG-SPA) and Modern Standard Arabic Egyp-
tian (MSA-EGY). They used Twitter data and nine
entity types to establish a new dataset for code-
switched NER benchmarks. The participating
teams used LSTM, CNN, CRF, and word repre-
sentations to recognize named entities.

Singh et al. (2018) We presented a new Code-
Mixed Hinglish corpus for NER. Different machine
learning classification algorithms with word, char-

acter, and lexical features are used to establish base-
lines. The algorithms used were Decision tree,
Long Short-Term Memory (LSTM), and Condi-
tional Random Field (CRF).

(Meng et al., 2021; Fetahu et al., 2021) presented
a novel CM NER model. They proposed a gated
architecture that enhances existing multilingual
Transformers by dynamically infusing multilingual
knowledge bases, a.k.a gazetteers. The evaluation
of code-mixed queries shows that this approach
efficiently utilizes gazetteers to recognize entities
in code-mixed queries with an F1=68%, an abso-
lute improvement of +31% over a non-gazetteer
baseline.

(Meng et al., 2021) mentioned that including
Gazetteer features could cause models to overuse
or underuse them, leading to poor generalization.
They proposed a new approach for gazetteer knowl-
edge integration by including Context in Gazetteer
Representation using encoder and Mixture-of-
Experts gating network models. These models
overcome the feature overuse issue by learning to
conditionally combine the context and gazetteer
features instead of assigning them fixed weights.

3 Task Setup

The shared task detects semantically ambiguous
and complex entities in short and low-context
settings. Complex NEs, like the titles of cre-
ative works (movie/book/song/software names),
are not simple nouns. Usually, they take im-
perative clauses, or they often resemble typical
syntactic constituents. Such NEs are harder to
recognize (Ashwini and Choi, 2014). Syntactic
parsing of such complex noun phrases is hard,
and most NER systems fail to identify them. In-
side–outside–beginning (IOB) format (Ramshaw
and Marcus, 1999) is used for annotating entities.
A few examples of complex NEs and ambiguous
NEs from the code-mixed dataset are given in Table
2.
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So the MultiCoNER shared task encourages the
models to handle such complex NEs. A huge
dataset (Malmasi et al., 2022a) is released for this
task (Malmasi et al., 2022b). The languages fo-
cused on in this shared task are: English, Spanish,
Dutch, Russian, Turkish, Korean, Farsi, German,
Chinese, Hindi, and Bangla. The shared task also
offered an additional track with code-mixed and
multilingual datasets. In this paper, we will be
concentrating on the code-mixed dataset.

4 System Overview

We finetuned the pre-trained multilingual BERT
model by using the multilingual training and valida-
tion datasets for code-mixed named entity recogni-
tion. We found that the training data is insufficient
for the deep learning language model to identify
the named entities in the validation data correctly.
The data scarcity of low-resource languages has
been a significant challenge for building NLP sys-
tems since they require a large amount of data to
learn a robust model. We observed that the multilin-
gual NER training data is similar to the code-mixed
dataset. Also, it is relatively large when compared
to the code-mixed dataset. In our approach, the
multilingual training and validation data is com-
bined with the code-mixed training dataset. Using
the combined dataset, we finetune the deep neu-
ral network model. Our method thus attempts to
learn language-agnostic features by using the com-
bined multilingual and code-mixed dataset. This
finetuned model can be used to infer named entity
information at a token level on a code-mixed low
resource language.

We used the pre-trained mBERT (Devlin et al.,
2018) model for code-mixed NER. mBERT is
a transformer-based self multi-headed attention
model that is pre-trained on a massive collection of
multilingual data and can be finetuned for our NER
task. As the model is pre-trained on a large cor-
pus, the semantic and syntactic information is well
modeled and can be directly finetuned for a specific
task. BERT is a bi-directional transformer model
(Vaswani et al., 2017). It analyzes the meaning
of a term depending on its context given on both
sides. The transformer part in the BERT works
like an attention mechanism capable of learning
the contextual relationships between the terms in a
sentence.

5 Experimental Setup

The section presents the baselines, hyper-parameter
settings, and analysis of observed results.

5.1 Baselines

The baselines used for the proposed work is:

Conditional random field (CRF) (Lafferty et al.,
2001) CRF is a statistical model and is a well-
known approach for handling NER problems. The
CRF model considers the neighboring samples by
modeling the prediction as a graphical model. It
assumes that the tag for the present word (denoted
as yi) is dependent on the tag of its previous/next
word (denoted as yi−1 or yi+1).

MultiCoNER baseline (Malmasi et al., 2022b)
The XLM-RoBERTa base with CRF model is used
as a baseline for NER.

Pre-trained multilingual BERT (mBERT) (De-
vlin et al., 2018) A pre-trained multilingual
BERT model with token classification without
leveraging the multilingual data is used as a base-
line.

5.2 Hyperparameters and libraries

For developing our model, the neural network li-
brary used is PyTorch, and the pre-trained mul-
tilingual BERT model (bert-base-multilingual-
cased) and XLM-ROBERTa base model (xlm-
roberta-base) is obtained from the hugging face-
transformers library and is finetuned for the code-
mixed NER task. The model is implemented in
Kaggle Notebook with GPU processing.

The batch size of the datasets is kept as 64. The
maximum length of the sentence from the train-
ing data is considered during the input data encod-
ing/padding. Due to subword tokenization, we used
the first token for predicting the tag. The optimizer
used is weighted Adam with the learning rate of
2e-5 and epsilon value equal to 1e-5. The dropout
is set to 0.1. The loss function used is a cross-
entropy loss that is inbuilt into the transformer’s
BERT model. The number of epochs used for train-
ing the model is 30. The training is stopped when
there is no change in validation accuracy for more
than four epochs.

The CRF is obtained from pytorch-crfsuite li-
brary1. The previous word and its tag, the next

1https://github.com/scrapinghub/python-crfsuite
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Model F1-score
w/o multilingual data with multilingual data
valid data test data valid data test data

CRF 0.565 0.561 0.560 0.556
mBERT 0.627 0.612 0.716 0.707
MultiCoNER baseline 0.651 0.645 0.725 0.719

Table 3: The performance of the models on the code-mixed dataset with and without including multilingual data.
Our submission for the given task is highlighted.

Figure 1: Confusion matrix of CM-NER baseline

word, and its tag is used as the features to predict
the tag of the current word.

6 Results and Analysis

Table 3 presents the f1-score of the models on the
Dravidian code-mixed dataset. From the above re-
sults, it is clear that our system, i.e., leveraging
the multilingual NER data in a low-resource code-
mixed setting, improves the NER task compared
to the baseline models. The CRF model didn’t
perform well on the given NER task, as this statis-
tical model does not capture the semantics of the
tokens. Even the CRF with multilingual data per-
formed poorly on this task compared to the baseline
NN models. It shows the importance of capturing
semantical, syntactic, and contextual information
while building the NER model on these complex
datasets.

Our submission, the pre-trained mBERT by
leveraging the multilingual dataset, performed bet-
ter than the MultiCoNER baseline by 6%. Even the
MultiCoNER baseline with the multilingual dataset
performed better than our submission.

Figure 2: Confusion matrix of CM-NER by leveraging
multilingual data

The confusion matrices with and without multi-
lingual data of our submission on the code-mixed
NER validation dataset are shown in the Figures ??
and 2. By using confusion matrices, we observed
that the multilingual data given in Figure 2 helped
better identify the CW, PROD, CROP, and LOC
entities when compared to the baseline model.

7 Conclusion and future work

In this paper, we addressed the shared task on
named entity recognition for the code-mixed
dataset. As the code-mixed data is a low re-
source language and there are no pre-trained mod-
els, we leveraged the multilingual dataset for train-
ing the NER model. The model used for testing
our method is the pre-trained multilingual BERT.
We finetuned the pre-trained mBERT for the code-
mixed NER task by using the code-mixed train-
ing data and multilingual training and validation
datasets.

The use of meta embeddings for dealing with
code-mixed datasets has recently attracted a lot
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of attention. It might be possible that meta
embedding-based NER will work better on this
code-mixed dataset. Unlike the social media data
where code-mixed sentences/words are written in
Roman script, the native script is used for each
word, so the language identification will work bet-
ter on this dataset. Using Language identification
or POS tagging as a downstream task for NER on
this dataset will help in improving the code-mixed
NER.
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Abstract

This paper presents RACAI’s system used
for the shared task of "Multilingual Complex
Named Entity Recognition (MultiCoNER)",
organized as part of "The 16th International
Workshop on Semantic Evaluation (SemEval
2022)". The system employs a novel layer in-
spired by the biological mechanism of lateral
inhibition. This allowed the system to achieve
good results without any additional resources
apart from the provided training data. In ad-
dition to the system’s architecture, results are
provided as well as observations regarding the
provided dataset.

1 Introduction

Named entity recognition (NER) is a well known
task in natural language processing. It aims to
detect spans of text associated with known enti-
ties. Initially, much work focused on detecting per-
sons, organizations, and locations (Grishman and
Sundheim, 1996; Tjong Kim Sang and De Meulder,
2003). However, this limited approach is not suit-
able for every domain, thus leading to research in
domain-specific NER. For example, in the biomed-
ical domain, a number of works have addressed
entities such as genes, proteins, diseases (Hu and
Verberne, 2020), cell types (Settles, 2004), chemi-
cals (Gonzalez-Agirre et al., 2019; Ion et al., 2019).
Similarly, in the legal domain additional classes are
employed such as money value (Glaser et al., 2018),
legal reference (Landthaler et al., 2016; Păis, et al.,
2021), judge, and lawyer (Leitner et al., 2019).

In the context of "The 16th International Work-
shop on Semantic Evaluation (SemEval 2022)"1,
the task number 11 "Multilingual Complex Named
Entity Recognition (MultiCoNER)"2 (Malmasi
et al., 2022b) required participants to build a NER

1https://semeval.github.io/
SemEval2022/

2https://multiconer.github.io/

system able to recognize complex entities in 11 lan-
guages: Bangla, Chinese, Dutch, English, Farsi,
German, Hindi, Korean, Russian, Spanish, and
Turkish. In addition, a multilingual track and a
code-mixed track were available. The task focused
on 6 entity types: person, location, group, corpora-
tion, product and creative work.

As noted by Ashwini and Choi (2014), non-
traditional entities can pose a challenge for NER
systems. This happens because datasets are harder
to build and certain entities (such as creative works)
are updated more frequently than traditional ones
(persons, locations). Furthermore, traditional enti-
ties tend to occur as noun phrases, while the newly
proposed entities (for the purposes of the task) may
be linguistically complex (complex noun phrases,
gerunds, infinitives or full clauses). An interesting
result was provided by Aguilar et al. (2017), where
the top system from WNUT 2017 achieved only
8% recall when dealing with creative works.

This paper describes a system for complex NER
in a multilingual context, developed at the Research
Institute for Artificial Intelligence of the Romanian
Academy (RACAI), that participated in the Multi-
CoNER task. The system employs a new artificial
neural network layer trying to mimic the biologi-
cal process of lateral inhibition (Cohen, 2011). In
various regions of the brain, excited neurons can
reduce the activity of other neighbouring neurons.
In the visual cortex this process may account for
an increased perception in low-lighting conditions.
Thus, intuitively the newly proposed system may
better focus on subtle details present in the data
and the language model.

The paper is structured as follows: Section 2
presents related work, Section 3 describes the
dataset and pre-processing operations used, Sec-
tion 4 describes the method used with the system
architecture in Section 4.1 and performed exper-
iments in Section 4.2. The results are given in
Section 5 and finally, conclusions and future work
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are available in Section 6.

2 Related work

In a survey regarding NER using deep learning
models, Yadav and Bethard (2018) emphasize the
importance of pre-trained word embedding repre-
sentations. Dernoncourt et al. (2017), in the Neu-
roNER package3, combine pre-trained word em-
beddings with character level embeddings passing
through a neural network with a final CRF layer
achieving high scores on different datasets. Other
authors, using similar architectures have shown that
combining multiple static word representations can
further increase the overall system performance
(Păis, and Mitrofan, 2021).

With the introduction of contextual word rep-
resentation models, such as BERT (Devlin et al.,
2019), ELMo (Peters et al., 2018), ROBERTA (Liu
et al., 2019), XLNet (Yang et al., 2019), NER sys-
tems have been adapted to make use of these new
models. For the majority of the contextual mod-
els, depending on the size of the artificial neural
network being used, we distinguish between a base
version and a large version (with a larger number
of parameters). Devlin et al. (2019) used the BERT-
large model for NER on the CoNLL-2003 English
dataset, achieving an F1 score of 92.8%. Nguyen
et al. (2020) propose a custom BERT-like model for
English tweets, called BERTweet, for improving
the NER performance on two datasets: WNUT-16
and WNUT-17.

Contextualized embeddings were also applied
with success in domain-specific settings. Consid-
ering the ProfNER shared task (Miranda-Escalada
et al., 2021), dedicated to identifying mentions of
occupations in health-related social media, the best
performing system made use of the BETO model
(Cañete et al., 2020) trained on a large Spanish
corpus.

Wang et al. (2021) propose an algorithm for
automatically finding a concatenation of embed-
dings that improves a system’s performance in dif-
ferent tasks, including NER. The authors consid-
ered multiple contextual and non-contextual em-
beddings and the proposed algorithm can identify
any of their combinations. Their work builds on
previous experiments that showed increased per-
formance when manually concatenating contextual
and non-contextual embeddings (Straková et al.,
2019; Wang et al., 2020).

3http://neuroner.com/

Training a contextualized embedding model re-
quires many processing resources. This means
that not all flavours are available for all languages.
Multilingual models have been proposed, mak-
ing use of training data in multiple languages.
Such models include mBERT and XLM-RoBERTa
(XLM-R) (Conneau et al., 2020). These models
are known to perform especially well on low re-
sourced languages. Considering NER, Conneau
et al. (2020) show that XLM-R large performs bet-
ter than mBERT, providing an average 2% increase
in F1 score for Dutch, Spanish and German. Inter-
estingly, in English the performance of XLM-R is
more similar to mBERT (though still offering an
improved performance of less than 1%) and less
than (Akbik et al., 2018). This seems to support
the idea that monolingual models, trained on a spe-
cific language or domain, can perform better than
multilingual ones.

Meng et al. (2021) recognizes the importance
of gazetteer resources, even in the case of state-
of-the-art systems making use of contextualized
embeddings. The authors propose using an en-
coder for obtaining Contextual Gazetteer Represen-
tations (CGRs) as a way to incorporate any number
of gazetteers into a single, span-aware, dense repre-
sentation. Then, the authors go one step further and
propose a gated Mixture-of-Experts (MoE) method
to fuse CGRs with contextual word representations
from any word-level model.

Fetahu et al. (2021) employ multilingual
gazetteers fused with transformer models in a MoE
approach to improve the recognition of entities in
code-mixed web queries. In this case the entities
were written in a different language than the rest
of the query, thus posing particular challenges to
existing NER systems.

3 Dataset and pre-processing

The dataset (Malmasi et al., 2022a) was provided in
a column-based format, with 4 columns in each file.
The text was tokenized, with tokens available in
the first column. Columns 2 and 3 did not contain
useful information (only an underscore symbol was
present). Column 4 contains the named entity anno-
tation in BIO format. The first token (or the single
token) of an entity contains the "B-" prefix. Other
entity tokens (in the case of multi-token entities)
start with an "I-" prefix, while non-entity tokens
are denoted with "O".

For each language there was a train/dev/test split
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provided by the organizers. In the train set there
were 15,300 sentences, in the dev set there were
800 sentences, while the test set was much larger.
The actual number of sentences in the test set varies
between languages, having as many as 217,818 sen-
tences for English. For the multilingual track, there
were 168,300 train sentences, 8,800 dev sentences
and 471,911 test sentences. The smallest number of
sentences was given in the code-mixed track with
only 1,500 training sentences, 500 dev sentences
and 100,000 test sentences.

Regardless of the language or additional mul-
tilingual and code-mixed tracks the development
set is very small while the test set is much larger
than the training set. In addition, the number of
training sentences in the code-mixed track seems
insufficient to build a model by themselves.

Predictions on the test set were required to pro-
vide annotations, in the same BIO format, for each
token. Furthermore, considering the multilingual
nature of the task, with very different languages
(such as German and Chinese), no pre-processing
was applied, other than converting the provided for-
mat to a format suitable for the developed system.
For the code-mixed track, a second dataset was
generated, based on the original provided dataset
augmented with new sentences. These were gener-
ated by randomly replacing existing entities in the
code-mixed dataset with similar entities extracted
from the multilingual dataset. For each sentence
containing at least one entity, a new sentence was
generated, thus doubling the size of the training
dataset for the code-mixed track.

4 Method

4.1 System Architecture

The proposed system employs the XLM-RoBERTa
(Conneau et al., 2020) large model. Given an input
sequence from the dataset it is first transformed
into model-specific tokens. The sequence is also
enhanced with the special tokens for sequence start
(CLS), sequence end (SEP) and, if needed, padding
(PAD). Then it passes through the model to obtain
associated contextual embeddings. In existing sys-
tems, the word representations usually pass through
a linear layer and finally a classification head, giv-
ing predictions for each input token. However, in
the proposed system, there is a new layer inserted
just after the XLM-RoBERTa embeddings calcu-
lation and before the linear layer. The resulting
system architecture is presented in Figure 1.

Figure 1: System architecture

The newly introduced layer follows the biologi-
cal process of lateral inhibition. Thus, an embed-
ding value is either allowed to pass unchanged to
the next layer or set to zero, depending on the other
values. Similar to a linear layer, a matrix of weights
(W) and a bias (B) were kept. However, the diag-
onal values of the weights matrix were always set
to zero to allow only interaction from adjacent neu-
rons. Furthermore, the Heaviside function (see
Equation 1) was applied to determine which val-
ues pass through the layer or become zero. The
equation associated with the forward pass is given
in Equation 2, where X is the layer’s input vector,
associated with a token embedding representation,
Diag represents the matrix diagonal, ZeroDiag
is the matrix with the value zero on the diagonal,
and W and B represent the weights and bias.

Θ(x) =

{
1, x > 0
0, x ≤ 0

(1)

F (X) = X ∗Diag(Θ(X ∗ZeroDiag(W ) +B))
(2)

To overcome the problem of computing a deriva-
tive for the Heaviside function, in the backwards
pass the Heaviside function was approximated
with the sigmoid function with a scaling parameter
(Wunderlich and Pehle, 2021). This is described in
Equation 3. The derivative of the sigmoid function
is given in Equation 4, where σ(x) is the same as in
Equation 3. This approximation technique is also
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Figure 2: σ(x) for k=1..6 and Θ(x)

Figure 3: σ′(x) for k = 1..6

known as surrogate gradient learning (Neftci et al.,
2019). It allows the use of a non-differentiable func-
tion in the forward pass (in this case the Heaviside
function) and approximates the derivative in the
backwards pass by means of a different function.

σ(x) =
1

1 + e−kx
(3)

σ′(x) = kσ(x)σ(−x) (4)

Figure 2 shows a plot for the Sigmoid function,
for various values of the scaling parameter k, su-
perimposed on a plot of the Heaviside function.
Higher values for the scaling parameter give bet-
ter approximations for the Heaviside function. A
plot for the derivative of the Sigmoid function with
k = 1..6 is given in Figure 3.

The entire system was then implemented in Py-
Torch following the system diagram given in Fig-
ure 1. The embedding vector associated with each
token is processed by the lateral inhibition layer,
then goes through a linear layer using ReLU as the
activation function and finally through the classifi-
cation head.

4.2 Experiments

Training started with the creation of a multilingual
model based on the provided multilingual corpus.
Training was performed for 40 epochs, with the
best performing model on the dev dataset being

Figure 4: Training flow for creating the multilingual
model

Figure 5: Language-specific training

stored. The resulting intermediate model was fine-
tuned with the code mixed data, for another 40
epochs. Thus, all the available data were now in-
cluded in the new intermediate model. This model
was then used as the basis for further training on
the multilingual dataset (another 40 epochs), pro-
ducing the final multilingual model. The results
from this final model were submitted in the multi-
lingual task. This training procedure is described
in Figure 4.

The final multilingual model was then used as
a starting point for the other models. The archi-
tecture was the same and the model parameters
were initialized with the multilingual parameters.
Fine-tuning was performed for 80 epochs for all
languages and in the case of the code-mixed dataset.
The best performing model for each task was stored
and the results were submitted to the corresponding
category. The language-specific training procedure
is described in Figure 5.

The models were trained using a single Nvidia
Quadro RTX 5000 GPU board. The dataset was
first pre-processed, as described in Section 3. Sev-
eral experiments were performed to determine the
best parameters. However, due to limited time and
hardware resources, it was not possible to perform
an exhaustive search. The participating models em-
ployed learning rates of 1e − 05 (the majority of
the models) or 2e− 05 (Bangla and code-mixed).
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Track With Lateral Inhibition Without Lateral Inhibition Diff
P R F1 Epoch P R F1 Epoch F1

Bangla 68.08 65.33 66.28 40 65.95 63.99 64.68 68 1.60
Chinese 68.17 62.05 62.70 35 67.05 64.39 64.41 56 -1.71
Dutch 78.82 78.30 78.41 63 78.85 77.27 77.25 37 1.16
English 76.54 75.35 75.78 66 76.59 76.09 76.21 53 -0.43
Farsi 70.77 70.45 70.42 36 70.10 68.84 69.24 21 1.18
German 80.01 78.97 79.39 37 80.19 79.44 79.70 71 -0.31
Hindi 69.05 67.77 68.08 42 70.14 68.18 68.87 65 -0.79
Korean 72.06 71.93 71.74 8 71.83 72.58 71.99 70 -0.16
Russian 75.86 73.83 74.60 62 75.89 73.94 74.68 62 -0.08
Spanish 76.21 75.43 75.62 4 75.88 75.25 75.36 58 0.26
Turkish 71.81 70.25 70.42 78 71.28 69.14 69.70 74 0.72
Multilingual 72.25 72.78 72.10 33 71.78 72.72 71.87 17 0.23
Code-mixed 79.58 79.23 79.37 63 78.93 79.02 78.95 62 0.42
Intermediate
Multilingual

71.53 72.34 71.50 34 70.48 71.11 70.35 14 1.15

Intermediate
Code-mixed

79.28 79.42 79.31 31 78.50 79.00 78.73 28 0.58

Table 1: Results on the test dataset for all tracks.

A dropout value of 0.1 was used for both the lat-
eral inhibition and linear layers. For the backwards
pass approximation of the Heaviside function, the
sigmoid scaling parameter was set to 10.

5 Results

The models produced by the system described in
the previous sections participated in all the Mul-
tiCoNER tracks. The official ranking metric was
macro-averaged F1. The results are given in Table 1
for all tracks, in alphabetical order of the languages,
while the multilingual and code-mixed tracks are
shown at the end of the table.

The best best average F1 score was achieved in
the German track (79.39%), followed closely by
the code-mixed track (79.37%). All these results
were obtained by using only the provided dataset,
without external resources. For most of the tracks
precision and recall are similar (with precision be-
ing approximately 1% higher than recall), with the
exception of Chinese (precision is 6% higher than
recall) and Russian (precision is 2% higher than
recall).

In Table 1 is also given a comparison between
the results obtained using the new lateral inhibition
layer and the results obtained by the same system
without the lateral inhibition layer. In 7 tracks
(Bangla, Dutch, Farsi, Spanish, Turkish, Multilin-

gual, Code-mixed) the new layer improved the over-
all F1 score, in 1 track (Russian) the results were
roughly the same (a difference of 0.08 %), while
in 5 tracks (Chinese, English, German, Hindi, Ko-
rean) the new layer actually decreased the system’s
performance. By looking at the size of the train-
ing corpora used in XLM-RoBERTa, as reported
by Conneau et al. (2020), it seems the new layer
improved the system performance in the case of
languages represented by less than 54Gb of data.
This seems to confirm the intuition behind the new
layer, that the model is able to better focus on de-
tails present in the data and potentially filter out the
noise. There are two exceptions: Farsi, trained on
111 Gb of data, and Hindi, trained on 20 Gb. In
this case additional investigation should probably
be performed with regard to the quality of the data
used for training the model, possibly taking into
account the relative language complexity (Bentz
et al., 2016).

Table 1 also presents the training epochs associ-
ated with the best model. For some languages, the
new layer is able to reduce the number of training
epochs, but there is no clear pattern for when this
happens. Interestingly however, for Spanish and
Korean the new layer is able to reduce the training
time to less than 10 epochs.

In the multilingual and code-mixed tracks, the
model enhanced with the lateral inhibition layer
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Track LOC PER PROD GRP CW CORP
Bangla 69.03 77.41 62.92 73.46 49.57 65.31
Chinese 72.30 64.71 67.93 45.44 58.53 67.27
Dutch 80.85 89.82 76.99 75.14 71.35 76.29
English 77.29 90.11 73.27 72.93 66.76 74.29
Farsi 74.04 79.19 70.71 72.33 58.59 67.67
German 82.19 90.24 78.66 75.28 73.39 76.57
Hindi 70.93 75.14 66.35 68.70 57.13 70.25
Korean 76.54 77.86 72.48 68.02 64.02 71.51
Russian 74.05 80.30 75.04 71.29 70.09 76.84
Spanish 76.95 89.27 70.81 71.61 68.69 76.40
Turkish 72.44 81.80 73.01 64.85 61.91 68.49
Multilingual 76.84 83.85 68.82 64.89 66.72 71.47
Code-mixed 82.29 88.29 81.09 73.13 73.99 77.42

Table 2: F1 scores on the test dataset for all tracks and for all entity types.

was able to improve both precision (by 0.47% for
multilingual and 0.65% for code-mixed) and recall
(by 0.06% for multilingual and 0.21% for code-
mixed), leading to corresponding F1 differences.
Nevertheless, the number of epochs is not reduced
for these tracks. As described in Section 4.2 and
illustrated in Figure 4, there were also two inter-
mediate models (one multilingual and one code-
mixed). The results for these models are also pro-
vided in Table 1. The proposed approach increased
the multilingual F1 score by 0.6% for the lateral
inhibition system and by 1.52% without lateral in-
hibition. Similarly, the code-mixed performance
was increased by 0.06% (with lateral inhibition)
and by 0.22% (without lateral inhibition). It seems
in this case that the presence of the lateral inhibi-
tion layer reduced the overall gain obtained from
training the model in multiple stages. Neverthe-
less, the multi-stage approach increased the final
F1 score.

Table 2 presents the F1 results obtained with the
lateral inhibition layer, for each track and for each
entity type. It can be noticed that commonly used
named entities (locations and persons) achieve the
highest score in all tracks. The hardest to predict
(achieving the lowest scores) are group (GRP) and
creative work (CW). This observation holds for all
tracks, but particularly in Chinese, the group entity
obtains the lowest score (45.44%), and in Bangla,
the creative works entity obtains 49.57%. It seems
that these low values are due to the nature of these
entities, their complexity and their evolution over
time. Furthermore, by looking at the dataset struc-
ture for Chinese, the group entity type was the least

represented in the training set. Moreover, by look-
ing at the number of unique entities present in the
dataset, there is a high discrepancy between unique
training entities, for group and creative works, and
the corresponding unique instances in the test set,
especially for Chinese and Bangla.

6 Conclusion

The system described in this paper participated in
the MultiCoNER shared task. It made use of a new
artificial neural network layer inspired by the bio-
logical process of lateral inhibition. By means of
this mechanism, the system achieved third place
in the general ranking associated with 7 languages
(Spanish, Dutch, Russian, Korean, Farsi, German,
and Hindi). There were no additional resources
employed, apart from the provided dataset (no ad-
ditional text and no gazetteers). A simple data
augmentation method (as described in Section 3)
was applied only for the code-mixed track, while
still using only the provided data.

Experiments performed after the task deadline,
showed (as reported in Section 5) that not all tracks
benefit from using the new layer. It is likely that lan-
guages with an increased number of tokens present
when training the multilingual XLM-RoBERTa
model will benefit less from employing the new
layer. Nevertheless, models with the lateral inhi-
bition layer trained for lower resourced languages,
multilingual, and code-mixed datasets seem to
achieve higher scores. Furthermore, improvements
can be seen in both precision and recall.

The proposed lateral inhibition layer can be ap-
plied to other natural language processing tasks as
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well. In the future more experiments will be con-
ducted with this layer to determine its suitability in
other contexts.
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Abstract

This paper presents the two submissions
of NamedEntityRangers Team to the Multi-
CoNER Shared Task, hosted at SemEval-2022.
We evaluate two state-of-the-art approaches, of
which both utilize pre-trained multi-lingual lan-
guage models differently. The first approach
follows the token classification schema, in
which each token is assigned with a tag. The
second approach follows a recent template-
free paradigm (Ma et al., 2021), in which an
encoder-decoder model translates the input se-
quence of words to a special output, encoding
named entities with predefined labels. We uti-
lize RemBERT and mT5 as backbone models
for these two approaches, respectively. Our re-
sults show that the oldie but goodie token classi-
fication outperforms the template-free method
by a wide margin. Our code is available at:
https://github.com/Abiks/MultiCoNER.

1 Introduction

This paper describes two submissions to the Multi-
lingual Complex Named Entity Recognition (Mul-
tiCoNER) Shared Task, held by SemEval-2022
(Malmasi et al., 2022b). This shared task aims
at recognizing named entities with the ambitious
end goal of building systems that support up to
11 languages. Multilingual setups are complicated
when the dataset mixes languages from different
groups. This way, the MultiCoNER dataset com-
prises 11 languages from different families, and
multiple scripts (Malmasi et al., 2022a). This setup
hayj s become increasingly popular recently since

it allows to test for transfer learning across lan-
guages within a single pre-trained model. The
dataset, proposed in the shared task, has several
unique features previously neglected in NER eval-
uation: syntactically complex entities, ambiguous
entities, divers, and low-frequency (aka long-tail)
entities. This makes the shared task setup closer
to real-life settings, where datasets are way noisier
and nonuniformly distributed.

Our solution consists of two state-of-the-art ap-
proaches adopted to the task. First, we use a main-
stream NER technique, token classification. Under
this approach, the model is trained to assign a la-
bel to each input token. The second approach falls
into the group of prompt-based techniques, at the
core of which are the capabilities of auto-regressive
language models to memorize and reproduce input
texts. In this case, we train an encoder-decoder
model to replace entities in the input sentence with
predefined labels. We utilize RemBERT (Chung
et al., 2021) and mT5 (Xue et al., 2021) as back-
bone models for these two approaches, respectively.
These two models provide state-of-the-art results
for the common test-beds of cross-lingual experi-
ments (Hu et al., 2020).

In other words, we explore the following ques-
tions: ‘How do pre-trained transformer-based mod-
els perform in the Multilingual Complex Named
Entity Recognition task?’ and ‘Which of the two
approaches perform better?’.

Our results show that plain fine-tuning of
the above-mentioned state-of-the-art multilingual
transformer-based models can give moderate re-
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sults. Results are within 10% margin of the top so-
lution for the multilingual NER task. We analyzed
the errors of both models. As expected, for two
novel ‘complex’ entity types (‘Creative Work’ and
‘Product’) error rate is higher than for ‘common’
types (‘Group’, ‘Location’, ‘Person’). However,
some of the errors might be caused by inconsis-
tencies in the labeling of the MultiCoNER dataset.
The performance of the Template-free approach
suffers from such inconsistencies more than the
performance of the Token classification approach.

2 Related Work

Named Entity Recognition is one of the central
tasks in Natural Language Processing, which at-
tracts a lot of research efforts. Yang et al. (2016)
encode morphology and context information via
character and word embeddings. Recent studies
(Ghaddar and Langlais, 2018; Jie and Lu, 2019;
Liu et al., 2019; Meng et al., 2021) employ syntac-
tic dependencies, lexical similarity, gazetteers, etc.
in the word representations before feeding them to
context encoding layers. The authors show that ad-
ditional information may lead to improvements in
NER performance. However, NER still faces mul-
tiple challenges (Li et al., 2022) such as detection
of fine-grained and nested named entities (Kim and
Kim, 2021; Ringland et al., 2019; Loukachevitch
et al., 2021), NER in domain-specific areas (Weber
et al., 2021), NER from noisy data (Derczynski
et al., 2017) and code-mixed data (Fetahu et al.,
2021).

Recent research in this area considers not only
standard types of entities (person, location, or-
ganization) but also semantically ambiguous and
complex entities (Hanselowski et al., 2018). For
example, a system has to recognize the titles of
movies, books, or songs, which may contain verbs,
adverbs, prepositions, etc. Cui et al. (2021) propose
a template-based method, treating NER as a lan-
guage model ranking problem in a seq2seq manner.
Original sentences and statement templates filled
by a candidate named entity span are the source
sequence and the target sequence, respectively. Ma
et al. (2021) induces a language model to predict
label words at entity positions during fine-tuning.
This method demonstrates the effectiveness under
the few-shot setting.

The SemEval-2020 shared task MultiCoNER
(Malmasi et al., 2022a) focuses on a more exciting
and challenging problem of building a NER sys-

tem for multiple languages. The results of a recent
Multilingual Named Entity Challenge in six Slavic
languages (Piskorski et al., 2021) have also con-
firmed the complexity and significance of the task.
Training competitive multilingual NER systems re-
quires either manually labeled text collections or
large automatically annotated datasets (Nothman
et al., 2013).

3 Experiments

3.1 Token Classification Approach

Our baseline is to treat the NER task as a token clas-
sification problem. The base model is a pre-trained
RemBERT (Chung et al., 2021) with a linear layer
on top of the hidden-states output.

RemBERT is based on a multilingual BERT bi-
directional transformer architecture. It uses de-
coupled embeddings, which allows changing the
size of input and output embeddings. The input
embeddings are reduced in size, thus making the
fine-tuning process faster without performance loss
compared to BERT.

In the first experiment on a tokenization step the
original label is propagated to all of the word to-
kens. We fine-tuned the model on multilingual data
for three epochs to predict the labels in BIO for-
mat. The batch size is 32, Adam optimizer is used
with the learning rate of 10−5 and the scheduler
decreases the learning rate by 0.1 each epoch. The
metrics obtained on the development set for this
approach are presented in Table 1.

In the following experiment we investigated how
the performance changes if we combine the models
into an ensemble. The ensemble consists of three
models trained with different seeds as described
above. The final predictions are made based on a
hard or soft voting scheme. The models perform
very similarly; the differences in evaluation scores
are insignificant.

The confusion matrix in Figure 1 is built for
the multilingual model. The largest ratio of erro-
neously assigned O labels is PROD (Product) or
CW (Creative work). Almost for all individual lan-
guages, the confusion matrix is very similar to the
aggregated one. The picture differs a bit for Farsi
and Russian languages: the number of mislabelled
entities as O is higher for each entity tag. This
might be due to the difference in the language struc-
ture. For the Chinese language, 23% of the GRP
(Group) entities were classified as CORP (Corpo-
ration). This behavior is unique to the Chinese
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O CORP CW GRP LOC PER PROD
Predicted label

O

CORP

CW

GRP

LOC

PER

PROD

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00

0.09 0.82 0.02 0.04 0.01 0.01 0.02

0.12 0.00 0.82 0.01 0.01 0.02 0.02

0.07 0.03 0.02 0.83 0.03 0.02 0.00

0.08 0.00 0.00 0.01 0.90 0.01 0.00

0.05 0.00 0.01 0.00 0.00 0.93 0.00

0.19 0.01 0.02 0.00 0.01 0.00 0.77
0.2

0.4

0.6

0.8

Figure 1: Confusion matrix for fine-tuned RemBERT

language.
The ensemble model does not introduce much

improvement. However, training models with dif-
ferent seed values converge almost to the exact
predictions. On the dev set, only one model’s pre-
diction out of three base models differs in 10%
of the cases, and all three models have different
predictions in 1% of the cases.

3.2 Template-free Approach

The second approach which we considered was
Template-free (Ma et al., 2021). This approach
showed decent results on CoNLL03 (Sang and
Meulder, 2003) and MIT-Movie (Liu et al., 2013)
datasets, so we decided to apply it to the multilin-
gual data. The language model is trained to substi-
tute named entity text spans with several predefined
label words. For instance, given the sentence “its
headquarters are in sandy springs, united states of
america” we require the model to replace “sandy
springs” and “united states of america” text spans
with a predefined label word “germany” since these
spans are considered as LOC (location) entities. In
this case, the target for this example would be: “its
headquarters are in germany, germany”. After the
model has substituted several text spans with the la-
bel words, we need to reconstruct these spans based
on surrounding tokens to match each initial token
with its predicted label. The label word for a spe-
cific entity class was chosen as the most frequent
token of this class in the training data. Since we
were working with multilingual data, we created a

unique label words mapping for each language.
As the backbone model for the Template-free

approach, we considered the mT5 pre-trained lan-
guage model (Xue et al., 2021). mT5 is a multi-
lingual variant of the T5 model that is pre-trained
on a new Common Crawl-based dataset covering
101 languages. We chose two variants of the mT5
model for our experiments: mT5-Large and mT5-
XL; the latter model showed better results. Due
to the computational complexity, we could not run
similar experiments with the mT5-XXL language
model. Both models were trained with batch size
equal to 8 and optimizer AdamW with learning rate
5 · 10−5.

During the experiments with the Template-
free approach, we encountered several challenges.
Firstly, if the input phrase has two or more consec-
utive entity spans with a token length of more than
one, it was impossible to reconstruct these spans
unambiguously based on the sequence of predicted
label words. In this case, we assigned the first k−1
predicted label words to k−1 input tokens, and the
last label word was assigned to the rest of the to-
kens. Secondly, because of the punctuation issues
occurring in some languages described in more de-
tail in Section 4, it was difficult to generalize the
reconstruction rules for all languages.

O CORP CW GRP LOC PER PROD
Predicted label

O

CORP

CW

GRP

LOC

PER

PROD

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00

0.08 0.84 0.02 0.03 0.01 0.01 0.01

0.13 0.01 0.82 0.01 0.00 0.02 0.01

0.09 0.04 0.01 0.83 0.02 0.01 0.00

0.09 0.00 0.01 0.01 0.89 0.00 0.00

0.08 0.00 0.01 0.00 0.01 0.90 0.00

0.18 0.02 0.01 0.00 0.00 0.00 0.78

Figure 2: Confusion matrix for Template-free mT5-XL

The token-level confusion matrix for the
Template-free approach on the development set
is shown on Figure 2. The results for the mT5-
XL fine-tuned model on the dev set is presented in
Table 1.

Based on Figure 2 we can mention that the most
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Table 1: Results for Token Classification and Template-
free approaches on dev and test sets

Approach
Dev Test

P R F1 P R F1
Token
Classification

0.81 0.84 0.82 0.83 0.80 0.81

Template-free 0.82 0.77 0.79 0.58 0.51 0.54

common model’s error is predicting the O-tag for
tokens which are actually considered as parts of the
entities. In other words, the model more often fails
to recognize a named entity than confuses two dif-
ferent entities. We can also mention that in terms of
languages the fine-tuned model shows the best re-
sults for English, Dutch and German and the worst
results for Farsi and Russian according to F1 score.
The dramatic performance downgrade on the test
set compared to the dev set for the Template-free
model may occur due to the significant distribution
shift in the test data. For instance, the average sen-
tence length in terms of tokens in the train and dev
data is approximately equal to 16.4. However, the
average length in the test data is equal to 9.6, we
assume that the Template-free model could not be
resistant for such changes.

4 Discussion

We provide the performance analysis of the mod-
els that we developed. The confusion matrices for
both approaches demonstrate similar commonly
occurring errors. Moreover, while working on ex-
periments, we noticed several dataset issues which
we suppose are worth mentioning. The problems
potentially contribute to the low performance of
the Template-free approach.

1. Classification decisions for tokens from
PROD and CW entity types are more often
confused with the O labeled tokens (Fig. 1,
2). These entities are examples of complex
entities, which the competition was focused
on. At the same time, the labeling for the
two entity types in the provided dataset shows
low consistency. For example, in the sen-
tence1 “rice - long, medium, or short-grain
white; also popcorn rice” the first occurrence
of “rice” is labelled as PROD. However, “pop-
corn rice” is not labeled as a named entity.
The precise definitions of the complex entities

1The example sentence ID: 2e9d398c-a956-4419-a48d-
f53790d2d237 (file en_train.conll)

and consistent labeling might be crucial for de-
veloping high-performing models for complex
entity recognition. Another example is coun-
try names. In one sentence a country name can
be considered as a named entity, but in another
sentence a country name is annotated as O to-
ken. For instance, in the sentence2 “spain has
an embassy ...” the token “spain” has O label,
but in the sentence “in madrid, spain ...” the
same token is considered as a LOC (location)
entity despite the fact that in both contexts
this token refers to country name. Despite,
we call such cases “mislabeled-as-O entities”,
not all of them can be considered wrong la-
bels. As far as we have noticed, this problem
is very common for the Farsi language. To
be precise, we calculated the average number
of mislabeled-as-O entities for each language
(see Table 2). We suppose that this issue can
influence the performance of both models.

Language Mislabeled-as-O
BN-Bangla 0.691
DE-German 0.474
EN-English 1.002
ES-Spanish 3.061

FA-Farsi 20.234
HI-Hindi 1.995

KO-Korean 5.489
NL-Dutch 3.269

RU-Russian 1.606
TR-Turkish 3.494
ZH-Chinese 1.094

Table 2: Mean number of mislabeled-as-O entities

2. The second issue is that we noticed while
working on the Template-free approach is
punctuation labeling. For example, in the sen-
tence3 “thomas earnshaw, inventor of ...” the
comma is presented as a separate token. How-
ever, in the sentence “... museum of fine arts,
houston ...” the comma is part of token “arts,”.
This issue was crucial on the reconstruction
entity spans step since the tokenizer always
considers any punctuation token as a separate
one. This issue is common for MultiCoNER
data in many languages, especially in German
and Bangla.

2The example sentence IDs are df4360c4-a483-493b-bd93-
87814db0104c and 475fb6b2-b9aa-4ec8-8b58-443f5e2774e8
(file en_train.conll)

3The example sentence IDs are be16705b-7f6e-4c28-b086-
5eabf5950d29 and ea916f1b-b9a5-4959-9537-aeb875c1faf1
(file en_train.conll)
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3. For the purposes of more detailed perfor-
mance analysis we considered the dependence
between prediction accuracy and entity length
(in number of tokens). The Figure 3 shows
this dependence for both Template-free and
Token Classification approaches considering
the dev dataset. On the one hand, the mT5-
XL model, trained according to the Template
free approach, performs better on longer enti-
ties compared to the RemBert model. On the
other hand, the RemBert model, trained that
exemplifies the Token Classification approach,
shows better results on shorter entities. This
could be the reason why the Token Classifi-
cation method outperforms the Template free
approach on the test set since the average sen-
tence length in the test data is dramatically
less than the average sentence length in the
train and dev datasets.

1 2 3 4 5 6 7 8 9 10
Named Entity Length

0.65

0.70

0.75

0.80

0.85

Fr
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ct
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ct
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Template-free
Token Classification

Figure 3: The dependence of prediction accuracy on the
entity lengths

5 Conclusion

In the paper, we implemented and evaluated two
straightforward yet different approaches to the mul-
tilingual NER subtask with complex types of en-
tities (MultiCoNER). The first approach uses a
state-of-the-art transformer-based model and fine-
tuning for token classification, while the second
one applies a template-free information extraction
paradigm. Our results are within the 10% margin
of the top solution for multilingual NER tasks and
much higher than organizers’ baseline performance.
Therefore, we can conclude that out-of-the-box ap-
proaches generalize quite well for complex NER
tasks and provide a viable alternative. The per-
formance of the template-free approach can suffer
from inconsistent annotation. The second finding
is the relatively low performance of an ensemble

model, but this issue needs further investigation.
Evaluation of systems for multilingual NER with
complex entity types is still challenging. Our study
analyzed the dataset and found several issues that
can be addressed in future versions of MultiCoNER
Track or in similar competitions.
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Abstract

Named Entity Recognition (NER), an essential
subtask in NLP that identifies text belonging
to predefined semantics such as a person, lo-
cation, organization, drug, time, clinical pro-
cedure, biological protein, etc. NER plays a
vital role in various fields such as information
extraction, question answering, and machine
translation. This paper describes our participat-
ing system run to the Named entity recognition
and classification shared task SemEval-2022.
The task is motivated towards detecting seman-
tically ambiguous and complex entities in short
and low-context settings. Our team focused on
improving entity recognition by improving the
word embeddings. We concatenated the word
representations from State-of-the-art language
models and passed them to find the best repre-
sentation through a reinforcement trainer. Our
results highlight the improvements achieved by
various embedding concatenations.

1 Introduction

Named entity recognition and classification is an
essential subtask in natural language processing
(NLP). The task of identifying named entities like
a person, location, organization, drug, time, clin-
ical procedure, biological protein, etc. in a text
document is key to many applications, including
information extraction and retrieval, machine trans-
lation(Al-Onaizan and Knight, 2002; Steinberger
et al., 2013), topic modeling(Newman et al., 2006),
text summarization(Schiffman et al., 2002), and
question answering. It can also be used in domain-
specific entity types such as disease, symptoms,
and treatments. Recently many researchers have
identified the name identification issue in a variety
of languages and have made efforts to apply named
entity recognition.

Complex and ambiguous Named entities, like
the title of creative works such as books, songs, and
movies, are not simple nouns and are thus harder
to recognize(Ashwini and Choi, 2014). Unlike the

traditional NEs these works take the form of lin-
guistic constituents such as "Remember me when
we are parted," which is an imperative clause and
does not look like the traditional NEs (Locations,
Person name, organizations). This ambiguity in
syntax makes it difficult to identify them based on
their context. There can also occur instances where
these titles are semantically ambiguous; for exam-
ple, "the girl on the train" can be a preposition or
the name of a book. Such entities are growing at a
faster rate as compared to the traditional categories.
Therefore, processing these NEs has always been
a challenging task in NLP in practical and open-
domain settings. However, it has received enough
engagement from the research community.

Despite the high score produced by Neu-
ral models on benchmark datasets like
CoNLL03/OntoNotes, it has been noticed
(Augenstein et al., 2017) that these models perform
significantly low on complex or unseen data.
This happens because the scores were driven by
the presence of easy entities, well-formed text,
and memorization due to entity overlap between
train/test sets. Various researchers have noted that
the majority of the errors in their downstream tasks
have occurred due to the failure of NER systems to
recognize complex entities. Various researchers
using NER on downstream tasks have noted that
a significant proportion of their errors are due to
NER systems failing to recognize complex entities.

This paper presents our system for Shared Task
on "MultiCoNER Multilingual Complex Named
Entity Recognition @ SemEval 2022" (Malmasi
et al., 2022b), (Meng et al., 2021), (Fetahu et al.,
2021). The task focused on detecting complex
and ambiguous entities in short and low-context
settings. Our team focused on improving entity
recognition by improving the word representations,
following (Wang et al., 2021; Yamada et al., 2020).
We concatenated the word embeddings from State-
of-the-art language models and passed them to find
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the best representation through a reinforcement
trainer.

2 Related Work

Name entity recognition has always been a chal-
lenging task that requires massive prior knowledge
resources for good performance (Ratinov and Roth,
2009; Nadeau and Sekine, 2007). Research in var-
ious domains using a variety of approaches has
been done. Early methods included heuristics and
handcrafted rules, lexicons, orthographic features,
and ontologies. These systems involved recogniz-
ing entities based on pattern matching with input
documents(Rau, 1991; Collins and Singer, 1999).
A higher degree of accuracy may be achieved us-
ing the rule-based system. However, it is time-
consuming and challenging to port the developed
rules from one domain to another.

Later machine learning methods were used
(Borthwick, 1999; McCallum and Li, 2003;
Takeuchi and Collier, 2002) . This learning tech-
nique involved supervised and unsupervised ap-
proaches. The supervised being a dominant tech-
nique for named entity recognition (Nadeau and
Sekine, 2007). However, this method required mas-
sive high-quality annotated data. There also exist
some hybrid models that make use of different rule-
based and/or learning methods for enhanced per-
formance (Srihari, 2000; Rocktäschel et al., 2012).
These systems make the best use of good features
and methods for improved performance.

Recently neural network systems (Collobert
et al., 2011) have also become a popular method.
These systems with minimal feature engineering
have become appealing because they do not require
sources such as lexicons or ontologies, thus making
them domain independent. Most of the neural ar-
chitectures proposed are based on recurrent neural
networks (RNN).

3 Dataset Description

The English dataset provided by SemEval 2022
(Malmasi et al., 2022a) comprises 233,917 in-
stances of data. The training sample included
15300 annotated statements, the dev set comprised
800 annotated sentences, and the test set included
217817 test data (as shown in the table). The sen-
tences in the data are allocated a respective id. Each
sentence is further divided into tokens which are
separated by a newline. Each token is assigned a la-
bel according to the standard BIO tagging followed

by the named entity tag in the specified format.
<token>_<BIO_tag>-<NE>

In the BIO tagging, B and I tags are followed
by <NE> tag, while O tags have no following tag.
As presented in the fig, an instance of the dataset,
statements with the ’O’ tag represents a non-named
entity. The statements with ’B’ tags represent the
beginning of the named entity, and ’I’ tags rep-
resent the continuation of the same-named entity.
The tokens are assigned one of the six named en-
tities Person (abbreviated as PER), Location (ab-
breviated as LOC), Group (abbreviated as GRP),
Corporation (abbreviated as CORP), Product (ab-
breviated as PROD), Creative Work (abbreviated
as CW).

4 Methodology

The method used focuses on automating the pro-
cess of finding better concatenation of embeddings
for improved performance. In this approach, a
task model and controller module repeatedly in-
teract. To achieve high accuracy, the controller
searches for a better embedding concatenation from
the given set of pre-trained embeddings. The task
model, on the other hand, produces a task output.
The architecture works on a reward basis. The
controller is rewarded every time the task model
is trained over the task data after an embedding
is generated. The controller receives a reward for
updating its parameter and sampling new embed-
ding concatenations. The general architecture of
our approach is shown in Figure 1.

4.1 Design of Task Model
For the task model, a sequence-structure approach
is used. Considering the input sentence to be m
and the structured output to be n, the probability
distribution P(n|m) can be calculated as:

P (n|m) =
exp(Score(m,n))∑

n′∈N(m) exp(Score(m,n
′))

(1)

where N(m) represents all possible output structures
given the input sentence n. The BiLSTM-CRF
model (Ma and Hovy, 2016; Lample et al., 2016)
was used for sequence-structured outputs.

P seq(n|m) = BiLSTM − CRF (E,n) (2)

where E = [e1; e2; ... en], E ∈Rd×w is matrix
of word representation for the input sentence m
comprising of w words, The hidden size of the
concatenation of embeddings is represented by d.
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Ei is the word representation of the ith word, which
is a concatenation of L types of word embeddings:

eli = embedli(m); ei = [e1i ; e
2
i ; ... e

L
i ] (3)

Figure 1: Architecture of our approach. It shows the task
model, returning of reward function and the embeddings
being concatenated

4.2 Design of Search Space
A set of neural networks can be used to repre-
sent neural architecture search space (Elsken et al.,
2017). In this method, we have represented the
embedding candidates as nodes. The sentence n is
passed as the input to the nodes, and the resulting
output is the embeddings el. Since the embeddings
are concatenated as word representations, there is
no connection between the nodes in search space,
resulting in a significantly reduced search space.

A variety of embeddings are available for the ex-
traction of word representation, for instance, fine-
tuned XLM-RoBERTa-large embeddings.However,
due to the restriction on the use of a multilingual
model for a single language track, we finetuned the
BERT embeddings on the provided training data
and concatenated the last four layers as word fea-
tures applying mean pooling operation over them
(Devlin et al., 2019).

Unlike (Kondratyuk and Straka, 2019), applying
a weighted sum of all twelve layers did not signif-
icantly differ the empirical results. There was no
significant difference between the XLM-RoBERTa
CONLL-03 English embeddings and the Finetuned
BERT-Large embeddings for the submitted predic-
tions. Thus we used regular embeddings to reduce
search space. Subsequently, each embedding only
has a specific operation resulting in a search space
that contains 2L-1 possible combinations of nodes.

Except for the character embeddings, all the
other weights of the pre-trained embedding can-

didates are fixed. The parameters of task models
are shared at each iteration of the search in ac-
cordance with Neural Architecture Search (NAS).
All the nodes in the graph are kept in the search
space. Each node performs an operation to indicate
whether the embedding is masked out. This is done
to avoid deciding which node is to be kept, making
weight sharing difficult. For this binary task.

For this task, a binary vector
o = [o1, . . . , ol, . . . , oL] is used as a mask
for those embeddings which are not selected:

ei = [e1i o1; e
2
i o2; ... ; e

l
iol; ... ; e

L
i oL] (4)

Where ol represents a binary variable. Input
E is applied to the linear layer in the BiLSTM
layer hence the multiplication operation in E, i.e.
multiplying mask with embedding, is equivalent to
directly concatenating the selected embeddings:

W T ei =
∑

W T
l e

l
iol (5)

Also, the unused embedding candidates and the
corresponding weights in W are removed for a light
task-model after finding the best concatenation.

4.3 Searching in the Space
The controller is responsible for generating the
embedding mask using parameters which are gen-
erated using θ = [θ1; θ2; ...; θL]. The probabil-
ity distribution of selecting a concatenation o is
P ctrl (q; θ) = ΠL

l=1P
ctrl
l (ol; θl). Element ol of o

is sampled using Bernoulli distribution which is
given by:

P ctrl
l (ol; θl) =

{
σ(θl), ol = 1.

1− P ctrl
l (ol = 1; θl), ol = 0.

(6)
where σ is the sigmoid function. Given the mask,

the task model is trained until convergence and
returns an accuracy R on the dev set. The rein-
forcement algorithm is used for optimization. The
accuracy R is used as a reward signal for training
the controller, whose aim is to maximize the reward
J(θ) =EP ctrl (o;θ)[R] utilizing the policy of gradi-
ent method (Williams, 1992). The reward function
that we have used:

rt =

t−1∑

i=1

(Rt −Ri)γ
Hamm(ot,oi)−1|ot − oi| (7)

The final gradient comes out as:

∇θJ(θ) ≈
L∑

l=1

∇θ. logP
ctrl
l (otl ; θl) r

t
l (8)
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This reward function evaluates how each embed-
ding candidate contributes to the accuracy change.
The binary vector |ot − oi| represents the change
in embeddings. ot represents a binary vector at
current iteration t, and oi represents the previous
time step i. The Hamming distance Hamm(ot, oi)
is used to measure the contribution of embedding
candidates in the accuracy. As hamming distance
increases, the contribution becomes less significant.

4.4 Training the controller

The corresponding validation scores and concatena-
tions were stored in a dictionary D to train the con-
troller. Firstly the task model was trained with all
the embedding candidates concatenated. Then the
concatenation ot was sampled based on Equation
(6). The task model was trained using the equa-
tion (4) after which the model is evaluated on a
development set to return an accuracyRt. Then the
gradient is computed for the controller following
Equation (8) using the concatenation ot, accuracy
Rt and D. Based on the computed gradient, the
parameters of the controller are updated. Finally, ot

and Rt are added to D. If a concatenation ot is in
dictionary, we compare its accuracy with the value
in the dictionary and keep the higher one. Selecting
ot−1 (i.e., previous concatenation) and zero vector
is avoided.

5 Experimental Setup

Data was provided in form of sentences which were
broken down into individual words, or tokens, each
lying in a newline and their corresponding tags
in front of them. All the tokens are first passed

Table 1: Major Hyperparameters

Parameters Value
BiLSTM size 800
BiLSTM layer 1
Optimizer SGD
Learning rate [0.1, 7.8125e-4]
Epochs 150
Episodes 20

through a function to encode them into embed-
dings, which are initial representations for the to-
kens. These tokens are pushed through the RNN
language model which forms the task model and
iteratively returns a reward to the controller.

This model first contains a dropout layer, then
an encoder layer is added which contains the em-
bedding. The next layer is an LSTM layer with a

hidden size of 800. Finally, the representations are
fed into a linear-chain CRF layer to predict the final
label sequence, where a linear layer is applied for
the representations to score each entity label. The
above deep learning model has been built using
PyTorch1 along with the transformer embeddings
that have been used.

The learning rate was set at 0.1 at the beginning
with a patience level set to 5, i.e. the learning rate
was halved if there was no improvement in moni-
tored metrics for the patience, that is the validation
loss. The batch size was set to 64 and a maximum
of 150 epochs were allowed for 20 episodes.

6 Results

The table below shows the micro and macro F1
scores of prediction on the development set. As
the tags of the test set are unavailable to us, the
model’s performance was judged on dev set only
and the results of the best 3 models were ensem-
bled in the end, for submission. The best perform-
ing model was achieved in a model, where the
following embeddings were concatenated: Fine-
tuned BERT-large-uncased, Finetuned RoBERTa-
large, ELMo original, FastCharacterEmbeddings,
Glove, FastWordEmbeddings-english, Flair news-
en embedding. The model was trained on with
the following hyperparameters setting 150 epochs,
20 episodes, SGD optimizer, 800 hidden units of
BiLSTM-CRF, starting with a learning rate of 0.1
and a batch size of 64.

Table 2: Results with concatenated BERT embeddings

Concatenations Micro-F1 Macro-F1
TransformerWordEmbedding: BERT-large-uncased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8867 0.8745

TransformerWordEmbedding: BERT-large-cased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8596 0.8470

TransformerWordEmbedding: BERT-base-cased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8597 0.847

TransformerWordEmbedding: BERT-base-uncased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8861 0.8693

1https://pytorch.org/

1579



Table 3: Results with concatenated Xlm-RoBERTa embeddings

height Concatenations Micro-F1 Macro-F1
TransformerWordEmbedding: Xlm-RoBERTa-large-finetuned-conll03-english
(finetuned on current dataset)
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.868 0.8536

TransformerWordEmbedding: Xlm-RoBERTa-large-finetuned-conll03-english
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8563 0.8423

TransformerWordEmbedding-0: Xlm-RoBERTa-large-finetuned-conll03-english
TransformerWordEmbedding-1: RoBERTa-large
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8728 0.8592

TransformerWordEmbedding-0: Xlm-RoBERTa-large-finetuned-conll03-english
TransformerWordEmbedding-1: BERT-large-uncased
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8997 0.8881

TransformerWordEmbedding: Xlm-RoBERTa-base
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8465 0.8332

TransformerWordEmbedding: Xlm-RoBERTa-large
ELMoEmbedding: original || FastCharacterEmbeddings
FastWordEmbedding-0: glove || FastWordEmbeddings-1: en
FlairEmbedding: news-forward

0.8596 0.8456

These results were ensembled with two other
models which were developed as follows:

• BERT-base-uncased, BERT-large-uncased,
and RoBERTa-large with the rest of the em-
beddings as it is.

• Finetuned BERT-large-uncased with the rest
of the embeddings as it is.

7 Result Analysis

Experiments were conducted to analyze the per-
formance of systems by using different combina-
tions of embeddings. The best concatenation of em-
beddings can be easily seen in the model contain-
ing BERT-large-uncase transformer embedding and
ELMo original, FastCharacterEmbeddings, GloVe
FastWord: english, and Flair: news-forward with
a Macro-F1 score of 0.8745 on the dev set. This
model generated the best results after ensembling
the results with the models containing BERT-base-
uncased embeddings and BERT-large-uncased fine-
tuned on the current dataset, which generated a
Macro-F1 score of 0.74182 on the test dataset.

Table 4: Comparison in baseline and our best model

Models Micro-F1 Score3

Baseline 0.715
Our Best 0.8867

One clear distinction in the result can be seen
among the BERT uncased and cased models. In the

2This is the final Macro-F1 score on the test set
3Micro-F1 score was the only metric available for baseline

BERT-uncased models, the text is set to lowercase
before the WordPiece tokenization step, hence case
is irrelevant in it, while in BERT-cased models, the
case of words is also considered. In our dataset, the
tokens were already lowercase.

For comparison’s sake, we have experimented
with RoBERTa embeddings as well and they have
produced slightly better results than BERT embed-
dings alone. One difference in the functioning of
BERT and RoBERTa was noticed during experi-
menting with their tokenizers. The BERT tokenizer
sometimes separated hyphen-separated entities and
treated them as individual entities while RoBERTa
tokenizer treated them as a combined single entity
and generated a representation for it.

For comparison, we have also experimented with
XLMR embeddings during result compilation to
show the difference (or similarity) between results.
After removing a few of the other embeddings like
ELMo, Flair, and Glove, we have also collected
results from the above model. All the results can
be referred to in Table 3.

8 Conclusion and Future work

In this paper, we present our approach to SemEval-
2022 Task 11:MultiCoNER Multilingual Complex
Named Entity Recognition. Our best submission
gave us an F1 score of 0.7418, placing us 10th on
the Evaluation Phase Leaderboard. Future work
includes experimenting with multilingual data and
embeddings and different optimizers.
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Abstract

In this paper, we present a system for detect-
ing complex named entities in multilingual
and code-mix settings. We discuss the results
obtained in task 11 (MultiCoNER) of the Se-
mEval 2022 competition. The model is an en-
semble of various transformer-based language
models combined with a Conditional Random
Field (CRF) layer. Our model ranks fourth in
track 12 (multilingual track) and fifth in track
13 (code-mixed track). We describe the de-
tails of our model implementation and discuss
the effect of different aggregation methods. Fi-
nally, we conduct additional analyses to under-
stand the performance differences between lan-
guages.

1 Introduction

Named Entity Recognition (NER) is the task of
identifying proper names in a text and categorizing
them into predefined entity types such as person
(PER), location (LOC), or creative work (CW).
For example, given a sentence "Michael Jeffrey
Jordan was born in Brooklyn, New York" the goal
is to label entities correctly with their correspond-
ing category using the BIO-scheme:

"Michael [B-PER], Jeffrey [I-PER], Jor-
dan [I-PER] was born in Brooklyn [B-
LOC], New [I-LOC] York [I-LOC]"

Existing systems are often trained on standard
news text and strongly rely on surface form
features such as capitalization and punctuation.
These approaches do not scale well to user-
generated content because of the increased varia-
tion in language and context in an ever-expanding
domain (Meng et al., 2021; Fetahu et al., 2021;
Augenstein et al., 2017).

Examples of challenging scenarios for named
entity recognition are: (a) Entities in very short
text inputs such as search queries with limited or

no context (Meng et al., 2021) (b) Structurally
complex entities such as movie or book titles rang-
ing from complex noun phrases to full clauses (c)
Recognizing named entities in dynamically evolv-
ing contexts in which novel entities emerge (Au-
genstein et al., 2017; Aguilar et al., 2019).

Although many named entities are shared be-
tween languages, named entity recognition sys-
tems usually rely on language-specific cues (e.g.
capitalization of nouns in German, compound-
ing phenomena in agglutinative languages such
as Korean, Japanese and Turkish (Agerri and
Rigau, 2016)). Such kind of detection cues do
not scale well to other languages. As a conse-
quence, most models need to be fine-tuned for
each language separately on manually annotated
high-quality training data which is a costly pro-
cess.

Task 12 of SemEval 2022 provides a test bench
for more robust systems which can detect complex
named entities in 11 languages (Malmasi et al.,
2022b). The dataset intentionally contains seman-
tically ambiguous entities with limited contexts.
We focus on the multilingual tracks of the compe-
tition which requires the prediction of named en-
tities in all 11 languages by a single model (track
12). As an additional challenge, the model is also
evaluated on code-mixed data (track 13).

We summarize the main finding of our analysis
as follows:

• In Sec 4.2, we show that the choice of the
tagging scheme affects model performance.
We observe that BILOU Tagging is more ef-
fective than BIO Tagging in our experiment
albeit the total number of training is reduced
when annotation is changed to BILOU. We
hypothesize that this is due to explicit distinc-
tion between single and multi-token entities
in BILOU which might help model perfor-
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mance.

• In Sec 6.1, we compare the performance dif-
ferences across languages and find a surpris-
ingly large difference between German and
Russian (10-point difference in f1). This is
contrary to what is expected since the size
of the training data and the label distribution
across languages are comparable. We hypoth-
esize that linguistic factors such as script and
typology or factors relating to the pre-trained
phase contribute to this difference.

• In Sec 6.3, we further expand on this hypoth-
esis and experiment with a zero-shot model
to examine patterns of transfer between pairs
of languages. We observe higher transfer be-
tween English, Dutch and German. These are
also the languages for which the model yields
the highest scores individually.

In the rest of the paper, we discuss related work,
experimental setup and model training, and exten-
sive error analysis.

2 Related Work

Named entity recognition can be modeled as a
sequence labeling problem. Deep-learning based
approaches learn suitable representations in an
end-to-end fashion and outperform rule-based
and handcrafted feature-based approaches (Akbik
et al., 2018; Wang et al., 2020).

(Huang et al., 2015) proposed a BiLSTM-CRF
architecture for sequence tagging which is used
by most state-of-the-art models. These models
combine long short-term memory layers in a bidi-
rectional fashion to use both past and future in-
put and predict named entity sequences using a
conditional random field layer. Significant per-
formance gains have been obtained by initializing
the model with pre-trained contextual embedding
models such as BERT (Devlin et al., 2019), Flair
(Akbik et al., 2018) and LUKE (Yamada et al.,
2020).

Subsequent works explore some of the limita-
tion of using a vanilla transformer. (Guo et al.,
2019) show that a transformer architecture is
less effective for modeling sequence labeling that
strongly relies on left and right context and long-
range dependencies which is the case for named
entity recognition. LUKE (Yamada et al., 2020)
is the state of the art in the CoNLL-03 NER

dataset. It is pre-trained by contextualized repre-
sentations based on bi-directional transformers on
entity-annotated corpus of words and entities.

The complexity of the task and its multilingual
nature are the main factors in choosing our mod-
eling approach. The task complexity entails that
our approach should rely on token context and in
capturing relationships between labels since the
surface form cues (e.g capitalization ) are nor-
malized in the training data. The multilingual
aspect entails choosing a crosslingual pre-trained
model which can handle the target languages. We
choose XLM-RoBERTa-large (Conneau et al.,
2019) and Microsoft/infoxlm-large (Chi
et al., 2020). XLM-RoBERTa-large model
is a cross-lingual version of RoBERTa. XLM-
RoBERTa has outperformed cross-lingual BERT
and it is the state of the art on many cross-
lingual tasks including Named Entity Recognition.
Microsoft/infoxlm-large is similarly a
multilingual pre-trained model for over 100 lan-
guages with a new cross-lingual pre-training task
named cross-lingual contrast (XLCO).

A comparison of the two pre-trained models
shows both to be competitive on tasks such as
cross-lingual natural language inference (XNLI)
and Microsoft/infoxlm-large to be sig-
nificantly better on cross-lingual question answer-
ing (MLQA) and cross-lingual sentence retrieval
on the Tatoeba dataset. We provide a direct com-
parison of these two models for named entity
recognition (which was previously missing in the
literature) and explore an ensemble of the two
models.

3 Data analysis

We use the training dataset provided as part of Se-
mEval 2022 Task 11 MultiCoNER: Track 12 (Mul-
tilingual) and Track 13 (Code-mixed) (Malmasi
et al., 2022a). The dataset consists of training and
development data in 11 languages annotated with
six named entity types. Table 1 provides statisti-
cal characteristics of the dataset. We observe that
overall 18% of the tokens are labeled as a named
entity which is comparable to other datasets. In
terms of entity types, Person (PER), Group (GRP)
and Creative Works (CW) occur more frequently
across languages. We notice that the absolute num-
ber of entity tokens is twice as high for Chinese
as for the other languages. This can be explained
by the character-level tokenization of the Chinese
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texts. As a consequence, 98% of all Chinese enti-
ties are multi-token entities compared to 55% for
Korean and 85% for English. Figure 1 visualizes
the entity density across languages showing a large
difference for Chinese but only small variations
for the other languages. This difference may be
smoothed by subtoken representations of the lan-
guage models. The Chinese characters can not be
broken any further, whereas the other language to-
kens can.

Multilingual Code-Mixed

NER Entity(#) 6 6
Language (#) 11 N/A
Sentences (#) 168.3 K 1.5 K
Tokens (#) 2750.9 K 17.5 K
Part of Entity (%) 18 30
Outside of Entity (%) 82 70

Table 1: Summary of training data statistics

4 System Description

The system that we proposed for both track 12
and track 13 is based on an ensemble of two
pre-trained transformer models (PTMs). The first
one is the XLM-RoBERTa-large model (Liu
et al., 2020; Conneau et al., 2019) which is a
cross-lingual version of RoBERTa.The second one
is Microsoft/infoxlm-large (Chi et al.,
2020) which is also multilingual pre-trained model
that supports over 100 languages and includes a
new cross-lingual pre-training.

4.1 Fine-tuning
Both the selected pre-trained model takes as input
a sequence of tokens and encodes them to the em-
bedding space. During fine-tuning. These embed-
dings are passed to a dense layer that predicts class
scores. On top of the class scores, we used a CRF
layer.

4.2 Tagging Schemes
Several NER tagging schemes have been used in
the literature. However, choosing the ideal scheme
is a complex problem (Konkol and Konopík,
2015). The two most popular NER tagging
schemes are BIO and BILOU. In BIO, sometimes
referred to as IOB (Sang and Buchholz, 2000), a
different tag is assigned to each word in the text
depending on whether it is the beginning (B − y),
inside (I−y), or outside (O) a named entity phrase

y. In case of BILOU, in addition to the previous
(B − y), (I − y) and (O) tags, words at the end of
an entity phrase get an end tag (E − y) and single-
token entities get a unit-length tag (U−y). BILOU
annotations increase the amount of information re-
lated to the boundaries of named entities compared
to BIO but reduce the amount of training cases per
tag.

4.3 Ensemble

In our experiments on the development set, we
get the best performance using an ensemble of
seven models. Four of them are based on
XLM-RoBERTa-large, and the other three are
based on Microsoft/infoxlm-large. Fur-
thermore, to make the set of models more diverse,
we used a different random seed to initialize their
weights and while we kept the same set of hyper-
parameters as defined in Table 2. Finally, we used
two different ensemble techniques, explained in
more detail in the following sections. We provide
additional information about the ensemble models
in Appendix A.

4.4 Voting and Score Fusion

A hard voting ensemble involves summing the
votes for crisp (discretized) class labels from our
models and predicting the class with the most
votes. While soft voting is an ensemble that in-
volves summing the predicted probabilities for
class labels and predicting the class label with the
largest sum probability. To consider the context of
the labels, we employed a CRF layer on top of the
aggregated scores. See Figure 2.

5 Experiment and Result

All our models were implemented with PyTorch
(Paszke et al., 2019), on top of the pre-trained
transformer models provided by HuggingFace
(Wolf et al., 2019). For the PTMs, the output
of the last attention layer was used as input for
the classifier layer. The CRF classifier was im-
plemented using the AllenNLP library (Gardner
et al., 2017). Adam optimizer (Kingma and Ba,
2014) was used to update model parameters. Fi-
nally, cosine annealing decay with T_max = 20
and eta_min = 1.0e−8 was applied for the learn-
ing rate after (early_stopping_patience / 2) consec-
utive epochs without improving (Loshchilov and
Hutter, 2016).
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Hyperparameter value

Attention output Last layer
Curriculum learning Sorting by # of tokens
Padding Batch padding
Tagging scheme BILOU
Max sequence length 128
Batch size 32
Learning rate 5.0e-6
Learning rate decay cosine annealing
Early stopping patience 6
Early stopping metric Macro span-F1
Optimizer Adam
Loss Viterbi

Table 2: Optimizer and hyperparameters used to fine-
tune our model

5.1 Model Training and Evaluation

We train our model using only the official training
data. We used the development data to evaluate the
performance of the models. Models were evalu-
ated at the end of every epoch. Early stopping and
cosine annealing decay were determined using the
macro average span-F1 score. In the evaluation
phase, task organizers provided an unlabelled test
dataset. We used the pre-trained model to make
the predictions without retraining and uploaded it
to Codalab. The ensemble of models with score fu-
sion provides the best results on the development
and test datasets. See tables 3 and 4.

Hyperparameter selection impact During the
training phase, we tested several combinations of
the hyperparameters, and we used a greedy ap-
proach to select the best individual hyperparame-
ters. Table 2 shows the most important parameters
that have a significant impact on the performance
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Track → Track 12 (Multilingual) Track 13 (Code-Mixed)
Model ↓ P R F1 P R F1

Baseline 64.5 65.6 64.2 60.0 61.7 59.0
Best infoxlm-large 86.4 87.1 86.8 76.9 76.5 76.7
Best XLM-R-large 86.4 86.4 86.4 78.2 76.8 77.3
Ensemble voting 87.7 87.4 87.6 79.4 78.1 78.7
Ensemble fusion 88.6 87.0 87.8 81.8 78.5 80.0

Table 3: NER results on the development datasets in span-level precision (P), recall (R) and F1 in %.

of our models.
A crucial first step was the application of cur-

riculum learning which reduced the training time
by 50%. That was crucial since training our model
on such a big dataset takes about one hour per
epoch.

The tagging scheme is one of the most criti-
cal parameters that impact the performance of our
model. For example, using BILOU scheme im-
proved the performance about 1.5% on span-F1
score compared with the BIO scheme.

Max sequence length and batch size played
a primary role in the training speed and perfor-
mance. At the same time, a small value for the
learning rate prevented the model from over-fitting
rapidly. Finally, learning rate decay made the
model convergence smoother before the early stop-
ping occurrence.

PTM Impact As shown in Table 3,
Microsoft/infoxlm-large and
XLM-RoBERTa-large have almost the same
performance. To the best of our knowledge, they
share the same structure and are pre-trained on the
same data. However, their pre-training objective
functions differ. On the other hand, model size
impact can be clearly seen by comparing the
above large models with the baseline model
which is based on XLM-RoBERTa-base.

Ensemble Impact The score fusion (Sect. 4.3)
ensemble outperforms the individual models and
the vote-based ensemble on almost all metrics.
This improvement was due to the soft score ag-
gregation, which gives the model better control to
select the correct class than the crisp vote-based
class aggregation.

CRF Impact Applying CRF on model scores
gives better results than using argmax only. How-
ever, it was a bit hard to apply it in the score fu-
sion ensemble model. In this type of ensemble, we

aggregated the scores, not the output of the CRF
layer. There were two options to solve this prob-
lem, i) take the CRF layer of one of the ensem-
ble models and use it directly on top of the aggre-
gated scores without fine-tuning, or ii) fine-tune a
new CRF layer on the aggregated scores. We tried
both solutions, and our finding was that the sec-
ond option gives better performance, about 0.1%
improvement in span-F1 score compared with the
first option. See last row in Table 3.

6 Analysis and Conclusion

In this section, we analyze our model output for
the multilingual task and the code-mixed task on
the development dataset because the gold labels
for the test data were not released. Table 5 shows
the performance averaged over six entity types
ranked by language.

We see that the model performance varies
strongly between languages. The best result is
obtained for German and is 10 percentage points
higher than the lowest result which is obtained for
Russian. When we compare the different entity
types, we observe the highest variance for Chi-
nese.

The large differences are surprising as the train-
ing data size is equal for all languages and the en-
tity types are roughly evenly distributed (with the
exception of Chinese). We therefore analyse these
differences further below.

6.1 Variation Across Language

We first clustered languages into three groups
based on their model performance: Group-1 has a
score of 0.9 or higher and includes German, Dutch
and English. Group-2 has a score between 0.85
and 0.9 and includes Turkish, Chinese, Spanish,
Korean, Hindi and Bangla. Group-3 has a score
lower than 0.85 and includes Farsi and Russian.
With a single language model and a comparable
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Track → Track 12 (Multilingual) Track 13 (Code-Mixed)
Model ↓ P R F1 P R F1

Ensemble voting 74.64 75.84 74.92 79.72 79.58 79.57
Ensemble fusion 75.96 75.78 75.49 81.10 79.72 80.29

Table 4: NER results on the test datasets in span-level precision (P), recall (R) and F1 in %.

Language DE NL EN TR ZH ES KO HI BN FA RU

Macro-F1 92.28 91.43 90.26 88.71 88.11 87.62 86.47 86.19 86.11 84.54 82.92

Table 5: Macro-F1 (in %) averaged over NEs (evaluated on development dataset)

PROD CORP CW GRP LOC PER O

PR
OD
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CW
GR

P
LO

C
PE

R
O

83.68% 1.64% 1.93% 0.29% 0.47% 0.18% 11.81%

1.12% 86.87% 1.89% 3.32% 0.97% 0.84% 5.00%

0.80% 0.61% 88.68% 1.07% 0.61% 1.09% 7.14%

0.29% 2.54% 0.95% 90.05% 1.58% 0.49% 4.10%

0.33% 0.64% 0.39% 1.13% 92.50% 0.41% 4.59%

0.15% 0.33% 0.53% 0.73% 0.27% 94.07% 3.93%

0.31% 0.14% 0.38% 0.20% 0.26% 0.21% 98.51%

0.2

0.4
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Figure 3: Confusion Matrices on the development datasets (Multilingual + Code-Mixed)

fine-tuning dataset across languages, the disparity
in the result could possibly be attributed to
(a) Representational quality: differences in lan-
guage representations in XLM-R, as some lan-
guages are represented better than others
(b) Typological properties: typological difference
between languages as languages that are related
tend to take advantage of transfer during fine-
tuning
(c) Script characteristics: languages with similar
scripts tend to take advantage of shared subtokens
during fine-tuning.

We observe that all group-1 languages are com-

monly categorized as high-resource languages for
which XLM-RoBERTa-base performs well on
downstream tasks (Conneau et al., 2019; Joshi
et al., 2020). Liu et al. (2020); Hu et al. (2020)
give evidence for this effect in downstream tasks.

In terms of typological properties, although
group-1 and group-3 languages are members of
the same language family, they differ in their
scripts which to some extent negatively influ-
ence transfer at least during the fine-tuning phase
(Muller et al., 2021).
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6.2 Confusion Matrix

Figure 3, shows a confusion matrix for coarse-
grained entity types. From these results, we ob-
serve a stronger ambiguity between the O label
and the entity types than across entity types. A
possible explanation can be lexical overlap in the
training data. The highest confusion can be ob-
served between Creative Work (CW) and the Out
Label (O). CW often consists of titles of movies
and other creative work that include words that
also occur in regular expressions annotated as O.

Frequency Analysis As a follow-up, we carried
out a more-detailed frequency analysis of the to-
kens that are annotated as entity tokens and O. Fre-
quency analysis on the token shows a long tail dis-
tribution with more than 90% of the errors occur-
ring only once. Table 6 shows the most frequently
misclassified tokens, which are the English and
Dutch definite determiner and the Chinese symbol
for Sri Lanka.

Token Frequency
De 36
the 22
斯 22

Table 6: Tokens which are misclassified most fre-
quently

From the misclassified tokens, we observed sub-
stantial overlap between false negative and false
positive tokens. Among these, determiners (arti-
cles such as ‘a’, ‘the’, ‘de’) and words
that stand for the type of products are common
("movie", "series", "municipal"). These words are
typically expected at the border of named entity
expressions. There may be two explanations for
these cases:

Inconsistent Annotations where a token is
sometimes included in the named entity expres-
sion and sometimes it is not. This issue most likely
occurs on border labels. To show this we take an-
notation examples from the training data e.g., the
oculus quest as the name of a product can be an-
notated as [O, B-PROD, I-PROD] or [B-PROD, I-
PROD, I-PROD] where the is annotated as outside
of entity type in the first case and inside on the sec-
ond case which creates inconsistency on the token.

Variable Contexts where the same token truly
occurs both within entity phrases in some context

and outside as the context change. For example
in the communist party of great britain is anno-
tated as [O, B-GRP, I-GRP, I-GRP, I-GRP, I-GRP]
where the token great is annotated as GRP and in
a different context - the great sum of 1,000 pounds
it is annotated as outside of entity. Both cases are
difficult to resolve for a model.

Token Annotated Labels Label Distribution

his I-CW, O, I-PER [0.01, 0.99, 0.00]
songs I-CW, O, B-CW [0.05, 0.83, 0.12]
since I-CW, O, B-CW [0.01, 0.99, 0.01]

Table 7: Examples for label variation

We explored the first cause where the issue
might arise from an inconsistent annotation in the
training data. We first extract tokens from the train-
ing data with multiple labels along with their corre-
sponding label proportion. In Table 7 some exam-
ples are given, where "songs" also tend to occur
at the beginning of a CW. We then use this pro-
portion to create a post processing filter where we
"correct" the model output at the borders of entity
phrases for tokens with overlapping False Positive
and False Negative cases in case the model output
deviates from the bias.
We experimented with different thresholds for the
bias to apply where the maximum value represents
a bias value and the minimum value represents the
exception value. Although this approach did not
result in a performance gain or loss, we observe
that closed class words such as articles but also
proper names for locations, product names, proper
nouns and symbols are often affected by this fil-
ter. A possible explanation for lack of effect could
be that the same annotation inconsistency also ap-
plies to the test data.

6.3 Transferability

To analyze how transfer plays out be-
tween the group-1 languages, we fine-tuned
XLM-RoBERTa-base on the English dataset
and evaluated it in a zero-shot setting on the
rest of the languages. Figure 4 shows the result
of this experiment. Though other factors might
play a role, we can infer from this result that
group-1 languages (German and Dutch) have a
more positive transfer from English than the other
languages, although Spanish also benefits from
English.
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Figure 4: English Zero shot performance across lan-
guages

NL NL-DE NL-ZH NL-Rand ZH Den-ZH Den-DE

GRP 0.82 0.8 0.76 0.76 0.02 0.11
CW 0.72 0.68 0.67 0.71 0.14 0.09

PROD 0.69 0.62 0.61 0.69 0.14 0.08
LOC 0.87 0.88 0.84 0.86 0.13 0.09
PER 0.88 0.82 0.86 0.84 0.05 0.12

CORP 0.84 0.78 0.77 0.76 0.12 0.09

Table 8: Bilingual Models evaluated on Dutch Devel-
opment Dataset (Macro F1)
The last two Column (Den-ZH and Den-DE) shows
Named entity density measures

Next to zero-shot transferability, we also ex-
perimented with bilingual transfer. We selected
one language as the target language, in this case,
Dutch, and we measured the contribution of all
other languages as training data in addition to half
of the Dutch training data. We combine half of
the dutch training data with half of German (Col-
umn NL-DE), half of Chinese(Column NL-ZH)
and randomized Chinese (Column NL-Rand ZH)
where we randomize Chinese tokens with a to-
ken from XLM vocabulary. The first four column
shows bilingual models evaluated on Dutch devel-
opment set measured in macro-averaged F1. The
total set of training sentences was kept the same
across all experiments.
We observe that contrary to the zero-shot results,
Chinese contributes overall only just a bit lower
than German when tested on the Dutch test set.
This is remarkable because German and Dutch are
typologically very close and use the same script.
Apparently, the observed density of entities for
Chinese is a factor that may compensate for the
difference in script and language typology. We
can see in Table 8 that the contributions of Chi-
nese lag behind when the density is lower than
German (GRP) but is almost the same when it is

higher (CW, PROD, LOC, CORP). The only ex-
ception is PER which has the lowest density for
Chinese but still a higher contribution. To test
the assumption that just the label density plays a
role, we even replaced the Chinese tokens with ran-
dom tokens. The results show that even partially
randomized Chinese training data outperforms the
German contribution on most entity types.

6.4 Conclusion
In this paper, we proposed a single named en-
tity recognition system that can process multilin-
gual and code-mixed text based on an ensemble
of transformer-based models. We have accom-
plished fourth and fifth positions in the test phase
for track 12 (Multilingual) and track 13 (Code-
Mixed). Even though the proposed system per-
forms pretty well on the development dataset,
there is a considerable performance drop in track
12 on the test dataset. Further study needs to be
done to address that performance change.

Summarising the results from the error analysis
and the statistics on the training data, we can con-
clude that there are four factors that play a role in
the cross-lingual performance of this task, given
that an equal amount of training data is available
for fine-tuning in all languages. We provided ev-
idence that transfer from the XLM pre-training,
typological relatedness, and shared scripts can be
factors that contribute to transfer but on the other
hand the density of the entities in the training data
is another factor.

Our system does not include external gazetteers
or targeted unsupervised learning on difficult en-
tity types such as products and creative works. In
future work, we would like to include them, which
could help to improve the performance due to the
extra information they include.
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A Ensemble Models

In Table 9 and Table 10, we provide score distribu-
tion of all models that form our ensemble on the
development datasets.

# PTM Random Seed P R F1
1 microsoft/infoxlm-large 102 87.6 85.6 86.6
2 microsoft/infoxlm-large 2022 86.4 87.1 86.8
3 microsoft/infoxlm-large 2033 87.5 85.7 86.6
4 xlm-roberta-large 2044 85.8 86.5 86.2
5 xlm-roberta-large 2055 86.4 86.4 86.4
6 xlm-roberta-large 2066 85.9 86.8 86.4
7 xlm-roberta-large 2077 86.2 86.4 86.3

Table 9: Ensemble models - Multilingual

# PTM Random Seed P R F1
1 microsoft/infoxlm-large 102 77.6 75.4 76.5
2 microsoft/infoxlm-large 2022 76.9 76.5 76.7
3 microsoft/infoxlm-large 2033 78.1 74.9 76.5
4 xlm-roberta-large 2044 78.2 76.8 77.3
5 xlm-roberta-large 2055 78.2 76.8 77.3
6 xlm-roberta-large 2066 77.3 77.1 77.2
7 xlm-roberta-large 2077 77.1 76.1 76.6

Table 10: Ensemble models - Code-Mixed
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Abstract

Large scale pre-training models have been
widely used in named entity recognition (NER)
tasks. However, model ensemble through pa-
rameter averaging or voting can not give full
play to the differentiation advantages of dif-
ferent models, especially in the open domain.
This paper describes our NER system in the
SemEval 2022 task11: MultiCoNER. We pro-
posed an effective system to adaptively ensem-
ble pre-trained language models by a Trans-
former layer. By assigning different weights to
each model for different inputs, we adopted the
Transformer layer to integrate the advantages
of diverse models effectively. Experimental re-
sults show that our method achieves superior
performances in Farsi and Dutch.

1 Introduction

NER is an essential tool in the application fields
of information extraction, question answering sys-
tem, syntactic analysis, machine translation, etc. It
plays a vital role in the process of the practical ap-
plication of natural language processing technology
(Devlin et al., 2018; Meng et al., 2021). However,
processing complex and ambiguous Named Enti-
ties (NEs) is a challenging NLP task in practical
and open-domain settings, but has not received suf-
ficient attention from the research community.

Complex NEs, like the titles of creative works
(movie/book/song/software names), are not sim-
ple nouns and are harder to recognize (Ashwini
and Choi, 2014; Fetahu et al., 2021). They can
take the form of any linguistic constituent, like an
imperative clause (“Dial M for Murder”), and do
not look like traditional NEs (Person names, lo-
cations, organizations). This syntactic ambiguity
makes it challenging to recognize them based on
their context. Such titles can also be semantically
ambiguous, e.g., “On the Beach” can be a prepo-
sition or refer to a movie. Finally, such entities

∗Corresponding Author.

usually grow faster than traditional categories, and
emerging entities pose yet another challenge.

In recent years, the deep learning methods have
achieved great success in NLP (Natural Language
Processing). However, some limits need to be
addressed. Challenges for deep learning in NLP
mainly arise from the scarcity of labeled data. One
way to alleviate the need for large labeled datasets
is to pre-train a model on unlabeled data via self-
supervised learning, and then transfer the learned
model to downstream tasks (Devlin et al., 2018).
These methods have been widely applied and have
made a massive breakthroughs, such as BERT (De-
vlin et al., 2018), XLNET (Yang et al., 2019) and
GPT (Radford et al., 2018).

Pre-trained neural models (e.g., Transformers)
have produced high scores on benchmark datasets
like CoNLL03/OntoNotes (Devlin et al., 2018).
However, as noted by Augenstein et al. (Augen-
stein et al., 2017), these scores are driven by the use
of well-formed news text, the presence of “easy”
entities (person names), and memorization due to
entity overlap between train/test sets; these models
perform significantly worse on complex/unseen en-
tities. Researchers using NER on downstream tasks
have noted that a significant proportion of their er-
rors are due to NER systems failing to recognize
complex entities (Luken et al., 2018; Hanselowski
et al., 2018).

2 Related Work

NER. Named entity recognition (NER) is a sub-
task of information extraction, which aims to locate
and classify named entities in text into predefined
categories. The traditional NER scheme is rule
recognition based on manual induction. Based
on domain dictionary and grammar rules. Lam-
ple (Lample et al., 2016) explored neural struc-
tures for NER, in which the bidirectional LSTMs
are combined with CRFs with features based on
character-based word representations and unsuper-
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Figure 1: Overview of our architecture for the NER task. The system mainly includes two parts: data augmentation,
pre-trained language model ensemble.

vised word representations. Despite BiLSTM’s
great success in the NER task, it has to com-
pute token representations one by one, which mas-
sively hinders full exploitation of GPU’s paral-
lelism. Therefore, CNN has been proposed to en-
code words concurrently. In order to enlarge the
receptive field of CNNs, iterative dilated CNNs
(IDCNN) (ḞẎu and Koltun, 2016) was used.
Pre-training Language Model. Recent large-
scale language model pre-training methods such
as BERT (Devlin et al., 2018), XLNET (Yan et al.,
2021) and GPT (Radford et al., 2018), further
boosted the performance of NER, yielding state-of-
the-art performances.

3 Task Descriptions

This task challenges NLP enthusiasts to develop
complex Named Entity Recognition systems for
11 languages ( In this work, we conducted exper-
iments on Farsi and Dutch). The task focuses on
detecting semantically ambiguous and complex en-
tities in short and low-context settings. The task
also aims at testing the domain adaption capability
of the systems by testing additional test sets on
questions and short search queries.

4 Datasets

For the entity recognition task (Malmasi et al.,
2022b) on both Farsi and Dutch, there are 15300
pieces of training data. For Farsi, the longest sen-
tence has 46 words, and the shortest sentence has
only 1 word, with an average length of 18 words.
For Dutch, the longest sentence has 47 words, and
the shortest sentence has 2 words, with an average
length of 15 words. This means that the length of
the current corpus is too short, which means that it

is difficult to use a large number of sentence mod-
els to cover a large proportion of the length of the
current corpus.

In both tasks, there are six types of entities (Mal-
masi et al., 2022a), CW (Creative Work), PER (Per-
son), LOC (Location), GRP (Group), CORP (Cor-
poration), PROD (Product). The distribution of
entity types is relatively average. The lowest pro-
portion is PROD, accounting for 12.9%, and the
highest proportion is LOC, accounting for 24.9%.
Many types of entities, short sentence length, lack
of sufficient context information, and open-domain
information extraction all increase the difficulty of
these tasks.

5 Systems Description

Overview of our architecture for the NER task was
shown in Figure 1. The system mainly includes
two parts: data augmentation, pre-trained language
model ensemble.

5.1 Data Augmentation

For data augmentation, we expanded the existing
training data through text generation and label-wise
token replacement. Given a sentence s in the train-
ing dataset, we aim to generate a new sentence s

′′′

containing the same type entities. Our augmenta-
tion consists of the following steps:

1. Entity Mask: Mask all entities in the sentence
with specific symbol [mask]. We call this modified
text s

′
.

2. Sentence Generation: Generate similar sen-
tences using the GPT model. We call this generated
sentence s

′′
.

3. Entity Infilling: Fill in [mask] tokens with
text that has the same entity type. This final output
text is called s

′′′
.
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Besides, we also delete the non-entity part of the
sentence randomly to improve the robustness of the
model.

5.2 Model and Benchmarks
As shown in Figure 1, Roberta, XLNET, and GPT
are chosen as the base model in out system. We use
these large pre-trained models as the basis and then
use the training data to fine-tune each one. After
the fine-tune is completed, it is worth mentioning
that, the outputs from the last fourth to the last
second layer are used to average the parameters as
the final output for each model. The reason why
we did not use the last layer is to avoid over-fitting.
There is a huge difference between the training
dataset and the test dataset (16,000 training data,
but 150,000 test data). In order to avoid overfitting
on the training set and maintain the generalization
ability, we did not use the output of the last layer.

Second, we take the results of all models as the
input of the subsequent attention module, as demos
in Figure 1. After obtaining the inputs of base
models, we train a transformer layer to assign the
corresponding weight to the outputs of different
models at the same location, and use the weighted
sum of all models as the final output after the model
ensemble. Moreover, we add a CRF (Conditional
Random Field) layer at the end to limit the final
result.

The output of the basic model as shown in below:


r11 ... r1i ... r1L
r21 ... r2i ... r2L
r31 ... r3i ... r3L


 (1)

where ri represents the output of the ith model, L
means the length of the sentence. Using this matrix
as input, we train a transformer layer to learn how
to assign different weights to different models. The
weight matrix obtained is multiplied by the output
results of all models to obtain a matrix with weight,
as shown below:



a11r

1
1 ... a1i r

1
i ... a1Lr

1
L

a21r
2
1 ... a2i r

2
i ... a2Lr

2
L

a31r
3
1 ... a3i r

3
i ... a3Lr

3
L


 (2)

The vector corresponding to the position can be
regarded as the influence of the model on the result
of this position, so the final result corresponding
to each position can be regarded as the weighted
sum of the results of the three models, which is
Ri = [a1i r

1
i + a2i r

2
i + a3i r

3
i ]. This result is used as

the final output of the model to predict labels.

Parameter value
sequence length 128
batch size 24
learning rate 0.00003
CRF learning rate 0.001
Dropout 0.5
epoch 20

Table 1: Hyper-parameters of the model.

Model ACC Recall F1
RoBerta 0.776 0.819 0.797
XLNET 0.791 0.816 0.804
GPT 0.799 0.764 0.781
Ensemble model
w/o AUG 0.816 0.822 0.819
Ensemble model
w/ AUG 0.823 0.834 0.828

Table 2: Benchmarks of Farsi on the dev set. The best
performance is highlighted in bold. w/ AUG and w/o
AUG denote model with and without data augmentation.

5.3 Experimental Setup
Our implementation is based on PyTorch and we
conduct all experiments on one Tesla V100 GPU.
Table 1 shows the details of the hyper-parameters
for our models. The total training epoch is set to 20
and the batch size is set to 24. The initial learning
rate is set to 3×10−5, and the learning rate of CRF
layer is set to 1×10−3. Considering the average
length of sentences in datesets, the sequence length
is 128. Dropout (Srivastava et al., 2014) and early-
stop are also used in our method to achieve better
performance in the open domain.

Model ACC Recall F1
RoBerta 0.894 0.892 0.893
XLNET 0.892 0.899 0.895
GPT 0.882 0.880 0.881
Ensemble model
w/o AUG 0.904 0.909 0.906
Ensemble model
w/ AUG 0.910 0.911 0.910

Table 3: Benchmarks of Dutch on the dev set. The best
performance is highlighted in bold. w/ AUG and w/o
AUG denote model with and without data augmentation.

6 Results and Discussion

The results on both Farsi and Dutch data-sets are
shown in Table 2 and Table 3. Notably, our architec-
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ture with data augmentation and model ensemble
has substantially improved performance. We also
conducted the ablation study of different data aug-
mentation ratios. We found that the best results can
be obtained when the data is augmented with a ratio
2 + by three times (as shown in Table 4). Moreover,
we also carried out experiments on whether post-
processing can improve the performances. The
post-processing was conducted as follows: based
on the dictionary of the training set, we generated
entity labels by exact string matching, where con-
flicted matches were resolved by maximizing the
total number of matched tokens. Unfortunately, the
final results demonstrated a relatively decreased
performance about 0.4 percent. The reason lies in
case-sensitive. In many cases, the case of letters
plays a vital role in identifying entities. For exam-
ple, ’Wat is’ is a very prevalent query in Dutch, but
’IS’ also represents an organization (Islamic State
of Iraq and al-Sham).

Augmentation Ratio ACC Recall F1
0 + 0.769 0.811 0.789
1 + 0.772 0.811 0.791
2 + 0.776 0.819 0.797
3 + 0.775 0.816 0.795

Table 4: Ablation study of different data augmentation
ratios on the dev set of Farsi using RoBerta.

7 Conclusions

This study describes an effective NER system in
the SemEval 2022 task 11: MultiCoNER, the ex-
perimental results demonstrated the effectiveness
of our ensembled large pre-trained language mod-
els on low-resource Named Entity Recognition. In
future work, we would further improve the perfor-
mances by exploiting a more complicated ensemble
strategy with more diversified models.
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Abstract

This study describes the model design of the
NCUEE-NLP system for the Chinese track of
the SemEval-2022 MultiCoNER task. We use
the BERT embedding for character represen-
tation and train the BiLSTM-CRF model to
recognize complex named entities. A total of
21 teams participated in this track, with each
team allowed a maximum of six submissions.
Our best submission, with a macro-averaging
F1-score of 0.7418, ranked the seventh position
out of 21 teams.

1 Introduction

Named Entity Recognition (NER) is a fundamental
task in information extraction that locates the men-
tions of named entities and classifies them (e.g.,
person, organization and location) in unstructured
texts. The NER is a traditional NLP task that
has been solved as a sequence labeling problem,
where entity boundaries and category labels are
jointly predicted. It is difficult to recognize com-
plex named entities like the titles of creative works
(e.g., books, songs, movies) that can take the form
of any linguistic constituent (Ashwini and Choi,
2014). Syntactic and semantic ambiguity makes
it challenging to recognize such complex named
entities based on their context.

The SemEval-2022 Task 11 (MultiCoNER) orga-
nized a challenge to develop multilingual complex
NER system for 11 human languages (Malmasi
et al., 2022b). This task focuses on detecting se-
mantically ambiguous and complex entities in short
and low-context settings. The languages include:
English, Spanish, Dutch, Russian, Turkish, Ko-
rean, Farsi, German, Chinese, Hindi, and Bangla.
The named entity categories are Person (labeled
as PER), Location (LOC), Group (GRP), Corpora-
tion (CORP), Product (PROD), and Creative Work
(CW). The task evaluation framework is divided
in three broad tracks. 1) Multi-lingual (Track 1):
participants train a single multi-lingual NER model

for all the languages; 2) Mono-lingual (Track 2-12):
participants train a model that works for only one
language; 3) Code-mixed (Track 13): testing sam-
ples include tokens from any of the 11 mentioned
languages in the shared task. We only participated
the Track 9 for Chinese language.

Chinese NER is more difficult to process than
English NER. Chinese language is logographic and
provides no conventional features like capitaliza-
tion. In addition, due to a lack of delimiters be-
tween characters, Chinese NER is correlated with
word segmentation tasks, and named entity bound-
aries are also word boundaries. However, incor-
rectly segmented entity boundaries will cause error
propagation in NER. For example, in a short con-
text “這首歌出現在華特迪士尼動畫動物方城
市中” (This song appeared in the Walt Disney ani-
mation Zootopia), a creative work “動物方城市”
(Zootopia) may be incorrectly segmented into three
words: “動物” (animal), “方”(square), and “城市”
(city). Hence, it has been shown that character-
based approaches outperform word-based methods
for Chinese NER (He and Wang., 2008; Li et al.,
2014; Zhang and Yang., 2018).

Recently, deep learning techniques have been
widely used for Chinese NER, mostly with promis-
ing results. A character-based LSTM (Long Short-
Term Memory)- CRF (Conditional Random Field)
model with radical-level features was proposed for
Chinese NER (Dong et al., 2016). The ME-CNER
model exploited multiple embeddings-based char-
acter representation to improve Chinese NER per-
formance (Xu et al., 2019). A joint training objec-
tive technique for different types of neural embed-
dings was adopted for Chinese NER in social me-
dia, based on Weibo messages (Peng and Dredze.,
2015). The BiLSTM (Bidirectional LSTM)-CRF
model was trained based on character-word mixed
embeddings to improve the recognition effective-
ness of Chinese NER (E and Xiang., 2017). A
BiLSTM-CRF model with a self-attention mecha-
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Figure 1: Our NCUEE-NLP system architecture for the Chinese track of SemEval-2022 Task 11.

nism was proposed to integrate part-of-speech la-
beling information to capture the semantic features
of input sequences for Chinese clinical NER (Wu
et al., 2019). A residual dilated CNN (Convolution
Neural Network) with CRF was also presented to
enhance Chinese clinical NER in terms of compu-
tational performance and training time (Qiu et al.,
2019). An ME-MGNN (Multiple Embeddings en-
hanced Multi-Graph Neural Network) model was
proposed to derive a character representation based
on multiple embeddings at different granularities
from the radical, character to word levels. Multi-
ple gated graph sequence neural networks, along
with standard BiLSTM-CRF, were then used to rec-
ognize Chinese named entities in the healthcare
domain (Lee and Lu., 2021).

This paper describes the NCUEE-NLP
(National Central University, Dept. of Electrical
Engineering, Natural Language Processing Lab)
system for the Chinese track of SemEval-2022
Task 11. We find that the neural computing
approaches based on the BiLSTM-CRF achieved
impressive results for Chinese NER. Hence,
we follow the investigated results to develop
character-based BiLSTM-CRF models.

2 The NCUEE-NLP System

Figure 1 shows our NCUEE-NLP system architec-
ture for the Chinese NER. Our BERT-BiLSTM-
CRF model is composed of three main parts: 1)
BERT embeddings, 2) Bidirectional LSTM net-
works, and 3) CRF sequence labeling.

2.1 BERT Embeddings

Word embedding is a type of representation for
text analysis that allows words with similar mean-
ings to have similar representations in the form of
a real-valued vector (Mikolov et al., 2013). Word
embeddings can be obtained using a set of language
modeling techniques where words are mapped to a
low dimensional vector space of real numbers. Re-
placing static vectors, such as word2Vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014)), and
fastText (Bojanowski et al., 2017), with contextual
word representations has led to significant improve-
ments to virtually every NLP task (Ethayarajh.,
2019). BERT (Bidirectional Encoder Represen-
tations from Transformer) (Devlin et al., 2019),
is an encoder-decoder architecture that uses atten-
tion mechanisms to incorporate context into word
embeddings. Its technical innovation lies in ap-
plying the bidirectional training of the transformer
with masked language modeling to hide the partial
words and infer them using their position informa-
tion.

Since incorrect Chinese word segmentation may
cause error propagation to affect the boundaries of
named entities, we only use the last layer of BERT
to obtain contextual embedding for each character.

2.2 Bidirectional LSTM Networks

In traditional neural network architectures such as
multilayer perceptron, all the inputs and outputs are
mutually independent. To address this issue, Recur-
rent Neural Networks (RNN) create networks with
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Data Source Sent. All NE #PER #LOC #GRP #CORP #PROD #CW

Official
Training 15,300 23,717 2,221 6,984 710 3,756 4,818 5,228

Validation 800 1,273 129 378 26 189 271 280
Test 151,661 N/A N/A N/A N/A N/A N/A N/A

External

MSRA 16,302 36,088 10,378 25,710 - - - -
Weibo 490 891 648 243 - - - -

PD 9,281 21,238 6,256 14,982 - - - -
Boson 566 4,280 2,479 1,801 - - - -

CLUENER 2,305 3,136 - - - - - 3,136
LG 6,135 16,266 - - - - - 16,266

Table 1: Data statistics of Chinese NER.

loops called Long Short-Term Memory (LSTM) to
remember all information over time. Bidirectional
LSTM (BiLSTM) (Graves et al., 2013) combines
two independent RNNs that allows the networks to
obtain both forward (from left to right) and back-
ward (from right to left) information about the char-
acter sequence at every time step.

2.3 CRF Sequence Labeling

The learned feature representations of characters
in the BiLSTM layer are then fed to a standard
Conditional Random Field (CRF) (Lafferty et al.,
2001), following the character order in the original
sentence to predict the sequence of labels.

During the model training phase, a sentence rep-
resented in terms of a character sequence, along
with the corresponding named entity labels, are
used to train the BERT-BiLSTM-CRF model. We
adopt the commonly used BIO (Beginning, Inside,
and Outside) format. The B-prefix before a tag
indicates that the character is the beginning of a
named entity and an I-prefix before a tag indicates
that the character is inside a named entity. An O tag
indicates a character belongs to no named entity.
For example, a sample sentence “樂隊星期六為電
影翻唱抓住聖誕老人” (The band The Saturdays
covered Christmas Wrapping for the movie.) in
Figure 1, “星期六” (The Saturdays) are a British-
Irish girl band that belongs to the Group (labeled
as GRP) category. The corresponding named entity
labels are “B-GRP,” “I-GRP,” and “I-GRP” for in-
dividual character “星”, “期”, and “六”. Similarly,
“抓住聖誕老人” (Christmas Wrapping) is a song
belonging to the Creative Work (CW) category, so
we have the named entity labels “B-CW,” “I-CW”,
“I-CW”, “I-CW”, “I-CW”, and “I-CW”.

During the testing phase, our trained BERT-
BiLSTM-CRF model is used to predict the named

entity label of each character for performance eval-
uation.

3 Experiments and Results

3.1 Data

Table 1 shows detailed statistics for mutually ex-
clusive datasets. The experimental datasets were
mainly provided by the task organizers (Malmasi
et al., 2022a). The evaluation test set is about 10
times larger than original training dataset. In addi-
tion, according to an FAQ on the task website, the
training and test data have dissimilar label distribu-
tions, though we have yet to obtain the real distribu-
tion in the test set. Hence, we also collected exter-
nal data, including MSRA (Levow., 2006), Weibo
(Peng and Dredze., 2015), People Daily (PD)1 ,
Boson2 , CLUENER (Xu et al., 2020), and LG 3 to
train our model. The former four datasets consist
of sentences annotated with the named entity cat-
egories Person (PER) and Location (LOC), while
the latter two datasets were converted to contribute
instances for the Creative Work (CW) category.
We did not find sentences annotated with appropri-
ate labels for the named entity categories Group
(GRP), Corporation (CORP), and Product (PROD)
as defined in this task.

1https://github.com/OYE93/
Chinese-NLP-Corpus/tree/master/NER/
People’s%20Daily

2https://static.bosonnlp.com/dev/
resource

3https://github.com/LG-1/video_music_
book_datasets
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Models Precision Recall F1Embedding Data Usage

BERT
Official (training) 0.8856 0.8759 0.8807
Official + External 0.8778 0.8579 0.8677

RoBERTa
Official (training) 0.8867 0.8618 0.8741
Official + External 0.8647 0.8532 0.8589

MacBERT
Official (training) 0.8817 0.8610 0.8712
Official + External 0.8759 0.8594 0.8676

Table 2: Results of our NER models on the validation set.

Models Precision Recall F1Embedding Data Usage

BERT
Official (training + validation) 0.7701 0.7299 0.7418

Official+ External 0.7506 0.6991 0.7055

RoBERTa
Official (training + validation) 0.7629 0.7015 0.7207

Official+ External 0.7477 0.6883 0.7008

MacBERT
Official (training + validation) 0.7727 0.7186 0.7351

Official+ External 0.7553 0.7037 0.7151

Table 3: Results of our NER models on the test set.

3.2 Settings

For character representations, in addition to BERT4

(Devlin et al., 2019), we also adopted RoBERTa5

(Liu et al., 2019) and MacBERT 6 (Cui et al., 2020)
to compare the performance of different embed-
dings. We downloaded these pre-trained mod-
els from HuggingFace and continuously trained
their language models using official data including
training, validation and test datasets. The hyper-
parameter values for our embedding training were
embedding size 768; batch size 64; epoch 20; and
learning rate 4e-5.

We trained the BiLSTM-CRF model based on
official data provided by task organizers and their
variants with our collected external data to confirm
performance differences. The hyper-parameter val-
ues for our model implementation were optimized
as follows: batch size 256; epoch 40; learning rate
0.004; LSTM hidden size 1024; and LSTM dropout
rate 0.1.

The evaluation metrics of this shared task are
standard precision, recall, and F1-score, which are
the most typically used metrics for NER systems
at a character level. For each track, the task partici-

4https://huggingface.co/hfl/
chinese-bert-wwm-ext

5https://huggingface.co/hfl/
chinese-roberta-wwm-ext-large

6https://huggingface.co/hfl/
chinese-macbert-large

pants are allowed to have maximum 6 submissions.
The final ranking is determined from the best sub-
mission based on macro-averaging F1-score.

3.3 Results
Tables 2 and 3 respectively show the results of our
submissions on the validation and test sets. We
obtained closely consistent results on both datasets.
Comparing the embedding effects with RoBERTa
and MacBERT, although these two models are mod-
ified to improve the BERT model, we did not ob-
tain NER performance improvements when using
them as the embedding representation usage. Sur-
prisingly, including external data to train BiLSTM-
CRF does not improve the overall F1 performance.
The architecture of the BERT-BiLSTM-CRF model
using official data training only obtained the best
F1-score of 0.7418 on the test set. Table 4 further
shows the detailed results per named entity cate-
gory. The class LOC obtained the best F1-score,
followed by PER. In our observations, these two
classes are most commonly categories with rela-
tively clear definitions that may not cause recogni-
tion confusion. Both combinations of class GRP
with CORP and class PROD with CW are usually
difficult to distinguish even with manual annotation
if insufficient annotation training is provided.

A total of 21 teams participated in the Chinese
track of SemEval-2022 MultiCoNER Task, each
submitting at least one entry. Our best submission
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BERT-BiLSTM-CRF Precision Recall F1Class
PER 0.8072 0.7356 0.7698
LOC 0.7704 0.853 0.8096
GRP 0.8468 0.5045 0.6323

CORP 0.7641 0.7712 0.7677
PROD 0.755 0.7594 0.7572

CW 0.6768 0.7558 0.7141

Table 4: Detailed results of our BERT-BiLSTM-CRF model on the test set.

achieved an F1 score of 0.7418, ranking in the
seventh position out of 21 teams.

4 Conclusion

This study describes the NCUEE-NLP system in
the Chinese track of SemEval-2022 MultiCoNER
task, including system design, implementation and
evaluation. We used the BERT embedding to rep-
resent each character in the original sentences and
trained BiLSTM-CRF using datasets provided by
the organizers to predict the named entity cate-
gories. Our best submission had a marco-averaging
F1-score of 0.7418, ranking in the 7th position
among a total of 21 participating teams.
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Abstract
This paper presents a solution for the SemEval-
2022 Task 11 Multilingual Complex Named
Entity Recognition. What is challenging in
this task is detecting semantically ambiguous
and complex entities in short and low-context
settings. Our team (CMB AI Lab) propose
a two-stage method to recognize the named
entities: first, a model based on biaffine layer
is built to predict span boundaries, and then
a span classification model based on pooling
layer is built to predict semantic tags of the
spans. The basic pre-trained models we choose
are XLM-RoBERTa and mT5. The evaluation
result of our approach achieves an F1 score of
84.62 on sub-task 13, which ranks the third on
the learder board.

1 Introduction

Named entity recognition (NER)(Tjong Kim Sang
and De Meulder, 2003) is a fundamental task in
natural language processing, aiming at identifying
the spans of texts that refer to entities. NER is
widely applied to information extraction and data
mining(Lin et al., 2019)(Cao et al., 2019), which is
greatly challenging in practical and open domain
settings. However, the previous research has not
paid much attention on processing complex and
ambiguous named entities.

SemEval 2022 task 11 (Malmasi et al., 2022b)
containing a total of 13 sub-tasks is a complex
NER task which focuses on detecting semantically
ambiguous and complex entities in short and low-
context settings (Meng et al., 2021). For the pur-
pose of testing the domain adaption capability of
the participating models, the task not only set 11
base sub-tasks: English, Spanish, Dutch, Russian,
Turkish, Korean, Farsi, German, Chinese, Hindi
and Bangla, but also set two additional testing sets
on questions and short queries: Multilingual, and
code-mixed (Fetahu et al., 2021). We conduct a
two-stage method to deal with the code-mixed sub-
task, which achieves an F1 score of 84.62.

This paper is structured as follows. The related
work of NER is briefly introduced in Section
2. The data for training and testing the model
is presented in Section 3. The details of the
two-stage method is described in Section 4. The
experimental results of our method are exhibited in
Section 5. Section 6 summarizes this paper.

2 Related Work

In the NLP field, the NER task is usually consid-
ered as a sequence labeling problem (Liu et al.,
2018) (Lin et al., 2019) (Cao et al., 2019). With
well-designed features, CRF-based models have
achieved the leading performance (Lafferty et al.,
2001) (Finkel et al., 2005) (Liu et al., 2011). Re-
cently, neural network models have been exploited
for feature representations (Chen and Manning,
2014). Moreover, contextualized word represen-
tations such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019) have also achieved
great success. As for NER, the end-to-end bi-
directional LSTM + CRF model (Lample et al.,
2016) (Yang et al., 2018) is one representative ar-
chitecture. These models are only capable of rec-
ognizing regular named entities.

In e-commerce search domain, a common sce-
nario is code-mixed queries, with query terms com-
posed of multiple languages(Bhargava et al., 2016).
The application for code-mixed Web queries still
remains challenging(Gupta et al., 2014). A recent
work proposed an NER hybrid approach for code-
mixed queries, consisting of a gazetteer and tree
based identifier(Bhargava et al., 2016). Another
work leverages linguistic features to train a condi-
tional random field (CRF) model, where the output
is further processed using multi-lingual gazetteer
lists(Gupta et al., 2016). In Seme Val 2022 task
11 code-mixed sub-task, we use a two-stage NER
approach and get the 3rd place in the competition.
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3 Data

In this task, we use the official raw data (Malmasi
et al., 2022a) to train and test our model. Each
line of texts in the data belongs to a sample, the
languages involved are: English, Spanish, Dutch,
Russian, Turkish, Korean, Farsi, German, Chinese,
Hindi, and Bangla, some of which are also pro-
vided with code-mixed data as an additional sub-
task. Entity types include Person, Location, Group,
Corporation, Product, and Creative Work. The par-
ticipants have to use their systems to accurately
detect the entities and submit the predictions for
the mixed languages task.

In a data file, samples are separated by blank
lines. Each data instance is tokenized and each
line contains a single token in the first column with
the associated label in the last (4th) column. The
second and third columns are underscores (_) to
separate the tokens and the labels. The entities are
labeled with the BIO scheme, which means that the
token tagged O is not a part of the entity, the token
tagged B-X is the first token of an X type entity,
and the remaining tokens of the entity are tagged
as I-X.

When the amount of training data is insuffi-
cient or unevenly distributed, data augmentation
can quickly expand the corpus to avoid overfitting.
At the same time, data augmentation can also im-
prove the robustness of the model, preventing the
performance of the model from being greatly re-
duced once the data only changes slightly. We
build a dictionary with all entities of the same type
to randomly replace the entities in each sample,
and translate the replaced entities into other lan-
guages to expand the dataset, which is similar is
to autoencoders in the computer vision. However,
translation between different languages relies on
a large number of parallel corpuses, and requires
training first.

4 Methodology

The two-stage method we use in this task includes
two separated models to recognize the named enti-
ties: one for predicting the boundaries of the spans,
and the other for predicting the semantic tags of
the spans. The processing flow of our approach is
depicted in Figure 1.

4.1 Text Encoders
The models we employed are both trained
based on XLM-RoBERTaLARGE and mT5LARGE .

Figure 1: The processing flow of our approach

XLM-RoBERTa (Conneau et al., 2020): XLM-
RoBERTaLARGE is pre-trained on 2.5TB of fil-
tered common crawl data containing 100 languages,
which consists of 24 transformer layers, 16 self-
attention heads per layer, and a hidden size of 1024.
In order to deal with a large number of common
words in natural language corpus, BPE (byte pair
encoding), a coding schema mixed by the character
level and the word level representation, is utilized
to process the text data.
mT5 (Xue et al., 2021): mT5LARGE is a multi-
lingual pre-trained text-to-text transformer which
is pretrained on the common crawl-based dataset
corpus, covering 101 languages. We only use the
encoder of the mT5LARGE consisting of 24 trans-
former layers.

4.2 Boundary Detection of Spans

The first stage of our method is to extract the phrase.
As shown in Figure 2, we built a boundary detec-
tion model by connecting the last hidden states of
the pre-trained model to the biaffine layer (Yu et al.,
2020) to obtain the span boundaries, which can also
be regarded as a named entity recognition (NER)
model that only recognize one single category.

The output of the biaffine model is a span bound-
ary matrix as illustrated in Figure 3. All pairs of
start-end tokens have corresponding scores indicat-
ing whether they are the spans we need. Figure 4
shows an example of a span boundary matrix: the
reason why Jackie Ma and the louvre museum
are the entities in this sentence is that they are the
two pairs of start-end tokens.

To better detect the span’s boundary, we build
a dictionary from the training data. Words that
appear in training data more than twice are selected
and then splice together with the original sentence
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Figure 2: Span boundary detection model

Figure 3: Biaffine model: using start-end pointer to
explore all spans

into the input text fragment, as shown below:

[CLS] word selected 1 [SEP] word selected 2
[SEP] ... [SEP] sentence [SEP].

4.3 Span Classification

The second stage of our method is to classify the
spans obtained in the first stage. We built a clas-
sification model to determine which semantic tag
the span belongs to. As shown in Figure 5, a full
connection layer is connected to the pooling layer
of the pretrained model to output the score for each
category, and then is activated by a softmax func-
tion, with the cross entropy set as the loss function
of the classification model.

It should be noted that the text fragment to be
classified is constructed by the phrase extracted
from the first model (boundary detection) and the
original sentence. Similar to the sentence pair clas-
sification, a sample sentence before BPE applied
appears as below:

[CLS] phrase extracted [SEP] sentence [SEP].

Figure 4: Span boundary matrix: scores of all start-end
token-paire for detecting boundary of span

Figure 5: Span classification model

4.4 Training Procedures

In the first stage (span boundary detection), the
Adam optimizer with a learning rate of 6 × 10−6

is employed, the batch size is set to 12, and the
model is trained for 30 epochs. As for the second
stage (span classification), the learning rate of the
Adam optimizer is set to 8 × 10−6, and the batch
size and the number of epoch amounts are 16 and
40 respectively. For each stage, we use both the
10-fold cross-validation.

During the training phase of the span classifica-
tion model, FGM adversarial learning is applied
to improve the robustness of model: the samples
are mixed with some fairly small disturbances that
might lead to misclassification, and the neural net-
work is then adapted to the disturbances to be ro-
bust to the adversarial samples.

4.5 Ensemble Model

The ensemble of deep learning models has a great
improvement on the test dataset. We ensemble the
predictions of span boundary detection models by
voting strategy to get the best span boundary. Be-
sides, the predictions of span classification models
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are also combined to get the final predictions. Each
model is trained on different dataset augmented
and based on different text encoders (i.e., XLM-
RoBERTa and mT5). What is most conspicuous,
however, is that the strategy of the two-stage model
performs better than the traditional ner model in
this task.

5 Results

A two-stage method is employed to complete the
code-mixed language sub-task. Based on two pre-
trained models (XLM-RoBERTa and mT5), we
adopted a variety of optimization schemes, such
as: biaffine network structure, two-stage entity pre-
diction, adding distantly supervised dictionary and
adversarial training, all of which have achieved a
certain improvement, according to the evaluation
results shown in Table 1. Lastly, we voted on all
prediction results in terms of ensemble learning
idea to get the final submission file.

With the XLM-RoBERTa + crf method as the
baseline, and an end-to-end structure, we get an
F1 score of 79.7. After using the biaffine network
structure and two-stage optimization architecture
instead, the F1 score improves to 80.9 and 81.3
respectively. In addition, the two-stage optimiza-
tion architecture introducing supervised dictionary,
adversarial training and data augmentation obtains
F1 scores of 82.5, 83.1 and 82.7 respectively. Com-
pared to the XLM-RoBERTa, the prediction results
acquired based on the mT5 pre-trained model are
improved by an average of 0.4 points. As a re-
sult, the final evaluation scores gained by voting is
84.62.

6 Conclusion

Aiming at the complex multilingual ambiguity and
lack of context in this competition, we adopt a
deep learning network model for entity extraction
based on the biaffine attention mechanism, and
carry out transfer learning based on different pre-
trained models such as RoBERTa and mT5.

Through adversarial training, the robustness of
the model is enhanced, and the two-stage training
also improves the performance of the model in few-
shot scenarios. Besides, a remote supervised dic-
tionary is added to revise the results, and the entity
dictionary for random replacement and multilin-
gual machine translation is used for data augmen-
tation. Usually for enhanced data, it is necessary to
give a weight less than 1, which is different from

Comparison of different methods
Method F1(%)
Baseline XLM-RoBERTa+crf 79.7
Biaffine 80.9
Two-Stage 81.3

w/Dict 82.5
w/adv train 83.1
w/data augmentation 82.7

Baseline mT5+crf 80.2
Biaffine 81.2
Two-Stage 81.7

w/Dict 82.8
w/adv train 83.6
w/data augmentation 83.2

Ensemble strategy 84.62

Table 1: The code-mixed sub-task evaluation results

real data. Data augmentation can also alleviate the
problem of data imbalance. Ultimately, the best
result (F1 score of 84.62) is achieved via ensemble
learning voting strategy.
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Abstract

This paper presents the approaches and systems
of the UA-KO team for the Korean portion of
SemEval-2022 Task 11 on Multilingual Com-
plex Named Entity Recognition. We fine-tuned
Korean and multilingual BERT and RoBERTA
models, conducted experiments on data aug-
mentation, ensembles, and task-adaptive pre-
training. Our final system ranked 8th out of 17
teams with an F1 score of 0.6749 F1.

1 Introduction

Named Entity Recognition (NER) is the task of
recognizing and classifying named entities in un-
structured text. NER is a critical component for
NLP tasks such as question answering and relation
extraction. Recent advances in neural NER have
allowed state-of-the-art systems to perform well in
recognizing persons, locations, and organizations
in a variety of benchmark datasets. However, these
systems still struggle to recognize complex named
entities such as titles of creative works. SemEval
Task 11 (Malmasi et al., 2022b) asks participants to
build systems to identify both classic and complex
named entities in multiple languages.

In this paper, we describe the UA-KO team’s
approach to deal with the challenge of recogniz-
ing complex named entities in Korean. We used
both monolingual and multilingual transformer-
based models. To improve the performance of
the models, we conducted experiments on data
augmentation, ensembles, and task-adaptive pre-
training. Our final performance on the test set
ranked 8th out of 17 teams with an F1 score of
0.675. Code to replicate our experiments is avail-
able at https://github.com/hyunssong/semeval2022-
task11.

2 Related Work

NER in real-world settings is challenging. Identify-
ing entities in short texts, such as search queries on

the web, is not easy due to the lack of context. Iden-
tifying nontraditional named entities such as titles
of creative works (movies, books, or TV shows) is
challenging because similar phrases appear as non-
named entities and the characteristics of creative
work titles change over time (Ashwini and Choi,
2014). Approaches to such real-world named entity
types include integrating English Wikipedia as a
gazetteer within neural NER models (Meng et al.,
2021), though simply relying on the robustness
of large pre-trained models like XLM-R is more
successful (Ushio and Camacho-Collados, 2021).

SemEval-2022 Task 11 asks participants to build
systems that can perform well in real-world set-
tings, providing a dataset with complex named en-
tities in short sentences. The task is divided into
three tracks: multi-lingual, monolingual, and code-
mixed. We participated in the Korean portion of the
monolingual track.

Korean is an agglutinative language, where each
word (eojeol) is formed by combining a root mor-
pheme with a bound morpheme (josa) or postpo-
sition (eomi) (Choi et al., 2017). More than 60
different forms can thus be created from each root
morpheme. A model that is not aware of this mor-
phological richness may end up significantly in-
creasing the vocabulary size to represent all these
different forms, at the costs of having only sparse
data to learn each form and encountering a high
rate of out-of-vocabulary (OOV) forms.

Recent studies have explored different represen-
tations to account for the agglutinative character-
istics of Korean. Lee et al. (2020) explored both
the syllable level and sub-character level repre-
sentations of the text, achieving similar results to
multilingual BERT with 1/10 of the training data.
Kwon et al. (2017) proposed a deep learning based
NER system that operates over syllables rather than
words, resulting in a speedup by removing the need
for morphological analysis. Kim et al. (2021) ex-
plored morpheme, syllable, and subcharacter rep-
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Train Dev Test

15300 800 150K~500K

Table 1: The Korean language portion of the SemEval-
2022 Task 11 data.

resentations and also found that syllables were the
most effective representation for Korean NER.

3 Data

The SemEval-2022 Task 11 dataset follows the
CoNLL format. Each token is classified into six
entity types: person, location, group, corporation,
product, or creative work. The size of the Korean
language portion of the dataset is shown in table 1.
More details about the dataset can be found in Mal-
masi et al. (2022a). Systems applied to this dataset
are evaluated based on the macro-average F1 score.

Our data augmentation experiments (see sec-
tion 4.2) utilized additional data. For locations,
we used the GeoNames geographical database,
which provides countries and place names in many
different languages. We selected the 170 country
names provided in the Korean language. For person
names, we used the Encyclopedia of Korean Cul-
ture (of Korean Studies, 1989) , which is a Korean
language encyclopedia. We selected their 18,506
names of Korean historical figures.

4 Methodology

We used both monolingual and multilingual pre-
trained models for the task. For the monolingual
models, we used KoBERT1, KR-BERT (Lee et al.,
2020), Ko-ELECTRA2, and KLUE-RoBERTa-
large(Park et al., 2021) , which all have shown
successful performance on Korean NLP tasks. For
the multilingual model, we used XLM-RoBERTa-
large (Conneau et al., 2019), which was provided
as the baseline of the shared task.

We fine-tuned these models on the training set.
Monolingual models were fine-tuned with a learn-
ing rate of 5e-5 for 5 epochs with a weight decay
of 0.01. The multilingual model was trained with
the same configuration but for 3 epochs. We also
experimented with different methodologies to im-
prove performance: task-adaptive pretraining, data
augmentation, and ensembles. These approaches
are described in the following sections.

1https://github.com/SKTBrain/KoBERT
2https://github.com/monologg/KoELECTRA

4.1 Task Adaptive Pretraining

Gururangan et al. (2020) showed that further pre-
training models on the unlabeled task data, called
task-adaptive pretraining, can improve model per-
formance when the dataset is curated to capture
language appropriate to the task. We follow the
training environment as Gururangan et al. (2020).
To avoid catastrophic forgetting, we additionally
reduced the number of epochs following Zhao et al.
(2021)’s approach of applying task-adaptive pre-
training on small datasets. Specifically, we conduct
task-adaptive pretraining with a batch size of 256
for 50 epochs. For the KoELECTRA model, we
further train for 7k steps. XLM-R was not included
in these experiments due to computing resource
limitations.

4.2 Data Augmentation

Data augmentation is a strategy that enhances the
amount of training data by modifying existing data
or generating new synthetic data, usually by lever-
aging external resources. Dai and Adel (2020) pro-
posed several data augmentation techniques for
NER tasks, including generating sentences by re-
placing tokens or shuffling within sentence seg-
ments. Since the provided training dataset is small
relative to the test set, we decided to conduct data
augmentation to reduce the overfitting of the model
on the training dataset. We specifically focused on
person and location named entities as these entities
had the highest percentage in the test set.

We generated new sentences by utilizing the ex-
ternal database described in section 3. For each
of the sentences that contain location or person
named entity, we generated k new sentences where
k = 3 or 6. New sentences were generated by
replacing the location named entity with Korean
country names from GeoNames database or replac-
ing the person named entity with historic person
names from the Encyclopedia of Korean Culture.
We then fine-tuned the language models on the
original sentences together with these augmented
sentences.

4.3 Ensembles

Ensemble methods are an effective way of com-
bining multiple machine-learning models to make
better predictions (Rokach, 2010). We created en-
sembles over the different monolingual and mul-
tilingual models using soft voting, which predicts
the class label based on the argmax of the sums of
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Model Modification F1

KoBERT - 0.808
KoBERT TAPT 0.817
KoBERT Augment k = 3 0.816
KoBERT Augment k = 6 0.806

KR-BERT - 0.824
KR-BERT TAPT 0.826
KR-BERT Augment k = 3 0.834
KR-BERT Augment k = 6 0.830

KoELECTRA - 0.827
KoELECTRA TAPT 0.767
KoELECTRA Augment k = 3 0.829
KoELECTRA Augment k = 6 0.827

KLUE - 0.850
KLUE TAPT 0.832
KLUE Augment k = 3 0.846
KLUE Augment k = 6 0.846

XLM - 0.831
XLM Augment k = 3 0.831
XLM Augment k = 6 0.823

Ensemble(KLUE, XLM) - 0.858
Ensemble(KLUE, XLM) Augment k = 3 0.855
Ensemble(All Korean) - 0.863
Ensemble(All Korean) Augment k = 3 0.866
Ensemble(All Korean, XLM) - 0.864
Ensemble(All Korean, XLM) Augment k = 3 0.868

Table 2: Performance of different models on the Dev set.
“All Korean” stands for all Korean monolingual models:
KoBERT, KR-BERT, KoELECTRA, and KLUE. The
best scoring system in each group is in bold.

the predicted probabilities of the various classifiers.

5 Results on Dev

Table 2 shows performance of task adaptive pre-
training (TAPT), data augmentation (Augment k =
N ), and ensembles (Ensemble(. . . )) on the devel-
opment set. Task adaptive pretraining yielded little
benefit over the corresponding unadapted model,
and sometimes dramatically worsened performance
(e.g., the KoELECTRA model went from 0.827 to
0.767). Data augmentation either led to small gains
over the non-augmented model or to roughly the
same performance, and k = 3 was generally as
good or better than k = 6. Ensembling led to con-
sistent gains compared to the single models. The
best overall model on the development set was an
ensemble of KoBERT, KR-BERT, KoELECTRA,
KLUE, and XLM combined with data augmenta-
tion where k = 3.

Given these results, for our official submissions
on the test set, we applied data augmentation with
k = 3, and we included several types of ensembles.
We did not apply any task adaptive pre-training

Model F1

KLUE 0.651
KLUE, Augment k = 3 0.650
Ensemble(All Korean) 0.668
Ensemble(All Korean), Augment k = 3 0.626
Ensemble(All Korean, XLM) 0.675
Ensemble(All Korean, XLM), Augment k = 3 0.650

Table 3: Performance of different models on Test set.
“All Korean” stands for all Korean monolingual models:
KoBERT, KR-BERT, KoELECTRA, and KLUE. The
best scoring system is in bold.

Class Precision Recall F1

LOC 0.689 0.788 0.735
PER 0.776 0.748 0.761
PROD 0.706 0.665 0.685
GRP 0.678 0.595 0.634
CW 0.526 0.563 0.544
CORP 0.688 0.693 0.691

Table 4: Performance by class label for the best per-
forming model, the ensemble of KoBERT, KR-BERT,
KoELECTRA, KLUE, and XLM. Results for the other
models look qualitatively similar.

because it showed no benefits on the development
data.

6 Results on Test

Table 3 shows the performance of our submit-
ted models on the test set. Unlike our results on
the development set, data augmentation signifi-
cantly reduced performance on the test set. For
the runs without data augmentation, ensembles out-
performed single models as in our development
set results. The failure of data augmentation may
imply a low overlap between the names we drew
from GeoNames and the Encyclopedia of Korean
Culture for data augmentation, and the named en-
tities in the test data. That is, the coverage of
these gazetteers may have been insufficient for the
unique and nontraditional named entities of the test
set, similar to problems mentioned in Meng et al.
(2021).

Table 4 shows detailed performance of our best-
performing model, the ensemble of KoBERT, KR-
BERT, KoELECTRA, KLUE, and XLM. This
model performs best in recognizing person names
(0.761 F1), but has difficulty recognizing creative
works (0.544 F1).
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dataset sentence label

dev (A1)《유희열의스케치북》/은/한국방송공사/음악/전문/텔레비전/프로그램이다. CW
(A1)《Yu Hee-yeol’s Sketchbook》/is a/KBS/music/television/show.

dev (A2) 1993년/매크래컨은/해나/바베라/카툰스의/애니메이션/시리즈/《2 stupid dogs》/의 /
미술/감독으로/일했다.

CW

(A2) In 1993/ McCracken/ Hanna/ Babera/ Cartoons/ Animation/ series/《2 stupid dogs》 /’s/
art/ director/ worked.

dev (A3)정도가/약한/경우는/완전히/치료하지는/않으며/일반화장품/간단히/감출/수/있다. PROD
(A3) Degree/weak/ in the case of/ completely/ cure/ don’t/ general cosmetics/ simply/ cover/ is/
possible.

dev (A4)제 18회/ ( 1987년 ) /영화/《브라질 》/테리/길리엄/ PER
(A4) 18th/ ( 1987 ) / Film /《Brazil》/ Terry/ Gilliam

test (B1)는/은여울역/카운티입니다. -
(B1) is/ Eunyeoul Station/ County. -

test (B2)에/로그인/텔레페 -
(B2) to/ login/ Telefe -

Table 5: Example sentences from the shared task data. Gold annotations are in bold. Model predictions are
underlined.

6.1 Error Analysis
We analyze our best-performing system’s predic-
tions on the dev set to understand our system’s
strengths and weaknesses. By investigating the er-
rors where the model is highly confident, we iden-
tified the following qualities from the errors on the
dev set.

Annotation errors: We observed inconsistent
labeling in named entities, especially in the cre-
ative work named entities. The development data
contained many creative works enclosed in《 and
》, such as example A1 in table 5. However the
development data also contained creative works
marked by the same punctuation that were not la-
beled as creative works by annotators, such as ex-
ample A2. This led to a high error rate in predicting
creative work named entities on the development
data, so we were unsurprised to see similar low
performance on the test data creative works. We
speculate that the reason data augmentation was
not helpful on the test data was these errors in an-
notation.

Token boundary issues: We see that often to-
kens are misclassified due to token boundary issues.
For instance, in example A3 in table 5, the system
found the product named entity but included an
extra token before the start of the product name.

Foreign names: The model had difficulty recog-
nizing transliterated named entities, such as names
of foreign people or groups as in example sentence
A4 of table 5. These names are different from tradi-
tional Korean words, likely leading to the system’s
difficulty in identifying them.

Grammatical errors: The sentences of the test
set differ grammatically from the training and dev
set. Table 5 shows some test set inputs that are
incomplete (B1) or have grammatical errors (B2).
B1 is missing the subject of the sentence, and B2
does not follow the subject-object-verb order of a
Korean sentence structure. We found such gram-
matical problems to be frequent in the test set. As
such grammatical problems were not frequently
present in the development data, our models were
not robust to them.

7 Conclusion

We have presented a description of our different
approaches for identifying complex named entities
in Korean language data. A monolingual model
that considers characteristics of the Korean lan-
guage performs well, and an ensemble of mono-
lignual models and a multilingual model further
improves performance. Though we also explored
task-adaptive pretraining and data augmentation,
task-adaptive pretraining did not help on the de-
velopment data, and data augmentation helped on
the development data but hurt on the test data. Our
results suggest that while ensembles yield reliable
gains for Korean named entity recognition, further
research is needed to utilize external knowledge
when dealing with complex named entity recogni-
tion.
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Abstract
This paper describes the system developed by
the USTC-NELSLIP team for SemEval-2022
Task 11 Multilingual Complex Named Entity
Recognition (MultiCoNER). We propose a
gazetteer-adapted integration network (GAIN)
to improve the performance of language mod-
els for recognizing complex named entities.
The method first adapts the representations of
gazetteer networks to those of language models
by minimizing the KL divergence between
them. After adaptation, these two networks
are then integrated for backend supervised
named entity recognition (NER) training. The
proposed method is applied to several state-of-
the-art Transformer-based NER models with a
gazetteer built from Wikidata, and shows great
generalization ability across them. The final
predictions are derived from an ensemble of
these trained models. Experimental results and
detailed analysis verify the effectiveness of the
proposed method. The official results show that
our system ranked 1st on three tracks (Chinese,
Code-mixed and Bangla) and 2nd on the other
ten tracks in this task.

1 Introduction

Named Entity Recognition (NER) is a core natural
language processing (NLP) task, which aims at
finding entities and recognizing their type in a text
sequence. In practical and open-domain settings,
it is difficult for machines to process complex
and ambiguous named entities (Ashwini and Choi,
2014). For example, “On the Beach” is the title
of a movie but cannot be recognized easily by
present NER systems. This issue may become even
more serious in multilingual or code-mixed settings
(Fetahu et al., 2021). However, it has not received
sufficient attention from the research community.
To alleviate the issue, SemEval-2022 Task 11
(Malmasi et al., 2022b) formulates this task which
focuses on detecting semantically ambiguous and
complex entities in short and low-context settings
for 11 languages.

One of the classic approaches to solving this
problem is to integrate external entity knowledge
or gazetteers into neural architectures (Liu et al.,
2019; Rijhwani et al., 2020; Meng et al., 2021).
Typically, the two representations respectively from
a language model like BERT (Devlin et al., 2019)
and a gazetteer network like BiLSTM (Hochreiter
and Schmidhuber, 1997) are combined as one
merged embedding, which is further fed into a
NER classifier such as a conditional random field
(CRF) (Lafferty et al., 2001). However, there is
a sense of “gap” between the two networks. The
gazetteer network has no explicit semantic learning
goal itself, which means it is just a more complex
but almost isolated embedding layer for gazetteer
information and cannot obtain the true meaning of
NER tags actively. Almost no semantic information
can be gained by the classic gazetteer network.

To effectively connect the two networks, a
gazetteer-adapted integration network (GAIN) is
proposed. The GAIN adopts a two-stage training
strategy to adapt the gazetteer network to the
language model. During the first training stage,
the parameters of a language model are fixed. Then
a sentence and its annotation are fed into the two
networks separately. The two outputs are adapted
by minimizing the KL divergence between them.
This training process helps the gazetteer network
truly understand the meaning of NER tags by
transferring semantic information from the pre-
trained language model to the gazetteer network,
as the randomly initialized gazetteer network is
gradually adapted to the pre-trained language
model during the training. In the second stage,
with maintaining the training process above, a
gazetteer built from Wikidata is applied to generate
pseudo annotations searched by string matching. A
sentence and the corresponding pseudo annotation
are then fed into the two pre-trained networks
separately. Finally, integration methods like the
concatenation or weighted summation are utilized
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Figure 1: The overall structure of the proposed system.

on the two output representations for classifying.
The proposed method achieves great improve-

ments on the validation set (Malmasi et al., 2022a)
of SemEval-2022 Task 11 compared to baseline
models and ordinary NER systems with gazetteers.
Ensemble models are used for all thirteen tracks
in the final test phase, and our system officially
ranked 1st on three tracks (Chinese, Code-mixed
and Bangla), and 2nd on the other ten tracks
among nearly 50 teams overall. The outstanding
performance demonstrates the effectiveness of our
method. Fine-grained results show that our method
significantly improves scores of difficult labels like
“CREATIVE-WORK” and “PRODUCT”, which is
the key challenge of this task. To facilitate the
reproduction of our results, the code is available at
https://github.com/Mckysse/GAIN.

2 Task Description

SemEval-2022 Task 11 challenges participants
to develop complex NER systems for 11 lan-
guages (English, Spanish, Dutch, Russian, Turk-
ish, Korean, Farsi, German, Chinese, Hindi, and
Bangla), focusing on recognizing semantically
ambiguous and complex entities in short and low-
context settings (Malmasi et al., 2022b). Each
language constitutes a single track, while Mul-
tilingual and Code-mixed are added as Track
12 and 13. The task adopts the WNUT 2017
(Derczynski et al., 2017) taxonomy entity types:
PERSON (PER for short, names of people), LOCA-
TION (LOC, locations/physical facilities), COR-
PORATION (CORP, corporations and businesses),
GROUPS (GRP, all other groups), PRODUCT
(PROD, consumer products), and CREATIVE-
WORK (CW, movie/song/book/etc. titles). The
task also aims at testing the domain adaption
capability of the systems by adding additional test
sets on questions and short search queries.

For each language, a training set with 15300
samples and a validation set with 800 samples are
provided. For the Code-mixed track, 1500 training
samples and 500 validation samples are provided.
The test data for each track have instances between
150K+ and 500K+ (Malmasi et al., 2022a).

3 System Description

This study focuses on making better use of the
external entity knowledge. To describe our system
clearly, in this section, we first introduce three
basic mainstream NER systems used. Then we
show the process of constructing a gazetteer with
Wikidata, and how the gazetteer representation is
generated and utilized. Finally, we illustrate the
gazetteer-adapted integration network (GAIN). The
overall structure of the proposed system is shown
in Figure 1.

3.1 Basic NER Systems
We mainly use the XLM-RoBERTa large (Conneau
et al., 2020) as the pre-trained language model,
which is a widely used encoder. Generated by feed-
ing a sentence into the encoder, the representation
is then projected to a 13-dimension embedding
corresponding to 13 BIO-tags (eg. B-PER, I-PER,
O, ...) through a linear transformation. Three
mainstream NER backend classifiers are adopted:
Softmax (Devlin et al., 2019) and CRF (Huang
et al., 2015) are classic sequential labeling methods
that predict the tag of each token, and Span
(Yu et al., 2020) is a segment-based method that
predicts the start and the end of an entity separately.

3.2 The Gazetteer
It’s difficult to process complex and ambiguous
entities only relying on the language model itself
(Ashwini and Choi, 2014). To integrate external
entity knowledge, we first need to build a large
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Coverage Rate per Label
Language Total Num. LOC CW PER GRP PROD CORP Average
BN 73,468 46.52% 20.21% 7.93% 19.58% 10.61% 14.62% 19.91%
DE 901,635 84.34% 93.62% 19.05% 87.70% 47.72% 94.73% 71.19%
EN 1,032,955 84.26% 79.30% 18.29% 86.79% 47.25% 94.04% 68.32%
ES 961,535 83.31% 83.08% 21.03% 67.32% 27.51% 77.81% 60.01%
FA 633,348 87.31% 77.54% 90.19% 65.70% 42.47% 70.88% 72.35%
HI 82,669 46.87% 13.99% 15.25% 16.36% 12.06% 13.95% 19.75%
KO 358,510 58.64% 79.94% 84.01% 74.40% 44.27% 63.51% 67.46%
NL 701,839 79.69% 72.54% 23.93% 68.35% 26.33% 72.20% 57.17%
RU 495,585 57.17% 72.19% 9.75% 41.46% 28.29% 57.20% 44.34%
TR 407,901 84.15% 79.88% 88.54% 58.29% 44.26% 76.75% 71.98%
ZH 513,704 73.42% 62.84% 19.37% 81.54% 34.67% 71.95% 57.30%
MIX 4,434,100 91.71% 93.44% 44.30% 90.58% 55.22% 96.55% 78.63%
MULTI 4,434,100 73.19% 69.71% 44.49% 58.65% 31.44% 62.00% 56.58%
Average coverage rate 73.12% 69.10% 37.39% 62.82% 34.78% 66.63% 57.31%

Table 1: The metrics of our gazetteer in detail. The Total Num. column means the accurate number of entries in the
gazetteer for each track. Numbers with % denote the coverage rates to entities in the training and validation set.

gazetteer matching the taxonomy, then we have to
consider how to fuse the gazetteer information with
the semantic information from the language model.

3.2.1 Construction
Our gazetteer is built based on Wikidata. Wikidata
is a free and open knowledge base. Every entity of
Wikidata has a page consisting of a label, several
aliases, descriptions, and one or more entity types.
The entity type annotated by Wikidata is the key
to constructing a gazetteer. For example, “apple”
can be annotated as a kind of fruit or a well-known
high-tech corporation in America. Thus, according
to WNUT 2017 taxonomy (Derczynski et al., 2017)
used in this competition, the word “apple” is given
both PROD and CORP labels.

To construct a gazetteer fit to the data of this task,
firstly every entity of the training set is searched
in Wikidata. Then all the entity types returned are
mapped to the NER taxonomy with 6 labels. Next,
all Wikidata entities stored in these entity types
can be added to the 6 labels gazetteer separately.
Of course, there is a lot of entities that cannot be
searched, especially in some languages such as BN
and HI. Also, the elementary gazetteer has plenty of
noise. By measuring the number and the coverage
rate of each language on each label, the mapping
relationships are adjusted manually. In the end,
a multilingual gazetteer is obtained that contains
entities from 70K to 1M for each language. The
gazetteer approximately has a coverage rate of 57

Words O B-CORP I-CORP B-PROD I-PROD

where 1 0 0 0 0
to 1 0 0 0 0
buy 1 0 0 0 0
apple 0 1 0 1 0
iphone 0 0 0 1 1
13 0 0 0 0 1

Table 2: Example of the one-hot representation for a
searched sentence. The rest 8 labels are all zero.

percent on entities in the training and validation
set. Basic information about our gazetteer is shown
in Table 1. “Coverage Rate” is calculated as the
number of entities both appeared in the official data
and in our gazetteer divided by the total number of
entities in the official data.

3.2.2 Application
To apply the gazetteer to a sentence, firstly a search
tree is constructed for string matching. Once a
sentence is fed into the search tree, a maximum
length matching algorithm will be conducted, and
a 13-dimension one-hot vector for each token will
be generated. Take the sentence “where to buy
apple iphone 13” for example. By string matching
with the gazetteer, “apple iphone 13”, “iphone 13”
and “apple” are found in the PROD gazetteer, while
“apple” is also found in the CORP gazetteer. Then
a 13-dimension one-hot vector will be generated
for every word as shown in Table 2.
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Denote one sentence as w = (w1, w2, ...wN )
where N is the length of the sentence and wi is the
ith word. By feeding w into the encoder such as the
XLM-RoBERTa large, a semantic representation
e ∈ RN×D is obtained, where D is the hidden size.
At the same time, the one-hot vector generated
from the search tree is fed into a gazetteer network
consisting of a dense layer and a BiLSTM. To
match the hidden size of the language model, the
output embedding g has the same size with e.

Two common ways are used to integrate e and
g. One way is to concatenate them on each token,
another way is to get the weighted summation of
them by setting a trainable parameter λ ∈ RN×D.
The final representation is fed into the backend
classifier for supervised NER training.

3.3 Gazetteer-Adapted Integration Network

Through the analysis in Section 6.2, it is found
that only conducting the normal training process
above is not enough. Since the encoder XLM-
RoBERTa large and the gazetteer network BiLSTM
are almost isolating each other during the whole
training, almost no semantic information can be
gained explicitly by the classic gazetteer network.

To address this problem, the GAIN method is
proposed as a two-stage training strategy. In the
first stage, the adaptation between the two networks
is conducted. Take the sentence w = {where to
buy apple iphone 13} for example. Assuming the
correct tags are T ={O,O,O,B-PROD,I-PROD,I-
PROD}, an one-hot vector is constructed just based
on the true tags. A gazetteer representation gr ∈
RN×D is obtained after passing the vector through
the gazetteer network. Then the parameters of
the language model are fixed, and the sentence
w is fed into it to get a semantic representation e.
{gr, e} are projected to {gt

r, e
t} ∈ RN×13 by two

separate linear layers, where the semantic meaning
is transferred to the tags meaning as a kind of logits
distributions. The adaptation is implemented by
the designed loss L1:

L1(w) = KL(sg(gt
r)||et) + KL(sg(et)||gt

r) (1)

where KL(·) is the KL divergence calculation and
sg(·) operation is used to stop back-propagating
gradients, which is also employed in Jiang et al.
(2020); Liu et al. (2020). The loss L1 is the sym-
metrical Kullback-Leibler divergence, encouraging
the distributions gt

r and et to agree with each other.

Thus, the gazetteer network will understand the
real meaning of the NER tags and gain semantic
information transferred from the language model.

In the second stage, all the parameters are trained
with a gazetteer. As illustrated in Section 3.2.2, a
gazetteer representation g is generated from the
search tree and the gazetteer network BiLSTM.
Next, an ordinary fusion method is applied to g
and e to get an integration representation, which is
then fed into the backend classifier to compute a
conventional loss with true tags T. This supervised
training goal is implemented by the loss L2:

L2(w) = Classifier(f(g, e),T) (2)

where f(·) denotes ordinary integration meth-
ods like concatenation or weighted summation.
Classifier(·) represents one of the three main-
stream backend classifiers mentioned in Section
3.1. During the whole second-stage training, a
multitask learning goal is conducted shown as:

L3(w) = αL1(w) + L2(w) (3)

where α is a hyperparameter that is manually set
for different fusion and backend methods.

4 Data Preparation

For the basic training set provided officially, an en-
tity replacement strategy is adopted using our own
gazetteer to construct a double data-augmented
set. This part of data is called “data-wiki”, which
mainly consists of rich-context sentences.

In order to improve the performance of our
models on low-context instances, a set of annotated
sentences are generated from the MS-MARCO
QnA corpus (V2.1) (Nguyen et al., 2016) and the
ORCAS dataset (Craswell et al., 2020), which are
mentioned in Meng et al. (2021). Our trained
models and existing NER systems (e.g., spaCy)
are applied to identify entities in these corpora, and
only templates identically recognized by all models
are reserved. Finally, 3753 English templates for
MS-MARCO and 13806 English templates for
ORCAS are obtained. After slotting the templates
by our own gazetteer and translating them to the
other 10 languages, we get approximately 16K
annotated low-context sentences for each language.
This part of data is called “data-query”.

A special operation is conducted for the Code-
mixed track, because only 2000 annotated instances
are provided officially. The multilingual function
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Parameter Value
Hidden size for language models 1024 for large, 768 for base
Learning rate for language models 2e-5 for large, 1e-5 for base
Learning rate for gazetteer networks 2e-4 for large, 1e-4 for base
Learning rate for the CRF layer 2e-3 for large, 1e-3 for base
First-stage training epochs 5
Second-stage training epochs 20
Batchsize 32
Dropout rate 0.1
α for the second stage training 5 for Softmax and Span, 100 for CRF
Optimizer AdamW
Activation function Relu

Table 3: Hyperparameters for our system. “large” means the 24-layer transformer model, and “base” denotes the
12-layer transformer model.

Model Name Lang
XLM-R large (Conneau et al., 2020) Multi
chinese-roberta-wwm (Cui et al., 2021) ZH
luke-large (Yamada et al., 2020) EN
klue-roberta (Park et al., 2021) KO
bert-base-turkish (Schweter, 2020) TR
bert-fa-base (Farahani et al., 2021) FA

Table 4: Pre-trained language models used.

in Wikidata is utilized, as every entity in the Wiki
page has several expressions in other languages.
For every sentence in “data-wiki” and “data-query”,
the entities inside are randomly replaced with their
translations recorded by Wikidata. In this way, a
set of annotated code-mixed data are built.

5 Experiments

5.1 Encoder Selection

Preliminary experiments show that it’s important
to start with advanced pre-trained language models
for further improvements. More than a dozen
models are evaluated on the development set, and
the language models listed in Table 4 are adopted
eventually. For some tracks, the XLM-R large and
the monolingual model are both used for ensemble.
For the other tracks without monolingual models
in the corresponding language, just the XLM-R
large is used. All the resources can be found on the
HuggingFace Page (Wolf et al., 2019).

5.2 Training Details

A lot of models have been trained with the GAIN
method using different classifiers, different integra-

Track Team Num. F1 Rank
English (EN) 30 0.8547 2
Spanish (ES) 18 0.8544 2
Dutch (NL) 15 0.8767 2
Russian (RU) 14 0.8382 2
Turkish (TR) 15 0.8552 2
Korean (KO) 17 0.8636 2
Farsi (FA) 15 0.8705 2
German (DE) 16 0.8905 2
Chinese (ZH) 21 0.8169 1
Hindi (HI) 17 0.8464 2
Bangla (BN) 18 0.8424 1
Multilingual 26 0.853 2
Code-mixed 26 0.929 1

Table 5: Official rankings of our system. “F1” denotes
the macro-F1 on the test set.

tion methods, different chosen language models.
Hyperparameter settings are shown in Table 3.
Sample codes are already available at https:
//github.com/Mckysse/GAIN to help the
reproduction.

A 5-fold cross-validation training strategy is also
applied in the evaluation. The prepared data “data-
wiki” and “data-query” are split into five pieces,
each one is used as the validation set, while the
other four pieces are used as the training set. After
obtaining the five best models by this strategy, the
logits of them (for Softmax and Span models) are
averaged to integrate them as an aggregated model.
CRF models are just voted averagely.

Finally, the predictions of our best models in
different methods are token-voted by setting a
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Strategy Classifier BN DE EN ES FA HI KO NL RU TR ZH MIX

A
CRF 0.771 0.886 0.846 0.834 0.78 0.771 0.813 0.878 0.802 0.835 0.866 0.654
Softmax 0.763 0.879 0.849 0.836 0.783 0.767 0.811 0.871 0.792 0.835 0.862 0.652
Span 0.793 0.896 0.853 0.845 0.806 0.802 0.831 0.879 0.809 0.839 0.884 0.696

B
CRF 0.816 0.906 0.865 0.857 0.821 0.8 0.853 0.888 0.817 0.865 0.908 0.788
Softmax 0.799 0.901 0.865 0.859 0.824 0.796 0.851 0.879 0.815 0.864 0.901 0.786
Span 0.811 0.917 0.871 0.857 0.818 0.825 0.864 0.887 0.82 0.858 0.906 0.792

C
CRF 0.841 0.943 0.891 0.87 0.835 0.831 0.871 0.902 0.829 0.884 0.913 0.833
Softmax 0.829 0.931 0.888 0.872 0.839 0.822 0.868 0.897 0.831 0.882 0.909 0.835
Span 0.832 0.935 0.892 0.874 0.836 0.837 0.879 0.901 0.836 0.872 0.912 0.823

weighted token-vote 0.864 0.955 0.922 0.892 0.855 0.853 0.899 0.916 0.843 0.903 0.922 0.865

Table 6: All macro-F1 scores on the validation set. Only scores of the concatenation integration method are listed
due to limited spaces. Strategy A denotes baseline systems mentioned in Section 3.1, B denotes ordinary integration
method with the gazetteer mentioned in Section 3.2, and C denotes the GAIN method mentioned in Section 3.3.
“weighted token-vote” represents the ensemble of all our models including those with the weighted summation
integration method not listed, and achieves the best performance on the validation set.

Coverage Rate BN DE EN ES FA HI KO NL RU TR ZH MIX avg
0 0.784 0.897 0.856 0.847 0.8 0.775 0.839 0.892 0.806 0.855 0.863 0.662 0.823
30% 0.791 0.898 0.861 0.845 0.804 0.799 0.84 0.893 0.814 0.856 0.872 0.694 0.831
50% 0.858 0.901 0.867 0.844 0.807 0.871 0.866 0.897 0.814 0.861 0.903 0.709 0.85
70% 0.891 0.907 0.868 0.854 0.811 0.899 0.894 0.901 0.82 0.869 0.904 0.732 0.863
100% 0.974 0.973 0.942 0.92 0.903 0.978 0.938 0.94 0.91 0.91 0.964 0.914 0.934

Table 7: F1 scores of the gradient coverage rate trial. “Coverage Rate” means the number of entities in official data
also found in our gazetteer / the number of entities in official data. “avg” denotes the average result of all tracks.

weight for each track. The weight is manually
set referring to all scores on the validation set.

5.3 Official Results

Our team participate in all the 13 tracks and the
results in the test phase are listed in Table 5. We
ranked 1st on three tracks and 2nd on ten tracks.

6 Analysis

6.1 Effectiveness of The Gazetteer

To explore the effectiveness of the proposed GAIN
methods, a large number of trials are conducted on
the official data mentioned in Section 2. All scores
under the concatenation integration setting on the
validation set are listed in Table 6. Significant
improvements are gained by the gazetteer and
the GAIN method on all tracks. The results
demonstrate that the gazetteer plays a pivotal role
in processing complex entities.

6.2 Coverage Rate Trial

Our gazetteer can only reach approximately 57%
coverage rate over the entities in the official data.
Intuitively, the higher the coverage rate over the
entities reaches, the better the performance can
achieve. We carry out a toy experiment to explore
this conjecture. Since entities from the official
training and development set can be extracted, we

can control how many of these entities appear in our
gazetteer to modulate the coverage rate, as shown
in Table 7.

Not as expected, scores on many tracks don’t
improve in step with the increase of the coverage
rate when it does not reach 100%. This situation
mostly happens in languages that already have
good scores, like DE and EN. To explore the
reason why the gazetteers under 100% coverage
rate don’t work, we check the weight λ mentioned
in Section 3.2.2. It’s surprising to find the λ is
nearly zero when the coverage rate is not 100%,
which indicates that our models almost don’t use
the gazetteer information. Further fine-grained
tests find that only when the coverage rate exceeds
the basic accuracy of the model, the λ starts to have
a non-zero value. An empirical conclusion can be
drawn that the gazetteer network and the language
model almost process information separately, and
the final integration module simply selects the
better one for classifying. Thus, this study starts to
figure out an explicit way to adapt the two networks,
and the GAIN method is designed.

6.3 Detailed Results on the Test Set

As shown in Table 8 and Table 9, we display all the
detailed results on all tracks during the test phase
for further analyses in-depth.
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Domain Metrics\Lang bn de en es fa hi ko nl ru tr zh

overall

macro@F1 0.8424 0.8905 0.8547 0.8544 0.8705 0.8464 0.8636 0.8767 0.8382 0.8552 0.8169
macro@P 0.8584 0.8988 0.8641 0.8664 0.8816 0.8600 0.8739 0.8856 0.8485 0.8662 0.8394
macro@R 0.8343 0.8835 0.8467 0.8439 0.8610 0.8392 0.8556 0.8686 0.8289 0.8470 0.8007
ALLTRUE 135634 271979 272922 265748 192194 144940 217281 265942 249458 149369 173183
ALLPRED 133563 269699 269658 261020 189525 143238 215304 262626 245126 148025 169983
ALLRECALLED 123479 253694 244826 238000 172403 132392 197725 242799 219455 135212 152918
MD@F1 0.9174 0.9367 0.9025 0.9036 0.9033 0.9188 0.9142 0.9187 0.8874 0.9093 0.8912
F1@LOC 0.8339 0.8900 0.8452 0.8606 0.8853 0.8719 0.8789 0.8793 0.8258 0.8427 0.8575
F1@PER 0.8724 0.9333 0.9315 0.9224 0.9234 0.9160 0.9100 0.9268 0.8634 0.9096 0.8021
F1@PROD 0.7539 0.8803 0.8221 0.7885 0.8324 0.7694 0.8225 0.8421 0.8166 0.8348 0.8121
F1@GRP 0.8956 0.8777 0.8622 0.8585 0.8670 0.8642 0.8683 0.8891 0.8329 0.8479 0.7966
F1@CORP 0.8921 0.8961 0.8761 0.8799 0.8827 0.8674 0.8767 0.8949 0.8671 0.8722 0.8422
F1@CW 0.8067 0.8655 0.7909 0.8165 0.8325 0.7894 0.8253 0.8278 0.8237 0.8240 0.7911

lowner

macro@F1 0.8656 0.9541 0.9209 0.8910 0.8529 0.8518 0.9037 0.9143 0.8420 0.9005 0.9101
macro@P 0.8732 0.9580 0.9283 0.9015 0.8613 0.8649 0.9064 0.9214 0.8522 0.9032 0.9276
macro@R 0.8582 0.9503 0.9138 0.8808 0.8449 0.8393 0.9011 0.9074 0.8322 0.8980 0.8942
ALLTRUE 15699 151645 152604 147408 72862 25836 97937 146090 129475 29940 52767
ALLPRED 15436 150512 150411 144103 71764 25073 97614 144131 126514 29840 51610
ALLRECALLED 14426 147460 142921 133408 62804 22985 89837 136200 109732 27358 49264
MD@F1 0.9267 0.9760 0.9433 0.9153 0.8685 0.9030 0.9188 0.9386 0.8573 0.9153 0.9440
F1@LOC 0.9018 0.9657 0.9441 0.9034 0.8701 0.8961 0.9131 0.9457 0.8130 0.9038 0.9544
F1@PER 0.9413 0.9762 0.9717 0.9572 0.8935 0.9273 0.9199 0.9621 0.8387 0.9238 0.9457
F1@PROD 0.8112 0.9308 0.8395 0.7974 0.7677 0.7884 0.8812 0.8449 0.8202 0.8375 0.8849
F1@GRP 0.8647 0.9519 0.9332 0.8989 0.8728 0.8691 0.9000 0.9237 0.8443 0.9287 0.8445
F1@CORP 0.8616 0.9607 0.9409 0.9311 0.8691 0.8460 0.9230 0.9219 0.8924 0.9260 0.9247
F1@CW 0.8132 0.9396 0.8963 0.8580 0.8439 0.7842 0.8851 0.8876 0.8436 0.8835 0.9063

orcas

macro@F1 0.8237 0.7933 0.7559 0.7968 0.8720 0.8316 0.8182 0.8164 0.8223 0.8317 0.7564
macro@P 0.8420 0.8050 0.7678 0.8099 0.8820 0.8466 0.8323 0.8263 0.8316 0.8422 0.7796
macro@R 0.8178 0.7880 0.7505 0.7917 0.8657 0.8287 0.8115 0.8109 0.8171 0.8270 0.7473
ALLTRUE 101225 101171 101197 101220 101149 101116 101027 101160 101153 101050 101179
ALLPRED 99529 100039 100222 99970 99741 100211 99465 100097 100006 100135 99159
ALLRECALLED 91027 87729 84475 88455 92126 91762 90263 89032 91767 90378 85483
MD@F1 0.9069 0.8720 0.8388 0.8793 0.9172 0.9116 0.9004 0.8848 0.9124 0.8985 0.8534
F1@LOC 0.7682 0.7374 0.6745 0.7621 0.8613 0.8138 0.7985 0.7365 0.7909 0.7742 0.7410
F1@PER 0.8445 0.8486 0.8511 0.8606 0.9342 0.8990 0.8881 0.8684 0.8776 0.8963 0.7327
F1@PROD 0.7393 0.8217 0.8021 0.7773 0.8673 0.7608 0.7756 0.8395 0.8152 0.8343 0.7637
F1@GRP 0.9027 0.7711 0.7633 0.8089 0.8628 0.8633 0.8418 0.8453 0.8195 0.8262 0.7923
F1@CORP 0.8951 0.8167 0.7989 0.8202 0.8896 0.8707 0.8393 0.8653 0.8389 0.8596 0.8000
F1@CW 0.7923 0.7641 0.6456 0.7519 0.8169 0.7820 0.7661 0.7437 0.7914 0.7997 0.7084

msq

macro@F1 0.7512 0.8683 0.8174 0.8510 0.9175 0.9094 0.8819 0.8695 0.8591 0.8783 0.8537
macro@P 0.7721 0.8706 0.8010 0.8449 0.9245 0.9189 0.8845 0.8630 0.8537 0.8764 0.8594
macro@R 0.7344 0.8665 0.8366 0.8595 0.9111 0.9014 0.8797 0.8787 0.8671 0.8810 0.8484
ALLTRUE 18710 19163 19121 17120 18183 17988 18317 18692 18830 18379 19237
ALLPRED 18598 19148 19025 16947 18020 17954 18225 18398 18606 18050 19214
ALLRECALLED 18026 18505 17430 16137 17473 17645 17625 17567 17956 17476 18171
MD@F1 0.9663 0.9660 0.9139 0.9474 0.9653 0.9819 0.9646 0.9473 0.9593 0.9595 0.9452
F1@LOC 0.9372 0.9334 0.8548 0.9113 0.9553 0.9685 0.9421 0.9055 0.9209 0.9245 0.9296
F1@PER 0.9276 0.9335 0.9366 0.9252 0.9771 0.9688 0.9525 0.9368 0.9399 0.9428 0.8762
F1@PROD 0.7890 0.8211 0.7734 0.7810 0.8848 0.8435 0.7858 0.8129 0.7255 0.8267 0.7886
F1@GRP 0.0000 0.7797 0.7273 0.7527 0.8771 0.8518 0.8357 0.8079 0.8063 0.7994 0.7868
F1@CORP 0.9365 0.8603 0.8214 0.8574 0.9110 0.9231 0.8811 0.8937 0.8708 0.8797 0.8665
F1@CW 0.9171 0.8817 0.7909 0.8784 0.8999 0.9007 0.8939 0.8605 0.8909 0.8967 0.8745

Table 8: All detailed results of the official test set on monolingual tracks.

Track\Metrics macro@F1 macro@P macro@R MD@F1 F1@LOC F1@PER F1@PROD F1@GRP F1@CORP F1@CW
Code-mixed 0.9290 0.9321 0.9261 0.9662 0.9314 0.9461 0.9164 0.9247 0.9463 0.9093
Multilingual 0.8530 0.8605 0.8489 0.9210 0.8681 0.9076 0.8105 0.8152 0.8786 0.8381

Table 9: Results of the official test set on the Code-mixed and Multilingual tracks.
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As shown in the tables, the proposed GAIN
method significantly improves the performance of
the language model on recognizing entities of hard
labels like “CW” and “PROD”. Besides, results
in the domain of “orcas” and “msq” indicate the
effectiveness of the proposed data-augment strategy
mentioned in Section 4.

6.4 Average-Logits Experiments
This section explains why we choose to average
logits of softmax-based models (for Softmax and
Span models) for integrating them as an aggregated
model, rather than averagely token-vote. Also, a
5-fold cross-validation training is conducted with
the official training data on the basic Softmax
method. Without loss of generality, BN, EN, FA,
and ZH are chosen to represent different language
families. Results on the official validation set are
shown in Table 10. It is empirically demonstrated
that average-logits for the softmax-based model
ensemble is better than average-token-vote in most
situations.

Data\Lang bn en fa zh
1 fold 0.795 0.871 0.814 0.874
2 fold 0.799 0.873 0.8 0.871
3 fold 0.801 0.876 0.795 0.889
4 fold 0.798 0.881 0.791 0.881
5 fold 0.789 0.869 0.8 0.873
avg 0.796 0.874 0.8 0.878
avg-token-vote 0.813 0.887 0.815 0.898
avg-logits 0.815 0.89 0.817 0.903

Table 10: Results of the 5-fold cross-validation trial.
“avg” denotes the average results of 5 models’ scores.
“avg-token-vote” represents the averagely token-vote
process. “avg-logits” means average logits of 5 models
are fed into the backend softmax layer for classifying,
which achieves the best performance on all 4 languages.

6.5 About KL
This section illustrates why the GAIN method
adopts the KL divergence rather than the MMSE
loss. Softmax-based classification usually chooses
the position of the maximum in all dimensions to be
the predicted tag. Because the softmax module and
logits-softmax module exist in the KL calculation,
the 13-dimension vector can be considered as a
kind of logits distribution with the tags meaning.
Thus, the distribution, or the internal relationship
between all logits of tokens in a sentence, is the
most important thing to pay attention to, rather than

the amplitude of all logits. With the KL divergence,
two distributions are adapted to each other without
considering the amplitude.

A toy trial has been conducted to confirm
whether the two 13-dimension vectors from the
two networks have the same amplitude. The result
shows that they are not always in the same ratio
relations for different inputs. Compared to the
MMSE loss which also calculates relating to the
absolute amplitude difference, the KL divergence
is better since it only focuses on the distributions
of the two outputs, without being disturbed by the
inconsistent relationship of the amplitude.

7 Conclusion

This paper presents the implementation of the
USTC-NELSLIP system submitted to the SemEval-
2022 Task 11 MultiCoNER. The GAIN method
is proposed to adapt the gazetteer network to the
language model, and achieves great improvements
on the complex NER task. Some construction
methods for gazetteers and code-mixed data aug-
mentation are also provided. In future works, we
will keep exploring effective ways to integrate
gazetteer networks with encoders to make better
use of the external entity knowledge.
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Abstract

We investigate the task of complex NER for
the English language. The task is non-trivial
due to the semantic ambiguity of the textual
structure and the rarity of occurrence of such
entities in the prevalent literature. Using pre-
trained language models such as BERT, we
obtain a competitive performance on this task.
We qualitatively analyze the performance of
multiple architectures for this task. All our
models are able to outperform the baseline by a
significant margin. Our best performing model
beats the baseline F1-score by over 9%.

1 Introduction

The Named Entity Recognition (NER) task aims
to detect entities from unstructured text and clas-
sify them into predefined categories. Although
the task of NER has been investigated adequately
by previous research work (Mansouri et al., 2008;
Nadeau and Sekine, 2007; Lample et al., 2016a;
Florian et al., 2003; Ritter et al., 2011), the de-
tection of named entities in open-domain settings
is non-trivial. Moreover, the introduction of addi-
tional layers of complexity, in the form of semantic
ambiguity and a lower amount of contextual avail-
ability, poses further challenges. For example, in a
low-context and semantically ambiguous sentence
such as Let us play Among Us, the token sequence
Among Us, can refer to a common phrase or a pop-
ular video game, and hence be categorized as a
Creative Work (CW).

Recently, deep learning models have gained pop-
ularity for NER (Yadav and Bethard, 2019; Li et al.,
2020; Habibi et al., 2017). However, these ap-
proaches are data-intensive and become ineffective
when there is a lack of labeled data. To foster re-
search in this area, (Malmasi et al., 2022b) has
introduced the SemEval MultiCoNER shared task
that deals with multilingual complex named en-

*Equal Contribution

tity recognition. This task in based on the com-
plex NER, search query and code-mixing NER
challenges introduced by Meng et al. (2021) and
Fetahu et al. (2021). The baseline introduced
by the organizers for this MultiCoNER challenge
is a pre-trained XLM-RoBERTa model (Conneau
et al., 2019) that was further fine-tuned on the task-
specific training dataset.

This paper describes our approach to tackle com-
plex NER task for the English language using state-
of-the-art deep learning models and introduces a
simple neural network architecture that builds on
top of pre-trained language models. We compare
multiple architectures on the validation and test set
of the shared task. All our models outperform the
baseline by a significant margin. Through our ex-
periments, we discover that leveraging transformer
models based on attention mechanism (Vaswani
et al., 2017) results in better performance even
in low context and ambiguous settings. The
code is available at https://github.com/
AmitPandey-Research/Complex_NER

We describe the prior research work done with
respect to both general and low-resource NER tasks
in Section 2. We provide the formal task descrip-
tion in Section 3, the dataset details in Section 4,
the method and the model architecture in Section
5. We provide details about the experimental im-
plementation in Section 6. We discuss the results
obtained and error analysis in Sections 7 and 8 re-
spectively, and finally, we conclude the paper in
Section 9.

2 Related Work

A widely used benchmark for NER was the CoNLL
2003 shared task. It contained annotated newswire
text from the Reuters RCV1 corpus. Previous re-
searchers (Baevski et al., 2019) had used BiLSTM
models with attention to predict named entities on
this dataset. (Ma and Hovy, 2016) used a BiLSTM-
CNN-CRF to predict the named entities.
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Sequence labeling for Named Entity Recog-
nition: Recent approaches have aimed at utilizing
deep learning techniques for training NER models.
However, these techniques require a large amount
of token-level labeled data for NER tasks. Anno-
tation for such kinds of labeled datasets can be
expensive, time-consuming, and laborious. The
datasets introduced in this task encompass a large
number of low-resource and complex NER entities.

Recent work on NER in scientific documents
has been concentrated around detecting biomedi-
cal named entities (Kocaman and Talby, 2020) or
scientific entities like tasks, methods and datasets
(Luan et al., 2018; Jain et al., 2020; Mesbah et al.,
2018).

NER has been traditonally modelled as a se-
quence labelling task, using CRF (Lafferty et al.,
2001) to classify the labels. Recent approaches
have used deep learning based models (Li et al.,
2018). These approaches are data intensive
in nature. To tackle the label scarcity prob-
lem, methods like Distant Supervision (Wang
et al., 2020; Liang et al., 2020; Hedderich et al.,
2021), Active Learning (Goldberg et al., 2017),
Reinforcement Learning-based Distant Supervi-
sion (Nooralahzadeh et al., 2019; Yang et al., 2018)
have been proposed.

3 Task Description

The objective of this shared task is to build com-
plex Named Entity Recognition systems. The task
presents a unique challenge in the form of detect-
ing the entities in semantically ambiguous and
low-context settings. Moreover, the shared task
also tests the generalization capability and domain
adaptability of the proposed systems by testing the
system over additional (low-context) datasets con-
taining questions and short search queries, such as
Google Search queries.

Label Description
PER Person
LOC Location
GRP Group

CORP Corporation
PROD Product

CW Creative Work

Table 1: Entity types in the label space

For this task, given an input sentence (an ar-
bitrary sequence of tokens), the systems have to

identify the B-I-O format (Ramshaw and Marcus,
1999) (short for beginning, inside, outside) tags for
6 NER entity classes: Person, Product, Location,
Group, Corporation, and Creative Work. The de-
scription attributed to each class label is described
in Table 1.

4 Dataset

The MultiCoNER dataset (Malmasi et al., 2022a)
consists of labeled complex Named Entities (NE).
For the monolingual track, the participants have to
train a model that works for a single language. For
training and validation purposes, train and dev sets
are provided with labeled entities. The monolin-
gual model trained needs to be used for the predic-
tion of named entities in the test set that consists of
more than 150K instances. The labels from the test
set are not provided directly. In this system descrip-
tion for the monolingual track, we have considered
the English NER dataset for our task. The dataset
follows a BIO tagging scheme, and there are six
entity types in the label space. The statistics for
the English dataset in the monolingual track for the
train and dev set are provided in Table 2.

Train Dev
# sentences 15300 800

Table 2: Total sentences in English monolingual track

5 System Overview

This section describes our approach to designing a
system to solve the problem of classifying the to-
kens (words) of a given sentence into one of the six
NE categories. We also briefly describe features of
the BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) model
employed in our system.

We designed three architectures based on pre-
trained language model BERT: 1) BERT+Linear,
2) BERT+CRF, and 3) BERT+BiLSTM+CRF. A
detailed explanation of these architectures is as
follows:

5.1 BERT+Linear
We model this task as a multiclass classification
problem. The first step to finding labels for the
entities is to find dense vector representations of
the tokens in the given sentence.

Instead of using static pre-trained word embed-
dings, such as Word2Vec (Mikolov et al., 2013)
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Figure 1: BERT-Linear architecture

and GloVe (Pennington et al., 2014) that rely only
on static global representations of word vectors, we
employ BERT-based context-aware representations
(BERT embeddings) that leverage the full context
of the entire sentence.

This helps in extracting more information for the
task of NER that is highly dependent on the inter-
token relationship. BERT learns the representations
for the tokens in the given text by jointly consid-
ering both the left and right context of the tokens
at each layer (Devlin et al., 2019). To better learn
the inter-token dependencies, BERT leverages the
attention mechanism with multiple attention heads
that focus on different aspects of a token’s relation
to other tokens. For an ith token xi among a se-
quence of tokens x = (x1, x2, x3, ..., xm), we ob-
tain a low-dimensional BERT embedding, x̃i ∈ Rd

where d is the embedding dimension.
We pass this BERT token embedding to a dense

classifier that consists of two fully connected layers.
This classifier layer maps the BERT embeddings
to lower dimension logit vectors x̃i ∈ Rk, where
k is the total number of labels. The logits are then
passed to the softmax normalization function. The
softmax generates a probability distribution across
all labels for each token, which is then used to
predict the most probable label. The system archi-
tecture details are shown in Figure 1.

5.2 BERT+CRF

We use a pre-trained BERT model to obtain the to-
ken embeddings. These embeddings are passed to
a token-level classifier followed by a Linear-Chain
CRF. The CRF learns the transfer rules between
adjacent entity labels and returns likelihood for a se-
quence of labels. More formally: 1) For a sequence

of tokens x = (x1, x2, x3, ..., xm), where xi is the
ith token among the sequence of tokens, we ob-
tain a low-dimensional dense embedding, x̃i ∈ Rd

where d is the embedding dimension. 2) This em-
bedding is mapped to a lower dimensional space
x̃i ∈ Rk where k is the total number of labels. 3)
The output emission scores from the linear layer
are obtained as P ∈ Rm×k, where m is the num-
ber of tokens. These scores are passed to the CRF
layer, whose parameters are A ∈ Rk+2×k+2. Each
element Aij signifies the transition score from the
ith label to the jth label. The 2 additional states in
A are the start and the end state of a sequence. For
a series of tokens x = (x1, x2, x3, ..., xm), we ob-
tain a series of predictions y = (y1, y2, y3, ..., ym).
As described in (Lample et al., 2016b), the score
of the entire sequence is defined as :

s(x, y) =
m∑

i=0

Ayi,yi+1 +
m∑

i=1

Pi,yi

The model is trained to maximize the log proba-
bility of the correct label sequence:

log(p(y|x)) = s(x, y)− log(
∑

ỹ∈YX

es(x,ỹ))

where YX are all possible label sequences.

5.3 BERT+BiLSTM+CRF
We use a pre-trained BERT model to obtain the con-
textual token embeddings for the input sentence.
These BERT embeddings are passed to the BiL-
STM layer, where the BiLSTM layer captures the
information into a hidden state representation. This
representation is passed to a CRF layer that obtains
the probability distributions across the sequences
of labels. Specifically, the fine-tuned BERT lan-
guage model is used to map the tokens in each
sentence to a distributed representation. This is
used as the word embedding layer for the BiL-
STM+CRF model. The BiLSTM+CRF layer is
used to sequence label the sentence, and the pre-
dicted labels are obtained. The supervised learn-
ing algorithm iterates to improve its predicted la-
bel accuracy over every iteration. More formally,
the process can be described as follows : 1) The
target sentence comprising of m tokens, is repre-
sented as x = (x1, x2, x3, ..., xm), where xi rep-
resents the ith token of the entire target sentence.
2) xi is mapped to a low dimensional dense vector,
x̃i ∈ Rd using the pretrained BERT embeddings,
where d is the dimension of dense embedding. 3)
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BERT+Linear BERT+CRF BERT+BiLSTM+CRF
Class Label Prec Rec F1 Prec Rec F1 Prec Rec F1

LOC 0.9304 0.9145 0.9224 0.903 0.9145 0.9087 0.9025 0.9103 0.9064
PER 0.9659 0.9759 0.9708 0.936 0.9586 0.9472 0.8882 0.9586 0.9221

PROD 0.7365 0.8367 0.7834 0.7785 0.7891 0.7838 0.7372 0.7823 0.7591
GRP 0.8923 0.9158 0.9039 0.8341 0.9000 0.8658 0.8466 0.8421 0.8443
CW 0.7955 0.7955 0.7955 0.7963 0.733 0.7633 0.7353 0.7102 0.7225

CORP 0.893 0.8653 0.8789 0.8877 0.8601 0.8737 0.8837 0.7876 0.8329
Average 0.8689 0.8839 0.8758 0.8559 0.8592 0.8571 0.8322 0.8318 0.8312

Table 3: Results of our models on validation dataset

Prec Rec F1
Baseline System 0.773 0.780 0.776
BERT + CRF 0.855 0.859 0.857
BERT+BiLSTM+CRF 0.832 0.831 0.831
BERT + Linear 0.868 0.883 0.875

Table 4: Comparison of model performances with base-
line on validation dataset

BERT+Linear
Class Label Prec Rec F1

LOC 0.7292 0.7614 0.7449
PER 0.8776 0.8922 0.8848

PROD 0.7079 0.6460 0.6755
GRP 0.7699 0.6600 0.7107
CW 0.5527 0.6299 0.5888

CORP 0.7253 0.6759 0.6998
Average 0.7271 0.7109 0.7174

Table 5: Performance of model on test dataset

The sequence of vectors is taken as an input to
the BiLSTM in each time step, and the forward
hidden states

−→
hf = (

−→
h1,
−→
h2,
−→
h3, ...,

−→
hm) and the

backward hidden states
←−
hb = (

←−
h1,
←−
h2,
←−
h3, ...,

←−
hm)

are concatenated to form the combined hidden state
representation h = [

−→
hf ,
←−
hb]. 4) The combined hid-

den state representation h ∈ Rm×n, where n is the
total size of BiLSTM, is reduced to a k dimensions
using a linear layer, where k is the number of labels
to distribute the probabilities across. 4) Finally, the
CRF layer is used to obtain the probability of label
sequence.

6 Implementation Details

We implement all our transformer-based models
using Pytorch and Huggingface library. We imple-
ment 3 models: 1) BERT+Linear, 2) BERT+CRF,
and 3) BERT+BiLSTM+CRF. We also experiment

with feature engineering by concatenating label
encoded Part-of-Speech (POS) tags to the token
embeddings. We use a dropout from 0.2 to 0.5 in
all models and find that a dropout probability of
0.3 gives the best results throughout.

In the BERT+Linear model, we use two fully
connected dense linear layers as a classifier on top
of the BERT embedding layer. We add a softmax
layer to obtain the probability distribution across all
the labels. For the BERT+Linear model, we run our
experiments across 1-20 epochs. We find that the
model starts to overfit after 10 epochs, and the best
results are obtained after 5 epochs of training. We
further experiment with BERT-base (12 attention
heads) and BERT-large (16 attention heads).

For BERT+CRF and BERT+BiLSTM+CRF, we
experiment across 1-100 epochs. We find that the
models give the most optimal result at the 20th
epoch, after which they start to overfit. We use
a learning rate of 1e−6 for all the models. We
validate the results of all models using our dev set
and then use the best performing model for final
evaluation on the blind test set.

7 Results

We compare the performance of our models in the
validation set against the baseline. We use the best
performing model for the final submission in the
evaluation phase. We provide details of the per-
formance of the best performing model over the
blind test dataset provided in the evaluation phase.
We provide a detailed comparison of the perfor-
mance of our models across all the class labels in
the validation dataset in Table 3. Table 3 shows
that the simple BERT+Linear model (0.8758 F1
score) consistently performs better across all the la-
bels (except for PROD) as compared to other larger
models. We attribute this to the limited number of
samples in the training dataset. The lack of a suffi-
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cient number of training samples limits the ability
of larger models to generalize properly over the
entire training set.

Also, it can be observed from Table 4 that all
the 3 models outperform the baseline by a signifi-
cant margin. BERT+CRF, BERT+BiLSTM+CRF,
BERT+Linear advances the baseline by around 8%,
6%, and 9% respectively. Table 5 shows the per-
formance of our BERT+Linear model on the blind
test set. Our best performing model ranks 9th on
the validation dataset and 15th on the final blind
test set. Moreover, through our experiments, we
find that the BERT-large offers a significant boost
in performance over BERT-base, due to the larger
number of attention heads.

8 Error Analysis

We perform error analysis for all 3 different model
performances on the validation dataset. We find
that for all 3 models, each model has the greatest
difficulty in accurately predicting the CW (Creative
Work) label. This can be attributed to the higher de-
gree of ambiguity when it comes to CW named en-
tities, as these often share a similar type of textual
structure as regular non-named entity text tokens.
It can be inferred that all 3 models are memorizing
entity names from the training data to some ex-
tent. It is most prevalent in BERT+BiLSTM+CRF
model, as we can see that it has the least amount
of prediction accuracy among other models. This
is consistent with our reasoning that heavier mod-
els tend to overfit the dataset faster. Hence, we
deduce that named entity memorization can be at-
tributed to a type of overfitting behavior by the
model in question when the training data is scarce.
The BERT+Linear model, which is the lightest
model with the least amount of trainable param-
eters among all 3, is found to be significantly less
prone to memorize entity names.

Furthermore, upon qualitative analysis, we find
that our models often have difficulty in recognizing
longer named entities (entities comprising of 5 or
more tokens). This can be attributed to the lack of
occurrence of such entities in the training dataset.
The models are majorly exposed to shorter length
entity spans across the training set. Due to the
lack of exposure of the models to adequate training
instances of longer spans, the models are often
unable to predict such longer entity spans.

It is also worth noting that an increase in the
number of attention heads in the BERT layer helps

in substantial improvement in the accuracy. As
discussed, this can be attributed to better learning
of the context with the help of attention mechanism.
We conclude that the larger number of attention
heads are able to classify longer entity spans with
greater accuracy.

9 Conclusion and Future Work

We experiment with 3 model architectures for a
novel dataset introduced for the shared task of
detection of complex NER. Our best performing
model comprises of a simple linear classifier on top
of fine-tuned BERT-based language model. We find
that this simple approach performs competitively
as compared to its heavier counterparts. Upon anal-
ysis, we attribute this observation to the scarcity
of labeled training data. BERT+Linear model is
able to optimally avoid overfitting to a larger ex-
tent and hence performs better than other heavier
models. We find that our simpler model ranks in
the top 10 in the validation phase and outperforms
numerous teams in the final evaluation phase. For
future work, we aim to utilize other data augmen-
tation techniques and distant supervision to create
clean silver labels in order to increase our train-
ing instances. We believe that this would help us
leverage larger models for training purposes.
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Abstract

This paper summarizes the participation of
the L3i laboratory of the University of La
Rochelle in the SemEval-2022 Task 11, Mul-
tilingual Complex Named Entity Recognition
(MultiCoNER). The task focuses on detect-
ing semantically ambiguous and complex enti-
ties in short and low-context monolingual and
multilingual settings. We argue that using a
language-specific and a multilingual language
model could improve the performance of mul-
tilingual and mixed NER. Also, we consider
that using additional contexts from the training
set could improve the performance of a NER
on short texts. Thus, we propose a straightfor-
ward technique for generating additional con-
texts with and without the presence of entities.
Our findings suggest that, in our internal ex-
perimental setup, this approach is promising.
However, we ranked above average for the high-
resource languages and lower than average for
low-resource and multilingual models.

1 Introduction

Named entity recognition (NER) is the task of de-
tecting entities and recognizing their type (e.g., per-
son, location, organization) (Grishman and Sund-
heim, 1996). Standard benchmarks (e.g., CoNLL-
2003 (Tjong Kim Sang and De Meulder, 2003))
for NER are either focused on a high-resource lan-
guage or on a single domain (e.g., news). However,
NER is required in different fields, bringing thus
several new challenges regarding: the size of the
textual content (e.g., short textual snippets like Web
queries (Fetahu et al., 2021) or social media posts
(Rajoria, 2021)), the characteristics of the entities
to be extracted (i.e., capitalization/punctuation fea-
tures (Mayhew et al., 2019)), unseen and emerging
entities (e.g., entities that have a fast growth rate
such as new songs and movies are released weekly
(Bernier-Colborne and Langlais, 2020)), complex

entities (i.e., complex noun phrases such as particu-
larly long nested person names and dates in histori-
cal documents (Boros et al., 2020a,c)). Moreover,
multilingual documents in which entities of differ-
ent languages than the rest of the text are present
(i.e., code-mixed documents (Winata et al., 2021;
Fetahu et al., 2021)) add another level of complex-
ity to the task. Transformer-based (Vaswani et al.,
2017) architectures for NER became popular since
the release of the BERT model and they hold the
state of the art in NER (Akbik et al., 2018; Nie
et al., 2020; Yamada et al., 2020; Wang et al., 2020,
2021). However, while most NER systems have
been developed to generally address contemporary
news data in high resource languages (e.g. English)
(Yamada et al., 2020; Wang et al., 2020, 2021),
many challenges remain in NER from short texts
with complex entities in low-resource scenarios
(Meng et al., 2021).

The SemEval-2022 Task 11, Multilingual Com-
plex Named Entity Recognition (MultiCoNER)
(Malmasi et al., 2022b) aims at developing com-
plex NER systems for 11 languages. The task fo-
cuses on detecting semantically ambiguous and
complex entities in short, lowercased, low-context
monolingual, and multilingual settings. The lan-
guages were: English, Spanish, Dutch, Russian,
Turkish, Korean, Farsi, German, Chinese, Hindi,
and Bangla. For some languages, an additional
track with code-mixed data was offered. The or-
ganizers aim at testing the domain and language
adaption capability of a NER system. For this rea-
son, NER systems for monolingual settings are also
constrained to avoid multilingual prediction models
and vice versa.

Multilingual and code-mixed documents have
motivated the development of systems based
on multilingual Transformer-based architectures
(Winata et al., 2021; Fetahu et al., 2021). Also, re-
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cently, Wang et al. (2021) proposed an approach to
NER from short texts by finding external contexts
of a sentence. The authors retrieved and selected a
set of semantically relevant texts through a search
engine, with the original sentence as the query,
which proved to be efficient in detecting entities.

In this paper, we propose a robust approach for
NER and we tackle the following challenges for
the language-specific sub-task, including the mul-
tilingual and mixed sub-tasks: (1) short texts: by
adding multilingual contexts with and without en-
tities, in order to improve and focus more on the
context and less on the other surrounding entities,
(2) lowercased texts: we prioritize the usage of un-
cased language models, and (3) code-mixed and
low-resource languages: we add a multilingual lan-
guage model along with a language-specific lan-
guage model.

2 Data

For each language, organizers provide fixed-sized
training and development sets of 15, 300 and 800
sentences respectively, whereas test sets are com-
posed of an average of 181, 418 (σ = 35, 181)
sentences. A multilingual dataset consisting of the
concatenation of all monolingual sets is also pro-
vided (with a selection of 471, 911 sentences for
the test set)1.

In addition, a smaller code-mixed dataset with
entities in a foreign language of the rest of the
sentence was given. In this case, 1, 500 sentences
constitute the training set, 500 the development
set, and 100, 000 the test set. We present a sample
annotated example from the English training set in
Figure 1.

Figure 1: English annotated example from the training
set.

1MultiCoNER Dataset can be accessed at https://
registry.opendata.aws/multiconer.

To highlight the important difference between
the number of phrases in the train and the test sets,
we present these numbers in Table 1. The cor-
pus is based on LOWER, MSQ-NER (Bajaj et al.,
2016), and ORCAS-NER (Craswell et al., 2020)
statements and queries from Wikipedia and Mi-
crosoft Bing (Meng et al., 2021). A detailed de-
scription and exhaustive statistics of all datasets are
presented in Malmasi et al. (2022a,b).

Language Train Dev Test
English

15,300 800

217,818
Spanish 217,887
Dutch 217,337
Russian 217,501
Turkish 136,935
Korean 178,249
Farsi 165,702
German 217,824
Chinese 151,661
Hindi 141,565
Bangla 133,119
Multilingual 168,300 8,800 471,911
Mixed 1,500 500 100,000

Table 1: Number of sentences in the dataset splits per
language.

3 Methodology

Our proposed framework consists in augmenting
each input sentence with similar contexts taken
from the multilingual train collection and a NER
model based on a BERT-based pre-trained and fine-
tuned language model as an encoder with several
Transformer (Vaswani et al., 2017) layers stacked
on top. For each language, we consider a language-
specific BERT model, as presented in Table 2. We
prioritize the use of uncased models, with some ex-
ceptions where there were no such models (Dutch,
Polish). Finally, we tackle the multilingualism and
lack of resources for all languages by concatenat-
ing these representations with those provided by a
multilingual language model. The methodology is
outlined in Figure 2.

Named Entity Recognition Model Our base
model was recently proposed for coarse-grained
and fine-grained named entity recognition (Boros
et al., 2020a,b). The method consists of a hierar-
chical approach, with a pre-trained and fine-tuned
BERT-based encoder (Devlin et al., 2019a). This
model consists of a stack of Transformer blocks

1631



Figure 2: MultiCoNER methodology.

Language Model
English bigbird-roberta-large

Spanish bert-base-spanish-wwm-uncased

Dutch bert-base-dutch-cased

Russian rubert-base-cased

Turkish bert-base-turkish-uncased

Korean bert-kor-base

Farsi bert-fa-base-uncased-persiannews

German bert-base-german-dbmdz-uncased

Chinese bert-base-chinese

Hindi bert-base-multilingual-uncased

Bangla bert-base-multilingual-uncased

Multilingualbert-base-multilingual-uncased
Mixed bert-base-multilingual-uncased

Table 2: Language-specific models. All models can be
found at https://huggingface.co.

on top of the BERT encoder, and a conditional
random field (CRF) layer to decode the best tag
path in all possible tag paths. First, the encoder
is already based on a stack of Transformer layers.
A Transformer block (encoder) is a deep learning
architecture based on multi-head attention mech-
anisms with sinusoidal position embeddings. It
is composed of a stack of identical layers. Each
layer has two sub-layers. The first is a multi-head
self-attention mechanism, and the second is a sim-
ple, position-wise fully connected feed-forward net-
work. A residual connection is around each of the
two sub-layers, followed by layer normalization.

These language models generally expect the input
data in a specific format: a special token, [SEP],
to mark the end of a sentence or the separation be-
tween two sentences, and [CLS], at the beginning
of the text. A Transformer encodes the information
contained in a given text in the [CLS] token that
flows afterward through the layers. This architec-
ture with additional Transformer layers proved to
be efficient when the input is noisy and of varying
lengths.

Adding Context First, we encode the collec-
tion of training multilingual sentences using a
pre-trained multilingual Sentence BERT model
(Reimers and Gurevych, 2019, 2020a). We con-
sider that using only sentences from the training
set is enough for enriching the contexts, even if
they are seen during the training process. The un-
derlying idea behind this is that, since the data is
multi-domain, we would expect a very small over-
lap between the train and the test set, thus the addi-
tional contexts could benefit from information from
other domains that those existing. Then, for each in-
put sentence (for each dataset split), we rank them
using the cosine similarity. From these retrieved
texts, we select the first n ∈ [1, 10] sentences and
we consider them as semantically relevant.

Next, as shown in the example in Figure 2 with
“street food” as a product (PROD) entity, we con-
catenate the initial input sentence with the retrieved
texts, separated by the special token [SEP]. For
this step, we propose two versions of taking advan-
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Approach P R F1 P R F1
English Spanish

Baseline - - 61.20 - - 57.40
BERT+2×T 82.99 86.10 84.52 83.55 80.78 82.14
2×BERT+2×T 86.14 89.92 87.99 85.21 82.31 83.74
2×BERT+2×T-context w/ entities 87.86 90.00 88.92 85.80 85.80 85.80
2×BERT+2×T-context w/o entities 87.83 90.33 89.06 86.90 84.61 85.74

Dutch Russian
Baseline - - 61.60 - - 59.10
BERT+2×T 83.73 84.10 83.92 79.33 79.17 79.25
2×BERT+2×T 86.51 86.43 86.47 78.02 81.77 79.85
2×BERT+2×T-context w/ entities 86.46 88.24 87.34 80.00 77.93 78.95
2×BERT+2×T-context w/o entities 86.77 87.29 87.03 78.28 74.38 76.28

Turkish Korean
Baseline - - 45.70 - - 54.60
BERT+2×T 84.58 86.35 85.45 83.30 83.49 83.39
2×BERT+2×T 84.67 87.39 86.01 82.22 84.87 83.52
2×BERT+2×T-context w/ entities 84.11 87.15 85.60 83.17 84.25 83.71
2×BERT+2×T-context w/o entities 85.03 86.67 85.84 86.58 87.71 87.14

Farsi German
Baseline - - 51.80 - - 63.40
BERT+2×T 77.65 82.19 79.86 89.47 89.18 89.33
2×BERT+2×T 80.69 81.29 80.99 89.86 90.15 90.01
2×BERT+2×T-context w/ entities 78.99 80.87 79.92 90.24 91.04 90.64
2×BERT+2×T-context w/o entities 78.18 82.11 80.10 89.94 90.96 90.45

Chinese Hindi
Baseline - - 51.10 - - 46.90
BERT+2×T 88.20 88.13 88.17 72.47 70.89 71.67
2×BERT+2×T 88.05 86.89 87.47 77.57 75.60 76.57
2×BERT+2×T-context w/ entities 86.74 86.81 86.77 76.04 75.12 75.58
2×BERT+2×T-context w/o entities 87.67 88.29 87.98 74.04 76.81 75.40

Bangla Multilingual
Baseline - - 39.10 - - 54.10
BERT+2×T 71.94 69.88 70.89 84.54 85.29 84.91
2×BERT+2×T 76.14 75.00 75.57 85.76 86.66 86.21
2×BERT+2×T-context w/ entities 78.79 79.88 79.33 84.91 85.10 85.00
2×BERT+2×T-context w/o entities 77.49 78.75 78.12 84.99 86.09 85.54

Mixed
Baseline - - 58.10 - - -
BERT+2×T 72.33 71.15 71.74 - - -
2×BERT+2×T 71.85 71.97 71.91 - - -
2×BERT+2×T-context w/ entities 71.97 71.97 71.97 - - -
2×BERT+2×T-context w/o entities 73.92 72.95 73.43 - - -

Table 3: MultiCoNER results on the development set.

tage of this additional context. First, we consider
that simply concatenating the semantically relevant
contexts as they are with the sentence in question
are sufficient for bringing an improvement to the
detection of entities. These models are referred to

as context w/ entities.

We also examine the scenario where these addi-
tional contexts are added without any entity present,
as shown in Figure 2 where the entities from the
additional contexts are replaced with a special to-
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ken <ENT> (Boros et al., 2021, 2022)). The idea
behind this choice is that we are trying to improve
the contextual information without confusing the
detection of entities with the presence of others.
We refer to these models as context w/o entities.

For finding semantically relevant contexts, we
used a multilingual Sentence-BERT (SBERT)
(Reimers and Gurevych, 2020b) model2, a mod-
ified pre-trained BERT (Devlin et al., 2019b) that
uses a siamese and triplet network structure to de-
rive semantically meaningful sentence embeddings
that can be compared using cosine similarity. We
keep the top-10 semantically relevant contexts.

Hyperparameters For each language, includ-
ing the multilingual and the code-mixed cases,
we choose a language-specific BERT pre-trained
model3, as presented in Table 2, with the exception
for Hindi and Bangla. For the models for which
we do not have a language-specific model, we use
multilingual BERT. For each language, we addi-
tionally use a multilingual model (XLM-RoBERTa-
large (Conneau et al., 2020)), approaches referred
as BERT×2 in Table 3.

4 Experiments

Next, we perform a detailed error analysis of our ap-
proaches4. The evaluation is performed in terms of
macro precision (P), recall (R), and F1. Our results
are presented in Table 3. Each type of approach is
detailed with the corresponding pre-trained models.

Table 3 presents the results for our preliminary
results on the provided dev set. We, first, observe
that all our results considerably outperform the
baseline scores provided by the organizers. Also,
overall, it is clear that adding a multilingual lan-
guage model to an already language-specific model
brings an increase in performance. Next, we notice
that adding context w/ entities slightly improved
the performance of a limited number of languages
(English, Dutch, Korean, German, Bangla) and con-
text w/o improved considerably the performance
of a larger number of languages (English, Spanish,
Dutch, Korean, German, Chinese, Bangla). This
allows us to understand that the presence of en-
tities in the additional contexts can influence the
detection of the entities of interest by hindering the

2We used the MULTI-QA-MPNET-BASE-DOT-V1 model.
3All models can be found at https://huggingface.

co.
4Our code is available at https://github.com/

EMBEDDIA/stacked-ner

importance of context with other entities. Thus,
adding context brings performance improvements
(marginally, with entities, or considerably, with-
out entities). However, the fact that we used the
already seen contexts from similar domains or top-
ics (multilingual train data) could also be a factor
that contributed to the drop in F1 for some of the
languages.

Figure 3: Similarity scores between the topics of the
train and test (purple) & train and dev (blue) sets for
each language.

Error Analysis Since one of the main challenges
and purposes of SemEval-2022 Task 11 is to test
not only the language adaption, but also the domain
capability of a NER, we analyze the ability of our
proposed models to handle multi-domain data. To
measure the domain distribution among datasets,
we obtain their topic vectors by a joint representa-
tion of documents and word semantic embeddings
as in Angelov (2020). For this, we first obtain a
common embedding of sentences and words with
a pre-trained multilingual Sentence-BERT model5

(Reimers and Gurevych, 2020a). Second, we uti-
lize UMAP (McInnes et al., 2018) to create embed-
dings of lower dimension for all sentence vectors
and find dense areas of sentences with HDBSCAN
(Campello et al., 2013). Finally, we calculate the
centroid of each dense area that corresponds to the
topic vector.

Topic Detection Hyperparameters We set
UMAP to a 5-dimensional space with a default

5We use the PARAPHRASE-MULTILINGUAL-MINILM-
L12-V2 model.
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Split Hyperparameter
neigh dist

2 5 0.0
Train Mixed Bangla Mixed,

Dutch,
Chinese,
Bangla

Dev Korean,
Mixed,
Bangla

Farsi, Dutch Mixed,
Dutch,
Chinese,
Bangla,
Korean

Test - - Mixed,
Chinese

Table 4: UMAP hyperparameters.

size of the local neighborhood (neigh) of 15, an
effective minimum distance between embedded
points (dist) equal to 0.1, and cosine distance
as a similarity metric. We tuned these hyperparam-
eters depending on the language and split when the
obtained number of topic vectors was less than 2.
These values are summarized in Table 4. Regard-
ing HDBSCAN, we fix the minimum number of
samples in a cluster to 15.

Language Domains / Topics
Train Dev Test

English 72 12 1,188
Spanish 99 8 1,274
Dutch 112 9 1,404
Russian 95 6 1,330
Turkish 101 8 1,088
Korean 107 10 854
Farsi 126 5 1,097
German 93 6 1,194
Chinese 89 8 607
Hindi 105 5 1,209
Bangla 55 6 142
Multilingual 573 55 1,551
Mixed 32 11 644

Table 5: Number of topics in the dataset splits per lan-
guage.

As seen in Table 5, the number of topics within
the train set for each language is on average 96.
The multilingual dataset has roughly six times more
topics than the monolingual dataset even though
it is the concatenation of all monolingual datasets.
This suggests that certain portions of the monolin-

gual datasets were obtained by a translation mech-
anism. Topic diversity from the development set
is clearly smaller than the train set given the lim-
ited amount of samples it contains. Monolingual
test sets present on average 11 times more topics
with respect to the train sets, which is explained by
the big amount of out-of-domain data organizers
added to test sets with the objective of measuring
out-of-domain performance.

To estimate the amount of out-of-domain sen-
tences within data sets, we compute the topic over-
lap between (train and dev) and (train and test) sets.
For each topic vector in the train set, we compute
the cosine similarity with the topic vectors of the
corresponding test or dev set. Then, we compare
the topics by calculating the mean of the cosine sim-
ilarities between the two sets of topics, as shown in
Figure 3. We observe that Bangla and Mixed have
very similar topics in the train, test, and dev sets.
Our results in Table 3 seem to prove otherwise,
thus, we interpret this behavior as the result of the
lack of training of the multilingual Sentence-BERT
model for this language.

Table 3 shows improvements when adding con-
texts for English, Spanish, Dutch, Korean, Bangla,
and Mixed. With the exception of Bangla and
Mixed that we just discussed, we notice that for the
other languages, the similarity between the topics
is rather small (around 0.2). Table 3 also shows
a decrease in performance for Russian, Turkish,
Farsi, Chinese, and Hindi. While for Farsi and
Chinese, the similarity of topics is slightly higher
(between 0.3 and 0.4), for the other languages, it
plateaus at 0.2, which could indicate that there is
a correlation between the number of overlapping
topics between the train, test, and dev sets.

Metric Correlation
(train, dev)

Correlation
(train, test)

P -0.3812 -0.4995
R -0.3450 -0.3266
F1 -0.3648 -0.4070

Table 6: Pearson correlation values between the dev and
train topic similarity and evaluation metrics.

We, therefore, decide to compute the Pearson
correlation between the precision, recall, and F1,
and the similarity between topics. We observe
weak negative correlation coefficients, allowing
us to understand that the higher the topical sim-
ilarity, the lower the performance scores. These
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Figure 4: Topics similarity between train and dev
set, 2×BERT+2×T-context w/ entities (upper figure),
train and dev sets, 2×BERT+2×T-context w/o entities
(lower figure), versus the F1 scores for the context mod-
els.

correlation values are shown in Table 6. Moreover,
in order to understand if there is a correlation be-
tween the number of overlapping topics and the F1
scores for the models that use context w/ or w/o en-
tities, we draw a scatterplot of these two variables,
then fit a regression model and plot the resulting
regression line and a 95% confidence interval for
that regression, in Figure 4. We observe again that,
generally, the higher the similarity between topics
in test and dev, the lower the F1 scores are.

SemEval-2022 Task 11 In the official SemEval-
2022 Task 11, our best results ranked above the
average for English, Spanish, and German, close to
the average for Dutch, Turkish, Farsi, and Chinese.
For the other languages, our approach obtained
lower scores (Russian, Korean, Hindi, Bangla, Mul-
tilingual, and Mixed). For Hindi and Bangla, we
did not have a specialized language model (we
used multilingual BERT), which is clearly another
reason for which the results were the lowest. In-
terestingly, we expected higher results for Korean
and Spanish, but the size of the test set was most
probably another important factor to consider.

5 Conclusions

In this paper, we presented a straightforward ap-
proach for adding semantically relevant contexts
for NER in the monolingual, multilingual, and
code-mixed datasets provided by SemEval-2022
Task 11 Multilingual Complex Named Entity Recog-

nition (MultiCoNER). Our findings show that,
while adding contexts from the train set, with and
without entities, is promising, the topics or domains
overlap could influence the performance in both di-
rections. Future work will include the automatic
generation of semantically relevant contexts with-
out the presence of entities.
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Abstract

The multilingual complex named entity recog-
nition task of SemEval2020 required partici-
pants to detect semantically ambiguous and
complex entities in 11 languages. In order to
participate in this competition, a deep learning
model is being used with the T5 text-to-text lan-
guage model and its multilingual version, MT5,
along with the transformer’s encoder module.
The subtoken check has also been introduced,
resulting in a 4% increase in the model F1-
score in English. We also examined the use of
the BPEmb model for converting input tokens
to representation vectors in this research. A
performance evaluation of the proposed entity
detection model is presented at the end of this
paper. Six different scenarios were defined, and
the proposed model was evaluated in each sce-
nario within the English development set. Our
model is also evaluated in other languages.

1 Introduction

Named Entity Recognition (NER) is a key com-
ponent of Natural Language Processing (NLP) as-
signed to identify regions of text that contain refer-
ences to entities. It is the process of identifying the
informative part of data or applicable labels from
unstructured data. In NER, data is gathered from
unstructured data such as emails, blogs, newspa-
pers, tweets, etc., to extract meaningful informa-
tion.

To put it another way, the term NER refers to
identifying token spans of entities mentioned in
the text and classifying them into a set of predeter-
mined categories. The system finds entities from
unstructured data and organizes them into multiple
categories. As an extension of NLP, the field of
NER can be considered as Information Extraction
(IE).

For NLP, IEs are among the trending fields
and play an essential role in the following tasks:

∗Equal contribution. Listing order is random.

Find and understand limited relevant parts of texts,
Gather information from many pieces of text, and
Produce the unified representation of all the rel-
evant information. The NER problem falls into
a general class of NLP problems called sequence
tagging. Part of Speech (POS) tagging and chunk-
ing are sequence tagging NLP tasks in addition to
NER. It is possible to detect NER in three ways:
flat NER, nested NER, and discontinuous NER.
Nested NER has overlapping in the span of text
Yan et al. (2021). Most approaches only target
flat entities, ignoring nested structures common in
many scenarios. It is challenging to identify spans
as well as types of named entities in text Lample
et al. (2016). So to find the best architecture, we
implement a transformer-based language model in
this research. NLP has significantly benefited from
transfer learning in recent years. Transfer learning
gains power and effectiveness from pre-training
on large, unlabeled text datasets. The model can
then be fine-tuned to a smaller labeled dataset, re-
sulting in better performance. Many models have
achieved success in this field, including the Text-To-
Text Transfer Transformer (T5) Raffel et al. (2019).
The T5 is a pre-trained encoder-decoder language
model that employs the "text-to-text" format to
accomplish all types of NLP work, including gen-
eration, translation, and summarization tasks.

In SemEval-2022 task 11 Malmasi et al. (2022b),
a multilingual complex NER is provided. Lan-
guages presented in Malmasi et al. (2022a) are
Bangla, German, English, Spanish, Farsi, Hindi,
Korean, Dutch, Russian, Turkish, and Chinese.
Since this dataset contains words from different
languages, it is challenging to choose an appropri-
ate word representation for converting them into
their corresponding vectors. The multilingual na-
ture of this task necessitated the selection of the
multilingual variant of Google’s T5 model named
MT5 Xue et al. (2020) that had already been trained
on a database of more than 101 languages and con-
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tained up to 13 billion parameters. In this paper,
MT5 is used as the main Embedding.

We evaluated the proposed model using the En-
glish test set and achieved the F1-score of 71.45%
as part of this competition. In our next step, we
considered this model in other subtasks, and our
rank varied from 9 to 21 depending on which sub-
task we evaluated. Our code is available at GitHub1

for researchers.
The contributions of this paper are summarized

as follows. Section 2 introduces previous attempts
in the NER. In Section 3, information about the
task and datasets is presented. We then offer a deep
learning framework for recognizing named entities
in Section 4. Section 5 details the experimental
setup, while Section 6 presents the results of the
experiments. Section 7 presents both quantitative
and qualitative error analysis. We conclude our
paper in Section 8.

2 Background

The NER field has undergone enormous changes in
recent years Meng et al. (2021) Fetahu et al. (2021).
As mentioned before, NER is the process of iden-
tifying relevant objects such as persons, products,
genes, place, organization, etc., that are mentioned
in the string of the text, sentence, or paragraph.
NER typically forms the basis of other tasks such
as event detection from news, online shopping cus-
tomer service, knowledge graph construction, and
biological analysis Bokharaeian et al. (2017).

Yu et al. (2020) stated that since NER tags are
nested, it uses the graph-based dependency pars-
ing method and examines eight separate corpora
to achieve State-of-the-art for all. The embedding
layer in this article was composed of BERT, fast-
text, and character embedding. There is widespread
usage of CRF in the field of NER. CRF is used
for the first time in Collobert et al. (2011) for the
NER. The representation of the sample in this re-
search was obtained by Convolutional Neural Net-
work(CNN). After that, many articles used CRF
in various languages and combined it with other
methods, such as Part Of Speech Tagging(POS),
Long Short-Term Memory(LSTM), Embeddings
from Language Models(ELMo), etc.Lample et al.
(2016); Alves-Pinto et al. (2022); Rajan and Sal-
gaonkar (2022); Ma and Hovy (2016); Huang et al.
(2015). Peters et al. (2018) which is known as

1https://github.com/MarSanTeam/
Complex_NER_SemEval

ELMo, extends LSTM-CRF and leverages pre-
trained word-level language models for better
context-aware representations. Peters et al. (2018)
focuses on introducing and defining a Bidirectional
language model that is tested on numerous NLP
tasks in 2018. The accuracy of this research of
NER with the language model and CRF layer was
93.42%.

To resolve ambiguity in NER tags, Straková
et al. (2019) encoded nested entities in a sequence
(seq2seq) and prepared an LSTM-CRF-based
model. By incorporating pre-trained character-
level language models into Flair Akbik et al. (2019),
researcher presented contextualized representa-
tions. The following year, Akbik et al. extended
this model to incorporate dataset-level word embed-
dings, dynamically aggregating embeddings and
implementing pooling to extract a global word rep-
resentation from all instances Akbik et al. (2018).

Word representations and character representa-
tions are used in Ma and Hovy (2016), an end-to-
end system designed using LSTM, CNN, and CRF.
This idea has been implemented on the Penn Tree-
bank WSJ corpus Marcus et al. (1999) for POS
and CoNLL 2003 Sang and De Meulder (2003)
for NER datasets. A CNN has been used in this
research to extract the character-level representa-
tion of words, with its output then being input
into LSTMs, followed by a CRF layer. There is
another extension to CRF known as hybrid semi-
Markov conditional random fields (HSCRFs) is
explained in Ye and Ling (2018) by contributing
word-level labels in the building of SCRFs Laf-
ferty et al. (2001). The purpose of using word-level
tags to derive segment scores is to obtain segment
scores.

To solve different sequence tagging models with
a CRF inference, Yang and Zhang (2018) imple-
mented NCRF++ with three steps: a character se-
quence layer, a word sequence layer, and an in-
ference layer. RodrigoAgerri et al. presented a
multilingual NER system that combines many fea-
tures to cluster based on local information Agerri
and Rigau (2016). Results from standard task eval-
uation data such as CoNLL for English, Spanish,
and Dutch were reposted.

According to Wang et al. (2020), contextualized
language models can produce better results when
different embeddings are combined. This paper
presents a framework for generating and scoring
the output of embedded combinations using rein-
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forcement learning, which achieves the best ac-
curacy in 6 different fields and 21 large datasets.
According to Wang et al. (2020), contextualized
language models can produce better results when
different embeddings are combined. By rewarding
model scores for better concatenations of embed-
dings, can propose Automated Concatenation of
Embeddings to find better concatenations of em-
beddings for structured prediction tasks.

Majumder et al. (2022) considers the issue of
informal data, whose unstructured and incomplete
nature makes the process more challenging. To
solve the mentioned challenge, Bi-LSTM based
architecture for informal tweets in Hindi and En-
glish was implemented. There is more than one
way to do it in this field. Finding the part of the text
containing entity information, classifying and iden-
tifying the right entity, and applying that entity to
the appropriate part of the text are just some ways.
Generating tags is one other way to implement
them. As mentioned in Yan et al. (2021), Hang
Yan et al. propose that they use a novel and simple
Bidirectional Auto-Regressive Transformer(BART)
sequence-to-sequence (Seq2Seq) framework that
uses a pointer mechanism Vinyals et al. (2015) to
generate the entity sequence directly.

Another approach in NER, which is mentioned
in Islam et al. (2022), consists of using an attention
mechanism to minimize the problem of detecting
redundant and inessential data and ignoring them
entirely. Combining semantic, glyph, and phonetic
features to improve the expression ability of Chi-
nese character embedding, Li and Meng (2021)
proposes an architecture based on Fusion Embed-
ding for the Chinese language.

There is also a paper for the Chinese language
entitled Jia et al. (2020) that identifies entities from
Chinese social media texts, using uncertain infor-
mation from word segmentation. Researchers have
proposed that interactions between spans of tokens
can help determine discontinuous mentions and
have developed a transition-based model with a
generic neural encoding to be able to detect discon-
tinuous mentions Khan et al. (2020).

A model of bidirectional transformers is pre-
sented in Yamada et al. (2020), which produces a
contextualized representation of words and tokens.
BERT’s masked language model is used as pre-
trained word embeddings. As a result, Yamada et al.
present advancement in attention known as entity-
aware self-attention mechanisms and achieve state-

of-the-art in five benchmarks that include: Open
Entity (entity typing), TACRED (relation classifica-
tion), CoNLL-2003 (NER), ReCoRD (cloze-style
question answering), and SQuAD 1.1 (extractive
question answering). Since carelessness or a lack
of background knowledge of annotators might lead
to model performance errors, some research has
been conducted to identify and solve these issues.
Wang et al. (2019) provides a framework for finding
human errors in NER annotations. Following the
correction of labels in the test set, they re-evaluated
state models in NER, claiming that the results were
more accurate than the original test set. This pa-
per’s main idea is cross weighs, which accommo-
dates label mistakes during training and then trains
a more robust NER model.

Wang et al. (2021) finds the external context of
input sentences by retrieving relevant sentences.
The process of selecting the top similar text in-
volves re-ranking retrieved samples according to
their semantic relevance to the input sentence. As a
result, the inputs are the concatenation of input sen-
tences and external contexts. Both input types are
used to implement Cooperative Learning (CL), and
different representations are encouraged to produce
similar contextual representations or output label
distributions. Results on eight other NER datasets
achieve state-of-the-art results. But one drawback
of this method is that there are no document-level
contexts in practice.

3 Task Description

Our investigation aims to comparatively study
MultiCoNER-2022 datasets that have been con-
sidered individually for complex NER systems in
11 languages. Under short and low-context set-
tings, the task detects semantically ambiguous and
complex entities.

Languages presented in MultiCoNER-2022 are:
English, Spanish, Dutch, Russian, Turkish, Korean,
Farsi, German, Chinese, Hindi, and Bangla. The
number of instances for each language varies be-
tween 150k to 500k. There are 15300 train data
and 800 validation data for each language.

This dataset is labeled with the following tags:
PER: Person, LOC: Location, GRP: Group, CORP:
Corporation, PROD: Product, CW: Creative Work.
There is detailed information of datasets illustrated
in Table 1.

The datasets used in this task include sentences
labeled with the IOB format. Using this format,
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Languages LOC PER PROD GRP CW CORP
Span Token Span Token Span Token Span Token Span Token Span Token

English 4799 7550 5397 11538 2923 4723 3571 10038 3752 9782 3111 6222
Spanish 4968 7204 4706 9999 3040 4404 3226 7993 3690 8734 2898 5208
Dutch 5529 6767 4408 9369 2935 3572 3306 7204 3340 7142 2813 4544

Russian 5529 6767 4408 9369 2935 3572 3306 7204 3340 7142 2813 1731
Turkish 5804 6862 4414 8446 3184 4392 3568 6649 3574 7715 2761 4420
Korean 6299 6837 4536 7171 3082 4165 3530 5525 3883 3665 3313 1370
Farsi 5683 8720 4272 8613 2955 4496 3199 7676 3694 7528 2991 5382

German 4778 6566 5288 11230 2961 3898 3509 5878 3507 9054 3083 6210
Chinese 6986 28762 2225 14048 4854 16084 713 3200 5248 18817 3805 18069
Hindi 2614 4218 2418 5254 3077 2295 2843 8664 2304 5896 2700 5617

Bangla 2351 3804 2606 5738 3188 5152 2405 6653 2157 5001 2598 5299
Code-Mixed 325 493 296 680 316 560 248 677 298 755 294 653

Table 1: Distribution of spans and tokens for each entity

tokens that are not a part of an entity are tagged as
’O’, the first token of an entity is represented by the
’B’ tag, while the rest of the entity’s tokens are rep-
resented by an ’I’ tag. The entity category precedes
both a hyphen and the "B" and "I" tags. Therefore,
NER is a task that labels tokens according to their
text, which is multi-class token classification.

4 System overview

In this section, we will introduce our proposed
NER framework. The proposed framework consists
of three parts:

1. Word Representation Module

2. Feature extraction Module

3. Prediction Module

The proposed architecture takes the token se-
quence S = {s1, s2, s3, ..., sn}, and predicts entity
sequence O = {o1, o2, o3, ..., on} as output. Fig-
ure 1 is an illustration of the proposed architecture.

4.1 Word Representation Module
In light of the multilingual nature of the SemEval
NER task, the T5 language model was applied to
convert tokens into their representation vector. In
the word representation module, the last hidden
state of the T5-large encoder is chosen to learn the
k-dimensional (1024 here) representation for input
tokens. The T5 uses SentencePiece encoding and
assigns named entity tags to its extracted tokens.
Tokens extracted from T5 are always equal to or
greater than main tokens. Each token thus becomes
one or more subtokens. The label of the first subto-
ken corresponds to the label of the first token, while
the other subtokens have the label X.

Subtoken Check A key consideration is that
each token becomes one or more subtokens. To

provide better training, a feature called subtoken
check is used. This feature checks whether the
input token is tokenized into the subtoken or not.
After tokenizing the tokens, the first subtoken of
each token has a value of 1, and the rest have a
value of 0. Hence, the T5 encoder takes two input
sequences of the same length; one is the subtoken
index, and the other is the subtoken check index.
After adding this feature and improving the results,
it was found that in token-based tasks such as NER,
the existence of this feature is extremely helpful
for managing subtokens.

Byte-pair Embeddings The Byte-pair Embed-
dings(BPEmb) Heinzerling and Strube (2017) con-
sists of pre-trained subword embeddings in 275 lan-
guages. BPEmb is a variable-length encoding that
views the text as a sequence of symbols, iteratively
merging the pair with the highest frequency into
a new symbol. It provides a mechanism for prop-
erly tokenizing input sequences so that unknown
tokens can prepare appropriate representations by
using subtokens. To predict the named entity tag
for the input sequences, we concatenate the output
vector of the BPEmb model with the output vector
of the feature extraction layer since fine-tuning of
the model is not possible during training.

4.2 Feature Extraction Layer

Since the goal of NER is to predict the entity label
of each token, an awareness of the semantic de-
pendencies between tokens can be extremely help-
ful. The which uses the multi-encoder architecture
Vaswani et al. (2017), which uses the multi-head
self-attention mechanism, is one of the most suit-
able deep learning architectures for extracting re-
lation between tokens. There are two sublayers in
this encoder module. The first sublayer is a multi-
head self-attention mechanism, while the second is
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Figure 1: Proposed multilingual NER architecture

a position-wise fully connected feed-forward net-
work. This architecture uses residual connections
around each of the two sublayers followed by layer
normalization. A multi-head attention module com-
prises several scaled dot-product attention used in
parallel. In scaled dot-product attention, the in-
put consists of three matrices Q, K, and V. The
scaled dot-product attention is calculated using the
following formula.

WQ
i ,W

K
i ,W

V
i ∈ Rdmodel×dk

Q = XWQ,K = XWK , V = XWV (1)

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

The attention module has three trainable parame-
ters, WQ, WK , and WV . The three matrices Q, K,
V are constructed by multiplying the input vector
X by the corresponding matrices WQ, WK , WV .
Consequently, the dot product between Q and K is
divided by

√
dk in order to prevent the dot product

from becoming too large.

4.3 Prediction Layer

The vector obtained in the feature extraction Layer
is given to a fully connected layer to predict the
named entity label of the input sequence. For the
input sequence S = s1, s2, ..., sn the output se-
quence O = o1, o2. . . , on is predicted.

5 Experimental setup

We implemented the model in PyTorch and trained
it on Nvidia V100 GPUs. The AdamW optimizer
with a learning rate of 2e-5 is used to train the net-
work. Our training method includes early stopping,
which ensures the validation loss reduction with
patience of 10 epochs. The training batch size is
set to 32, and the dropout rate is 0.2. Transformer
encoders have eight attention heads, and position-
wise feed-forward layers have 2048 hidden sizes.
In both T5 and MT5 tokenizers, the max length
varies between 100 and 250 characters according
to the evaluated language. The hyper-parameters
of each subtask were tuned with the dev set. All
other parameters are initialized randomly.

6 Results

Several experiments have been conducted to de-
velop the most appropriate model for NER. Exper-
iments with the English dataset can be found in
Table 2. Due to the success of T5 in this study, this
language model has been used to compute the word
representation vectors. According to Table 2, using
the T5 can improve F1-score by 4% compared to
MultiCoNER Baseline that uses XLM-RoBERTa.

We have attempted to improve the language
model results by adding deep learning architec-
tures and textual features Tavan et al. (2021). We
evaluated LSTM and Transformer architecture on
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top of the T5 and found that using the transformer
improved the F1-score further than LSTM. After
various experiments, it was found that the use of
BPEmb could not improve the F1-score of the
model.

Models Train Dev Test
MultiCoNER Baseline - 77.60 -

T5 94.40 81.92 65.99
T5 + LSTM 96.40 82.20 67.54

T5 + Transformer 89.09 82.91 67.63
T5 + Transformer + 90.12 82.36 67.22subtoken + bpemb

T5 + subtoken + 97.32 86.73 71.45Transformer (ours)

Table 2: Experiments with English dataset

According to Table 2, the proposed model has
achieved the F1-score of 86.73% and 71.45%, on
the dev and test dataset for English, respectively,
which is the highest F1-score among the other ex-
periments. Figure 2 Compares the F1-score of
different deep learning architecture.

Figure 2: Compares the F1-score of deep learning archi-
tectures.

The results of the proposed model on the test
dataset, as well as its ranking in the competition,
are shown in Table 3. According to these results,
Chinese, Hindi, and Bangla have lower F1-scores
than other languages like German, Dutch, and En-
glish due to their language complexity.

The results of proposed model for the different
entities are shown in Table 4. According to Table
4, the "PER" entity has reached the highest F1-
score among other entities in all languages. Except
for Russian, Turkish and Chinese, "CW" has the
lowest F1-score in all other languages. As a result,
the proposed model is weaker in identifying the
"CW" entity than other entities.

7 Error Analysis

Several scenarios could occur when comparing the
golden standard annotation with the output of a

Language Precision Recall F1-score
English (17) 71.11 71.91 71.45
Spanish (11) 68.65 68.71 68.30
Dutch (10) 71.18 71.98 71.13

Russian (10) 66.83 68.44 67.49
Turkish (10) 60.22 62.70 61.09
Korean (14) 61.13 63.92 62.26

Farsi (9) 61.80 63.06 62.14
German (12) 73.10 73.60 72.12
Chinese (19) 60.15 57.10 56.64
Hindi (12) 56.39 57.01 56.31

Bangla (11) 56.48 53.77 54.22
Multilingual (14) 69.38 70.47 69.28
Code-Mixed (21) 67.36 67.41 67.03

Table 3: Precision, Recall and F1-score on test dataset
in all languages. The rank of the proposed model in
each language is shown in parentheses.

NER system Nejadgholi et al. (2020):
Scenario 1, Complete True Positive:

An entity is predicted by the NER model correctly.
Scenario 2, Complete False Positive:

An entity is predicted by the NER model but is not
annotated in the hand-labeled text.

Scenario 3, Complete False Negative:
The model does not predict a hand-labeled entity.

Scenario 4, Wrong label, Right Span:
A hand-labeled entity and a predicted one have the
same span but different tags.

Scenario 5, Right label, overlapping spans:
A hand-labeled entity and a predicted one have
overlapping spans and the same tags.

Scenario 6, Wrong label, overlapping spans:
A hand-labeled entity and a predicted one have
overlapping spans but different tags.

The output of the proposed model on the English
dev dataset has been evaluated on six scenarios in
Table 5. From Table 5, 96.20% of "PER" entities
are in Scenario 1, and the most significant propor-
tion of Complete True Positives are related to this
entity. Approximately 17% of "PROD" entities are
in Scenario 2, higher than other entities. "PROD"
actually has the highest Complete False Positive
value among all entities. The "CW" has the greatest
number of entities in Scenario 3 and the highest pro-
portion of Complete False Negatives among other
entities.

Scenario 4 includes 6.21% of "CORP" entities.
Scenario 5 has the most significant number of enti-
ties compared to other scenarios, having 6.12 per-
cent of the "PROD" entities. The "CORP" also has
the highest number of entities in Scenario 6. Table
6 shows examples of the English test samples that
are categorized in different scenarios.
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Language LOC PER PROD GRP CW CORP
English 72.23 86.71 70.09 67.62 62.32 69.70
Spanish 66.95 84.77 63.50 63.89 61.31 69.40
Dutch 68.64 86.77 69.32 67.44 65.18 69.44

Russian 69.67 74.88 66.50 61.11 62.56 70.24
Turkish 64.29 70.76 63.83 52.31 54.93 60.44
Korean 71.48 68.32 59.81 60.13 50.12 63.72
Farsi 68.46 71.29 62.86 64.75 46.13 59.33

German 74.61 87.13 71.97 69.70 63.82 71.51
Chinese 67.93 57.59 64.38 34.08 51.95 63.93
Hindi 60.81 62.85 54.19 57.72 41.74 60.54

Bangla 57.04 67.26 51.12 64.63 33.03 52.22
Multilingual 74.19 81.11 63.96 63.61 63.33 69.49
Code-Mixed 72.98 78.99 68.81 59.50 58.52 63.39

Table 4: F1-score in English test dataset for each entity

Entity Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
LOC 215 (91.88%) 17 (7.26%) 8 (3.41%) 2 (0.85%) 5 (2.13%) 4 (1.7%)
PER 279 (96.20%) 9 (3.1%) 1 (0.34%) 4 (1.37%) 1 (0.34%) 5 (1.72%)

PROD 117 (79.59%) 25 (17.0%) 18 (12.24%) 1 (0.68%) 9 (6.12%) 2 (1.36%)
GRP 168 (88.42%) 5 (2.63%) 3 (1.57%) 9 (4.73%) 2 (1.05%) 9 (4.73%)
CW 134 (76.13%) 22 (12.5%) 22 (12.5%) 7 (3.97%) 5 (2.84%) 8 (4.54%)

CORP 155 (80.31%) 7 (3.62%) 3 (1.55%) 12 (6.21%) 8 (4.14%) 15 (7.77%)

Table 5: Results of different scenario in English dev dataset.

Scenario 1

============================== HUMMAN ANOTATION ==============================

in 1841, he established a production of whale oil .
============================== MODEL PREDICTION ================================

in 1841, he established a production of whale oil .

Scenario 2

============================== HUMMAN ANOTATION ==============================

these desktop application launchers work with microsoft windows operating systems only.
============================== MODEL PREDICTION ================================

these desktop application launchers work with microsoft windows operating systems only.

Scenario 3

============================== HUMMAN ANOTATION ==============================

upper head lug joins the head tube and top tube
============================== MODEL PREDICTION ================================
upper head lug joins the head tube and top tube

Scenario 4

============================== HUMMAN ANOTATION ==============================

the caps were jointly designed by major league baseball and the new era cap company .
============================== MODEL PREDICTION ================================

the caps were jointly designed by major league baseball and the new era cap company .

Scenario 5

============================== HUMMAN ANOTATION ==============================

molten chocolate and a piece of a chocolate bar
============================== MODEL PREDICTION ================================

molten chocolate and a piece of a chocolate bar

Scenario 6

============================== HUMMAN ANOTATION ==============================

he was also the inventor of the nerf football.
============================== MODEL PREDICTION ================================

he was also the inventor of the nerf football .

Table 6: Example of different scenario in English dev dataset.
PROD CW CORP GRP

8 Conclusion

This paper proposes a model that uses an encoder
module of transformers in the top of the hidden
state of the T5 to process the extracted features to
obtain the most important feature representations.

Many experiments were conducted to evaluate the
model’s performance and find the best language
model. The experiments prove that our architecture
is most compatible with the T5 language model
and does cover a reasonable range of results. Since
this dataset is multilingual, the MT5 embedding
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module was selected.
The model’s accuracy is confirmed by an in-

depth analysis of the provided datasets. Accord-
ingly, the same architecture was used in all other
sub-tasks. Error analysis enabled us to identify spe-
cific NER challenges, creating immediate future
tasks. We plan to apply more robust deep architec-
tures to multilingual datasets as part of our future
work.
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Abstract
This paper describes the system proposed by
Sabancı University Natural Language Process-
ing Group in the SemEval-2022 MultiCoNER
task. We developed an unsupervised entity link-
ing pipeline that detects potential entity men-
tions with the help of Wikipedia and also uses
the corresponding Wikipedia context to help
the classifier in finding the named entity type
of that mention. The proposed pipeline signif-
icantly improved the performance, especially
for complex entities in low-context settings.

1 Introduction

Named Entity Recognition (NER) is a widely stud-
ied task of Natural Language Processing. Recent
leading architectures achieved impressive perfor-
mances, especially in formal contexts (like news
articles, etc.) and for commonly worked named
entity types (like Person, Organization, etc.). In
Multilingual Complex Named Entity Recognition
task (Malmasi et al., 2022b), organizers introduced
a dataset which is a large collection of short texts
that includes complex entities. As they stated, com-
plex entities can be noun phrases, gerunds, or full
clauses (Malmasi et al., 2022a). The participants
were challenged to develop NER systems for iden-
tifying these complex entities in short and low-
context settings.

Recent contextual neural architectures like trans-
formers work quite well on a variety of NLP tasks
and datasets. However, they are strongly dependent
on the context of the given text. In case of lack of
context, these models alone may not gather enough
evidence to make a correct prediction. When that is
the case, getting help from knowledge bases can be
useful. The dataset provided with this task has sim-
ilar low-context characteristics together with some
complex named entity types to be resolved. There-
fore, in this work, we investigated whether perform-
ing entity linking to provide additional context for

*These authors contributed equally to this work.

a transformer model can be useful for identifying
complex named entities. We initially used an un-
supervised entity linking approach to identify the
possible entity mentions and their corresponding
Wikipedia pages. Later on, we used the additional
context retrieved from Wikipedia to predict the
types of the identified entities. Performing entity
linking prior to the classifier seems to be beneficial
in the case of complex entities in short and low-
context settings. Our code is publicly available*.

2 Related Work

NER is an important and also well-studied task in
NLP. Similar to other NLP tasks, recent neural ar-
chitectures provided significant improvements in
NER as well. However, since these models are
heavily dependent on context information, apply-
ing them to short, noisy texts such as very short
social media posts or web queries results in signifi-
cant performance degradation (Meng et al., 2021).

To overcome the lack of context in these short
texts, as well as the code-mixed terms, it has been
prominent to use external knowledge in neural ap-
proaches. Recent studies (Meng et al., 2021; Fe-
tahu et al., 2021) combining multilingual trans-
former models with gazetteers have shown remark-
able improvement in performance. Another study
(Yamada et al., 2015) utilized the Entity Linking
task to address the issues of Twitter NER by detect-
ing entity mentions from Wikipedia.

In this study, we also focused on external infor-
mation due to the lack of context. However, instead
of using a static auxiliary like gazetteers, we tried to
detect entities dynamically from the continuously
extending Wikipedia by using a search engine ar-
chitecture. We integrated the Wikipedia content
into the input representation in order to improve
the performance of entity type classification.

*https://github.com/SU-NLP/SU-NLP-at-SemEval-2022-
Task-11-Complex-Named-Entity-Recognition-with-Entity-
Linking
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3 Data

Malmasi et al. (2022a) introduced a new multi-
lingual NER dataset consisting of 6 named entity
categories (Person, Location, Group, Corporation,
Product, and Creative Work) annotated in short
texts for 11 languages. In this paper, even though
we propose a language-independent approach, due
to the limited resources we only focused on the
Turkish part of the dataset. Statistics from this part
are shown in Table 1. As seen from Table 1, even
though the number of samples is much higher, the
length of the samples is significantly lower in the
test set compared to train and validation splits. This
short length in context may cause state-of-the-art
contextual models to perform worse than expected.

# Samples Avg. # Tokens
Train 15,300 14.27
Validation 800 14.27
Test 136,935 5.28

Table 1: Distribution of samples and average number of
tokens per sample for Turkish part

An issue we found with the dataset is that in
some examples, a phrase is labeled as OTHER al-
though there are similar phrases that are labeled as
a named entity. Consider the following example:
"Nokia 1011, 1994’e kadar, Nokia 2010 ve Nokia
2110’un halefler olarak tanıtılmasıyla üretime de-
vam etti." English: "Nokia 1011 continued in pro-
duction until 1994, with the introduction of the
Nokia 2010 and Nokia 2110 as successors."

The text includes three different cellphone mod-
els produced by Nokia. Two of these models (the
blue ones) were annotated as PRODUCT; however,
Nokia 1011 was mislabeled as OTHER. A more
major issue is when the same named entity occurs
more than once in a sentence, but their annotations
are different. An example is illustrated below:
"Whitney Houston yine bu sene içinde New Jack
Swing’e adını yazdırdı, I’m Your Baby Tonight adlı
şarkı Whitney Houston’a başarı üstüne başarı ge-
tirmiştir." English: "Whitney Houston made her
name on New Jack Swing again this year, the song
I’m Your Baby Tonight brought Whitney Houston
success after success."

In the example, Whitney Houston in blue was
labeled as PERSON; but, the red Whitney Houston
was labeled as OTHER. These types of wrong an-
notations cause ambiguities and learning problems
in supervised approaches.

4 Methodology

In order to overcome the challenges described in
previous sections, we propose an unsupervised en-
tity linking pipeline followed by a classifier as our
proposed NER architecture. The entity linking
pipeline is designed to detect potential entity men-
tions and retrieve corresponding candidate docu-
ments for each mention. Later, these detected men-
tions and the linked content is used together in a
classifier to detect the entity type of the mention.
A pre-trained BERT model was also fine-tuned in
order to create a strong baseline for comparison.

4.1 BERT

The BERT (Devlin et al., 2018) model was adopted
as a baseline approach due to its outstanding per-
formance in many NLP tasks. We fine-tuned the
BERTurk (Schweter, 2020) model with a feed-
forward layer on top to classify the named entities.
The base model with 12 encoder layers and 768
hidden units was used. Since the data provided
as part of the task was all lowercase, the uncased
version of BERTurk was preferred.

4.2 NER with Entity Linking

BERT like transformer models heavily depend on
the context. Therefore having a very short context
(like a couple of words, not even a sentence) can
be challenging for these models. Especially when
the task is to identify complex named entities like
creative work or product, it is much more challeng-
ing. In a very short context, even human beings
may have a hard time resolving entities and their
types.

In order to overcome this challenge, additional
help from a gazetteer or a knowledge base will be
very useful. Therefore in this paper, we propose us-
ing Wikipedia in order to both identify entities and
also their types. Our proposed architecture which
is depicted in Figure 1 consists of three steps. The
first two steps work towards identifying possible
entities and linking them to their corresponding
Wikipedia articles. In this unsupervised entity link-
ing approach as the first step, the original input text
is used to retrieve relevant Wikipedia pages which
are possible candidate pages for entities. In the sec-
ond step, content within the retrieved documents
(like their titles) is used to identify the entity men-
tions in the original text. Finally, in the third step,
each identified mention and its linked Wikipedia
article are used together to predict the type of the
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Figure 1: Overall pipeline of the system which is showing the path of sentence Si.

entity.

4.2.1 Candidate Generation
ElasticSearch* was used as the underlying search
engine architecture. The most recent Wikipedia
dump was used to create an index. For each docu-
mentDi, the title, referred_by and interwikies were
indexed to create the following four fields:

• title: This is the title of the document Di.

• referred_by: This is a set of text spans which
are parsed from other Wikipedia pages where
Di is being referred with a interwiki link. This
set includes all of these text spans sorted from
longest to shortest. The title is added to the
set as well.

• interwikies: This is the list of interwikies* in
the document Di.

*https://www.elastic.co/
*Interwikies are the types of hyperlinks which is linking a

text span from a Wikipedia page to another Wikipedia page.
For instance, Wikipedia pages of Earth, Mercury and Venus
are in the interwikies section of the Sun’s Wikipedia page,
since they are mentioned within its text.

• all_text: Concatenation of all fields (title, text
content, interwikies, referred_by, and cate-
gories*) of the document Di.

Each sample was queried and the most relevant
200 articles were retrieved. Later on for each query,
documents retrieved with different field searches
were pooled together. The reason we are pooling
these different field results is to make sure we do
not miss a possibly relevant article that could have
been linked.

For the train and validation tests, around 199 doc-
uments were retrieved for each field. After pooling,
we ended up with a pool of size 578 documents
on average. Since test queries are shorter, the av-
erage number of documents returned got as low
as 161 with the title field and 465 over the pool.
Short queries also affected the empty ones, in other
words, no document retrieved samples. After pool-
ing there was not such a case for train and valida-
tion, however even pooling could not help the 169

*The categories section of a Wikipedia page includes a list
of topics which is related to the Wikipedia page.
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Field Train Validation
title 96.52 97.00
interwikies 57.16 61.26
referred_by 96.46 96.11
all_text 86.50 86.68
After pooling 98.89 98.85

Table 2: Recall Scores over Detected Mentions

queries over 136,935 samples, and no Wikipedia
articles were retrieved for those.

4.2.2 Mention Detection and Linking
After generating a set of candidate documents for
each input text, the next step is to map these docu-
ments to the possible entity mentions in the input.
For each input, our proposed algorithm iterated
over the retrieved and pooled documents {D}, and
cross-checked each item in the referred_by field of
the document to see if there was an exact match to
any phrase in the input text. In case there was an
exact match, then that matched phrase was tagged
as a possible entity and linked to the corresponding
Wikipedia page. If there were multiple matches for
a span of text, then the longest match was consid-
ered and shorter ones were ignored. Furthermore,
if there was a tie in terms of length, then the rele-
vance score of the Wikipedia document was used.
That relevance score was calculated after pooling
by doing a summation of the relevance scores from
different field retrievals.

In order to see which fields in Wikipedia are
more useful for mention detection, recall was cal-
culated over detected entity mentions, without con-
sidering the type of entity. The results are sum-
marized in Table 2. Based on the results title and
referred_by are the most useful fields and pooling
all retrievals is the best over both train and devel-
opment sets.

4.2.3 Named Entity Type Detection
After linking the entities, the only thing remaining
is to find their NER type. In order to do that we
used the original context where the entity was men-
tioned in the input text and the linked Wikipedia
article content. We combined these two as follows:

[CLS]ctxl[SEP]M[SEP]ctxr[SEP]WP[SEP]

where ctxl and ctxr are tokens for left and right
context of mention, M is mention itself and WP
is the first two paragraphs of a Wikipedia page.
[SEP] tokens are used to tag the mention. The

maximum length of the representation is set to 256.
This representation is given to BERT for encoding.

We used two classifier heads following the BERT
encoder for classifying the pairs of mentions M and
Wikipedia contents WP. The proposed architectural
design is presented in Figure 2. The first one is
a binary classifier head which aims to solve an
auxiliary task of whether the given candidate entity
mention is a real entity or not with the help of
input context tokens and Wikipedia content. The
second classifier head tries to learn the type of
the candidate named entity. The loss function for
our model is the summation of losses from these
two classifier heads. In case the binary classifier
head returns O (means mention is not an entity), the
second classifier head’s decision is ignored, and the
given candidate entity mention is directly predicted
as O (which stands for Other, not an entity). This
multi head model is referred to as EL_MultiBERT.

In order to test the effectiveness of multiple
heads, we created another model called EL_BERT,
which has a single classifier head only for identify-
ing named entity types including the Other class.

In our pipeline, the Other class can be assigned
to tokens in any of the three steps. Whenever a
token is assigned the Other (O) label, then its label
does not change during the remaining steps.

Figure 2: The architecture of the classifier. NE in the
binary classifier head’s output stands for Named Entity
and O for Other.

5 Experimental Setup

Due to limited resources and time, we only ex-
perimented with the Turkish part of the dataset
and therefore indexed 749,204 Turkish Wikipedia
pages. During retrieval, OR operator was used as
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Models
Validation Test

Precision Recall F1 Precision Recall F1
BERT 85.84 85.01 85.39 58.02 58.39 57.82
EL_BERT 84.59 79.40 81.74 74.78 59.03 65.47
EL_MultiBERT 86.18 77.56 81.60 80.69 65.13 71.91
EnsembleToken+EL 83.78 85.35 84.47 74.23 59.44 65.66
EnsembleToken+EL_Multi 83.66 85.51 84.49 78.86 66.43 72.02

Table 3: Results of our proposed methods on development and test data

part of the query and the default BM25 was used
for ranking. We fine-tuned the BERTurk model*.
As the optimizer, we used AdamW (Loshchilov
and Hutter, 2019) with a fixed learning rate in
all our BERT models as 3 x 10−5. We also ap-
plied dropout before the feed-forward layer with
0.3 probability. Our batch size was 32, with a maxi-
mum sequence length of 128 for the baseline BERT.
We extended the maximum sequence length to 256
for EL_MultiBERT and reduced the batch size to
8. All experiments were conducted with seed 22.

6 Results

The official evaluation metric was chosen as macro-
average F1-score by the organizers. In Table 3, we
present our results with models described above.
Our baseline BERT, the one fine-tuned directly for
NER, worked quite well on the validation set but
performed badly on the test set. This substantial
difference in these two sets shows that contextual
models like BERT do not perform well in low-
context settings. On the other hand, although our
proposed entity linking approaches fell slightly be-
hind the baseline model in the development set,
they performed significantly better than the base-
line on test set. Among the two entity linking meth-
ods, the EL_MultiBERT model with two classifi-
cation heads performed better. While determining
the named entity type, training with this auxiliary
task even on the same data seems to be useful.

Table 4 illustrates the performance of BERT
and EL_MultiBERT models for each named en-
tity class. As seen from the table, our proposed
approach improves the performance, especially in
complex entities like Creative Work, Group and
Product. Two approaches returned similar results
only for Person and Location. Since we do not
have the gold standard labels, we cannot perform
any detailed analysis of the reason.

*https://huggingface.co/dbmdz/bert-base-turkish-uncased

Entity Type BERT EL_MultiBERT
Person 70.72 72.43
Location 59.73 57.42
Group 51.49 76.51
Corporation 57.69 73.79
Product 63.13 76.93
Creative Work 44.14 74.40

Table 4: F1-Scores by NER type on Test Set

6.1 Ensemble Approach

Although the majority of the samples in the test
set are short texts, there are some longer sentences
as well. From the validation set experiments, we
already know that when there is enough context,
transformer models like BERT perform quite well.
Hence, we decided to see if we can use our pro-
posed architecture as a fall back mechanism when
there is not enough context available, but other-
wise use BERT. We applied an ensemble approach
relying on BERT for samples with more than 11
tokens and EL_MultiBERT for shorter ones. So
when sentence length is less than 11, we depended
on our entity linking architecture and Wikipedia
for retrieving and using additional useful context
about the input. As shown in Table 3, the ensemble
of BERT and EL_MultiBERT achieved 72.02% on
the test set, and this system ranked as third in the
Turkish track.

7 Conclusion

In this work, we proposed a language-independent
method for the Complex NER task in low-context
settings. Our results showed that utilizing the use
of entity linking for NER provides a significant im-
provement over state-of-the-art transformer models
when there is not enough context. Yet, since our
resources are limited, we experimented with only
the Turkish part. In future work, we will extend
this approach in a multilingual setting.
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Abstract

This paper describes our system, which placed
third in the Multilingual Track (subtask 11),
fourth in the Code-Mixed Track (subtask 12),
and seventh in the Chinese Track (subtask 9)
in the SemEval 2022 Task 11: MultiCoNER
Multilingual Complex Named Entity Recog-
nition. Our system’s key contributions are as
follows: 1) For multilingual NER tasks, we of-
fer an unified framework with which one can
easily execute single-language or multilingual
NER tasks, 2) for low-resource code-mixed
NER task, one can easily enhance his or her
dataset through implementing several simple
data augmentation methods and 3) for Chinese
tasks, we propose a model that can capture
Chinese lexical semantic, lexical border, and
lexical graph structural information. Finally,
our system achieves macro-f1 scores of 77.66,
84.35, and 74.00 on subtasks 11, 12, and 9,
respectively, during the testing phase.

1 Introduction

SemEval 2022 Task 11: MultiCoNER Multilin-
gual Complex Named Entity Recognition(Malmasi
et al., 2022b) focuses on extracting semantically
ambiguous complex named entities(Meng et al.,
2021) in short, low-context and code-mixed(Fetahu
et al., 2021) scenarios. The domain adaptabil-
ity capacity of the system is in high demand for
this shared task, which contains 13 tracks in En-
glish, Spanish, Dutch, Russian, Turkish, Korean,
Farsi, German, Chinese, Hindi, Bangla, multi-
language, and code-mixed. Among them, multi-
language, and code-mixed tracks are in the mixed
language, while the other tracks are in the single
language. The difference between multi-language
track and code-mixed track is that the corpus of
multi-language track is multilingual, but the words
in each sentence are in a single language, while the
corpus of code-mixed track is a corpus in which the

*These authors contributed equally to this work.

words or phrases in each sentence may be from dif-
ferent languages, for example the sentence I Liebe
Sie (I love you) consists of English, French and Ger-
man. Furthermore, the datasets offered by the or-
ganizers , which may mainly from Wikipedia, web
questions and user queries, comprise data from 11
languages, with each language containing around
15,000 training samples and 800 development (dev)
samples(Malmasi et al., 2022a). The corpus con-
tains a total of six entity categories, namely loca-
tion (LOC), person (PER), product (PROD), group
(GRP), corporation (CORP) and creative works
(CW). The main contributions of our system are
as follows: 1) we propose a unified framework for
multilingual NER tasks, using which one can easily
perform monolingual or multilingual NER tasks;
2) for low-resource code-mixed NER tasks, we pro-
vide several simple and effective data augmentation
methods to easily increase the amount of data; 3)
for Chinese tasks, we propose a model that captures
Chinese lexical semantics, lexical boundaries and
lexical graph structure information in a model.

2 Related work

Named Entity Recognition (NER)—a classic and
fundamental task that aims to extract named enti-
ties from a sentence—plays an important role in a
variety of downstream tasks in the field of NLP,
including relation extraction (Zhong and Chen,
2021), knowledge graph construction (Bosselut
et al., 2019), question answering (Diefenbach et al.,
2018) and so on. For a long time, the develop-
ment of NER was slow, especially before the rise
of neural networks, and NER mostly used statisti-
cal machine learning methods like HMM(Morwal
et al., 2012) and CRF(Konkol and Konopík, 2013).
Although these methods were effective at the time,
they were still stretched for complex scenarios. Af-
ter the rise of neural networks, especially structured
networks such as RNNs(Sherstinsky, 2020) and
CNNs(LeCun et al., 1998), NER has been greatly
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developed, and the accuracy has been greatly im-
proved compared with traditional statistical learn-
ing methods. There are also methods that combine
neural networks with traditional statistical learn-
ing methods, such as BiLSTM+CRF(Chen et al.,
2017). Although these methods take NER to an-
other higher level, they also have certain problems.
For example, RNNs cannot model bi-directionally
context, and then there is the inability of RNNs to
capture long-term dependencies, and though CNNs
can model bi-directionally, but due to the size of
convolutional kernels, they can only model local
contextual information at the same time and cannot
capture global contextual information. Recently,
self-training pre-training models on large-scale cor-
pus such as BERT(Kenton and Toutanova) and its
variant versions have greatly improved the accuracy
of NER tasks and effectively solved the problem
that RNNs cannot capture long-range dependencies
as well as dynamic contexts. From statistical mod-
els like HMM and CRF to deep learning models
like CNN, RNN, and transformer-based pre-trained
models, the accuracy of NER tasks is increasing
and has reached commercial levels in many scenar-
ios(Yadav and Bethard, 2018). Despite its remark-
able progress, NER still faces some challenges(Ma
et al., 2020), such as the problem of discontin-
ued and nested named entities(Yan et al., 2021),
the challenge of cross-domain and cross-lingual
transfer learning(Mueller et al., 2020), the lack of
lexicon information when using sub-character tok-
enization strategy and word boundary information
of Chinese NER tasks(Zhang and Yang, 2018), and
the ambiguity of named entities(Meng et al., 2021)
under different semantic circumstance.

3 System overview

Figure 1 depicts our system’s overall architecture
and technological process. As we can see, the
unified framework allows us to complete all of the
subtasks.

3.1 Backbone encoder

We selected XLM-RoBERT-large (Conneau et al.,
2020) as our backbone encoder to establish frame-
work unity and make full use of data from different
tracks to realize language transfer. XLM-RoBERTa
is a multilingual version of RoBERTa that has been
pre-trained on 2.5TB of data in 100 languages. The
large version has 24 transformer layers, 16 self-
attention heads per layer, and a hidden size of 1024.

Figure 1: The architecture and procedures of our system

3.2 Training procedures

We take multiple steps to fine tune our system,
including full data fine-tuning stage, track spe-
cific fine-tuning stage, model ensemble stage and
pseudo label fine-tuning stage.

3.2.1 Full data fine-tuning stage
As the first step of our system, we fine tune our
model with data from all languages provided by
official. At this stage, we hope that the model can
learn the distribution of datasets and capture the
named entity information from the total data, which
will aid our model in transferring to those data on
specific tracks. To improve the model’s cognitive
ability and stability, we implemented the following
set of training skills.
Data Augmentation:We did not simply feed the
data into our model, but enhanced data firstly
in a simple way—concatenating sentences ran-
domly, including bisent-uni—concatenating two
sentences from the same language randomly into
a new sentence, bisent-mix—concatenating two
sentences from different language randomly into
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a new sentence, mulsent-uni—concatenating sev-
eral sentences from the same language randomly
into a new sentence with a length of no more than
512 and mulsent-mix—concatenating several sen-
tences from different language randomly into a new
sentence with a length of no more than 512.
Adversarial Training: Considering that the deep
neural networks are vulnerable to adversarial ex-
amples, we adopt FGM(Miyato et al., 2017),
PGD(Mądry et al., 2017) and FreeLB(Zhu et al.,
2019) adversarial training techniques to keep our
model tolerant of adversarial examples and more
robust. These methods create adversarial exam-
ples by adding a small perturbation to input that
maximizes the loss. The formulation of adversarial
training can be drew below,

min
θ

E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)

]
(1)

where δ is a small perturbation. The inner maxi-
mization can be solved by projected gradient ascent
and the outer minimization can be solved by gra-
dient descent. PGD and FreeLB are the improved
version of FGM, both of which are devoted to find
a more reasonable perturbation.

3.2.2 Track specific fine-tuning stage
At this stage, we use different methods to fine tune
according to the specific track.
Track 9 - Chinese (ZH): Track 9 is devoted to
the recognition of Chinese named entities. There
are significant differences between Chinese and
Indo-European languages like English, German,
and Spanish. For example, there is no word bound-
ary in the Chinese lexicon, however Chinese word
semantic and boundary information is useful for
NER. Therefore, after the fine-tuning at the first
stage, we utilize some techniques to improve our
model’s ability to understand Chinese. In particular,
we incorporate LEBERT(Liu et al., 2021) and Co-
Graph4NER(Sui et al., 2019) into our framework to
improve our model’s understanding of Chinese lex-
icon boundaries and semantics. It is worth noting
that, we did not directly implement these methods;
instead, we drew lessons from the ideas presented
in these two papers and appropriately transformed
the structures mentioned in these two papers to ap-
ply to our system.
LERoBERTa: LERoBERTa is our modified ver-
sion of LEBERT that integrates lexicon information
into the specific layers of the pre-training model
to obtain word-related information via a structure

called Lexicon Adapter. The specific structure of
Lexicon Adapter is shown in Figure 2,

Figure 2: Structure of Lexicon Adapter. This structure
pays bilinear attention to characters and vocabulary at
the same time, weights vocabulary features into vectors,
and then adds them to the input character level vector,
and then performs layer normalization.

Because the original LEBERT paper is applied
to BERT, it is not consistent with our framework.
In order to apply it to our framework, we con-
verted it to LERoBERTa, which differs slightly
from LEBERT.
LERoBERTa-GCN4NER: LERoBERTa does not
fully utilize the graph relation of containing, tran-
sition, and lattice between words and characters
because it only integrates information from the bot-
tom encoding layer. An assumption is that the char-
acters in the sentence can capture the boundaries
and semantic information of self-matched lexical
words using the containing graph (C-graph), the
transition graph (T-graph) can assist the charac-
ter in capturing the semantic information of the
nearest contextual lexical words implicitly, and the
lattice graph (L-graph) can capture some informa-
tion of self-matched lexical words explicitly. So,
we make some improvements to CoGraph4NER,
called GCN4NER, to make full use of the graph
relation and thus improve the model’s ability to
capture Chinese lexicons. GCN4NER is a mod-
ified version of CoGraph4NER that replaces the
LSTM encoder with LERoBERTa to conform to
our algorithm framework and replaces the GAT
module with GCN to improve calculation speed.
The overall system of LERoBERTa-GCN4NER is
shown in Figure 3,
Track 12 - Multilingual: Track 12 focuses on
multilingual named entity recognition and the dif-
ficulty with this track is that it contains multiple
languages, each with its own syntax. So the model
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Figure 3: Main architecture of LERoBERTa-
GCN4NER. Characters of "Tom left Los Angeles Air-
port" are encoded by LERoberta and then the hidden
vectors and vectors of lexicons are inputted into the
GCN module, the outputs of which will then be fused
by weighted summation in fusion layer. Finally, the
decoding layer assigns a label to each character.

must learn multiple language characteristics con-
currently. It is difficult for participants to analyze
the model’s bad cases because they are not familiar
to every language. At this stage, we not only use
R-Drop(Wu et al., 2021) but also utilize shared fea-
ture extractors and private feature extractors(Chen
et al., 2019), considering the fact that there are dif-
ferences in grammar and common characteristics
in semantics of texts in different languages.
R-Drop: Since deep neural networks are very
prone to overfitting, the Dropout method randomly
discards some neurons in each layer to avoid
overfitting during training. Based on this idea,
researchers improve dropout method, called R-
Drop. Given a training sample D = {xi, yi}, i =
1, · · · , n, for each sample , it goes through the for-
ward feedback of two different sub-networks to get
two predicted probabilities P1 and P2. Although
the two sub-networks come from the same model,
they are not exactly the same because Dropout ran-
domly discards some neurons, and P1 is not equal
to P2.
Shared Feature Extractor and Private Feature
Extractor: We leveraged the ideas of the pa-
per(Chen et al., 2019) and modified the model in
combination with datasets offered by the official.
With this method, our model can learn general and
specific characteristics between different language

which may improve model’s comprehension.

The shared feature extractor consists of a shared
feature learner and a language discriminator. The
shared feature learner extracts general features
from different languages, and then inputs them
into the language discriminator to judge which lan-
guage these features belongs to. When the lan-
guage discriminator is unable to determine which
language the current text belongs to, it signifies that
the shared feature learner has learnt the common-
alities between the languages, hence fulfilling the
goal of perplexing the language discriminator.
There are differences in grammar and meaning of
texts in different languages, so the model of this
scheme also designs a private feature extractor. The
private feature extractor performs feature extraction
on the word vector output by backbone encoder,
and then outputs it to the multilayer perceptron
(MLP) of each language. The MLP of each lan-
guage extracts the exclusive language features in
the text, and then splices the output of each lan-
guage.
Track 13 - Code-Mixed: Track 13 is a track dedi-
cated to code-mixed data. The prevalence of code-
mixed text is fast increasing on social media plat-
forms such as Twitter. The code-mixed task is
difficult because it introduces a large number of
unseen constructions as a result of merging the lex-
icon and syntax of two or more languages, and the
available data is insufficient in comparison to the
other sub-tasks. Therefore, after fine-tuning at the
first state, we utilized data augmentation(Dai and
Adel, 2020) to supplement the training data in this
task. When the labeled datasets are insufficient,
data augmentation is a frequently used strategy for
enhancing generalization. However, the NER task
is concerned with sequence labeling at the token
level, and the majority of data augmentation meth-
ods at the sentence level may compromise label
integrity. We used Mention replacement (MR)
and Shuffle within segments (SiS) techniques to
resolve the issue. MR is a data augmentation ap-
proach that replaces the position of entities in the
original sentence with other entities of the same
category while keeping the non-entity part of the
sentence unchanged. And SiS is a data enhance-
ment method that keeps the order of words of enti-
ties in the original sentence unchanged and disrupts
the order of words in the non-entity part.
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3.3 Model ensemble stage

Model Ensemble is a method for integrating multi-
ple trained models in order to improve the system’s
generalization ability in test datasets(Allen-Zhu
and Li, 2020). Model ensemble can be achieved
in a variety of ways, including voting, averaging,
stacking, and confidence blending. Voting is one of
them, and it is a simple yet effective method, so we
use it in our system. We trained several models for
each track based on different hyper parameters and
then predicted test datasets to get corresponding
results. We then voted for the final result based on
these intermediate results.

3.4 Pseudo label fine-tuning stage

Pseudo labelling is a type of semi-supervised learn-
ing in which the model trained by labelled data is
used to generate pseudo labels for an unlabelled
dataset(Lee et al., 2013). We then put both the orig-
inal labelled dataset and a portion of the unlabelled
dataset with pseudo labels into our models for fi-
nal training during the pseudo label fine-tuning
stage. Voting is how we generate pseudo labels.
We choose sentences that can be consistently pre-
dicted by all models generated in the model en-
semble stage as training samples with reasonable
pseudo-labels.

4 Experimental setup

In this session, we are going to describe the imple-
mentation details of our system.
Dataset and word embeddings: Train and dev
datasets we used are provided by official and we
don’t use test dataset before testing phase because
it was not available. Besides, experiments at model
ensemble stage and pseudo label fine-tuning stage
are carried on test dataset.Since LERoBERTa and
GCN4NER techniques require word embedding
and considering the lack of embedding of relevant
words in the pre-trained model XLM-RoBERTa,
we use word embedding sgns.merge.word † trained
by skip-gram.
Processing and hyper parameters: Limited by
the length of the paper, we will only briefly intro-
duce our main processing and part of hyper param-
eters, with which our system can reach the best re-
sult. Learning rate was set to 1×10−6, warming up
proportion to 0.06, drop out rate to 0.2, batch size

†https://drive.google.com/file/d/1Zh9ZCEu8_eSQ-
qkYVQufQDNKPC4mtEKR/view.

to 32, epoch to 30, random seed to 42 and the num-
ber of voting models to 7. Augmentation method
for full data fine-tuning stage was mulsent-uni, de-
coder strategy was softmax and adversarial training
method was PGD with ϵ = 1.0, α = 0.1,K = 3.
For more details, please check the Appendix A.
Through out our system we almost only use soft-
max as our decoder strategy because we have found
CRF has no effect on improving the scores com-
pared to softmax but consumes more computing
resources and storage space. So, we drop CRF strat-
egy. One plausible explanation for this is that pre-
trained models have already caught the relations
between tokens which may not be well captured
by non-pretrained models. We selected the best
epoch and the best hyper parameters using perfor-
mance (measured in terms of macro-f1 score) on
corresponding dev dataset.

5 Results

In this section, we will report our main experiment
and provide an analysis of the results. Unless other-
wise specified, the hyper parameters in our experi-
ments are configured in accordance with Section 3.
Full data fine-tuning stage: Table 1 displays
the results of experiments performed with the fol-
lowing parameters: FGM with ϵ = 0.8, PGD
with ϵ = 1, α = 0.1,K = 3 and FreeLB with
adv_lr = 0.3,mag = 0.05,K = 3. These hyper
parameters are the best that we have found.

As we can see from Table 1, three tracks have
an improvement in the mulsent-uni data augmenta-
tion method where Chinese(ZH) and Multilingual
tracks improve nearly 0.5 percent and Mix-Code
tack increases 1.2 percent to 77.19. What’s more,
all adversarial training techniques we employed
in our system make a great improvement in Chi-
nese(ZH) and Multilingual track, but nearly have
no effect on Mix-Code track. However, when we
adopt mulsent-uni and PGD simultaneously, scores
are surprisingly high, 88.46 for ZH-Chinese, 86.93
for Multilingual and 78.21 for Mix-Code and this
checkpoint is our best checkpoint at full data fine-
tuning stage which will continue to be used at track
specific fine-tuning stage.

Chinese (ZH) track fine-tuning: As for
Chinese (ZH) track, we employ LERoBERTa,
GCN4NER and LERoBERTa-GCN4NER for fine-
tuning. Table 2 demonstrates that, LEBERT gets
the lowest score without our full data fine-tuning
stage and our modified version, LERoBERTa,
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Table 1: Marco-f1 scores(%) on dev dataset under different methods at full data fine-tuning stage

methods Chinese(ZH) Multilingual Mix-Code

\ \ 86.31 85.82 75.93

data augmentation

bisent-uni 86.20 86.02 77.01
mulsent-uni 86.06 86.06 77.19
bisent-mix 85.27 86.01 74.67

mulsent-mix 86.50 85.91 74.43

adversarial training
FGM 86.85 86.85 75.54
PGD 87.37 86.33 75.96

FreeLB 86.81 86.14 75.88

methods ensemble mulsent-uni+PGD 88.02 86.93 78.21

GCN4NER and LERoBERTa-GCN4NER have a
positive effect on improving macro-f1 score. We
can prove our hypothesis that LERoBERTa only
integrates the information of words from the bot-
tom encoding layer, and that it does not make
full use of the graph relation of containing, tran-
sition, and lattice between words and characters,
by observing the differences in results between our
modified models. As a result, LERoBERTa just
climbs by 0.18 percent. Similar to GCN4NER,
it may just consider character graph relationships
while ignoring lexical semantic information. So,
GCN4NER increases by 0.32 percent. When these
two approaches are combined, we discover that
LERoBERTa-GCN4NER improves by 1%, giving
it the highest score on the dev dataset in our system.

Multilingual track fine-tuning: This experi-
ment continually use the best checkpoint from full
data fine-tuning stage . We try R-Drop technique
and private feature extractor and shared feature
extractor (PFE-SFE) method to improve the perfor-
mance of our model on this track. In the R-Drop
experiment, we use the average method for the KL
divergence, and set coefficient parameter α to 0.1
and it obtains a marco-f1 score of 87.15 on the dev
dataset which means that this method has a good ef-
fect on multilingual tasks. What‘s more, we adopt
PFE-SFE method and the marco-f1 score achieve
87.21 in our experiment.

It can be seen from Table 3 that both R-Drop and
PFE-SFE have improved macro f1 score compared
to the baseline model, R-Drop is 0.22% higher than
the baseline, and PFE-SFE is 0.28% higher than
the baseline. It can be seen that both methods have
certain effects. When we combine R-Drop with
PFE-SFE, the macro-f1 value reaches 87.42, which

is 0.49% higher than the baseline.
Mix-Code track fine-tuning: As for Mix-Code

track, we used mention replacement (MR) and shuf-
fle within segments (SiS) techniques to resolve the
insufficiency issue of mix-code data and increase
the generalization ability of our model on this track.
We not only utilize the parameter setting at full data
fine-tuning stage, but also employ the best check-
point at full data fine-tuning stage.

As shown in Table 4, all of the data augmenta-
tion techniques we utilized increase macro-f1 over
the baseline value when no augmentation is ap-
plied. The MR technique enables the model to get
a more accurate representation of entity knowledge
and entity boundary information based on external
knowledge. Additionally, by changing the order of
the sequences, the SiS technique enables the model
to learn a more robust position embedding.And the
result in bold is our best score on the leaderboard
before testing phase.

Model ensemble stage: At this stage, test data
is available and we choose the top-7 models based
on marco-f1 score under 7 sets of different parame-
ters to vote on the final results. For details, please
check the Appendix B. The second row in Table
5 shows the best results predicted singly by our
chosen models. As we can see from Table 5, model
ensemble has a positive effect. Before the number
of models increases to 7, scores increase as the
number of models increases but the growth rate
slows down which means more models will have
little effect even negative effect.

Pseudo labeling fine-tuning stage: After model
ensemble stage, we select 7 models with the highest
f1 values on the development set to make predic-
tions on the test set, and choose the results that all
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Table 2: Marco-f1 scores(%) on dev dataset under different models at Chinese (ZH) track fine-tuning stage

Models XLM-RoBERTa LEBERT LERoBERTa GCN4NER LERoBERTa-GCN4NER

Chinese(ZH) 88.46 86.02 88.62 88.78 89.4

Table 3: Marco-f1 scores(%) on on dev dataset under different methods at multilingual track fine-tuning stage

methods \ R-Drop PFE-SFE R-Drop+PFE-SFE

Multilingual 86.93 87.15 87.21 87.42

Table 4: Marco-F1 scores(%) on dev dataset under dif-
ferent data augmentation strategies at code-mixed fine-
tuning stage

Data Augmentation Methods Mix-Code

\ 79.8

Mention replacement (MR) 82.0

Shuffle within segments (SiS) 81.1

MR + SiS 82.2

Table 5: Macro-F1 scores(%) on test dataset under dif-
ferent number of models at model ensemble stage(N
denotes the number of models)

N Chinese(ZH) Multilingual Mix-Code

1 67.71 73.18 80.32

3 69.42 73.86 82.43

5 69.73 74.32 82.75

7 68.20 73.67 81.53

seven models predict consistently as the pseudo-
labeled data and then we put them together with
train dataset for fine-tuning at this stage. We con-
tinually use the best checkpoint of LERoBERTa-
GCN4NER to fine tune on the Chinese(ZH) track
and same as the Multilingual track and Code-mixed
track. In addition, the hyperparameters remain the
same as in the previous phase. The results we ob-
tained are as shown in Table 6. Obvious as the
effect is, macro-f1 scores increases 5.22 points on
the Chinese(ZH) track, 4.04 points on the Multi-
lingual track and 3.59 points on the Code-mixed
track.

Table 6: Macro-F1 scores(%) on test dataset at pseudo
labeling fine-tuning stage

pseudo Chinese(ZH) Multilingual Mix-Code

% 67.71 72.87 80.32

! 72.93 76.91 83.91

Next, same as model ensemble stage we choose
7 sets of different parameters to train on the pseudo
label dataset and get 7 sets of checkpoints. For
more details about these models, please check the
Appendix A. The results are shown in Table 7.
As we can see, the results are similar to those at
model ensemble stage. Macro-f1 scores also have
an improvement but the increments are less than
before.The value in bold is our result in the final
ranking.

Table 7: Macro-F1 scores(%) on test dataset under dif-
ferent number of models at pseudo labeling fine-tuning
stage (N denotes the number of models)

N Chinese(ZH) Multilingual Mix-Code

1 72.93 76.91 83.91

3 73.60 77.37 84.29

5 74.00 77.66 84.35

7 73.25 77.32 84.02

6 Conclusion

In this paper, we have introduce our system step by
step which can be regarded as an universal frame-
work for multilingual NER task. Besides, we pro-
posed a graph-based model to make up for the lack
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of understanding capacity of Chinese lexicon. Ade-
quate ablation experiments shows that our methods
work for this task. In future efforts, we plan to
further improve our system to better handle polyse-
mous scenarios.
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Appendix

A Hyper parameters setting

In these tables, T, C and L under graph parameter
denote T-graph, C-graph and L-graph respectively
which means we use one or all of these three graph
in our LERoBERTa-GCN4NER model.

Table 8: Scope of each hyper parameters that we have
tried in our experiments

parameters scope
learning rate 5× 10−6, {1, 3, 5} × 10−5

warming up rate { 0.06, 0.1 }
seed { 42, 100, 200, 2022 }

batch size { 8, 16, 32 }
epoch { 30, 50 }

FGM(ϵ) { 0.1, 0.3, 0.5, 0.8, 1 }
PGD(ϵ) { 0.1, 0.3, 0.5, 0.8, 1 }
PGD(α) { 0.3, 1 }
PGD(K) { 1, 2, 3, 5 }

FreeLB(adv_lr) { {1, 3, 5} × 10−5 }
FreeLB(mag) { 0.05, 0.1, 0.5 }
FreeLB(K) { 1, 2, 3, 5 }
R-Drop(α) { 0.01, 0.05, 0.2, 0.5 }

GCN4NER(graph) { T+C+L, T, C, L }

B Macro-f1 scores(%) predicted singly by
different models under different
parameters
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Table 9: Macro-f1 scores(%) predicted by every single model under different parameters on Chinese(ZH) test
dataset at model ensemble stage

id macro-f1 learning rate warming up rate batch sieze PGD graph

1 67.71 1× 10−5 0.06 32 + T+C+L

2 67.56 5× 10−6 0.1 32 + T+C+L

3 67.68 1× 10−5 0.06 16 + T+C+L

4 67.43 1× 10−5 0.06 32 - T+C+L

5 67.35 1× 10−5 0.06 32 + T

6 67.32 1× 10−5 0.06 32 + C

7 67.21 1× 10−5 0.06 32 + L

Table 10: Macro-f1 scores(%) predicted by every single model under different parameters on Chinese(ZH) test
dataset at pseudo labeling fine-tuning stage

id macro-f1 learning rate warming up rate batch sieze PGD graph

1 72.56 1× 10−5 0.06 32 + T+C+L

2 72.89 5× 10−6 0.1 32 + T+C+L

3 72.93 1× 10−5 0.06 16 + T+C+L

4 72.53 1× 10−5 0.06 32 - T+C+L

5 72.58 1× 10−5 0.06 32 + T

6 72.42 1× 10−5 0.06 32 + C

7 72.33 1× 10−5 0.06 32 + L

Table 11: Macro-f1 scores(%) predicted by every single model under different parameters on multilingual test
dataset at model ensemble stage

id macro-f1 learning rate warming up rate batch sieze PFE-SFE R-Drop(α)

1 72.32 5× 10−6 0.06 16 + 0.05

2 73.18 5× 10−6 0.06 16 + 0.1

3 72.86 5× 10−6 0.06 16 + 0.2

4 72.64 1× 10−5 0.06 16 + 0.1

5 72.12 5× 10−6 0.06 16 - 0.1

6 73.01 5× 10−6 0.1 16 + 0.1

7 73.09 5× 10−6 0.06 32 + 0.1
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Table 12: Macro-f1 scores(%) predicted by every single model under different parameters on multilingual test
dataset at pseudo labeling fine-tuning stage

id macro-f1 learning rate warming up rate batch sieze PFE-SFE R-Drop(α)

1 76.43 5× 10−6 0.06 16 + 0.05

2 76.91 5× 10−6 0.06 16 + 0.1

3 76.74 5× 10−6 0.06 16 + 0.2

4 76.18 1× 10−5 0.06 16 + 0.1

5 75.96 5× 10−6 0.06 16 - 0.1

6 76.63 5× 10−6 0.1 16 + 0.1

7 76.78 5× 10−6 0.06 32 + 0.1

Table 13: Macro-f1 scores(%) predicted by every single model under different parameters on mix-code test dataset
at model ensemble stage

id macro-f1 learning rate warming up rate batch sieze data augment decoder

1 80.32 1× 10−6 0.06 32 MR + SiS crf

2 80.21 1× 10−6 0.06 32 MR + SiS crf

3 79.84 1× 10−5 0.06 32 MR + SiS softmax

4 80.09 1× 10−6 0.1 32 MR + SiS softmax

5 79.94 1× 10−6 0.06 32 MR crf

6 80.11 5× 10−6 0.06 16 MR crf

7 79.75 1× 10−6 0.06 32 MR softmax

Table 14: Macro-f1 scores(%) predicted by every single model under different parameters on mix-code test dataset
at pseudo labeling fine-tuning stage

id macro-f1 learning rate warming up rate batch sieze data augment decoder

1 83.91 1× 10−6 0.06 32 MR + SiS crf

2 83.38 1× 10−6 0.06 32 MR + SiS crf

3 83.40 1× 10−5 0.06 32 MR + SiS softmax

4 83.55 1× 10−6 0.1 32 MR + SiS softmax

5 83.00 1× 10−6 0.06 32 MR crf

6 83.70 5× 10−6 0.06 16 MR crf

7 83.50 1× 10−6 0.06 32 MR softmax
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Abstract

This paper describes our system used in the
SemEval-2022 Task 11 Multilingual Complex
Named Entity Recognition, achieving 3rd for
track 1 on the leaderboard. We propose
Dictionary-fused BERT, a flexible approach
for entity dictionaries integration. The main
ideas of our systems are: 1) integrating exter-
nal knowledge (an entity dictionary) into pre-
trained models to obtain contextualized word
and entity representations 2) designing a ro-
bust loss function leveraging a logit matrix 3)
adding an auxiliary task, which is an on-top
binary classification to decide whether the to-
ken is a mention word or not, makes the main
task easier to learn. It is worth noting that our
system achieves an F1 of 0.914 in the post-
evaluation stage by updating the entity dictio-
nary to the one of Meng et al. (2021), which is
higher than the score of 1st on the leaderboard
of the evaluation stage.

1 Introduction

Name entity recognition (NER) is a fundamental
task in natural language processing. Processing
complex and ambiguous Named Entities (NEs) and
in low-context situations is a challenging NLP task
in practical and open-domain settings, which was
recently outlined by Meng et al. (2021). Other
work has extended this to multilingual and code-
mixed settings (Fetahu et al., 2021) since code-
mixed queries, with entities in a different language
than the rest of the query, pose a particular chal-
lenge in domains like e-commerce (e.g. queries
containing movie or product names).

SemEval-2022 task 11 Multilingual Complex
Named Entity Recognition (Malmasi et al., 2022b)
focuses on dealing with the challenges above: de-
tecting complex entities in short, low-context, and
code-mixed settings.

* The first two authors contributed equally.

For this task, we propose Dictionary-fused
BERT to integrate external dictionaries into the
NER model, and it is compatible with emerging
entities and user-defined entities, without retraining
the model.

2 Related Work

Named Entity Recognition (NER) is a core task in
knowledge extraction and is important to various
downstream applications such as question answer-
ing and dialogue systems. NER is the task of detect-
ing mentions of real-world entities from text and
recognizing their types (e.g., locations, persons).

However, the NER task is facing many chal-
lenges outlined by Meng et al. (2021), such
as short texts like search queries (Wang et al.,
2014), emerging entities (Craswell et al., 2020),
long-tail entities, complex entities, and entities
in code-mixed queries (Fetahu et al., 2021). For
example, complex NEs, like the titles of creative
works (movie/book/song/software names) are not
simple nouns and are harder to recognize. The
neural models driven by memorization perform
well on “easy” entities (person names) but fail to
recognize complex/unseen entities when entities
overlap less between train/test sets. A lot of works
have been proposed to address the challenges
above.

Contextualized Word and Entity Representa-
tions There are some works focusing on obtaining
good contextual word and entity representations
such as KnowBERT (He et al., 2019) and LUKE
(Yamada et al., 2020). KnowBERT (He et al.,
2019) incorporates knowledge bases into BERT
(Devlin et al., 2018) using Knowledge attention
and recontextualization, which explores the joint
learning of entities and relations. LUKE (Yamada
et al., 2020) employs RoBERTa (Delobelle et al.,
2020) as the base pre-trained model, trained on a
large number of entity-annotated corpora retrieved
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Figure 1: The overall architecture of our proposed system

from Wikipedia. LUKE treats both words and
entities as separate tokens and computes the
intermediate and output representations of all
tokens through the Transformer. Since entities
are also used as tokens, LUKE can model the
relationship between entities.

Robust Loss Functions Other works like
Generalized Cross-Entropy (Zhang and Sabuncu,
2018) and In-trust loss functions (Huang et al.,
2021) focus on how to design a robust loss function
to solve the NER problem under label noise, which
is consistent with complex and ambiguous NER
scenarios. Generalized Cross-Entropy (Zhang and
Sabuncu, 2018) is actually a new evolutionary
form of MAE and CCE, and can be easily applied
with the DNN algorithm while yielding good
performance in a lot of noisy label scenarios.
In-trust loss functions (Huang et al., 2021)
combines a CRF loss with a robust Distrust
Cross-Entropy term and can effectively alleviate
overfitting. What’s more, it has been demonstrated
that leveraging a logit matrix is an effective way
to distinguish noisy samples from difficult samples.

Our proposed model combines the
Contextualized-Entity-Representations method
and the Robust-Loss-Functions method. Firstly
our model incorporates the entity dictionary
proposed by LUKE (Yamada et al., 2020) into the
BERT-Whole-Word-Masking model and treats
entities as separate tokens. Then we design a

robust loss function that boosts cross-entropy loss
with KL divergence over the logit matrix.

3 Data

We leverage LUKE entity dictionary (Yamada
et al., 2020) since our model needs external
knowledge. We train and test on MultiCoNER
Dataset (Malmasi et al., 2022a).

MultiCoNER.Dataset for the SemEval-2022
Task 11, containing a training set of size 15300, a
dev set of size 800, and a test set of size 217818,
consisting of 6 entity types: PERSON (PER
for short, names of people), LOCATION (LOC,
locations/physical facilities), CORPORATION
(CORP, corporations and businesses), GROUPS
(GRP, all other groups), PRODUCT (PROD,
consumer products), and CREATIVE-WORK
(CW, movie/song/book/etc. titles). All data are
uncased.

LUKE Entity Dictionary consists of 500k
entities retrieved from English Wikipedia data.

4 Methodology

We propose Dictionary-fused BERT, which adopts
a multi-layer bidirectional transformer (Vaswani
et al., 2017) and has the ability to encode not
only words of the sentence but also information of
matched entities. We experiment with Transformer-
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Prerained-model dev f1
BERTbase 0.854
BERTlarge 0.871
RoBERTabase 0.836
RoBERTalarge 0.877
DistilBERTbase 0.835
BERT-WWMlarge 0.883
LUKEbase 0.856
LUKElarge 0.878

Table 1: Dev f1 score of different Transformer-based
models.

based models which produce contextualized word
representations. The overall architecture is shown
in Figure 1, the components are detailed below.

4.1 Contextualized Word and Entity
Representation

Entity representations are obtained in two steps:
entity matching and contextual encoding.

Dictionary Entity Matching We denote
the input sentence as (w1, w2..., wn), where
wi is the i-th word and n is the Length. Full
string matching is used to match all entities in
the input sentence and we choose the longer
one while dealing with overlapping matches.
(m1,m2, ...,mL) represents the matched entities
where mj = (wi, wi+1.., wi+k) and L is the
number of matched entities.

Contextual Encoding The input tokens consist
of two segments: words of the sentence and
matched entities including the entity itself and
entity type. The two parts are separated by a
special token [SEP] and different entities are
separated by the token $. Then they are fed
together into the encoder to get the contextualized
representations as LUKE(Yamada et al., 2020)
does.

4.2 On-top Binary Classification Task
On-top binary classifier (adding a binary classifier
on the top of the encoder) is an auxiliary task
to detect entity mention words of the input
sentence and helps increase accuracy. For
example, the target output of the auxiliary task
is represented as yaux = (0, 0, 0, 1, 0, 0, 1, 1)
whereas the NER task’s is yner =
(O,O,O,B − CW,O,O,B − PER, I − PER)

when the input sentence is "adaptation of the
manga series by chiho saito".

4.3 Loss Function
As is shown in the Figure 1, the loss is divided into
two parts: the cross-entropy loss of the auxiliary
task (LCE−auxiliaty−task) and the loss of the NER
task that consists of the final cross-entropy loss
(LCE) and KL divergence loss over the logit
matrix (Llogit).

4.3.1 Loss over Logit Matrix
The logit matrix is the output of models in the train-
ing process, which goes through the softmax layer
and then gets into the final loss function. Huang
et al. (2021) has demonstrated the use of logit ma-
trix to distinguish noisy samples from difficult sam-
ples to prevent overfitting, which we use here to dis-
tinguish tag pairs such as (CW, PROD) and (CORP,
GRP) pairs that are easily confused with each other
by baseline model. These samples are shown be-
low.

* {they have been used experimentally in [gy-
robus]{PROD}{CW}}. In this sample, [gy-
robus] is a product (PROD) but is mispre-
dicted as a creativework (CW).

* {cockpit concept, developed by [astion martin
racing]{GRP}{CORP}}. [astion martin rac-
ing] is a group (GRP) but mispredicted as a
corporation (CORP).

We denote the logit matrix as [Zij ]
N×M where

N is the length of input tokens and M is the num-
ber of tags. The loss over logit matrix can be rep-
resented as Llogit = −(KLdiv(zCW , zPROD) +
KLdiv(zGRP , zCORP )) where zCW , zPROD,
zGRP and zCORP are column vectors correspond-
ing to tag CW, tag PROD, tag GRP and tag CORP
in the logit matrix and KLdiv is the Kullback-
Leibler divergence loss function. The negative sig-
nal (−) indicates that the larger distance between
tag pairs the better.

4.3.2 Forming Total Loss
The total loss can be represented as

Ltotal = α·LCE−auxiliaty−task+β·(LCE+Llogit)

where α and β are two decoupled hyper parameters,
α regulates the recall issue while β aims to flexibly
explore the robustness of Llogit.
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settings dev f1
baseline BERT-WWM 0.883

BERT-WWMentity 0.90
ours BERT-WWMentity+auxiliary task 0.904

BERT-WWMentity+auxiliary task+Llogit 0.913

Table 2: results of ablation experiments

dictionary settings dev f1 test f1
LUKE (Yamada et al., 2020)’s 0.913 0.784

GEMNET (Meng et al., 2021)’s 0.945 0.914

Table 3: performance of our model with
injecting different entity dictionaries

5 Results

In this section, we verify the advantages of
our system. On the one hand, we select the
pre-trained BERT-Whole-Word-Masking model
(BERT-WMM) (Liu et al., 2020) as our base-
line model by comparing five different kinds of
Transformer-based models. On the other hand, we
analyze the effects of the way injecting an entity
dictionary, adding an auxiliary task, and the loss
function leveraging the logit matrix.

5.1 Baseline Experiments

The baseline performance of BERT (Devlin et al.,
2018), BERT-WMM (Liu et al., 2020), Distil-
BERT (Sanh et al., 2019), RoBERTa (Delobelle
et al., 2020) and LUKE(Yamada et al., 2020) is
tested by directly fine-tuning the MultiCoNER
data(Malmasi et al., 2022a) on the pre-trained
LMs. All models are uncased. The results are
shown in Table 1. BERT-WWM outperforms the
others by 1 to 5 percentage points, so we choose
BERT-WWM as our encoder. It may be due to
the whole-word-masking mechanism adopted by
BERT-WMM. Most hyperparameters are set as
before, especially the learning rate is 2e-5, the
batch size is 32, max sequence length is 100, max
epochs is 20. All the performance data is on the
development set.

5.2 Ablation Experiments

Results of ablation experiments are shown in
Table 2. Our model Dictionary-fused BERT is
represented as BERT-WWMentity + auxiliary task
+ Llogit and achieves an F1 of 0.913 on dev set
when integrating LUKE entity dictionary into the

model .

Effect of Integrating Entity Dictionaries As
Malmasi et al. (2022b) says the MultiCoNER
task aims to recognize entities in open-world
settings that entities with tag CW and PROD try
to mimic, which reminds us of levering external
knowledge to deal with such issues. We treat
sentence words and matched entities which are
obtained by matching the LUKE entity dictionary
and the original sentence as separated tokens like
Yamada et al. (2020) does. This experiment is
called BERT-WWMentity and improves by 1.7%
over the no-entity BERT-WWM baseline.

Effect of Auxiliary Task We also explore
Multi-Task learning by conducting the experiment
of adding a binary classifier on top of the encoder,
which predicts whether the token is a mention
word or not. The auxiliary task is intended to
increase the overall recall of mentions, which
indeed brings a tiny improvement by 0.4% over
BERT-WWMentity.

Effect of Llogit As mentioned in the previous
chapter, we propose Llogit using the logit matrix
to distinguish some entities due to they are
easily confused with each other. The total loss
function boosting with Llogit improves by 0.9% .
Finally, our model achieves 0.913 F1 on the dev set.

5.3 Evaluation Results

In the stage of evaluation, in order to fully uti-
lize the training and dev sets, we corporate 10-fold
cross-validation training trick and ensemble ten re-
sults to obtain the final one. Concretely, we divide
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the origin training and dev sets into 10 mutually
exclusive subsets of the same size. Each time the
union of 9 subsets is treated as the training set while
the remaining subset is treated as the dev set. We
do training and predicting 10 times to get 10 mod-
els and 10 results of the test set. The final result is
a weighted vote of 10 results, where the weight is
the F1 score of each label of each model.

We also compare the performance of our model
injecting different entity dictionaries on dev and
test sets. We incorporate the LUKE entity dictio-
nary into our model in the evaluation stage. In the
post-evaluation stage, by updating LUKE(Yamada
et al., 2020) entity dictionary to the one of Meng
et al. (2021), our system achieves an F1 of 0.914,
which is higher than the score of 1st on the leader-
board of the evaluation stage. Results are shown in
Table 3.

6 Conclusion

In this paper, we focused on how to integrate ex-
ternal dictionaries into NER models to deal with
NER challenges in open-world settings and design
a robust loss function to prevent overfitting. We
proposed Dictionary-fused BERT, a flexible and
simple approach that includes a contextualized en-
tity representation encoder and a robust loss func-
tion leveraging a logit matrix. More importantly,
our approach can infuse entity dictionaries into any
Transformer-based pre-trained models and is com-
patible with any emerging entities and user-defined
entities without retraining the model.

Although we have already succeeded in inject-
ing entity information into Transformer-based mod-
els, entity spans are implicitly informed through a
special token $. In the future, we will attempt to
explore other ways to explicitly encode entity span
information.
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Abstract
We describe Symlink, a SemEval shared task
of extracting mathematical symbols and their
descriptions from LaTeX source of scientific
documents. This is a new task in SemEval
2022, which attracted 180 individual registra-
tions and 59 final submissions from 7 partic-
ipant teams. We expect the data developed
for this task and the findings reported to be
valuable for the scientific knowledge extrac-
tion and automated knowledge base construc-
tion communities. The data used in this task
is publicly accessible at https://github.

com/nlp-uoregon/symlink.

1 Introduction

The exponential growth of published articles may
exceeds many readers’ ability to keep track of the
development of their field of interest. Hence, au-
tomatic reading comprehension of scientific doc-
uments has attracted the attention of researchers
across various domains such as Drug Discovery,
Knowledge Base Construction, and Natural Lan-
guage Processing. A crucial aspect of understand-
ing scientific literature is understanding terminolo-
gies and formulae because they offer an explicit
and precise interface to present the relation between
scientific concepts (Schubotz et al., 2018). As such,
a reading comprehension machine needs to (i) iden-
tify their descriptions and formulae, (ii) segment
them into primitive terms and symbols, and (iii)
link the associated terms and corresponding sym-
bols.

Working with mathematical formulae is arduous
due to two fundamental reasons. First, common
text encodings such as ASCII and Unicode do not
fully support typing mathematical symbols. As a
result, complex mathematical formulae are rarely
written using either ASCII or Unicode. Rather, a
higher level encoding (or typesetting) is often used
to encode the content of scientific documents, in

particular LaTeX. Second, most scientific docu-
ments are stored in one of two forms: photos or
Portable Document Format (PDF). Scientific doc-
uments that were published prior to the graphical
computer era are printed and now scanned and dis-
tributed as photos. Nowadays, scientific documents
are often composed in some text editors or word
processing software, then exported and shared a
PDF file. Unfortunately, analyzing textual infor-
mation in photo images or PDF files is extremely
difficult, and most of the natural language process-
ing tools are not developed to handle this format.
As such, to facilitate the understanding of scientific
literature, documents should be stored using a uni-
versal easy-to-process text-like encoding. In this
paper, we use LaTeX as the typesetting to facili-
tate document analysis. Thanks to recent advances
in text processing and image recognition, a LaTeX
document can often be restored to some extent from
either a photo or a PDF file (Deng et al., 2017).

This paper introduces the Symlink shared task
for the extraction of mathematical symbols and
their descriptions from English scientific docu-
ments using their LaTeX source. Figure 1 visu-
alizes an example of the task. This paper also
presents an analysis of the results of participant
systems on the task. The rest of the paper is orga-
nized as follows. Section 2 presents related work in
extracting formulae and their related information
from scientific documents. Section 3 describes the
subtasks of this Symlink shared task. Section 4
presents the data creation process including data
sources, preprocessing, annotation guidelines, an-
notation, and data format. An analysis of the cre-
ated data set is provided in Section 5. The evalu-
ation method is presented in Section 6, while the
descriptions of the submitted systems are presented
in Section 7.
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Figure 1: Example of the Symlink tasks.

2 Related Work

Early studies for scientific literature link formulae
to Wikipedia page (Nghiem Quoc et al., 2010; Kris-
tianto et al., 2016). Even though this can provide
additional information regarding the mathematical
expression, a reader might find it harder to under-
stand the Wikipedia page as it is presented in many
unrelated forms. Linking to the description in the
same document is more practical (Kristianto et al.,
2014; Alexeeva et al., 2020) as the descriptions are
dedicated to the symbols and the context presented
in the document.

Previous studies on symbol-description extrac-
tion rely on pattern matching (Yokoi et al., 2011;
Nghiem Quoc et al., 2010) and rule-based algo-
rithms (Alexeeva et al., 2020). These methods
might work for observed patterns with an assump-
tion of close proximity between symbol and de-
scription. They may fail to capture distant symbol-
description pairs and symbols in very complex
structures such as algorithms in computer science
literature.

Most of the previous studies have attempted to
extract and link at formula level (Nghiem Quoc
et al., 2010; Kristianto et al., 2014, 2016). In reality,
understanding mathematical formulae requires de-
tails of atomic symbols e.g. superscript, subscript,
function arguments. We believe that addressing the
problem at this fine-grain level is crucial to drive
future research toward a better understanding of
the complex symbol-description extraction task.

Prior to this shared task, some studies have cre-
ated datasets for similar tasks (Yokoi et al., 2011;
Schubotz et al., 2016; Alexeeva et al., 2020). How-
ever, one of them is created for publications written
in Japanese (Yokoi et al., 2011), making it nearly
impossible to transfer to English literature. While
two other datasets (Schubotz et al., 2016; Alex-
eeva et al., 2020) only annotate small-scale golden
datasets for evaluation purposes. As the result, no
training data is available for training deep neural

network models. In this shared task, we provide
a large-scale dataset for English literature that we
believe will provide enough supervision for the
promising deep neural network-based models.

Definition extraction from scientific document
is close to the task presented in SemEval Task 12.
The Scientific Document Understanding workshop
has hosted the Acronym Extraction and Acronym
Disambiguation Shared Tasks, namely Acronym
Extraction and Acronym Disambiguation Shared
Tasks(Veyseh et al., 2021a, 2022). The prior stud-
ies in this research direction considers extracting
definitions from the text (Spala et al., 2019, 2020;
Veyseh et al., 2020), or together with acronyms, and
acronyms sense disambiguation (Pouran Ben Vey-
seh et al., 2020, 2021).

3 Task Description

The ultimate goal of Symlink shared task is to ex-
tract pairs of mathematical symbols and descrip-
tions from scientific documents. As such, Symlink
shared task is a combination of an entity recogni-
tion and an entity linking task.

Given a LaTeX source of a paragraph from a
scientific document:

• Named Entity Recognition: For each para-
graph, identify all spans containing mathemat-
ical symbols and terminology descriptions.

• Relation Extraction: For each pair of enti-
ties, identify the relationships between them
if it is available among symbols and descrip-
tions using Coref-Description, Coref-Symbol,
Direct, Count relation types.

4 Data Annotation

4.1 Data source
We obtain the documents from arXiv.org, a repos-
itory for preprint scientific articles due to the broad
coverage of subjects in scientific articles published
in ArXiv. In particular, ArXiv offers articles in
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physics, mathematics, quantitative biology, com-
puter science, quantitative finance, statistics, elec-
trical engineering, and economics. As such, our ob-
tained papers contain a large number of mathemati-
cal symbols and equations, allowing a higher yield
of extracted symbol-description relations. Among
these subjects, we choose five subjects of mathe-
matics, physics, biology, economics, and computer
science for annotation.

4.2 Data preparation
ArXiv open-sources the LaTeX version of their
articles, when available. In order to make our Sym-
link dataset open-access to the whole community,
we crawled the metadata of these articles and only
selected articles under the CC BY license. Once
obtained the LaTeX project, we extracted all the
paragraphs from the .tex files. We filtered out all
short paragraphs with less than 50 words and para-
graphs without symbols. Since a formula can be
composed in multiple ways such as inline formu-
lae (between $ $), displayed formulae (between
$$ $$), or using commands e.g. array, to keep
the original TeX format of the formulae, all of
these math objects are masked before tokenization.
Then, we used the SciBERT tokenizer (Beltagy
et al., 2019) to tokenize the text. The original math
object is then restored. As we observed that many
papers have nested math objects, we deleted all the
nested objects, hence, having non-nested LaTeX
data. This is helpful as it makes the LaTeX doc-
uments more similar to the ones generated by the
PDF-to-LaTeX tools, which do not contain nested
objects.

4.3 Taxonomy
To prepare for the annotation, we designed a taxon-
omy with 3 general entity types and four relation
types. In particular, mathematical symbols are an-
notated under the tag SYMBOL, whereas descrip-
tions are tagged under two labels PRIMARY, for
single standalone definitions, and ORDERED, for
the description of multiple terms, whose mentions
are not separated without creating non-contiguous
mentions. Due to the quadratic numbers of com-
binations of descriptions and complex math ex-
pressions, we only tagged an entity if and only if
there is a second entity that pairs with the first en-
tity to form a relationship. For relation, we are
particularly interested in two main types of rela-
tions: DIRECT, linking a symbol with its defini-
tion, and COUNT, linking a description of a con-

cept with a symbol that is the number of instances
of the concept. Due to the sheer number of repe-
titions and coreferences of both descriptions and
symbols, we also annotated COREF-SYMBOL
relation, linking co-referred symbols, and COREF-
DESCRIPTION relation, linking co-referred de-
scriptions. Detailed annotation guidelines with ex-
amples are presented in Appendix A.

4.4 Annotation

We recruited 10 annotators from the crowdsourc-
ing platform upwork.com to annotate scientific pa-
pers in the five mentioned domains (each subject
was annotated by two annotators). The annota-
tors are explicitly selected based on their demon-
strated experiences in reading and writing scientific
documents in their expertise field(e.g., holding an
M.S. or Ph.D. degree). Detailed annotation guide-
lines with many examples and explanations are
provided to train the annotators. Overall, we anno-
tated 102 papers, accounting for 3,690 paragraphs,
and 595K tokens. Our annotators for each domain
co-annotate the documents in their domain and
achieve Cohen’s Kappa scores of (averaged) 0.79.
This inter-agreement score thus indicates substan-
tial agreements between our annotators. Eventually,
the annotators engage in discussions to resolve any
conflict to produce a final consolidated version of
our Symlink dataset.

4.5 Data Format

The participants are provided with preprocessed in
JSON format. Each paragraph is stored in a JSON
object with its id, topic, original LaTeX source, set
of entities, and set of relations. An example of the
data object is presented in Figure 2.

5 Data Analysis

Table 1 presents the statistics for the dataset in-
cluding the number of articles, distribution of enti-
ties, and distribution of the relations. Overall, our
dataset offers more than 31K entities, 20K pairs of
relations, which is one order of magnitude larger
than existing datasets for a similar task.

Figure 3 presents the distribution of the span
lengths of both symbols and descriptions of up to
15 tokens. As can be seen from the figure, the
majority of entities have a length of 1-3 tokens.
However, overall, the span lengths of both symbols
and descriptions vary significantly from 1 up to 47
tokens (note that Figure 3 only illustrates the spans
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{
” i d ” : ”1503 .01158 v2 . . . ” ,
” phase ” : ” t e s t ” ,
” t o p i c ” : ” c s . a i ” ,
” document ” : ”1503 .01158 v2 . . . ” ,
” p a r a g r a p h ” : ” p a r a g r a p h 4 8 ” ,
” t e x t ” : ” . . . w i t h a c o v a r i a n c e
m a t r i x o f $I$ ; t h a t i s , . . . ” ,
” e n t i t y ” : {

”T1 ” : {
” e i d ” : ”T1 ” ,
” l a b e l ” : ”SYMBOL” ,
” s t a r t ” : 325 ,
” end ” : 326 ,
” t e x t ” : ” I ”
} ,
”T2 ” : {

” e i d ” : ”T2 ” ,
” l a b e l ” : ”PRIMARY” ,
” s t a r t ” : 303 ,
” end ” : 320 ,
” t e x t ” : ” c o v a r i a n c e m a t r i x ”
}
} ,
” r e l a t i o n ” : {

”R1 ” : {
” r i d ” : ”R1 ” ,
” l a b e l ” : ” D i r e c t ” ,
” a rg0 ” : ”T2 ” ,
” a rg1 ” : ”T1”
}
}

}

Figure 2: An example of a paragraph in Symlink dataset.

with up to 15 tokens). This demonstrates a key
challenge of the Symbol-Description Linking task
in this paper where symbols and descriptions with
long spans might introduce confusion for extraction
models.

To further understand the dataset, we present
the distances between the entities and relations an-
notated in Symlink by different relation types in
Figure 4. The distributions can be grouped into two
categories. The first category involves the symbol-
description relations while the second group in-
volves the coreference relations. The distributions
of symbol-description relations have long tails, in-
dicating that symbols and descriptions tend to ap-

Table 1: Statistics and label distribution of the Symlink
dataset. ∗The texts are tokenized by SciBERT.

Train Dev Test Total
Statistics
#Documents 91 6 5 102
#Paragraphs 3,120 270 300 3,690
#Sentences 25,070 1,765 2,286 29,121
#Tokens∗ 522K 35K 38K 595K
Entity types
#SYMBOL 18,547 1,504 1,864 21,915
#PRIMARY 7,953 678 907 9,538
#ORDERED 14 3 1 18
Relation types
#Direct 8,200 731 867 9,798
#Count 1,484 17 221 1,722
#Coref-Symbol 6,821 759 690 8,270
#Coref-Description 612 97 154 863
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Figure 3: Length of symbols and descriptions in Sym-
link

pear in close proximity. On the other hand, the
distributions of coreference relations are quite flat,
suggesting that the coreference relations appear in
both short and long distances.

6 Evaluation

The results are evaluated separately for the Named
Entity Recognition (NER) task and the Relation
Extraction (RE) task. For NER, we use the entity-
based partial/type from SemEval 2013 Task 9.1.
For RE, we use standard precision, recall, F-score
metrics. Relations output by the participating sys-
tem is correct if the prediction label strictly matches
the gold standard.

During the 21-day evaluation period (January 10
through 31, 2022), 7 CodaLab users submitted a to-
tal of 59 submissions with 37 submissions passing
the validation and being scored. Given the com-
plexity of the task, we allow unlimited submissions
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Figure 4: Distribution of distances between entities in
Symlink by relation type.

during the evaluation. As such the top submitter
tried up to 18 times.

Table 2 shows the performances of the successful
submissions. Asterisk denotes teams with system
descriptions submitted for review. Among the par-
ticipated teams, 6 teams performs both Named En-
tity Recognition and Relation Extraction subtasks
while one team tried the Named Entity Recogni-
tion subtask only. Figure 5 presents the timelines
of submissions and high scores over the evaluation
period.

7 Summary of Participating Systems

The Symlink track at SemEval-2022 received 4
system description paper submissions presented in
Table 2. Overall, all submitted systems are based
on BERT architecture (Devlin et al., 2019). Among
those, two out of four systems use SciBERT (Belt-
agy et al., 2019), while two remaining systems use
other variants of BERT such as original BERT (De-
vlin et al., 2019) and mBERT (Devlin et al., 2019).

7.1 System Specifics

Lee and Na (2022) (JBNU-CCLab) achieved their
state-of-the-art performance using SciBERT (Belt-
agy et al., 2019). Their entity model consists of
an MRC-based model (Li et al., 2020), simplifying
the tasks as binary classification problems whether
span is valid using entity type information as in-
put features. They proposed a simple rule-based
Symbol Tokenizer to predict accurately the com-
plex symbols appearing in scientific documents.
The relation model exploits entity span information
and entity type information as input features using
typed entity marker. Additionally, the paper ex-

ploited many regularization techniques to improve
the model performance such as regularized dropout
(Wu et al., 2021) and representational collapse pre-
vention (Aghajanyan et al., 2020) and traditional
ensemble techniques.

Popovic and Laurito (2022) (AIFB-WebScience)
proposed an end-to-end joint entity and relation
extraction approach based on transformer-based
language models. Unlike traditional entity and re-
lation extraction methods, which perform the task
in sequence, this system incorporates information
from relation extraction into entity extraction. As
such, the system can be trained even on partially
annotated datasets where only a subset of all valid
entity spans is annotated.

Ping and Chi (2022) (AN(L)P) participated in
the Entity Extraction only. They finetuned a BERT-
large model (Devlin et al., 2019) for each domain.
For cs.ai domain, they used data from cs.ai only,
whereas, for the other domain, they augmented the
in-domain data with the data from cs.ai.

der Goot (2022) (MaChAmp) proposed to pre-
train a language model and re-finetune after multi-
task learning for a pre-defined set of semantically
focused NLP tasks. They trained a multi-task
model for all text-based SemEval tasks that in-
clude annotation on the word, sentence, or para-
graph level. They compared the performance with
models using mBERT (Devlin et al., 2019). The
pretrained multi-task embedding showed a consis-
tent improvement across many tasks against the
mBERT embedding.

7.2 Symbol tokenizer and detection

In this shared task, the uniqueness of the task is
detecting mathematical symbol span. Symbol span
in LaTeX source is comprised of both human lan-
guage and machine language, i.e. LaTeX language.
Further, mathematical formulae in LaTeX sources
are written in both linear and hierarchical manners.
Therefore, a system must consider not only human
language modeling but also a highly systematic syn-
tax system of LaTeX source. As such, fundamental
tasks such as tokenization is a huge contributor to
the robustness of the model.

Among four submitted systems, MaChAmp (der
Goot, 2022) and AN(L)P (Ping and Chi, 2022)
teams used the default tokenizer from either BERT
or mBERT, which are not designed for scientific
documents. Consequently, they are unable to cor-
rectly segment the mathematic source, hence, they
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Table 2: Results for each team/user, ordered by F1-score on Relation Extraction. Team with ∗ submitted their
system description paper to SemEval 2022.

Team Variant Entity Relation
F1 (partial) F1(type) Precision Recall F-score

JBNU-CCLab*

Base 47.61 47.70 32.09 38.56 35.03
+RDrop 47.61 47.70 33.40 38.66 35.84
+R3F 47.61 47.70 33.77 38.56 36.00

+R3F,Ensemble 47.61 47.70 38.20 36.23 37.19
ZQ - 39.39 39.51 57.25 23.29 33.11

AIFB-WebScience*

Max/Original 37.83 37.88 45.80 20.96 28.66
Mean/Original 41.21 41.23 42.25 26.55 32.28

Max/LaTex2Text 38.33 38.38 46.09 21.64 29.45
Mean/LaTex2Text 34.53 34.64 47.02 18.20 26.24

LingZing - 33.87 33.93 13.45 10.92 12.05

MaChAmp*
Single mBERT - - - - 2.67

Multi RemBERT 25.17 25.25 13.11 5.17 7.42
iyerke - 6.67 6.46 0.10 0.62 0.17

AN(L)P* - - 16.30 - - -

achieved the lowest Named Entity Recognition per-
formance. Whereas AIFB-WebScience (Popovic
and Laurito, 2022) and JBNU-CCLab (Lee and Na,
2022) achieved much higher performances thanks
to SciBERT tokenizer because it is trained on sci-
entific literature. However, the SciBERT tokenizer
is far from perfect such that JBNU-CCLab further
proposed to tokenize the mathematical formulae
using a customized rule-based tokenizer based on
capital letters, numbers, and special characters(e.g.
%, $, {, }). Hence, they achieved state-of-the-art
performance on both NER and RE subtasks.

8 Conclusion

In this paper, we present the task description, the
data annotation, the evaluation, the results, and the
descriptions of four submitted systems for Symlink
at SemEval 2022. The Symlink shared task is chal-
lenging given the complexity of the LaTeX source
and partly due to the difference of the domains in-
volved in the data. In this shared task, it is hard
to separate the NER and RE subtasks due to their
constraints.

The submitted systems employed variants of con-
textualized embedding BERT for encoding the text.
In general, the task can be formatted into similar se-
quence labeling and relation extraction task. How-
ever, special treatments are needed to process La-
TeX sources. For instance, a LaTeX-source-trained
tokenizer or a customized tokenizer is essential
to tokenize the text. Some unique characteristics

of the dataset have not been investigated such as
the syntax of the LaTeX source, and the hierarchi-
cal structure of formulae. These suggest future
research directions to improve the robustness of the
model.
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A Annotation guidelines

This section summarizes some rules that we use to
make our annotations more consistent.

Description tagging: A description is usually
a noun or a noun phrase that expresses a concept.
These are the overall rules for entity annotations:

• We only tag a description if the corresponding
symbol presents in the text.

• A description usually is a noun or a noun
phrase. Sometimes, a verb, an adverb, or an
adjective describes an operation, it is also con-
sidered a description.

• Descriptions should be short but it must cover
the elements in the corresponding symbol, esp.
in case of complex symbols, such as super-
script, subscript, arguments, and limits.

Symbol tagging: A mathematical symbol can
present an operand, an operator, an expression, or
combination of these.

• An atomic symbol in PDF format has to be a
character, that means, if we have Y hat, neither
Y nor hat is considered an atomic symbol,
instead “Y hat” is a symbol. In latex format,
\hat{Y} should be annotated.

• A complex symbol is a combination of mul-
tiple symbols and brackets, for example:
“P(x)”, “Wx”

• An annotated symbol has to be a complete
symbol e.g. “P(x)” is good, “P(x” is not be-
cause of lacking the closing parenthesis.

• A complex formula can be segmented into
atomic symbols, we will annotate at all levels
of the complex symbol as long as there are
appropriate descriptions available.

Figure 5: Submission counts and top performances dur-
ing the evaluation period. The submission score is the
F1-score of the RE task.

Relation annotation:

• Every annotated symbol/description has to
have at least one relation linking to its de-
scription/symbol.

• If there are multiple mentions of a single sym-
bol/description, use coreference relation to
link them. A direct relation or a count relation
is used to link the closet pair of symbol and
description.

B Timeline of submissions

Figure 5 presents the number of submissions over
the evaluation of the task.
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Abstract

This paper describes our system in the
SemEval-2022 Task 12: ‘linking mathematical
symbols to their descriptions’, achieving first
on the leaderboard for all the subtasks compris-
ing named entity extraction (NER) and rela-
tion extraction (RE). Our system is a two-stage
pipeline model based on SciBERT that detects
symbols, descriptions, and their relationships in
scientific documents. The system consists of 1)
machine reading comprehension(MRC)-based
NER model, where each entity type is repre-
sented as a question and its entity mention span
is extracted as an answer using an MRC model,
and 2) span pair classification for RE, where
two entity mentions and their type markers are
encoded into span representations that are then
fed to a Softmax classifier. In addition, we de-
ploy a rule-based symbol tokenizer to improve
the detection of the exact boundary of symbol
entities. Regularization and ensemble methods
are further explored to improve the RE model.
1

1 Introduction

Mathematical symbols and descriptions appear in
various forms across document section boundaries
without explicit markups, and mathematical sym-
bols appear in the form of long texts. Thus, link-
ing mathematical symbols and their descriptions is
challenging.

SemEval 2022 task 12: ’linking mathematical
symbols to their descriptions (Lai et al., 2022a)’, is
a relation extraction task targeted at scientific doc-
uments divided into two sub-tasks: sub-task A is a
named entity recognition (NER) task that aims
to predict the span of symbols and descriptions,
and sub-task B is a relation extraction (RE) task
that aims to predict relations between symbols and
descriptions.

1Our code is publicly available at https://github.
com/ZIZUN/symlink.

Extracting these entities and relations is done
to discover relational facts from unstructured texts.
This problem can be decomposed into NER (Tjong
Kim Sang and De Meulder, 2003; Ratinov and
Roth, 2009) and RE (Zelenko et al., 2002; Bunescu
and Mooney, 2005). Early works employed a two-
stage relation extraction system, training one model
to extract entities (Florian et al., 2004) and another
model to classify relations between these entities
(Zhou et al., 2005; Chan and Roth, 2011). To reduce
the error propagation of NER or better capture the
interactions between NER and RE, joint models
have been proposed as a promising approach that
are based on an end-to-end method or on the setting
of multi-task learning using shared representations
(Wadden et al., 2019; Lin et al., 2020; Wang and
Lu, 2020).

Recently, it has been observed that RE based on
the shared encoder is suboptimal, but the use of
separated encoders for NER and RE has shown
improved performance compared to shared en-
coders, reexamining the effectiveness of the simple
pipelined two-stage approach (Zhong and Chen,
2021; Ye et al., 2021). From these results, we hy-
pothesize that whereas separated encoders for NER
and RE can learn customized representations use-
ful for each task, joint models may include irrele-
vant information in the learned representation for
NER or RE tasks, lowering the performance of the
model.

These results of using distinct encoders (Zhong
and Chen, 2021) encourage us to adopt the afore-
mentioned two-stage approach for NER and RE
tasks, consisting of 1) MRC-based NER and 2)
span pair classification for RE, as follows:

1. MRC-based NER using a symbol tokenizer:
Unlike the PURE system of (Zhong and Chen,
2021) that exploits the standard span-based
NER of (Lee et al., 2017; Wadden et al., 2019),
our NER model is based on an MRC-based
model (Li et al., 2020), which treats NER as
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Figure 1: Our NER model architecture based on MRC

an MRC problem by providing an entity type
as a question and using an MRC model to ex-
tract its entity mentions as answers. As in (Li
et al., 2020), an MRC model is based on two
binary classification models: first, the position
classifier predicts the start and end indexes to
create a set of valid answer spans, second, the
span classifier determines whether each of the
valid spans is an answer. As a pretrained en-
coder for the NER model, SciBERT of (Belt-
agy et al., 2019) is used. Before presenting to
SciBERT’s tokenizer, we apply a rule-based
symbol tokenizer to precisely predict the span
boundary of mathematical symbols that ap-
pear in scientific documents,

2. Span pair classification for RE with solid
markers: Similar to the PURE system of
(Zhong and Chen, 2021), a pair of spans result-
ing from the NER model is given as an input
but with solid markers, i.e., using a typed en-
tity marker, as in the works of (Wu and He,
2019; Zhou and Chen, 2021). The SciBERT
encoder then uses this marked input to gener-
ate contextualized representations, which are
then transformed to a pair of span represen-
tations and fed into a Softmax classifier. To
define a set of relation types (or classes), the
RE model explicitly adds a NIL-type class as
a relation type to refer to the case in which
a pair of spans has no relationship. It should

be noted that the NER model’s symbol tok-
enizer is not used in the RE model. Regulariza-
tion methods such as RDrop (Wu et al., 2021)
and R3F (Aghajanyan et al., 2020), as well as
traditional ensemble techniques, are used to
improve the performance of RE models2.

The remainder of this paper is organized as fol-
lows: Section 2 presents our system architecture
in detail, Sections 3-5 describe the experimental
setting, results, and ablation studies, and Section 6
contains our concluding remarks and future works.

2 System Overview

In this section, we first describe the models of the
proposed system for each sub-task.

2.1 MRC-based NER with a symbol tokenizer

Figure 1 shows our MRC-based NER model, that
extracts mathematical symbols and descriptions
from scientific documents.

2.1.1 Symbol tokenizer as a pre-tokenizer
We discovered in our preliminary experiment that
SciBERT’s tokenizer is not optimal for extracting
the boundaries of mathematical symbols, because
non-alphanumeric characters are important in the
mentions of symbol-type entities. We perform a

2Regularization and ensemble methods were not adopted
in the NER model.
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Symbol Tokenizer

Input text: Importantly , $\\mathcal{M}$ is still a Bayesian model  …

SciBERT Tokenizer

Processed tokens: ‘i’, ‘mpo’, ‘##rt’, ‘##ant’, ‘##ly’, ‘,’, ‘$’, ‘\\‘, …

‘i’, ‘mportantly’, ‘,’, ‘$’, ‘\\’, ‘mathcal’, ‘{’, ‘M‘, ‘}‘, ‘$‘ …

Figure 2: Two-step tokenization process for NER model
with a symbol tokenizer

rule-based symbol tokenizer as a pre-tokenizer be-
fore applying SciBERT’s tokenizer to precisely de-
tect the boundary of symbol-type entities. Figure 2
presents this two-step tokenization adopted for the
NER model.

The symbol tokenizer seperates mathematical
symbols based on capital letters, numbers, and
special characters (e.g., %, $, }, {). Our symbol
tokenizer’s rules are derived heuristically from a
training dataset3.

2.1.2 MRC models for nested NER
Given that the dataset addresses nested entities, we
use the MRC model of (Li et al., 2020), that takes
a question-augmented input. Specifically, suppose
that X = [x1, · · · , xn] is a sequence of tokens in
a scientific document, where n is the length of the
sequence. Given a target entity type t, its natural
language form Qt = [q1, · · · , qm] is provided as
a question based on Table 1, where qi is the i-th
token of Qt and m is the length of the question.
The question-augmented input X ′ is formulated as
follows:
X ′ =[CLS], q1, · · · , qm, [SEP], x1, · · · , xn

Type Text
SYMBOL symbol
PRIMARY description
ORDERED ordered

Table 1: Natural language forms mapped for entity
types

3This rule-based symbol tokenizer is also included in our
codes.

Then, as a pre-trained language model, we apply
SciBERT’s encoder trained from scientific domain
documents to obtain contextualized representations
T ∈ Rn×d over n tokens in a given document X ,
where d is the dimensionality of SciBERT’s hidden
representation.

The NER model predicts the probability of each
token being a start or end index as follows:

Pstart = Sigmoid(FFN (start)(T )) ∈ Rn

Pend = Sigmoid(FFN (end)(T )) ∈ Rn
(1)

where FFN (start) (FFN (end)) is a feed-forward
neural network layer for predicting the start posi-
tion and Pstart (Pend) represents the probability
of each index being the start (end) position of an
entity, given a question entity type.

Based on Eq. (9), we obtain sets of predicted
start and end indices as follows:

Istart =
{
i
∣∣∣1(P (i)

start > 0)
}

Iend =
{
i
∣∣∣1(P (i)

end > 0)
} (2)

where P (i)
start (P (i)

end) is the i-th element of P start

(P end) and 1 is an indicator function that gives 1 if
an element is true, and 0 otherwise.

For any start index istart ∈ Istart and iend ∈
Iend, a binary classifier is applied to predict
whether the span of (istart, iend) becomes an an-
swer, as follows:

Pistart,iend
= (3)

Sigmoid
(
FFN (span)(Tistart ;Tiend

)
)

where ; is the concatenation operator and
FFN (span) is an additional feed-forward neural
network layer for the span prediction.

Training As in (Li et al., 2020), the loss function
for predicting the start and end positions is based on
the cross-entropy term, which is formulated with
probabilities of indexes being the start and end
positions, as follows:

Lstart = CE(Pstart, Ystart)

Lend = CE(Pend, Yend)
(4)

where Ystart ∈ {0, 1}n and Yend ∈ {0, 1}n repre-
sent the gold start and end positions, respectively of
input tokens. The loss function for span probability
is formulated as follows:

Lspan = CE(Pstart,end, Ystart,end) (5)
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SciBERT

[CLS] … <S> // t </S> <D> price </D> …

𝑇[𝐶𝐿𝑆] 𝑇// 𝑇𝑡 𝑇𝑝𝑟𝑖𝑐𝑒

𝑇[𝐶𝐿𝑆] 𝑇𝐸1

Average

𝑇𝐸2

Feed Forward

…

Corefer-Description

Corefer-Symbol

Count

Direct

NIL-type

Softmax

Entity Span (1)
(for SYMBOL, PRIMARY, ORDERED)

Entity Span (2)
(for SYMBOL, PRIMARY, ORDERED)

Figure 3: Span pair classification models for RE

where Ystart,end represents the gold span of the
input tokens. The overall loss is formulated as fol-
lows:

L = λ1Lstart + λ2Lend + λ3Lspan (6)

where Lstart, Lend, and Lspan are the loss func-
tions for predicting the start, end positions, and for
the span prediction task, respectively, and λi is the
weight for each loss function.

2.2 Span pair classification for RE with solid
markers

Figure 3 represents the RE model based on the
span pair classification of (Wu and He, 2019; Zhou
and Chen, 2021), that classifies a pair of entity
spans extracted from the MRC-based NER model
in Section 2.1.2.

Like the NER model, we use SciBERT as a pre-
trained language model for the RE model, but keep
separate parameters that are not shared with the
NER’s encoder, following the work of (Zhong and
Chen, 2021).

In the RE model, a type-marked document is
provided as input. Specifically, suppose that e1 and
e2 are a pair of entity spans (i.e., sequences of
tokens), and their types are t1 and t2, respectively.
Then, a type-marked document X̂ is defined by
prepending and appending type markers before and
after each entity span, as follows:
X̂ =[CLS] · · · <t1> e1 </t1> · · · <t2> e2 </t2>
· · · where <ti> and </t1> are type markers.

Given X̂ , we apply SciBERT’s encoder to ob-
tain contextualized representations T (rel). We then
obtain span representations for e1 and e2 by mean-
pooling over their contextual representations, as

follows:

Hei =
1

(endei − startei + 1)

endei∑

j=startei

T
(rel)
j

(7)
where startei and endei represent the start and
end positions of ei in the type-marked document
X̂ , respectively. Finally, the model predicts the
Prelation ∈ Rl+1 probabilities over the relation
types of e1 and e2 as follows:

Prelation = (8)

softmax(FFN (rel)(T
(rel)
[CLS];He1 ;He2))

where l is the number of relation types, NIL-type of
relation is presented as l + 1-th type, FFN (rel) is
an additional feed-forward neural network for rela-
tion classification, and T (rel)

[CLS] (i.e., the contextual

representation of the [CLS] token of X̂) is concate-
nated to provide a global context over the entire
document.

During training, the loss function for relation
classification uses a cross-entropy function, which
is formulated as follows:

L = CE(Prelation, Yrelation) (9)

where Yrelation ∈ {0, 1}l+1 represents a one-hot
vector for the gold-relation label of a given pair of
entities.

Tokenization Unlike the NER model in Sec-
tion 2.1.2, only SciBERT’s WordPiece tokenizer is
exploited.

2.2.1 Automatic creation of examples for
NIL-type class

Because we do not have explicit training examples
for the NIL-type class, we use a simple negative
sampling method to train the RE model. When a
pair of entities appear in the context within the
maximum length of tokens, they are considered
negative samples (i.e., examples for the NIL-type
class) when they do not have any relationship. The
number of NIL-type samples collected in this man-
ner, however, was more than 10 times that of nor-
mal samples. To correct the data imbalance, we
use oversampling of (Chawla et al., 2002) on nor-
mal positive samples. Oversampling is also used
to balance the positive, negative examples in the
development set.
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Model
NER RE

Strict Exact Partial Type Precision Recall F1 score
Our System - - 47.61 47.70 32.09 38.56 35.03
+ RDrop - - - - 33.40 38.66 35.84
+ R3F - - - - 33.77 38.56 36.00
+ R3F, Ensemble - - - - 38.20 36.23 37.19

Table 2: Performances of final submission runs of our NER and RE models on the test dataset

3 Experimental setup

3.1 Dataset

We use the SemEval-2022 Task 12 dataset(Lai et al.,
2022b) in our experiments.

The NER dataset contains three entity types:
SYMBOL, PRIMARY, ORDERED. SYMBOL
is a mathematical symbol, PRIMARY is a primary
description, and ORDERED is a description of
multiple terms.

The RE dataset contains four relation types:
DIRECT, COUNT, COREFER-DESCRIPTION, and
COREFER-SYMBOL. The dataset annotation guide-
lines4 state that the relations should be direc-
tional; however, some of the relations, such as
COREFER-SYMBOL, are unidirectional. COREFER-
SYMBOL(E1, E2) is the same as COREFER-
SYMBOL(E2, E1),

The directions of the other relations are defined
based on the entity types. Such examples include
COUNT(E1, E2) and DIRECT(E1, E2) where E1

is a symbol-type entity and E2 is a description-type
entity. In postprocessing, the directions of these
relations are automatically determined based on
entity types in a post-processing manner. In other
words, for the RE model, the order of the two en-
tity spans e1 and e2 is determined based on their
corresponding entity types.

Our system is evaluated separately for the NER
and RE tasks. For NER, we use the entity-based
strict/exact/partial/type from SemEval 2013 Task
9.1 (Segura-Bedmar et al., 2013). We use the stan-
dard precision, recall, f1-score metrics for RE.

3.2 Regularization and ensemble for RE
model5

We use two regularization methods to improve the
performance of the RE model: RDrop (Wu et al.,

4Official annotation guidelines are available at
http://nlp.uoregon.edu/download/symlink/
guideline.pdf

5These regularization and ensemble methods were not
applied to NER model.
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Figure 4: Performance comparison of ensembles of 10
RE models varying thresholds

2021) and R3F (Aghajanyan et al., 2020). Rdrop is
a regularization method that reduces the difference
between representations at inference and training
time caused by dropout, and R3F is a regularization
method that maintains more generalizable repre-
sentations of the pretrained language model during
fine-tuning.

We train 10 RE models using different random
seeds for the ensemble inference and and then per-
form maximum voting for each entity pair.

4 Experimental results

Table 2 presents the final results on the blind test
dataset6.

As shown in Table 2, using the regularization
method improves performance over the baseline
model. Among the two methods, R3F is better than
RDrop; thus, we use R3F for the submission of the
RE model.

Overall, the recall is relatively higher than the
precision for the RE model. In our preliminary
experiments, we observed a similar tendency with
high recall for the ensemble method, despite the
fact that the ensemble method was shown to be
effective in terms of F1 score.

We use a voting threshold to increase the pre-

6Due to a submission error, we do not report strict/exact
scores at the NER task.
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cision of the ensemble RE model and adjust the
ensemble inference so that a NIL-type class is as-
signed either when the size of the majority votes
from the models does not exceed the voting thresh-
old or when the class from the majority votes is
NIL-type.

Figure 4 shows the performance of the ensemble
method across different voting threshold values. In
this case, we observe that as the voting threshold
is raised, the F1 score gradually increases, while
precision increases and recall decreases. As a result,
when voting threshold is 10, the best performance
of the F1 score is obtained. This run was finally
submitted.

5 Analysis

In this section, we examine the effects of some of
the components of our system as well as additional
trials.

5.1 Effect of symbol tokenizer on NER task

Symbol Tokenizer Exact Not Exact Recall
Used 18668 85 99.54
Unused 18412 341 98.18

Table 3: Frequencies and recalls of SYMBOL-type en-
tities whose sequences of tokens are exact gold spans,
with and without symbol tokenizer.

To examine the effect of the symbol tokenizer,
Table 3 compares the frequencies and recalls of
SYMBOL-type entities whose exact gold spans
are correctly obtained when and without the sym-
bol tokenizer. In this case, recall is defined as the
ratio of the number of symbol-type entities whose
exact span boundaries are extractable using a given
tokenizer to the total number of symbol-type enti-
ties.

5.2 Effect of removing non-relational entities

Method NER
Strict Exact Partial Type

Not Excluded - - 47.61 47.70
Excluded - - 47.18 47.31

Table 4: Performances of NER models when including
or excluding non-relational entities that have no rela-
tionship with other entities.

Assuming that mathematical symbols and de-
scriptions must have one or more relations accord-
ing to the annotation guideline, our additional trial
is to exclude non-relational entities that have no

relationship with other entities. Table 4 shows the
performance of our NER models when those non-
relational entities are included or excluded. How-
ever, it is observed that removing non-relational en-
tities reduces the performance of the NER model.

5.3 Analysis of RE model
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Figure 5: Confusion matrix of RE model on develop-
ment dataset

Figure 5 shows the confusion matrix of the
RE model. It is observed that the discrimina-
tion between COUNT and DIRECT is particularly
challenging, and the effectiveness of COREFER-
DESCRIPTION is relatively low. For this reason,
there may be a low number of examples for COUNT

and COREFER-DESCRIPTION labels. Given our as-
sumption that these weak performances come from
a lack of sufficient number of examples, data aug-
mentation may need to be necessary to improve the
performances of these relation labels.

6 Conclusion

Our system shows first for all subtasks of SemEval-
2022 Task 12: ’linking mathematical symbols to
their descriptions’. MRC-based NER and span pair
classification for NER are part of our system that
uses SciBERT as a backbone encoder. To improve
the performance, the symbol tokenizer for NER
model, regularization, and ensemble methods, for
RE model are used.

To improve the performance further, future work
should look into data augmentation and mathemati-
cal symbol and description-aware pretraining.
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A Comparison of regularization methods
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Figure 6: Comparison of the number of steps required
for regularization methods in RE models.

We tried RDrop and R3F as regularization meth-
ods, and there were differences in terms of not only
performance but also the training time. To compare
training time, we measured the number of steps
required for training our RE model. The results are
shown in Figure 6.

B Hyper-parameters

NER model
Sliding window 100
Dropout rate 0.1
Learning rate 3e-5
λ1, λ2, λ3 1, 1, 0.1
Warmup steps 1000
Scheduler OneCycle
Optimizer AdamW
Max length 512
Batch size 2
Accumulation steps 5
Span classifier Inter hidden 2048

RE model
Dropout rate 0.1
Learning rate 4e-5
Warmup steps 1000
Scheduler Cosine
Optimizer AdamW
Max length 512
Batch size 32
Accumulation steps 2

Table 5: Hyper-parameter settings

Table 5 shows the setup of hyper-parameters of
our NER and RE models. We ran the experiments
using 4 TITAN RTX(24GB) GPUs.
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Abstract

In this paper, we present an end-to-end joint
entity and relation extraction approach based
on transformer-based language models. We
apply the model to the task of linking mathe-
matical symbols to their descriptions in LaTeX
documents. In contrast to existing approaches,
which perform entity and relation extraction in
sequence, our system incorporates information
from relation extraction into entity extraction.
This means that the system can be trained even
on data sets where only a subset of all valid
entity spans is annotated. We provide an ex-
tensive evaluation of the proposed system and
its strengths and weaknesses. Our approach,
which can be scaled dynamically in computa-
tional complexity at inference time, produces
predictions with high precision and reaches 3rd
place in the leaderboard of SemEval-2022 Task
12. For inputs in the domain of physics and
math, it achieves high relation extraction macro
F1 scores of 95.43% and 79.17%, respectively.
The code used for training and evaluating our
models is available on GitHub1.

1 Introduction

Information extraction systems are a key compo-
nent in making scientific literature more consum-
able. With the large amount of scientific works
which are constantly being published (e.g., more
than 60,000 machine learning papers per year (Fär-
ber, 2019)), indexing techniques that go beyond
keyword searches are becoming more important.
While many efforts have focused on the processing
of abstracts as a way of building representations of
publications (Gábor et al., 2018; Luan et al., 2018),
methods processing full text documents will be
needed to accurately capture their contents for use
cases such as academic search and recommender
systems and scientific impact quantification.

The task tackled in this paper (Lai et al., 2022),
consisting of linking mathematical symbols to their

1https://github.com/nicpopovic/RE1st

descriptions in LaTeX documents, is a joint entity
and relation extraction task. While earlier work
tackled both subtasks sequentially via separate
models, more recent approaches tend to use a single
joint model (Luan et al., 2018; Bekoulis et al., 2018;
Nguyen and Verspoor, 2019; Eberts and Ulges,
2021). In contrast to early approaches, which are
based on Bi-LSTMs (Luan et al., 2018; Bekoulis
et al., 2018; Nguyen and Verspoor, 2019), more
recent approaches (Wadden et al., 2019; Eberts and
Ulges, 2021) make use of transformer-based lan-
guage models, such as BERT (Devlin et al., 2019).
A key challenge in joint models is the computa-
tional complexity stemming from pairwise com-
parisons between entity spans required for relation
extraction. Previous works tackle this using a span
scoring mechanism based on a feed forward neu-
ral network, which produces a score indicating the
likelihood that a span is in a relation (Luan et al.,
2018; Wadden et al., 2019). Relation extraction
is then performed on only those spans with the
highest scores. For data sets which include span
annotations even for entities which are not in any
relation, such as DocRED (Yao et al., 2019), as
examined by Eberts and Ulges (2021), such a scor-
ing mechanism is not necessary, because the entity
extraction component of the model can be trained
on these annotations. For the task tackled in this
paper, complete annotations for entity spans are
not provided, making the use of a span scoring
mechanism necessary.

In this paper, we propose an end-to-end approach
for joint entity and relation extraction. The ap-
proach is based on a transformer-based language
model, following previous work (Eberts and Ulges,
2020, 2021), but is peculiar in the sense that it in-
corporates a span scoring mechanism based on dot
product similarity which is learned via triplet loss
rather than cross entropy loss, making it applicable
to datasets which contain annotations only for a
subset of all valid entity mention spans.
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Figure 1: Architecture overview with detail illustrations for the soft mention detection (left) and relation extraction
(right) modules. The layout of this figure was inspired by a similar figure found in (Eberts and Ulges, 2021).

2 Task Description

The task tackled in this paper is one of joint en-
tity and relation extraction. This means, given an
unannotated text as input, a system needs to (1) re-
turn annotations of relevant entity mention spans,
(2) perform coreference resolution, (3) entity type
classification, and finally (4) relation extraction on
the identified spans. The specific task at hand has a
number of key features that separate it from similar
settings.

First, regarding entity extraction, the annotations
and, thus, the final scoring are restricted to those
entities which participate in relations. This means
that a system which correctly identifies all symbols
and descriptions in the input will score poorly even
on the entity extraction portion of the final bench-
mark if the relation extraction is incorrect. More
importantly from an engineering perspective, the
resulting span annotations are incomplete in that
they only include a partial set of valid spans for
each document. In the entity extraction step we
can, therefore, only reliably identify true positives
and false negatives, not, however, false positives
and true negatives.

Second, while coreference resolution (i.e., the
linking of multiple mentions to a single entity) is
part of the task, relation extraction is to be per-
formed on a mention-level rather than the entity-
level. This means that although a system may cor-
rectly identify a text span as being the description
of a certain symbol, this classification will only
be deemed correct in the evaluation if linked to
the correct mention of said symbol. As a result,
coreference links are interpreted as relations be-
tween mentions and thereby as part of the relation
extraction subtask, rather than as part of the entity

extraction subtask.
Third, entity types can be reliably inferred from

the relations between them, meaning that instances
of relations are only found between certain entity
types. This feature can be used to inform the design
of a system in two ways: Either, the task of relation
extraction can be simplified by reducing the choices
given to a classifier based on the entity types of two
spans (i.e., a symbol cannot be the description to
another symbol, therefore any such prediction can
be disregarded), or the entity type classification can
be informed by the relation extraction (i.e., if we
identify a span A as the description of another span
B, span A must be a description, while span B
must be a symbol).

3 Approach

We propose an end-to-end entity and relation ex-
traction system using a transformer-based language
model, as illustrated in figure 1. The system con-
sists of 4 modules: (1) The input encoding module
tokenizes the input text and produces contextual-
ized embeddings for each token, (2) the soft men-
tion detection module ranks possible token spans
by the likelihood with which they contain an en-
tity mention, (3) the relation extraction module
extracts relations on a subset of the highest ranked
spans from the previous step, and finally (4) the en-
tity type classification module assigns entity types
to spans based on the relations detected between
them.

3.1 Input Encoding

We examine two separate options of encoding the
input: For the first option, we pass the input text
to the language model without prior modification,
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whereas for the second option, we perform prepro-
cessing on the input to remove LaTeX code from
the text portions of the input. Any input in LaTeX
math mode is passed to the model unchanged.

Since our approach uses a transformer-based lan-
guage model, the input needs to be tokenized. As
a result of the tokenization, there are instances of
relations which cannot be matched correctly by our
model, due to the annotated span boundaries being
contained within a token. For the training and de-
velopment sets, this occurs in 1.99% and 2.84% of
relation instances, respectively, and in these cases
we adjust the labels accordingly.

3.2 Soft Mention Detection
Given that we cannot reliably identify false posi-
tives and true negatives from our labeled data, a
mention detection strategy based on cross-entropy
loss cannot be used for this task. Instead of fol-
lowing previous approaches in using feed-forward
neural networks (Luan et al., 2018; Wadden et al.,
2019), we propose a linear similarity based ap-
proach which ranks possible spans based on their
similarity to multiple prototype embeddings (one
prototype per entity type).

We begin by computing the set of all possible
continuous spans up to a maximum length n and
produce a fixed-size embedding es for each span
by pooling the contextualized embeddings of all
tokens within it. As pooling strategies we use either
mean or max pooling. For each span embedding es
we compute a span score Xs:

Xs = max
ai∈A

(sim(es, ai)) (1)

where A is the set of prototype embeddings which
contains an embedding for each entity type and
sim(a, b) is the dot product similarity of two vec-
tors. We select the k spans with the highest values
for Xs as our candidate mentions M for relation
extraction. We compute the mention loss as the
mean triplet loss (Schroff et al., 2015) across all
prototype embeddings in A and all mentions in M .

3.3 Relation Extraction
For relation extraction, we use the document-level
relation extraction model DL-MNAV (Popovic and
Färber, 2022). We use the concatenation of two
span representations as a representation for the
relation between them (Wang et al., 2019). The
resulting relation representations are compared
to a single relation prototype embedding per

relation type, as well as m additional prototypes
representing the none-of-the-above class (this
follows the MNAV model (Sabo et al., 2021)).
The relation type corresponding to the prototype
resulting in the highest dot product similarity for a
relation representation is used as the predicted type.
As loss function for the relation classification we
use adaptive thresholding loss (Zhou et al., 2021)
as it is capable of handling the large imbalance
between positive and negative training examples
present in document-level relation extraction tasks.

Due to quadratic scaling of the pairwise
comparisons it is not feasible to perform relation
extraction on all possible continuous spans. We,
therefore, perform relation classification on the top
k spans2 with the highest span scores, meaning
that we have to classify a maximum of k(k − 1)
relation representations for a given input text.
The computational complexity of the system can,
therefore, be adjusted dynamically at inference
time by changing k, for example to be run on
GPUs with smaller memory capacity or on GPUs
with higher memory capacity to improve the
quality of predictions.

As a result of the soft mention detection, it is
possible that some of the k spans are overlapping
and correspond to the same target (see appendix
A.2 for examples). This means that the relation
classifier may output multiple predictions for the
same relation instance with slightly different men-
tion spans. For predictions in which both the head
and tail entity overlap, we therefore output only the
prediction with the highest classification score.

3.4 Entity Type Classification

Finally, we use a simple mapping to determine the
entity type of the spans which participate in the
relations predicted by the relation classifier. The
mapping used can be found in appendix A.1. For
spans classified as "PRIMARY" we additionally
change the predicted type to "ORDERED", if they
are the head entity of more than one "Direct" rela-
tion.

4 Experimental Setup

For our language model we use SciBERT (Belt-
agy et al., 2019), which is trained on scientific

2During training we add annotated spans which are not
among the top k spans.
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Entity Extraction Relation Extraction
pooling preprocessing F1 strict [%] F1 exact [%] F1 partial [%] F1 type [%] precision [%] recall [%] F1 [%]

Development set
max None 59.79 ± 0.99 60.19 ± 0.99 69.20 ± 0.68 67.45 ± 1.05 65.86 ± 1.34 44.14 ± 0.97 52.86 ± 1.10
mean None 58.02 ± 3.67 58.49 ± 3.70 69.14 ± 2.02 66.98 ± 2.31 61.27 ± 5.09 44.58 ± 1.56 51.61 ± 2.87
max LaTeX2Text 58.90 ± 0.79 59.30 ± 0.87 68.69 ± 1.00 66.88 ± 1.09 64.54 ± 2.61 43.77 ± 1.76 51.66 ± 0.77
mean LaTeX2Text 54.59 ± 15.07 54.99 ± 14.44 65.62 ± 11.28 64.22 ± 14.22 63.89 ± 33.24 40.59 ± 15.90 49.64 ± 23.63

Test set
max None - - 37.83 ± 0.85 37.88 ± 0.85 45.80 ± 5.80 20.96 ± 0.08 28.66 ± 1.19
mean None - - 41.21 ± 1.18 41.23 ± 1.19 42.25 ± 3.19 26.55 ± 1.19 32.28 ± 0.20
max LaTeX2Text - - 38.33 ± 1.57 38.38 ± 1.57 46.09 ± 0.77 21.64 ± 1.60 29.45 ± 1.41
mean LaTeX2Text - - 34.53 ± 11.02 34.64 ± 11.13 47.02 ± 20.70 18.20 ± 8.10 26.24 ± 11.64

Table 1: Entity and relation extraction scores for 4 different models on both the development and the test set. NER
metrics strict and exact were not produced by the test set evaluation script on the competition site and the test set is
not publicly available at the time of writing.

text, via Huggingface’s Transformers library (Wolf
et al., 2020). For LaTeX preprocessing (see section
3.1) we use Pylatexenc3. As our optimizer, we use
AdamW (Loshchilov and Hutter, 2019) with learn-
ing rates ∈ [3e−5, 5e−5, 7e−5], a linear warmup
of 1 epoch followed by a linear decay to zero, for
a total of 60 epochs4, a batch size of 4, and apply
gradient clipping with a max norm of 1. During
training, we randomly downsample the amount of
candidate spans for soft mention detection to 1000,
while ensuring that all labeled spans are included.
During training and development set evaluation,
we set k, the number of spans to perform relation
classification on, to 50, as preliminary experiments
showed this value to yield a good compromise be-
tween model performance and training time. For
test set evaluation we increase k to 400. Training
takes approximately 10 hours on a single NVIDIA
V100 GPU using mixed precision. We perform
early stopping based on the micro F1 score for re-
lation extraction on the development set. We train
each hyperparameter configuration 3 times using
different random seeds and report the median and
standard deviation for each metric. As a result of
the different combinations of preprocessing and
mean-/max-pooling, we examine the performance
of 4 configurations on the test set. For our eval-
uation, we report the micro F1 scores for NER
metrics as used in SemEval-2013 Task 9.1 (Segura-
Bedmar et al., 2013)5. For relation extraction we
report micro precision, recall and F1 scores, unless
otherwise indicated.

3https://github.com/phfaist/pylatexenc
4The length of one epoch is dictated by the number of

training examples, which is 3119.
5We use the following implementation: https://

github.com/davidsbatista/NER-Evaluation

5 Results

5.1 Overview

The results of the 4 model configurations on the
test set are reported in table 1. In comparison to
the other approaches taking part in SemEval-2022
Task 12, our system ranks in place 3/9 in terms of
relation extraction F1 score.6

In general, we find that our model produces pre-
dictions with significantly higher precision than
recall.

5.2 Impact of Preprocessing

With respect to the preprocessing procedure, we
observe no clear performance impact. We conclude
that SciBERT appears to cope well with LaTeX
code and preprocessing, as described in this paper,
is not required.

5.3 Impact of Pooling Procedure

Regarding the pooling procedures we find that
mean pooling tends to cause higher variability in
the classification performance of the models. For
the models trained using mean pooling and pre-
processing, 1 of 3 models performed significantly
worse than the others, causing the large standard
deviation in the results.

5.4 Impact of Domain

In table 2, we show the relation extractionF1 scores
for a model across the 4 different domains covered
by the development set paired with the distribution
of training data across domains. We observe large
performance differences depending on the domain
with math and physics showing very high macro

6Scores for other metrics are not publicly visible on the
leaderboard at the time of writing.
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domain
cs econ math physics

% of training corpus 16.63 27.08 12.82 32.08
relation type
Direct 33.12 21.05 63.82 85.71
Count - - 84.62 100.00
Corefer-Symbol 21.05 20.47 91.30 100.00
Corefer-Description 3.51 0.00 76.92 96.00
macro 19.23 13.84 79.17 95.43
micro 25.93 19.49 78.77 88.77

Table 2: F1 scores for relation extraction across differ-
ent domains and relation types on the development set.
cs and econ do not contain any instances of "Count".
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Figure 2: Plot of the impact of increasing values of k on
precision, recall, and F1 scores on the development set.

F1 scores (79.17% / 95.43%) and computer sci-
ence and economics performing poorly (19.23% /
13.84%). While physics content does represent the
majority of training examples, the distribution of
domains across training examples does not fully
explain the disparity.

5.5 Impact of k

In figure 2, we show the change in relation ex-
traction performance across different values for k.
We also include in the plot the percentage of en-
tity spans in the top k ranked spans (entity recall).
While the relation extraction performance improves
proportional to the entity recall for k ≤ 100 the
improvement slows down for higher k. We hypoth-
esize that this is due to the limiting of k = 50 and
the candidate span downsampling during training,
which prevents the model from seeing some of the
more difficult cases. In appendix A.2, we show
examples of detected spans.

matching precision recall F1,micro

strict 55.85 44.01 49.23
partial 62.87 46.13 53.22

Table 3: Comparison of strict and partial matching
requirements with respect to classification scores on the
development set.

5.6 Impact of Tokenization

In order to measure the impact of tokenization er-
rors produced by adjusting labels during training,
we perform a partial matching of relation labels as
follows: For predicted relation triples which are
false positives, we accept them as true positives
for an annotated instance if the intersection-over-
union (IOU) scores of both head and tail entities
are greater than 67% and the predicted relation type
matches the label. In table 3 we show the results of
both strict and partial matching for our best model
on the development set. We find that the relaxed re-
quirements for span accuracy result in an increase
in the F1 score of 3.99%. We conclude that tok-
enization errors, while measurable, do not account
for the majority of errors of our model.

6 Conclusion

In this paper, we present an end-to-end joint entity
and relation extraction approach for linking math-
ematical symbols to their descriptions in LaTeX
documents. Our model appears to be sensitive to
the domain of the input documents, achieving high
macro F1 scores of 95.43% and 79.17% for physics
and math content, respectively, while achieving
macro F1 scores of only 19.23% and 13.84% for
computer science and economics related content.
We find that the model’s predictions are higher in
precision than in recall. We perform a detailed
error analysis and identify cross-domain general-
ization as the most critical problem to tackle in
future work.
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A Appendix

A.1 Entity Type Classification Map
Table 4 shows the classification map used for deter-
mining entity types based on relations for SemEval-
2022 Task 12.

Relation head entity tail entity
Direct PRIMARY* SYMBOL
Count PRIMARY SYMBOL
Corefer-Symbol SYMBOL SYMBOL
Corefer-Description PRIMARY PRIMARY

Table 4: Classification map for entity types based on
relations in which the spans participate. *In a postpro-
cessing step, entity types of spans which are the head
entity of multiple "Direct" relations are adjusted to "OR-
DERED".

A.2 Examples of Spans Detected for Different
Values of k

Examples of spans detected via soft mention detec-
tion are shown in figures 3, 4, 5, and 6.
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Figure 3: An example of spans detected in the domain of computer science. The top row shows ground truth labels
in green, while the rows below are spans detected at k = 50, 100, 150.

Figure 4: An example of spans detected in the domain of economics. The top row shows ground truth labels in
green, while the rows below are spans detected at k = 50, 100, 150.

Figure 5: An example of spans detected in the domain of mathematics. The top row shows ground truth labels in
green, while the rows below are spans detected at k = 50, 100, 150.

Figure 6: An example of spans detected in the domain of physics. The top row shows ground truth labels in green,
while the rows below are spans detected at k = 50, 100, 150.
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Abstract

Previous work on multi-task learning in Natu-
ral Language Processing (NLP) often incorpo-
rated carefully selected tasks as well as care-
fully tuning of architectures to share informa-
tion across tasks. Recently, it has shown that
for autoregressive language models, a multi-
task second pre-training step on a wide variety
of NLP tasks leads to a set of parameters that
more easily adapt for other NLP tasks. In this
paper, we examine whether a similar setup can
be used in autoencoder language models using
a restricted set of semantically oriented NLP
tasks, namely all SemEval 2022 tasks that are
annotated at the word, sentence or paragraph
level. We first evaluate a multi-task model
trained on all SemEval 2022 tasks that contain
annotation on the word, sentence or paragraph
level (7 tasks, 11 sub-tasks), and then evalu-
ate whether re-finetuning the resulting model
for each task specificially leads to further im-
provements. Our results show that our mono-
task baseline, our multi-task model and our re-
finetuned multi-task model each outperform the
other models for a subset of the tasks. Overall,
huge gains can be observed by doing multi-task
learning: for three tasks we observe an error
reduction of more than 40%.1

1 Introduction

Recently, language models have become the de-
facto standard in Natural Language Processing
(NLP), where we first train a set of parameters
on raw data, which are then finetuned on the task at
hand. This in itself is a multi-task setup (language-
modeling + target task). However, traditionally,
multi-task learning was mainly done between mul-
tiple NLP tasks with gold annotation. In this setup,
many questions arise: not only how to share the in-
formation between different tasks, but also when to
share and even which tasks to use, as it is non-trivial

1code available at: https://bitbucket.org/
robvanderg/semeval2022

to decide which auxiliary tasks are beneficial for a
certain target task (Ruder, 2017; Crawshaw, 2020).
Early work on multi-task learning in NLP often
used up to a handful of tasks, carefully curated
dataset/task combinations, and carefully tuned how
to share the information between these tasks (e.g.
Hashimoto et al. (2017); Søgaard and Goldberg
(2016)).

A line of recent work has shown that an inter-
mediate step can be used to finetune the language
model on a set of NLP tasks, which leads to a
model that is more apt for learning other NLP tasks.
This is also called Supplementary Training on In-
termediate Labeled-data Tasks (STILT), and was
introduced by Phang et al. (2018). Phang et al.
(2018) train on three classification tasks from the
GLUE benchmark (Wang et al., 2018), and then
retrain for all GLUE tasks, showing a 1.4 point
of improvement over all GLUE tasks. Phang et al.
(2020) shows that this positive transfer also holds
cross-lingually when using multilingual language
models and only doing intermediate training on
English tasks. Wang et al. (2019). Similar as
with earlier models, it remains an open question for
STILT models which tasks transfer well to which
tasks (Vu et al., 2020; Pruksachatkun et al., 2020;
Chang and Lu, 2021). It should be noted that most
work on STILS for autoencoder language models
is done on text (i.e. sentence) classification only.

Later work used autoregressive language mod-
els, which learn to generate texts (as opposed to
the autoencoding models, which learn to predict
one token at a time, used by the previously men-
tioned STILT papers). These language models are
commonly used for different types of tasks, namely
generation tasks (e.g. question answering, machine
translation, summarization), whereas autoencoding
models are commonly used for classification and
word-level tasks (text classification, pos-tagging,
parsing etc.). Recent work has shown that many
NLP tasks can be converted to generation tasks, and
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SemEval Task Included sub-tasks Languages Citation

2: Multilingual Idiomatic-
ity Detection

Idiomaticity detection (1-shot) EN, PT, GL Tayyar Madabushi
et al. (2022, 2021)

3: PreTENS 1: Binary acceptability EN, IT, FR Zamparelli et al.
(2022)2: Regression acceptability EN, IT, FR

4: Patronizing and
Condescending Language
Detection

1: Binary PCL detection EN Pérez-Almendros
et al. (2022);
Perez Almendros
et al. (2020)

2: Multi-label PCL classification EN

6: iSarcasmEval 1: Sarcasm detection EN, AR Abu Farha et al.
(2022)2: Irony-labeling EN

3: Paraphrase sarcasm detection EN, AR
10: Structured Sentiment
Analysis

Expressions, entities and rela-
tions

CA, EN, ES, EU,
NO

Barnes et al. (2022)

11: MultiCoNER - Mul-
tilingual Complex Named
Entity Recognition

Named Entity Recognition BN, DE, EN, ES,
FA, HI, KO, MI,
NL, RU, TR, ZH

Malmasi et al.
(2022)

12: Symlink Entities and relations EN Dac Lai et al.
(2022)

Table 1: Overview of all tasks we participate in. Original source of the data of task 10 are Øvrelid et al. (2020);
Barnes et al. (2018); Agerri et al. (2013); Wiebe et al. (2005); Toprak et al. (2010).

can then directly be used to (re-)train an autoregres-
sive language model in a multi-task setup (Aribandi
et al., 2022; Sanh et al., 2022). In this setup it is
easier to exploit a variety of task-types and a much
higher amount of datasets (~50-100 datasets) is
used compared to previous work.

In this paper, we set out to examine whether
we can obtain performance improvements with
multi-task learning and re-finetuning after multi-
task learning (i.e. STILT) for a pre-defined set of
semantically focused NLP tasks. More precisely,
we will use the pre-defined set of SemEval 2022
tasks, and train a multi-task model for all text-based
SemEval tasks that include annotation on the word,
sentence or paragraph level.2 We compare a strong
single task baseline to a default multi-task learning
model, where the encoder is shared, each task has
its own decoder, and training is done on all tasks
simultaneously (shuffled batches). Finally, we use
the parameters from the multi-task model to train a
task-specific model for each task again. We seek to
answer the following research question:

• Can we exploit a pre-selected combination of
NLP tasks in a multi-task setup to improve the
ability of an autoencoder language model to
learn NLP tasks?

2document level annotation is excluded, as it is non-trivial
to model in current autoencoder language models

To the best of our knowledge, we are the first
to participate in more than 2 SemEval tasks simul-
taneously, by participating in 7 tasks and a total
of 11 tasks including sub-tasks. In our multi-task
model, we model a total of 19 tasks if we train on
the full data from the tasks (some tasks are mod-
eled as multi-task by themselves), and 54 tasks
if we separate them by language or dataset. We
will release the finetuned multi-task language mod-
els on the hugginface hub (Wolf et al., 2020) for
future use, which we dub: Sem-mmmBERT (Se-
mEval MaChAmp multi-task multi-lingual BERT)3

based on mBERT (Devlin et al., 2019) and Sem-
RemmmBERT (SemEval Rebalanced MaChAmp
multi-task multi-lingual BERT)4 based on Rem-
BERT (Chung et al., 2021).

2 Datasets

An overview of the datasets for the tasks included
in our setup is shown in Table 1. For task 2, the
regression task has no gold training data, so it was
left out. Furthermore, we did not participate in any
constrained tracks, as we are mainly interested in
setups where we also trained on other data. The
languages used in the tasks have some overlap, but
also some unique languages. English is present in
all tasks.

3https://huggingface.co/robvanderg/Sem-mmmBERT
4https://huggingface.co/robvanderg/Sem-RemmmBERT
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SemEval2 SemEval3 SemEval4 SemEval6 SemEval10 SemEval11 SemEval12

Single - output

Multi - output
Sem-mmmBERT

Multi_fine - output

mBERT

Figure 1: Schematical overview of our proposed multi-task models and the mono-dataset baseline. Sem-mmmBERT
is the BERT model which can also be useful for other downstream tasks, and thus the one we release on the
huggingface hub. In this example we show the usage of data when training models for task 4 (dashed arrows). For
illustrational purposes we left out the sub-tasks in this figure. The boxes with the lines represent annotated data, and

= a trained MaChAmp model.

Task MaChAmp #words #sents #sents
task-type smoothed

2-a1 classification 10,199 139 2,742
3-1 classification 99,044 11,669 25,131
3-2 regression 4,761 785 6,518
4-1 classification 399,376 8,369 21,283
4-2 classification 135,750 2,202 10,917
6-a classification 83,266 5,254 16,863
6-b classification*6 12,183 691 6,115
6-c classification 29,242 1,287 8,346
10 seq seq seq 1,109,260 58,799 56,413
11 seq_bio 2,768,898 171,300 96,288
12 seq seq 944,176 3,120 12,994

Table 2: The task-types used within machamp for each
of the (sub-)tasks, and the data size before and after
smoothing.

Table 2 reports the sizes of the datasets, we see
that there is a large variety. We attempt to overcome
this with dataset smoothing, which is described in
more detail in Section 3.8.

3 Model

We implemented all of our models in MaChAmp
v0.3beta (van der Goot et al., 2021). MaChAmp
is a toolkit that focuses on multi-task learning for
NLP task-types based on AllenNLP (Gardner et al.,
2018) and the transformers library (Wolf et al.,
2020). It supports a wide variety of tasks, and
a variety of options for multi-task learning (for

within as well as cross-dataset multi-task learning).
A typical MaChAmp model consists of a shared
encoder (i.e. language model), with multiple de-
coders on top (one for each task), which all share
the same encoder. We use all default hyperparame-
ters of MaChAmp for our experiments, except for
the dataset smoothing (Section 3.8). Our general
setup is shown in Figure 1. As baseline, we take
the data of a single SemEval task, and finetune
a MaChAmp model with all default hyperparam-
eters (SINGLE). The first multi-task setup, is a
MaChAmp model trained on a combination of all
SemEval tasks we consider (MULTI), where each
task has its own decoder. Finally we take the hyper-
parameters from the MULTI model, and refinetune
them for a single task at a time (MULTI-FINE).

For the relation extraction tasks (task 10 and 12),
we first converted the data to a word-level sequence
labeling task, and we contributed a regression task-
type in MaChAmp, to be able to tackle task 3-2.
For all sub-tasks with multiple languages/datasets,
we evaluate also whether learning these in separate
decoders is useful (so we split the datasets, and
learn them as separate tasks). Below, we describe
the choices we made for each of the tasks (the
MaChAmp task-types can be found in Table 2),
after which we describe our two multi-task setups
(Section 3.8 and Section 3.9).
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Some others give the new UMUC 5 stars - don’t believe them .
O O O O O O B-expr I-expr O B-expr O O
B-ent I-ent O B-ent I-ent I-ent O O O O O B-ent I-ent
O O O O O O Positive:-2:-1 O Negative:null:+1 O O

Expression Expression TargetTargetHolder

Positive Negative

Figure 2: Example of conversion of sentiment graph to sequence labeling for task 10, showing a gold annotated
sentence (top of line) and the three layers of annotation that the model is supposed to predict (below the line):
expression identification, entity identification and relations.

3.1 Task 2

We only participate in the supervised task (one-
shot task a), which is a binary task where the goal
is to identify whether a sentence contains an id-
iomatic expression. We use the classification task-
type in MaChAmp, and include the multiword ex-
pression (MWE) as well as all 3 sentences (target
+ context) as input. Note that they will automati-
cally be separated by a special separation token in
MaChAmp, and their segment ID’s will be all 0’s
for the MWE and third sentence, and 1’s for the
second and fourth sentence (for language models
supporting segment ID’s). We use macro-f1 for
model picking as well as for the results we report
in Section 4.

3.2 Task 3

Subtask 1 is a binary classification task: is a sen-
tence (semantically) acceptable or not. We use
the classification task type in MaChAmp and the
macro-f1 metric. The data is divided in folds by
the organizers, we use fold 1 and 2 as train data,
and 3 as dev data. For subtask 1 we use macro-f1
for model picking, and report macro-f1s from the
official evaluation script in Section 4.

Subtask 2 is a regression task, where we predict
an acceptability score between 1 and 7. We con-
tributed a regression decoder to MaChAmp, which
uses a simple linear layer and mean square error
loss. We use fold 0 for training and fold 1 as dev
data. For subtask 2 we use pearson correlation for
model picking.

3.3 Task 4

Subtask 1 concerns a binary classification task:
does an utterance contain patronizing or conde-
scending language or not. Subtask 2 identifies one
out of 7 sub-categories of patronizing and conde-
scending language. We model both tasks as clas-

sification task in MaChAmp, and split the data for
both sub-tasks in 80% train and 20% dev data. Fol-
lowing the official metrics, we use accuracy for task
1 and macro-f1 score for task 2 for model picking.

3.4 Task 6

We use an 80:20 split for each of the tasks. Task
A is binary sarcasm detection, task B is a multi-
class classification task, in which we model each
category as a separate task, so that multiple classes
can be predicted. Task C is paraphrase detection
between sentence-pairs. We follow the official met-
rics and use macro-f1 for task A and B, and accu-
racy for C for model picking.

3.5 Task 10

Task 10 is fine-grained sentiment analysis, in which
sentiment graphs are predicted. Each opinion is
annotated as a tuple consisting of: an expression,
which has a polarity (positive/negative) a link to
the target, and potentially a link to a holder/source
(the person expressing the sentiment). Inspired
by Ramponi et al. (2020), we convert this task to
three sequence labeling tasks (see also Figure 2).
The first task is expression identifiction, which we
model as BIO encoded spans. It should be noted
that the spans can overlap. The second task is the
identification of the source and targets, which are
also encoded as BIO spans, which can also over-
lap. For each token that is the beginning of an
expression (B-label), we include a label describ-
ing the relations (the third task), which are triples
containing of: polarity, link to holder, link to tar-
get. The links to targets are simply counts of the
directions to the next identified entities (i.e. +1 for
the next identified entity), similar to the relative
POS strategy of Strzyz et al. (2019), and the rela-
tion extraction implementation of Ramponi et al.
(2020). There can be multiple relations for a given
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expression. We concatenate the overlapping labels
(which all three sub-tasks have) and model these
three tasks in MaChAmp as sequence labeling task.
We compared this against using the “multiseq” task
type, which can output multiple labels per token.
However, performance was better when simply do-
ing sequence labeling, in contrast to Ramponi et al.
(2020). Perhaps tuning the threshold of the pre-
diction confidence to include labels could lead to
better results (we used the default of 0.5), which we
leave for future work. After prediction, we convert
the data back to the official json format.

For model picking, we take the average over
the accuracies of the concatenated labels, in Sec-
tion 4 we report the official metric, sentiment graph
F1 (Barnes et al., 2022).

3.6 Task 11
Task 11 is multi-lingual named entity recognition.
We compared running with and without a CRF-
layer, and found that the CRF layer is benefi-
cial. We use span-f1; the implementation of Al-
lenNLP for model picking, and the output of the
conlleval.pl script for results reported in Sec-
tion 4, because there is no official evaluation script
available

3.7 Task 12
Task 12 is the linking of mathematical symbols,
which consists of two steps: 1) detect mathematical
symbols 2) identify links between them, which are
directed and labeled. We use a similar strategy
as we used in task 10, where we convert the task
to sequence labeling. In contrast to task 10, the
data in task 12 is not pre-tokenized, and some of
the spans do not allign with the whitespaces. We
tokenize with the _is_punctuation function
from the transformers library (Wolf et al., 2020) to
circumvent this, and save where it splits so that we
can undo it after prediction. Similar as for task 10, a
token can have multiple labels, we attempt to model
this with the “multiseq” task-type in MaChAmp,
which can predict multiple labels, but obtain better
results by concatenating the labels and predict them
as one label per token. We used accuracy for both
tasks, as the official metric was not released. The
results reported in Section 4 are the average of these
two sub-tasks.

3.8 MULTI

We compare the single task baselines to models
where we exploit multi-task learning (see also Fig-

Task COMBINED SEPARATE

task2-a1 66.00 61.28
task3-1 66.77 66.71
task3-2 74.07 72.14
task4-1 42.59 —
task4-2 25.67 —
task6-a 31.27 31.25
task6-b 17.05 —
task6-c 90.74 91.67
task10 35.10 28.90
task11 79.86 79.48
task12 96.06 —

Table 3: Scores (dev) of single-task models with
mBERT. SEPARATE means that the data from each lan-
guage (or dataset for task10) has its own decoder. An
empty cell (—) means that the task did not consist of
multiple datasets/languages, so SEPARATE equals COM-
BINED.

ure 1). In the first setup, we finetune MaChAmp
on all tasks simultaneously, for which we enable
the multinomial smoothing in MaChAmp with
α = 0.5, so that the distribution between tasks
becomes more similar (see also Table 2. Note that
some SemEval tasks consist of multiple sub-tasks,
and some single tasks are modeled as multiple tasks
in MaChAmp, we have a total of 19 tasks in the
final setting. We evaluate the output of each de-
coder/task separately for this model.

3.9 MULTI_FINE

After the multi-task model is trained, we save the
parameters of the shared encoder, so that they can
be re-used for the next step. Finally, we re-finetune
the resulting model for each task seperately again,
to see whether the multi-task model constitutes
a better initialization than the vanilla language
model.

4 Results

For all the tasks where the shared task organizers
released an evaluation script, we used the official
script for the results reported in this section (for the
model-picking we used internal equivalent metrics,
see Section 3 for the details per task); for task11
we used conlleval.pl, and for task12 we used
an average of accuracy over our converted data.
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Task SINGLE MULTI MULTI_FINE

task2-a1 66.00 64.67 63.64
task3-1 66.77 66.82 66.87
task3-2 74.07 84.82 85.37
task4-1 42.59 52.81 80.00
task4-2 25.67 28.86 27.65
task6-a 31.27 59.75 43.08
task6-b 17.05 21.64 19.22
task6-c 90.74 89.20 95.37
task10 35.10 37.70 25.70
task11 79.86 75.73 79.52
task12 96.06 95.10 95.31

avg. 56.83 61.55 61.98

Table 4: Scores of multi-task settings versus the single
task baselines for mBERT.

4.1 Single task results

On the single task level, we compared for all
datasets consisting of multiple languages or sub-
datasets whether it is useful to train them as a single
task (with one decoder: COMBINED), or as separate
tasks (with N decoders: SEPARATE). For compu-
tational efficiency, these tests are only done with
mBERT.

Table 3 shows that modeling the languages in
separate decoders is only beneficial for task 6 c.
We hypothesize that this is because this dataset
only contains two languages (English and Arabic),
which are relatively distant, so sharing the decoder
leads to performance drops. For all further experi-
ments, we will use the COMBINED setup.

4.2 Multi-task results

We first evaluate the results with mBERT, as we
also have the single-task results with mBERT (due
to computational constraints we do not have them
for RemBERT). Table 4 shows the scores for
the single-task (SINGLE) baseline, the multi-task
model (MULTI), and the intermediate multi-task
with finetuning per task setup (MULTI_FINE). In-
terestingly, each of the three models perform best
for 3 or 4 different tasks, and it is thus highly de-
pendent on the task which setup is most beneficial.
Differences between scores can be huge though,
and when looking at the averages it is clear that
the multi-task setups are beneficial over single task
models and competetive to each other. The small-
est and largest datasets (Table 2) score best with
the single task model, as well as task 12, which

MULTI MULTI_FINE

task2-a1 78.79 67.38
task3-1 66.85 66.86
task3-2 85.41 85.80
task4-1 65.57 71.07
task4-2 28.77 29.54
task6-a 69.74 51.66
task6-b 29.82 18.77
task6-c 96.30 91.05
task10 47.70 45.60
task11 80.45 82.94
task12 95.67 96.33

avg. 67.73 64.27

Table 5: Scores of multi-task settings for RemBERT.

can be considered an outlier. The multi-task setup
without additional finetuning (MULTI) seems to
be mostly beneficial for classification tasks. The
additional finetuning (MULTI_SEQ) is especially
flourishing for task 4-1 and 6c, which are small to
medium sized classification tasks, and it is unclear
why their trends differ so much compared to task
3-1, 4-2 and 6-a. It should be noted that MULTI is
computationally more attractive as well as much
smaller to store, as we only need one model for all
tasks.

Before the deadline for the SemEval task, we
managed to also train the final model with Rem-
BERT (Chung et al., 2021) as language model,
however, we do not have the single task baselines.
Unfortunately, here only the model with separate
decoders for each language/dataset fit on our largest
GPU (40gb), so we submitted results with these.

Table 5 shows that also for the RemBERT em-
beddings, there is no clear single best strategy. The
best multi-task strategy sometimes differs com-
pared to the mBERT results (Table 4): task4-2,
task11 and task12 differ, where the latter two where
the tasks where the single task was the best perform-
ing for the mBERT embeddings. On average, the
MULTI setup performs more than 3 absolute points
higher, but this is mainly due to task 6, which has 3
subtasks (and thus weights heavier in the average).

4.3 Test data

We submitted the results of the mBERT single task
baseline and the RemBERT MULTI_FINE setup for
the official test evaluations. In Table 6 we show the
obtained results and rankings for each task.
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Task Single Multi_fine Ranking
mBERT RemBERT Ranking

task2-a1 — 66.07 NA
task3-1 78.78 86.42 11/21
task3-2 0.6792 -0.164 17/17 (3/17)
task4-1 0.4172 0.4211 56/78
task4-2 0.0772 0.1546 34/49
task6-a 0.3639 0.3187 31/43 & 12/32
task6-b 0.0919 0.0851 3/22
task6-c 0.2400 0.2250 16/16 & 13/13
task10 0.472 0.501 13/22
task11 0.6027 0.6768 18/26
task12 2.67 7.42 —

Table 6: Official test set results. The — indicate re-
sults we could not obtain, and the NA is because we
trained on data that was not allowed for that task, so we
participated without ranking. For some tasks, multiple
rankings are given per sub-track,for task3-2, the single
mBERT based model would have ranked 3th.

We note that there are some disrepancies be-
tween scores on the test data (Table 6) and the
previously reported dev scores (Table 4), these are
probably the result of differences in implementa-
tion for the metric (when the official code was not
released), and could sometimes be the result of up-
loading the data in the wrong format (e.g. task3-2).
Perhaps surprisingly, the single task mBERT model
sometimes outperforms RemBERT. This leads to
the conclusion that we should not always blindly
use the latest, larger language model. Furthermore,
we see that for most tasks we rank somewhere in
the middle. It should be noted that little to no tuning
is done (except for MaChAmp task-type for three
of our tasks: 10, 11, 12), as our focus was mostly
on comparing our own models to each other and
answering our research question. Results can be ex-
pected to still increase by selecting the architecture
(SINGLE, MULTI, MULTI-FINE), selecting language
model per task, tuning the multi-task setup (loss
weighing, combination of tasks, smoothing α etc.)
or the other hyperparameters (learning rate, sched-
uler, batch size etc.) of MaChAmp.

5 Conclusion

We have compared three setups in this work: SIN-
GLE: single task finetuning of language models,
MULTI: multi-task finetuning of language mod-
els, MULTI_FINE: using the output of MULTI and
finetuning on single target tasks again. Our setup
is both multi-lingual and uses pre-defined set of

tasks with a large variety in types of tasks. Our
results confirm the findings of recent and concur-
rent work (Phang et al., 2018; Aghajanyan et al.,
2021), showing that for some task combinations,
we can benefit from an intermediate task-trained
model (MULTI_FINE). However, we also show that
all three evaluated setups perform well for certain
tasks. We hypothesize that this is an effect of us-
ing a pre-defined set of tasks. In our setup the
differences between the setups are in some cases
extremely large (error reductions larger than 40%
compared to the single task baseline have been ob-
tained for three tasks), whereas for some other tasks
our single task baseline performed best. This leads
to a positive answer to our research question, and
the conlusion that intermediate finetuning can be
beneficial. However, care should be taken, as our
results also show that MULTI_FINE does not out-
perform MULTI nor SINGLE in all situations, which
raises the question: how can we predict whether the
intermediate model is better or we need to finetune
one more time on the target task?
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