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Abstract

We introduce a neural Turkish NLP toolkit
called TurkishDelightNLP that performs com-
putational linguistic analyses from morpholog-
ical level to semantic level that involves tasks
such as stemming, morphological segmenta-
tion, morphological tagging, part-of-speech tag-
ging, dependency parsing, and semantic pars-
ing, as well as high-level NLP tasks such as
named entity recognition. We publicly share
the open-source Turkish NLP toolkit through
a web interface that allows an input text to be
analysed in real-time, as well as the open source
implementation of the components provided
in the toolkit, an API, and several annotated
datasets such as word similarity test set to eval-
uate word embeddings and UCCA-based se-
mantic annotation in Turkish. This will be the
first open-source Turkish NLP toolkit that in-
volves a range of NLP tasks in all levels. We be-
lieve that it will be useful for other researchers
in Turkish NLP and will be also beneficial for
other high-level NLP tasks in Turkish.

1 Introduction

Turkish is one of the low-resource languages with a
rich morphology. Although still limited, there has
been an increasing interest in Turkish NLP in the
last decade. Being a morphologically productive
language is the main drawback of the Turkish NLP
research. Current deep learning models are notori-
ously data-hungry. When it comes to morpholog-
ically productive languages, the data requirement
substantially increases compared to other morpho-
logically poor languages. This is due to the number
of different word forms that can be generated via in-
flection and/or derivation. Although current word
embedding models such as BERT (Devlin et al.,
2019) rely on tokenization that considers sub-word
tokens rather than word tokens, the recent research
(Haley, 2020) still shows that the performance of
such models degrades with novel words.

We introduce a new neural Turkish NLP toolkit
that involves the following linguistic and NLP tasks
in Turkish: Stemming, morphological segmenta-
tion, morphological tagging, part-of-speech tag-
ging, dependency parsing, semantic parsing, and
named entity recognition. Morphological segmen-
tation, morphological tagging, part-of-speech tag-
ging, and dependency parsing are learned jointly
using a multi-task learning approach. Most of the
previous work on Turkish morphology and syntax
considers morphological and syntactic tasks as in-
dependent problems. However, syntax is strongly
defined by morphology and vice versa, especially
in agglutinative languages. Therefore, in this study,
we benefit from the mutual interaction between
morphological and syntactic layers in the language.

All components apart from semantic parsing
model are built on LSTMs that are capable of learn-
ing especially long distance relations. The models
also utilise a Bahdanau (Bahdanau et al., 2015)
attention mechanism in various layers for an ef-
ficient learning of the valuable contextual infor-
mation within the sentence/word. Moreover, we
investigate cross-level information flow between
the layers by incorporating information between
words in different time steps. As distinct from the
other components, semantic parsing model adopts
an encoder-decoder model where the encoder is
based on self-attention mechanism (Vaswani et al.,
2017).

TurkishDelightNLP is available at http:
//rgcl.wlv.ac.uk/TurkishNLP/ and the
source codes of all components are also publicly
available, which are specified in each section be-
low. We also provide API to allow users to process
their data using HTTP requests1. In addition to
the NLP toolkit, we provide few datasets; that are
an UCCA-based semantic annotation for Turkish,

1The REST API for the TurkishDelightNLP toolkit
is available at https://github.com/halecakir/
turkish-delight-nlp-api.
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a Turkish stemming training set based on METU-
Sabanci Turkish Treebank (Oflazer et al., 2003b),
and a word similarity test set along with the hu-
man judgements for assessing morphologically rich
Turkish word embeddings.

2 Related Work and Tools on Turkish
NLP

Despite being a low-resource language, Turkish has
been one of the actively studied languages among
other low-resource languages especially in the last
decade. Numerous models have been recently re-
leased for Turkish. However, most of them were
not released publicly available, and they were not
shared as tools that facilitate generating a result
in real time. The earlier studies on Turkish mor-
phology include morphological analyzers such as
the two-level description of Turkish morphology
(Oflazer, 1993), the stochastic morphological ana-
lyzer based on finite state transducers (Sak et al.,
2009), paradigmatic approaches (Can and Man-
andhar, 2009, 2012, 2018), and few other open
source analyzers such as Zemberek (Akın and Akın,
2007), TRmorph (Çöltekin, 2010), and the syn-
tactically expressive morphological analyzer by
Ozturel et al. (2019). The earlier studies also in-
volve dependency parsers such as the probabilis-
tic and deterministic dependency parser by Ery-
iğit et al. (2008), the two-phase statistical parser
based on Conditional Random Fields (CRFs) by
Durgar El-Kahlout et al. (2014), and the recent
neural parser by Tuç and Can (2020). There are
a couple of Turkish stemmers introduced such as
the probabilistic stemmer by Dincer and Karaoğlan
(2003), and the finite state machine-based Govde-
Turk by Yücebas and Tintin (2017); a few part-
of-speech taggers were also proposed such as the
Hidden Markov Model-based PoS tagger by Dinçer
et al. (2008), the deterministic tagger using the
two-level morphological description by Oflazer
and Kuruoz (1994), and unsupervised Bayesian ap-
proaches (Bölücü and Can, 2019, 2021). The first
semantic parsing annotation for Turkish (Azin
and Eryiğit, 2019) has been presented for Abstract
Meaning Representation (AMR) (Flanigan et al.,
2014) and there is not any other semantic parser
introduced for Turkish yet, to our knowledge.

As seen, most of the linguistic analysis tasks
on Turkish are based on either statistical or deter-
ministic approaches. Currently, the Turkish NLP
research focuses more on NLP applications such

as named entity recognition (Güneş and Tantuğ,
2018; Güngör et al., 2019; Eşref and Can, 2019),
text classification (Tokgoz et al., 2021), sentiment
analysis (Gezici et al., 2019; Demirci et al., 2019),
offensive language identification (Ozdemir and
Yeniterzi, 2020), text summarisation (Ertam and
Aydin, 2021), text normalisation (Göker and Can,
2018) with especially the availability of the large
pretrained neural word embeddings in almost any
language.

Most of the NLP tools in Turkish were released
before the deep learning era and they still have not
been replaced by the neural network approaches
and the researchers in the field still use the old-
fashioned statistical and deterministic models for
morphological or syntactic processing. We aim to
fill this gap with our Turkish NLP toolkit by intro-
ducing better performing neural-based methods for
Turkish linguistic analysis and NLP. The most sim-
ilar one to our toolkit is ITU NLP Toolkit (Eryiğit,
2014) that also involves a wide range of NLP tools
such as normalization, spell correction, morpho-
logical analysis, dependency parsing, and named
entity recognition. However, all of their models
are independent from each other and they are built
on either deterministic or statistical machine learn-
ing algorithms. Our toolkit deviates from theirs by
adopting neural models and analysing morphology
and syntax jointly by considering the interaction
between them. Moreover, their toolkit does not
involve any semantic parsing as ours.

3 About Turkish

Turkish is an agglutinating language with a rich
morphology. The morphological rules are quite
regular in Turkish that define the order of the mor-
phemes in a word, as well as the morphophonemic
processes such as consonant mutation and vowel
harmony, which lead the suffix and the final con-
sonant and vowel in a word to be harmonised with
each other mutually. Therefore, a morpheme can
have tens of different surface forms in Turkish,
which are allomorphs of the same morpheme. In
Turkish, syntactic information is encoded in in-
flectional morphemes. For example, the word ‘
yapabileceğim’ (in English, ‘ I will be able to do’)
involves the following inflectional morphemes that
each correspond to a syntactic role: ‘ -abil’ (’be
able’), ‘ -eceğ’ ( ‘ will’), and ‘ -im’ ( ‘ I’).

In this paper, we propose to process every word
considering its left and right context through a
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cross-level information from morphological seg-
ments up to dependencies in a moving window, so
that morphological information of the contextual
words help to analyse the PoS tags, and the PoS
information of the contextual words help to analyse
the dependency relations in a sentence.

4 A Neural Turkish NLP Toolkit

The introduced toolkit involves different compo-
nents that are all described thoroughly below.

4.1 Stemmer

The stemmer is built on an encoder-decoder model
that employs a bidirectional LSTM (Can, 2019).
The model has two versions, one without an at-
tention mechanism considering all characters with
equal probability and another version with Bah-
danau attention (Bahdanau et al., 2015) over char-
acters of a given word in both directions to learn
character-based contextual information. The model
is trained on a dataset with 17025 word types along
with their stems obtained from Metu-Sabanci Tree-
bank (Oflazer et al., 2003b). Both the model that
is implemented in DyNet (Neubig et al., 2017) and
the dataset are publicly available2. The accuracy of
the stemmer is 85% and comparable to that of Zem-
berek (Akın and Akın, 2007), and outperforms the
other open-source Turkish stemmers (Zafer, 2015).

4.2 Joint Morphology and Syntax Model

A multi-task learning model is proposed for joint
learning of morphology and syntax (Can et al.,
2022). The model is built upon a multi-layer LSTM
structure where each layer contributes to the overall
loss in a joint learning framework and the errors
from all layers backpropagate from top layer to the
bottom. LSTM structure has been preferred both
due its low size data requirement compared to trans-
formers and the flexibility of processing sequential
information by controlling the vertical information
flow between the layers. The model is trained on
IMST Turkish Treebank (Sulubacak et al., 2016).
The model involves 4 layers where each of them
adopts a bidirectional LSTM that is specialised
in either morphology or syntax. The layers are
dedicated for morphological segmentation, mor-
phological tagging, part-of-speech tagging, and de-
pendency parsing. The order of the layers has been
designed based on the direction of the information

2https://github.com/burcu-can/Stemmer

flow and the size of the units (from smaller to big-
ger). A separate component for morph2vec (Üstün
et al., 2018) that is used to pretrain the morpheme
embeddings is also involved.

The joint model is trained and evaluated on
UD Turkish Treebank, which is called IMST
Treebank (Sulubacak and It, 2018) and it is
a re-annotated version of the METU-Sabanci
Treebank (Oflazer et al., 2003a). For the pre-
trained word embeddings, we use pre-trained 200-
dimensional word embeddings trained on Boun
Web Corpus (Sak et al., 2008) provided by CoNLL
2018 Shared Task. The overall architecture of
the joint model is given in Figure 1, where each
coloured component belongs to a different level of
processing that starts from morphological segmen-
tation till dependency parsing. Each level is built
on LSTMs that sequentially process every unit (i.e.
character, morpheme, word, or syntactic informa-
tion) in a given sentence by utilising the contex-
tual information as well (see Section 4.2.6 for the
details of the cross-level information flow). An
example analysis is also provided in Figure 2 and
Figure 3. All layers are described in detail below.
The open-source implementation in DyNet (Neubig
et al., 2017) is publicly available3.

4.2.1 Morpheme-based Word Embeddings:
morph2vec

Morph2vec (Üstün et al., 2018) is a morpheme-
based word embedding model that learns word
embeddings as a weighted sum of word embed-
dings each of which are obtained from a particu-
lar morphological segmentation of a word. It is
assumed that the correct morphological segmen-
tation of a word is not known apriori; therefore,
each potential morphological segmentation of a
word is predicted before training the model. Each
morphological segmentation is fed into a bidirec-
tional LSTM with each LSTM unit being fed with a
morpheme embedding that is randomly initialised.
So each LSTM generates a word embedding for
that particular morphological segmentation. Fi-
nally, Bahdanau attention mechanism (Bahdanau
et al., 2015) is employed to learn the weight of
each segmentation-specific word embedding. The
morpheme-based embeddings give a better Spear-
man correlation with the human judgements in
word similarity tasks compared to both char2vec
(Cao and Rei, 2016) and fasttext (Bojanowski et al.,

3https://github.com/halecakir/
JointParser
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Figure 1: The layers of the proposed joint learning framework. The sentence “Ali okula gitti.” (“Ali went to school”)
is processed from morphology up to dependencies (Can et al., 2022).

2017). The source code in DyNet is publicly avail-
able4, and the datasets for syntactic analogy and
word similarity along with the human judgement
scores are also publicly available5.

Morph2vec is pre-trained on METU-Sabanci
4https://github.com/burcu-can/

morph2vec_dynet
5https://nlp.cs.hacettepe.edu.tr/

projects/morph2vec/

Turkish Treebank (Oflazer et al., 2003b) before
training the joint morphology and syntax model.
Therefore, pretrained morpheme embeddings are
used during joint learning.

4.2.2 Morphological Segmentation

The lowest layer of the joint model performs mor-
phological segmentation through a bidirectional
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O iyi insanlar o güzel atlara binip çekip gittiler
o iyi insan-lar o güzel atlar-a binip çekip git-ti-ler

DET ADJ NOUN DET ADJ ADJ VERB VERB VERB
- - people-nom-3p - - horse-dat-3p got on-conv go away-conv go-3p-plu-past

det

amod

det

amod

amod

nmod nmod

nsubj

root

‘Those good people got on those beautiful horses and left.’

Figure 2: An example analysis of the toolkit for a sentence in Turkish. First line: The orthographic form. Second line:
morphological segments. Third line: PoS tags. Fourth line: morphological features (’-’ is for null). Dependencies in
the article are arrowed (head to dependent) and labeled UD dependencies (de Marneffe et al., 2021).

Figure 3: The UCCA-based semantic parse tree of the sentence, O iyi insanlar o güzel atlara binip çekip gittiler. (in
English, “Those good people got on those beautiful horses and left")

LSTM that encodes each character of a given word
with one hot encoding. The output at each time step
is reduced to a single dimension using a multilayer
perceptron (MLP) with sigmoid function to predict
whether there is a morpheme boundary after that
character or not. Each value above 0.6 refers to a
morpheme boundary, and below means that there
is not a morpheme boundary at that time step after
the current character. Binary cross entropy is used
for this layer that contributes to the overall loss of
the joint model.

We obtain the gold segments from the rule-based
morphological analyser Zemberek (Akın and Akın,
2007) to train the segmentation component since
the IMST Treebank does not involve morpholog-
ical segmentations but only morphological tags.
Our joint model performs 98.97% of accuracy on
morphological segmentation task6.

4.2.3 Morphological Tagging
We adopt an encoder-decoder model for the mor-
phological tagging layer. To encode the relevant

6It should be noted that the test set is also obtained from
Zemberek.

contextual information both within the word and
within the sentence, we use a character encoder and
word encoder respectively. The character encoder
processes the characters within the given word that
will be analysed and the word encoder processes
the contextual words in that sentence to better pre-
dict the morphological tagging of the given word in
a particular context, which can also help to disam-
biguate the word in a particular context. Both of the
encoders are built on bidirectional LSTMs and both
of them adopt a Bahdanau attention (Bahdanau
et al., 2015) to learn the weights over characters
and words. The input to the decoder is the con-
catenation of the weighted outputs obtained from
both character and context encoders. The decoder
is also built on a bidirectional LSTM that gener-
ates morpheme tags using a softmax function at
each time step. Our joint model performs 87.59%
FEATS score on morphological tagging, and com-
parable to a recently introduced neural Turkish mor-
phological tagger that performs 89.54% FEATS
score (Dayanık et al., 2018).
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4.2.4 Part-of-Speech Tagging
The PoS tagging layer is built upon a bidirectional
LSTM that is fed with the concatenation of word-
level (i.e. word2vec embeddings), character-level
(learned through a character BiLSTM for each
word), morpheme-level (i.e. morph2vec), and mor-
pheme tag encodings of each particular word in a
sentence. Morpheme-level word embeddings are
obtained from pretrained morph2vec as mentioned
before. However, the other embeddings are all ran-
domly initialised and learned during training. The
output at each time step is passed through an MLP
with softmax activation function to predict the PoS
tag of the word at that time step. Our joint model
performs exactly the same with the state-of-art PoS
tagger by Che et al. (2018) with an accuracy of
94.78%.

4.2.5 Dependency Parsing
The dependency parsing is also built on BiLSTM
that is fed with the same embeddings used in PoS
tagging layer, and in addition, we concatenate the
PoS encodings of the words that are obtained from
the previous layer. PoS encodings are randomly
initialised and learned during training. The arcs
are scored by an MLP that involves a pointer net-
work that predicts whether there is an arc between
the given two words or not. Once the scores are
predicted by the MLP, the projective trees are gen-
erated using Eisner’s decoding algorithm (Eisner,
1996). Labels are analogously predicted using an-
other MLP with a softmax function. Our joint
model gives comparable results with the state-of-
art dependency parsing results of Straka (2018)
with 71% UAS and 63.92% LAS (whereas Straka
(2018) achieves 72.25% UAS and 66.44% LAS).

4.2.6 Cross-Level Information Flow
The custom in such a multi-layered and multi-task
models is to feed the obtained information regard-
ing the current word from the previous layers to
pass it over to the upper layers for the same word
(Nguyen and Nguyen, 2021). However, to our
knowledge, we are the first to analyse cross-level
information flow between the layers by allowing
information flow across different words in different
layers. For this, we incorporate contextual infor-
mation from the previous word to the current word
in different layers, by adding contextual informa-
tion obtained from morpheme tagging encoding
and morpheme encoding of the previous word to
POS and dependency layers of the current word.

Similarly, we incorporate POS tagging encoding
of the previous word into the dependency layer
of the current word. This is shown in Figure 1
with PoSVerticalFlow, MorphTagVerticalFlow, and
MorphVerticalFlow. The results show that such
cross-level information flow improves the perfor-
mance of the model especially in upper layers.

4.3 Semantic Parsing

We use the Universal Conceptual Cognitive Annota-
tion (UCCA) (Abend and Rappoport, 2013) frame-
work for semantic annotation, which is a cross-
lingual semantic annotation framework. Since
there is no Turkish UCCA dataset, the model is
trained using a combination of English, German
and French datasets (Hershcovich et al., 2017)7,
and the Turkish annotations are obtained in a zero-
shot setting and manually revised. We annotated
50 sentences obtained from METU-Sabaci Turkish
Treebank that is also publicly available8.

We adopt an encoder/decoder model that tack-
les the semantic parsing task in the form of a
chart-based constituency parsing (Bölücü and Can,
2021)9. Self-attention layers (Vaswani et al., 2017)
are used in the encoder where the encoding is fed
into an MLP with two fully-connected layers with
ReLU activation function, and the CYK (Cocke-
Younger-Kasami) algorithm (Chappelier and Ra-
jman, 1998) is used within the decoder that gen-
erates the tree with the maximum score using the
scores obtained from the encoder. Our Turkish
UCCA-based semantic parser performs 81.11% F1
score on labeled evaluation and 90.24% F1 score
on unlabeled evaluation in few shot learning.

4.4 Named Entity Recognition (NER)

We use a BiLSTM-CRF model where each word
is encoded through a BiLSTM and decoded with
a CRF layer to learn the named entities in a given
text (Kağan Akkaya and Can, 2021). We feed the
BiLSTM with character-level (learned through a
character-level BiLSTM), character n-gram-level
(fasttext), morpheme-level (morph2vec), and word-
level word embeddings (word2vec), as well as or-
thographic embeddings that are learned either with
a CNN or BiLSTM by encoding alphabetic charac-
ters similar to that of Aguilar et al. (2017).

7https://github.com/
UniversalConceptualCognitiveAnnotation

8https://github.com/necvabolucu/semantic-dataset
9https://github.com/necvabolucu/ucca-parser

22



Figure 4: The user interface of the TurkishDelightNLP. The user selects a task from the dropdown menu on the left
and populates an input sentence. The output is displayed on the right.

Since the particular target domain for NER in
our study is noisy text especially obtained from
social media, we use transfer learning to utilise
any available information in a formal but possibly
larger text to learn the named entities in an informal
but usually a smaller text. Therefore, we adopt two
CRF layers one of which is trained on the formal
text (i.e. Turkish news corpus) and the other one
is trained on an informal text (i.e. tweets) (Şeker
and Eryiğit, 2017). Training is performed alter-
nately between the two CRF layers which share
the same BiLSTM layer. Our named entity recog-
nition model outperforms the current state-of-art
model on noisy text by Şeker and Eryiğit (2017)
with 67.39% F1 score on DS-1 v4 (Şeker and Ery-
iğit, 2017). All source code and related material on
NER are publicly available10.

5 Web Interface

TurkishDelightNLP is a Streamlit application that
provides a simple user interface for producing pre-
dictions for different tasks. We selected Stream-
lit since it is a low-code web framework that en-
ables researchers to easily create a data-driven
app. Streamlit has a relatively simple application
programming interface and it is specifically de-
signed for data science applications. In TurkishDe-
lightNLP, in the backend, query and model are

10https://github.com/emrekgn/
turkish-ner

cached to avoid repeated calculations of the same
input. Docker is used to increase portability and
to be deployed in different operating systems and
hardware platforms.

Figure 4 shows the user interface. In the left
panel, there is a menu for the models. Whenever
the user selects a model and populates a sentence,
the result is displayed on the right panel.

We also provide a REST API that allows users
to access the toolkit with HTTP requests. To be
able to use the API, we provide an API token, so
a user can access it from clients such as cURL
and Postman. Moreover, with the help of Swagger
and Redoc documentation, users can see how to
consume API endpoints.

6 Conclusion and Future Work

We introduce a new Neural Turkish NLP toolkit
that performs different levels of linguistic analysis
from morphology to semantics, as well as other
NLP applications such as NER. All source codes
and relevant datasets are publicly available and we
believe that this framework for Turkish NLP will
be beneficial for other researchers in the area, and
will eventually expedite the Turkish NLP research.
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Zahra Azin and Gülşen Eryiğit. 2019. Towards Turkish
Abstract Meaning Representation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 43–47, Florence, Italy. Association for
Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Necva Bölücü and Burcu Can. 2019. Unsupervised
joint PoS tagging and stemming for agglutinative lan-
guages. ACM Transactions on Asian Low-Resource
Language Information Processing, 18(3).

Necva Bölücü and Burcu Can. 2021. A cascaded unsu-
pervised model for PoS tagging. ACM Transactions
on Asian Low-Resource Language Information Pro-
cessing, 20(1).

Necva Bölücü and Burcu Can. 2021. Self-attentive con-
stituency parsing for UCCA-based semantic parsing.
CoRR, 2110(621).

Burcu Can. 2019. Stemming Turkish words with lSTM
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Gülşen Eryiğit. 2014. ITU Turkish NLP web service. In
Proceedings of the Demonstrations at the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL), Gothenburg,
Sweden. Association for Computational Linguistics.
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