Unsupervised Generation of Long-form Technical Questions
from Textbook Metadata using Structured Templates

Indrajit Bhattacharya, Subhasish Ghosh, Arpita Kundu,
Pratik Saini and Tapas Nayak
TCS Research, India
{b.indrajit, g.subhasish, arpita.kundul, pratik.saini, nayak.tapas } @tcs.com

Abstract

We explore the task of generating long-form
technical questions from textbooks. Semi-
structured metadata of a textbook — the table
of contents and the index — provide rich cues
for technical question generation. Existing liter-
ature for long-form question generation focuses
mostly on reading comprehension assessment,
and does not use semi-structured metadata for
question generation. We design unsupervised
template based algorithms for generating ques-
tions based on structural and contextual pat-
terns in the index and ToC. We evaluate our
approach on textbooks on diverse subjects and
show that our approach generates high quality
questions of diverse types. We show that, in
comparison, zero-shot question generation us-
ing pre-trained LLMs on the same meta-data
has much poorer quality.

1 Introduction

We address automated generation of long-form
technical questions from textbooks. Such questions
can then be used for technical assessments, such as
in interviews and examinations. Existing work on
long-form question generation mostly focuses on
questions for reading comprehension assessment
(Dhole and Manning, 2020; Bang et al., 2019; Xiao
et al., 2020; Zhao et al., 2018; Back et al., 2021;
Cui et al., 2021; Huang et al., 2021).

We observe that textbook metadata — specifi-
cally, the index and the table of contents (ToC) —
provide rich cues for question generation. Fig.1
and Fig.2 show fragments from the index and the
ToC of a textbook on Python. The index structure
is hierarchical and often parsed into an subject and
a context (e.g. functions and classes, managing).
The ToC is similarly hierarchical. The main chal-
lenge in question generation from unrestricted nat-
ural language content is identifying the relevant en-
tity (or entities) and their context. The mentions of
some of the relevant entities is often far away from

21

the context, and the context may also use complex
linguistic constructs. In contrast, the grammar for
the metadata is significantly restricted, thereby sim-
plifying the detection of the entities and contexts.
Additionally, their hierarchical structure compactly
and completely captures relevant context. In this
paper, we focus on automatically generating tech-
nical long-form questions using the index and ToC
of textbooks. While structured or semi-structured
data has been used in NLP tasks such as knowl-
edge graph construction (Suchanek et al., 2007),
table-to-text generation (Wang et al., 2020b) and
factoid question generation has been explored from
knowledge-graphs (Wang et al., 2020a; Han et al.,
2022), to the best of our knowledge there is no
existing work that uses semi-structured content to
generate questions either for technical assessment
or for reading comprehension.

We use structural patterns in the index and ToC
to design question templates of varying types and
complexity, and then use unsupervised regular
expression-based algorithms to generate questions
by instantiating these templates using index and
ToC entries. Template based approaches have been
used in question generation from free text, typ-
ically with higher precision than deep learning
based counterparts, while generating fewer ques-
tions (Fabbri et al., 2020; Puzikov and Gurevych,
2018; Yu and Jiang, 2021). However, we are not
aware of use of templates over semi-structured con-
tent for question generation.

decorators, 983-995, 1053
call and instance management, 984
class decorators, 990-992
coding, 1011-1020
decorator arguments, 994
versus function annotations, 1043
functions and classes, managing, 984, 995
justification, 985
type testing with, 1045

Figure 1: Fragment of a Python text-book Index

We apply our approach to generate questions

Proceedings of the 29th International Conference on Computational Linguistic, pages 21-28
October 12-17, 2022.

38. Decorators

What'’s a Decorator? 983
Managing Functions and Classes 984
Using and Defining Decorators 984
Why Decorators? 985

The Basics 986
Function Decorators 986
Class Decorators 990
Decorators Manage Functions and Classes, Too 995

Figure 2: Fragment of a Python text-book ToC

from multiple textbooks on diverse subjects such
as Machine Learning, Java and PL/SQL to demon-
strate its generality. Using automated and manual
evaluation, we show that the generated questions
are complex and diverse while having very high
quality. We compare our approach with zero-shot
question generation using LL.Ms, GPT-3 (Brown
et al., 2020) and BART (Lewis et al., 2020). We
show that these perform poorly in terms of both
validity and diversity of the generated questions.

2 Structural Templates for Q.Generation

In this section, we describe our approach for ques-
tion generation from text-book index and ToC using
structural templates. We focus on generating ques-
tions that are answerable from book context. These
have reference answers in the book, which can be
used reliably for assessment. Consider the index
fragment from Fig.1. WHAT ARE THE BENEFITS
OF DECORATORS? and WHAT IS THE RELATION
BETWEEN DECORATOR ARGUMENTS AND CLASS
DECORATORS? are meaningful questions, but the
index provides no evidence that the book contains
the answers. In contrast, the index suggests that
WHAT ARE CLASS DECORATORS? and WHY DO
WE NEED DECORATORS? are answerable from the
book. We want to generate the two latter questions
but not the first two.

Index Indexes are typically structured as a forest
of trees. Our example fragment shows one such
tree. It typically mentions one or more root entities
(e.g. decorators), sometimes with an additional
comma separated context (e.g. libraries, third-
party). Each child entry is about a specific context
of the root entity. These may be one or more re-
lated entities (call and instance management) or
attributes and instances (class decorators), some-
times with additional connecting context, which
maybe a prefix (e.g. versus function annotations)
or a comma separated suffix (e.g. functions and
classes, managing). The context may also be about
specific tasks involving the root entity (e.g. coding,
type testing with). This structure may repeat at the

22

third level. We use NLTK to detect the entities as
simple or compound noun phrases, and contexts as
involving prepositions (IN) and gerunds or present
participles (VBG), making use of separator com-
mas when present.

The templates used for generating questions
from index entries are summarized in Tab.4 in the
Appendix. First, we discuss question templates
based on a single index entry containing an entity
phrase e, a context ¢, or both. (a) WHAT IS/ARE
e?, if e is present; (b) WHAT IS/ARE c OF e?, if
e and c are both present, and ¢ matches the exam-
ples regex (e.g. example(s)linstance(s) (of)*); (c)
WHAT IS/ARE ¢ OF e?, same as above with ¢ match-
ing the uses regex (use(s)lusagelapplication(s)
(of)*; (d) WHAT IS/ARE ¢ OF e?, same as
above with ¢ matching the property regex
(part(s)lcomponent(s)Istep(s)...(oflfor)*).

More interesting templates are those that con-
sider a parent index entry containing entity e,,, and
a child entry containing entity e, and connecting
context c. Some are based on simple patterns: (e)
HOW DO YOU COMPARE e, AND e.?, if ¢ matches
the comparison regex (vslversuslcompared tol...);
(f) WHAT IS THE RELATION BETWEEN e;, AND
e.?, if ¢ is ‘and’. We also generate the uses, ex-
amples and properties questions for e, when e, is
absent and ¢ matches the corresponding regex.

Other connecting contexts c specify action some-
times involving one or two child entities e.; and e.o
(e.g. using decorators in functions). The specific
action patterns for c are VBG, VBG IN, VBG e,
VBG IN e.; and VBG e.; IN e.2. The correspond-
ing question templates are WHAT CAN YOU SAY
ABOUT VBG followed by ¢, IN e, .1 FOR ¢,
IN e.1 FOR e, and e.1 IN e.o FOR ey, respectively.
Though HOwW DO YOU VB is a more natural pre-
fix, lemmatization frequently fails to recover the
correct base verb from the VBG form.

A frequent pattern for the child context c is end-
ing with preposition (e.g. debugging with, coding
of, karma configuration for). The corresponding
question template is WHAT CAN YOU SAY ABOUT
c e,? when the token preceding the preposition is
VBG, and WHAT IS/ARE c e,? otherwise.

Any parent entry e that is unused in the main
question template, is used to construct a question
prefix ‘REGARDING e, ’ to completely specify the
context, (e.g. REGARDING DECORATORS, WHAT
ARE CLASS DECORATORS?).

Table of Contents The restricted structure of the
index makes detection of entities and contexts sim-
ple. The same restriction, however, prevents the
templates from drawing upon context to add natural
variety to generated questions. In contrast, Fig.2 il-
lustrates that ToC entries are often complex phrases
and even complete sentences and questions. How-
ever, the grammar is still considerably restricted
compared to that for natural language used inside
the book. This forms a nice trade-off between ease
of detection and naturalness of the expression. The
ToC is however much smaller than the index.

ToC entries are of different types: question (Q)
(e.g. What’s a Decorator?), question phrase (QP)
(e.g. Why Decorators?), sentence (S) (contain-
ing non-gerund verb) (e.g. Decorators Manage
Functions and Classes, Too), VBG phrase (VP)
(e.g. Using and Defining Decorators), simple noun
phrase (SNP) (e.g. Class Decorators) and complex
noun phrase (CNP) (with coordinating conjunc-
tions) (e.g. Things to Remember about Decorators).
We detect these types using simple regular expres-
sions involving POS tags and small dictionaries.
The templates for the above categories are Q, CAN
YOU EXPLAIN QP?, DO YOU THINK S?, WHAT
CAN YOU SAY ABOUT VP?, WHAT IS/ARE SNP?
and WHAT CAN YOU SAY ABOUT CNP?, respec-
tively. As for the index, we recursively construct
the question prefix using remaining parents. The
parent e can again be of one of the above types.
We construct the prefix based on the parent’s type:
‘REGARDING e, ’ for CNP and QP, ‘FOR e, ’ for
VBG, ‘SINCE e, ’ for S, and ‘e ’ for Q, respec-
tively. The templates used for generating questions
from ToC entries are summarized in Tab.3 in the
Appendix.

3 Experimental Evaluation

In this section, we present experimental evaluation
of our question generation approach.

Data: We use text books on diverse subjects
— Python (Lutz, 2013), PLSQL (Feuerstein and
Pribyl, 2014), Java (Schildt, 2007), Machine Learn-
ing (Murphy, 2012) and Deep Learning (Goodfel-
low et al., 2016). The first two have the richest
metadata structure, with 3-level indexes and ToCs.
In contrast, Java has a 2-level index, while ML and
DL have 1-level indexes and DL has 2-level ToCs.
We process the textbook PDFs to extract their index
and ToC automatically. Details are in the appendix.
Deep Models: We compare with two state-of-

the-art LLMs. For GPT-3 (Brown et al., 2020),
we use its Interview Questions preset. We take
BART (Lewis et al., 2020) pre-trained for (factoid)
question generation on SQuAD (Rajpurkar et al.,
2016), and post-train it for long-form question gen-
eration on the MASH-QA dataset (Zhu et al., 2020).
This has been previously used for long-form answer
extraction. We use contexts and their correspond-
ing questions for post-training. Details of hyper-
parameter settings are in the appendix. For both
models, we split the index and ToC forests into
complete individual trees, and provide one tree as
one context. For GPT-3, we construct a prompt
by concatenating a context with a new line and
“Generate interview questions from this book index’
(alternatively “book table of contents”).

B

Evaluation: For each approach, we evaluate dif-
ferent aspects of their quality. A question is (a)
context-relevant if it includes (non-trivial) terms
from the context. It is (b) context-closed if its non-
trivial terms only from the context, and only from a
single hierarchy path. These checks invalidate the
two example unanswerable questions at the start
of Sec.2. A question is (c) context-complete, if
it includes non-trivial terms from each ancestor
entry in the hierarchy. In Fig.1, a question that
just mentions coding, without referring to decora-
tors and class decorators is incomplete. The (d)
level-span of a question is the number of hierar-
chy levels that contribute terms to the question. In
Fig.1, a question only about decorators has level
span 1. It increases to 2 by additionally includ-
ing class decorators, and to 3 on further including
coding. We obtain a question form / template by
masking out copied terms from the context. In ad-
dition to varying level spans, (e) the number of
unique question forms is an indicator of diver-
sity of questions. These measures are computed
automatically (details in appendix). In addition, we
manually evaluate the (f) validity of a question by
checking its semantic correctness, completeness,
and answerability from book context.

Results: The results for Index questions are shown
in Tab.1a. Note that the first evaluation is context-
relevance. All other evaluations are performed
only on context-relevant questions. The main pat-
tern is similar across subjects. GPT-3 generates
the largest number of questions, but ranks the low-
est in context-relevance. It also scores poorly in
context-closedness.Structured templates generate
fewer questions but with very high quality. BART

9L-Span

Subject #Entry Model #Q. %Cx-Rel %Cx-Cmp %Cx-Cl 1 > 3 #Q.Form %valid
BART 728 96 93 63 94 6 0 10 76
Python 1822 GPT-3 6251 23 72 24 84 15 1 19 48
STemp 1216 100 99 100 50 44 5 15 80
BART 1753 81 96 67 97 3 NA 9 86
Java 2541 GPT-3 15522 13 84 28 86 14 NA 26 48
STemp 2294 100 100 100 73 27 NA 11 96
BART 589 98 100 80 100 NA NA 3 78
DL 585 GPT-3 3943 44 100 18 100 NA NA 5 34
STemp 556 100 100 100 100 NA NA 2 98
(a) Results for Index Question Generation
Subject #Entry Model #Q. %CxRel %Cx-Cmp %Cx-Cl | P 4QForm valid
BART 42 90 24 45 66 31 3 3 42
Python 906 GPT-3 313 92 10 53 76 23 1 16 60
STemp 324 100 100 100 7 33 60 27 72
BART 33 100 39 70 82 18 0 5 57
Java 866 GPT-3 486 99 12 77 82 16 2 17 62
STemp 503 100 100 100 4 45 50 21 72
BART 21 95 60 55 50 50 NA 6 48
DL 184 GPT-3 175 85 19 74 92 8 NA 10 68
STemp 122 100 100 100 11 88 NA 11 84

(b) Results for ToC Question Generation

Table 1: Question generation results for BART, GPT-3 and Structural template (STemp) for different subjects.
#Entry: no. of index/ToC entries, #Q: no. of questions, %Cx-Rel: pct. of context-related, %Cx-Cmp: pct. of
context-complete, %Cx-ClI: pct. of context-closed, %L-span: 1, 2, 3 pct. of level-span 1, 2, 3, #Q-form: no. of
unique question forms, and %valid: pct. of manually verified valid questions. All columns after %Cx-Rel are
evaluated only for context-relevant questions. %L-span is NA when data has fewer than that number of levels.

generates the fewest number of questions but with
higher quality than GPT-3. However, BART and
GPT-3 questions are largely restricted to single en-
tries and do not span 2 or 3 levels. GPT-3 however
has more variety in question forms.

The results for ToC questions are in Tab.1b.
First, we note that here GPT-3 and structured tem-
plates (STemp) generate similar number of ques-
tions, while BART generates very few. All three
approaches mostly generate context-relevant ques-
tions. Context-closedness increases for BART
and GPT-3 compared to index questions, but is
still significantly lower than templates. Context-
completeness on the other hand drops for these two
approaches compared to index. In terms of level
span, BART and GPT-3 questions are again mostly
restricted to single entries while templates make
use of multiple levels. BART has very few ques-
tion forms, while those for GPT-3 and templates is
similar and higher.

Additional results for PL/SQL and Machine
Learning are included in the appendix.

The measures discussed so far are automated.
We also performed human validation for all sub-
jects on 50 randomly sampled questions from each
of the three approaches, after filtering out context-

24

irrelevant questions. For index questions, struc-
tured templates have very high validity. BART
performance is acceptable, but majority of GPT-3
questions are invalid. The situation is different for
ToC questions. While template questions have the
highest validity, it is much lower than for index.
The performance of GPT-3 increases significantly
while that of BART falls close to or below 50%.

Error Analysis: In validity evaluation, the re-
duced performance of STemp for ToC is largely
due to errors in type classification of entries. Unsur-
prisingly, POS pattern based classification misfires
more often for ToC entries than index entries. For
example, the ToC entry Bayesian inference when
o? is unknown? is misclassified as Sentence(S), in-
stead of Complex Noun Phrase(CNP). As a result,
the question is generated using the DO YOU THINK
template for S instead of the WHAT CAN YOU SAY

ABOUT template for CNP.

GPT-3 and BART errors are largely due to in-
troduction of additional irrelevant terms. This hap-
pens more for GPT-3 for shorter index entries, as it
fails to understand the context. As examples, from
the context wake-sleep algorithm, GPT-3 generates
the question WHAT ARE COMMON SLEEP DISOR-
DERS?, and from the context elif (else if) clause,

BART generates the question WHAT IS THE ELIF
(ELSE IF) CLAUSE IN A CONTRACT?. Surpris-
ingly, BART makes such errors more frequently for
longer ToC entries.

Also, unlike GPT-3, BART typically generates
a single question per context, which is an index
or a ToC tree, even though it is post-trained with
multiple questions per context.

4 Conclusions

We have motivated the task of automated technical
question generation from semi-structured text-book
index and ToC. We have proposed an unsupervised
approach based on structured templates that make
use of their restricted grammar and hierarchical
structure. We have shows using extensive evalua-
tion that this approach performs better according to
many different aspects of quality on multiple text-
books on a variety of subjects compared to zero-
shot approaches using large language models.

References

Seohyun Back, Akhil Kedia, Sai Chetan Chinthakindi,
Haejun Lee, and Jaegul Choo. 2021. Learning to
generate questions by learning to recover answer-
containing sentences. In Findings of the ACL-
IJCNLP.

Liu Bang, Zhao Mingjun, Niu Di, Lai Kunfeng,
He Yancheng, Wei Haojie, and Xu Yu. 2019. Learn-
ing to generate questions by learning what not to
generate. In WWW.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In NeurlIPS.

Shaobo Cui, Xintong Bao, Xinxing Zu, Yangyang Guo,
Zhongzhou Zhao, Ji Zhang, and Haiqing Chen. 2021.
Onestop qamaker: Extract question-answer pairs
from text in a one-stop approach. In ArXiv.

Kaustubh D. Dhole and Christopher D. Manning. 2020.
Syn-qg: Syntactic and shallow semantic rules for
question generation. In ACL.

Alexander Fabbri, Patrick Ng, Zhiguo Wang, Ramesh
Nallapati, and Bing Xiang. 2020. Template-based
question generation from retrieved sentences for im-
proved unsupervised question answering. In ACL.

25

Steven Feuerstein and Bill Pribyl. 2014. Oracle PL/SQL
Programming. O’Reilly, CA, USA.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Kelvin Han, Thiago Castro Ferreira, and Claire Gardent.
2022. Generating questions from wikidata triples. In
LREC.

Xinting Huang, Jianzhong Qi, Yu Sun, , and Rui Zhang.
2021. Latent reasoning for low-resource question
generation. In ACL.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and com- pre-
hension. In ACL.

Mark Lutz. 2013. Learning Python. O’Reilly, CA,
USA.

Kevin Patrick Murphy. 2012. Machine Learning: a
Probabilistic Perspective. MIT Press, Massachusetts,
USA.

Yevgeniy Puzikov and Iryna Gurevych. 2018. E2E NLG
challenge: Neural models vs. templates. In INLG.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Herbert Schildt. 2007. Java: The Complete Reference.
McGraw-Hill, NY, USA.

Fabian M. Suchanek, de, and Gerhard Weikum. 2007.
Yago: A core of semantic knowledge unifying word-
net and wikipedia. In WWW.

Siyuan Wang, Zhongyu Wei, Zhihao Fan, Zengfeng
Huang, Weijian Sun, Qi Zhang, and Xuanjing Huang.
2020a. PathQG: Neural question generation from
facts. In EMNLP.

Zhenyi Wang, Xiaoyang Wang, Bang An, Dong Yu,
and Changyou Chen. 2020b. Towards faithful neu-
ral table-to-text generation with content-matching
constraints. In ACL.

Dongling Xiao, Han Zhang, Yukun Li, Yu Sun, Hao
Tian, Hua Wu, and Haifeng Wang. 2020. Ernie-gen:
An enhanced multi-flow pre-training and fine-tuning
framework for natural language generation. In IJCAL

Xiaojing Yu and Anxiao Jiang. 2021. Expanding, re-
trieving and infilling: Diversifying cross-domain
question generation with flexible templates. In
EACL.

Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa
Ke. 2018. Paragraph-level neural question gener-
ation with maxout pointer and gated self-attention
networks. In EMNLP.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Ming Zhu, Aman Ahuja, Da-Cheng Juan, Wei Wei,
and Chandan K Reddy. 2020. Question answering
with long multiple-span answers. In Findings of the
Association for Computational Linguistics: EMNLP.

A Appendix

A.1 Textbook PDF Processing

We process the textbook PDFs to extract their in-
dex and ToC automatically. The task is to extract
the entries along with their levels in the hierarchy
from the ToC and index of the book PDFs. ToC
entries often have different text font and size to rep-
resent chapter, sub-chapter headers and different
indentation to represent different levels as shown in
Fig.2. Index entries mostly have same text font and
size but have different indentation to represent the
level of hierarchy as shown in Fig.1. We first use
pdfminer library to extract texts with the meta-
data such as text sizes, fonts, and text coordinates
from the PDFs. Then we write a wrapper on top
of pdfminer that uses this metadata to filter out
unnecessary parts (e.g. header, footers) from the
text and annotate different aspects(e.g. entry, level,
page no) of the index and ToC. Books from differ-
ent publishers have different text size, fonts and
coordinates for different elements. So the filtering
parameters need to customized to some extent for
each book.

A.2 Additional Results

The results for PL/SQL and Machine Learning are
shown in Tab.2. The observations for the three
models are very similar to those for the 3 subjects
in Sec.3.

A.3 Automated Evaluation

Here, we describe our automated evaluation algo-
rithms.

Context-relevance: We first identify non-trivial
terms by tokenizing a question using NLTK to-
kenizer and removing stopwords, wh-words and
prepositions using NLTK POS tagger. Then we
check for presence of these terms and entries in
ToC or index by using stemming and a synonym
dictionary. If at least one question term occurs in
an entry, then we mark it as context-relevant.

Context-closedness: A question is context-
closed if there exists a hierarchy path from root
to leaf in a single tree of the index or ToC that
contains all non-trivial terms in the question. We
first create a set of composite terms from all entries,
where a composite term is the longest contiguous

26

sequence of non-trivial terms in an entry. We iden-
tify composite terms in a question and map these
to some entry (or none) using Rouge-F1 score. We
finally check if all composite terms in the question
have been mapped, and also mapped to entries in a
single hierarchy path.

Context-completeness: After mapping com-
posite terms in a question to a hierarchy path of
entries, we check if for each matched entry in the
matched entry list, if its parent is also presents in
the list. If so, we mark the as context-complete.

Level-span: The level span of a question is
the number of distinct entries mapped to it in a
hierarchy path.

Question form: To extract the form of a ques-
tion, we mask all mapped terms in it. The resultant
masked string is the question form. Then we count
the number of distinct forms in a set of questions.
Note that, here we report number of question form
on context-closed questions.

A4 Hyperparameter Settings

We experiment with BART-base (Lewis et al.,
2020) model pre-trained on SQuAD (Rajpurkar
et al., 2016) and post-train on MASH-QA data
(Zhu et al., 2020). All experiments are done on
10GB A100 GPU with 8 CPU cores and 30GB
RAM. We use batch size of 8 and train the model
for 10 epochs. We optimize the model parame-
ters using Adam optimizer with a learning rate of
0.0001.

For GPT-3, we use the Interview Question preset.
We set the temperature parameter to O to eliminate
randomness and keep the other parameters as de-
fault.

A.5 Templates Summary

Templates used for generating questions from hier-
archical index and ToC are summarized in Tab. 4
and Tab. 3 respectively.

YL-Span

Subject #Entry Model #Q. %Cx-Rel %Cx-Cmp %Cx-Cl | 5 3 #Q.Form %valid
BART 1329 98 92 70 92 8 0 22 74
PL/SQL 748 GPT-3 10659 36 68 32 81 18 1 44 46
STemp 2330 100 99 100 44 51 6 16 92
BART 2418 97 100 78 100 NA NA 6 80
ML 2418 GPT-3 17855 32 100 15 100 NA NA 17 20
STemp 2254 100 100 100 100 NA NA 2 94
(a) Additional Results for Index Question Generation
Subject #Enwy Model #Q. %CxRel %Cx-Cmp %Cx-Cl | ““PP™ . 4QFom dovalid
BART 31 100 35 68 74 26 O 3 39
PL/SQL 748 GPT-3 329 98 3 74 81 18 1 11 52
STemp 357 100 100 100 4 28 67 13 90
BART 32 100 25 72 72 28 0 4 69
ML 777 GPT-3 366 100 9 80 76 23 1 15 68
STemp 344 100 100 100 5 28 66 20 74

(b) Additional Results for ToC Question Generation

Table 2: Question generation results for BART, GPT-3 and Structural template for different subjects. #Entry: no. of
index/ToC entries, #Q: no. of questions, %Cx-Rel: pct. of context-related, %Cx-Cmp: pct. of context-complete,
%Cx-Cl: pct. of context-closed, %L-span: 1, 2, 3 pct. of level-span 1, 2, 3, #Q-form: no. of unique question
forms, and %valid: pct. of manually verified valid questions. All columns after %Cx-Rel are evaluated only for
context-relevant questions. %L-span is NA when data has fewer than that number of levels.

Entry Types Example Entry Template Example
Question (Q) What’s a Decorator? Q What’s a Decorator?
: Can you explain
? 9
Question Phrase (QP) Why Decorators:: CAN YOU EXPLAIN QP? why decorators?
Decorators Manage .
Sentence (S) Functions and DO YOU THINK §? Do you think decorators
manage functions and classes?
Classes, Too
Managing Functions ~ WHAT CAN YOU SAY What can you say about
VBG Phrase (VP) and Classes ABOUT VP? managing functions and classes?
Simple Noun Phrase (SNP) Class Decorators WHAT IS/ARE SNP? What are class decorators?
Things to Remember ~ WHAT CAN YOU SAY What can you say about things to
Complex Noun Phrase (CNP) about Decorators ABOUT CNP? remember about decorators?

Table 3: Types of ToC entries and templates used for generating questions from these with examples.

27

g:tt;);n Condition gf‘i‘:};ple Template Example
. decorators WHAT IS/ARE e? What are decorators?
Single
¢ matches
e,corce ‘use’, ‘example’, decorators, WHAT IS/ARE ¢ OF e? What are uses of
. , use decorators?
property’ regex
Pa: decorators
¢ matches arguments HOW DO YOU How do you compare
Pa: ¢, ‘comparison’ Ch: versus COMPARE decorator arguments
Ch: ec,corce. regex function ep and e.? and function annotations?
annotations
Parent
Child Pa: decorators
arguments WHAT IS THE What is the relation
¢ matches ‘and’ Ch: and RELATION between decorators
function BETWEEN e, AND e.? and class decorators?
annotations

Pa: e,
Ch: c

Pa: e,
Ch:
VBG e, c2 €c,

c matches
‘use’, ‘example’,
‘property’ regex

€cy,C2,€cy = Null

POS(c2) =IN
€cy,€cy=Null

c2,€c, = Null

€c; = Null

POS(c2) =IN

Pa: decorators
Ch: examples

Pa: decorators
Ch: Coding

Pa: decorators
Ch: type
testing with

Pa: loops
Ch: coding
techniques

Pa: decorators
Ch: using
functions

Pa: performing
essential tasks
Ch: hiding
source code of
stored programs

WHAT IS/ARE c OF e?

WHAT CAN YOU
SAY ABOUT
VBG e,?

WHAT CAN YOU
SAY ABOUT
VBG IN ¢,,?

WHAT CAN YOU
SAY ABOUT
VBG e., FOR ¢,?

WHAT CAN YOU
SAY ABOUT
VBGe, IN e, ?

WHAT CAN YOU
SAY ABOUT
VBG e., IN e,
FOR e,?

What are examples
of decorators?

What can you say
about coding
decorators?

What can you say
about type testing
with decorators?

What can you say
about coding
techniques for loops?

What can you say
about using decorators
in functions?

What can you say

about hiding source
code of stored programs
for performing

essential tasks?

Table 4: Patterns and templates used for generating questions from index entries with examples. Pa and Ch denote
parent and child index entries respectively.

28

