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Abstract
This paper describes our system submitted for
SemEval Task 3: Presupposed Taxonomies:
Evaluating Neural Network Semantics (Zam-
parelli et al., 2022). We participated in both
the binary classification and the regression sub-
task. Target sentences are classified according
to their taxonomical relation in subtask 1 and
according to their acceptability judgment in
subtask 2. Our approach in both subtasks is
based on a neural network BERT model. We
used separate models for the three languages
covered by the task, English, French, and Ital-
ian. For the second subtask, we used median
averaging to construct an ensemble model. We
ranked 15th out of 21 groups for subtask 1 (F1-
score: 77.38%) and 11th out of 17 groups for
subtask 2 (RHO: 0.078).

1 Introduction

The recognition of lexical relationships between
words and the corresponding generalization has
attracted increasing attention in computational lin-
guistics. Today, there already exist resources cover-
ing manually marked semantic relationships, e.g.,
taxonomic relations, such as the lexical database
WordNet (Miller, 1992) or the multilingual dictio-
nary and semantic network BabelNet (Navigli and
Ponzetto, 2010).

Luu et al. (2016) define taxonomic relations be-
tween two terms as an is–a relation. In such a
relation there is a hypernym, i.e., a supertype, and
a hyponym, i.e., a subtype. Both the supertype
and subtype are sets covering, in our task, certain
semantic categories. In a relation such as animal–
dog, the animal is the superordinate category and
the dog is the subordinate term. Furthermore, those
specific sets are included in a relation forming a spe-
cial hierarchy (Kay, 1971). As stated by Nguyen
et al. (2017), in such an is–a relation the supertype
necessarily implies the subtype, but not vice versa.

SemEval 2022 Task 3 is a taxonomy detection
and prediction task consisting of two subtasks: a

binary classification and a regression task, both
covering the languages English, French, and Ital-
ian.

We propose an approach based on the
transformer-based machine learning model BERT.
Since BERT is a bidirectional model producing
state-of-the-art results (Devlin et al., 2019), we
used this pre-trained model for our analysis. For the
three different languages, the corresponding BERT
models were used (Devlin et al., 2019; Polignano
et al., 2019; Martin et al., 2020).1

2 Task Description

In the present shared task (Zamparelli et al., 2022),
the taxonomic sentence structures in the given files
are composed of different artificially generated con-
structions enforcing presuppositions.

Table 1 shows example sentences provided in the
English test set. According to the task description
page, the French and Italian datasets are translated
versions of the English dataset that were slightly
adapted.

The argument nouns in the given files come
from 30 semantic categories including, among oth-
ers, dogs, birds, and mammals. The given word
sets already show broader and narrower categories
(mammals vs. dogs/birds). Nevertheless, as shown
in the examples in table 1, not all pairs of nouns
reflect such a superordinate–subordinate relation
(apple vs. cauliflower) as described by Nguyen
et al. (2017). Therefore, the taxonomies do not
only represent a direct is–a relation such that one
given nominal is the subcategory and the other one
is the supercategory. Thus, it has to be consid-
ered that human language consists of many argu-
ment and sentence structures that restrict such re-
lations. That means the sentence structures also
cover comparisons where both nouns come from

1The source code of our model is available at https:
//github.com/cicl-iscl/SemEval3.
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Construction Example
andtoo I like teaspoons, and mugs

too.
butnot I like cats, but not frogs
comparatives I like apples as much as

cauliflower.
drather I would rather have veal

than salmon.
except I like seafood, with the

only exception of salmon.
generally I like peaches, and more

generally fruits.
particular I like jewelry, and in partic-

ular necklaces.
prefer I do not like tiramisu, I pre-

fer broccoli.
type I like parrots, not other

types of birds.
unlike Unlike glass, PVC is often

mentioned in this text.

Table 1: Example sentences from subtask 1 with a binary
label 1 (i.e., acceptable).

the same broader category. This has also been cov-
ered in the work by Clarke (2012), who refers to
taxonomies as a framework represented in a hier-
archy where lexical counterparts or synonyms are
considered. Therefore, the given shared task comes
with a challenge different from only recognizing
the taxonomic relation—furthermore, the embed-
ding construction allowing or disallowing the given
relation had to be checked.

The participants were provided with two datasets
to work with the individual subtasks. The training
set for subtask 1 was composed of 5,837 sentences
for each language with binary labels representing 1
as an acceptable sentence and 0 as an unacceptable
sentence. This subtask covers the binary prediciton
of acceptability labels of each sentence given in the
test set with 14,560 samples. Subtask 2 consists of
the prediction of an average score on a seven-point
Likert scale for 1,009 sentences in the test set. The
original scores in the training set were annotated
by humans.

Figure 1 shows the scores assigned to the sen-
tences presented in the training set in subtask 2.
This figure only shows the scores averaged over all
annotators since per-annotator information is not
available.
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Figure 1: Distribution of the scores given to the sen-
tences from the training set of subtask 2 by annotators.

3 System Overview

We used pre-trained BERT (Devlin et al., 2019)
networks for subtasks 1 and 2. Separate models
were used for each of the languages, specifically,
the AlBERTo model (Polignano et al., 2019) was
used for Italian, BERT base uncased was used for
English, and the monolingual CamemBERT (Mar-
tin et al., 2020) model was used for French. The
BERT models are powerful and highly versatile
language models that possess the benefit of having
learned good representations of the language they
were trained on. This gives them a decisive edge
over using models that are trained exclusively with
the data provided for training as these pre-trained
models will, for example, have encountered and
learned representations for words that are not in the
training set but are in the test set, whereas a model
trained only on the training set will have trouble
dealing with these unfamiliar words. As such they
offer the opportunity for better generalization.

The bigger challenge of these tasks was not to
produce models that perform well on the limited
training data but to produce models that general-
ize well and do not merely overfit on the provided
data. To this end, standard deep learning regular-
ization techniques such as weight decay, dropout,
and model averaging were used; nonetheless, the
models performed much worse on the test data than
on the validation data. Actually producing mod-
els that perform better at generalizing would likely
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have required data augmentation and/or alternative
training routines.

The models were not shared between subtasks
1 and 2, meaning that while the same pre-trained
models were used for subtasks 1 and 2, the model
used for subtask 2 was not fine-tuned for subtask 1
and vice versa.

3.1 Subtask 1
For subtask 1, the sentences were tokenized us-
ing the tokenizers of the pre-trained BERT mod-
els. The BERT model was extended with one fully
connected hidden layer and an output layer. The
model was trained to perform the classification
task using cross-entropy loss, backpropagated us-
ing the Adamw optimizer (Loshchilov and Hut-
ter, 2017), which combines the Adam optimizer
(Kingma and Ba, 2017) with weight decay regu-
larization. Dropout was used for further regular-
ization. Gradient clipping by-norm was applied to
solve the exploding gradient problem. Thirty per-
cent of the data was used as a validation set, learn-
ing was terminated through early stopping with the
loss function as the stopping criterion.

3.2 Subtask 2
The model for subtask 2 is similar to the model for
task 1, again extending the BERT models with a
hidden layer and one output layer producing a sin-
gle number for the regression task. The output and
targets were normalized to be between zero and
one. The inverse transformation was then applied
to the model output to get the final output on the
original scale. The model was trained on seventy
percent of the training data using mean squared
error as the loss function. Dropout was used and
weight decay was applied through the AdamW op-
timizer. The training was terminated using early
stopping with the remaining thirty percent of the
training data used for validation. For this task, we
trained ten models per language, each with its own
training split of the data. The final prediction for
the test set was the median prediction of these mod-
els. We chose to use the median and not the mean
as it is less affected by outlier predictions.

3.3 Hyperparameters
Hyperparameters were determined using grid
search over a limited selection of plausible can-
didate values, including learning rate (1× 10−5 for
all models), the number of fully connected layers,
neurons per layer, and in the case of subtask 2 a

total It Fr En
Precision 0.75 0.73 0.77 0.74
Recall 0.80 0.73 0.89 0.80
F1 0.78 0.73 0.83 0.77

Table 2: Results for subtask 1. All scores are micro-
averaged over different constructions. The total scores
are also micro-averaged over the languages.

multiclass approach was also tested. For subtask
1 choosing bigger models, in the end, 2 hidden
layers with 512 neurons each were used, which
led to improvements on the validation set but may
have caused overfitting that negatively impacted
performance on the test set. For subtask 2, bigger
models did not perform better than small ones, and
as a result, the final models contained only a sin-
gle hidden layer with 16 neurons. The complete
hyperparameters are listed in appendices A and C.

4 Results

Unless stated otherwise, we analyzed, evaluated,
and visualized the results in R (R Core Team, 2020)
with the help of the packages caret (Kuhn, 2021),
dplyr (Wickham et al., 2021), ggplot2 (Wickham,
2016), plyr (Wickham, 2011), readr (Wickham and
Hester, 2020), stringr (Wickham, 2019), tikzDevice
(Sharpsteen and Bracken, 2020), tm (Feinerer et al.,
2008), and xtable (Dahl et al., 2019).

4.1 Subtask 1

The test data contains 14,560 sentences per lan-
guage. Table 2 shows the results of the evalua-
tion for each language. Out of the 18 participating
teams (and three additional teams who only sub-
mitted results for the English subset), the KaMiKla
models ranked 15th in the overall competition and
the Italian part and 12th and 16th in the French and
English portion, respectively.

The highest overall score in the competition was
0.94, an F1 measure of 0.93 for Italian and French,
and 0.97 for English. The trivial baseline that used
n-grams as features reached a global score of 0.73.
The F1 score for the Italian model is 0.68, 0.76 for
French, and 0.73 for English.

After the evaluation phase ended, the test sets
were published containing an additional label that
denoted the syntactic construction used in the re-
spective sentence. Table 1 illustrates examples of
what the labels mean. Further analysis revealed that
the type of construction had an enormous effect on
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the performance of the KaMiKla models. Figure 2
gives an overview of this. For the detailed evalua-
tion metrics for each language by construction, see
Appendix B.

The KaMiKla models performed with an F1
score in a range between 0.86 and 0.97 across
all languages for butnot, comparatives,
drather, prefer, and andtoo constructions
which made up approximately 42.3% of the test
dataset. These scores are about what we expected
from performance on the validation set.
except, particular, and unlike con-

structions show stark differences in performance
between languages. In all three cases, the French
model achieves much better results than the En-
glish and Italian ones, which will be discussed in
more detail later. Furthermore, the models per-
formed poorly on type constructions across all
languages, only overshadowed by scores close to 0
for generalizations.

4.1.1 except

Sentences containing except constructions made
up approximately 12.9% of the test data. Especially
the Italian model seemed to have trouble classify-
ing exceptions correctly. For example, it gives the
sentence Adoro le verdure, eccetto le carote.2 the
label “0” even though it is a semantically flawless
Italian sentence. The problem seems to be the re-
call rather than precision. While a score of 0.82
is not much lower than the precision of the pre-
viously mentioned constructions, the recall score
of 0.31 shows that the model could not accurately
predict the taxonomic relations in a sentence con-
taining an exception. This observation extends, if
less prominently, to English and French.

4.1.2 particular

particular sentences, which make up 13% of
the test data, show a striking difference in perfor-
mance between languages. The precision ranges
from 0.39 for the English model to 0.92 for the
French model.

4.1.3 unlike

Sentences containing unlike constructions (9%
of the test data) were still classified correctly rela-
tively often by the French model, despite a recall
score of 0.63. The Italian and English models per-
formed much worse due to low recall. Interestingly,
the English model has an almost-perfect precision

2I love vegetables, except for carrots.

total It Fr En
MSE 3.72 2.88 5.29 2.97
RMSE 1.93 1.70 2.30 1.72
RHO 0.19 0.19 -0.01 0.06

Table 3: Results for subtask 2. All scores are micro-
averaged over different constructions. The total scores
are also micro-averaged over the languages.

of 0.99, while the Italian model only reached 0.49,
which shows the difference between the models
again.

4.1.4 type

About 13% of the test sentences contained type
constructions like I like fruits, an interesting type
of lemon. There is not much to say about them
other than that the models’ performance on them
was terrible. F1 measures range from 0.06 to 0.11
with very low recall (0.25 to 0.47) and even worse
precision (close to 0).

4.1.5 generally

Possibly the most surprising result is the utter con-
fidence with which the models misclassified gener-
alizations. Across languages, all evaluation metrics
are below 0.05 for sentences labeled generally.

4.2 Subtask 2

The top-performing models reached a Spearman
correlation of 0.81, 0.84, and 0.76 in Italian,
French, and English, respectively, yielding an over-
all score of 0.80. The KaMiKla models performed
much worse and ranked in 11th place with a global
rank of 0.08. Table 3 shows an overview of the
evaluation of the second subtask. Surprisingly, the
n-gram-based regression model serving as a base-
line ranked in 4th place with correlations of 0.34,
0.32, 0.27 in Italian, French, and English, respec-
tively, outperforming many submissions, including
the one present in this paper.

Similar to the first subtask, we analyzed these
results grouped by the used construction. Appendix
D contains the detailed analysis. The metrics con-
sidered are the mean squared error (MSE), the
root mean squared error (RMSE), and Spearman
correlation (RHO). The constructions of the sec-
ond subtask are a subset of the ones used for the
first one, with the generally label changed to
ingeneral. Figure 3 visualizes the root mean
squared errors of the second subtask grouped by
construction.
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Figure 2: An overview over the F1 scores the KaMiKla models reached in subtask 1, ordered by score.
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Figure 3: An overview over the root mean squared
error scores the KaMiKla models reached in subtask
2, ordered by score.

The difference in performance between construc-
tions is evident here as well. Interestingly, the
French regression model seemed to have more trou-
ble than its Italian and English counterparts, while
the French classification model outperformed the
other languages.

Another interesting comparison is that of the con-
structions. While the classification models failed
on type sentences, those are some of the most
successful sentences in subtask 2; this indicates
that the bad scores on some constructions are due
to fine-tuning and not some inherent difficulty the
BERT models have with understanding them. On
the other hand, this might be a side effect of the
models not performing very well in general.

5 Discussion

Our models performed considerably worse on the
test dataset than on the validation set, and these dif-
ferences vary across languages and constructions.
While we can’t determine for sure where this sig-
nificant drop in performance comes from, there are
some theories worth investigating.

Of course, one challenge (especially of the sec-
ond part) of the task is the scarcity of data. Subtask
1 contains 5,837 sentences in the training data per
language; and 14,560 sentences in the test set. For
subtask 2, there are 524 training sentences and
1,009 test instances in each language. Possibly, the
regression models performed unsatisfyingly simply
because there wasn’t enough training data avail-
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able.

We also wanted to investigate the inherent dif-
ferences between train and test data. Figure 4 com-
pares the sentence lengths of the train and test set,
grouped by language. There are huge differences
between the languages and, perhaps more impor-
tantly, between the train and test sets of the three
languages. The French training data contained sen-
tences of similar length to those in the test data
(mean of 8.94 for the test and 9.28 for the train-
ing set), and those sentences were generally longer
than those of the other two languages. The data
from the Italian test set seems to contain sentences
of more varied lengths than the training set.

The data of the second subtask show a similar
discrepancy between training and test sentences.
The sentences from the test data are longer on av-
erage than those from the training data in all lan-
guages. The lengths also seem to be more variable
in the test set, possibly due to the higher number
of sentences. The gap between the input sentences
could have led to finetuning not remarkably im-
proving the performance of the models.

We furthermore looked at the distribution of dif-
ferent types of constructions in more detail. There
were no construction labels for the training data,
so we trained a simple Naive Bayes classifier on
the tf-idf-transformed test sentences in Python us-
ing pandas (pandas development team, 2022) and
scikit-learn (Pedregosa et al., 2011). Because of
the simple structure of the input sentences and a
cross-validation score of 100%, we will assume
the construction labels to be accurate in further
discussion.

Figures 5 and 6 compare the distributions of the
construction labels in train and test sets of subtask 1
and 2, respectively. There are once again huge dif-
ferences between training and test set. Notably, the
training data does not contain a single unlike sen-
tence. Despite that, the models did not necessarily
perform worse on this type of construction. In total,
it does not seem like the distribution of construction
types in the training data influenced model perfor-
mance much at all. There are instances of models
performing inadequately on frequent constructions
in the training data, like type constructions in the
first subtask. However, drather constructions
were often classified correctly despite the scarcity
of training sentences.

6 Conclusion

In this work, we discussed an approach to model-
ing taxonomic relationships using pre-trained lan-
guage models, namely AlBERTo (Polignano et al.,
2019), BERT (Devlin et al., 2019), and Camem-
BERT (Martin et al., 2020) in the context of the
SemEval Task 3 of the year 2022. The KaMiKla
group participated in both the classification and
the regression subtask. While the performance of
the models was overall unsatisfying, further anal-
ysis revealed that the type of taxonomic relation
that the words in a given sentence severely affected
how well the models did. While the reason for this
remains unclear, it might be interesting to tailor
the finetuning of the BERT-based model to specific
constructions or combine it with a classifier that
classified the input sentences according to the type
of taxonomic relation.
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Batch Size Learning Rate Max. Len. Sent. Patience Hidden Layers
Number Size

English 32 1× 10−5 15 5 2 512
French 32 1× 10−5 20 5 2 512
Italian 32 1× 10−5 15 5 2 512

Table 4: Hyperparameters used in subtask 1.

total andtoo butnot comp. drather except generally particular prefer type unlike
Precision 0.74 0.86 0.93 0.93 0.94 0.85 0.01 0.39 0.88 0.06 0.99
Recall 0.80 1.00 0.99 0.99 1.00 0.65 0.01 0.62 0.98 0.40 0.09
F1 0.77 0.93 0.96 0.96 0.97 0.74 0.01 0.47 0.93 0.10 0.16

Table 5: Metrics for the English sentences in subtask 1, grouped by construction.

total andtoo butnot comp. drather except generally particular prefer type unlike
Precision 0.77 0.90 0.95 0.94 0.95 0.94 0.01 0.92 0.90 0.06 0.96
Recall 0.89 0.98 1.00 0.99 1.00 0.76 0.01 0.79 0.98 0.47 0.63
F1 0.83 0.94 0.97 0.97 0.97 0.84 0.01 0.85 0.94 0.11 0.76

Table 6: Metrics for the French sentences in subtask 1, grouped by construction.

total andtoo butnot comp. drather except generally particular prefer type unlike
Precision 0.73 0.83 0.92 0.92 0.94 0.82 0.03 0.74 0.85 0.03 0.49
Recall 0.73 0.90 0.97 0.95 0.87 0.31 0.02 0.52 0.89 0.25 0.05
F1 0.73 0.86 0.95 0.93 0.91 0.45 0.02 0.61 0.87 0.06 0.09

Table 7: Metrics for the Italian sentences in subtask 1, grouped by construction.

Batch Size Learning Rate Max. Len. Sent. Patience Hidden Layers
Number Size

English 32 1× 10−5 15 5 1 16
French 32 1× 10−5 20 5 1 16
Italian 32 1× 10−5 15 5 1 16

Table 8: Hyperparameters used in subtask 2.

total andtoo butnot comparatives ingeneral particular type unlike
MSE 2.97 0.96 1.13 1.59 3.57 6.83 1.45 1.24
RMSE 1.72 0.98 1.06 1.26 1.89 2.61 1.20 1.11
RHO 0.06 -0.32 0.04 0.07 -0.28 -0.25 0.26 0.18

Table 9: Metrics for the English sentences in subtask 2, grouped by construction.

total andtoo butnot comparatives ingeneral particular type unlike
MSE 5.29 1.00 0.77 1.39 5.77 14.99 1.24 1.87
RMSE 2.30 1.00 0.88 1.18 2.40 3.87 1.11 1.37
RHO -0.01 0.43 0.19 0.35 -0.03 -0.29 0.25 0.38

Table 10: Metrics for the French sentences in subtask 2, grouped by construction.

total andtoo butnot comparatives ingeneral particular type unlike
MSE 2.88 1.03 1.90 2.32 2.71 6.05 1.79 1.69
RMSE 1.70 1.02 1.38 1.52 1.65 2.46 1.34 1.30
RHO 0.19 -0.21 -0.05 -0.28 -0.07 -0.00 -0.18 0.34

Table 11: Metrics for the French sentences in subtask 2, grouped by construction.
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