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Abstract
State-of-the-art pretrained NLP models con-
tain a hundred million to trillion parameters.
Adapters provide a parameter-efficient alterna-
tive for the full finetuning in which we can only
finetune lightweight neural network layers on
top of pretrained weights. Adapter layers are
initialized randomly. However, existing work
uses the same adapter architecture—i.e., the
same adapter layer on top of each layer of the
pretrained model—for every dataset, regardless
of the properties of the dataset or the amount
of available training data. In this work, we
introduce adaptable adapters that contain (1)
learning different activation functions for dif-
ferent layers and different input data, and (2) a
learnable switch to select and only use the ben-
eficial adapter layers. We show that adaptable
adapters achieve on-par performances with the
standard adapter architecture while using a con-
siderably smaller number of adapter layers. In
addition, we show that the selected adapter ar-
chitecture by adaptable adapters transfers well
across different data settings and similar tasks.
We propose to use adaptable adapters for de-
signing efficient and effective adapter architec-
tures. The resulting adapters (a) contain about
50% of the learning parameters of the stan-
dard adapter and are therefore more efficient
at training and inference, and require less stor-
age space, and (b) achieve considerably higher
performances in low-data settings.1

1 Introduction

Recent improvements in NLP are heavily skewed
towards using larger pretrained models (Roberts
et al., 2020) and given their considerably better
performances, using them is becoming unavoid-
able (Kaplan et al., 2020). Their improvements,
however, come at the cost of significant computa-
tional resources at training and inference times. For

∗The work has been mostly carried out during the employ-
ment at the UKP Lab, TU Darmstadt.

1The code is available at https://github.com/
UKPLab/adaptable-adapters.

instance, the number of parameters in recent pre-
trained models can vary from 110M in BERT-base
(Devlin et al., 2019) to 11 billion in T0 (Sanh et al.,
2022) to trillion parameters in Switch Transformers
(Fedus et al., 2021). Using such models for each
downstream application requires a vast amount of
storage, training, and inference computation budget
that is not accessible to every user.

Instead of fine-tuning these massive numbers of
parameters for each downstream task, we can use
adapter architectures (Houlsby et al., 2019; Pfeiffer
et al., 2020). Adapters are lightweight neural net-
work layers that are added on top of each layer of
the pretrained model. As opposed to the standard
model fine-tuning, in which all layers are fine-tuned
for the target task, adapter-based tuning freezes the
transformer layers and only trains the newly added
adapter layers. Since the majority of parameters—
i.e., the layers of the large pretrained model—are
shared between different downstream tasks, the use
of adapters results in parameter-efficient transfer
learning. In addition to their parameter-efficiency,
He et al. (2021) show that training adapter-layers
(a) outperforms fine-tuning the whole model on
low-data and cross-lingual settings, and (b) is more
robust to overfitting.

Existing work suggests that (a) different layers
of the pretrained models may capture different as-
pects of the form, syntax, or meaning of the input
text (Tenney et al., 2019; Clark et al., 2019), and
(b) they may not be all needed for performing a
given task (Houlsby et al., 2019; Fan et al., 2020;
Rücklé et al., 2021). In addition, adapter layers are
initialized randomly. Therefore, it is not necessary
to use the same adapter architecture for different
downstream tasks and given different amounts of
annotated data. However, existing works use the
same adapter architecture for all the different in-
put data, i.e., (a) one adapter layer on top of all
the pretrained layers while using all the layers may
not be necessary, and (b) the same activation func-
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tion for all the layers and different tasks while the
best activation function may vary for different tasks
(Delfosse et al., 2021).

In this paper, we propose a systematic approach
for designing more adequate and flexible adapter
architectures by introducing the adaptable adapter
(AA). Adaptable adapters (1) use a learnable activa-
tion function—called Rational activation (Molina
et al., 2020)—instead of a constant activation in
adapter layers allowing the adapter model to learn
different activation functions at different adapter
layers and for different tasks, and (2) consist of a
learnable switch at each adapter layer to determine
the beneficial adapter layers during training and to
only use the selected layers during inference.

We evaluate adaptable adapters on the GLUE
benchmark (Wang et al., 2018) that consists of var-
ious text classification tasks. We perform evalu-
ations based on different data settings in which
different amounts of annotated examples are avail-
able for training. Our results show that adaptable
adapters achieve on-par performances with the full
adapter architecture while using considerably fewer
adapter layers at the inference.

We further propose to use adaptable adapters for
designing efficient adapter architectures—i.e., to
only add an adapter layer to the layers that are se-
lected by the adaptable adapter. We show that while
the selected adapter architecture by AA, called AA-
focused, is considerably more efficient at both train-
ing and inference times and requires less storage, it
achieves on-par performances with the full adapter
architecture when trained on all available training
data and considerably outperforms it on low-data
settings. In addition, we show that the selected
adapter architecture by AA transfers well across
similar tasks and different data settings. Therefore,
we can train AA using a limited amount of training
data, and for one of the tasks, and then use the re-
sulting AA-focused architecture for different data
settings and other similar tasks.

Overall, the contributions of this paper are as
follows:

• We propose adaptable adapters that introduce
flexibility in adapter architectures by (a) se-
lecting the beneficial adapter layers to use, and
(b) learning the suitable activation function for
each layer and each task.

• We propose to use adaptable adapters to de-
sign efficient adapters that require less training
time, inference time, and storage space.

• We show that using fewer adapter layers with
a learnable activation function considerably
improves the performance on low-data set-
tings.

2 Related Work

2.1 Rational Activation
Rational activation functions, empirically intro-
duced as Padé Activation Units (Molina et al.,
2020), are learnable activation functions that can
approximate common activation functions as well
as learn new ones. The rational activation function
R(x) of order m,n is defined as follows:

R(x) =

∑m
j=0 ajx

j

1 + |∑n
k=1 bkxk|

(1)

where aj and bk are learnable parameters. These ra-
tional functions use an absolute value in the denom-
inator to avoid potential poles, which will make the
training unstable. Such rational activation func-
tions provide stable training, as empirically shown
in image classification and reinforcement learning
(Molina et al., 2020; Delfosse et al., 2021). R(x)
can be initialized to initially approximate any of the
known activation functions or with constant func-
tions. Molina et al. (2020) show that rationals out-
perform other commonly used activation functions
in common image classification tasks. Rational
activation functions are also integrated in Gener-
ative Adversarial Networks (Boullé et al., 2020).
Delfosse et al. (2021) show that some of the layers
in very deep pretrained Residual Networks tend
to approximate activation functions’ behavior, and
we can achieve on-par or better performances with
the full network by replacing some of the complete
layers with rational activation functions. Similar to
this observation, as we show in § 5, using rational
activation functions instead of a constant activation
(ReLU) in adapters allows them to achieve high
accuracy using a fewer number of adapter layers.

2.2 Reducing Model’s Size for Efficiency
Improving the efficiency of large pretrained models
has received particular attention for the inference
time. The argument is that the effect of training cost
is limited, i.e., the model can be trained once but it
will be used many times. However, the inference
time has a wide impact on the everyday use of NLP
models.

Existing approaches for improving the inference-
time efficiency belong to two different categories:
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(a) the distillation and pruning techniques that cre-
ate a smaller model for inference but often require
re-training or fine-tuning the smaller model (Tang
et al., 2019; Sanh et al., 2019; Voita et al., 2019;
Sun et al., 2020; Bai et al., 2021), and (b) on-
demand network size reduction at the inference
time.2 There are two different approaches in the
second category, namely layer dropping and early
exiting.

Fan et al. (2020) use layer dropping during the
training that randomly drops the model’s layers to
make the model robust to the inference time layer
selection. They show that it is possible to select
sub-networks of any depth from large models at in-
ference with limited impact on the performance and
without the need for additional finetuning. Layer
dropping was previously investigated by Huang
et al. (2016) who propose to drop layers during
training for regularizing the model and reducing
the training time of deep convolutional networks.
Rücklé et al. (2021) use layer dropping for adapter
architectures. They show that by randomly drop-
ping adapter layers during training, they can prune
the adapter model on-demand at the inference time.

Schwartz et al. (2020) propose to add an output
layer to each transformer layer. At inference time,
while the model calculates the layer-wise represen-
tation, from the bottom layer to the top layer, it
also makes the prediction using the associated clas-
sification layer. They use the output labels’ scores
of the classification layers as confidence scores to
decide whether to exit early if the classifier is con-
fident or to proceed to process the input with the
next layers. This hierarchical architecture offers
an inference time-accuracy tradeoff by setting the
confidence threshold. The early exiting approach
is similar to layer dropping in which the dropped
layers are always from the last top layers.

All these approaches select the number of lay-
ers to drop and the dropped layers heuristically
at the inference time with the goal of improving
the inference time. Instead, the adaptable adapter
is a systematic approach for selecting the useful
adapter layers for the given task during training.
Besides layer selection, an adaptable adapter al-
lows for learning the desired activation function for
different inputs. As we show, we can use adaptable

2There is another category that requires changes in the
models’ architectures. However, it would require re-training
the large model. E.g., Sukhbaatar et al. (2019) propose new
attention mechanisms that can process larger context with no
additional computational or memory costs.

adapters to design efficient adapter architectures
with a considerably smaller number of training pa-
rameters with on-par or considerably higher per-
formances, especially with larger models and in
low-data settings.

3 Proposed Architecture

3.1 Learnable Activation

Empirical observations of performances have led
experts in several fields to use different activation
functions for different tasks. Functions from the
ReLU family are usually used for neural network-
based visual computing, Tanh has been used in
PPO for reinforcement learning, while GeLU has
progressively been adopted in transformers. With
the growth of the models, and the complexity of
the tasks they are applied to, choosing one fixed ac-
tivation function to equip the complete architecture
is suboptimal. By using rational (§ 2.1), we let the
adapter layer learn the suitable activation function
at each different adapter layer, task, and dataset.
In adaptable adapters, we replace the constant acti-
vation function of each adapter layer—i.e., ReLU
in the default configuration used in AdapterHub
(Pfeiffer et al., 2020)—with rational.

Figure 1 shows a standard adapter layer as well
as an adapter layer in adaptable adapters.

Feedforward down-project

Activation 
function

Feedforward up-project

(a)

Feedforward down-project

Rational

Feedforward up-project

(b)

Figure 1: (a) a standard adapter layer with linear feedfor-
ward layers and a fixed activation, (b) an adapter layer
in adaptable adapters with linear feedforward layers and
a rational activation. Learnable parameters are shown
within pink boxes.

3.2 Learnable Layer Selection

Houlsby et al. (2019) examined various choices
of adapter architectures. They report that using
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two feedforward linear layers—one down-project
and one up-project layer—results in good perfor-
mances while only introducing a few parameters.
Assuming d is the dimensionality of the input—i.e.,
the embedding size of the transformer layer—the
down-project layer maps the input dimension to
n where n < d, and the up-project layer maps
the input dimension back to d. n is called the hid-
den size of the adapter. Each adapter contains a
skip-connection that lets an adapter layer approx-
imate an identity function, i.e., to pass the input
of a transformer layer unchanged to the next layer.
The learnable switches in adaptable adapter explic-
itly model the selection between the feedforward
adapter layer and the identity function. By exam-
ining the switch probabilities we can determine
the adapter layers that are beneficial for the overall
performance of the model.

As mentioned in § 1, existing work shows that
different layers of the pretrained models capture
different aspects of the input data, and not all of
them are necessary for performing various tasks.
Therefore, for different input data, different layers
may be of different importance. Adding a learn-
able switch at each adapter layer provides a more
systematic approach to determining the beneficial
layers for each input task during training. We use
the Gumbel Softmax (GS) estimator as an end-to-
end differentiable switch (hard attention) to make
the network attend to an element of a set. Assuming
πi are the probabilities of selecting each element
of the set, i.e., ∀iπi ≥ 0,

∑
i πi = 1, GS estimates

the hard attention yi as follows:

yi =
exp((log(πi) + gi)/τ)∑
j exp((log(πj) + gj)/τ)

(2)

where gi are i.i.d. samples from a Gumbel distribu-
tion, and τ is a temperature parameter. Setting τ to
small values results in distributions that are similar
to categorical ones.

3.3 Adaptable Adapters

The adaptable adapter (AA) is the combination of
the learnable layer selection and the learnable ac-
tivation function. The learnable layer selection—
i.e., a Gumbel Softmax estimator—selects between
an adapter layer, with no skip connection, and an
identity function with zero parameters that passes
the input without any changes to the next layer.
The adapter layers in adaptable adapters consist
of two linear layers—i.e., down-project and up-

Feedforward down-project

Rational

Feedforward up-project

Gumbel Softmax
π0

π1

Figure 2: The adaptable adapter layer that consist of a
Gumbel Softmax to choose between an adapter layer
with a rational activation and an identity function.

project layers—, and the non-linearity function be-
tween these two linear layers consists of a rational
activation function. The adaptable adapter allows
to learn different adapter architectures for different
input data by (a) learning to use a subset of adapter
layers, and (b) learning a potentially different ac-
tivation function at each layer. Figure 3 shows the
structure of an adapter layer in adaptable adapters.

4 Experimental Setup

4.1 Datasets

We use the English text classification datasets from
the GLUE benchmark (Wang et al., 2019) including
MNLI (Williams et al., 2018), QQP3, QNLI (Ra-
jpurkar et al., 2016), SST-2 (Socher et al., 2013),
CoLA (Warstadt et al., 2019), STS-B (Cer et al.,
2017), MRPC (Dolan and Brockett, 2005), RTE
(Dagan et al., 2006), and WNLI (Levesque et al.,
2011). Table 1 shows the number of training exam-
ples and the evaluation metric for each dataset.

Dataset |Train| Metric Dataset |Train| Metric
MNLI 393k acc. STS-B 7k Pearson/Spearman
QQP 364k acc./F1 MRPC 3.7k acc./F1
QNLI 105k acc. RTE 2.5k acc.
SST-2 67k acc. WNLI 634 acc.
CoLA 8.5k Matthews

Table 1: GLUE datasets with their number of training
examples and the corresponding evaluation metric.

3https://www.quora.com/profile/Ricky-
Riche-2/First-Quora-Dataset-Release-
Question-Pairs
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4.2 Transformer Model

As the base model, we use the BERT-large model
(Devlin et al., 2019). BERT-large contains 24 lay-
ers, an embedding size of 1024, and a total number
of 340M parameters.4

4.3 Adapter Models

Baseline As a baseline adapter, we use the
adapter layers with the pfeiffer configuration from
AdapterHub (Pfeiffer et al., 2020). The adapter
layers with the pfeiffer configuration are similar to
the one in Figure 1, in which learnable parameters
include two feedforward layers. For BERT-base,
each pfeiffer layer consists of 73.7k parameters5

resulting in a total number of 884.7K. For BERT-
large, the number of parameters for each adapter
layer is 131K, and the total number of parameters
is 3.1M. We see that as the underlying model gets
larger, the number of parameters in adapters also
increases notably. Therefore, adapter architecture
selection using AA is a potential solution to control
this exponential increase to some extent.

Adaptable Adapter (AA) For the rational ac-
tivation, similar to Molina et al. (2020), we use
order m = 5 and n = 4 for rational. Therefore,
the rational activation function only consists of ten
learnable parameters. The rational activation can
be initialized to initially estimate an existing func-
tion. Based on our preliminary experiments, using
f(x) = 1 for initializing R(x) results in better
performances on the GLUE benchmark.

For the Gumble-Softmax switch, we set the tem-
perature parameter τ to 0.1, and we initialize πi to
0.5 for both inputs—i.e., the same initial probabil-
ity for the rational adapter and the identity function.

AA-focused We can use the selected architecture
by AA for designing a new adapter architecture, i.e.,
to only include an adapter layer—with a rational
function—at layers in which the switch has selected
the adapter layer over the identity function. We call
this architecture AA-focused. Note that compared
to AA, AA-focused is more efficient both at training
and inference time, as it includes a fewer number of
layers and no switch functions. It also requires less
storage space for saving the new adapter weights.

4The results for BERT-base are reported in the appendix.
BERT-base contains 12 layers, an embedding size of 768, and
110M parameters.

5The reduction factor in the down-project layer is 16 which
results in (768/16) x 768 x 2 parameters for each adapter layer.

Also, training AA includes both the architecture se-
lection and training of the adapter layers, which are
initialized randomly, simultaneously. As a result,
as we see in our evaluations, AA-focused achieves
higher performances as its training is only focused
on training the adapter layers.

AdapterDrop (Rücklé et al., 2021) During train-
ing, AdapterDrop randomly drops the first n layers
in which n varies for different iterations. At infer-
ence, n can be set to any desired number of layers.
In our experiments, we select n based on the num-
ber of dropped layers by AA, i.e., the number of
layers that are not selected by the switch functions.

4.4 Experiments
We evaluate the models in different settings: (a)
using full training data, and (b) low-data settings.
For all the experiments, we consider 25% of the
training data as the development set and use the
official development sets as the test data. We per-
form the low-data evaluations when 100, 300, and
500 annotated examples are available.6 The test
data is the same for all the evaluations. We run all
the low-data experiments for 20 epochs and five
different random seeds7. We report the average
and standard deviation over the five different runs.
When training on full datasets, the experiments are
computationally very expensive using BERT-large.
Therefore, for this setting, we only report the re-
sults using the first random seed. All experiments
are done on one A100 NVIDIA GPU. All imple-
mentations are based on AdapterHub (Pfeiffer et al.,
2020).

5 Evaluation

Table 2 presents the results of Baseline, Adapter-
Drop, AA, and AA-focused. AA selects different lay-
ers for different tasks and different random seeds.8

We evaluate three configurations for AA-focused:

• AA-focusedspec: for each task, we design the
corresponding AA-focused based on the se-
lected architecture by AA for that task given
and the first random seed (42). For instance,
the AA-focused architecture is the same for all

6Selected training examples for low-data experiments are
the same for all models given the same random seed.

742, 92, 111, 245, and 651.
8For instance, the selected layers for RTE are as follows

for different runs of Low-data-100: {0, 2, 5, 11, 12, 13, 16,
17}, {3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 19, 21}, {2, 3, 4, 6, 9,
12, 14, 16, 17, 18, 20, 22, 23}, {0, 2, 6, 8, 9, 11, 13, 14, 17,
19, 23}, {1, 2, 5, 10, 11, 14, 16, 20, 21, 22, 23}.
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MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Low-data-100

Baseline 33.893.02 30.650.38 58.784.81 56.013.68 5.204.84 40.009.64 74.800.0 49.392.86 55.213.01 44.87
AA 33.642.66 30.880.39 59.616.19 51.282.52 -0.551.87 45.1814.17 74.800.0 50.113.44 55.482.46 44.49
AdapterDropAA 33.722.84 30.620.40 57.505.78 54.012.59 4.107.95 36.538.93 74.80.0 49.392.86 56.061.38 44.08
AdapterDrop13 33.712.76 30.610.4 58.394.27 53.442.56 3.917.6 36.238.68 74.80.0 49.462.81 55.761.91 44.04
AA-focusedspec 35.282.06 44.3716.31 63.754.39 52.944.64 5.6810.91 62.793.34 74.800.01 51.482.72 54.084.51 49.47
AA-focuseduni 36.362.61 44.3716.31 63.364.86 55.874.42 4.754.9 59.376.78 74.940.2 51.123.45 51.834.12 49.11
AA-focusedsim 34.773.18 45.7814.40 63.134.30 61.5810.95 17.5411.19 59.897.70 74.770.07 52.202.93 51.835.52 51.28
|Baseline| 24 24 24 24 24 24 24 24 24
|AA| 13.21.7 15.03.0 13.62.2 14.64.0 15.82.1 16.42.7 13.01.8 11.21.8 12.35.7
|AdapterDropAA| 14 13 15 16 16 14 15 13 16
|AdapterDrop13| 13 13 13 13 13 13 13 13 13
|AA-focusedspec| 14 13 15 16 16 14 15 13 16
|AA-focuseduni| 13 13 13 13 13 13 13 13 13
|AA-focusedsim| 13 13 13 13 13 13 13 13 13

Low-data-300
Baseline 36.554.76 61.508.66 69.621.24 79.8614.15 30.405.48 78.242.81 76.551.31 51.623.21 45.924.33 58.91
AA 37.142.49 66.070.38 71.331.82 72.5216.59 26.058.74 82.081.6 74.032.21 51.832.84 47.044.76 58.68
AdapterDropAA 38.865.93 62.984.85 66.712.91 79.2914.17 16.8912.06 78.51.99 75.740.67 51.193.35 46.764.02 57.44
AdapterDrop13 37.955.56 63.724.84 66.712.91 80.014.47 16.312.05 77.522.08 76.030.92 51.333.4 46.484.27 57.34
AA-focusedspec 44.624.11 66.831.06 73.721.09 85.872.94 34.518.3 81.162.04 76.721.06 54.584.72 46.203.92 62.69
AA-focuseduni 46.694.29 69.251.33 74.162.95 87.570.72 35.653.26 81.712.64 75.971.55 56.895.56 52.397.26 64.48
AA-focusedsim 45.972.08 68.361.36 73.982.68 86.831.90 37.433.10 78.813.58 76.661.30 55.962.81 48.445.53 63.61
|AA| 17.01.3 16.21.0 14.81.8 12.83.2 16.82.2 18.61.9 16.01.1 12.41.2 12.42.1
|AA-focusedspec| 18 16 13 9 17 16 16 13 13

Low-data-500
Baseline 44.356.08 69.491.12 73.481.89 88.261.53 37.984.42 82.070.99 78.331.11 59.281.76 49.866.08 64.79
AA 47.335.11 67.522.99 75.02.3 84.933.06 39.964.87 84.560.87 78.381.0 59.283.18 50.135.16 65.23
AdapterDropAA 42.667.02 69.521.03 74.152.19 89.010.49 38.444.51 82.051.05 78.191.04 59.282.6 49.36.36 64.73
AdapterDrop13 43.056.41 69.120.88 72.821.83 88.970.6 36.895.03 80.771.32 77.860.8 58.562.44 49.016.57 64.12
AA-focusedspec 54.962.66 69.521.14 77.301.27 87.941.10 39.513.47 84.300.69 78.921.70 59.202.58 48.736.27 66.71
AA-focuseduni 56.131.88 69.322.29 76.852.37 87.891.47 41.753.83 83.481.25 78.000.35 60.421.75 50.425.07 67.14
AA-focusedsim 55.852.62 69.862.56 77.301.93 87.571.69 39.791.42 83.231.61 78.751.26 60.071.62 49.586.75 66.89
|AA| 12.86.0 16.81.3 16.42.6 14.62.1 10.68.3 19.61.4 16.62.4 14.36.8 12.63.2
|AA-focusedspec| 14 17 18 15 17 18 14 16 14

Full Data
Baseline 85.08 88.68 91.95 93.00 58.28 89.75 83.12 70.39 56.34 79.62
AA 84.73 88.38 91.01 92.55 57.60 90.11 82.36 63.18 53.52 78.16
AdapterDropAA 84.96 88.75 91.38 93.35 58.63 89.85 82.84 66.06 56.34 79.12
AdapterDrop13 84.73 87.15 90.92 92.78 57.42 88.84 83.34 64.25 56.34 78.42
AA-focusedspec 84.77 88.46 91.38 92.32 56.79 89.74 83.42 64.98 57.75 78.84
AA-focuseduni 85.41 88.61 91.51 92.66 54.62 89.34 84.88 67.15 56.34 78.94
AA-focusedsim 85.32 88.41 91.85 91.4 57.96 89.38 84.42 67.86 57.75 79.37
|AA| 14 18 17 18 20 20 18 16 15
|AA-focusedspec| 14 18 17 18 20 20 18 16 15

Table 2: Comparing the results of (a) the standard adapter model that includes an adapter layer on all the 24
BERT-large layers (Baseline), (b) adaptable adapter (AA), (c) AdapterDrop, and (d) AA-focused adapters, in which
the architecture of the adapter is selected based on the selected layers by AA. The architecture of AA-focusedspec

is selected based on the selected layers by AA for the corresponding task and data setting when the random seed
is 42. The architecture of AA-focuseduni is selected based on the selected layers by AA for the task of QQP on
the Low-data-100 setting and for random seed 42. AA-focusedsim only contains an adapter layer with a rational
activation function at the last 13 layers of BERT-large, i.e., the total number of adapter layers in AA-focuseduni. The
number of layers at the inference time for the AdapterDropAA experiments are selected based on the number of
layers in the corresponding AA-focusedspec experiments. The number of inference time layers for AdapterDrop13

equals 13. Except for Full Data, the reported results are averaged over five random seeds. The subscript reports
the corresponding standard deviation. The Full Data results are reported for one random seed. The |AA| rows
report the average number of selected adapter layers by AA using different random seeds. |AA-focused∗| rows
report the number of added adapter layers in the corresponding |AA-focused∗| experiments. |AA-focuseduni| and
|AA-focusedsim| are the same for all data settings. |AdapterDrop∗| rows report the number of included adapter
layers for the corresponding AdapterDrop experiment at the inference time. |AdapterDropAA| is always the same
as the corresponding |AA-focusedspec|, and |AdapterDrop13| is always the same as AA-focusedsim. The test data
is the same for all the experiments. The Avg column reports the average score across all datasets. The highest
performances for each dataset and each data setting are boldfaced.
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the experiments of RTE for Low-data-100—
i.e., over the five different random seeds—.
However, it is different for the rest of the tasks
and different data settings.

• AA-focuseduni: we design this adapter archi-
tecture of all tasks and data settings based on
a single random seed, single task, and a sin-
gle data regime, i.e.— random seed 42, the
QQP task, and low-data-100. We choose low-
data-100 because the architecture selection
process—i.e., training AA—is very fast in this
setting. We select the selected architecture by
QQP because AA selects the smallest number
of layers for QQP when the random seed is 42.
The selected layers are {2, 6, 10, 12, 14, 15,
16, 18, 19, 20, 21, 22, 23}, i.e., three layers
from the first half of the original 24 layers, and
ten layers from the second half. The results of
AA-focuseduni compared to AA-focusedspec

indicate whether the selected architecture by
AA transfers between similar tasks and differ-
ent data settings.

• AA-focusedsim: we design a simplified
adapter based on AA in which we only use the
number of selected layers, instead of the layer
numbers, in a single random seed, single task,
and a single data setting. We use the num-
ber of selected layers when the random seed
is 42 for the QQP task and the low-data-100
setting, i.e., 13. As investigated by Houlsby
et al. (2019), the last adapter layers are in
general more effective. As a result, we add
adapter layers, with rational activation, to the
last 13 transformer layers in AA-focusedsim

experiments. The results of AA-focusedsim

compared to AA-focuseduni show whether
only the number of selected layers by AA mat-
ters or it is also important to specify at which
layers to add the adapters.

The number of inference layers for
AdapterDropAA are equivalent to the num-
ber of layers in AA-focusedspec experiments for
each task and data setting. The number of layers
for AdapterDrop13 is 13, which is the same as
AA-focuseduni and AA-focusedsim. Note that the
number of layers for AA-focused experiments are
the same both at training and inference while it is
not the case for AdapterDrop.

The |AA| rows in Table 2 show the average num-
ber of selected layers for each task over the five dif-

ferent random seeds. |AA-focused∗| rows report the
number of added adapter layers in the correspond-
ing AA-focused∗ experiments. |AdapterDrop∗|
rows report the number of included adapter layers
for the corresponding AdapterDrop experiments at
the inference time.

We make the following observations from the
results of Table 2:

• AA achieves on-par performances with the
Baseline, and on average it uses about 13-15
layers out of 24 layers. We can use this insight
for designing efficient adapter architectures.

• All AA-focused architectures considerably out-
perform Baseline in all the the tasks in low-
data settings while using considerably smaller
number of parameters, and therefore, being
considerably more efficient. For instance,
while AA-focuseduni only uses 13 layers out
of 24 layers—i.e., reducing the number of
training parameters from 3M to 1.7M—, it
outperforms the Avg score by 4.24, 5.57, and
2.35 points in Low-data-100, Low-data-300,
and Low-data-500, respectively.

• The high performances of AA-focuseduni

show that the selected architecture by AA for
one task and one data setting transfers well to
other data regimes and similar tasks.9 There-
fore, it is not necessary to design the adapter
architecture separately for a different amount
of available data and similar tasks.

• AA-focusedsim and AdapterDrop13 both use
the last 13 adapter layers during the inference
while the results of AA-focusedsim are con-
siderably higher for all data regimes. This
indicates the importance of rational activation
in adaptable adapters. We will further inves-
tigate the impact on rational activation in the
next section.

• In average, AdapterDropAA contains more in-
ference layers compared to AdapterDrop13.
However, there is not a significant difference
between their performances. They achieve
on-par or lower results compared to Baseline.

9It even outperforms AA-focusedspec showing that AA-
focusedspec may have overfitted to the development sets. We
have not performed hyperparameter selection for our experi-
ments. Using better hyperparameters may improve the results
of different settings.
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Adap. layers MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Low-data-300

13 45.972.08 68.361.36 73.982.68 86.831.9 37.433.1 78.813.58 76.661.3 55.962.81 48.445.53 63.61
12 36.845.51 62.435.65 65.773.43 84.633.64 13.2312.63 77.082.36 75.270.39 54.303.75 46.765.45 57.37
11 36.165.12 62.595.8 67.931.42 79.9514.16 16.3211.65 73.226.75 76.421.19 56.532.02 46.24.12 57.26

Table 3: Evaluating the impact of the number of adapter layers on the overall performance. The adapter layers are
added to the top n layers of the model for n = 13, 12, 11. Adapter layers contain rational activation, i.e., n = 13 is
equivalent to AA-focusedsim. Results are reported for the low-data-300 setting.

MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Low-data-300

Baseline 36.554.76 61.508.66 69.621.24 79.8614.15 30.405.48 78.242.81 76.551.31 51.623.21 45.924.33 58.91
AA 37.142.49 66.070.38 71.331.82 72.5216.59 26.058.74 82.081.6 74.032.21 51.832.84 47.044.76 58.68
Switch-Only 35.052.81 43.816.02 65.592.61 61.866.26 9.7712.86 75.413.29 75.370.7 50.183.44 45.923.03 51.44
Rational-Only 37.723.88 64.752.51 69.691.04 79.8614.15 23.208.33 78.581.94 75.841.07 52.273.11 46.483.88 58.70
Baseline13 37.985.80 63.374.72 68.761.55 85.163.63 12.1112.69 77.962.23 75.250.71 54.442.06 45.353.72 57.80
AA-focusedsim 45.972.08 68.361.36 73.982.68 86.831.90 37.433.10 78.813.58 76.661.30 55.962.81 48.445.53 63.61
|AA| 17.01.3 16.21.0 14.81.8 12.83.2 16.82.2 18.61.9 16.01.1 12.41.2 12.42.1
|Switch-Only| 14.01.1 15.82.5 17.01.9 16.22.8 16.41.9 16.41.5 17.81.7 15.02.1 14.01.7

Table 4: Evaluating the impact of rational in adaptable adapters. Experiments are run for five different random seeds.
Switch-only shows the results when learnable switches are used with standard adapter layers, i.e., linear layers with
the ReLU activation. Rational-only shows the result when all the activation functions in the standard adapter are
replaced with rational. Baseline13 contains a standard adapter layer on the last 13 transformer layer. AA-focusedsim

contains adapter layers with rational activation on the last 13 layers.

Evaluating the impact of AA on selecting the
number of beneficial layers. In the results of
Table 2, we select the number of layers in AA-
focusedsim, i.e., 13 , based on the minimum num-
ber of selected layers by AA on the low-data-100
setting and for random seed 42. AA-focusedsim is
equivalent to an adapter architecture in which only
the last 13 adapter layers are added to the model.
To investigate whether the improvements of AA-
focusedsim over the baseline are only due to using
a fewer number of adapter layers, we report the
results of an adapter architecture in which only the
last n adapter layers are added to the model, e.g.,
for n = 13 the resulting architecture is the same
as AA-focusedsim. Table 3 shows the result of this
experiment for n = 13, 12, 11. We observe that by
decreasing the number of layers from 13 to 12, the
overall performance drops notably from 63.61 to
57.37.

Evaluating the impact of rational activation.
The results of AA-focused experiments vs. Baseline
in Table 2 mostly emphasize the impact of layer
selection by the learnable switches in AA. In this
section, we investigate the impact of learnable acti-
vation functions in more details in the evaluations
of Table 4.

First, we replace all rationals in AA with ReLU.
The results are reported in the Switch-Only row. By

comparing the results of AA and Switch-only we
observe that the use of rational activation consid-
erably improves the performance of AA, i.e., using
rational is a key component to achieving higher
performances with fewer layers.

Second, we replace the activation functions in
the standard adapter with rational. The results are
reported in Rational-only rows. The results of Base-
line compared to Rational-only show that the im-
pact of rational is prominent when the model con-
tains fewer parameters and using rational with an
overparameterized model is not very effective, i.e.,
both layer selection and learnable activation play
an important role.

Third, we only add a standard adapter layer
at the last 13 layers of BERT-large (Baseline13),
which is the same number of adapter layers in
AA-focusedsim. The difference is the activation
function that is used in these 13 adapter lay-
ers is ReLU in Baseline13 and rational in AA-
focusedsim. The considerably higher performances
of AA-focusedsim show that higher performances
of AA-focused are due to both layer selection as
well as a learnable activation function.

Learned rational activation functions. Figure 3
shows the learned activation functions across differ-
ent layers of the same trained adapter and different
tasks. We see that the learned activation differs
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Figure 3: Learned rational activation functions differ according to their place within the network and to the task
they are trained for. Right: activation functions at different layers within adapters trained on the QNLI task. Left:
activation functions trained at layer 2 of adapters trained on different tasks.

for different layers of the same task as well as for
different tasks.

6 Conclusion

In this paper, we propose adaptable adapters. They
consist of a learnable switch to select a subset of
beneficial adapter layers and a learnable activation
function to learn the suitable activation at each
adapter layer and for each input data. The results
of adaptable adapters show that we can achieve
on-par performances with the full adapter archi-
tecture by using a smaller subset of layers. We
show that adaptable adapters are viable tools for
designing efficient and effective adapter architec-
tures that require less storage space, lower training
and inference time with high performances.
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MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE WNLI Avg
Baseline 83.530.19 88.120.14 90.630.26 91.740.36 56.510.84 88.480.14 84.81.07 63.831.4 54.086.64 77.97
AA 82.890.43 88.090.16 89.960.25 91.310.51 51.441.82 88.250.17 85.091.06 64.251.72 52.117.61 77.05
AA-Layers 9.80.3 11.20.7 10.61.0 9.81.1 8.62.1 11.40.4 9.00.6 9.40.7 8.01.4

Low-data-100
Baseline 35.663.38 29.700.86 60.514.5 51.542.14 -1.273.56 41.525.93 74.860.12 50.42.98 54.935.84 44.21
AA 37.052.35 30.590.68 62.524.27 52.732.55 -0.080.16 48.7323.91 74.830.07 50.183.21 55.216.13 45.75
|AA| 6.41.8 8.62.1 8.81.7 8.61.6 7.42.4 10.80.7 9.41.4 9.41.4 8.20.9

Low-data-300
Baseline 37.884.09 49.2410.32 68.172.9 75.533.49 3.408.59 69.3915.05 75.991.2 54.222.96 47.614.91 53.49
AA 40.274.78 66.311.86 74.032.03 76.426.07 3.565.49 82.062.24 76.120.89 54.733.09 47.045.46 57.84
|AA| 10.41.6 10.80.7 11.00.8 9.41.3 7.62.0 10.80.7 9.61.0 9.81.4 8.21.1

Low-data-500
Baseline 42.822.4 67.631.44 72.71.31 83.460.64 20.94.14 81.970.89 76.510.95 57.112.93 52.116.96 61.69
AA 47.721.67 69.270.89 75.6491.9 84.521.18 19.1314.46 83.740.67 78.032.33 55.963.08 51.836.13 62.87
|AA| 9.81.1 10.41.3 10.00.8 9.20.7 9.41.8 10.61.4 9.81.6 9.61.0 8.01.5

Table 5: Comparing the results of (a) the baseline adapter model that includes an adapter layer on all BERT-base
layers (Baseline), and (b) the adaptable adapter (AA). The reported results are averaged over five different random
seeds. The subscript reports the corresponding standard deviation. |AA| reports the average number of selected
adapter layers by the adaptable adapter over different runs. The full data results show the performance when the
model is trained on all the available training data. The Low-data-X settings report the results when only X examples
are used for training the model. The test data is the same for all the experiments.
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