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Abstract

Natural Language Generation has been proved
to be effective and efficient in construct-
ing health behaviour change support systems.
We are working on DRIVINGBEACON, a be-
haviour change support system that uses telem-
atics data from mobile phone sensors to gen-
erate weekly data-to-text feedback reports to
vehicle drivers. The system makes use of a
wealth of information such as mobile phone
use while driving, geo-information, speeding,
rush hour driving to generate the feedback. We
present results from a real-world evaluation
where 8 drivers in the UK used DRIVINGBEA-
CON for a period of 4 weeks. Our preliminary
results are promising but not conclusive.

1 Introduction

There has been a long tradition of adopting Nat-
ural Language Generation (NLG) techniques in
health care (Cawsey et al., 1997; Portet et al.,
2009; Schneider et al., 2013; Enarvi et al., 2020).
One line of work focus on building Behaviour
Change Support Systems (BCSSs) to help people
live healthier and more safely. These include sys-
tems for encouraging people to stop smoking (Re-
iter et al., 2003), for ecological driving (Endres
et al., 2010; Boriboonsomsin et al., 2010; Tulusan
et al., 2012), and for safer driving (Braun et al.,
2015, 2018)1. Such BCSSs can generate feedback
automatically based on users’ current behaviours
by employing NLG techniques.

Within the domain of safe driving, person-
alised feedback via postal mail has proved to be
useful to improve users’ driving habits (Ouimet
et al., 2004; Lefèvre et al., 2015). For example,
DriveSafe (Bergasa et al., 2014) is a mobile ap-
plication that utilises data from vehicle cameras

1The United Nations considers unsafe driving to be a health
issue and lists the target of fewer road traffic accidents as a
health goal for sustainable development. See: https://
sdgs.un.org/goals/goal3.

Figure 1: DRIVINGBEACON System Design

combined with GPS and audio data from the mo-
bile phone to identify unsafe driver behaviours.
DriveSafe estimate a driving score for each
driver and then provides alerts when the score
crosses a certain threshold. Eco-Driving (Allison
and Stanton, 2019) is a study about reducing gas
emissions arising from bad driving styles. Minimis-
ing unnecessary acceleration and braking can im-
prove eco-driving and fuel consumption and even-
tually reduce emissions. The study also highlights
that despite the benefits of eco-driving, drivers also
require feedback about their actions in order to
promote long-term behavioural change. Another
study by Jannusch et al. (2021) investigated the
high fatality rate amongst Young Novice Drivers
and their use of mobile phones while driving. A
survey among 700 young drivers was conducted,
where they compared distracted driving behaviour.
They focused on participants’ use of smartphones
during driving and found that most of those uses
are music-related activities (e.g., playing the next
song or increasing the volume).

Braun et al. (2018) built SAFERDRIVE, the first
NLG based driving BCSS, which generates weekly
textual driver feedback from telemetric data2 and
the feedback is delivered through mobile phones.

2The data was gathered by a mobile phone app to track
individual driving styles.
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It was reported that the generated textual feedback
is more helpful to drivers than the traditional score-
based and map-based feedback, especially to learn-
ers and young drivers (Braun et al., 2015). This
is because textual feedback gives drivers a more
concrete idea of how to change their driving be-
haviours. For example, for a speeding incident,
SAFERDRIVE could generate feedback such as
“You speeded 7 times on roads with 20 mph speed
limit and 12 times on roads with 30 mph speed
limit”.

This paper introduces DRIVINGBEACON which
is able to make use of richer information com-
pared to SAFERDRIVE aiming at generating bet-
ter feedback reports. Vital additional information
includes (i) the mobile phone use information of
drivers during driving; and (ii) geofencing, which
highlights driving incidents that take place near
crowded places such as schools, mosques, super-
stores, etc.

To assess our DRIVINGBEACON, we conduct
a real-world A/B test on 8 drivers in UK. This
is not a lot of drivers, but it is more than the 6
drivers used by Braun et al. (2018). Concretely,
we generated basic feedback (not considering rich
information) and enhanced feedback (considering
rich information) using DRIVINGBEACON. We
divided our 8 drivers into two groups, one of which
is sent the basic feedback while the other is sent
the enhanced feedback. The experiment lasted for
4 weeks, during which we monitor the change in
their driving behaviours. To summarise, the key
contributions of our work are two-fold:

1. We designed and implemented the DRIVING-
BEACON system which makes use of the mo-
bile use information and Geo-information in
addition to telemetric data;

2. We evaluated DRIVINGBEACON through a
four-week period A/B test on 8 real drivers.

2 System Design of DRIVINGBEACON

We implemented DRIVINGBEACON using Java and
connected it to two third-party APIs to acquire re-
quired information: the Google Map API3 and the
Damoov API4. Figure 1 shows our system architec-

3https://developers.google.com/maps;
Terms of Service: https://developers.google.
com/maps/terms-20180207

4Damoov - Mobile Telematics as a service,
www.telematicssdk.com; License: https:
//docs.damoov.com/docs/license

ID Driving Behaviour

1 Brake and Acceleration
2 Speeding
3 Speeding near crowd areas
4 Using mobile while driving

Table 1: Driving behaviours that DRIVINGBEACON
monitors

ture.
Specifically, Damoov Telematics uses a mobile

phone application called ZenRoad5 to collect driv-
ing behaviour related information. It collects driv-
ing data from embedded sensors in the mobile de-
vice, such as gyroscope, GPS and accelerometer.
This data is then uploaded to the data hub of Rexel
Telematics.

DRIVINGBEACON pulls raw data from the data-
hub using the Damoov API and extracts related
Geo-information using Google MAP API. With
these data, we use a rule-based NLG system to
generate feedback reports.

3 Feedback Generation

We classify the information we obtain into two
sets: one contains the information that also has
been used in SAFERDRIVE (Braun et al., 2018)
(henceforth basic information), including informa-
tion such as location, speed, speed limit, time, etc.
The other contains additional information, includ-
ing mobile phone usage, geo-fencing (driving near
crowded places), traffic law and penalty points. Ba-
sic feedback reports include only the first set, while
Enhanced feedback reports include both sets.

We also list the driving behaviours that DRIV-
INGBEACON captures in Table 1. DRIVINGBEA-
CON will detect driving behaviours based on the
information it collects and generates feedback ac-
cordingly.

3.1 Basic Feedback Report

Without the additional information, we generate
what we call the basic feedback. It uses similar
parameters as Braun et al. (2018). Since the system
access only basic information, it detects limited
types of driving behaviours (i.e., only the first and
second driving behaviours in Table 1). Based on the
detected behaviours, it generates basic feedback,

5tinyurl.com/ZenRoadApp
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Basic Report Enhanced Report

Last week, your total number of
driving incidents was nine, includ-
ing speeding on Low Rd, Grantham.
Your speed was 51mph on a 30mph
road. Remember that fast driving
can cause serious accidents and will
lead to points on your driving li-
cence and fines of up to 150% of
your weekly income. When driving,
a few miles per hour can mean the
difference between life and death.
The total number of braking inci-
dents was two; your braking counts
are less than five; Well done! Ac-
celeration incidents were two; your
acceleration counts are less than five,
Keep it up! Unnecessary accelera-
tion and harsh braking can impact
fuel costs and car maintenance costs.

Last week, your total number of driving incidents was nine;including mobile
phone usage on Tuesday, 4th May at 8:56 AM. You used a mobile phone while
driving near Helmsley Rd, Grantham. It was during rush hour where distracted
driving could have caused a serious accident with up to 6 penalty points and a £1,000
fine.

On Wednesday, 5th May at 3:27 PM, you exceeded the speed limit near a crowded
place; the location was Barrowby Preschool, Low Rd, Grantham. Schools, mosques,
train stations and superstores are sensitive and often crowded zones. Your speed was
51mph on a 30mph road. Remember, driving fast near a crowded place can cause a
serious accident and may lead to points on your driving licence and fines of up to
150% of your weekly income.

On Wednesday, 5th May at 8:30 AM, you drove at extreme speed near Alberic
cottage, Low road, Grantham. Your speed was 50mph on a 30mph road. Remember,
when driving, a few miles per hour can mean the difference between life and death.

Unnecessary acceleration and harsh braking can impact fuel costs and car mainte-
nance costs. Last week, your total number of braking incidents was two, the total
count is less than five; Well done! You did acceleration near a crowded place on
Wednesday 5th May at 3:27 PM, however, your acceleration counts are less than five,
Keep it up!

Table 2: Example of basic feedback and enhance feedback (difference highlighted in blue)

which tells drivers about speeding, road speed lim-
its, unnecessary acceleration and harsh braking.
For example, in the example basic feedback in Ta-
ble 2, with the information about location, speed
and speed limit, the system detected that the driver
overspeeded on Low Rd, Grantham and generated
a message about both the detail of this poor driving
behaviour (i.e., “... speeding on Low Rd, Grantham.
Your speed was 51mph on a 30mph road.”) and
its consequences (i.e., “Remember that fast driving
can cause serious accidents and will lead to points
on your driving licence and fines of up to 150% of
your weekly income ...”)

3.2 Enhanced Feedback

With both the basic and additional information,
DRIVINGBEACON generates enhanced feedback
reports, an example of which is shown in Table 2.
This additional information can help the system
detect more kinds of poor driving behaviours (see
Table 1) and can be useful to drivers to understand
where and when they did drive unsafely and the
potential impact on them and others of their unsafe
driving. It highlights the dangers of the incidents.

We use geofencing (illustrated in Figure 2) to
identify regions near schools and other sensitive
or crowded areas (e.g., shopping malls, hospitals).
We highlight to drivers unsafe driving within a ge-
ofenced area as it is more likely to result in in-
cidents in these areas compared to less crowded
places. For example, in addition to tell the driver
that s/he was speeding, the enhanced feedback add
a message that the speeding happened near a school

Figure 2: Geo-fencing around sensitive areas

(i.e., “you exceeded the speed limit near a crowded
place; the location was Barrowby Preschool”).

Mobile phone use is classed as distracted driving
and a major cause of serious accidents (Jannusch
et al., 2021). Due to the high usage of mobile
phones these days, we included mobile phone us-
age in our feedback reports, as shown in Table 2:
“You used a mobile phone while driving near ...”.

Additionally, the Enhanced report also adds the
detail of when each incident happened (e.g., “...
mobile phone usage on Tuesday, 4th May at 8:56
AM.”).

3.3 Hypothesis
Having two types of feedback reports, we show
them to two groups, i.e. the Basic Group with basic
feedback and the Enhanced Group with enhanced
feedback report. We define our hypotheses for this
experiment as follows:

1. Across basic and enhanced groups, there will
be fewer incidents per mile of bad driving6 at

6“Bad driving” means behaviour such as over speeding,
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the end of the experiment (week 4) compared
to the beginning (week 1).

2. Bad driving incidents per mile will reduce
more in the Enhanced group than the Basic
group, looking at all weeks (not just week 4).

4 Evaluation

In order to evaluate our system in a real-world
scenario, we conducted a short longitudinal study
where we evaluated the system with real drivers.

4.1 Materials and Participants

On 30th April 2021, we started a field experiment
that lasted for 30 days. Eight participants (includ-
ing both males and females) between the age of
20 and 45 were given the ZenRoad app. There
were no incentives given related to driving perfor-
mance. On the consent form, we explained that we
would collect their driving data through the Zen-
Road app and generate textual feedback reports
with the intention of helping drivers to improve
their driving habits. To protect the anonymity of
the users, Damoov provided us with Data-Hub and
Device and Track IDs (a unique number created for
each driver and each trip), where all personal iden-
tifiers were removed. This anonymised data was
then used for our analysis and feedback reports.

We divided the eight drivers into two groups
(four drivers in each group): the Basic Group who
received the basic feedback report and the En-
hanced Group who received the enhanced feedback
report. They drove a total of 3,179 miles around
the UK with 239 trips in total. From driving data,
we calculated the driving incidents per mile (I/M),
an indicator for measuring drivers’ relative perfor-
mance. Basic group drove a total of 963 miles and
did an average of around 0.098 driving I/M, while
the Enhanced group drove a total of 2216 miles
(enhanced group drivers went on long drives over
the weekend hence more mileage as compared to
basic group)7 and did an average of 0.014 driving
I/M. Throughout the experiment, we have noticed
a decline in I/M in both groups but the enhanced
group improved in their driving behaviours more
quickly as compared to the basic group. Driver’s
feedback about Enhanced reports shows that it has

harsh braking, speeding near crowded places etc.
7Reason for high miles driven by the Enhanced group

is two out of four drivers went onto long journeys over the
weekends.

Group Week1 Week4 p-value

Basic 0.22 0.07 .321051
Enhanced 0.05 0.01 .243089

Table 3: Numbers of I/M; Week 1 vs Week 4

Figure 3: The number of incidents per mile (I/M) was
normalised by that of week 1 in all four weeks.

made an impact on their driving behaviours during
this experiment (see Section 4.3 below).

Our system monitored the following types of
incidents: speeding, harsh braking, acceleration,
mobile use while driving, unsafe driving near sensi-
tive zones. These were highlighted in the Enhanced
reports for the drivers.

4.2 Driving Behaviour Change

Table 3 shows the I/M of the drivers in the two
groups. We conduct paired t-test to compare the
incident per mile ratio in week 1 (i.e., the beginning
of our experiment) and week 4 (i.e., the end of our
experiment) for both Basic and Enhanced groups,
where the results are shown in Table 3. It can be ob-
served that numerically, there were fewer incidents
in Week 4 than in Week 1. However, the difference
is not significant and hence our Hypothesis 1 is
not supported. We also like to mention here that,
coincidentally, the drivers in the Enhanced group
did fewer incidents in Week 1 as compared to the
Basic group, which again might be attributed to the
scale of our experiment.

To validate the second hypothesis, we quantified
how much was I/M reduced by normalising the I/M
of each week using that of week 1. The results are
presented in Figure 3. We conducted a t-test on the
results, but, unfortunately, there is no significant
difference between the Enhanced group and the
Basic group (p > 0.05). This embodies that our
second hypothesis is also rejected. Nonetheless, we
found that the enhanced report affects drivers much

4



Metric Basic Enhanced

Usefulness 4.00 4.17
Readability 4.50 4.17
Intervention 3.00 3.33

Table 4: Average scores for the human evaluation.

faster than the basic report since, as we can see
from Figure 3, the largest decline of the enhanced
group happened in the second week whereas that
of the basic group happened in the third week. This
suggests that enhanced reports are more efficient
basic reports. More importantly, higher efficiency
often results in fewer accidents in total.

4.3 Human Evaluation of the Feedback
With the weekly feedback report, we asked the
participants to rate each generated report in the
following categories on a scale from 1 (Strongly
disagree) to 5 (Strongly agree): (1) Usefulness:
the feedback is useful to you; (2) Readability: the
content is easy to understand; and (3) Interven-
tion: the feedback has intervened your bad driving
behaviour.

Table 4 charts the results of the human evalua-
tion. We found that the enhanced reports were rated
higher in usefulness and intervention whereas the
basic reports achieve higher readability, although
no significant difference can be established on any
criterion.

4.4 Feedback of the Generated Reports
At the end of the trial, we showed both the basic
and enhanced feedback reports to all participants
and asked about their opinion of this experiment
and approach. The feedback was overall positive.
Participants understood the idea and liked the ap-
proach where they can see their driving styles with
details of their journeys, day and time when they
make mistakes and most importantly the locations.
Two drivers explicitly said they preferred the En-
hanced report and no drivers said they preferred the
Basic report. All comments are shown in Appendix
A. Encouragingly, some of the subjects told us
months after the experiment that they are still driv-
ing more carefully because of their experience with
DRIVINGBEACON, even though they no longer use
the system.

5 Conclusion

We presented DRIVINGBEACON, a behaviour
change support system which can generate en-

hanced feedback reports by utilising the mobile
use information and Geo-information in addition to
telemetric data. Experimental results suggest that
enhanced reports are more effective than the basic
reports, although the difference is not significant.
In the future, we plan to make the enhanced reports
more effective by personalising feedback reports
for individual drivers based on their interests, back-
ground, and driving history. We also plan to test
our system in a larger-scale experiment with regard
to both the number of participants and the duration
of the experiment.
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Group
Give us your thoughts about the feedback
approach ?

Will you use mobile phone app to improve
your driving behaviours?

B

”I think the consistent feedback is encourag-
ing; I have 4 kids of different age groups and in
different schools so my speeding incidents are
due to my rush hour driving as I have to drop
my kids to three different schools. By Septem-
ber, the youngest will join the same school as
my other kids and my daughter will join the
secondary school which will reduce a lot of
extra driving in the morning and afternoons.”

”yes I like the idea. I am very busy but an extra
app on my mobile which can show my driving
behaviours will not harm. After being part
of this experiment, I am thinking of changing
my car insurance to a company which calcu-
lates annual premiums based on driving styles.
I think having an incentive attached to this
process can definitely change my driving be-
haviours.”

B

”Its a good method, it tells me how I drive.
Reading textual paragraph gives you a good
idea; however, it should be shorter or may
be only regarding extreme speeding related
incidents which could fit in a mobile phone
notification or an SMS. This process regularly
will help me improve my driving behaviours.
We receive M&S and Next clothing related pro-
motional SMS messages every weekend, why
not if an app on my phone generate an SMS
or a notification with a report about the most
dangerous driving incident of the week with
location and time. I think it will definitely en-
courage me to change my style over time.”

”Yes, definitely. I want to improve.”

B

”The feedback report process is like a re-
minder to me to behave. But it didn’t manage
to connect me to this process so that it can
sit in the back of my mind all the time when
I drive. There should be some kind of incen-
tive attached to this process. Like a reward
or make me feel like I am part of saving the
world. If there is a week when I did not have
any incidents or bad driving, the app or pro-
cess should share this to my friends and family
that I am part of some noble cause or I receive
a certificate or title or money.”

”yes I will use a mobile phone app to improve
my behaviours.”

B

”I did not completely agree that the feedback
report gives me a good summary of my driv-
ing. A enhanced version with lot more details
and locations will be better. The basic reports
which I have received were good but I was con-
fused when and where did I do that speeding.
Definitely, detailed summary of driving but not
too lengthy.”

”Yes, I like the idea and I think I have im-
proved a lot in the last 4 weeks. I might keep
the ZenRoad app for looking at my driving
scores.”
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Group
Give us your thoughts about the feedback
approach ?

Will you use mobile phone app to improve
your driving behaviours?

E

”For me, feedback approach did work. Its a
reminder for me to be careful while driving.
In the last 4 weeks, I have tried my best to un-
derstand my driving behaviours through these
reports and noticed that I should be extra care-
ful at motorway. The reports shows that I did
a lot of speeding during long journeys and I
should change that habit.”

”Yes, I will use mobile phone app to improve
my driving behaviours.”

E

”The textual feedback was concise and to-the-
point and that was informative so it was quite a
useful part of the feedback. The eco score was
also simple enough to understand, and was
useful. Risk score chart can be simplified a bit
by adding some more explanation around it, or
a simple kind of pie chart or something similar
can be used instead. The rest was good.”

”Maybe”

E

”Possibly weekly prompts on the app like,
”Here is your weekly progress report on your
driving”. Similar to how screen-time reports
work on IOS.”

”Yes, it’s instant and I can get instant feed-
back.”

E
”I like the enhanced reports but its bit lengthy
though.”

”Yes, I want to see my driving insights.”
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Abstract

Summarization of doctor-patient conversations
into clinical notes by medical scribes is an es-
sential process for effective clinical care. Pre-
trained transformer models have shown a great
amount of success in this area, but the domain
shift from standard NLP tasks to the medical
domain continues to present challenges. We
build upon several recent works to show that
additional pre-training with in-domain medi-
cal conversations leads to performance gains
for clinical summarization. In addition to con-
ventional evaluation metrics, we also explore
a clinical named entity recognition model for
concept-based evaluation. Finally, we contrast
long-sequence transformers with a common
transformer model, BART. Overall, our find-
ings corroborate research in non-medical do-
mains and suggest that in-domain pre-training
combined with transformers for long sequences
are effective strategies for summarizing clinical
encounters.

1 Introduction

Necessitated by electronic health records (EHR),
physicians spend a large amount of time on docu-
mentation work (Sinsky et al., 2016), which con-
tributes significantly to burnout (Wright and Katz,
2018; Kumar and Mezoff, 2020), may result in
lower job satisfaction (Shanafelt et al., 2016), and
can even increase the likelihood of errors and re-
duce the quality of patient care (Panagioti et al.,
2017). To alleviate some of the burden on physi-
cians, medical scribes are often used to summarize
recordings or transcriptions of doctor-patient con-
versations into clinical notes. While this essential,
yet tedious process may enable more effective clin-
ical care, it shifts the burden onto medical scribes.
Furthermore, the continued reliance on human ex-
perts is expensive and only scalable to a limited
degree.

Natural language generation models, such as the
ones developed in this paper, have the potential to

significantly reduce the documentation burden by
providing suggested clinical notes to physicians or
scribes nearly instantaneously. While still some-
what error-prone and not yet fully automated, these
models are able to focus on much of the relevant
information in doctor-patient conversations and dis-
till it into a human-readable format for further re-
view by trained medical professionals.

Pre-trained transformer models have revolution-
ized the field of natural language processing (Rad-
ford et al., 2019; Devlin et al., 2019; Lewis et al.,
2020) and have already been applied to various
medical tasks (Lee et al., 2019; Li et al., 2020;
Zhang et al., 2021; Yalunin et al., 2022). Nonethe-
less, medical conversation summarization contin-
ues to present challenges due to its idiosyncrasies,
foremost of which is the requirement to contain all
relevant medical information rather than summa-
rizing every part of a conversation. Additionally,
specialized medical vocabulary renders the use of
conventional pre-trained models difficult.

Additional phases of in-domain pre-training
have shown to be useful across a wide variety of do-
mains and tasks (Gururangan et al., 2020), but lim-
ited work has been done on in-domain pre-training
using unlabeled doctor-patient conversations. To
address this, we leverage a doctor-patient conver-
sation dataset described in Section 3 to investi-
gate two different pre-training methodologies using
BART, LED, and DialogLED transformer models
(Section 4). We fine-tune all models on a sub-
set of medical conversations with human-written
summaries (Section 4.2) and contrast them with a
baseline of models that are not pre-trained in the
medical domain using several different evaluation
methods, including a transformer-based model for
clinical concept extraction (Sections 4.3 and 5). We
show that our methods improve the performance on
the medical summarization task and also evaluate
the additional benefit of using models designed to
work with long sequences (Section 6).
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2 Related Work

Medical summarization Recent research has de-
voted significant attention to the problem of sum-
marizing medical encounters and documents in an
automated fashion. Finley et al. (2018) describe a
fully automated medical scribe using a combina-
tion of RNN and rule-based approaches to automat-
ically recognize speech, convert it into a transcript,
extract the relevant information, and convert it to
a report. However, they omit any examples and
results and mention that the scribe is still limited in
its utility.

Since then, several deep learning approaches
have been developed to summarize doctor-patient
conversations. Joshi et al. (2020) develop a mod-
ified pointer-generator (PG) network to summa-
rize local snippets. Furthermore, they explicitly
model negation, which can cause difficulties for
automatic approaches. Interestingly, they report
that transformer models did not work well, which
is contrary to the findings in a lot of subsequent
research. Yim and Yetisgen (2021) also use a PG
model to perform the similar task of sentence align-
ment and snippet summarization. Notably, they
achieve good results using only a very small dataset.
Krishna et al. (2021) take on the challenging task
of generating complete clinical summaries (SOAP
notes) using various LSTM, PG, and transformer
models. They extract important utterances, clus-
ter them, and then generate single-sentence sum-
maries of each cluster. Enarvi et al. (2020) use a
large dataset of doctor-patient conversations gen-
erated using automatic speech recognition to train
a combined transformer-PG model from scratch.
They are able to handle somewhat longer input be-
cause they do not rely on pre-trained transformer
models. As an alternative approach to handle long
conversations, Zhang et al. (2021) use a pre-trained
BART model with a two-stage chunking approach
to generate summaries for a section of the clinical
notes.

Related to the summarization of doctor-patient
conversations, other research has explored the sum-
marization of clinical notes and clinical history.
Zhang et al. (2018) use a PG network to summa-
rize radiology findings and found that incorporating
additional information in the form of background
information about the patient improves the results.
Yalunin et al. (2022) construct a model using a
Longformer encoder with a BERT decoder to gen-
erate parts of discharge notes from the patient his-

tory. They pre-train BERT and Longformer on
domain-specific data and create a custom tokenizer,
which yields strong results.

Domain shift An intrinsic problem with using
pre-trained models is that the domain of the pre-
training data is often significantly different from
that of the target medical domain. PG networks
during fine-tuning can be helpful because they are
able to copy words from the new vocabulary, but
starting from a model in a domain that is closely
related to that of the fine-tuning task would provide
additional benefit. Gururangan et al. (2020) show
that a second round of pre-training in a domain re-
lated to the fine-tuning task can provide significant
benefit even if the continued pre-training only uses
the unlabeled training set for a given task. They
investigate this across a broad range of domains
and classification tasks. Similarly, Hsu et al. (2021)
find that in-domain pre-training improves learning
speech representations. Zhong et al. (2021) show
that improved summarization results are possible
by continuing pre-training in the (non-medical)
conversation domain. As already mentioned pre-
viously, Yalunin et al. (2022) use in-domain pre-
training very successfully for generating discharge
notes from patient histories.

Instead of pre-training all model parameters
in the new domain, there has been some investi-
gation into learning small extension modules in-
stead, which can be helpful if there are limited
pre-training data or if complete model training is
too costly. Tai et al. (2020) adapt BERT to the med-
ical domain by creating an additional vocabulary
and adding a corresponding embedding layer. They
compose their extension module as a weighted sum-
mation of the embedding vectors from the original
and the extension layers and demonstrate that this
method is very effective at adapting to the new
domain.

3 Dataset

The dataset we use has already been described by
Zhang et al. (2021) and is composed of 83 605
clinical encounters involving doctors from many
different specialties, patients, and potentially other
speakers, e.g., nurses and caregivers. For each
encounter, we use the de-identified doctor-patient
conversation transcribed by a human. The median
number of tokens in a conversation is 2040 (using
the BART byte-pair encoding from Lewis et al.,
2020), and there are a total of 203M tokens in the
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entire dataset.
Annotations are available for a subset of 1342

conversations in the form of medical summaries
across internal medicine and primary care special-
ties. Each conversation was summarized by mul-
tiple professional medical scribes into several sec-
tions, of which we only use the History of Present
Illness (HPI) section for this paper due to its com-
plexity and because it is usually written in complete
sentences. There are an average of 17 reference
summaries per doctor-patient conversation. The
median conversation length in the summarization
subset is 1334 tokens for a total of 2.5M tokens.
The 95th percentile corresponds to approximately
5120 tokens, which is the length limit we use for
our long-sequence models.

For pre-training, we exclude the entire subset of
data that we have summaries for in order to avoid
any data leakage and potentially biased results. In
addition, we split off a random 5% of the remaining
conversations as the validation dataset to monitor
during pre-training.

For fine-tuning, we attempt to remove poor sum-
maries for a given conversation using an in-house
rule-based system to extract medical concepts from
the training summaries and only keeping the sum-
mary with the most concepts. Even though this
results in fewer labeled data, we have not observed
a significant drop in performance. Nonetheless, we
keep all reference summaries for the test data. Af-
ter splitting and removing extraneous summaries
from training and validation data, we end up with
939, 201, and 202 conversations; and 939, 201, and
3450 summaries in the training, validation, and test
sets, respectively.

4 Methods

All methods are based on pre-training and/or fine-
tuning of BART (Lewis et al., 2020), Longformer-
Encoder-Decoder (LED) (Beltagy et al., 2020),
and DialogLED (Zhong et al., 2021). BART is a
pre-trained encoder-decoder transformer model de-
signed for fine-tuning on text generation tasks, such
as summarization. However, it can only encode up
to 1024 tokens in both its encoder and decoder,
which is less than the median sequence length in
our fine-tuning dataset. LED and DialogLED can
handle significantly longer input sequences (we
use 5120 and 1024 tokens for their encoders and
decoders, respectively) by employing a combined
global and local attention mechanism which scales

linearly with sequence length. The LED architec-
ture is almost identical to that of BART except that
the position embeddings of BART are copied 16
times to enable longer input. The parameters of
LED are initialized from BART and no additional
pre-training was done. DialogLED is initialized
from LED and further pre-trained on long dialog
data using a window-based denoising task specifi-
cally designed for conversations, which results in
significant improvement for long-dialog summa-
rization.

We initialize and train all of our models using
the pre-trained BART, LED, and DialogLED mod-
els available in the Hugging Face Transformers li-
brary (Wolf et al., 2020). We use the corresponding
tokenizers (all of which use the BART/GPT-2 byte-
pair encoding with a vocabulary size of 50 265),
but we add additional speaker tokens, e.g., [DR]:,
[PT]:, etc. We investigate both the base and large
models (140M vs. 400M parameters, respectively).
Except for the additional position embeddings, all
base models and all large models have the same
number of parameters.

4.1 Pre-training

We investigate two types of pre-training with
doctor-patient conversations: BART-style denois-
ing using the entire input as described by Lewis
et al. (2020) and DialogLED-style window-based
denoising as described by Zhong et al. (2021). We
found that sentence and turn permutation are al-
ways detrimental to the downstream summariza-
tion of our doctor-patient conversations as mea-
sured by a decrease in ROUGE scores, so we only
perform text infilling for BART-style pre-training
and we only use speaker masking, turn splitting,
turn merging, and text infilling for window-based
pre-training. The other denoising hyperparameters
are identical to those used in the original papers.
For BART-style denoising, we discovered that it
is beneficial to allow the attention mechanism to
attend to the additional padding tokens that are
added as a result of the text infilling. We hypothe-
size that this could imply that adding noise to the
entire input is too “difficult” of a pre-training task
so that some additional information is necessary in
the form of the padding tokens, but we leave the
further investigation of this observation to a future
study.

For all models, we split the conversations into
chunks of 1024 tokens for BART-style pre-training,
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and we simply truncate long conversations at 5120
tokens for window-based denoising with LED and
DialogLED. The number of epochs that each model
is pre-trained for is chosen to achieve optimal per-
formance on the downstream summarization task.
For the large models, this results in less than one
full pass across the pre-training dataset being re-
quired. All of our pre-training hyperparameters are
shown in the Appendix in Table A.1.

4.2 Fine-tuning
Our fine-tuning task is training a text generation
model to summarize doctor-patient conversations
into coherent HPI summaries containing all rele-
vant medical information. As with pre-training, we
use a decoder sequence length of 1024 tokens and
encoder sequence lengths of 1024 tokens for BART
and 5120 tokens for LED and DialogLED. 5120
tokens corresponds to the 95th percentile of conver-
sations in the summarization dataset, which allows
us to encode the full length of the majority of the
conversations when using LED and DialogLED.
Other than that, we maintain consistency across all
other fine-tuning hyperparameters (see Table A.2)
for all of our models. We train for a maximum of
30 epochs with a batch size of 8 and evaluate every
50 steps. We perform evaluation by using the vali-
dation data input to generate text using beam search
and monitor the geometric mean of ROUGE-1 F1,
ROUGE-2 F1, and ROUGE-L F1 scores on the
validation data. We stop training if the validation
score has not improved over the last five evaluation
calls and save the best model checkpoint.

4.3 Evaluation
In order to rapidly estimate performance across
all reference and generated summaries, we employ
several automatic evaluation methods. In addition
to ROUGE and UMLS concept-based evaluation,
which have been used previously in the literature,
we also suggest a named entity recognition model
as a second form of concept-based evaluation due
to the ease of fine-tuning such a model on publicly
available data.

4.3.1 ROUGE
We use the rouge-score package1 to compute
ROUGE scores, which aims to replicate results
from Lin (2004). While there are some issues
with using ROUGE for abstractive summarization

1https://github.com/google-research/
google-research/tree/master/rouge

(Kryscinski et al., 2020), especially with regard to
hallucination (Maynez et al., 2020), it is a useful
metric to assess the degree of overlap between ref-
erence and generated summary. As there are mul-
tiple reference summaries per conversation in the
fine-tuning test set, we first compute the ROUGE
scores of a generated summary with all of its corre-
sponding reference summaries for a single doctor-
patient conversation and then average each score.
To obtain an aggregate ROUGE score, we can then
average the scores across all conversations.

4.3.2 Clinical concepts
As ROUGE measures word overlap indiscrimi-
nately, it takes into account unimportant words and
is not as suitable for measuring semantic overlap.
Therefore, it is beneficial to quantify additional
metrics that are not as prone to these issues and
focus more on the relevant medical content of a
summary.

UMLS concept extraction The methodology de-
scribed in this paragraph is largely identical to the
evaluation described by Zhang et al. (2021). The
Unified Medical Language System (UMLS) (Bo-
denreider, 2004) is a large database of medical con-
cepts and relations between them. We use the ap-
proximate string matching algorithm implemented
in QuickUMLS (Soldaini and Goharian, 2016) to
extract strings from our summaries and match them
to concepts in the UMLS database. However, this
approach sometimes mislabels irrelevant strings as
medical concepts. To mitigate this somewhat, we
first aggregate and filter concepts from all reference
summaries for a given conversation by only keep-
ing a concept if it occurs in at least three reference
summaries or if it occurs in all reference summaries
if there are fewer than three. We then extract the
UMLS concepts for the generated summary and
compute precision, recall, and F1-score. Aggregate
scores are averaged across all conversations.

Transformer-based clinical concept extraction
(NER) To further deal with the limitations of
QuickUMLS, such as the extraction of irrelevant
strings from a summary, we train a deep learning
model to extract clinical concepts instead. For this,
we follow the clinical concept extraction approach
by Yang et al. (2020). We use their RoBERTa (Liu
et al., 2019) model pre-trained on MIMIC-III clini-
cal notes (Johnson et al., 2016) to fine-tune a named
entity recognition (NER) model on the i2b2 2010
dataset (Uzuner et al., 2011), which is a large col-
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lection of clinical notes annotated with three types
of medical concepts.

First, we mostly reproduce the strong classifi-
cation performance reported by Yang et al. (2020)
using the conventional i2b2 2010 train-test split
and a conditional random field layer on top of the
transformer model (see Table B.1 in the Appendix).
After verifying that this approach is successful, we
train our final clinical concept extraction model on
all i2b2 2010 data for use on our summaries.

To automate the NER-based concept evaluation,
we map the extracted entities to UMLS concept
unique identifiers (CUIs) using QuickUMLS (there
are frequently multiple CUIs per entity) and drop
any entities that cannot be mapped. We combine en-
tities that are of the same type (as predicted by the
NER model) and have overlapping sets of UMLS
CUIs. Similar to the QuickUMLS-only approach,
we only keep reference summary entities if they oc-
cur in at least three reference summaries for a given
conversation. Finally, we compute precision, recall,
and F1-score. For this, we define a true positive as
a concept extracted from the generated summary
where its predicted type matches that of a concept
extracted from the reference summaries and there
exists an intersection between the sets of UMLS
CUIs corresponding to the concepts. False posi-
tives and false negatives are defined accordingly.

5 Experiments

We establish baselines by fine-tuning base and large
versions of vanilla BART, LED, and DialogLED
models on the doctor-patient conversation sum-
marization dataset as described in Section 4.2,
i.e., using the versions of those models that are
pre-trained as described in their original papers.
To assess whether a second round of pre-training
on in-domain data is beneficial, we continue pre-
training the models on our doctor-patient conver-
sation dataset as described in Section 4.1 followed
by fine-tuning on the summarization dataset.

For BART, window-based denoising results in
a negative impact on ROUGE scores, so we only
investigate normal text infilling denoising, whereas
for LED and DialogLED, we consider both BART-
style text infilling and window-based denoising.
The results of performing all types of evaluation
described in Section 4.3 on the summarization test
set are shown in Table 1. Furthermore, we report
the median length of generated summaries in Ta-
ble 2.

6 Qualitative Analysis

In-domain pre-training Across all models and
pre-training objectives, ROUGE F1 scores always
improve with additional in-domain pre-training (Ta-
ble 1), clearly indicating that pre-training leads to
improved overlap between the generated and ref-
erence summaries. For the sake of completeness,
it should be mentioned that we find that ROUGE
precision generally decreases with increasing se-
quence length (Table 2) whereas ROUGE recall
generally increases; however, we see no such cor-
relation for ROUGE F1 so that we continue to use
ROUGE F1 for the discussion here. The full evalu-
ation results, including precision and recall can be
found in Table C.1 in the Appendix. There exists
some research into removing the length bias from
ROUGE score calculations (e.g., Sun et al., 2019),
but this is out of scope for our current study.

Overall, we find that pre-training LED with the
window-based denoising task leads to the strongest
models in terms of ROUGE scores. For LED-large,
in-domain pre-training improves the summariza-
tion performance of doctor-patient conversations by
1.59 points for ROUGE-1, 1.13 points for ROUGE-
2, and 1.10 points for ROUGE-L relative to the
vanilla LED-large baseline (Table 1).

Similarly, in-domain pre-training almost always
improves both of our concept-based evaluation met-
rics with the only noticeable outlier being BART-
large. We note that we observe a slightly stronger
dependence of precision and recall on sequence
length (Table 2 and Appendix Table C.2) than
with ROUGE. Nonetheless, in-domain pre-training
leads to the best-performing models as measured
by concept-based F1 scores even if the pre-trained
version does not generate longer sequences on av-
erage.

Overall, we find that pre-training DialogLED
with the BART-style text infilling task leads to the
strongest models in terms of concept-based scores,
which is contrary to the performance of DialogLED
when measured with ROUGE. This could imply
that while DialogLED generates extraneous text
(also shown by its long generation length in Ta-
ble 2) which results in lower ROUGE scores, it is
better at generating the relevant medical concepts,
which might make it more useful for medical sum-
marization.

Comparing across denoising tasks used for pre-
training, there seems to be no significant differ-
ence in terms of ROUGE between BART-style
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ROUGE F1 UMLS F1 NER F1

Model Pre-train R-1 R-2 R-L

BART-base — 35.19 13.28 25.43 24.27 36.22
BART-base BART 36.83 14.13 26.53 28.63 40.24
LED-base — 36.01 13.49 25.99 26.40 38.59
LED-base window 36.96 14.12 26.72 27.45 39.96
LED-base BART 36.65 13.60 26.31 28.47 41.39
DialogLED-base — 36.07 13.14 25.13 31.22 42.66
DialogLED-base window 36.85 13.79 25.74 31.62 41.87
DialogLED-base BART 36.79 13.59 25.88 33.33 42.72

BART-large — 38.25 14.78 26.65 35.19 47.52
BART-large BART 38.47 14.89 27.37 27.77 43.45
LED-large — 37.29 13.83 26.09 30.45 43.97
LED-large window 38.88 14.96 27.19 32.03 46.78
LED-large BART 38.07 14.56 26.82 35.33 47.15
DialogLED-large — 37.04 13.74 25.55 32.36 47.23
DialogLED-large window 37.26 14.15 25.73 34.05 45.86
DialogLED-large BART 37.73 14.56 25.69 38.90 51.57

Table 1: Evaluation results on the summarization test set. In the “Pre-train” column, “BART” refers to BART-
style pre-training without sentence permutation (text infilling across the entire input) and “window” refers to
window-based denoising (without turn permutation). The metrics from left to right are ROUGE-1 F1, ROUGE-2 F1,
ROUGE-L F1, QuickUMLS concept-based F1, and NER concept-based F1.

Model Pre-train Median
summary

length

BART-base — 53
BART-base BART 62
LED-base — 62
LED-base window 65
LED-base BART 65
DialogLED-base — 71
DialogLED-base window 73
DialogLED-base BART 71

BART-large — 89
BART-large BART 70
LED-large — 98
LED-large window 81
LED-large BART 88
DialogLED-large — 108
DialogLED-large window 110
DialogLED-large BART 115

Training set reference summaries 114
Test set reference summaries 81

Table 2: Median sequence length in number of tokens of
generated summaries and of summaries in the training
(with validation) and test data.

text infilling and window-based denoising, whereas
concept-based scores improve with BART-style
pre-training compared to window-based denois-
ing. Even though Zhong et al. (2021) designed
the window-based denoising task for conversation
data, it seems that it is not always beneficial to use
over more conventional pre-training. The most im-
portant thing is simply the process of pre-training
on medical conversations itself, regardless of pre-
training objective used.

One benefit of using automatic metrics is that
they may quantify smaller improvements which
would not be as visible with small-scale human
evaluation. In particular, Table 3 compares exam-
ple output from vanilla LED-large and from LED-
large pre-trained on doctor-patient conversations
using window-based denoising. While there are
some differences in the output, it is not immedi-
ately evident that the output from the pre-trained
model is better. Both models produce fluent sum-
maries and include all of the important concepts
mentioned in the reference summary. In the conver-
sation, the patient incorrectly refers to the mitral
valve as “microvalve”, and no explicit mention of
the correct term occurs (the relevant conversation
snippet is shown in Table 4). Naturally, a trained
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Source Summary

Reference The patient is a female presenting today for routine follow-up. She states that
she is doing well and continues to take Fosamax as prescribed. She continues to
experience pain to her back. She is also requesting to have her heart checked as she
was diagnosed with mitral valve prolapse several years ago.

BART-large
(vanilla)

The patient is a female presenting to the clinic today for a follow up visit concerning
her hypercholesterolemia. She reports that she has been on Fosamax for at least 4
years. She has been taking it weekly for the past 9 years. Her last bone density test
was in June of last year. She is still taking Prilosec every day.

LED-large
(vanilla)

The patient is a female presenting to the clinic today for a follow-up visit. She agreed
to a virtual scribe. Back Pain - She has noticed that her back has been bothering her
for the last month. It does not hurt to push, but it is bothersome. She takes Tylenol
or Advil if it is really annoying. She has been taking Fosamax for the past 4 years.
She would like to have a stress test of her arteries to see if they are strong. She is
currently taking Prilosec every day. Heart Failure - Her last heart exam was 5 years
ago. She had a microvalve prolapse at that time.

LED-large
(window-based
pre-trained)

The patient is a female presenting to the clinic today for a follow up visit. She has
a history of hyperlipidemia and hypercholesterolemia. She states that she has been
taking Fosamax for the past 4 years. She reports that her back has been bothering her
for the last month. She denies any fractures or fractures in her bones. She is taking
Prilosec every day. She would like to know how her arteries are doing and if she
needs more vitamin D. She also wants to know if she has a microvalve prolapse.

Table 3: Comparison of reference summary and several generated summaries for a conversation with 2088 tokens
from the test set.

medical scribe uses the correct term in the sum-
mary, whereas the LED models are not able to
perform this line of complex reasoning without ad-
ditional information, so they copy the term used by
the patient. The vanilla LED model makes another
error by stating that the patient takes Tylenol or
Advil; however, the doctor is the one to suggest
this in the conversation, the patient never made
such a statement. A small error also occurs in the
pre-trained LED model, which mentions that the
patient is inquiring about vitamin D, but this is also
something said by the doctor, not the patient.

Long conversations Vanilla BART-large is a
strong baseline that cannot always be outperformed
by the long-sequence models (Table 1). In fact, Di-
alogLED is noticeably weak in terms of ROUGE
which might imply that a non-trivial amount of in-
formation was lost during the first round of contin-
ued pre-training (on non-medical long-dialog data).
Such a direct comparison between DialogLED and
BART is possible because DialogLED is a fur-
ther pre-trained version of LED, which is itself
initialized from BART. However, as mentioned ear-

lier, concept-based evaluation of DialogLED shows
strong performance, indicating that ROUGE alone
may not be sufficient for quantifying the utility of
a model.

For a different reason than DialogLED, vanilla
LED is also a weak baseline. We observed dif-
ficulty during fine-tuning of vanilla LED on our
small dataset and hypothesize that this could be
a result of non-ideal initialization of its copied
position embeddings (Beltagy et al., 2020). As
the position embeddings for positions greater than
1024 never underwent their own additional pre-
training, their parameters are not necessarily opti-
mal at the start of fine-tuning. However, in-domain
pre-training results in a suitable initialization for
the position embeddings prior to fine-tuning, which
manifests itself in good performance compared to
pre-trained BART after fine-tuning. Still, LED is
not significantly better than BART after in-domain
pre-training even though it can process much longer
input. One possible reason is that most of the rel-
evant information for the HPI section might be
contained at the beginning of long conversations.
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[PT]: And, uh, I want to have my heart checked out because my heart, um, I think it was five years ago -
[DR]: Um-hum.
[PT]: We did it. I have a microvalve prolapse.
[DR]: Um-hum.
[PT]: But they said at that time it wasn’t that bad -
[DR]: Um-hum.
[PT]: But, um, I feel like I need to check up on that again. And can they do the, uh, also can they do the

arteries? Can they check your arteries?
[DR]: They do that with the stress test. The stress test is a way of, um, the stress test has a way of

looking at the arteries. You don’t want to actually have the dye put in your arteries because that is
dangerous.

Table 4: Snippet of the conversation corresponding to Table 3 revolving around the heart valve prolapse.

Another reason is that our median conversation
length in the fine-tuning dataset (see Section 3)
is not much longer than the maximum input size
BART can process, so there may not be enough
long conversations for the difference in models to
make a large difference.

If we bin the conversations by their number of
tokens and compare BART-large to LED-large, we
observe less of a drop in ROUGE for longer con-
versations with LED-large than with BART-large
(Figure 1), suggesting that LED does extract ad-
ditional useful information from long inputs. The
improved performance on long conversations with
LED-large is even more evident when analyzing
the concept-based metrics across different conver-
sation lengths as shown in Figure 2. LED-large is
very effective at extracting relevant concepts from
long conversations.

The example in Table 3 corroborates this finding:
The summary generated by BART-large fails to
mention the back pain and heart valve prolapse,
whereas LED-large correctly includes both of these
concepts. Both concepts are only mentioned in
the latter half of the conversation, which, with a
length of 2088 tokens, is significantly longer than
the maximum BART sequence length. Unrelated
to conversation length, the BART-large model is
seemingly confused by the duration for which the
patient has been taking Fosamax. However, the
BART output is actually more accurate than the
LED output, which states a duration of four years.
In the conversation, the doctor is briefly confused
about the Fosamax duration and initially assumes
“at least four years”, but then corrects that estimate
to “at least nine years” over the course of several
subsequent sentences.

Generated summary lengths We can observe
several trends in the lengths of generated sum-
maries in Table 2. First, large models generate
longer summaries than base models, and while
good performance is possible using base models
(Table 1), this might hint at an inadequate intrinsic
capacity of small models to model complex abstrac-
tive summarization, suggesting that one would be
better served by using the large models. Second,
pre-trained base models generate longer summaries
than their corresponding vanilla versions with the
exception of DialogLED-base, which could be
a result of it already having been pre-trained on
long-dialog data. Interestingly, this effect seems
to be reversed for the large models: pre-trained
BART-large and LED-large generate shorter sum-
maries than their vanilla versions while pre-trained
DialogLED-large generates slightly longer text.
Third, DialogLED always generates the longest
summaries compared to BART and LED even if
these have been pre-trained on in-domain data.
Again, this could be due to the round of pre-training
on (non-medical) long-dialog data that DialogLED
underwent.

On average, the generated summaries are shorter
than those in the fine-tuning training set, although
they happen to correspond well in length to those
in the test set. As described in Section 3, the train-
ing set summaries are longer on average because
they only contain the references with the most con-
cepts extracted using our in-house rule-based sys-
tem. Overall, these results indicate that there might
be a need to bias the models toward longer gener-
ation length. However, we do not add any sort of
length penalty here because our goal was to com-
pare what the models learn in an unbiased fashion.
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Figure 1: ROUGE score comparison binned by conver-
sation length.

7 Conclusion

We showed that in-domain pre-training improves
abstractive summarization of long doctor-patient
conversations into HPI notes across several mod-
els based on the BART architecture and across
two different pre-training objectives. To measure
the improvement, we used conventional evaluation
methods like ROUGE and UMLS concept-based
evaluation and also trained a neural clinical concept
extraction model to better extract relevant concepts.
We also demonstrated the benefit of using models
that can deal with long conversations intrinsically,
especially for ensuring that relevant medical con-
cepts are present.

While unlabeled doctor-patient conversations are
a useful source of pre-training data, we hope to in-
vestigate additional types (e.g., clinical notes) in
the future. Similar research has already shown that
other types of pre-training data can be very effec-
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Figure 2: Concept-based score comparison binned by
conversation length.

tive, e.g., pre-training on patient histories (Yalunin
et al., 2022) or pre-training on clinical notes for
named entity recognition (Yang et al., 2020). Addi-
tionally, we can explore combining and contrasting
our holistic pre-training approach with methods
that only pre-train a small amount of additional
parameters (Tai et al., 2020).

Lastly, given the varying lengths of generated
summaries, we are considering methods to con-
trol generation length as another future research
direction (Kikuchi et al., 2016).

Ethical Considerations

The models developed in this paper may omit im-
portant information or incorrectly include mislead-
ing details in the output they generate. Due to this,
we stress the importance of not using the gener-
ated outputs unsupervised. In all cases, medical
experts should review and edit the generated sum-
maries. Nonetheless, we expect that our models
can act as virtual assistants to alleviate some of the
documentation burden.

The data used for pre-training and fine-tuning
inherently contain sensitive medical information.
To protect private health information, the data were
manually de-identified by medical experts and no
private information was used in the methods de-
scribed in this paper.
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Appendix

A Hyperparameters

The pre-training hyperparameters are listed in Ta-
ble A.1 and the fine-tuning hyperparameters are
listed in Table A.2. Each model was trained us-
ing a single NVIDIA V100 GPU. Mixed precision
training and gradient checkpointing were used as
needed in order to fit the larger models into mem-
ory.

B NER Model Performance

We fine-tune RoBERTa (pre-trained on MIMIC-III)
on the i2b2 2010 dataset using the approach of
Yang et al. (2020) in order to use it as a clinical
concept extraction model for concept-based
evaluation. We show our performance on the
fine-tuning dataset in Table B.1 and compare it
to theirs. While we were not able to fully match
their results, we believe this is due to the fact that
the i2b2 2010 dataset is no longer available in its
original form. Nonetheless, we also achieve strong
results that are suitable for our purposes.

Model P R F1

Yang et al. (2020) 89.63 90.26 89.94
Ours 87.80 88.58 88.19

Table B.1: Comparison of clinical named entity recog-
nition models.

C Additional Evaluation

The complete ROUGE evaluation results are shown
in Table C.1, which shows precision and recall
in addition to the F1 score. Similarly, Table C.2
shows precision and recall for the two concept-
based evaluation methods.
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BART LED DialogLED
Parameter base large base large base large

Maximum encoder length 1024 1024 5120 5120 5120 5120
Maximum decoder length 1024 1024 1024 1024 1024 1024

Text infilling ratioa 0.3 0.3 0.3 0.3 0.3 0.3

Window ratio 0.1 0.1 0.1 0.1 0.1 0.1
Maximum window size 512 512 512 512 512 512
Text infilling ratiob 0.15 0.15 0.15 0.15 0.15 0.15
Speaker mask ratio 0.5 0.5 0.5 0.5 0.5 0.5

Learning rate 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Batch size 8 8 8 8 8 8
Epochs 3 0.6 3 (1)c 0.4 3 (1)c 0.4 (0.2)c

Warm-up ratio 0.01 0.01 0.01 0.01 0.01 0.01
Weight decay 0.001 0.001 0.001 0.001 0.001 0.001
Maximum gradient norm 1.0 1.0 1.0 1.0 1.0 1.0

Table A.1: Hyperparameters used for continued pre-training. We differentiate between BART-style noise, which
uses text infilling across the entire input (a), and window-based denoising, which only performs text infilling within
the window (b) and masks speakers separately. Both types of denoising are investigated for LED and DialogLED.
LED and DialogLED sometimes use different number of epochs during training for BART-style and window-based
denoising (c). No sentence or turn permutation is used.

BART LED DialogLED
Parameter base large base large base large

Maximum encoder length 1024 1024 5120 5120 5120 5120
Maximum decoder length 1024 1024 1024 1024 1024 1024
Learning rate 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Batch size 8 8 8 8 8 8
Maximum epochs 30 30 30 30 30 30
Warm-up steps 200 200 200 200 200 200
Weight decay 0.001 0.001 0.001 0.001 0.001 0.001
Maximum gradient norm 0.1 0.1 0.1 0.1 0.1 0.1
Steps between evaluation 50 50 50 50 50 50
Early-stopping patience 5 5 5 5 5 5
Number of beams 5 5 5 5 5 5
Maximum generation length 512 512 512 512 512 512
No repeat n-gram size 3 3 3 3 3 3

Table A.2: Hyperparameters used for fine-tuning.
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ROUGE-1 ROUGE-2 ROUGE-L

Model Pre-train P R F1 P R F1 P R F1

BART-base — 44.71 34.73 35.19 17.05 13.29 13.28 31.73 25.81 25.43
BART-base BART 43.12 38.44 36.83 16.71 14.87 14.13 30.51 28.43 26.53
LED-base — 43.26 37.03 36.01 16.36 14.03 13.49 30.65 27.46 25.99
LED-base window 42.68 38.97 36.96 16.39 15.11 14.12 30.27 28.95 26.72
LED-base BART 42.29 38.65 36.65 15.82 14.44 13.60 29.85 28.50 26.31
DialogLED-base — 39.09 40.39 36.07 14.25 14.94 13.14 26.67 29.08 25.13
DialogLED-base window 38.98 42.04 36.85 14.64 15.89 13.79 26.62 30.45 25.74
DialogLED-base BART 39.56 41.49 36.79 14.67 15.53 13.59 27.24 30.14 25.88

BART-large — 38.30 46.09 38.25 14.86 18.01 14.78 26.24 33.17 26.65
BART-large BART 42.73 41.80 38.47 16.64 16.27 14.89 29.83 30.60 27.37
LED-large — 37.00 46.11 37.29 13.70 17.44 13.83 25.43 33.40 26.09
LED-large window 40.50 44.62 38.88 15.69 17.35 14.96 27.83 32.16 27.19
LED-large BART 38.28 46.05 38.07 14.69 17.81 14.56 26.56 33.41 26.82
DialogLED-large — 33.83 49.98 37.04 12.53 18.81 13.74 22.83 35.95 25.55
DialogLED-large window 34.06 50.27 37.26 12.89 19.37 14.15 23.01 36.20 25.73
DialogLED-large BART 33.34 53.29 37.73 12.88 20.72 14.56 22.25 37.79 25.69

Table C.1: Complete ROUGE evaluation results on the summarization test set.

UMLS NER

Model Pre-train P R F1 P R F1

BART-base — 56.65 18.28 24.27 76.52 26.66 36.22
BART-base BART 57.05 22.93 28.63 70.93 32.56 40.24
LED-base — 52.77 21.21 26.40 69.62 31.61 38.59
LED-base window 53.04 21.88 27.45 70.29 32.43 39.96
LED-base BART 53.29 22.72 28.47 66.81 34.98 41.39
DialogLED-base — 51.99 26.63 31.22 66.34 38.02 42.66
DialogLED-base window 53.51 26.35 31.62 65.27 36.31 41.87
DialogLED-base BART 55.51 28.36 33.33 69.48 36.64 42.72

BART-large — 53.95 30.52 35.19 66.39 42.92 47.52
BART-large BART 46.97 23.49 27.77 66.84 37.42 43.45
LED-large — 43.80 28.01 30.45 51.84 44.27 43.97
LED-large window 51.15 27.13 32.03 65.93 41.39 46.78
LED-large BART 52.93 31.51 35.33 63.92 43.54 47.15
DialogLED-large — 44.14 30.43 32.36 54.46 48.84 47.23
DialogLED-large window 46.29 32.22 34.05 53.48 46.98 45.86
DialogLED-large BART 49.60 37.88 38.90 61.70 52.18 51.57

Table C.2: Complete concept-based evaluation results on the summarization test set.
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Abstract
Community question answering forums pro-001
vide a convenient platform for people to source002
answers to their questions including those re-003
lated to healthcare from the general public. The004
answers to user queries are generally long and005
contain multiple different perspectives, redun-006
dancy or irrelevant answers. This presents a007
novel challenge for domain-specific concise008
and correct multi-answer summarization which009
we propose in this paper.010

1 Introduction011

Community Question Answering (CQA) platforms012

like Yahoo!Answers, Stack Exchange, Reddit,013

Quora, etc., are vast repositories of question-014

answer pairs where common people ask questions015

as well as contribute answers across various do-016

mains. One such domain is healthcare. People not017

only seek answers from experts but also from the018

general public which is facilitated by these web-019

sites. The reasons for sourcing laymen contributed020

answers could be to avoid the use of medical jargon021

in the language used by the experts (Boyd et al.,022

2018), opportunity to freely express themselves023

(Park and Conway, 2018) and share their experi-024

ences (Alvaro et al., 2015). The posts also give a025

fair idea of public opinion on specific health issues026

(Odlum and Yoon, 2015). However, often these027

answers are long-winded and irrelevant. These028

challenges necessitate summarization of answers029

in CQA forums, especially for healthcare domain030

which directly impacts the well-being of people.031

Majority of the existing works in answer summa-032

rization is in the general domain (Liu et al., 2008;033

Fabbri et al., 2019, 2021). There has been a limited034

study towards summarizing answer in the health-035

care domain (Savery et al., 2020; Abacha et al.,036

2021; Demner-Fushman et al., 2020), which is con-037

fined to expert sourced answers. To the best of038

our knowledge healthcare related question-answers039

from CQA forums have not been harnessed yet.040

To bridge the gap, we bring forward an abstrac- 041

tive multi-document summarization approach for 042

consumer health answer summarization. We also 043

observe that these answers present several perspec- 044

tives. For example, in Table 1, Answers 1 and 3 045

describe the the cause of hay fever symptoms while 046

Answer 2 shares a personal experience and possible 047

treatments. Answer 4 provides some suggestions 048

that can potentially solve the problem. This moti- 049

vates us to tackle the summarization problem while 050

covering the different perspectives as done by (Fab- 051

bri et al., 2021). 052

Towards this, we frame our research objectives as 053

follows: (i) Develop a novel gold standard Laymen- 054

sourced Consumer Health Question Answer Sum- 055

maries (LCHQA-Summ) dataset with summaries 056

covering the breadth of perspectives across vari- 057

ous healthcare topics. (ii) Propose an automated 058

health answer summarization pipeline to generate 059

perspective-specific answer summaries. 060

2 Proposed Plan of Research 061

2.1 Data Collection and Annotation 062

We begin by collecting dataset from popular CQA 063

forum –Yahoo! Answers1. In particular, we plan to 064

use Yahoo! L6 corpus that consist of 4.5 million 065

questions across different topics, their answers and 066

metadata such as question categories, number of 067

answers, best answer, date, language etc. Since, our 068

goal is focused on consumer healthcare domain, we 069

selected the “Health" category which has 21 sub- 070

categories like Allergies, Diabetes, Heart Diseases 071

and so on. It is also necessary to remove outliers 072

in terms of number of answers which can range 073

from as low as zero and as high as 2235 answers 074

in response to a single query. We finally retain 075

posts where number of answers range from 4− 6. 076

The final data includes 77K question-answer pairs. 077

To curate a gold dataset of manually written multi- 078

1http://answers.yahoo.com
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Question Why are my hay fever symptoms worse early in the morning and how I can stop suffering the first two hours after I wake up?
Context Allergies

Answer 1 It’s because the pollen counts are higher in the morning. Plants release their pollen earlier in the day,
thus anyone with hayfever will find this part of the day more annoying.

Answer 2 I have similar problems. When I wake up I have a stuffy nose but then in like an hour or two and I’m fine.
I take Zyrtec every morning but before I go to bed I take a Benadryl and that seems to help.

Answer 3 Because pollen is released early in the day, rises with the warm air and falls again in the evening.
Answer 4 It may help if you wash your hair in the evening to get rid of any pollen that might be left in there.

Summary Perspectives:
Perspective 1 Plants release pollen early in the day.
Perspective 2 Pollen counts are higher in the morning.
Perspective 3 I have similar problems for an hour or two after I wake up.
Perspective 4 Taking Benadryl before bed and Zyrtec in the morning has helped me.
Perspective 5 Washing your hair at night can get rid of any left-over pollen.

Table 1: An example illustrating question, context and answers from Yahoo! L6 dataset. This is followed by an
abstractive summary of the answers showcasing 5 different perspectives.

perspective abstractive summaries from the data079

we sample a subset of the data and put forward the080

following annotation strategy:081

(1) Validate if a question is related to medical do-082

main or not, that is if it pertains to diseases or083

conditions, drug or treatment, medical diagnosis084

or therapeutic procedure, any other related medical085

topic. This helps to weed out any irrelevant ques-086

tion, especially in more generic sub-categories like087

“Other-Health” and “Other-Health & Beauty”.088

(2) The next step is to generate abstractive multi-089

perspective summaries of answers to valid med-090

ical question. Based on our preliminary dataset091

analysis, we have identified 6 major perspec-092

tives—information, cause, treatment, suggestion,093

experience and clarification that describes most of094

the consumer answers. Example of such summary095

is shown in Table 1, where perspective 1 and 2096

describe cause of the problem, 3 and 4 narrates097

experience as well as treatment and 5 suggests so-098

lution.099

2.2 Automated Summarization Pipeline100

For obtaining system generated multi-perspective101

summaries of consumer health answers, we devise102

a three-step pipeline described next.103

Relevant Sentence Extraction: This step is to104

be applied at the sentence level with the goal of105

finding the answer sentences that are relevant to106

the question. As a baseline we would use BM25107

(Robertson et al., 1994) to compute relevance of108

each answer sentence to a given question and retain109

those with score above a threshold as relevant. A110

similar approach is measuring semantic similarity111

between the embeddings of each answer sentence112

and question using cosine similarity or mutual in-113

formation. For this we propose to use Sentence-114

BERT(Reimers and Gurevych, 2019) (SBERT) and115

UmlsBERT (Michalopoulos et al., 2021) represen-116

tations.117

Perspective Type Identification: Allocating per- 118

spective labels to a relevant answer sentence can 119

be treated as a multi-label classification problem 120

(For example, Perspective 4 in Table 1 can be both 121

an experience and a treatment). Given the success 122

of transfer learning along with zero-shot and few- 123

shot approaches in text classification (Chalkidis 124

et al., 2020; Zhang et al., 2019), we propose to 125

adapt a Natural Language Inference (NLI) based 126

transfer learning approach as done by (Yin et al., 127

2019) for assigning perspective labels to the sen- 128

tences. Based on the performance of this method 129

we would also experiment with more refined rules 130

to improve performance across specific classes. 131

Summarization of answers: In the final stage 132

of the pipeline, we aim to propose a perspective- 133

guided multi-document answer summarization ap- 134

proach focusing on answer summary generation 135

conditioned over the given perspective. We plan 136

to infuse the perspective in terms of the exter- 137

nal knowledge to the pre-trained encoder decoder 138

models such as BART (Lewis et al., 2020) and 139

T5 (Raffel et al., 2020) which has shown state-of- 140

the-art performance on the answer summarization 141

task(Yadav et al., 2021; Mrini et al., 2021). To- 142

wards this, we will begin by inducing perspective 143

information into the encoder as well as decoder to 144

train the model which incorporates the underlying 145

perspective while generating the summary. 146

3 Conclusion 147

Overall in this paper we present the novel problem 148

of multi-perspective abstractive answer summariza- 149

tion from CQA forums focusing on the healthcare 150

domain. We outline a data annotation process, fol- 151

lowed by a three-step approach for automatic sum- 152

mary generation with a focus on the perspectives 153

present in these answers. 154
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Abstract

Human health coaching has been established as
an effective intervention for improving clients’
health, but it is restricted in scale due to the
availability of coaches and finances of the
clients. We aim to build a scalable, automated
system for physical activity coaching that is
similarly grounded in behavior change theories.
In this paper, we present our initial steps toward
building a flexible system that is capable of car-
rying out a natural dialogue for goal setting as
a health coach would while also offering ad-
ditional support through just-in-time adaptive
interventions. We outline our modular system
design and approach to gathering and analyzing
data to incrementally implement such a system.

1 Introduction

It is well-known that eating a balanced diet and
engaging in regular moderate-to-vigorous physi-
cal activity (MVPA), among other healthy behav-
iors, promotes better health and reduces the risk of
cardiovascular disease and other chronic illnesses
(Tsao et al., 2022). However, people may strug-
gle to develop and integrate healthier behaviors on
their own (Kivelä et al., 2014; Willard-Grace et al.,
2015). Health coaching is a behavioral health inter-
vention that is demonstrably effective in improving
motivation and confidence and is strongly associ-
ated with behavior change (Dennis et al., 2013;
Eakin et al., 2007; Mahon et al., 2018; Oddone
et al., 2018). Health coaches utilize behavioral
theories and evidence-based strategies in a client-
centered approach to help clients set goals that are
challenging yet achievable, supported by action
plans and coping plans that include strategies to
overcome barriers like lack of time or poor weather
(Kivelä et al., 2014; Oddone et al., 2018). As such,
goals and dialogue are highly specific and tailored
to the client.

However, human health coaching is limited by
coach availability, cost to potential clients, and the

retrospective nature of the feedback (Hill et al.,
2015). Most attempts to automate this process
thus far have been mostly limited to theoretical
studies or systems with pre-scripted, non-tailored
dialogues, if there is any interactivity at all (op den
Akker et al., 2014, 2015; Bickmore et al., 2011,
2013; Svetkey et al., 2015; Kramer et al., 2020).
While some successfully demonstrate the accept-
ability of automated systems, even with scripted in-
teraction, the feedback also identifies a user desire
for increased tailoring with regards to timing and
response to collected user data or context during
coaching sessions (Bickmore et al., 2013; Mitchell
et al., 2021).

Another type of intervention, Just-in-Time Adap-
tive Intervention (JITAI), leverages technology to
monitor a user’s state and deliver support at a time
when it is most needed and the user is most recep-
tive to act upon it in the moment (Nahum-Shani
et al., 2018; Schembre et al., 2018; Spruijt-Metz
et al., 2015). For instance, this may include nudges
like “walk around the block an extra time” if the
user is out for a walk.

To our knowledge, no system has yet combined
automated, interactive coaching with real-time
knowledge of user progress and JITAI. To this end,
we aim to build an automated system capable of
helping clients set achievable goals through interac-
tive discussion and support them in achieving those
goals. We focus on physical activity (PA) coaching,
but this infrastructure is modular and extendable
to other health coaching areas in which goals can
be clearly defined or real-time user context lever-
aged, including stress management or adapting to
a prescribed diet.

In this paper, we present our preliminary work
in building a dialogue and messaging system for
an application capable of coaching a user to set
and achieve goals and provide useful just-in-time
messaging. We will contextualize the messaging
components within the greater system architecture
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we are building upon in section 3 and then detail
the approach we’ve taken to build our proposed
dialogue and messaging component in sections 4
and 5. Finally, we will describe our plans for future
experiments and evaluations.

2 Related Work

The rise in popularity and availability of wear-
able technology and biometric sensors offers
the opportunity to create similarly theoretically-
driven, evidence-based behavioral interventions
(DiClemente et al., 2001; Fjeldsoe et al., 2009;
O’Reilly and Spruijt-Metz, 2013; Bort-Roig et al.,
2014; Danaher et al., 2015; Farmer and Tarassenko,
2015; Wang et al., 2015a; King et al., 2016; Lobelo
et al., 2016). However, the resulting apps generally
do not adhere to the American College of Sports
Medicine (ACSM) recommendation of 150 min-
utes per week of moderate-intensity aerobic phys-
ical activity or 75 minutes per week of vigorous-
intensity aerobic physical activity (Middelweerd
et al., 2014; Guo et al., 2017; Modave et al., 2015).
They lack guidance establishing realistic and ap-
propriate behavioral goals, do not assist users in
modifying goals over time, display messages that
are not personalized, and do not account for con-
textual or situational barriers, such as weather and
emotional states, that can significantly influence
physical activity intentions and behavior (Düking
et al., 2020; Rupp et al., 2018; op den Akker et al.,
2014, 2015; Muntaner et al., 2016).

Active work on JITAI systems emphasizes their
basis in behavioral theory, user relevance, and
actionable feedback (Wang et al., 2015b; Harde-
man et al., 2019). However, most do not truly
account for context or barriers and instead use
simple, canned messages delivered at preset mo-
ments (Klasnja et al., 2018; Lentferink et al., 2017;
Saponaro et al., 2017; Mair et al., 2022). More
recently, Saponaro et al. (2021) and Ismail et al.
(2022) demonstrated that individualized, contex-
tualized JITAI nudges are significantly better re-
ceived than non-JITAI nudges.

Some automated coaching systems exist (op den
Akker et al., 2014), but most are limited in in-
teractivity, and efficacy varies. Many dialogue-
driven health coaching systems are largely theoret-
ical (Bickmore et al., 2011; op den Akker et al.,
2015), although a few extend to more practical
implementations with varying degrees of tailor-
ing and interactivity (Svetkey et al., 2015; Bick-

more et al., 2013). Several other embodied con-
versational agents were included in a recent sur-
vey (Kramer et al., 2020). Of these, most rely on
scripted dialogue selection, and the others provide
limited text interaction at best, lacking the flexi-
bility to adequately tailor to users’ unique goals
and values. A detailed comparison between text-
based coaching and human health coaching was
performed in Mitchell et al. (2021), demonstrat-
ing the feasibility of an automated system with a
wizard-of-oz setup. While participants appreciated
the automated coaching system, they lamented the
lack of tailoring and context sensitivity. Some anal-
ysis work has been done on counseling dialogues
(Pérez-Rosas et al., 2017, 2018; Althoff et al., 2016)
and, more recently, on coaching dialogues (Gupta
et al., 2020a,b, 2021). This latter work is ongoing,
but focuses primarily on post-dialogue SMART
goal summarization and health coach assistance
rather than interactivity. Thus, to our knowledge,
no one has yet developed a system to conduct a dy-
namic, flexible, and interactive coaching dialogue.

Human coaching dialogue adheres to a specific
procedural structure and language. Generation for
dialogue in this context has added constraints that
increase its complexity compared to other domains.
While the intents and data content will be provided
by the respective messaging policies, it is also
important to incorporate personalization (Cawsey
et al., 1997, 2000; Marco et al., 2006; Colineau and
Paris, 2011), empathy (Prendinger and Ishizuka,
2005), and additional constraints for a health do-
main, as well as constrained generation (He and
Li, 2021; Miao et al., 2019; Mou et al., 2015; Li
and Sun, 2018) and style transfer (Jin et al., 2020;
Toshevska and Gievska, 2021).

3 Automated Coaching System

The automated coach brings together ideas and
solutions in human behavioral theory, physical ac-
tivity monitoring, cooperative multi-agent architec-
tures, and natural language processing to build an
integrated approach to reducing sedentary behavior
while increasing users’ overall physical activity.

The automated coach is designed to ultimately
take over certain basic tasks from a traditional hu-
man coach: it will be able to meet with users on
a weekly basis to negotiate goals and talk about
the user’s progress. A number of schemas exist
for creating a well-defined goal; we discuss these
in section 4. The system may also leverage user
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Figure 1: Interaction between the User and the Automated Coaching System: white/orange ovals represent major
modules, gray circles represent stored information, rectangles represent actions and data transfer between modules.

qualities or other initially-provided information to
quickly adapt to users’ preferred intervention strate-
gies. Unlike a traditional human health coach, it
will be available for user-initiated coaching ses-
sions at any time and will be able monitor the user’s
real-time goal progress. This will allow the auto-
mated coach to better support the user, as well as
allow it to send personalized just-in-time messag-
ing when needed.

Unlike typical one-size-fits-all solutions for just-
in-time interventions such as “remind the user to
walk at 10 min before the hour if they have not yet
reached 250 steps,” which do not work particularly
well (Saponaro, 2020), the action plan and user
preferences are compiled into a context- (state-)
sensitive strategy enumerating possible conditions
under which the coach should nudge with particu-
lar message content (remind, congratulate, suggest,
or otherwise interact with) their user. Positive (or
negative) reactions to these nudges are used to adap-
tively learn a better nudging strategy by taking into
account both timing and message content.

The automated coaching system is built on a
multi-agent architecture (Graham et al., 2003) for
privacy and scalability, and further extended by

our contributions toward coaching domains with
an eye toward individualization, data integration,
domain flexibility and (agent) behavior transfer-
ability (Vemuri et al., 2021). As can be seen in
Figure 1, each user is allocated two personalized
agents: one autonomous cloud-based agent run-
ning continuously on a server that is responsible
for data collection, learning, dialogue understand-
ing, and generation; and an app-based agent on the
user’s smartphone that handles local data collection
from the user’s smartwatch, user dialogue interface,
and summary graphics. Although we have previ-
ously built-out versions of this using the FitBit
Charge platform, true JITAI is not possible with
that due to lack of real-time sensor access (Vemuri
et al., 2021). Our current version uses the Apple
Watch platform, which allows for an on-watch app
that can be configured by the phone agent to de-
tect specific, context-sensitive intervention events
(prolonged inactivity, walking, stress) for JITAI. A
centralized Dashboard agent (not pictured) is also
used for running trials to give at-a-glance access to
current participant status.

Agents are able to process data and communi-
cate with each other concurrently. Processing can
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be triggered by communications, state/sensed con-
text/goal changes, and also pre-scheduled agent
behaviors. Just-in-time notifications are triggered
directly on the watch or phone (depending on the
type), and do not require dialogue responses. Dia-
logues can be initiated by the phone agent at sched-
uled times, or by the user.

4 Approach

Bickmore et al. (2011) and Bickmore et al. (2013)
described human health coaching as the gold stan-
dard for automated coaching systems to aim for.
Such a system relies on a rich library of informa-
tion representing user data, preferences, and coach-
ing knowledge and principles. The dialogue and
messaging system architecture is outlined in sec-
tion 5. This system will interface with the agent
architecture described in section 3 for timing and
information for messages as can be seen in Fig-
ure 1. It will be capable of handling one-way JITAI
messages (see section 5.3) and two-way, interactive
health coaching dialogues.

We frame the coaching dialogue as a task-
oriented dialogue. However, most task-oriented
dialogues consist of rigidly defined simple tasks
(e.g., booking a flight or negotiating a price) de-
fined by a few parameters that the system needs
to elicit from the user to complete the task. Dia-
logue policy, which determines each system intent
(e.g., request information, offer a suggested value)
and directs the dialogue, is similarly simplistic and
limited: a task is complete when the parameters
have been filled and an operation or query happens
successfully (e.g., a flight is successfully booked).
Parameters can be modified or updated until the
task is completed. Additionally, there is no need
for information to carry over from session to ses-
sion; once a price is agreed upon, for instance, the
task is complete, and there are no further exchanges
on the subject.

Health coaching instead centers around a reflec-
tive discussion to achieve a more loosely-defined
objective: setting a well-defined goal with realistic
strategies for completing it. The dialogue is com-
pleted when the goal and strategies are not only
fully defined by their parameters, but sufficiently
motivated and supported to improve the user’s suc-
cess. The latter is accomplished not through filled
parameters, but a series of reflective questions to
ensure the user has thought their goal through thor-
oughly. This goal is then revisited at the subsequent

coaching session, where a new goal may be set or
a new coping plan may be created to assist the
client in overcoming unforeseen barriers. Addi-
tionally, understanding barriers or support systems
requires some representation of a health coach’s
world knowledge.

To ensure that the top-down approach aligns with
practice and data, we also examined coaching dia-
logues. Due largely to patient privacy and protec-
tion, few publicly available datasets exist within
the health coaching domain. There is one recently
released dataset containing health coaching dia-
logues conducted via SMS text message (Gupta
et al., 2020a). This dataset is tagged with a two-
level labeling structure. One level covers stages
and phases, breaking down the overall weekly di-
alogue into goal setting and goal implementation
stages, which further break down into phases such
as refining, anticipating barriers, negotiation, and
follow up. Additionally, they identify SMART goal
components, which break down a goal into Speci-
ficity, Measurability, Attainability, Realism, and
Time-bound components.

This dataset released after development on our
system had begun, and the coaching paradigm is
different from our face-to-face data. Due to their
curtailed nature, text messages often lack certain
nuances, context, and cues compared to verbal in-
teraction (Mitchell et al., 2021). Messages tend to
be more curt and elaborate less, which affects the
style of questions that need to be used to elicit the
same information. Discussion of action plan, bar-
riers, and coping strategies is thus unsurprisingly
significantly more limited in this dataset, which
focuses more on the goal parameterization. How-
ever, since our target coaching format is also text
message-like, it will still be crucial for designing a
text message coaching session, as well as for train-
ing the natural language understanding components
described briefly below in section 5.1.

To ensure that our automated system is rooted in
core health coaching concepts and behavior change
theory, we examined coach training materials and
guidelines provided by our health coaching team or
publicly available online. These included outlines
as well as coaching roleplay videos. Based on
these materials, we developed a dialogue model
described below in section 5.2. This model was
further refined by examining data collected through
a tangential, developmental study. We will refer to
this data as dataset 1.
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4.1 Data and Annotation

Dataset 1, currently being collected through Be-
SMART feasibility trial (Heintzelman et al., 2022),
closely mimics the face-to-face coaching sessions
that the coaching team regularly conducts with
clients. Clients meet with their coach one-on-one
initially for approximately an hour, and then sub-
sequently for twenty or thirty minutes, generally
with at least a week between meetings. For the
short feasibility trial, our coaches did not receive
information about goal progress between meetings,
but we intend to correct this in subsequent studies
(see section 7), as the proposed automated coach-
ing system will have access to users’ goal progress
and other context.

Data collection for dataset 1 is ongoing, but the
existing data is being broadly analyzed to further
refine the dialogue model. The data was collected
over video call, and the audio was automatically
transcribed. The video was discarded for patient
privacy, and the audio was kept only for quality con-
trol; the transcripts were manually cleaned for ma-
jor mistranscriptions only. Verbal fillers, restarts,
and exchanges consisting only of repeated acknowl-
edgements will be automatically removed in a pre-
processing step later, prior to data annotation.

Our coaches use a slightly different strategy to
that of Gupta et al. (2020a). In addition to develop-
ing SMART goals, our health coaches utilize FITT
(Frequency, Intensity, Time/duration, and Type of
activity) and the W5 (What activity, Where, When,
Who is supporting or accompanying, and Will any
preparation be needed) to better assist clients in
visualizing how their goal and action plan (details
and strategy of how to achieve the goal) will fit into
their daily schedule.

5 Dialogue and Messaging System

In this section, we detail the dialogue and messag-
ing model and how the natural language interfaces
will be built upon it. We will focus primarily on the
dialogue model, as the one-way JITAI messaging
is largely driven by the multi-agent architecture de-
scribed previously and requires no interaction and
much less tailoring of wording than the eventual
dialogue system.

The overall dialogue system architecture is
shown in Figure 2. We chose a traditional, mod-
ularly built dialogue system over an end-to-end
neural network because the latter is unable to han-
dle the level of complexity, control, and constraint

that a health coaching system requires. This sys-
tem is a modified dialogue state architecture. The
dialogue schema and models are hierarchical. The
modularity of this system allows for an evolving
implementation. The current policy and generation
modules are fully rule-based, which allows us to
ground the overall structure of the dialogue in the-
ory and coaching protocols. However, these will be
incrementally swapped for dynamic, data-driven,
learned implementations as the rest of the dialogue
system develops to support them.

5.1 Natural Language Understanding &
Dialogue State

During a dialogue exchange, for a given user in-
put, the Natural Language Understanding (NLU)
module identifies a number of different levels of
slot and message labels, conditioned upon the sys-
tem’s prior request, if any. These labels update
the dialogue state tracker, which keeps track of the
information that has been provided by the user. It
effectively captures the history and current knowl-
edge state of the system based solely on the user’s
messages. This knowledge state representation
is multilayered. At the top, the user directly or
indirectly conveys an intent. In system-initiated,
scheduled dialogues, the system is expected to di-
rect the flow of conversation, determining when to
move onto the next subdialogue. On the other hand,
our system will eventually also accommodate user-
initiated dialogues, which would start with a new
intent without a prior message. A given input will
also have one or more dialogue acts (e.g., whether
the user is requesting information, setting parame-
ters for their goal, or suggesting a possible coping
plan to overcome a barrier). At a more fine-grained
level, we will need a classifier to identify the task-
specific labels (e.g., goal or action plan compo-
nents, barriers, or support figures). Sentiment and
uncertainty analyses will be added later to direct
the policy and generation to produce clearer, more
appropriate, or empathetic messaging.

While these understanding components will be
based on the some of the same techniques used
in summarization (Gupta et al., 2020b, 2021) or
dialogue state tracking (Young et al., 2010), the
policy and generation components allows an ad-
ditional advantage of requesting confirmation to
reduce mistakes in the summarization and dialogue
state tracker. These labels will feed into the dia-
logue policy and eventually add to the knowledge
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Figure 2: Dialogue State and Messaging Architecture: diamonds represent major modules, rectangles represent
information transfer and functionality for those modules. The knowledge base is a logical representation of the
context, history, and other information stored across the agents and apps in the automated coaching system.

base by updating the cloud-based agent. The NLU
components can be built separately and combined
to produce a multi-layered representation of the
dialogue state. We will test a variety of features,
including word embeddings and system intents of
the previous turn, across a variety of machine learn-
ing classifiers. Gupta et al. (2020b) found that
phase/stage classification (roughly equivalent to
our intent/task classification) was more accurate
when the SMART components were included as
features, so we will test certain labels as potential
features for other labels as well.

A particular challenge lies in understanding bar-
riers. These are not necessarily unique to each
user; barriers such as lack of time/space are com-
mon. We plan to build an expandable database,
seeded initially with categorized examples from
our own dataset, to represent barriers and potential
solutions.

5.2 Dialogue Policy
Health coaching dialogues follow a particular pat-
tern of subdialogues, which we refer to as the
“backbone”. Coaches establish rapport and get to
know their clients before discussing anything goal-
related, building up knowledge about their client
that will help the coach guide the goal-setting sub-
dialogue that follows. Coach and client establish

a specific and realistic goal and an action plan to
achieve it, discuss anticipated barriers and brain-
storm resolutions and coping strategies, and discuss
how the client’s support network may help them
in achieving this goal, either by reminding them
or joining in the physical activity or holding them
accountable for it. In follow-up sessions, emphasis
is placed on exploring patient success and develop-
ing coping strategies for previously unanticipated
barriers. Coaches thus guide clients in establishing
a structure and pathway for success. This strategy
guides our policy development.

The hierarchical dialogue policy is a key com-
ponent in allowing us to direct the conversation
in a sensible manner by supplying intents to the
generation system. These intents dictate the kind
of information the system wants to request from
the user, such as slot values, clarifications, or con-
firmations. It draws from the knowledge base as
needed, which contains user history and data and
coaching knowledge. The high-level backbone,
rooted in coaching theories and protocols, remains
the same in all iterations. It will comprise multi-
ple subdialogues for the goal-setting process (e.g.,
past goal progress and reflection, (re)negotiation of
new goals, barrier resolution, etc.) and direct the
flow of conversation sequentially through each of
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these as the previous subdialogue completes. Each
subdialogue will also have a policy, which will be
rule-based initially. However, in time, we would
like to expand the subdialogue policies to be more
flexible. In freeform dialogue, users may provide
more information in a response than was initially
asked for. Humans naturally adjust their intents ac-
cordingly to avoid asking for the same information
or to focus instead on discussing the extra informa-
tion. We will conduct experiments to learn efficient,
flexible strategies from the coaching transcripts to
complete the subdialogue task. In later iterations,
we will refine on collected dialogues and further
incorporate the user’s context, sensor data, and his-
tory to dynamically plan the ongoing dialogue for
a more fluid and natural conversation.

5.3 Just in Time Adaptive Intervention
(JITAI) Messages

JITAI messages are one-way messages that do not
require a response and have their own policy. This
policy is mostly driven by the agent architecture
and will be based on the user’s context, sensor data,
and history, allowing us to implement logic for the
timing of different types of JITAI messages. The
logic will identify moments such as “the user has
achieved a weekly goal” and “the user planned to
exercise in the morning but it is supposed to rain”
with their associated JITAI messages as well as
identify whether it would be appropriate to send at
that time. These topics have been explored before
(Hardeman et al., 2019; Nahum-Shani et al., 2018;
Mair et al., 2022; Ismail et al., 2022; Mutsuddi and
Connelly, 2012; Muller et al., 2017).

While there is a consensus that the focus of JITAI
messaging is to provide the user with the support
they need at the time they need it, so that they can
accomplish the goal of (in our case) increasing their
PA, there is not much focus placed on categorizing
the messages themselves other than to say that they
are personalized/tailored messages that are motiva-
tional or encouraging (Nahum-Shani et al., 2018;
Mair et al., 2022; Ismail et al., 2022). In order to
preserve clarity, we have separated our JITAI mes-
sages into two main categories: anticipatory (which
aim to to reduce barriers such as the weather, time
of day or year, time management, planned meetings
or events) and opportunistic (which provide encour-
agement and motivation at moments when there is
perceived dwindling enthusiasm or when the user
could take advantage of times they already unknow-

ingly partake in activity). Anticipatory messaging
can be planned in advance and delivered to the
user at appropriate times that can be determined
without complex sensing data (e.g., in the morning
before leaving for work). The timing of opportunis-
tic messaging is much more delicate as they must
be delivered “in the moment” to be effective.

An example scenario for an anticipatory message
would be to send the participant a message, while
they are getting ready to leave their house to go to
work, that lets them know that they are about to
encounter one of their barriers and reminds them
of the strategy they had already planned.

Remember to pack your umbrella! You
planned to walk during your lunch break
and there is a 50% chance of rain this
afternoon.

The purpose of this message is to anticipate a bar-
rier that could cause the participant to fail at their
goal for that day if not corrected in time.

Similarly, an example scenario for an opportunis-
tic message would be to send the participant a mes-
sage if their heart rate is going down and they only
have 5 minutes left to finish their goal for the day.

Don’t give up now! You only have 5 min-
utes left to go!

The purpose of this message is to encourage the
user at an opportunistic time to finish the goal they
had set for themselves for that day.

5.4 Message Generation

Once either the dialogue or JITAI policy has de-
termined the overall intent and data content of a
given message, the next step is message generation.
Due to the fact that we are implementing a com-
plex task-oriented dialogue system, the fact that
we have limited health coaching data and the im-
portance of preserving the coaching language (e.g.,
the coaches must remain positive and encouraging
through interactions, and there are guidelines for
things that coaches should or should not say), the
message generation will at first remain template-
based. While Neural Natural Language Generation
(NNLG) models have been improving greatly, they
have many pitfalls when it comes to task-oriented
dialogue systems. These include introducing hallu-
cinated content (Reiter, 2018; Erdem et al., 2022),
poor sentence planning and discourse operations
(Reed et al., 2018), and not approximating human
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generated text on complex problems (Wiseman
et al., 2017; Erdem et al., 2022), especially in situ-
ations with a limited dataset.

While using a template-based method will help
us avoid these pitfalls, they can be too structured
and repetitive, which can hurt the user experience.
Therefore, in an effort to introduce variety to our
wordings over time, we plan to use what we call
"flexible message templates." We first begin by
identifying sentence fragment sections that we can
put together to form our flexible templates. Each
flexible template is made up of sentence fragment
sections and any needed variables (e.g., proposed
goal, dates, proposed strategies). Then, each sen-
tence fragment section within the flexible template
is replaced by one of multiple sentence fragment
options that will together create a relatively unique
message. We call them flexible templates both
because each sentence fragment section could be
used for multiple different templates and because in
generating our templates in this way, we can create
multiple different ways of saying the same message
despite the overall generation being templated.

As we gather data during the collection of dataset
1 (as mentioned in section 4.1), we are looking
to augment the number of flexible templates that
cover the same purpose and content. However,
since dataset 1 is speech-based while our system
is text-based, we will need to handle the inherent
differences between text and speech interactions
and what that will mean for how our automated
coach will need to differ from the human coach.
As was encountered in Mitchell et al. (2021), dur-
ing text-based interactions the health coaches felt
like they could not have conversations that were as
in-depth and nuanced because they were not just
missing auditory input but also visual (e.g, body
language, facial expressions, etc.). Additionally,
they found that the health coaches found it hard to
transition to a text platform because they had diffi-
culties connecting to the user when they received
short and ambiguous responses. As a result, we
will make two assumptions: (1) the messages in
text-based conversation need to be more direct and
(2) the user is less likely to elaborate on little input.

Once we have augmented the flexible templates,
instead of randomly selecting which flexible tem-
plate to use in any given instance, we will explore
ways to select the best template based on the con-
versation history and the users past reactions. We
look to consider features such as message structure

variability (e.g., if the last message had a preposi-
tional phrase at the beginning, the next message
should not), missing information (e.g., if we need
to know three pieces of information, how many
have already been given and what is remaining),
and vocabulary variability (e.g., back-to-back mes-
sages should not use similar wording). We are
taking inspiration from Razavi (2021), whose dia-
logue manager LISSA uses the user’s last response
to choose the best next response from multiple pos-
sible options.

In order to add more variety to the automated
coach’s speech, we aim to incorporate text style
transfer techniques in order to affect the tone of the
output by making adjustments in the emotion por-
trayed and politeness without needing to affect the
content (Jin et al., 2020; Toshevska and Gievska,
2021). This requires user sentiment components
for the NLU and dialogue policy and allows for
the creation of a more empathetic, likable coach
(Prendinger and Ishizuka, 2005).

Once we have more data following additional tri-
als, we would also like to use information retrieval
and constrained generation techniques to automate
the generation of our flexible templates and sen-
tence fragments. Recently, constrained generation
research has put a focus on lexical constraints (He
and Li, 2021; Miao et al., 2019; Mou et al., 2015;
Li and Sun, 2018), which suits our needs in preserv-
ing the coaching language where we need to put
soft and hard constraints on keywords or sentence
formats that must be in the output and those that
cannot appear in the output.

6 Formative Evaluation

The first iteration of our Dialogue and Messaging
System will be both derived (as described above)
and evaluated on dataset 1. We are aware that eval-
uating a system on the data that was used to derive
it will bias it. However, since this will only be the
rudimentary Dialogue and Messaging System, we
do not believe the risk to be too great, since we will
be further refining and evaluating the system with
further trials. The evaluation needs to be separated
into two parts: evaluating the NLU component and
evaluating the message generation.

We mentioned above that basing our text-based
system on the speech-based dataset 1 will affect
the message generation by forcing us to make two
assumptions: (1) the messages in text-based con-
versation need to be more direct and (2) the user is
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less likely to elaborate on little input. These two
assumptions will also affect the evaluation of our
generated messages since we cannot evaluate on
whether the two messages (one from dataset 1 and
one generated by our system) are equivalent. In-
stead, we will need to evaluate on whether both
messages ask the user for the same information
given the same prompt.

Evaluating the NLU component could also be
complicated due to the same assumptions. In this
case, since our system is expecting more direct
messages, the NLU component would expect that
the user’s response would be more straightforward.
However, we can see what the NLU component
can correctly recognize and this could be a worse-
case situation. In addition, we can evaluate it on
whether it reacts correctly to a message. Therefore,
we will be evaluating the system on whether it
correctly identifies the parameters it is expecting
and on whether the policy correctly prompts the
message generation.

7 Next Steps

Once we have a working Dialogue and Messaging
System, we plan to lead two trials in order to evalu-
ate and improve the system: Trial Alpha and Trial
Beta.

Trial Alpha. In this trial, we will be generating a
dataset we plan to release and evaluating our two-
way dialogue. As with the collection of dataset
1, we will once again be collecting data from real
user-human health coach interaction. This time,
however, all interactions will be text-based and the
human coach will have the same information as our
automated coach will.

We expect the data labelling will function sim-
ilarly as it did for dataset 1 (as described in the
section 4.1). However, we hope that the data will
be much cleaner and much more catered to the
text domain. As previously mentioned, there was
another dataset released in 2022 by Gupta et al.
(2020a), but it does not cover barrier resolution
and strategy negotiation. Therefore, we believe
this dataset of labelled data will be very helpful in
improving future health coaching research.

As far as evaluating our system goes, we will
not need to evaluate our system around base as-
sumptions like we will have to do for the Forma-
tive Evaluation. Therefore, the evaluation will be
focused on four factors: (1) given two messages
(one from dataset 2 and one generated by our sys-

tem), is the content of both equivalent?, (2) is the
language from the generated messages appropri-
ate for a health coach? (3) are the parameters the
NLU component is expecting reasonable?, and (4)
does the NLU component correctly identify the pa-
rameters, and does the policy correctly prompt the
message generation? To answer all these questions
we will be using both standard metrics, such as
BLEU-4 (Papineni et al., 2002), and human health
coach manual evaluation.

Trial Beta. This trial is the first time that users
will be using our system. It will serve to evaluate
both our two-way dialogue and our JITAI mes-
saging. By this point we hope to assess (1) how
users respond JITAI messages and timing, (2) how
users respond to our automated coach as opposed
to the human coach in two way dialogue, (3) how
successful the NLU component is at properly un-
derstanding the user, and (4) how successful the
automated coach is when compared to the human
coach. The goals and focus of this trial are subject
to change based on the results of Trial Alpha.

8 Conclusion

Increasing engagement in MVPA and reducing
sedentary behavior is a national priority for im-
proving cardiovascular health. While wearable PA
monitors show promise in initiating PA change,
they do not assist the user in updating their PA
goal, nor do they provide personalized messaging
to assist the user in overcoming barriers to PA. Hu-
man coaching, following sound theoretical models
of behavior change, has been demonstrated to be
effective, but is hard to scale and misses the po-
tential of "just-in-time" behavior suggestions and
encouragement, as the coach is not always readily
available.

Our Automated Coaching System is an inte-
grated system to provide personalized, evidence-
based, just-in-time feedback as well as interactive
coaching including goal (re)negotiation, targeted at
increasing PA and reducing risk for cardiovascular
disease. Our system focuses on PA, but this infras-
tructure is modular and extendable to other health
behaviors, including stress management and sleep
hygiene.
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Abstract

In this paper we present the main components
of a weekly diet report generator (DRG) in nat-
ural language. The idea is to produce a text
that contains information on the adherence of
the dishes eaten during a week to the Mediter-
ranean diet. The system is based on a user
model, a database of the dishes eaten during the
week and on the automatic computation of the
Mediterranean Diet Score. All these sources of
information are exploited to produce a highly
personalized text. The system has two main
goals, related to two different kinds of users:
on the one hand, when used by dietitians, the
main goal is to highlight the most salient medi-
cal information of the patient diet and, on the
other hand, when used by end users, the main
goal is to educate them toward a Mediterranean
style of eating.

1 Introduction

The diet has a huge impact on the health of people,
and a number of studies have tried to apply artifi-
cial intelligence techniques to this domain. On the
one hand, there is a growing interest in applying
computational techniques in all the aspects of food
production, monitoring, consumption (Min et al.,
2019). On the other hand, diet is one of the main
factors influencing human health and it has been
studied in the field of health informatics (Mazzei
et al., 2020; Balloccu et al., 2020).

In the domain of health, it has been shown that
one of the main risk factors in the onset of chronic
diseases lies in the adoption of an unhealthy diet
(Jayedi et al., 2020). Specifically, following a
Mediterranean diet provides many health benefits
(Godos et al., 2019; Schwingshackl et al., 2017;
Galbete et al., 2018). However, following a diet
is often difficult both for the specific complex-
ity of the domain, and for the human tendency
to transgress on eating behaviors (Anselma et al.,
2017). A diet can be seen as a set of quantitative or

qualitative rules and constraints, and technological
tools could support users both in keeping track of
the historical data and of the user progress, and
obtaining motivation by means of their educational
and persuasive roles. A virtual dietitian that reasons
about eaten meals and that communicates through
natural language suggesting corrective actions can
be helpful in this task. The Multimedia Applica-
tion for Diet Management (Anselma and Mazzei,
2015, 2018, 2020) (MADiMan1) was born in 2015
in order to build a virtual dietitian that is able to:
(i) let the user choose the meal to eat through a mo-
bile application, (ii) analyze the ingredients of the
recipe and their quantity through the NLU module,
(iii) evaluate the compatibility of the chosen meal
with the principles of a diet through the Reasoner
module, (iv) determine what the consequences of
eating a particular dish are, (v) show these conse-
quences to the user through natural language with
messages for educational and informational pur-
poses and motivating users to pursue their goals.

A recent development of MADiMan (Mazzei
et al., 2020) concerns the integration of the Mediter-
ranean diet score (Med Score henceforth) origi-
nally proposed in (Stefanadis, 2006). By using a
food ontology, MADiMan is able to reason both (i)
on macronutrient-based constraints typical of med-
ical diets (e.g., eat 0.8 g of proteins per kilogram
of body weight per day), and (ii) on food-based
constraints typical of Mediterranean diet (e.g., use
daily olive oil in cooking). The Med Score (0-55) is
based on the specific scores (0-5) obtained over the
consumption of 11 food categories during a week.
Some categories prescribe to eat no more than a
limit (e.g., no more than 2 portions of red meat per
week), and others not less than a limit (e.g., not
less than 5 portions of fish per week).

The MADiMan system includes modules that
accompany the user in real-time in the contingent
choices of individual meals, but a drawback is the

1http://di.unito.it/madiman
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absence of a summary that allows the user to con-
solidate the results obtained at the end of the week.
Furthermore, the implementation design lacks a
proper personalization of the messages, since the
NLG module does not take into account any per-
sonal data/preferences or the emotional state of the
users.

This work has the intent to fulfill this limitation
by producing a longer weekly report that educates
the user. This automatic report is built with a higher
degree of personalization, by formalizing different
user models, in order to support different types of
users who can access the platform and to imple-
ment the related communication strategies. Con-
sequently, the information flow analyzed so far is
enriched with a long report, which is sent to the
user in the form of an e-mail on a weekly basis, in
order to represent the habits held in the past week
and to suggest which behaviors to encourage for
the future and which ones to avoid.

The main research goal of this paper is to evalu-
ate the impact of personalization on the quality of
automatically generated weekly diet reports. With
this aim, we first describe the main design choices
in the DRG system and then we give the results of
a preliminary evaluation of the system.

The paper is structured as follows: in Section 2
the concept of user model is introduced and its
implementation is described. In Section 3, we de-
scribe DRG, a multilingual (Italian/English) gen-
erator that follows the typical modules of an auto-
matic NLG system, in relation to the persuasive-
ness and the educational impact of the generated
messages. In Section 4, we provide the results of
an initial evaluation of the system and, finally, in
Section 5 we conclude the paper describing some
ongoing developments.

2 The User Models

In the domain of e-Health, personalization can play
a role for achieving some form of engagement (Di-
Marco et al., 2007), and user models play a key role
in personalizing automatically generated messages.
For the diet domain, a user model contains both
personal information about the health status (e.g.
weight) as well as user’s preferences on specific
topics. In particular, DRG has been designed by
considering two specific categories of users, that
are the patients and the dietitians. The personal-
ization of the messages is based on the different
goals that these two kinds of users have. Note that

in the first case the personalization needs to con-
sider just the patient user model, but in the second
case the personalization needs to consider both the
dietitian (the message addressee) and the patient
(the message topic).

On the one hand, the messages generated by
DRG for patients have to be informative, motiva-
tional and educational. The final goal of the system
is to educate the patients toward a better under-
standing of the Mediterranean diet principles using
an emotional engaging language based on some
psychological heuristics. On the other hand, the
messages generated by DRG for dietitians, that
are medical specialists on nutrition (in some cases
physicians), should be as short as possible, should
contain information just on bad behavior of the pa-
tient, and should use a technical lexicon without
emotional content. Note that we decided to not
communicate information on the good behavior to
the dietitians since we think that in a support sys-
tem for an expert is more important to produce a
summary of the problems. However, if a dietitian
prefers otherwise, it is possible to adopt a different
policy by changing the DRG configuration.

On the basis of these differences, the patient user
model contains: (1) numerical personal/medical
information on the user, storing sex, age, weight,
height, and BMI (Body Mass Index); (2) a 1-to-4
point scale for representing the stress level based
on the DASS-21 questionnaire (Lovibond and Lovi-
bond, 1995); (3) a Boolean variable representing
the interest of the user for food sustainability, that
is a sort of sensitivity to environmental issues. Us-
ing this source of information we can produce a
specific personalization for the specific patient. In
contrast, with the aim to produce a technical mes-
sage, all the dietitians, for a specific patient, will
read the same message.

3 The DRG Architecture

The DRG Architecture (Figure 1) follows the stan-
dard modular architecture of symbolic NLG (Reiter
and Dale, 2000; Reiter, 2007). The generation flow
starts from numerical data representing the weekly
diet of a patient. The diet reasoner, a module of
the MADiMan system, produces and stores in a
relational database the information regarding the
dishes eaten during a week, their recipes, their nu-
tritional values and their Med Scores. Also the user
model information of the various users are stored,
in the same relational database.
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Figure 1: The DRG architecture.

Following (Reiter, 2007), we divided the gener-
ation process into three macro-phases implement-
ing the specific generation tasks. The text plan-
ning phase implements the selection of information
units to communicate (content determination) and
the order in which they appear (text structuring).
The creation of these information units follows the
idea to aggregate together semantically equivalent
information. The different categories of food are
aggregated based on their scores over four different
possible values: very good, good, bad and very
bad. Text structuring decides in which order the
information should be presented: following the so-
called sandwich technique, we communicate the
units following the very good, bad, good, very bad
order, that is alternating a positive and a negative
communication. In Figure 2 we report an example
of text plan. Note that the text plan contains the
Med Score value, computed by the reasoner, rather
than the frequency of consumption of each food
category.

{"language":"English",
"user name":"Giulia",
"user age":44,
"user gender":"F",
"user stress":0,
"domain knowledge":0,
"Med score":31,
"last Med score":26,
"very good":[{"name":"cer","score":5},

{"name":"veg","score":5},
{"name":"fish","score":5},
{"name":"oil","score":5}],

"good":[{"name":"pot","score":3},
{"name":"leg","score":3},
{"name":"poul","score":3}],

"bad":[{"name":"fru","score":2}],
"very bad":[{"name":"rmeat","score":0},

{"name":"dairy","score":0}],
"best dish":206,
"worst dish":288,
"total environment score":1000.82,
"bad category environment":"rmeat"}

Figure 2: An example of text plan.

The sentence planning phase is responsible for
building the syntactic structures of the messages.
So, starting from the sequence of information unit
produced in the text planning, a rule-based sen-
tence planner decides both the syntax and the lex-
ical items of the sentences. We defined a fixed
schema based on a sequence of ten elements: (a)
greetings, (b) Med Score, (c) encouragement, (d)
very good score, (e) bad score, (f) good score, (g)
very bad score, (h) best and worst dish of the week,
(i) environmental impact, (j) educational notion on
the Mediterranean diet. For each element (a-j), the
sentence planner will use a specific quasi-tree, that
is a sort of unordered and unlexicalized dependency
tree (Anselma and Mazzei, 2020). The quasi-tree
will be instantiated, producing a complete struc-
ture ready for realization, considering both the text
plan and the user model. For instance, greetings
(a) depend on the age, whilst the best/worst dishes
(h), as well as the environmental impact (i), are not
provided for dietitians. Moreover, for patients with
a high level of stress the system does not provide
information on the “very bad” category in order to
not exacerbate their stress. For instance, in Figure 3
a sentence plan generated for dietitians is presented.

Figure 3: A sentence plan for the sentence “This week
he has got a Med Score of 30 out of 55 and it seems to
have gotten worse since last week.” (translation from
Italian).
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The final process of the pipeline is the realization
phase that accounts for function words insertion
and inflection. Following the previous implementa-
tion of MADiMAn and, in order to build a bilingual
Italian/English generator, for this phase we used
the Italian porting (Mazzei et al., 2016) of the Sim-
pleNLG realizer (Gatt and Reiter, 2009).

In Section 3.1, we give some details on the lex-
icalization that personalizes the sentences on the
basis of some emotions.

3.1 Using SenticNet for lexicalization

In the field of NLG a number of works consider
the use of affective strategies for the realization of
an emotionally engaging text (de Rosis and Grasso,
2000; Mahamood and Reiter, 2011).

To give different emotional nuances to the final
messages, we decided to use an emotional lexi-
con. SenticNet is a multilingual knowledge base
designed for text sentiment analysis and provides
a list of 150 000 lemmata, each one with different
types of information, including primary and sec-
ondary emotions. Crucially, we used SenticNet for
associating the stress level contained in the user
model with emotion types. In SenticNet the lem-
mata are associated with emotions via type and
polarity as described in the Hourglass of Emotions
(Susanto et al., 2020) model. Specifically, the emo-
tions are classified in four categories (introspection,
temper, attitude and sensitivity), each one with six
different polarity levels. Our idea is to associate
with each stress level a specific type of emotion to
mitigate the stress. We stipulate that, in correspon-
dence to the stress levels, the types of emotions will
be selected in this specific ascending order: sen-
sitivity, introspection, attitude and temper. In the
case of more lemmata with a same type of emotion,
the SenticNetManager algorithm will prefer the
lemma with highest polarity. In this way, we con-
strain DRG to select the least negative term. Thus,
we built a DRG emotional lexicon for English and
Italian by intersecting the original SimpleNLG lex-
icon with the SenticNet lexicon. Moreover, for
each leaf of the quasi-trees, we defined a specific
synset of words belonging to the DRG emotional
lexicon. In this way, the SenticNetManager will
choose among the words in the synset the best one
in correspondence to a specific user stress level. For
instance, let us suppose that a synset of a quasi-tree
contains three lemmas: choice, idea or decision.
On the one hand, in SenticNet choice and idea

correspond both to the same emotion type, that is
temper, that will be selected by SenticNetManager
in the case of high stress; since choice has a higher
polarity value will be preferred over idea. On the
other hand, decision is related to introspection and
it will be selected in case the stress is medium-low.

4 Initial Evaluation of DRG

We are aware that message personalization does
not always correspond to an effective improvement
for the end user (Reiter et al., 2003). So, in order
to evaluate DRG, we performed two different eval-
uations. A first preliminary evaluation consisted in
submitting a number of Italian and English texts
generated by DRG to an adjunct professor of dietis-
tic (henceforth, the expert). The evaluation was set
up by generating ten different reports simulating
the diet of ten patients. These simulations consist
in randomly selected dishes from a database of
recipes recovered from well-known web sites (e.g.
BBC Food). For eight simulations, DRG generated
a report personalized for the patient, and for two
simulations DRG generated a report personalized
for dietitians. By considering the specific user for
which the text is generated, the expert had to evalu-
ate a report in terms of: (i) readability, that consists
in the linguistic quality of the report, (ii) accuracy
or content quality and (iii) usefulness, that is the
effective educational support that the system could
provide to the patient. The general feedback of this
first evaluation was positive, with a good level for
all the three measurements. However, the expert
suggested to improve the system in three direc-
tions: (i) to integrate the Med Score with informa-
tion about macro/micronutrients (i.e. cholesterol,
proteins, etc.); (ii) to provide more details about
the ingredients; (iii) to enhance the personalization
considering the patient’s BMI.

A second preliminary and still ongoing evalu-
ation was performed only for Italian language to
have the patients’ feedback. Similarly to the first
evaluation, DRG generated four texts for four dif-
ferent patients, on the basis of a simulation con-
sisting of randomly selected dishes. Moreover, we
built a baseline text by simply listing all the infor-
mation contained in the text plan (cf. Figure 2). In
Table 1 we report an example of text generated by
DRG and the corresponding baseline text.

The evaluation was set up in the form of an on-
line form with the testing hypothesis that the users
would prefer highly personalized report over the
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Italian version English version
DRG Ciao, Davide. Questa settimana hai ottenuto un Med

Score pari a 23 su 50 e, inoltre, sei peggiorato dalla
scorsa settimana. Non mollare! La quantità di patate,
pesce ed olio era quasi eccellente. E inoltre hai fatto
un lavoro fantastico con cereali e verdura. La merenda
di venerdì era una scelta eccellente perché il piatto
King Ranch Chicken Casserole ha una buona quantità
di cereali e verdura. Gli esperti sconsiglierebbero il
piatto Creamy Au Gratin Potatoes che hai mangiato il
lunedì scorso a colazione perché la quantità di latte e
derivati non è buona. Ricorda: una pessima dieta uccide
più del fumo.

Hi Davide. This week you got a Med Score of 23 out
of 50 and, furthermore, you have not improved since
last week. Do not give up! The amount of potatoes,
fish and oil was almost excellent. Furthermore, you’ve
done a fantastic job with cereal and vegetables. Fri-
day’s snack was an excellent choice because the King
Ranch Chicken Casserole dish has a good amount of
grains and vegetables. Experts would advise against the
Creamy Au Gratin Potatoes dish you ate for breakfast
last Monday because the amount of milk and deriva-
tives is not good. Remember: a bad diet kills more than
smoking.

Baseline Questa settimana hai ottenuto i seguenti punteggi:

- Med Score: 23 su 50
- Carne rossa, latticini e carne bianca: 0 su 5
- Legumi e frutta: 1 su 5
- Pesce: 3 su 5
- Olio e patate: 4 su 5
- Cereali e verdura: 5 su 5
- Migliore piatto: King Ranch Chicken Casserole
- Peggior piatto: Creamy Au Gratin Potatoes

This week you obtained the following scores:

- Med Score: 23 out of 50
- Red meat, diary and poultry: 0 out of 5
- Legumes e fruit: 1 out of 5
- Fish: 3 out of 5
- Oil and potatoes: 4 out of 5
- Cereal and vegetables: 5 out of 5
- Best dish: King Ranch Chicken Casserole
- Worst dish: Creamy Au Gratin Potatoes

Table 1: The text generated by DRG and the corresponding baseline text used for the evaluation. The Italian version
is on the left and the English version, not used for evaluation, is on the right.

baseline. The form presents a user description,
the baseline text and the DRG text (using a Latin
square arrangement), and asks to evaluate the read-
ability, the accuracy and the usefulness of each text
by means of a 7-point Likert scale. Four pairs of
reports along with a user description are shown.
The four different cases were constructed by vary-
ing both the weekly dishes (randomly extracted)
and the type of user for whom the report is gen-
erated. Currently, only five testers participated to
the second evaluation, as reported in Table 2. We
are aware that the small number of testers cannot
guarantee statistically significant results. However,
we can speculate that the readability score confirms
the appealing of personalization in the linguistic
quality of the text.

5 Conclusions and Ongoing Work

In this short paper we presented the main proper-
ties of DRG, that is a symbolic natural language
generation system for building weekly report on
Mediterranean diet. We are still evaluating our sys-

Readability Accuracy Usefulness
DRG 5.65 5.3 5.45

Baseline 5.45 5.75 5.55

Table 2: Preliminary evaluation results (average over
7-point Likert scale).

tem by using the procedures described. Moreover,
in order to have a more realistic and significant
feedback on DRG, we are going to involve some
students in dietistic in a form-based evaluation.

As a future work, we intend to design a more
complete comparative evaluation based on an ab-
lation strategy. We intend to generate different
versions of the report by excluding/exploiting the
various components of DRG. In particular, we want
to evaluate the contribution of the emotional lexi-
con in a A/B test.
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