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Abstract

Intent Detection is a crucial component of Dia-
logue Systems wherein the objective is to clas-
sify a user utterance into one of the multiple
pre-defined intents. A pre-requisite for devel-
oping an effective intent identifier is a training
dataset labeled with all possible user intents.
However, even skilled domain experts are often
unable to foresee all possible user intents at de-
sign time and for practical applications, novel
intents may have to be inferred incrementally
on-the-fly from user utterances. Therefore, for
any real-world dialogue system, the number
of intents increases over time and new intents
have to be discovered by analyzing the utter-
ances outside the existing set of intents. In this
paper, our objective is to i) detect known intent
utterances from a large number of unlabeled
utterance samples given a few labeled samples
and ii) discover new unknown intents from the
remaining unlabeled samples. Existing SOTA
approaches address this problem via alternate
representation learning and clustering wherein
pseudo labels are used for updating the repre-
sentations and clustering is used for generating
the pseudo labels. Unlike existing approaches
that rely on epoch-wise cluster alignment, we
propose an end-to-end deep contrastive clus-
tering algorithm that jointly updates model pa-
rameters and cluster centers via supervised and
self-supervised learning and optimally utilizes
both labeled and unlabeled data. Our proposed
approach outperforms competitive baselines on
five public datasets for both settings: (i) where
the number of undiscovered intents is known in
advance, and (ii) where the number of intents is
estimated by an algorithm. We also propose a
human-in-the-loop variant of our approach for
practical deployment which does not require
an estimate of new intents and outperforms the
end-to-end approach.

1 Introduction

Modern dialogue systems (Louvan and Magnini,
2020) are increasingly reliant on intent detection

I1: Activate My Card I2: Card Linking

User-1​
U11: How do I link a new card in the app |I2|0.90|Pos
U12: The ATM didnt return my card!​ | I2|0.10|Pos
U13: The ATM machine ate my card.​ |I1|0.25|None
U14: What do I do if my card is stolen?​ | I1|0.9|Neg
U15: ​ I need to report a stolen card | I2|0.20|Neg
U16: How is the weather today? | I2|0.10|None

User-2
U21: Where do I go to add a new card?|I1|0.30|None
U22: I want to activate my new card. |I1|0.95|None
U23: The ATM sucked my card in. | I2| 0.20|Neg
U24: My card has gone missing. | I1| 0.15 |None
U25: My card was stolen | I2| 0.85|None

U12, U13, U14, U15, 
U16, U21, U23, U24

User utterances for 
Human Review

U12, U13, U14, U15
U21, U23, U24, U16

I3: Card Lost or 
Stolen

I4: Card Swallowed

U16:OOS

Figure 1: An instance of user logs, where the intent
detection model is trained on two known intents, i.e.,
i1 and i2. After manual analysis of user logs a human
reviewer has discovered two new intents i3 and i4 and
assigned utterance u21 to an existing intent, i.e., i2.

to classify a user utterance into one of the multiple
known user intents. Intent detection is typically
modeled as a multi-class classification problem
where labeled data comprising of utterances for
each known intent is manually created by domain
experts. However, most real-world applications
have to cope with evolving user needs and new
functionality is routinely introduced into the dia-
logue system resulting in a continuously increasing
number of intents over time. Even for seasoned do-
main experts estimating future user requirements at
design time is challenging and these often have to
be discovered from recent user logs which contain
information corresponding to past user utterances,
model response (i.e., predicted intent), implicit
(confidence or softmax probability), and explicit
(user clicks on a thumbs up or thumbs down icon)
feedback as shown in Fig 1. The intent detection
model presented in Fig. 1 is trained on two ini-
tial intents (I1, I2) from the banking domain using
labeled data created by domain experts. Filtered
user logs containing implicit and explicit feedback
were shared with domain experts, who, discovered
two new intents (I3, I4) and mapped the filtered
utterances to these new intents. Additionally, ex-
perts also have to identify and discard utterances
that are outside the domain of the dialog system.
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The remaining user logs are the primary source of
evolving user needs and the process of identifying
utterances belonging to “new intents”/“unknown in-
tents” from user logs is referred to as Intent Discov-
ery/Intent Mining (Chatterjee and Sengupta, 2020;
Zhang et al., 2021b). However, manually moni-
toring user logs is not scalable and our objective
in this paper is to present novel SOTA techniques
to perform automated and semi-automated intent
detection and discovery over user logs given only a
few labeled utterances from known intents in addi-
tion to unlabeled utterances from both known and
unknown intents.

Several classical (MacQueen, 1967; Chidananda
Gowda and Krishna, 1978; Ester et al., 1996) and
deep learning (Xie et al., 2016a; Zhang et al.,
2021a) based clustering methods have been used
for intent discovery. Chatterjee and Sengupta
(2020) modeled intent discovery from unlabeled ut-
terances as an unsupervised clustering problem and
proposed a variant of DBSCAN (Ester et al., 1996)
for clustering but do not employ any representa-
tion learning and rely heavily on manual evalua-
tion. Zhang et al. (2021a) use a contrastive learning
(Chen et al., 2020) based unsupervised approach for
joint representation learning and clustering where
performance largely depends on the quality of an
auxiliary target distribution (Xie et al., 2016a). Lin
et al. (2020) and Zhang et al. (2021c) model intent
detection and discovery as a semi-supervised learn-
ing problem where the objective is to detect known
intents and discover new intents given 1) a few la-
beled utterances from known intents along with
2) unlabeled utterances from known and new in-
tents. This is similar to our problem of intent detec-
tion and discovery from user logs. Deep-Aligned
(Zhang et al., 2021c) is the current SOTA approach
for intent detection and discovery alternately per-
forming representation learning and clustering by
utilizing pseudo-labeled data obtained from clus-
tering for representation learning. Deep-Aligned
uses k-means (MacQueen, 1967) as the clustering
algorithm of choice and updates a BERT (Devlin
et al., 2019) backbone’s parameters in the process.
As k-means may assign different cluster ids to the
same set of data points over different iterations the
authors propose an alignment algorithm to align
clusters obtained in consecutive epochs. Thus, an
incorrect cluster alignment over epochs may lead
to a significant drop in clustering accuracy. Addi-
tionally, they make the unrealistic assumption of

a uniform distribution over intents to estimate the
number of intents.

In this paper, we propose a novel end-to-
end Deep Semi-Supervised Contrastive Clustering
(DSSCC-E2E) algorithm for intent detection and
discovery from user logs. DSSCC-E2E is moti-
vated by recent advances in self-supervised (Chen
et al., 2020; Wu et al., 2020; Li et al., 2021) and su-
pervised contrastive learning (Khosla et al., 2020;
Gunel et al., 2021) applied to Computer vision and
natural language processing. We model intent de-
tection and discovery as a form of semi-supervised
contrastive clustering wherein we jointly update
backbone representations and cluster centers by
minimizing the distance between the distribution
over clusters of similar utterances and maximiz-
ing the same for dissimilar utterances via a semi-
supervised variant of supervised contrastive (Sup-
Con) loss(Khosla et al., 2020). For contrastive
learning, we use the contextual augmenter (Ma,
2019) to create pairs of augmentations (positive
pairs/ similar utterances) corresponding to each un-
labeled utterance from known and unknown intents.
For labeled utterances, we use pairs of utterances
with the same intent to create positive pairs. To
improve the accuracy of intent detection, we up-
date representations based on labeled utterances
by minimizing the cross-entropy loss. To avoid
the trivial solution that assigns all utterances to the
same cluster (Hu et al., 2017), similar to Van Gans-
beke et al. (2020); Li et al. (2021) we also add an
entropy term to the loss function which distributes
utterances uniformly across the clusters.

Existing semi-supervised approaches(Lin et al.,
2020; Zhang et al., 2021c) including DSSCC-E2E
and some unsupervised approaches (MacQueen,
1967; Zhang et al., 2021a) for intent discovery re-
quire an estimate of the number of new intents (m)
present in the user logs. Incorrect estimates for m
can lead to noisy clusters (i.e., a cluster which con-
tains utterances from multiple intents), which then
require substantial manual effort to split cleanly.
Unsupervised approaches (Ester et al., 1996; Chat-
terjee and Sengupta, 2020) often lead to a large
number of clusters due to poor semantic utter-
ance representations. For practical deployment,
we propose a human-in-loop variant of DSSCC-
E2E called DSSCC-HIL which does not estimate
m and instead creates multiple dense clusters via
DBSCAN. Domain experts can then merge these
clusters with minimal manual effort such that each
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merged cluster represents an intent.
Our key contributions are: (1) We propose a

novel deep semi-supervised contrastive clustering-
based approach for intent detection and discovery
from user logs. (2) DSSCC-E2E does not require
epoch-wise cluster alignment, is end-to-end train-
able, and fully utilizes both the labeled and un-
labeled utterances for novel intent discovery. (3)
DSSCC-E2E outperforms competitive baselines on
five public datasets in the following settings: (3.1)
Number of intents are known in advance. (3.2)
Number of intents is estimated by an algorithm. (4)
For realistic deployment, we propose a human in
the loop intent detector DSSCC-HIL, which does
not need to estimate the number of new intents. (5)
With minimal manual effort, DSSCC-HIL outper-
forms existing approaches on the intent discovery
task.

2 Related Work

2.1 Self-supervised and Supervised
Representation Learning

Different self-supervised pre-training tasks have
been proposed to pre-train PLMs, such as Masked
language modeling (MLM) (Devlin et al., 2019),
and MAsked Sequence to Sequence pre-training
(MASS)(Song et al., 2019). Reimers and Gurevych
(2019); Gao et al. (2021) fine-tune BERT on a
supervised contrastive learning objective to learn
better sentence embeddings. Zhang et al. (2021a)
use SBERT (Reimers and Gurevych, 2019) as a
PLM to learn clustering friendly representations in
an unsupervised scenario by using instance-level
contrastive representation learning (Chen et al.,
2020) and clustering in a joint-fashion. We pro-
pose a deep semi-supervised contrastive learning
approach for intent detection and discovery where
we jointly update PLM representations and cluster
centers. We leverage the idea of unsupervised con-
trastive clustering (Li et al., 2021) for images to
semi-supervised contrastive clustering of text and
use a modified version of the supervised contrastive
loss function (Khosla et al., 2020) to jointly update
model parameters and cluster centers.

We also compare the proposed approach with
existing unsupervised and semi-supervised ap-
proaches for clustering in Appendix A.1.

3 Problem Description

Consider a set of n known intents with a
few labeled utterances per intent Iknown =

PHASE 2 (Training)

( ut1 , ut2 ) ∈

AUGMENTOR

Labeled Unlabeled

ut ∈

LINEAR LAYER

PLM

SOFTMAX

CLUSTER CENTERS

PLM

SOFTMAX

copy
weights

PHASE 1 (Training)

Labeled

ut ∈

Figure 2: Proposed Approach - Deep Semi-Supervised
Contrastive Clustering (DSSCC)

{I1, I2, ..., In} where Ii = {
r⋃

k=1

(uik, yi)}, Dl =

n⋃
i=1

Ii and user logs Duser_logs = {
S⋃

v=1
(uv)} which

contain unlabeled user utterances from both known
and unknown intents. The objective is to de-
tect and discover existing and new/unknown in-
tents from a test set, Dtest given a training set
Dtrain = Dl ∪ Duser_logs (and Dval) which con-
tains utterances from both known and unknown
intents. Dtest = {I ′known ∪ Inew} and Inew =
{In+1, In+2, ..., Im} where m represents the num-
ber of new intents, I = Iknown ∪ Inew and |I| =
n+m represents the total number of known and un-
known intents. I ′known is similar to Iknown except
it only contains the new set of utterances for known
intents from user logs. In a realistic scenario the
number of “new intents” m present in user logs are
not known apriori. We perform experiments in two
scenarios (i) The number of known and new intents
is known in advance and (ii) The number of new
intents has to be inferred from the user logs.

4 Proposed Approach

As shown in Fig. 2, we propose a two-phase algo-
rithm for intent detection and discovery from user
logs. In the first phase of DSSCC, the parameters
of a pre-trained language model (PLM) are up-
dated based on labeled data from known intents. In
the second phase, we perform joint representation
learning and clustering by updating the cluster cen-
ters and PLM parameters via semi-supervised con-
trastive learning. In addition to contrastive learning,
DSSCC also uses labeled utterances to update PLM
representations via cross-entropy loss. Further, the
entropy of the intent distribution is maximized to
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AUGMENTOR
ut ∈ B

unlabeled

For labeled utterance, ut: ut1 and ut2 are utterances from the same intent.
For unlabeled utterance, ut: ut1 and ut2 are generated by contextual augmentor. 

labeled

B 
ut 

B' 
ut1  ut2 

Figure 3: Utterance augmentations for semi-supervised
contrastive learning.

.
alleviate the issue of empty clusters, i.e., when all
utterances become part of a single cluster.

In a realistic scenario, the number of unknown
intents m present in user logs is not known in ad-
vance so we use the approach proposed by Zhang
et al. (2021c) to estimate m and use DSSCC-E2E
for intent detection and discovery. The approach
uses a PLM to get utterance representations and
run K-means with a very high value of k = K ′ and
only count clusters with cluster cardinality greater
than |Dtrain|/K ′ to estimate k. However in prac-
tice, we find that even this estimation method is
often incorrect, and in section 4.5, we describe how
we derive DSSCC-HIL from DSSCC-E2E to ad-
dress this problem with a small amount of manual
supervision. We use the Hungarian (Kuhn and Yaw,
1955) algorithm to align clusters with known and
unknown intents and report performance. In the
rest of the paper, we use DSSCC and DSSCC-E2E
interchangeably and use DSSCC-HIL to refer to
the human-in-the-loop variant of our approach.

4.1 Phase-1: Fine-tuning of PLM using
labeled utterances from known intents

To leverage the labeled utterances from known in-
tents for intent detection and discovery, in the first
phase of DSSCC, we use these to update the pa-
rameters of the PLM, as shown in Phase-1 of Fig.
2. We fine-tune the PLM by minimizing the cross-
entropy loss over a batch B of size N consisting of
labeled utterances from known intents, as shown in
Eq. 1 and 2.

p(Iknown | ut) = softmax(ht ∗W + b) (1)

LCE = − 1

N

∑

t∈B

n∑

i=1

y · log(p(Iiknown | ut)) (2)

In Eq. 1, ht denotes a d-dimensional representation
of the tth utterance (ut) in a batch B obtained from
the PLM and W ∈ Rd∗m, b represent the weights
and bias of a linear layer respectively. In Eq. 2,
p(Iiknown | ut) denotes the probability of assigning

ut to the ith known intent and y is 1 only for the
true intent and zero otherwise. After fine-tuning the
PLM on labeled utterances, we discard the linear
layer and use the PLM with updated weights in the
second phase of DSSCC.

4.2 Phase-2: Deep Clustering

In the second phase, we use both labeled and un-
labeled utterances to perform representation learn-
ing and clustering jointly via semi-supervised con-
trastive learning. To maintain intent detection ac-
curacy on known intents, we also update represen-
tations and cluster centers by minimizing cross-
entropy loss on labeled utterances from known in-
tent.

4.2.1 Semi-supervised Representation
Learning and Clustering

In addition to labeled utterances from known in-
tents, we also use unlabeled utterances from both
known and unknown intents to improve perfor-
mance on intent detection and discovery, as shown
in Phase-2 of Fig. 2. To learn better cluster rep-
resentations, instead of minimizing the distance
between utterances belonging to the same intent,
we minimize the distance between their correspond-
ing cluster distributions. Conversely, we maximize
the distance between cluster distributions for clus-
ters corresponding to different intents. In contrast
to self-supervised (Chen et al., 2020) or supervised
contrastive (Khosla et al., 2020) learning, for semi-
supervised learning a batch B of size N may con-
tain both labeled and unlabeled utterances. As
shown in Fig. 3, similar to self-supervised con-
trastive learning, we create a pair of augmentations
(ut1, ut2) or positive pairs corresponding to the tth

or anchor utterance (ut) in B to obtain B′, which
contains two augmented utterances corresponding
to each utterance in B. To generate augmentations
for a labeled utterance, we randomly sample two
utterances from the same intent and use them as
augmentations whereas for an unlabeled utterance,
we generate two augmented pairs by performing
contextual augmentation 1 (Kobayashi, 2018; Ma,
2019), as shown in Fig. 3. In contextual augmenta-
tion, given an utterance, we randomly mask a few
words and use BERT’s masked-language modeling
(MLM) objective to generate words corresponding
to masked positions. If ut1, ut2 are augmentations
of a labeled utterance ut then P (ut1) is defined as

1https://github.com/makcedward/nlpaug
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the set of utterances belonging to the same intent
as ut1 in B′ whereas N(ut1) will contain the all
2N -1 utterances excluding ut1 (note that N(ut)
and P (ut)) may have utterances in common). If
ut1, ut2 are augmentations of an unlabeled utter-
ance ut then P (ut1) will only contain ut2 and
N(ut1) will contain all 2N -1 utterances exclud-
ing ut1. We update PLM parameters and cluster
centers by minimizing the Semi-Supervised Con-
trastive (SSC) loss as shown in Eq. 3.

Lssc =
∑

t∈B′

−1

|P (ut)|
∑

p′∈P (ut)

log
exp

(
p(I | ut) · p(I | up′)/τ

)
∑

a∈N(t)

exp (p(I | ut) · p(I | ua)/τ)
;

(3)

In Eq. 3, (·) symbol and τ denotes dot product
and scalar temperature parameter respectively. To
get the distribution over intents/clusters (I/C), i.e.,
p(I | ut) for the tth utterance in B′ we apply a
linear transformation over ht and normalize via
softmax, p(I | ut) = softmax(ht ∗C + b). Each
column Ci of a linear layer C ∈ Rd×(n+m) acts
as a cluster center, where Ci is the d-dimensional
representation of the ith cluster and (m + n) rep-
resents the total number of known and unknown
intents.

To avoid the trivial solution that assigns all utter-
ances to the same cluster Hu et al. (2017), similar
to Van Gansbeke et al. (2020); Li et al. (2021) we
also add an entropy term to the loss function and
maximize it which distributes utterances uniformly
across the clusters, as shown in Eq. 4 and Eq. 6.

Lem = −
∑

i∈T
p(I

′i
) ∗ log p(I ′i

) (4)

p(I
′i
) = 1

|B|
∑

t∈B p(Ii | ut), where p(Ii | ut)
denotes the probability of an utterance ut being
assigned to the ith intent.

4.2.2 Supervised Representation Learning
To maintain intent detection accuracy on known
intents, we also update the cluster centers and PLM
parameters by minimizing cross-entropy loss over
labeled utterances from known intents, as shown
in Eq. 5 where y is 1 only for the target intent
and zero otherwise. Unlike in phase-1, B can con-
tain labeled and unlabeled utterances from known
intents and unlabeled utterances from unknown in-
tents but we ignore the unlabeled utterances during

backpropagation.

Lsrl = − 1

N

∑

t∈B

n∑

i=1

y · log(p(Ii | ut)) (5)

4.3 Training

We train DSSCC in two phases, in the first phase we
fine-tune the PLM using labeled utterances from
known intents as mentioned in Eq. 2. In the second
phase, we do representation learning and clustering
jointly by minimizing a combination of SSC loss,
and cross-entropy loss. Further, to avoid the trivial
solution of all the utterances getting assigned to a
single cluster, the entropy over the intent distribu-
tion is maximized, as shown in Eq. 6. λ is a scalar
hyper-parameter which controls the contribution of
Lem in L.

L = Lssc + Lsrl − λ ∗ Lem (6)

4.4 Inference

We propose two ways of utilizing representations
learned by DSSCC for intent detection and discov-
ery.
Clustering via learned cluster centers (DSSCC-
CH) Cluster assignment is based on similarity be-
tween cluster and utterance representations, i.e.,
argmax
1≤i≤n+m

p(Ii | ut).
K-means over representations (DSSCC-KM) We
get the representations (ht) for each utterance in
Dtest from the PLM and use K-means for cluster-
ing.

4.5 Intent discovery with Human-in-the-loop
(DSSCC-HIL)

Existing approaches including DSSCC assume
knowledge of the number of unknown intents (m)
to achieve good performance. This is not a realistic
assumption and despite SOTA performance,
significant manual effort is still needed to denoise
the discovered clusters. However, the manual
effort can be drastically reduced if we can generate
dense clusters with high purity and assign a
natural language description to each cluster. These
descriptions can be used by a domain expert
to merge similar clusters (i.e., a set of clusters
with similar descriptions) or split a noisy cluster
into multiple sub-clusters. Merging clusters
requires much less manual effort than splitting
as merging does not require examining every
utterance in the cluster. Thus, if we can obtain
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a set of pure clusters (i.e., a cluster where the
majority of the utterances belong to a single intent
) then the domain expert only needs to examine
a few representative utterances per cluster before
merging similar clusters.
To obtain better representations for clustering, we
use phase-1 of DSSCC without any modification.
To obtain pure clusters, unlike phase-2 of DSSCC,
we perform representation learning and clustering
in an alternate fashion and use DBSCAN for gener-
ating a large number of pure clusters. We assume
that the utterances which are part of the same
cluster belong to the same intent and use this fact to
create a pair of augmentations for a given utterance
along with contextual augmentation. Due to the
unknown value of m, we perform semi-supervised
contrastive representation learning at the utterance
level, as shown in Eq. 7. The model parameters
are updated according to L = L′

ssc + Lsrl, where
Lsrl and L′

ssc is defined in Eq. 5 and 7 respectively.

Cluster Merger Algorithm After phase-2,
we run DBSCAN and obtain a set of clusters
including the outlier cluster. For each cluster
(except the outlier) we randomly sample p
utterances and use them as cluster descriptions.
The cluster representation is obtained as the mean
of these utterance representations. So, now each
cluster has its own description and representation.
Now we randomly pick one cluster as the query
cluster (q) and get its s nearest neighbors based
on cosine-similarity and ask “Which of these s
clusters should be merged with q”? to a domain
expert. Based on the domain expert’s response
we merge similar clusters, recalculate the cluster
representations, and assign a cluster description
of q to this newly created cluster. We repeat this
process till the domain expert finds no candidate
for thirty consecutive query clusters. One iteration
of the cluster merging algorithm is illustrated in
Fig 4.

Now we treat each cluster as an intent and train
a logistic classifier to label utterances that belong
to the outlier cluster. We use the same classifier for
intent detection on the test set.

L′
ssc =

∑

t∈B′

−1

|P (ut)|
∑

p′∈P (ut)

log
exp

(
ut · up′)/τ

)
∑

a∈N(t)

exp (ut · ua)/τ)
;

(7)

Figure 4: Cluster Merger Algorithm: In each iteration,
a Domain Expert is shown (s = 5) Candidate Clusters
which are nearest neighbors of Query Cluster (q), where
per cluster, only (p = 2) utterances are shown to the
expert. And based on the reply from the domain expert,
some candidate clusters are merged into the query clus-
ter and the cluster definition is updated.

5 Experimental Setup

In this section, we describe the various baselines,
datasets, and evaluation metrics used in our experi-
ments.

5.1 Baseline Approaches

We use unsupervised K-means (MacQueen, 1967),
Agglomerative Clustering (AG) (Chidananda
Gowda and Krishna, 1978), DEC (Xie et al.,
2016b), SAE-KM (Xie et al., 2016b), DCN (Yang
et al., 2017), DAC (Chang et al., 2017), Deep-
Cluster (Caron et al., 2018), SCCL (Zhang et al.,
2021a) and semi-supervised PCK-means (Basu
et al., 2004), BERT-KCL (Hsu et al., 2018), BERT-
MCL (Hsu et al., 2019), BERT-DTC (Han et al.,
2019), CDAC+ (Lin et al., 2020), DeepAligned
(Zhang et al., 2021c) clustering approaches as
baselines. SCCL and DeepAligned are the state-
of-the-art approaches for unsupervised and semi-
supervised clustering respectively. Details about
unsupervised and semi-supervised baselines are
included in Appendix A.1.

5.2 Dataset Description

We evalaute DSSCC on five datasets with a
varying number of intents. We use BANK-
ING77 (Casanueva et al., 2020), CLINC150 (and
CLINC150OOS), (Larson et al., 2019) SNIPS
(Coucke et al., 2018), StackOverflow Xu et al.
(2015) and, DBPedia (Zhang and LeCun, 2015).
For BANKING77 and CLINC150 we use the same
train, val and test split as Zhang et al. (2021c) and
for SNIPS, StackOverflow and DBPedia we follow
the same split as Lin et al. (2020). For more details,
please refer to Appendix A.3
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5.3 Evaluation Metrics

Similar to previously reported results (Lin et al.,
2020; Zhang et al., 2021c), we use Clustering Ac-
curacy (ACC) (Yang et al., 2010), Normalized Mu-
tual Information (NMI) (Strehl and Ghosh, 2002)
and Adjusted Rand Index (ARI) (Hubert and Ara-
bie, 1985) as evaluation metrics. All metrics range
from 0 to 100 and higher values of a metric indicate
superior clustering results. Further details of the
experimental setup are provided in Appendix A.4.
Due to space constraints, we report ACC, NMI only
but in Appendix, we use all three metrics to report
results.

6 Results And Discussion

We present results comparing DSSCC with unsuper-
vised and semi-supervised clustering approaches
for scenarios where 1) the system is aware of the
number of unknown intents, 2) the system is un-
aware of the number of unknown intents. We fur-
ther report results of DSSCC-HIL and compare it
with DSSCC-E2E.

6.1 Intent detection and discovery when the
number of new intents m is provided

For the semi-supervised scenario, we assume x%
of the total intents are known apriori, also referred
to as the Known Intent Ratio (KIR). For each
known intent, 10% of the utterances are labeled
and the rest are unlabeled. For a fair comparison,
we also use the same BERT-based PLM as other
baselines. DSSCC outperforms all unsupervised
baselines on both BANKING77 and CLINC150
datasets by significant margins suggesting that for
known intents, supervision in the form of a few
labeled utterances leads to better intent represen-
tations, as shown in Table 1. DSSCC also outper-
forms semi-supervised baselines on BANKING77
and CLINC150 for all cases except for the NMI
metric on the CLINC150 dataset for KIRs 50% and
75%.

For K-meansSBERT , we use SBERT Reimers
and Gurevych (2019) as our PLM instead of
BERT to obtain utterance representations and find
that it outperforms K-meansBERT by a signif-
icant margin, as shown in Table 1. This sug-
gests that utterance representations from SBERT
are more suitable for clustering than BERT-
based representations. Motivated by these re-
sults we compared BERT and SBERT repre-
sentations in Table 2 and found that DSSCC

CLINC150 BANKING77
KIR Approach ACC NMI ACC NMI

0%

K-meansBERT 45.06 70.89 29.55 54.57
K-meansSBERT 61.04 82.22 55.72 74.68

AG 44.03 73.07 31.58 57.07
SAE-KM 46.75 73.13 38.92 63.79

DEC 46.89 74.83 41.29 67.78
DCN 49.29 75.66 41.99 67.54
DAC 55.94 78.40 27.41 47.35

DeepCluster 35.70 65.58 20.69 41.77
SCCL 33.52 66.63 13.41 34.14

25%

PCK-means 54.51 68.71 32.66 48.22
BERT-KCL 24.72 65.74 22.11 52.42
BERT-MCL 24.35 65.06 22.07 51.96
BERT-DTC 49.1 74.17 25.24 48.58

CDAC+ 64.64 84.25 48.71 69.78
DeepAligned 73.71 88.71 48.88 70.45

DSSCCBERT 75.72 89.12 55.52 72.73

50%

PCK-means 54.51 68.62 32.26 48.11
BERT-KCL 46.91 78.45 40.97 65.22
BERT-MCL 47.21 78.39 41.43 65.68
BERT-DTC 71.68 86.20 53.59 71.40

CDAC+ 69.02 86.18 53.34 71.53
DeepAligned 80.22 91.63 59.23 76.52

DSSCCBERT 81.46 91.39 63.08 77.60

75%

PCK-means 54.61 68.70 32.66 48.22
BERT-KCL 68.86 86.82 60.15 75.21
BERT-MCL 69.66 87.72 61.14 75.68
BERT-DTC 80.73 90.41 56.51 76.55

CDAC+ 69.89 86.65 53.83 72.25
DeepAligned 86.01 94.03 64.90 79.56

DSSCCBERT 87.91 93.87 69.82 81.24

Table 1: We report ACC and NMI on CLINC150 and
BANKING77 datatsets in the semi-supervised scenario
for three different known intent ratios (KIR). Except K-
meansSBERT and SCCL, we take all baseline results
from Zhang et al. (2021c).

CLINC150 BANKING77
KIR Approch ACC NMI ACC NMI

25%

DABERT 73.71 88.71 48.88 70.45
DASBERT 67.78 86.50 57.0 75.0

DSSCCBERT 75.72 89.12 55.52 72.73
DSSCCSBERT 80.36 91.43 64.93 80.17

50%

DABERT 80.22 91.63 59.23 76.52
DASBERT 77.69 91.40 64.14 79.30

DSSCCBERT 81.46 91.39 63.08 77.60
DSSCCSBERT 83.49 92.78 69.38 82.68

75%

DABERT 86.01 94.03 64.90 79.56
DASBERT 85.89 94.20 74.08 83.80

DSSCCBERT 87.91 93.87 69.82 81.24
DSSCCSBERT 88.47 94.50 75.15 85.04

Table 2: DA vs DSSCC with BERT and SBERT as PLM

(Ours)SBERT outperforms DSSCC (Ours)BERT ,
DeepAlignedBERT and DeepAlignedSBERT by a
significant margin on both datasets for all evaluated
intent ratios. DeepAlignedSBERT outperforms
DeepAlignedBERT on BANKING77 by a signifi-
cant margin but we observe the opposite result on
CLINC150. For the remaining experiments, we
use SBERT as our PLM in DSSCC and compare it
with DeepAlignedBERT and DeepAlignedSBERT .

We evaluated DSSCC on three other public
datasets for intent detection and discovery, and
found that DSSCC outperforms DeepAligned on
all three datasets except for NMI on DBPedia for
known intent ratios of 75% , as shown in Table 10.
Results of DSSCCSBERT on intent detection and
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CLINC150 (T =150, n=112, m = 38) BANKING77 (T =77, n=58, m=19)
Approach K′ KPred ACC NMI K′ KPred ACC NMI
DABERT 300 130 77.18 92.5 154 65.1 62.49 78.88

DASBERT 300 129.6 76.87 92.61 154 66.9 63.53 80.84
DSSCCSBERT 81.37 92.97 71.77 84.29

DABERT 450 189.2 83.81 93.57 231 99.3 63.98 79.93
DASBERT 450 190.1 82.57 93.85 231 96.8 66.20 82.11

DSSCCSBERT 84.59 93.64 72.93 84.97
DABERT 600 258.6 72.22 91.8 308 121.9 61.05 79.95

DASBERT 600 255.9 72.29 92.18 308 118.1 62.67 82.05
DSSCCSBERT 80.83 92.04 67.56 84.43
DSSCCSBERT 150 150 88.47 94.50 77 77 75.15 85.04

Table 3: Intent detection and discovery with unknown value of m for KIR=75%. We obtain results corresponding to
DeepAlignedBERT (DABERT ) (Zhang et al., 2021c) and report results for DeepAlignedSBERT (DASBERT ) using
code provided by the authors of Zhang et al. (2021c) with SBERT as the PLM.

discovery are separately reported in Table 11.

6.2 Intent detection and discovery with
unknown number of new intents m

We evaluate DSSCC for the realistic scenario when
the number of new (m) intents present in user
logs is not provided to the system apriori, i.e.,
the total number of intents (T = n + m) is not
known in advance and the system has to infer the
number of clusters present in user logs. We use
an existing algorithm proposed by Zhang et al.
(2021c) which refines an initial guess K ′ to ar-
rive at the final estimate Kpred. As shown in
the Table 3, DSSCC outperforms DeepAligned for
K ′ ∈ {2 ∗ T , 3 ∗ T , 4 ∗ T } except for the NMI
metric on the CLINC150 dataset for K ′=450 and
K ′=600 although results are competitive. As com-
pared to the scenario where the total number of
intents T are known (last row in Table 3), on an
average there is drop of 6.20% in ACC, 1.61% in
NMI on CLINC150 and a drop of 4.39% in ACC,
0.47% in NMI on BANKING77. These results sug-
gest that the performance of DSSCC does not drop
significantly even when the total number of intents
in user logs are not known in advance.

6.3 DSSCC-HIL
We evaluate DSSCC-HIL in a realistic scenario
where the number of new intents is not known and
KIR=75%. As shown in Table 4, we get 333 and
523.7 clusters after phase-2 of DSSCC-HIL with
average cluster purity of 96.96% and 98.30% cor-
responding to B77 and C150 respectively. Average
purity refers to average clustering accuracy where
we use ground-truth labels and based on majority
voting, assign an intent label to the predicted clus-
ter. For merging similar clusters, we show (s=5)
candidate clusters per query to the domain expert
who is asked to choose clusters that are similar
to the query cluster. Here, we have used oracle

ground truth cluster labels instead of a domain ex-
pert to answer these queries. For B77 and C150,
259.3 and 349.5 queries are required (avg over 10
runs) to merge similar clusters respectively where
the domain expert has to read 12 utterances (2 per
cluster) per query. As a result, we obtain 81 and
152.59 clusters (intents) for B77 and C150 which
are close to the actual number of intents i.e., 77
and 150 respectively. Then a classifier is trained
with these intents and prediction is done on the test
set. DSSCC-HIL achieved an ACC of 81.21% and
88.93% on B77 and C150 respectively which is
significantly higher than the ACC of DSSCC-E2E.
Also, DSSCC-HIL is able to discover all intents in
the ground truth. We also employ a cluster merging
strategy with DSSCC-E2E i.e., DSSCC-E2E+HIL
and got an improvement of 2% for C150 but neg-
ative results for B77. This is due to better initial
cluster purity (P) of C150 (i.e. 87.73%) versus
B77 (i.e. 79.92%), as the merging of noisy clusters
intuitively leads to a decrease in ACC. This obser-
vation supports the fact that, for merging clusters
by a domain expert, a good initial cluster purity is
required. Due to comparatively low purity initial
clusters, HIL does not help much in DSSCC-E2E.

A Q P K′ Kpred ACC NMI
E2E 0 NA 231 96.8 72.93 84.97

E2E+HIL 144.8 79.92 96.8 67 71.14 84.00
HIL 259.3 96.96 333 81 81.21 87.35
E2E 0 NA 450 190.1 84.59 93.64

E2E+HIL 218.2 87.73 190.1 148.6 86.10 93.83
HIL 349.5 98.30 523.7 152.6 88.93 95.19

Table 4: We compare DSSCC-E2E, DSSCC-E2E+HIL
and DSSCC-HIL. P, Q refers to average cluster purity
before merging and number of queries respectivley. For
DSSCC-E2E, we pick best results from Table 3. First
row and second row of the table contains results on B77
and C150 respectively.

6.4 Ablation Study
As part of the ablation study, we answer the fol-
lowing questions “Do we need both phase-1 and
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phase-2 in DSSCC ?”, “Does joint training on mul-
tiple loss functions in phase-2 affect clustering ac-
curacy ?”, “Do we need different values of Entropy
Weight (λ) (Eq. 6) for different datasets?”, “How
does the presence of out-of-scope (oos) utterances
in user logs affect DSSCC performance”? and
present our observations. To answer these ques-
tions we perform ablation studies on CLINC150
and BANKING77.

“Do we need both phase-1 and phase-2 in
DSSCC?" As shown in Table 5, KIR=75%, fine-
tuning of the PLM on labeled utterances from
known intents in phase-1 is more vital for BANK-
ING77 as compared to CLINC150 because without
phase-1 there is a significant drop in performance
on the BANKING77 dataset (DSSCC w/o phase-
1 vs DSSCC). Whereas there is an improvement
of 4.39% in ACC, 1.15% in NMI and 4.86% due
to phase-2 on CLINC150 (DSSCC w/o phase-1
vs DSSCC), which suggests that both phase-1 and
phase-2 of DSSCC are important for a generic so-
lution. In the case of BANKING77, performance
largely depends on labeled utterances from known
intents and there is not much improvement due to
phase-2, which may be attributed to its complexity
as all intents are semantically closer and belong
to the Banking domain as compared to CLINC150
where utterances belong to 10 different domains (
utility, travel, etc.). But when we perform the same
ablation with fewer known intents i.e., KIR=25%,
then both phase-1 and phase-2 are equally impor-
tant to achieve good performance. This suggests
that DSSCC phase-2 is more important when there
are fewer known intents and fewer labeled utter-
ances per known intent.
“Does joint training on multiple loss functions in
phase-2 affect clustering accuracy"? As shown
in Table 5, we also perform an ablation on different
loss functions used in phase-2 and found that Semi-
supervised contrastive (ssc) loss (DSSCC w/o ssc
vs DSSCC), entropy maximization (em) (DSSCC
w/o em vs DSSCC) and supervised-representation
learning (srl) loss (DSSCC w/o srl vs DSSCC) all
affect the clustering performance on CLINC150
and BANKING77. The reason for the most drop
in ACC and NMI in the case of (DSSCC w/o em)
is that, when entropy maximization is not done,
the probability distribution over clusters for unla-
beled utterances is decided only by the supervised-
representation learning (srl) loss. Therefore, all the
utterances become part of known intent clusters

and the clusters for unknown intents remain empty.
“Do we need different values of Entropy Weight
(λ) (Eq. 6) for different datasets?” In Table 7,
we report DSSCC-E2E results on CLINC150 and
BANKING77 with different values of λ. And we
observe that a value of λ ϵ [10, 14] yields the best
results across datasets.
“How does the presence of out-of-scope (oos)
utterances in user logs affect DSSCC perfor-
mance”? We use oos utterances as part of user
logs in CLINC150 dataset and evaluate DSSCC.
As shown in Table 6, there is a small drop in perfor-
mance because a few oos utterances are classified to
belong to the set of actual intents. This observation
shows that even with presence of oos utterances,
DSSCC is able to maintain it’s performance. Man-
ual intervention may be required in practice to filter
clusters containing oos queries.

CLINC150 BANKING77
KIR Approach ACC NMI ACC NMI

75%

DSSCC w/o srl 85.99 93.68 70.24 81.78
DSSCC w/o ssc 73.87 87.07 67.97 78.81
DSSCC w/o em 71.05 91.88 64.55 81.56

DSSCC w/o phase-1 88.13 94.04 72.39 81.76
DSSCC w/o phase-2 84.08 93.35 74.09 84.56

DSSCC 88.47 94.50 75.17 83.69

25%

DSSCC w/o srl 78.60 90.24 54.93 73.05
DSSCC w/o ssc 40.32 71.09 37.17 61.15
DSSCC w/o em 24.86 75.02 23.36 64.10

DSSCC w/o phase-1 79.95 90.44 58.85 74.74
DSSCC w/o phase-2 72.51 88.38 58.62 76.40

DSSCC 80.36 91.43 61.91 77.44

Table 5: Ablation with KIR (75%) and (25%) on
CLINC150 and BANKING77 with DSSCCSBERT

where we use DSSCC-CH for inference.

7 Conclusion

In this work, we propose a semi-supervised con-
trastive learning approach for intent detection and
discovery from user logs. The proposed approach
optimally utilizes both labeled and unlabeled ut-
terances to outperform SOTA approaches for both
scenarios where the total number of intents is either
known in advance or has to be estimated. We also
propose a variant of our approach which does not
need to estimate the number of new intents and
yields pure clusters which are merged by domain
experts based on the cluster descriptions. Future
work will focus on, (i) “How to get better cluster
descriptions?” (ii) “How to optimally select query
and corresponding candidate clusters?” and (iii)
“How to discover new intents with minimum human
effort with a long-tail distribution over new intents
in user logs?”
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A Appendix

A.1 Unsupervised and Semi-supervised
Clustering

A.1.1 Unsupervised Clustering
Building upon classical clustering techniques such
as K-means (MacQueen, 1967) and Agglomer-
ative Clustering (AG) (Chidananda Gowda and
Krishna, 1978) several deep learning-based clus-
tering techniques have recently been proposed in
the literature. DEC (Xie et al., 2016b) is a two-
step deep unsupervised clustering algorithm where
the first step involves training a stacked autoen-
coder (SAE) and the second step involves updating

the SAE encoder and the cluster centers based on
high confidence assignment of an utterance to clus-
ter while using an auxiliary target distribution. In
SAE-KM (Xie et al., 2016b), k-means is used to
cluster the representations obtained from the en-
coder of the (SAE). DCN (Yang et al., 2017) is a
joint deep unsupervised clustering algorithm per-
forming joint representation learning and cluster-
ing. DAC (Chang et al., 2017) recasts the cluster-
ing problem into a binary pairwise classification
framework to determine whether pairs of samples
belong to the same cluster or not and the cosine sim-
ilarity between pairs of samples is used to create
pseudo-training data. DeepCluster (Caron et al.,
2018) jointly learns the parameters of a neural net-
work and the cluster assignments of the resulting
features. DeepCluster iteratively groups the fea-
tures with a standard clustering algorithm such as
k-means and uses the subsequent assignments as
supervision to update the weights of the network.
STC (Xu et al., 2017) is an approach for short-text
clustering where learned representations are clus-
tered using k-means. Self-Train (Hadifar et al.,
2019) extends DEC for short-text clustering and
uses weighted average of pre-trained word embed-
dings (Mikolov et al., 2013) to get text representa-
tions. Rakib et al. (2020) alternately use classifica-
tion and outlier detection to improve the accuracy
of existing short-text clustering algorithms. SCCL
Zhang et al. (2021a) jointly perform representation
learning and clustering via contrastive representa-
tion learning and minimize a modified version of
the clustering loss proposed by Xie et al. (2016b).

A.1.2 Semi-supervised Clustering
PCK-means (Basu et al., 2004) is a semi-
supervised clustering algorithm where labeled sam-
ples are used as pairwise constraints to improve
clustering performance. KCL (Hsu et al., 2018) is
a two-stage image clustering algorithm that uses
a binary classification model trained on labeled
data in the first phase to measure pair-wise im-
age similarity and in the second stage, a clus-
tering model is trained on unlabeled data by us-
ing the output of the binary classification model
for supervision. The network is trained using a
Kullback-Leibler divergence-based contrastive loss
(KCL). Meta Classification Likelihood MCL (Hsu
et al., 2019) leverages pairwise similarity between
samples and optimizes a binary classifier for pair-
wise similarity prediction and through this process
learns a multi-class classifier as a submodule. DTC
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CLINC150 (T =150, n=112, m = 38) CLINC150OOS (T =150, n=112, m=38)
Approach K′ KPred ACC NMI K′ KPred ACC NMI

DSSCCSBERT

300 129.6 81.37 92.97 300 130.5 80.24 91.95
450 190.1 84.59 93.64 450 182.2 86.23 93.84
600 255.9 80.83 92.04 600 248.1 79.96 91.20
150 150 88.47 94.50 150 150 87.23 94.39

Table 6: DSSCCSBERT with and without out-of-scope (OOS) utterances in user logs, where value of m is not
known.

CLINC150 BANKING77
KIR λ ACC NMI ARI ACC NMI ARI

75%

2 71.20 91.95 66.09 67.34 79.46 55.26
5 80.44 93.48 75.47 70.29 79.46 57.65
7 83.78 94.0 78.31 70.78 79.39 58.11
10 87.20 94.15 80.57 70.16 78.93 57.11
14 89.51 94.61 82.52 67.99 77.82 54.95
15 89.73 94.61 82.75 68.99 77.91 55.37
17 88.93 94.10 81.60 68.70 77.51 54.72
20 89.42 94.17 82.23 67.70 76.92 53.97
25 89.91 94.26 82.77 66.82 76.16 52.77
30 88.76 93.44 80.77 66.33 76.02 52.37

Table 7: Ablation with KIR (75%) on CLINC150 and BANKING77 where we try different values of λ. We use
DSSCCSBERT for ablation.

(Han et al., 2019) extend DEC to a semi-supervised
scenario and also improve upon DEC by enforc-
ing a representation bottleneck, temporal ensem-
bling, and consistency. CDAC+ (Lin et al., 2020)
is an end-to-end clustering method that incorpo-
rates pairwise constraints obtained from labeled
utterances as prior knowledge to guide the clus-
tering process and clusters are further refined by
forcing the model to learn from high confidence as-
signments. DeepAligned (Zhang et al., 2021c) use
labeled utterances from known intents to update
BERT parameters and in the second step perform
representation learning and K-means clustering al-
ternately by minimizing cross-entropy loss over la-
beled and pseudo-labeled utterances treating each
k-means cluster as one intent.

A.2 Representation of an utterance from
PLM

We get the representation ht =
mean-pooling([CLS, T1, T2, ..., Tl]) of an utter-
ance ut consisting of l tokens from BERT/SBERT
by applying mean-pooling over representations
of all tokens including CLS, where Tj denotes
representation corresponding to jth token.

Dataset Avg utterance length z%

CLINC150 8.31 10
BANKING77 11.91 20

SNIPS 9.03 10
StackOverflow 9.18 10

DBPedia 29.97 30

Table 8: Data Augmentation Details.

A.3 Dataset Description and Details

We evaluate DSSCC on five datasets with a varying
number of intents. And all of them are available
in english language and released under creative
Commons licences.
BANKING77 (Casanueva et al., 2020) is a
fine-grained intent detection dataset from the
banking domain comprising of 13,083 customer
queries labelled with 77 intents.
CLINC150 (Larson et al., 2019) is a crowdsourced
multi-domain (10 domains such as utility, travel
etc.) intent detection dataset comprised of
23,700 queries with 22,500 in-scope queries
labelled with 150 intents and 1,200 out-of-scope
queries. For our experiments, we use both sets-
CLINC150 which contains only in-scope queries,
and CLINC-150OOS which contains both in-scope
and out-of-scope queries and we use the balanced
version of the dataset.
SNIPS (Coucke et al., 2018) consists of 16000
crowd-sourced user utterances distributed across
7 intents. Out of 16k, 14484 utterances has been
used for experimental purpose in the past.
StackOverflow: This dataset was originally
released as part of a kaggle competition2. Xu
et al. (2015) used a subset of this dataset for
short-text clustering. The dataset consists of 20,
000 technical question titles distributed across 20
intents with 1k questions per intent.
DBPedia (Zhang and LeCun, 2015) is an ontology
classification dataset constructed by picking 14

2https://www.kaggle.com/c/predict-closed-questions-on-
stack-overflow
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non-overlapping classes from DBpedia 2014
Lehmann et al. (2015). Wang et al. (2016) used a
subset of this dataset consisting of 14000 samples
distributed across 14 classes.

We mention dataset statistics in table 9. We
mention the train, validation, and test split details,
that were used while performing the experiments
for each dataset. Based, on the len and T (n+m)
attributes, we can see the variation and complexity
of these datasets.

A.4 Training Details

For the first phase, we follow the same pre-training
steps outlined by Zhang et al. (2021c). For the
second phase of DSSCC-E2E, an embedding of
dimension (d ∗ (n + m)), is used for the cluster
centers where a d dimensional representation of an
utterance u is obtained from the PLM and n+m
represents the total number of clusters correspond-
ing to known and new intents. For the HIL ap-
proach, two different linear heads/layers are used -
one with dimension (d ∗ (128)) for Instance-Level
Contrastive Learning and second with dimension
(d ∗ (n)) for Supervised Representation Learning.
For simulating a real-world problem of intent de-
tection and discovery from user logs, we follow the
experimental setting similar to Zhang et al. (2021c)
where they assume that x% ∈ {25%, 50%, 75%}
of the total intents for a given dataset is known (we
denote this number by n) where x is also referred
to as the known intent ratio (KIR). The remain-
ing number of intents (m) are considered novel.
Accordingly, each dataset is divided into a Dtrain,
Dval and Dtest where Dtrain contains 10% of la-
beled utterances per known intent and unlabeled
utterances from both known and unknown intents.
Dval, Dtest consists of utterances from known and
new intents. We do two sets of experiments – one
with a known value of n + m (number of total
intents) and another one where the total number
of intents is not known in advance. For a given
dataset and KIR, we run the same experiment on
ten different seeds and report the average ACC,
NMI, and ARI on Dtest. For DSSCC-E2E, we use
DSSCC-CH, DSSCC-KM for intent detection and
discovery and report the best results based on ma-
jority voting over ACC, NMI and ARI. In a realistic
scenario when ground truth is not available, one
can use the Silhouette Score (Rousseeuw, 1987)
to decide which inference strategy to use. For the

HIL approach, we get predictions from DBSCAN
clustering after model convergence and perform in-
ference after running the cluster merger algorithm.
We use existing checkpoints of bert-base-uncased
3 (Devlin et al., 2019) and stsb-roberta-base-v2 4

(Reimers and Gurevych, 2019) as our PLM. Similar
to (Zhang et al., 2021c), we freeze all but the last
transformer layer parameters in our PLM for both
phases to improve training efficiency and speed up
the training process. We use the Adam optimizer
(Kingma and Ba, 2014) to update PLM parameters
and the learning rate is set to 5e-5 for PLM, 5e-3
for cluster centers in case of DSSCC-E2E and 5e-3
for both heads in case of HIL Approach . For all
of our experiments, the batch size is kept at 400.
For DSSCC-E2E, the entropy weight(λ) is set as
14.0. Whereas, For HIL, the minimum samples and
epsilon for DBSCAN is kept as 3.0 and 0.09 respec-
tively. We run all experiments on an Nvidia Titan
A100 GPU. We use classification accuracy on the
Dval set for known intents as converge criteria for
Phase 1. And for Phase 2 of DSSCC-E2E, we calcu-
late the Silhouette Score Rousseeuw (1987) given
utterance representations and corresponding pre-
dicted cluster-ids on Dtrain. Whereas, for Phase 2
of HIL, we converge when the number of predicted
clusters by DBSCAN clustering is minimum. We
use early stopping with a patience value of 20.0 for
both phases. For semi-supervised contrastive repre-
sentation learning, similar to Zhang et al. (2021a),
we use contextual augmenter Kobayashi (2018) to
generate augmentations corresponding to unlabeled
utterances where z% of the words in an utterance
are substituted with similar words. We use a suit-
able value of z% for different datasets based on
average utterance length as mentioned in the ta-
ble 8 following the observations from Zhang et al.
(2021a). We do this to preserve the semantics of
an utterance while at the same time, substituting
words in an utterance to create augmentations. We
report the best results averaged over ten different
seeds based on the inference details as mentioned
in section 4.4. For our codebase, we have adapted
existing SupContrast 5 loss in the semi-supervised
setting and also utilized data creation steps from
Zhang et al. (2021c)6.

3https://huggingface.co/bert-base-uncased
4https://huggingface.co/sentence-transformers/stsb-

roberta-base-v2
5https://github.com/HobbitLong/SupContrast
6https://github.com/thuiar/DeepAligned-Clustering
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A.5 Results on Intent Detection and Discovery

We have also reported results on five public datasets
with our proposed approach on intent detection and
intent discovery separately for the case when m
is known, are shown in table 11. If we assume
that intent detection and discovery are two sepa-
rate problems, we decouple the results from our
joint approach (after training) to see the contri-
bution of DSSCC on both tasks. It is clear from
the results that, even with very few labeled utter-
ances from known intents, our model maintains
the performance on the known intents with at least
83% clustering accuracy on all five datasets. From
the results on Intent Discovery, except for BANK-
ING77, DSSCC (Ours) gets at least 74% clustering
accuracy on 4 datasets. The low performance on in-
tent discovery in BANKING77 is attributed to the
complexity of the dataset where all intents are part
of one larger domain, i.e., Banking. Whereas, in
CLINC150, the intents belong to multiple domains
as mentioned in section A.3.

A.6 DSSCC-KM vs DSSCC-CH

We use both inference strategies, i.e., DSSCC-
KM and DSSCC-CH to obtain results for all
experiments described in section 6 and report
ACC, NMI and ARI as shown in Table 12, 13
and 15. DSSCC-CH outperforms DSSCC-KM on
CLINC150, SNIPS and StackOverflow whereas
DSSCC-KM gives better results on BANKING77
and DBPedia. This inconsistency between the be-
haviour of DSSCC-CH and DSSCC-KM can be
attributed to complexity of a given dataset, i.e.,
DSSCC-KM outperforms DSSCC-CH on BANK-
ING77 (single domain dataset) and DBpedia
whereas DSSCC-CH outperforms DSSCC-KM on
CLINC150 (multi-domain dataset).

In realistic scenario where ground truth is not
available, one can use Silhouette Score (SS) to
choose between DSSCC-CH and DSSCC-KM. As
shown in Fig. 6, when the difference between SS
corresponding to DSSCC-CH and DSSCC-KM is
significant, then one should choose inference strat-
egy which gives higher SS. And when the differ-
ence between SS score corresponding to DSSCC-
CH and DSSCC-KM is not significant, then one
can choose DSSCC-CH for inference, as shown
in Fig 5. Above mentioned approach for inference
strategy selection correlates with the selection done
by majority voting (over ACC, NMI and ARI).

Figure 5: CLINC150 (KIR=75%) DSSCC-CH vs
DSSCC-KM where we use SBERT as PLM. The left
subfigure shows silhouette scores over different seeds
and the right subfigure shows ACC, NMI, and ARI with
DSSCC-KM and DSSCC-CH over these seeds.

Figure 6: BANKING77 (KIR=75%) DSSCC-CH vs
DSSCC-KM where we use SBERT as PLM. The left
subfigure shows silhouette scores over different seeds
and the right subfigure shows ACC, NMI, and ARI with
DSSCC-KM and DSSCC-CH over these seeds.

A.7 Representations from SBERT vs
DSSCCSBERT

To showcase the effectiveness of representations
learnt by DSSCCSBERT , we plot the utterance em-
beddings (ht) with ground truth labels for all five
datasets as shown in Fig. 7 and Fig. 8. Initial and fi-
nal representations correspond to utterance embed-
dings obtained from SBERT and DSSCCSBERT

respectively. It can be observed that for all five
datasets, intents are clearly separable with final rep-
resentations as compared to initial representations.

CLINC150 BANKING77

Initial Representations Initial Representations

Final Representations Final Representations

Figure 7: TSNE (van der Maaten and Hinton, 2008) plot
for CLINC150 and Banking77 (75% KIR) before and
after DSSCC Training.
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Dataset Dtrain Dval Dtest len(max/mean) T (n + m)

CLINC150 18,000 2,250 2,250 25/8.31 150(112+38)
CLINC150OOS 19,000 2,250 2,450 25/8.32 150(112+38)

BANKING77 9,003 1,000 3,080 79/11.91 77 (58+19)
SNIPS 13,084 700 700 35/9.03 7 (5+2)

StackOverflow 18,000 1,000 1,000 41/9.18 20 (15+5)
DBPedia 12,600 700 700 54/29.97 14 (11+3)

Table 9: Dataset Details. Dtrain, Dtest, Dval: number of examples in train, validation and test set respectively;
len(max/mean): maximum sentence length / mean sentence length; T (n+m): Total number of classes (Known
Intents + New Intents) in case of 75% KIR

SNIPS StackOverflow DBPedia
KIR Approach ACC NMI ACC NMI ACC NMI

25%
DABERT 86.21 80.42 69.66 70.23 85.89 88.98

DASBERT 81.16 77.33 72.64 73.43 83.70 85.40
DSSCCSBERT 94.33 89.30 81.72 76.57 89.44 89.25

50%
DABERT 85.69 83.03 72.89 74.49 88.63 91.24

DASBERT 88.83 84.19 73.07 74.08 87.29 88.80
DSSCCSBERT 95.20 91.07 82.43 77.30 92.14 92.70

75%
DABERT 90.10 86.94 74.51 76.24 92.17 93.25

DASBERT 92.70 88.22 75.50 75.90 91.17 91.14
DSSCCSBERT 94.87 90.44 82.65 77.08 92.73 92.58

Table 10: Intent detection and discovery results on three datasets, i.e., SNIPS, StackOverflow and DBPedia where
we computed results corresponding to DeepAlignedBERT (DABERT ), DeepAlignedSBERT (DASBERT ) using
code provided by Zhang et al. (2021c)

StackOverflow DBPedia

Initial Representations Initial Representations

Final Representations

SNIPS

Initial Representations

Final Representations Final Representations

Figure 8: TSNE plot for StackOverflow, DBPedia and
SNIPS (75% KIR) before and after DSSCC Training.
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Intent Detection Intent Discovery
KIR Dataset ACC NMI ARI ACC NMI ARI

25%

CLINC150 91.14 96.87 92.84 76.70 90.66 72.14
BANKING77 78.11 88.53 79.27 60.61 79.09 53.37

SNIPS 94.36 87.36 88.98 94.32 88.85 89.0
StackOverflow 86.4 78.82 80.15 80.16 75.26 68.33

DBPedia 96.0 93.25 94.12 86.82 87.74 82.28

50%

CLINC150 92.03 96.59 91.13 74.97 91.02 74.62
BANKING77 79.66 88.66 77.19 59.35 80.18 58.0

SNIPS 95.27 90.78 91.07 95.33 89.90 91.21
StackOverflow 86.72 81.37 79.50 78.14 72.96 67.99

DBPedia 95.26 94.96 94.81 88.40 91.07 88.95

75%

CLINC150 92.73 96.44 89.89 75.91 91.52 78.77
BANKING77 83.60 87.61 74.99 57.72 80.71 62.39

SNIPS 95.54 91.99 91.84 93.17 81.92 84.77
StackOverflow 85.37 79.76 75.22 74.48 66.92 64.48

DBPedia 95.72 94.73 94.09 85.25 86.66 84.02

Table 11: Performance of DSSCC (Ours) on Intent Detection and Intent Discovery

CLINC150 BANKING77
KIR Approach ACC NMI ARI ACC NMI ARI

0%

K-meansBERT 45.06 70.89 26.86 29.55 54.57 12.18
K-meansSBERT 61.04 82.22 48.56 55.72 74.68 42.77

AG 44.03 73.07 27.70 31.58 57.07 13.31
SAE-KM 46.75 73.13 29.95 38.92 63.79 22.85

DEC 46.89 74.83 27.46 41.29 67.78 27.21
DCN 49.29 75.66 31.15 41.99 67.54 26.81
DAC 55.94 78.40 40.49 27.41 47.35 14.24

DeepCluster 35.70 65.58 19.11 20.69 41.77 8.95
SCCL 33.52 66.63 18.89 13.41 34.14 4.02

25%

PCK-means 54.51 68.71 35.38 32.66 48.22 16.24
BERT-KCL 24.72 65.74 17.97 22.11 52.42 15.75
BERT-MCL 24.35 65.06 16.82 22.07 51.96 13.94
BERT-DTC 49.1 74.17 33.05 25.24 48.58 13.32

CDAC+ 64.64 84.25 50.35 48.71 69.78 35.09
DeepAligned 73.71 88.71 64.27 48.88 70.45 36.81
DSSCC-KM 74.98 89.19 65.75 55.52 72.73 42.11
DSSCC-CH 75.72 89.12 66.72 48.38 66.39 33.94

DSSCC 75.72 89.12 66.72 55.52 72.73 42.11

50%

PCK-means 54.51 68.62 35.23 32.26 48.11 16.02
BERT-KCL 46.91 78.45 37.94 40.97 65.22 30.03
BERT-MCL 47.21 78.39 36.72 41.43 65.68 28.87
BERT-DTC 71.68 86.20 59.62 53.59 71.40 40.65

CDAC+ 69.02 86.18 54.15 53.34 71.53 40.42
DeepAligned 80.22 91.63 72.34 59.23 76.52 47.82
DSSCC-KM 79.85 91.44 73.48 63.08 77.60 50.64
DSSCC-CH 81.46 91.39 73.48 59.14 73.11 44.98

DSSCC 81.46 91.39 73.48 63.08 77.60 50.64

75%

PCK-means 54.61 68.70 35.40 32.66 48.22 16.24
BERT-KCL 68.86 86.82 58.79 60.15 75.21 46.72
BERT-MCL 69.66 87.72 59.92 61.14 75.68 47.43
BERT-DTC 80.73 90.41 70.92 56.51 76.55 44.70

CDAC+ 69.89 86.65 54.33 53.83 72.25 40.97
DeepAligned 86.01 94.03 79.82 64.90 79.56 53.64
DSSCC-KM 84.99 93.43 78.35 69.82 81.24 58.09
DSSCC-CH 87.91 93.87 81.09 68.13 78.15 54.23

DSSCC 87.91 93.87 81.09 69.82 81.24 58.09

Table 12: We report ACC, NMI and ARI on CLINC150 and BANKING77 datatsets in the semi-supervised scenario
for three different known intent ratios (KIR). Except K-meansSBERT and SCCL, we take all baseline results from
Zhang et al. (2021c). For fair comparison we use BERT as PLM in DSSCC.
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SNIPS StackOverflow DBPedia
KIR Approach ACC NMI ARI ACC NMI ARI ACC NMI ARI

25%

DABERT 86.21 80.42 74.70 69.66 70.23 53.69 85.89 88.98 79.22
DASBERT 81.16 77.33 68.38 72.64 73.43 58.30 83.70 85.40 75.67
DSSCC-KM 93.77 89.05 86.78 79.37 76.93 58.73 89.44 89.25 83.29
DSSCC-CH 94.33 89.30 87.90 81.72 76.57 68.0 87.70 88.12 81.25

DSSCC 94.33 89.30 87.90 81.72 76.57 68.0 89.44 89.25 83.29

50%

DABERT 85.69 83.03 77.03 72.89 74.49 57.96 88.63 91.24 83.38
DASBERT 88.83 84.19 79.53 73.07 74.08 59.34 87.29 88.80 81.04
DSSCC-KM 94.57 90.23 88.47 80.24 77.80 61.08 91.83 92.27 87.85
DSSCC-CH 95.20 91.07 89.67 82.43 77.30 68.94 92.14 92.70 88.61

DSSCCSBERT 95.20 91.07 89.67 82.43 77.30 68.94 92.14 92.70 88.61

75%

DABERT 90.10 86.94 82.42 74.51 76.24 59.45 92.17 93.25 88.12
DASBERT 92.70 88.22 85.40 75.50 75.90 61.21 91.17 91.14 85.94
DSSCC-KM 94.03 89.20 87.40 80.53 77.25 63.70 92.73 92.58 88.55
DSSCC-CH 94.87 90.44 89.03 82.65 77.08 68.67 92.13 92.61 88.65

DSSCC 94.87 90.44 89.03 82.65 77.08 68.67 92.73 92.58 88.55

Table 13: Intent detection and discovery results on three datasets, i.e., SNIPS, StackOverflow and DBPedia where
we computed results corresponding to DeepAlignedBERT (DABERT ), DeepAlignedSBERT (DASBERT ) using
code provided by Zhang et al. (2021c) and user SBERT as PLM in DSSCC.

CLINC150 BANKING77
K A ACC NMI ARI ACC NMI ARI

25%

DABERT 73.71 88.71 64.27 48.88 70.45 36.81
DASBERT 67.78 86.50 57.10 57.0 75.0 45.80

DSSCCBERT 75.72 89.12 66.72 55.52 72.73 42.11
DSSCCSBERT 80.36 91.43 72.83 64.93 80.17 53.60

50%

DABERT 80.22 91.63 72.34 59.23 76.52 47.82
DASBERT 77.69 91.40 70.90 64.14 79.30 52.70

DSSCCBERT 81.46 91.39 73.48 63.08 77.60 50.64
DSSCCSBERT 83.49 92.78 76.80 69.38 82.68 58.95

75%

DABERT 86.01 94.03 79.82 64.90 79.56 53.64
DASBERT 85.89 94.20 79.83 74.08 83.80 63.30

DSSCCBERT 87.91 93.87 81.09 69.82 81.24 58.09
DSSCCSBERT 88.47 94.50 82.40 75.15 85.04 64.83

Table 14: DA vs DSSCC with BERT and SBERT as PLM

CLINC150 (T =150, n=112, m = 38) BANKING77 (T =77, n=58, m=19)
Approach K′ KPred ACC NMI ARI K′ KPred ACC NMI ARI
DABERT 300 130 77.18 92.5 72.26 154 65.1 62.49 78.88 51.71

DASBERT 300 129.6 76.87 92.61 72.05 154 66.9 63.53 80.84 53.26
DSSCC-KMSBERT 79.0 92.72 73.58 71.77 84.29 62.13
DSSCC-CHSBERT 81.37 92.97 75.49 71.91 82.60 60.69

DSSCCSBERT 81.37 92.97 75.49 71.77 84.29 62.13
DABERT 450 189.2 83.81 93.57 79.54 231 99.3 63.98 79.93 53.76

DASBERT

450 190.1

82.57 93.85 79.28

231 96.8

66.20 82.11 56.98
DSSCC-KMSBERT 82.69 93.59 78.85 72.93 84.97 64.65
DSSCC-CHSBERT 84.59 93.64 80.44 72.60 82.78 62.86

DSSCCSBERT 84.59 93.64 80.44 72.93 84.97 64.65
DABERT 600 258.6 72.22 91.8 70.91 308 121.9 61.05 79.95 53.10

DASBERT

600 255.9

72.29 92.18 71.38

308 118.1

62.67 82.05 55.75
DSSCC-KMSBERT 73.42 92.07 72.19 67.56 84.43 61.87
DSSCC-CHSBERT 80.83 92.04 76.28 68.08 81.19 59.37

DSSCCSBERT 80.83 92.04 76.28 67.56 84.43 61.87
DSSCCSBERT 150 150 88.47 94.50 82.40 77 77 75.15 85.04 64.83

Table 15: Intent detection and discovery with unknown value of m for KIR=75%. We obtain results corresponding
to DeepAlignedBERT (DABERT ) (Zhang et al., 2021c) and report results for DeepAlignedSBERT (DASBERT )
using code provided by the authors of Zhang et al. (2021c) with SBERT as the PLM.
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