
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 2041 - 2054

July 10-15, 2022 ©2022 Association for Computational Linguistics

Unsupervised Cross-Lingual Transfer of Structured Predictors
without Source Data

Kemal Kurniawan1,2∗ Lea Frermann1 Philip Schulz2† Trevor Cohn1

1School of Computing and Information Systems, University of Melbourne
2Amazon Research

kemal.kurniawan@student.unimelb.edu.au
{lea.frermann,tcohn}@unimelb.edu.au

phschulz@amazon.com

Abstract

Providing technologies to communities or do-
mains where training data is scarce or protected
e.g., for privacy reasons, is becoming increas-
ingly important. To that end, we generalise
methods for unsupervised transfer from multi-
ple input models for structured prediction. We
show that the means of aggregating over the
input models is critical, and that multiplying
marginal probabilities of substructures to ob-
tain high-probability structures for distant su-
pervision is substantially better than taking the
union of such structures over the input mod-
els, as done in prior work. Testing on 18 lan-
guages, we demonstrate that the method works
in a cross-lingual setting, considering both de-
pendency parsing and part-of-speech structured
prediction problems. Our analyses show that
the proposed method produces less noisy labels
for the distant supervision.1

1 Introduction

Recent successes of NLP systems have been en-
abled by supervised learning algorithms requiring
a large amount of labelled data. Creating such
data can be costly for structured prediction tasks
such as dependency parsing (Böhmová et al., 2003;
Brants et al., 2003). Transfer learning (Pan and
Yang, 2010) is a promising solution to this problem.
In this work, we focus on a case of transfer learn-
ing, namely cross-lingual learning. We consider
the setup where the target language is low-resource
having only unlabelled data, commonly referred
to as unsupervised cross-lingual transfer. This is
an important problem because most world’s lan-
guages are low-resource (Joshi et al., 2020). Suc-
cessful transfer from high-resource languages en-
ables language technologies development for these
low-resource languages.

∗Work done prior to joining Amazon.
†Work done outside Amazon.

1https://github.com/kmkurn/uxtspwsd

One recent method for unsupervised cross-
lingual transfer is PPTX (Kurniawan et al., 2021).
Developed for dependency parsing, it transfers
from multiple source languages, which has been
shown to be superior to transferring from just a sin-
gle language (McDonald et al., 2011; Duong et al.,
2015; Rahimi et al., 2019, inter alia). PPTX com-
putes the union of high-probability trees from all
source parsers and uses the result as supervision to
train the target language parser. One advantage is
that, in addition to not requiring labelled data in the
target language, it does not require any data in the
source languages either, which is useful if such data
is private. All it needs is access to multiple, trained
source parsers. Despite its benefits, PPTX has only
been applied to dependency parsing, although in
principle it should be extensible to other structured
prediction problems. More concerningly, we show
in this work that PPTX generally underperforms
compared to a majority voting baseline.

In this paper, we generalise and improve PPTX
for structured prediction problems. As with PPTX,
this generalisation casts the unsupervised transfer
problem as a supervised learning task with dis-
tant supervision, where the label of each sample in
the target language is based on the structures pre-
dicted by an ensemble of source models. Moreover,
we propose the use of logarithmic opinion pool-
ing (Heskes, 1998) to improve performance (see
Fig. 1). Unlike PPTX that performs simple union,
the pooling considers the output probabilities in
aggregating the source model outputs to obtain the
structures used for distant supervision. We test our
method on 18 languages from 5 language families
and on two structured prediction tasks in NLP: de-
pendency parsing and POS tagging. We find that
our method generally outperforms both PPTX and
the majority voting baseline, with absolute accu-
racy gains of up to 7 % on parsing and 20 % on
tagging. Our analysis shows that the use of loga-
rithmic opinion pooling results in fewer predicted

2041

https://github.com/kmkurn/uxtspwsd

renormalise

ROOT saya makan nasi

ROOT saya makan nasi

6

saya makan nasi

1

2

3

ROOT saya makan nasi

ROOT saya makan nasi

4

ROOT saya makan nasi ROOT saya makan nasi

ROOT saya makansaya

5

Figure 1: Illustration of our method for an input sen-
tence saya makan nasi (“I eat rice”). 1 A set of struc-
tured prediction models as inputs. 2 The models com-
pute marginal probability distributions over substruc-
tures for each token xj . 3 Logarithmic opinion pool
of the distributions is computed. 4 Substructures are
filtered based on some threshold. 5 High-probability
substructures are obtained. 6 High-probability struc-
tures are obtained from the substructures as distant su-
pervision.

structures that are also more concentrated on the
correct ones.

In summary, our contributions in this paper are:
1. developing a generic unsupervised multi-

source transfer method for structured predic-
tion problems;

2. leveraging logarithmic opinion pooling to take
into account source model probabilities in the
aggregation to produce the labels for distant
supervision; and

3. outperforming previous work in dependency
parsing and part-of-speech tagging, especially
in the context of a stronger, multi-source trans-
fer baseline.

2 Unsupervised Transfer as Supervised
Learning

Suppose we want to create a model for a low-
resource language that has only unlabelled data,
but we only have access to a set of models trained
on other languages. This is an instance of cross-
lingual transfer learning. We cast this problem as a
(distantly) supervised learning task with the train-
ing objective

`(θ) = −
∑

x∈D
log

∑

y∈Ỹ(x)
p(y | x;θ) (1)

where θ is the target model parameters, D is the
unlabelled target data, and Ỹ(x) is a set of dis-

tant supervision labels for an unlabelled input
x = x1x2 · · ·xn. Thus, Ỹ(x) contains supervi-
sion in the form of one or more potentially am-
biguous/uncertain labels. In single-source transfer,
Ỹ(x) can be as simple as a singleton containing the
predicted label for x by the source model, in which
case this is related to self-training (McClosky et al.,
2006). In our case, however, this supervision is as-
sumed to arise from an ensemble of models, each is
based on transfer from a different source language
(Section 2.1). Optionally, the parameters θ can
be initialised to the source model parameters (or
the parameters of one of the source models in the
multi-source case) and regularised to this initialiser
during training, in order to both speed up training
and encourage the parameters to stay near known
good parameter values. Overall, the objective be-
comes `′(θ) = `(θ) +λ‖θ− θ0‖22 where θ0 is the
source model parameters and λ is a hyperparameter
controlling the regularisation strength.

2.1 Supervision via Ensemble

In multi-source transfer, the set Ỹ(x) can be ob-
tained by an ensemble method applied to the source
models. PPTX (Kurniawan et al., 2021) is one
such method designed for arc-factored dependency
parsers. We generalise PPTX, making it applica-
ble to any set of source models that predict struc-
tured outputs that decompose into substructures (of
which a set of arc-factored dependency parsers is a
special case). For the rest of this paper, we assume
that the source models are graphical models over
these structured outputs. Let C(x, j) denote the set
of substructures associated with xj whose marginal
probabilities form a probability distribution:

∑

c∈C(x,j)

p(k)(c | x) = 1

for any source model k. For example, for depen-
dency parsing, C(x, j) is the set of arcs whose de-
pendent is xj (see Fig. 1 part 2). The chart Ỹ(x)
can then be obtained as follows. Define Ãk(x, j) to
be the set of substructures associated with xj hav-
ing high marginal probability under source model
k. This set is obtained by adding substructures
c ∈ C(x, j) in descending order of their marginal
probability until their cumulative probability ex-
ceeds a threshold σ:

∑

c∈C(x,j)

p(k)(c | x) ≥ σ (2)

2042

where 0 ≤ σ ≤ 1. Therefore, Ãk(x, j) contains
the substructures that cover at least σ probability
mass of the output space under source model k.
Next, define

Ã(x) =
⋃

k,j

Ãk(x, j) (3)

as the set of high probability substructures for x
given by the source models. The chart Ỹ(x) is then
defined as the set of structures whose substructures
are all in Ã(x). Formally,

Ỹ(x) = {y | y ∈ Y(x) ∧A(y) ⊆ Ã(x)}
where Y(x) is the output space of x and A(y)
is the set of substructures in y. To prevent
Ỹ(x) from being empty, the 1-best structure ŷ =
arg maxy p

(k)(y | x) from each source model k
is also included in the chart, but they don’t count
toward the probability threshold.

2.2 Proposed Method
Multilinguality is the key factor contributing to the
success of PPTX (Kurniawan et al., 2021). There-
fore, optimising the method to leverage this mul-
tilinguality provided by the source models is im-
portant. One potential limitation of PPTX is the
inclusion of substructures having relatively low
marginal probability under some source model be-
cause of the union in Eq. (3). As an extreme illus-
tration, consider a poor source model k assigning
uniform marginal probability to substructures in
C(x, j). Most of these substructures will be in-
cluded in Ãk(x, j) and, subsequently, Ã(x). As a
result, noisy structures may be included in Ỹ(x)
which makes learning the correct structure difficult.

Instead of computing the set of high-probability
substructures from each source model separately,
a potentially better alternative is to aggregate the
marginal probabilities given by the source mod-
els and then compute the chart from the result-
ing distribution. We propose to use logarithmic
opinion pooling (Heskes, 1998) as the aggregation
method. To obtain the chart Ỹ(x), first we com-
pute the logarithmic opinion pool of the source
models’ marginal probabilities. That is, for all
j ∈ {1, . . . , n}, define

p̄j(c | x) ∝
∏

k

[
p(k)(c | x)

]αk

(4)

where we normalise over the substructures c ∈
C(x, j), and αk is a non-negative scalar weight-
ing the contribution of source model k satisfying

0 1 2 3 4
0

1
p(1)

0 1 2 3 4

p(2)

0 1 2 3 4

p

Figure 2: Logarithmic opinion pool with uniform
weighting (p̄) for two distributions p(1) and p(2). The
opinion pool p̄ assigns lower probabilities to substruc-
tures indexed by 0 and 1 than those indexed by 3 and
4 because p(1) and p(2) assign very low probability to
either 0 or 1. Selected substructures in the context of
Eq. (2) with σ = 0.7 are in orange.

∑
k αk = 1. Thus, p̄j gives the new probability dis-

tribution over substructures in C(x, j). Then, we
compute the set Ã(x, j) using p̄j in a similar fash-
ion as before: adding substructures c ∈ C(x, j)
in descending order by their marginal probability
given by p̄j until their cumulative probability ex-
ceeds σ. Lastly, we define Ã(x) =

⋃
j Ã(x, j),

and keep the definition of Ỹ(x) unchanged: the set
of structures induced by Ã(x) plus the 1-best struc-
tures,2 which is used as labels for training with the
objective in Eq. (1). Fig. 1 illustrates the process
using dependency parsing as an example.

Setting the Weight Factors Finding an opti-
mal value for αk is possible if there is labelled
data (Heskes, 1998). However, we do not have
labelled data in the target language in our cross-
lingual setup. There is some method to find simi-
lar weighting scalars for cross-lingual transfer that
may work in our setup (Wu et al., 2020), but they
require unlabelled source language data and only
marginally outperform uniform weighting. There-
fore, unless stated otherwise, we set αk uniformly,
reducing Eq. (4) to the normalised geometric mean
of the marginal distributions.

Motivation The motivation behind the proposed
method is the observation that PPTX obtains the
high-probability substructures by applying the
threshold in Eq. (2) for each source model sep-
arately before they are aggregated into a single set
in Eq. (3). This means PPTX considers the uncer-
tainty of the source models in isolation to create
the chart. In contrast, our method considers the un-
certainty of the ensemble by applying the threshold
after aggregating the probabilities in the logarith-

2Concrete (sub)structures in set C, Ã, and Ỹ depend on
the task. For parsing, they are arcs and trees. For tagging, tag
pairs and sequences. See Section 2.3 for more details.

2043

mic opinion pool in Eq. (4). The opinion pool
assigns more probability mass to substructures to
which all the source models assign a high proba-
bility (see Fig. 2), and we hypothesise that such
substructures are more likely to be correct.

2.3 Application to Structured Prediction

The above method can be applied to structured
prediction problems. Crucial to the application is
the definition of C(x, j). Below, we present two
applications: arc-factored dependency parsing and
sequence tagging.

Arc-Factored Dependency Parsing For depen-
dency parsing, we can define C(x, j) as the set of
dependency arcs having xj as dependent:

C(x, j) = {(i, j, l) | i ∈ {0, . . . , n}∧i 6= j∧l ∈ L}

where (i, j, l) denotes an arc from head xi to de-
pendent xj with dependency label l, L denotes the
set of dependency labels, and x0 is a special token
whose dependent is the root of the sentence.3 Since
exactly one arc in C(x, j) exists in any possible
dependency tree of x, the marginal probabilities
of arcs in C(x, j) form a probability distribution.
The rest follows accordingly.

Sequence Tagging In sequence tagging, the
structured output is a sequence of tags, which
decomposes into consecutive tag pairs. Given
a sequence of tags y = y1y2 · · · yn correspond-
ing to the input x, its consecutive tag pairs are
A(y) = {(j, yj , yj+1)}n−1j=1 . We define C(x, j) as
the set of possible tag pairs for xj and xj+1:

C(x, j) = {(j, t, t′) | (t, t′) ∈ T × T}

where T is the set of tags. Note that any sequence
of tags for x has exactly one tag pair in C(x, j)
and thus, the marginal probabilities of these tag
pairs in C(x, j) form a probability distribution.

3 Experimental Setup

Data and Evaluation We evaluate on depen-
dency parsing and part-of-speech (POS) tagging.
We use Universal Dependencies v2.2 (Nivre et al.,
2018) and test on 18 languages spanning 5 lan-
guage families (see Appendix A). We divide the
languages into distant and nearby groups based

3This formulation is widely used in graph-based depen-
dency parsing, which dates back to the work of McDonald
et al. (2005).

on their distance to English (He et al., 2019). We
use the universal POS tags (UPOS) as labels for
tagging. We exclude punctuation from parsing eval-
uation following the standard practice and report
average performance across five random seeds un-
less stated otherwise. We also include a PPTX
baseline applied to tagging. Our evaluation metric
is accuracy for both tasks, which is equivalent to
LAS for parsing.

Model Architecture For parsing, we use the
same architecture as was used by Kurniawan
et al. (2021), consisting of embedding layers, a
Transformer encoder layer, and a biaffine output
layer (Dozat and Manning, 2017). At test time, we
run the MST algorithm (Chu and Liu, 1965; Ed-
monds, 1967) to find the highest scoring tree. For
tagging, we replace the output layer with a linear
CRF layer. At test time, the Viterbi algorithm is
used to obtain the tag sequence with the highest
score.

Source Selection We adopt a “pragmatic” ap-
proach where we include 5 high-resource lan-
guages as sources: English, Arabic, Spanish,
French, and German (Kurniawan et al., 2021),4

which have been categorised as “quintessential rich-
resource languages” due to the availability of mas-
sive language datasets (Joshi et al., 2020). When a
source language is also the target language, we ex-
clude the language from the sources. For example,
if Arabic is the target language, then we use only
the other 4 languages as sources, thus the target
language is always unseen. See Appendix B for
more details.

Baselines Our main baseline for both tasks is a
majority voting ensemble (MV). For parsing, we
score each possible arc by the number of source
parsers that have the arc in the predicted tree and
then run the MST algorithm. For tagging, we use
the most commonly predicted tag for each input
token. This baseline is not only more appropriate
for multi-source transfer but also stronger than the
direct transfer baseline used by Kurniawan et al.
(2021) which uses only a single source language
(English), with accuracy gains of up to 15 points
on both tasks. We also include knowledge distil-
lation (KD) which has been used for parsing as
a baseline (Hu et al., 2021). For tagging, we in-
clude BEA (Rahimi et al., 2019) which explicitly

4This setup is called PPTX-PRAG by Kurniawan et al.
(2021), which is reported in their Figure 3.

2044

fa
43.7

*ar
37.3

id
59.0

ko
14.7

tr
20.1

hi
21.1

hr
57.4

he
56.2

Distant Languages / MV Acc (%)

2

0

2

4

6

 A
cc

 (%
)

bg
69.3

it
81.7

pt
76.6

fr
76.5

es
71.3

no
69.1

da
67.3

sv
70.1

nl
65.8

de
55.3

Nearby Languages / MV Acc (%)

KD
PPTX
Ours

(a) Dependency parsing

fa
69.4

*ar
57.8

id
77.9

ko
45.0

tr
62.8

hi
59.7

hr
66.7

he
55.5

Distant Languages / MV Acc (%)

10

5

0

5

10

 A
cc

 (%
)

bg
75.6

it
74.5

pt
72.5

fr
65.4

es
67.1

no
63.2

da
73.9

sv
69.8

nl
70.8

de
50.2

Nearby Languages / MV Acc (%)

BEA
PPTX
Ours

(b) POS tagging

Figure 3: Performance difference of PPTX and our method against majority voting (MV) on parsing and tagging.
Numbers on the x-axis are the MV performance corresponding to the zero value on the y-axis. BEA is run only once
as it always gives the same result. Table 11 reports the full results. *: hyperparameters are tuned on this language.

models the label confusion of source taggers and
has been used successfully for multi-source cross-
lingual NER. More details on these two baselines
are reported in Appendix C.

Training We use the same setup as Kurniawan
et al. (2021) for parsing. We include the gold uni-
versal POS tags as input to the parsers. We discard
sentences longer than 30 tokens to avoid memory
issues and train for 5 epochs using Adam (Kingma
and Ba, 2015). Note that we discard long sentences
only at training time. In other words, we evaluate
on all lengths at test time. We tune the learning
rate and λ on the development set of Arabic, select
the values that give the highest accuracy, and use
them for training on all languages. For tagging, we
set the length cut-off to 60 tokens (again, only at
training time) and train for 10 epochs. Again, we
tune the hyperparameters on Arabic and use the
best values for training on all languages. For both
tasks, we obtain cross-lingual word embeddings us-
ing an offline transformation method (Smith et al.,
2017) applied to fastText pre-trained word vec-
tors (Bojanowski et al., 2017). We set the threshold
σ = 0.95 (Kurniawan et al., 2021). We initialise
the parameters of the target language model with
the parameters of the English source model and reg-
ularise the former towards the latter during training.
In other words, we set the parameters of the English
source model as θ0 as described in Section 2.1. See
Appendix D for further details.

Lang. Parsing Tagging

nP (millions) nO
nP

(%) nP
nO
nP

(%)

fa 1.6× 106 0.0011 6.5× 105 3
ko 2.3× 104 0.021 8.2× 103 11
hr 2.0× 105 0.0019 4.3× 105 37
it 4.5 0.069 4.7× 104 32
es 3.7× 103 0.0014 2.4× 106 110
sv 5.1 0.12 7.6× 103 18

Table 1: Median chart size of PPTX (column nP), and
median chart size of our method relative to PPTX (col-
umn nO

nP
), where chart size is defined as the number of

structures in Ỹ(x).

4 Results and Analysis

Fig. 3a shows the accuracy difference of KD,
PPTX, and our method against MV on parsing.
We see that PPTX does not consistently outper-
form MV, substantially underperforming on 6 lan-
guages.5 On the other hand, our method outper-
forms not only PPTX but also both KD and MV on
most languages. Fig. 3b shows the corresponding
results on POS tagging which is particularly con-
vincing. We see that PPTX often underperforms,
with up to 10 % drop in accuracy compared to MV.
In contrast, our method consistently outperforms
MV with up to 10 % accuracy improvement. These
results suggest that PPTX may not improve over a

5Persian, Arabic, Indonesian, Turkish, Italian, and Por-
tuguese.

2045

Method Distant Nearby

PPTX −1.2± 5.0 0.5± 2.4
Ours 2.1± 2.7 2.8± 2.0

Table 2: LAS difference against majority voting using
predicted POS tags, averaged over all nearby and distant
languages (± std). Average LAS for the majority voting
on distant and nearby languages are 38.4 ± 18.3 and
68.1± 7.3 respectively.

simple majority voting ensemble, and our method
is the superior alternative. In addition, our method
shows higher improvement against MV on nearby
than distant languages, which is unsurprising be-
cause our pragmatic selection of source languages
is dominated by languages in the nearby group.

From the figure, we also see that on Portuguese
and Italian, our method slightly underperforms
compared to MV on parsing, but outperforms MV
considerably on tagging. We hypothesise that this
disparity is caused by the variability of the source
models quality. On tagging, the direct transfer per-
formance of 3 out of 5 source taggers is relatively
poor on Portuguese and Italian, making it more
likely for MV to predict wrongly as the good tag-
gers are outvoted. In contrast, on parsing, Arabic
is the only source parser that has very poor trans-
fer. The other source parsers achieve comparably
good direct transfer performance so MV already
performs well.

Parsing results using predicted POS tags Since
low-resource languages often don’t have gold POS
tags, we also evaluate our method for parsing using
predicted POS tags. We use Stanza (Qi et al., 2020)
to predict the POS tags of all target languages, and
replace the gold UPOS with the predicted tags as
the input. Table 2 shows that our method still out-
performs PPTX in this setup, although there is a
large variance across languages.

4.1 Chart Size Analysis

To understand the differences between PPTX and
our method better, we compare the size of the chart
Ỹ(x) produced by PPTX and our method, in terms
of the number of structures in it. We take the me-
dian of this size over all unlabelled sentences in the
training set of each target language and compare
the results. Table 1 reports the median chart size
of PPTX, and the median chart size of our method
relative to PPTX for both parsing and tagging on

6 representative languages (the trend for other lan-
guages is similar). We find that for parsing, the size
of our method’s chart is much smaller than 1 % of
the size of PPTX chart for all target languages.6

This finding shows that our method’s charts are
much more compact than those of PPTX. Thus,
it may explain the improvement of our method
over PPTX because smaller charts may be more
likely to concentrate on trees that have many cor-
rect arcs, making it easier for the model to learn
correctly (we explore this further in Section 4.2).
For POS tagging, we observe the same trend where
our method’s charts are smaller, but to a lesser ex-
tent, presumably because the typical output space
of tagging is several orders of magnitude smaller
than that of parsing. Occasionally, our method’s
chart is larger than that of PPTX, although our
method outperforms PPTX substantially (French
and Spanish). We speculate that this is because
most of the source taggers are very confident but
on different substructures, so only a handful of sub-
structures are selected by PPTX after applying the
threshold in Eq. (2), making the chart small. Mean-
while, the logarithmic opinion pool is less confident
as it corresponds to the (geometric) mean of the
distributions, so more substructures are selected,
making the chart larger.

4.2 Chart Quality Analysis
Continuing the previous analysis, we check if the
smaller charts of our method indeed concentrate
more on the correct structures than those of PPTX.
To measure this, we define the notion of precision
and recall of the chart Ỹ(x). We define precision as
the fraction of correct substructures in Ỹ(x) and re-
call as the fraction of gold substructures that occur
in any structure in Ỹ(x). Formally,

P(Ỹ(x)) =

∑
(x,y∗)

∑
y∈Ỹ(x) |A(y) ∩A(y∗)|

∑
x

∑
y∈Ỹ(x) |A(y)|

and

R(Ỹ(x)) =

∑
(x,y∗)

∑
a∈A(y∗) I(a, Ỹ(x))

∑
y∗ |A(y∗)|

where

I(a, Ỹ(x)) =

{
1 if y ∈ Ỹ(x) s.t. a ∈ A(y)

0 otherwise

6Except for Turkish, where this number is 3 %, which is
still very small.

2046

Target Language
Parsing Tagging

PPTX Ours ∆ PPTX Ours ∆

P R P R P R Acc P R P R P R Acc

fa 10 90 17 95 7 5 6.9 21 80 26 75 5 4 3.7
ko 0 65 2 77 1 13 −1.0 8 50 4 45 −5 −5 0.2
hr 10 96 20 98 10 3 2.1 14 77 16 77 2 0 10.1
it 10 99 25 100 15 1 1.2 20 91 24 93 4 2 22.9
es 11 96 20 98 10 1 1.6 18 82 16 87 −1 4 15.7
sv 13 97 21 98 8 1 0.2 21 84 28 81 8 −3 0.4

Table 3: Precision (P) and recall (R) of charts produced by PPTX and our method in dependency parsing and POS
tagging. Numbers are rounded to the nearest integer. Column ∆ is the difference between our method and PPTX
(positive means our method is higher). ∆ over the accuracy results for both tasks are included for completeness, and
correspond to the bar height difference of the two methods in Fig. 3.

and y∗ denotes the gold structure for input x. A
good chart must have high precision and recall. In
particular, if Ỹ(x) is a singleton containing the
gold structure, then both precision and recall will
be 100 %.

Table 3 reports the precision and recall of the
charts produced by PPTX and our method for both
tasks, as well as the performance differences, for
the same 6 languages as before (the trend for other
languages is similar). We observe that with our
method in parsing, both precision and recall con-
sistently improve over PPTX, suggesting that the
charts indeed contain more correct arcs. How-
ever, higher precision and recall do not guarantee
performance improvement, as shown by Korean
where both precision and recall improve with our
method but its performance is lower than PPTX.7

We suspect that this is caused by the unusually low
precision even with our method, indicating that
the chart is very noisy. For POS tagging, the re-
sult is less obvious, but we find that generally our
method improves chart precision, but often sacrific-
ing chart recall. For Spanish, precision decreases
with our method, and only recall improves.8 An
interesting case is again Korean where both preci-
sion and recall worsen, probably because of very
poor source taggers performance on the language.
Overall, our method generally improves the chart
quality in terms of either precision or recall, but to
a lesser extent, which again may be attributed to
the smaller output space compared with parsing.

7The only other language where this happens is Hindi.
8The only other language where this happens is French.

4.3 Effect of Opinion Pool Distance to True
Distribution

We explore whether there is a relationship between
(a) how distant the opinion pool is to the true distri-
bution over substructures and (b) the performance
improvement of our method against majority vot-
ing. Intuitively, the closer the opinion pool is to
the true distribution, the higher its absolute perfor-
mance would be. However, it is unclear whether
this translates into an advantage over majority vot-
ing. This is important because if such relationship
exists, then it may be worthwhile spending some ef-
fort on optimising the opinion pool. To this end, we
measure the distance between the true distribution
and the opinion pool by computing the Kullback-
Leibler divergence (KL)

KL(p̂ | p̄) =
1

n(D)

∑

x∈D

|x|∑

j=1

KL(p̂j | p̄j) (5)

where n(D) is the total number of tokens of all
input sentences in D, p̂j(c | x) is the (empirical)
true distribution of substructures in C(x, j), and
p̄j(c | x) is the logarithmic opinion pool distribu-
tion defined in Eq. (4). Note that p̂j(c | x) is a
one-hot distribution so KL(p̂j | p̄j) reduces to the
negative log likelihood of the labelled data under
the opinion pool. We compute the KL divergence
on the training set of both parsing and tagging and
display the regression plots in Fig. 4. We see a
medium correlation between opinion pool distance
and performance gain against majority voting, with
r = −0.45 for both parsing and tagging (p-value
is 0.06 for both). However, there is substantial vari-
ance, especially in the right half figure of parsing,
caused by the lack of languages in that region of
the plot. Nonetheless, the plots suggest that there

2047

2.5 5.0 7.5
KL(p p)

2

0

2

4

6
 A

cc
 (%

)

no
fa

ar

id

kotr
hi

hr

hebg

itpt

fr
es

da
sv

nl

de

(a) Dependency parsing

2 4 6
KL(p p)

5

0

5

10

 A
cc

 (%
)

nofa

ar
id

ko
tr

hi
hr

he
bg

it
pt

fres

da

sv
nl

de

(b) POS tagging

Figure 4: Relationship between KL(p̂ | p̄) and the
accuracy difference of our method and MV, where p̂
and p̄ denote the empirical true distribution and the
opinion pool distribution respectively. Shaded area is
95 % confidence interval computed via bootstrapping.

is indeed a positive relationship between how close
the opinion pool is to the true distribution and the
performance gain of our method compared with
majority voting.

There are ways to obtain an opinion pool that is
closer to the true distribution. One way is to lever-
age a small amount of labelled data in the target
language to estimate the weight factors αk, which
can be done by optimising Eq. (5). This option
is suitable if such labelled data is available or can
be obtained cheaply. If we have the freedom to
choose the source languages, another method is
to select them carefully so they are both reason-
ably close to the target language and also diverse.
This is because Eq. (5) can be expressed as E −D,
where E denotes how distant the source models’
output distributions are to the target’s true distribu-
tion (error) and D denotes how distant the output
distributions are to each other (diversity) (Heskes,
1998). Having the source languages reasonably
close to the target language and also diverse means
reducing E and increasing D respectively, moving
the opinion pool closer to the true distribution. That
said, when the source languages are close to the
target language, the source models may already be
good for direct transfer so our method may not give
meaningful improvement over majority voting.

4.4 Learning the Opinion Pool Weight Factors

Motivated by the previous findings, we deviate
from our unsupervised setup by learning the weight
factors αk using a tiny amount of labelled target
data. Concretely, we randomly sample 50 sen-
tences from the training set of each target language
and learn αk that minimises Eq. (5) for all source
model k. We then use the learned weights to obtain
the opinion pool as defined in Eq. (4) (see Ap-

Parsing Tagging

MV 56.3 65.4
Uniform αk 59.0 69.3
Learned αk 59.4 70.0

Table 4: Parsing and tagging performance of MV and
our method with uniform and learned weight factors
αk for the logarithmic opinion pool, averaged over 18
languages. Full results are reported in Table 11.

pendix F for further details). Table 4 shows the re-
sults on parsing and tagging, averaged over the tar-
get languages. We observe that by using the learned
weight factors, our method slightly improves over
the version using uniform weights, suggesting that
our method can readily leverage labelled target data
if it is available. On the other hand, the fact that
the improvement is only modest also reaffirms that
uniform weighting is a strong baseline.

5 Related Work

A straightforward method of multi-source transfer
is training a model on the concatenation of datasets
from the source languages. This approach was used
by McDonald et al. (2011) for dependency parsing
and yields a substantial gain compared with single-
source transfer. More recent work by Guo et al.
(2016) proposed to learn multilingual representa-
tions from the concatenation of source language
data and use them to train a neural dependency
parser. Another method is language adversarial
training, used by Chen et al. (2019) for various NLP
tasks including named-entity recognition, which is
often cast as structured prediction. Despite their
success, multi-source unsupervised cross-lingual
transfer methods typically require the source lan-
guage data, which is not always feasible.

There are recent methods suitable in this source-
free setup. Rahimi et al. (2019) proposed a method
based on truth inference to model label confusion
in multi-source transfer of named-entity recognis-
ers. Wu et al. (2020) used teacher-student learning
for named-entity recognition. A closely related
work is by Hu et al. (2021) who argued that a small
amount of labelled data in the target language is
cheap to obtain and proposed an attention-based
method to weight the source models leveraging 50
labelled target sentences. Our work is different as
we do not require any labelled data and evaluate
on 3 times more languages than they did. In ad-
dition, their model is based on mBERT (Devlin
et al., 2019), which benefits from larger data from

2048

multiple languages during pretraining. In many
application scenarios, BERT-based models are too
costly, especially when criteria other than accuracy
matter (Nityasya et al., 2020).

Our work builds upon the work of Kurniawan
et al. (2021) who proposed a method based on self-
training for unsupervised cross-lingual dependency
parsing. In this work, we generalise their method
to structured prediction problems and propose a
modification to improve the quality of the distant
supervision.

6 Conclusions

In this paper, we (1) generalise previous meth-
ods for cross-lingual unsupervised transfer without
source data to structured prediction problems and
(2) propose a new aggregation technique which can
better handle mixed-quality input distributions. Ex-
periments across two structured prediction tasks
and 18 languages show that, unlike previous work,
our method generally outperforms a strong multi-
source transfer baseline. Our analyses suggest that
our method produces distant supervision of bet-
ter quality than that of the previous methods. Our
work potentially generalises beyond language trans-
fer to (a) structured prediction tasks beyond NLP
and (b) transfer across other types of domains (e.g.,
genres), a direction we aim to explore in future
work. We are also interested in investigating in fu-
ture work whether our method helps transfer with
recent multilingual pretrained models.

References
Wasi Ahmad, Zhisong Zhang, Xuezhe Ma, Eduard

Hovy, Kai-Wei Chang, and Nanyun Peng. 2019. On
Difficulties of Cross-Lingual Transfer with Order
Differences: A Case Study on Dependency Parsing.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2440–2452.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora
Hladká. 2003. The Prague Dependency Treebank. In
Anne Abeillé, editor, Treebanks: Building and Using
Parsed Corpora, pages 103–127.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Thorsten Brants, Wojciech Skut, and Hans Uszkoreit.
2003. Syntactic Annotation of A German Newspaper

Corpus. In Anne Abeillé, editor, Treebanks: Building
and Using Parsed Corpora, pages 73–87.

Xilun Chen, Ahmed Hassan Awadallah, Hany Hassan,
Wei Wang, and Claire Cardie. 2019. Multi-Source
Cross-Lingual Model Transfer: Learning What to
Share. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
3098–3112.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On the
shortest arborescence of a directed graph. Scientia
Sinica, 14:1396–1400.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Timothy Dozat and Christopher D Manning. 2017.
Deep Biaffine Attention for Neural Dependency Pars-
ing. In International Conference on Learning Repre-
sentations, page 8.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.
2015. Cross-lingual Transfer for Unsupervised De-
pendency Parsing without Parallel Data. In Proceed-
ings of the Nineteenth Conference on Computational
Natural Language Learning, pages 113–122.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the national Bureau of Standards B,
71(4):233–240.

Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hut-
ter, and Jürgen Schmidhuber. 2017. The Sacred In-
frastructure for Computational Research. In Proceed-
ings of the 16th Python in Science Conference, pages
49–56.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2016. A Representation Learn-
ing Framework for Multi-Source Transfer Parsing. In
Thirtieth AAAI Conference on Artificial Intelligence.

Junxian He, Zhisong Zhang, Taylor Berg-Kirkpatrick,
and Graham Neubig. 2019. Cross-Lingual Syntactic
Transfer through Unsupervised Adaptation of Invert-
ible Projections. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3211–3223.

Tom Heskes. 1998. Selecting weighting factors in loga-
rithmic opinion pools. In Advances in Neural Infor-
mation Processing Systems, volume 10.

Zechuan Hu, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Multi-View Cross-Lingual Structured Prediction with
Minimum Supervision. In Proceedings of the 59th
Annual Meeting of the Association for Computational

2049

https://doi.org/10.18653/v1/N19-1253
https://doi.org/10.18653/v1/N19-1253
https://doi.org/10.18653/v1/N19-1253
https://doi.org/10.1007/978-94-010-0201-1
http://aclweb.org/anthology/Q17-1010
http://aclweb.org/anthology/Q17-1010
https://doi.org/10.1007/978-94-010-0201-1
https://doi.org/10.1007/978-94-010-0201-1
https://doi.org/10.18653/v1/P19-1299
https://doi.org/10.18653/v1/P19-1299
https://doi.org/10.18653/v1/P19-1299
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/pdf?id=Hk95PK9le
https://openreview.net/pdf?id=Hk95PK9le
https://doi.org/10.18653/v1/K15-1012
https://doi.org/10.18653/v1/K15-1012
https://doi.org/10.25080/shinma-7f4c6e7-008
https://doi.org/10.25080/shinma-7f4c6e7-008
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12236
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12236
https://www.aclweb.org/anthology/P19-1311
https://www.aclweb.org/anthology/P19-1311
https://www.aclweb.org/anthology/P19-1311
https://proceedings.neurips.cc/paper/1997/file/59f51fd6937412b7e56ded1ea2470c25-Paper.pdf
https://proceedings.neurips.cc/paper/1997/file/59f51fd6937412b7e56ded1ea2470c25-Paper.pdf
https://doi.org/10.18653/v1/2021.acl-long.207
https://doi.org/10.18653/v1/2021.acl-long.207

Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 2661–2674.

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The State and
Fate of Linguistic Diversity and Inclusion in the NLP
World. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

Kemal Kurniawan, Lea Frermann, Philip Schulz, and
Trevor Cohn. 2021. PPT: Parsimonious Parser Trans-
fer for Unsupervised Cross-Lingual Adaptation. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2907–2918.

David McClosky, Eugene Charniak, and Mark Johnson.
2006. Effective Self-Training for Parsing. In Pro-
ceedings of the Human Language Technology Con-
ference of the NAACL, Main Conference, pages 152–
159.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-Projective Dependency Parsing
using Spanning Tree Algorithms. In Proceedings of
Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language
Processing, pages 523–530.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-Source Transfer of Delexicalized Dependency
Parsers. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Processing,
pages 62–72.

Made Nindyatama Nityasya, Haryo Akbarianto Wi-
bowo, Radityo Eko Prasojo, and Alham Fikri Aji.
2020. No Budget? Don’t Flex! Cost Considera-
tion when Planning to Adopt NLP for Your Business.
arXiv:2012.08958 [cs].

Joakim Nivre, Mitchell Abrams, Željko Agić, and
et al. 2018. Universal Dependencies 2.2.
LINDAT/CLARIAH-CZ digital library at the Insti-
tute of Formal and Applied Linguistics (ÚFAL), Fac-
ulty of Mathematics and Physics, Charles University.

Sinno Jialin Pan and Qiang Yang. 2010. A Survey on
Transfer Learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345–1359.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. dAlché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems
32, pages 8024–8035.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal Dependency Pars-
ing from Scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 160–170.

Peng Qi, Yuhao Zhang, Yuhui Zhang, Jason Bolton, and
Christopher D. Manning. 2020. Stanza: A Python
Natural Language Processing Toolkit for Many Hu-
man Languages. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 101–108.

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
sively Multilingual Transfer for NER. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 151–164.

Alexander Rush. 2020. Torch-Struct: Deep Structured
Prediction Library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335–342.

Samuel L. Smith, David H. P. Turban, Steven Hamblin,
and Nils Y. Hammerla. 2017. Offline bilingual word
vectors, orthogonal transformations and the inverted
softmax. In International Conference on Learning
Representations.

Qianhui Wu, Zijia Lin, Börje Karlsson, Jian-Guang
LOU, and Biqing Huang. 2020. Single-/Multi-
Source Cross-Lingual NER via Teacher-Student
Learning on Unlabeled Data in Target Language. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6505–
6514.

2050

https://www.aclweb.org/anthology/2020.acl-main.560
https://www.aclweb.org/anthology/2020.acl-main.560
https://www.aclweb.org/anthology/2020.acl-main.560
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2101.11216
http://arxiv.org/abs/2101.11216
https://aclanthology.org/N06-1020
https://www.aclweb.org/anthology/H05-1066
https://www.aclweb.org/anthology/H05-1066
http://aclweb.org/anthology/D11-1006
http://aclweb.org/anthology/D11-1006
http://arxiv.org/abs/2012.08958
http://arxiv.org/abs/2012.08958
http://hdl.handle.net/11234/1-2837
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/2020.acl-demos.14
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
https://openreview.net/forum?id=r1Aab85gg
https://openreview.net/forum?id=r1Aab85gg
https://openreview.net/forum?id=r1Aab85gg
https://www.aclweb.org/anthology/2020.acl-main.581
https://www.aclweb.org/anthology/2020.acl-main.581
https://www.aclweb.org/anthology/2020.acl-main.581

A Evaluation Languages

Table 5 lists the languages we use in our evaluation,
along with their family, subgroup (if the language
is Indo-European), selected treebanks in Universal
Dependencies v2.2, and the corresponding licence.
The treebank selection follows Kurniawan et al.
(2021) to enable a fair comparison. Unless stated
otherwise, the licence is Creative Commons (CC).

Language Code Family Treebanks Licence

Distant

Persian fa IE.Iranian Seraji BY-SA 4.0

Arabic ar Afro-Asiatic PADT BY-NC-SA 3.0

Indonesian id Austronesian GSD BY-NC-SA 3.0†

Korean ko Koreanic GSD BY-NC-SA 3.0†

Kaist BY-SA 4.0

Turkish tr Turkic IMST BY-NC-SA 3.0

Hindi hi IE.Indic HDTB BY-NC-SA 4.0

Croatian hr IE.Slavic SET BY-SA 4.0

Hebrew he Afro-Asiatic HTB BY-NC-SA 4.0

Nearby

Bulgarian bg IE.Slavic BTB BY-NC-SA 4.0

Italian it IE.Romance ISDT BY-NC-SA 3.0

Portuguese pt IE.Romance GSD BY-NC-SA 3.0†

Bosque BY-SA 4.0

French fr IE.Romance GSD BY-NC-SA 3.0†

Spanish es IE.Romance GSD BY-NC-SA 3.0†

AnCora GPL 3.0

Norwegian no IE.Germanic Bokmaal BY-SA 4.0
Nynorsk BY-SA 4.0

Danish da IE.Germanic DDT BY-SA 4.0

Swedish sv IE.Germanic Talbanken BY-SA 4.0

Dutch nl IE.Germanic Alpino BY-SA 4.0
LassySmall BY-NC-SA 4.0

German de IE.Germanic GSD BY-NC-SA 3.0†

Table 5: List of languages in our evaluation, grouped
into distant and nearby languages based on their dis-
tance to English (He et al., 2019). IE stands for Indo-
European. †: licence is the United States version.

B Source Models Performance

To train the source models, we tune the hyperpa-
rameters on English and use the values for training
on the other source languages. Table 6 reports
the performance of our source parsers and taggers.
We also report the performance numbers of pre-
vious work, copied from their respective papers,
to serve as reference. Generally, the source mod-
els achieve in-language performance comparable
to previous work (e.g., Ahmad et al., 2019) with
the exception of the Arabic parser whose accuracy
is noticeably lower, possibly caused by the model

architecture optimised for transfer rather than in-
language evaluation. However, we argue that the
lower performance reflects a realistic application
scenario where some of the source models are ex-
pected to be poor.

en ar es fr de

Parsing 86.9 76.9 90.0 89.1 82.1
Tagging 94.5 95.4 96.5 96.5 92.1

Previous work (reference only)

LSTM parser 88.3 81.8 90.8 89.1 83.7
Stanza tagger* 95.4 94.9 96.7 97.3 94.1

Table 6: Parsing and tagging accuracy of the source
models. We copy numbers of the LSTM parser (Ahmad
et al., 2019) and Stanza tagger (Qi et al., 2018) from
their respective papers to serve as reference only. *
indicates that the numbers are not directly comparable
to ours because of the difference in the evaluation setup.

C Additional Baseline Details

Knowledge Distillation We use a similar method
to the soft-KD baseline used by Hu et al. (2021),
which was based on the teacher-student learning
method of Wu et al. (2020). Let p(k)head(hj = i |
x) denote the probability of xj having xi as head
under source parser k. Similarly, let p(k)label(lij = r |
x) denote the probability of the arc between head
xi and dependent xj having label r under source
parser k. These distributions are obtained from the
output of the corresponding biaffine layer that is
then passed through a softmax layer. We average
these distributions over the source parsers to give

p̄head(hj = i | x) =
1

K

∑

k

p
(k)
head(hj = i | x),

p̄label(lij = r | x) =
1

K

∑

k

p
(k)
label(lij = r | x)

where K is the number of source parsers. The
training objective of this KD baseline is then

`(θ) = MSE(phead(· | x;θ), p̄head(· | x))

+ τMSE(plabel(· | x;θ), p̄label(· | x))

+ λ‖θ − θ0‖22

where MSE denotes the mean squared error func-
tion. We include τ as a tunable hyperparameter.
Table 9 reports the full list of hyperparameter val-
ues.

2051

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/
https://www.gnu.org/licenses/gpl-3.0.html
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/us/

Distant Nearby

fa ar id ko tr hi hr he bg it pt fr es no da sv nl de

Parser 18 19 19 49 20 19 23 18 22 20 24 23 28 30 19 19 24 26
Tagger 16 18 18 48 18 18 23 17 21 20 25 24 31 29 17 17 23 26

Table 7: Number of parameters of the parsers and taggers with our method, rounded to the nearest million.

BEA We use the implementation of
BEA (Rahimi et al., 2019) provided by the
authors.9 We run BEA on the unlabelled test
data of each language (transductive setup). This
potentially gives the BEA baseline more advantage,
so it is not directly comparable to PPTX and our
method. We find that our hyperparameter tuning
protocol (i.e. tuning the parameters of the Dirichlet
priors on Arabic and using the best values for
all languages) underperforms compared to using
uninformative priors, so we report the BEA results
without any tuning.

D Additional Experiment Details

en ar es fr de

Parser 14 14 27 20 23
Tagger 12 12 25 18 21

Table 8: Number of parameters of the source parsers
and taggers, rounded to the nearest million.

We implement our method using Python v3.7,
PyTorch v1.4 (Paszke et al., 2019), and PyTorch-
Struct (Rush, 2020). We run our experiments with
Sacred v0.8.2 (Greff et al., 2017), which also sets
the random seeds. Experiments are run on NVIDIA
GeForce GTX TITAN X with CUDA 10.1 and
GPU memory of 11 MiB. CPU model is Intel(R)
Xeon(R) CPU E5-2687W v3 @ 3.10GHz with
Ubuntu 16.04 as the operating system. Table 8
and Table 7 show the number of parameters of the
source parsers and taggers, and the target parsers
and taggers using our method respectively. A sin-
gle run takes not much longer than 1 GPU hour for
both parsing and tagging.

E Hyperparameters

We tune learning rate η and λ (and also τ for KD)
using random search. Table 9 shows the distribu-
tions of each hyperparameter we use, and the best
values we find. We sample 20 values from the

9https://github.com/afshinrahimi/mmner

Task Method Hyperparameter Dist. Best Value

Parsing

KD
log η ∼ U(−6,−3) η = 3.3× 10−5

log τ ∼ U(−2, 2) τ = 0.66

log λ ∼ U(−4, 1) λ = 10−3

PPTX log η ∼ U(−6,−3) η = 8.5× 10−5

log λ ∼ U(−4, 1) λ = 2.8× 10−5

Ours log η ∼ U(−6.5,−3.5) η = 9.4× 10−5

log λ ∼ U(−4, 1) λ = 1.6× 10−4

Tagging
PPTX log η ∼ U(−6,−4) η = 5.9× 10−5

log λ ∼ U(−4, 1) λ = 0.1

Ours log η ∼ U(−6.5,−3.5) η = 2.6× 10−4

log λ ∼ U(−4, 1) λ = 4.7× 10−3

Table 9: Distributions of hyperparameters we use for
tuning on Arabic with random search and the best values
found. All logarithms are of base 10.

Hyperparameter Value

Word embedding size 300
Word dropout 0.2
dkey, dvalue 64
dff 512
nhead 8
nlayer 6
Batch size 80

Parsing-only

POS tag embedding size 50
Output embedding dropout 0.2
darc 512
ddeptype 128

Table 10: List of hyperparameter values used in our
parsers and taggers. dkey, dvalue: size of key and value
vector in the Transformer encoder. dff: size of feedfor-
ward network hidden layer in the Transformer encoder.
nhead: number of heads in the Transformer encoder.
nlayer: number of layers in the Transformer encoder.
darc, ddeptype: size of feedforward network output layer
corresponding to arcs and dependency types in the bi-
affine output layer of parsers.

distribution and pick the values that yield the best
accuracy on the Arabic development set. We follow
Kurniawan et al. (2021) for other hyperparameters,
whose values are reported in Table 10.

2052

https://github.com/afshinrahimi/mmner

F Learning the Opinion Pool Weight
Factors

We learn the factors αk weighting the contribution
of source model k in the logarithmic opinion pool
by minimising Eq. (5) with respect to αk. The
minimisation is done on 50 randomly sampled sen-
tences from the target language’s training set using
gradient descent. We set the initial learning rate to
0.1 and reduce it at every epoch by a factor of 0.9.
We initialise the weight factors uniformly at the
start and run the training until convergence. After
the weight factors are learned, we use and fix them
for all subsequent experiments. We proceed with
hyperparameter tuning on Arabic using the same
procedure as the version with uniform weights. For
both tasks, we tune η and λ with random search
(20 runs), drawing from log10 η ∼ U(−6,−3) and
log10 λ ∼ U(−4, 1) respectively. For parsing, the
best values are η = 9.1×10−5 and λ = 5.1×10−4.
For tagging, they are η = 4.7 × 10−4 and λ =
0.062. These values are then used for the other
languages. Lastly, we report the average accuracy
over the languages in Table 4.

G Full Experiment Results

We report in Table 11 the full results of MV, PPTX,
and our method (with both uniform and learned
weight factors αk) on both dependency parsing and
POS tagging, averaged over 5 runs.

2053

Lang. Parsing Tagging

MV KD PPTX Ours Ours, learned αk MV BEA PPTX Ours Ours, learned αk

Distant

fa 43.7 42.3± 0.2 42.5± 1.1 49.4± 0.5 48.9± 0.3 69.2 67.6 67.5± 0.2 71.2± 0.6 72.3± 0.5
ar* 37.6 37.5± 0.2 36.4± 0.6 38.9± 0.5 38.6± 0.5 58.5 57.5 59.0± 0.4 62.5± 1.1 63.0± 1.7
id 56.8 57.5± 0.4 54.8± 0.8 59.0± 0.3 59.1± 0.1 77.5 80.0 79.6± 0.4 81.0± 0.2 80.6± 0.8
ko 13.7 15.2± 0.3 13.6± 0.4 12.8± 0.3 13.6± 0.2 44.1 41.1 44.0± 0.3 44.2± 1.1 43.4± 1.7
tr 20.8 21.0± 0.2 19.9± 0.2 20.2± 0.4 21.2± 0.2 62.8 63.3 62.8± 0.3 64.2± 0.3 64.3± 0.2
hi 21.9 23.0± 0.1 23.9± 0.5 22.7± 0.2 27.2± 0.2 59.9 55.1 65.6± 0.2 63.2± 0.6 65.5± 0.9
hr 57.1 59.6± 0.1 60.7± 0.3 62.9± 0.4 62.8± 0.3 67.2 64.9 58.6± 0.1 69.4± 0.3 69.7± 0.3
he 56.1 56.6± 0.1 58.1± 0.5 60.6± 0.2 60.0± 0.2 56.3 56.0 57.6± 0.1 59.9± 0.2 58.8± 0.5

Nearby

bg 69.3 70.7± 0.2 71.9± 0.2 72.7± 0.4 72.5± 0.4 75.0 76.7 75.9± 0.2 76.7± 0.2 76.1± 0.2
it 81.5 79.0± 0.2 80.1± 0.2 81.7± 0.2 81.5± 0.1 74.7 78.9 62.8± 0.7 84.8± 0.3 85.5± 0.7
pt 78.6 75.5± 0.1 76.2± 0.4 78.1± 0.3 78.4± 0.3 72.0 68.0 63.5± 0.9 81.7± 0.4 83.2± 1.0
fr 80.0 79.8± 0.1 81.3± 0.2 82.7± 0.2 82.8± 0.1 65.7 58.2 54.9± 0.5 71.7± 0.7 76.3± 0.7
es 71.8 70.9± 0.1 72.0± 0.6 73.5± 0.3 73.7± 0.2 67.8 68.7 58.1± 0.2 73.9± 0.7 75.7± 2.1
no 68.4 71.8± 0.2 74.1± 0.2 74.2± 0.1 74.4± 0.2 62.2 61.0 61.4± 0.2 64.7± 0.5 64.6± 1.1
da 67.5 68.9± 0.1 70.4± 0.4 71.0± 0.1 70.9± 0.3 72.9 73.3 72.0± 0.1 76.0± 0.3 76.2± 0.7
sv 66.7 69.7± 0.1 71.8± 0.2 72.1± 0.1 72.4± 0.5 68.4 69.5 68.5± 0.1 69.0± 0.4 70.7± 0.6
nl 64.8 64.4± 0.2 66.9± 0.2 67.4± 0.4 68.8± 0.4 72.9 75.1 70.3± 0.3 74.3± 0.4 75.3± 0.7
de 57.2 62.4± 0.2 64.0± 0.9 64.0± 0.5 63.9± 0.5 52.8 62.5 59.3± 0.3 58.9± 0.5 58.0± 0.4

(a) Development set

Lang. Parsing Tagging

MV KD PPTX Ours Ours, learned αk MV BEA PPTX Ours Ours, learned αk

Distant

fa 43.7 42.3± 0.2 42.5± 1.0 49.4± 0.4 48.8± 0.3 69.4 66.0 67.4± 0.3 71.1± 0.7 72.5± 0.7
ar* 37.3 36.6± 0.2 35.5± 0.5 37.3± 0.5 37.2± 0.6 57.8 58.2 59.0± 0.5 63.0± 1.4 63.3± 1.6
id 59.0 59.5± 0.3 57.4± 0.6 61.6± 0.2 61.4± 0.2 77.9 80.3 79.9± 0.4 81.0± 0.2 80.8± 0.8
ko 14.7 16.6± 0.3 14.8± 0.5 13.8± 0.4 14.7± 0.1 45.0 42.6 45.7± 0.2 45.9± 1.1 44.9± 1.5
tr 20.1 20.6± 0.1 19.3± 0.2 19.7± 0.3 20.8± 0.2 62.8 63.2 63.0± 0.2 64.7± 0.5 64.9± 0.1
hi 21.1 22.2± 0.1 23.0± 0.5 21.7± 0.2 26.4± 0.3 59.7 59.9 65.1± 0.2 62.8± 0.5 65.1± 1.0
hr 57.4 61.1± 0.1 62.2± 0.2 64.3± 0.4 64.2± 0.3 66.7 66.6 58.4± 0.1 68.5± 0.2 69.0± 0.4
he 56.2 56.8± 0.3 57.5± 0.7 60.1± 0.2 59.7± 0.3 55.5 56.9 57.2± 0.1 59.1± 0.4 58.0± 0.4

Nearby

bg 69.3 70.9± 0.1 72.4± 0.2 73.1± 0.3 72.9± 0.3 75.6 76.4 76.2± 0.1 77.1± 0.3 76.6± 0.2
it 81.7 79.8± 0.1 80.2± 0.1 81.4± 0.2 81.4± 0.3 74.5 81.7 62.1± 0.8 85.0± 0.4 86.0± 0.8
pt 76.6 73.7± 0.1 74.5± 0.4 76.3± 0.3 76.5± 0.3 72.5 69.6 63.4± 0.8 81.8± 0.5 83.1± 0.9
fr 76.5 76.2± 0.1 78.2± 0.3 79.3± 0.1 79.1± 0.1 65.4 60.2 56.0± 0.4 72.2± 0.6 75.7± 0.5
es 71.3 70.3± 0.2 71.5± 0.6 73.1± 0.4 73.2± 0.3 67.1 72.7 57.8± 0.2 73.5± 0.6 75.1± 2.0
no 69.1 72.0± 0.1 74.1± 0.2 74.2± 0.2 74.5± 0.2 63.2 62.4 62.3± 0.3 65.9± 0.6 65.7± 1.1
da 67.3 69.0± 0.1 70.7± 0.3 71.3± 0.1 71.2± 0.4 73.9 75.0 72.8± 0.1 77.1± 0.4 77.3± 0.6
sv 70.1 72.7± 0.1 74.5± 0.3 74.7± 0.2 75.0± 0.3 69.8 69.3 69.6± 0.1 70.0± 0.3 72.0± 0.5
nl 65.8 65.9± 0.2 67.8± 0.4 68.5± 0.3 69.6± 0.4 70.8 68.9 68.7± 0.3 73.0± 0.3 74.5± 1.0
de 55.3 60.8± 0.3 61.6± 0.8 61.9± 0.6 61.7± 0.5 50.2 59.5 56.4± 0.3 55.8± 0.6 54.9± 0.4

(b) Test set

Table 11: Full performance results. Except for MV and BEA, numbers are averages (± std) over 5 runs with
different random seeds. For parsing, the numbers correspond to labelled attachment score (LAS) whereas for
tagging, they correspond to accuracy. Both metrics are better if higher. Hyperparameters are tuned on Arabic,
hence the asterisk. In columns “Ours, learned αk”, αk is learned in a supervised manner on tiny labelled sentences
(Section 4.4).

2054

