
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies: System Demonstrations, pages 17 - 26

July 10-15, 2022 ©2022 Association for Computational Linguistics

TurkishDelightNLP: A Neural Turkish NLP Toolkit

Hüseyin Aleçakır
Afiniti

Istanbul
huseyinalecakir@gmail.com

Necva Bölücü
Computer Engineering
Hacettepe University

Ankara
necvaa@gmail.com

Burcu Can
RGCL

University of Wolverhampton
Wolverhampton

b.can@wlv.ac.uk

Abstract

We introduce a neural Turkish NLP toolkit
called TurkishDelightNLP that performs com-
putational linguistic analyses from morpholog-
ical level to semantic level that involves tasks
such as stemming, morphological segmenta-
tion, morphological tagging, part-of-speech tag-
ging, dependency parsing, and semantic pars-
ing, as well as high-level NLP tasks such as
named entity recognition. We publicly share
the open-source Turkish NLP toolkit through
a web interface that allows an input text to be
analysed in real-time, as well as the open source
implementation of the components provided
in the toolkit, an API, and several annotated
datasets such as word similarity test set to eval-
uate word embeddings and UCCA-based se-
mantic annotation in Turkish. This will be the
first open-source Turkish NLP toolkit that in-
volves a range of NLP tasks in all levels. We be-
lieve that it will be useful for other researchers
in Turkish NLP and will be also beneficial for
other high-level NLP tasks in Turkish.

1 Introduction

Turkish is one of the low-resource languages with a
rich morphology. Although still limited, there has
been an increasing interest in Turkish NLP in the
last decade. Being a morphologically productive
language is the main drawback of the Turkish NLP
research. Current deep learning models are notori-
ously data-hungry. When it comes to morpholog-
ically productive languages, the data requirement
substantially increases compared to other morpho-
logically poor languages. This is due to the number
of different word forms that can be generated via in-
flection and/or derivation. Although current word
embedding models such as BERT (Devlin et al.,
2019) rely on tokenization that considers sub-word
tokens rather than word tokens, the recent research
(Haley, 2020) still shows that the performance of
such models degrades with novel words.

We introduce a new neural Turkish NLP toolkit
that involves the following linguistic and NLP tasks
in Turkish: Stemming, morphological segmenta-
tion, morphological tagging, part-of-speech tag-
ging, dependency parsing, semantic parsing, and
named entity recognition. Morphological segmen-
tation, morphological tagging, part-of-speech tag-
ging, and dependency parsing are learned jointly
using a multi-task learning approach. Most of the
previous work on Turkish morphology and syntax
considers morphological and syntactic tasks as in-
dependent problems. However, syntax is strongly
defined by morphology and vice versa, especially
in agglutinative languages. Therefore, in this study,
we benefit from the mutual interaction between
morphological and syntactic layers in the language.

All components apart from semantic parsing
model are built on LSTMs that are capable of learn-
ing especially long distance relations. The models
also utilise a Bahdanau (Bahdanau et al., 2015)
attention mechanism in various layers for an ef-
ficient learning of the valuable contextual infor-
mation within the sentence/word. Moreover, we
investigate cross-level information flow between
the layers by incorporating information between
words in different time steps. As distinct from the
other components, semantic parsing model adopts
an encoder-decoder model where the encoder is
based on self-attention mechanism (Vaswani et al.,
2017).

TurkishDelightNLP is available at http:
//rgcl.wlv.ac.uk/TurkishNLP/ and the
source codes of all components are also publicly
available, which are specified in each section be-
low. We also provide API to allow users to process
their data using HTTP requests1. In addition to
the NLP toolkit, we provide few datasets; that are
an UCCA-based semantic annotation for Turkish,

1The REST API for the TurkishDelightNLP toolkit
is available at https://github.com/halecakir/
turkish-delight-nlp-api.

17

http://rgcl.wlv.ac.uk/TurkishNLP/
http://rgcl.wlv.ac.uk/TurkishNLP/
https://github.com/halecakir/turkish-delight-nlp-api
https://github.com/halecakir/turkish-delight-nlp-api

a Turkish stemming training set based on METU-
Sabanci Turkish Treebank (Oflazer et al., 2003b),
and a word similarity test set along with the hu-
man judgements for assessing morphologically rich
Turkish word embeddings.

2 Related Work and Tools on Turkish
NLP

Despite being a low-resource language, Turkish has
been one of the actively studied languages among
other low-resource languages especially in the last
decade. Numerous models have been recently re-
leased for Turkish. However, most of them were
not released publicly available, and they were not
shared as tools that facilitate generating a result
in real time. The earlier studies on Turkish mor-
phology include morphological analyzers such as
the two-level description of Turkish morphology
(Oflazer, 1993), the stochastic morphological ana-
lyzer based on finite state transducers (Sak et al.,
2009), paradigmatic approaches (Can and Man-
andhar, 2009, 2012, 2018), and few other open
source analyzers such as Zemberek (Akın and Akın,
2007), TRmorph (Çöltekin, 2010), and the syn-
tactically expressive morphological analyzer by
Ozturel et al. (2019). The earlier studies also in-
volve dependency parsers such as the probabilis-
tic and deterministic dependency parser by Ery-
iğit et al. (2008), the two-phase statistical parser
based on Conditional Random Fields (CRFs) by
Durgar El-Kahlout et al. (2014), and the recent
neural parser by Tuç and Can (2020). There are
a couple of Turkish stemmers introduced such as
the probabilistic stemmer by Dincer and Karaoğlan
(2003), and the finite state machine-based Govde-
Turk by Yücebas and Tintin (2017); a few part-
of-speech taggers were also proposed such as the
Hidden Markov Model-based PoS tagger by Dinçer
et al. (2008), the deterministic tagger using the
two-level morphological description by Oflazer
and Kuruoz (1994), and unsupervised Bayesian ap-
proaches (Bölücü and Can, 2019, 2021). The first
semantic parsing annotation for Turkish (Azin
and Eryiğit, 2019) has been presented for Abstract
Meaning Representation (AMR) (Flanigan et al.,
2014) and there is not any other semantic parser
introduced for Turkish yet, to our knowledge.

As seen, most of the linguistic analysis tasks
on Turkish are based on either statistical or deter-
ministic approaches. Currently, the Turkish NLP
research focuses more on NLP applications such

as named entity recognition (Güneş and Tantuğ,
2018; Güngör et al., 2019; Eşref and Can, 2019),
text classification (Tokgoz et al., 2021), sentiment
analysis (Gezici et al., 2019; Demirci et al., 2019),
offensive language identification (Ozdemir and
Yeniterzi, 2020), text summarisation (Ertam and
Aydin, 2021), text normalisation (Göker and Can,
2018) with especially the availability of the large
pretrained neural word embeddings in almost any
language.

Most of the NLP tools in Turkish were released
before the deep learning era and they still have not
been replaced by the neural network approaches
and the researchers in the field still use the old-
fashioned statistical and deterministic models for
morphological or syntactic processing. We aim to
fill this gap with our Turkish NLP toolkit by intro-
ducing better performing neural-based methods for
Turkish linguistic analysis and NLP. The most sim-
ilar one to our toolkit is ITU NLP Toolkit (Eryiğit,
2014) that also involves a wide range of NLP tools
such as normalization, spell correction, morpho-
logical analysis, dependency parsing, and named
entity recognition. However, all of their models
are independent from each other and they are built
on either deterministic or statistical machine learn-
ing algorithms. Our toolkit deviates from theirs by
adopting neural models and analysing morphology
and syntax jointly by considering the interaction
between them. Moreover, their toolkit does not
involve any semantic parsing as ours.

3 About Turkish

Turkish is an agglutinating language with a rich
morphology. The morphological rules are quite
regular in Turkish that define the order of the mor-
phemes in a word, as well as the morphophonemic
processes such as consonant mutation and vowel
harmony, which lead the suffix and the final con-
sonant and vowel in a word to be harmonised with
each other mutually. Therefore, a morpheme can
have tens of different surface forms in Turkish,
which are allomorphs of the same morpheme. In
Turkish, syntactic information is encoded in in-
flectional morphemes. For example, the word ‘
yapabileceğim’ (in English, ‘ I will be able to do’)
involves the following inflectional morphemes that
each correspond to a syntactic role: ‘ -abil’ (’be
able’), ‘ -eceğ’ (‘ will’), and ‘ -im’ (‘ I’).

In this paper, we propose to process every word
considering its left and right context through a

18

cross-level information from morphological seg-
ments up to dependencies in a moving window, so
that morphological information of the contextual
words help to analyse the PoS tags, and the PoS
information of the contextual words help to analyse
the dependency relations in a sentence.

4 A Neural Turkish NLP Toolkit

The introduced toolkit involves different compo-
nents that are all described thoroughly below.

4.1 Stemmer

The stemmer is built on an encoder-decoder model
that employs a bidirectional LSTM (Can, 2019).
The model has two versions, one without an at-
tention mechanism considering all characters with
equal probability and another version with Bah-
danau attention (Bahdanau et al., 2015) over char-
acters of a given word in both directions to learn
character-based contextual information. The model
is trained on a dataset with 17025 word types along
with their stems obtained from Metu-Sabanci Tree-
bank (Oflazer et al., 2003b). Both the model that
is implemented in DyNet (Neubig et al., 2017) and
the dataset are publicly available2. The accuracy of
the stemmer is 85% and comparable to that of Zem-
berek (Akın and Akın, 2007), and outperforms the
other open-source Turkish stemmers (Zafer, 2015).

4.2 Joint Morphology and Syntax Model

A multi-task learning model is proposed for joint
learning of morphology and syntax (Can et al.,
2022). The model is built upon a multi-layer LSTM
structure where each layer contributes to the overall
loss in a joint learning framework and the errors
from all layers backpropagate from top layer to the
bottom. LSTM structure has been preferred both
due its low size data requirement compared to trans-
formers and the flexibility of processing sequential
information by controlling the vertical information
flow between the layers. The model is trained on
IMST Turkish Treebank (Sulubacak et al., 2016).
The model involves 4 layers where each of them
adopts a bidirectional LSTM that is specialised
in either morphology or syntax. The layers are
dedicated for morphological segmentation, mor-
phological tagging, part-of-speech tagging, and de-
pendency parsing. The order of the layers has been
designed based on the direction of the information

2https://github.com/burcu-can/Stemmer

flow and the size of the units (from smaller to big-
ger). A separate component for morph2vec (Üstün
et al., 2018) that is used to pretrain the morpheme
embeddings is also involved.

The joint model is trained and evaluated on
UD Turkish Treebank, which is called IMST
Treebank (Sulubacak and It, 2018) and it is
a re-annotated version of the METU-Sabanci
Treebank (Oflazer et al., 2003a). For the pre-
trained word embeddings, we use pre-trained 200-
dimensional word embeddings trained on Boun
Web Corpus (Sak et al., 2008) provided by CoNLL
2018 Shared Task. The overall architecture of
the joint model is given in Figure 1, where each
coloured component belongs to a different level of
processing that starts from morphological segmen-
tation till dependency parsing. Each level is built
on LSTMs that sequentially process every unit (i.e.
character, morpheme, word, or syntactic informa-
tion) in a given sentence by utilising the contex-
tual information as well (see Section 4.2.6 for the
details of the cross-level information flow). An
example analysis is also provided in Figure 2 and
Figure 3. All layers are described in detail below.
The open-source implementation in DyNet (Neubig
et al., 2017) is publicly available3.

4.2.1 Morpheme-based Word Embeddings:
morph2vec

Morph2vec (Üstün et al., 2018) is a morpheme-
based word embedding model that learns word
embeddings as a weighted sum of word embed-
dings each of which are obtained from a particu-
lar morphological segmentation of a word. It is
assumed that the correct morphological segmen-
tation of a word is not known apriori; therefore,
each potential morphological segmentation of a
word is predicted before training the model. Each
morphological segmentation is fed into a bidirec-
tional LSTM with each LSTM unit being fed with a
morpheme embedding that is randomly initialised.
So each LSTM generates a word embedding for
that particular morphological segmentation. Fi-
nally, Bahdanau attention mechanism (Bahdanau
et al., 2015) is employed to learn the weight of
each segmentation-specific word embedding. The
morpheme-based embeddings give a better Spear-
man correlation with the human judgements in
word similarity tasks compared to both char2vec
(Cao and Rei, 2016) and fasttext (Bojanowski et al.,

3https://github.com/halecakir/
JointParser

19

https://github.com/halecakir/JointParser
https://github.com/halecakir/JointParser

Figure 1: The layers of the proposed joint learning framework. The sentence “Ali okula gitti.” (“Ali went to school”)
is processed from morphology up to dependencies (Can et al., 2022).

2017). The source code in DyNet is publicly avail-
able4, and the datasets for syntactic analogy and
word similarity along with the human judgement
scores are also publicly available5.

Morph2vec is pre-trained on METU-Sabanci
4https://github.com/burcu-can/

morph2vec_dynet
5https://nlp.cs.hacettepe.edu.tr/

projects/morph2vec/

Turkish Treebank (Oflazer et al., 2003b) before
training the joint morphology and syntax model.
Therefore, pretrained morpheme embeddings are
used during joint learning.

4.2.2 Morphological Segmentation

The lowest layer of the joint model performs mor-
phological segmentation through a bidirectional

20

https://github.com/burcu-can/morph2vec_dynet
https://github.com/burcu-can/morph2vec_dynet
https://nlp.cs.hacettepe.edu.tr/projects/morph2vec/
https://nlp.cs.hacettepe.edu.tr/projects/morph2vec/

O iyi insanlar o güzel atlara binip çekip gittiler
o iyi insan-lar o güzel atlar-a binip çekip git-ti-ler

DET ADJ NOUN DET ADJ ADJ VERB VERB VERB
- - people-nom-3p - - horse-dat-3p got on-conv go away-conv go-3p-plu-past

det

amod

det

amod

amod

nmod nmod

nsubj

root

‘Those good people got on those beautiful horses and left.’

Figure 2: An example analysis of the toolkit for a sentence in Turkish. First line: The orthographic form. Second line:
morphological segments. Third line: PoS tags. Fourth line: morphological features (’-’ is for null). Dependencies in
the article are arrowed (head to dependent) and labeled UD dependencies (de Marneffe et al., 2021).

Figure 3: The UCCA-based semantic parse tree of the sentence, O iyi insanlar o güzel atlara binip çekip gittiler. (in
English, “Those good people got on those beautiful horses and left")

LSTM that encodes each character of a given word
with one hot encoding. The output at each time step
is reduced to a single dimension using a multilayer
perceptron (MLP) with sigmoid function to predict
whether there is a morpheme boundary after that
character or not. Each value above 0.6 refers to a
morpheme boundary, and below means that there
is not a morpheme boundary at that time step after
the current character. Binary cross entropy is used
for this layer that contributes to the overall loss of
the joint model.

We obtain the gold segments from the rule-based
morphological analyser Zemberek (Akın and Akın,
2007) to train the segmentation component since
the IMST Treebank does not involve morpholog-
ical segmentations but only morphological tags.
Our joint model performs 98.97% of accuracy on
morphological segmentation task6.

4.2.3 Morphological Tagging
We adopt an encoder-decoder model for the mor-
phological tagging layer. To encode the relevant

6It should be noted that the test set is also obtained from
Zemberek.

contextual information both within the word and
within the sentence, we use a character encoder and
word encoder respectively. The character encoder
processes the characters within the given word that
will be analysed and the word encoder processes
the contextual words in that sentence to better pre-
dict the morphological tagging of the given word in
a particular context, which can also help to disam-
biguate the word in a particular context. Both of the
encoders are built on bidirectional LSTMs and both
of them adopt a Bahdanau attention (Bahdanau
et al., 2015) to learn the weights over characters
and words. The input to the decoder is the con-
catenation of the weighted outputs obtained from
both character and context encoders. The decoder
is also built on a bidirectional LSTM that gener-
ates morpheme tags using a softmax function at
each time step. Our joint model performs 87.59%
FEATS score on morphological tagging, and com-
parable to a recently introduced neural Turkish mor-
phological tagger that performs 89.54% FEATS
score (Dayanık et al., 2018).

21

4.2.4 Part-of-Speech Tagging
The PoS tagging layer is built upon a bidirectional
LSTM that is fed with the concatenation of word-
level (i.e. word2vec embeddings), character-level
(learned through a character BiLSTM for each
word), morpheme-level (i.e. morph2vec), and mor-
pheme tag encodings of each particular word in a
sentence. Morpheme-level word embeddings are
obtained from pretrained morph2vec as mentioned
before. However, the other embeddings are all ran-
domly initialised and learned during training. The
output at each time step is passed through an MLP
with softmax activation function to predict the PoS
tag of the word at that time step. Our joint model
performs exactly the same with the state-of-art PoS
tagger by Che et al. (2018) with an accuracy of
94.78%.

4.2.5 Dependency Parsing
The dependency parsing is also built on BiLSTM
that is fed with the same embeddings used in PoS
tagging layer, and in addition, we concatenate the
PoS encodings of the words that are obtained from
the previous layer. PoS encodings are randomly
initialised and learned during training. The arcs
are scored by an MLP that involves a pointer net-
work that predicts whether there is an arc between
the given two words or not. Once the scores are
predicted by the MLP, the projective trees are gen-
erated using Eisner’s decoding algorithm (Eisner,
1996). Labels are analogously predicted using an-
other MLP with a softmax function. Our joint
model gives comparable results with the state-of-
art dependency parsing results of Straka (2018)
with 71% UAS and 63.92% LAS (whereas Straka
(2018) achieves 72.25% UAS and 66.44% LAS).

4.2.6 Cross-Level Information Flow
The custom in such a multi-layered and multi-task
models is to feed the obtained information regard-
ing the current word from the previous layers to
pass it over to the upper layers for the same word
(Nguyen and Nguyen, 2021). However, to our
knowledge, we are the first to analyse cross-level
information flow between the layers by allowing
information flow across different words in different
layers. For this, we incorporate contextual infor-
mation from the previous word to the current word
in different layers, by adding contextual informa-
tion obtained from morpheme tagging encoding
and morpheme encoding of the previous word to
POS and dependency layers of the current word.

Similarly, we incorporate POS tagging encoding
of the previous word into the dependency layer
of the current word. This is shown in Figure 1
with PoSVerticalFlow, MorphTagVerticalFlow, and
MorphVerticalFlow. The results show that such
cross-level information flow improves the perfor-
mance of the model especially in upper layers.

4.3 Semantic Parsing

We use the Universal Conceptual Cognitive Annota-
tion (UCCA) (Abend and Rappoport, 2013) frame-
work for semantic annotation, which is a cross-
lingual semantic annotation framework. Since
there is no Turkish UCCA dataset, the model is
trained using a combination of English, German
and French datasets (Hershcovich et al., 2017)7,
and the Turkish annotations are obtained in a zero-
shot setting and manually revised. We annotated
50 sentences obtained from METU-Sabaci Turkish
Treebank that is also publicly available8.

We adopt an encoder/decoder model that tack-
les the semantic parsing task in the form of a
chart-based constituency parsing (Bölücü and Can,
2021)9. Self-attention layers (Vaswani et al., 2017)
are used in the encoder where the encoding is fed
into an MLP with two fully-connected layers with
ReLU activation function, and the CYK (Cocke-
Younger-Kasami) algorithm (Chappelier and Ra-
jman, 1998) is used within the decoder that gen-
erates the tree with the maximum score using the
scores obtained from the encoder. Our Turkish
UCCA-based semantic parser performs 81.11% F1
score on labeled evaluation and 90.24% F1 score
on unlabeled evaluation in few shot learning.

4.4 Named Entity Recognition (NER)

We use a BiLSTM-CRF model where each word
is encoded through a BiLSTM and decoded with
a CRF layer to learn the named entities in a given
text (Kağan Akkaya and Can, 2021). We feed the
BiLSTM with character-level (learned through a
character-level BiLSTM), character n-gram-level
(fasttext), morpheme-level (morph2vec), and word-
level word embeddings (word2vec), as well as or-
thographic embeddings that are learned either with
a CNN or BiLSTM by encoding alphabetic charac-
ters similar to that of Aguilar et al. (2017).

7https://github.com/
UniversalConceptualCognitiveAnnotation

8https://github.com/necvabolucu/semantic-dataset
9https://github.com/necvabolucu/ucca-parser

22

Figure 4: The user interface of the TurkishDelightNLP. The user selects a task from the dropdown menu on the left
and populates an input sentence. The output is displayed on the right.

Since the particular target domain for NER in
our study is noisy text especially obtained from
social media, we use transfer learning to utilise
any available information in a formal but possibly
larger text to learn the named entities in an informal
but usually a smaller text. Therefore, we adopt two
CRF layers one of which is trained on the formal
text (i.e. Turkish news corpus) and the other one
is trained on an informal text (i.e. tweets) (Şeker
and Eryiğit, 2017). Training is performed alter-
nately between the two CRF layers which share
the same BiLSTM layer. Our named entity recog-
nition model outperforms the current state-of-art
model on noisy text by Şeker and Eryiğit (2017)
with 67.39% F1 score on DS-1 v4 (Şeker and Ery-
iğit, 2017). All source code and related material on
NER are publicly available10.

5 Web Interface

TurkishDelightNLP is a Streamlit application that
provides a simple user interface for producing pre-
dictions for different tasks. We selected Stream-
lit since it is a low-code web framework that en-
ables researchers to easily create a data-driven
app. Streamlit has a relatively simple application
programming interface and it is specifically de-
signed for data science applications. In TurkishDe-
lightNLP, in the backend, query and model are

10https://github.com/emrekgn/
turkish-ner

cached to avoid repeated calculations of the same
input. Docker is used to increase portability and
to be deployed in different operating systems and
hardware platforms.

Figure 4 shows the user interface. In the left
panel, there is a menu for the models. Whenever
the user selects a model and populates a sentence,
the result is displayed on the right panel.

We also provide a REST API that allows users
to access the toolkit with HTTP requests. To be
able to use the API, we provide an API token, so
a user can access it from clients such as cURL
and Postman. Moreover, with the help of Swagger
and Redoc documentation, users can see how to
consume API endpoints.

6 Conclusion and Future Work

We introduce a new Neural Turkish NLP toolkit
that performs different levels of linguistic analysis
from morphology to semantics, as well as other
NLP applications such as NER. All source codes
and relevant datasets are publicly available and we
believe that this framework for Turkish NLP will
be beneficial for other researchers in the area, and
will eventually expedite the Turkish NLP research.

Acknowledgements

The joint model was funded by Scientific and Tech-
nological Research Council of Turkey (TUBITAK),
project number EEEAG-115E464.

23

https://github.com/emrekgn/turkish-ner
https://github.com/emrekgn/turkish-ner

References
Omri Abend and Ari Rappoport. 2013. UCCA: A

semantics-based grammatical annotation scheme. In
Proceedings of the 10th International Conference on
Computational Semantics (IWCS 2013)–Long Papers,
pages 1–12.

Gustavo Aguilar, Suraj Maharjan, Adrian Pastor López
Monroy, and Thamar Solorio. 2017. A multi-task ap-
proach for named entity recognition in social media
data. In Proceedings of the 3rd Workshop on Noisy
User-generated Text, pages 148–153.

Ahmet Afşın Akın and Mehmet Dündar Akın. 2007.
Zemberek, an open source nlp framework for Turkic
languages.

Zahra Azin and Gülşen Eryiğit. 2019. Towards Turkish
Abstract Meaning Representation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 43–47, Florence, Italy. Association for
Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching Word Vectors with
Subword Information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Necva Bölücü and Burcu Can. 2019. Unsupervised
joint PoS tagging and stemming for agglutinative lan-
guages. ACM Transactions on Asian Low-Resource
Language Information Processing, 18(3).

Necva Bölücü and Burcu Can. 2021. A cascaded unsu-
pervised model for PoS tagging. ACM Transactions
on Asian Low-Resource Language Information Pro-
cessing, 20(1).

Necva Bölücü and Burcu Can. 2021. Self-attentive con-
stituency parsing for UCCA-based semantic parsing.
CoRR, 2110(621).

Burcu Can. 2019. Stemming Turkish words with lSTM
networks. Bilişim Teknolojileri Dergisi, 12:183 –
193.

Burcu Can, Hüseyin Aleçakır, Suresh Manandhar, and
Cem Bozşahin. 2022. Joint learning of morphology
and syntax with cross-level contextual information
flow. Natural Language Engineering, page 1–33.

Burcu Can and Suresh Manandhar. 2009. Clustering
morphological paradigms using syntactic categories.
In Proceedings of the 10th Cross-Language Evalu-
ation Forum Conference on Multilingual Informa-
tion Access Evaluation: Text Retrieval Experiments,
CLEF’09, page 641–648. Springer-Verlag.

Burcu Can and Suresh Manandhar. 2012. Probabilistic
hierarchical clustering of morphological paradigms.
In Proceedings of the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 654–663, Avignon, France. Asso-
ciation for Computational Linguistics.

Burcu Can and Suresh Manandhar. 2018. Tree struc-
tured Dirichlet processes for hierarchical morpho-
logical segmentation. Computational Linguistics,
44(2):349–374.

Kris Cao and Marek Rei. 2016. A joint model for word
embedding and word morphology. In Proceedings
of the 1st Workshop on Representation Learning for
NLP, pages 18–26, Berlin, Germany. Association for
Computational Linguistics.

J-C Chappelier and Martin Rajman. 1998. A gener-
alized CYK algorithm for parsing stochastic CFG.
In Proceedings of 1st Workshop on Tabulation in
Parsing and Deduction (TAPD’98), CONF, pages
133–137.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards better UD parsing:
Deep contextualized word embeddings, ensemble,
and treebank concatenation. In Proceedings of the
CoNLL 2018 Shared Task: Multilingual Parsing from
Raw Text to Universal Dependencies, pages 55–64.
Association for Computational Linguistics.

Çağrı Çöltekin. 2010. A freely available morphological
analyzer for Turkish. In Proceedings of the Seventh
International Conference on Language Resources
and Evaluation (LREC’10), Valletta, Malta. Euro-
pean Language Resources Association (ELRA).

Erenay Dayanık, Ekin Akyürek, and Deniz Yuret. 2018.
MorphNet: A sequence-to-sequence model that com-
bines morphological analysis and disambiguation.
CoRR, abs/1805.07946.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Gözde Merve Demirci, Şeref Recep Keskin, and Gülüs-
tan Doğan. 2019. Sentiment analysis in Turkish with
deep learning. In 2019 IEEE International Confer-
ence on Big Data (Big Data), pages 2215–2221.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

24

Bekir Dincer and Bahar Karaoğlan. 2003. Stemming in
agglutinative languages: A probabilistic stemmer for
Turkish. In Lecture Notes in Computer Science book
series, volume 2869, pages 244–251. Springer.

Bekir Taner Dinçer, Bahar Karaoglan, and Tarik Kisla.
2008. A suffix based part-of-speech tagger for Turk-
ish. Fifth International Conference on Information
Technology: New Generations (itng 2008), pages
680–685.

İlknur Durgar El-Kahlout, Ahmet Afşın Akın, and
Ertuǧrul Yılmaz. 2014. Initial explorations in two-
phase Turkish dependency parsing by incorporating
constituents. In Proceedings of the First Joint Work-
shop on Statistical Parsing of Morphologically Rich
Languages and Syntactic Analysis of Non-Canonical
Languages, pages 82–89, Dublin, Ireland. Dublin
City University.

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Pro-
ceedings of COLING 1996 Volume 1: The 16th Inter-
national Conference on Computational Linguistics,
pages 340–345.

Fatih Ertam and Galip Aydin. 2021. Abstractive text
summarization using deep learning with a new Turk-
ish summarization benchmark dataset. Concurrency
and Computation: Practice and Experience.

Gülşen Eryiğit. 2014. ITU Turkish NLP web service. In
Proceedings of the Demonstrations at the 14th Con-
ference of the European Chapter of the Association
for Computational Linguistics (EACL), Gothenburg,
Sweden. Association for Computational Linguistics.

Gülşen Eryiğit, Joakim Nivre, and Kemal Oflazer. 2008.
Dependency parsing of Turkish. Computational Lin-
guistics, 34:627.

Yasin Eşref and Burcu Can. 2019. Using morpheme-
level attention mechanism for Turkish sequence la-
belling. In 2019 27th Signal Processing and Com-
munications Applications Conference (SIU), pages
1–4.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell, Chris
Dyer, and Noah A. Smith. 2014. A discriminative
graph-based parser for the Abstract Meaning Repre-
sentation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1426–1436, Bal-
timore, Maryland. Association for Computational
Linguistics.

Bahar Gezici, Necva Bölücü, Ayça Tarhan, and Burcu
Can. 2019. Neural sentiment analysis of user reviews
to predict user ratings. In 2019 4th International
Conference on Computer Science and Engineering
(UBMK), pages 629–634.

Onur Güngör, Tunga Güngör, and Suzan üsküarlı. 2019.
The effect of morphology in named entity recognition
with sequence tagging. Natural Language Engineer-
ing, 25(1):147–169.

Sinan Göker and Burcu Can. 2018. Neural text nor-
malization for Turkish social media. In 2018 3rd
International Conference on Computer Science and
Engineering (UBMK), pages 161–166.

Asim Güneş and A. Cüneyd Tantuğ. 2018. Turkish
named entity recognition with deep learning. In 2018
26th Signal Processing and Communications Appli-
cations Conference (SIU), pages 1–4.

Coleman Haley. 2020. This is a BERT. Now there are
several of them. Can they generalize to novel words?
In Proceedings of the Third BlackboxNLP Workshop
on Analyzing and Interpreting Neural Networks for
NLP, pages 333–341, Online. Association for Com-
putational Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A Transition-Based Directed Acyclic Graph
Parser for UCCA. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1127–1138.

Emre Kağan Akkaya and Burcu Can. 2021. Trans-
fer learning for Turkish named entity recognition
on noisy text. Natural Language Engineering,
27(1):35–64.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. Dynet: The dynamic neu-
ral network toolkit.

Linh The Nguyen and Dat Quoc Nguyen. 2021. Phonlp:
A joint multi-task learning model for Vietnamese
part-of-speech tagging, named entity recognition and
dependency parsing. CoRR, abs/2101.01476.

Kemal Oflazer. 1993. Two-level description of Turkish
morphology. In Proceedings of the Sixth Conference
on European Chapter of the Association for Com-
putational Linguistics, EACL ’93, page 472, USA.
Association for Computational Linguistics.

Kemal Oflazer and Ilker Kuruoz. 1994. Tagging and
morphological disambiguation of Turkish text. In
Fourth Conference on Applied Natural Language Pro-
cessing, pages 144–149, Stuttgart, Germany. Associ-
ation for Computational Linguistics.

Kemal Oflazer, Bilge Say, Dilek Zeynep Hakkani-Tür,
and Gökhan Tür. 2003a. Building a Turkish Treebank,
pages 261–277. Springer Netherlands, Dordrecht.

Kemal Oflazer, Bilge Say, Dilek Zeynep, and Gokhan
Tur. 2003b. Building a turkish treebank. Abeillé.

Anil Ozdemir and Reyyan Yeniterzi. 2020. SU-NLP
at SemEval-2020 task 12: Offensive language Iden-
tifiCation in Turkish tweets. In Proceedings of the

25

Fourteenth Workshop on Semantic Evaluation, pages
2171–2176, Barcelona (online). International Com-
mittee for Computational Linguistics.

Adnan Ozturel, Tolga Kayadelen, and Isin Demirsahin.
2019. A syntactically expressive morphological an-
alyzer for Turkish. In Proceedings of the 14th In-
ternational Conference on Finite-State Methods and
Natural Language Processing, pages 65–75, Dresden,
Germany. Association for Computational Linguistics.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2008.
Turkish language resources: Morphological parser,
morphological disambiguator and web corpus. In
Advances in Natural Language Processing, pages
417–427, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Haşim Sak, Tunga Güngör, and Murat Saraçlar. 2009. A
stochastic finite-state morphological parser for Turk-
ish. In Proceedings of the ACL-IJCNLP 2009 Con-
ference Short Papers, pages 273–276, Suntec, Singa-
pore. Association for Computational Linguistics.

Gökhan Akın Şeker and Gülşen Eryiğit. 2017. Extend-
ing a CRF-based named entity recognition model for
Turkish well formed text and user generated content
1. Semantic Web, 8(5):625–642.

Milan Straka. 2018. UDPipe 2.0 prototype at CoNLL
2018 UD shared task. In Proceedings of the CoNLL
2018 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 197–207,
Brussels, Belgium. Association for Computational
Linguistics.

Umut Sulubacak, Memduh Gokirmak, Francis Tyers,
Çağrı Çöltekin, Joakim Nivre, and Gülşen Eryiğit.
2016. Universal Dependencies for Turkish. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Technical
Papers, pages 3444–3454, Osaka, Japan. The COL-
ING 2016 Organizing Committee.

Umut Sulubacak and G. It. 2018. Implementing uni-
versal dependency, morphology, and multiword ex-
pression annotation standards for turkish language
processing. Turkish Journal of Electrical Engineer-
ing and Computer Sciences, 26:1662–1672.

Meltem Tokgoz, Fatmanur Turhan, Necva Bolucu, and
Burcu Can. 2021. Tuning language representation
models for classification of Turkish news. In 2021
International Symposium on Electrical, Electronics
and Information Engineering, ISEEIE 2021, page
402–407, New York, NY, USA. Association for Com-
puting Machinery.

Salih Tuç and Burcu Can. 2020. Self attended stack
pointer networks for learning long term dependen-
cies. In Proceedings of the 17th International Confer-
ence on Natural Language Processing, pages 90–100.
NLP Association of India.

Ahmet Üstün, Murathan Kurfalı, and Burcu Can. 2018.
Characters or morphemes: How to represent words?
In Proceedings of The Third Workshop on Represen-
tation Learning for NLP, pages 144–153, Melbourne,
Australia. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Sait Can Yücebas and Rabia Tintin. 2017. Gövde-Türk:
A Turkish stemming method. 2017 International
Conference on Computer Science and Engineering
(UBMK), pages 343–347.

Harun Resit Zafer. 2015. Resha stem-
mer. https://github.com/hrzafer/
resha-turkish-stemmer/. [Online; ac-
cessed 6-Feb-2022].

26

https://github.com/hrzafer/resha-turkish-stemmer/
https://github.com/hrzafer/resha-turkish-stemmer/

