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Abstract
A commonsense knowledge resource organizes common sense that is not necessarily correct all the time, but most people are
expected to know or believe. Such knowledge resources have recently been actively built and utilized in artificial intelligence,
particularly natural language processing. In this paper, we discuss an important but not significantly discussed the issue of
semantic gaps potentially existing in a commonsense knowledge graph and propose a machine learning-based approach to
detect a semantic gap that may inhibit the proper chaining of knowledge triples. In order to establish this line of research, we
created a pilot dataset from ConceptNet, in which chains consisting of two adjacent triples are sampled, and the validity of
each chain is human-annotated. We also devised a few baseline methods for detecting the semantic gaps and compared them
in small-scale experiments. Although the experimental results suggest that the detection of semantic gaps may not be a trivial
task, we achieved several insights to further push this research direction, including the potential efficacy of sense embeddings
and contextualized word representations enabled by a pre-trained language model.

Keywords: commonsense knowledge graph, word-sense disambiguation, sense embeddings, ConceptNet.

1. Introduction
Commonsense knowledge is fundamental and mostly
implicit knowledge employed by humans to live rea-
sonable and safe lives. Therefore, the acquisition, rep-
resentation, and exploitation of commonsense knowl-
edge have long been a central issue in artificial intel-
ligence that aims to realize human-level smartness in
several application domains (Davis and Marcus, 2015).
In particular, commonsense knowledge resources have
been widely used in natural language processing (NLP)
to “read between the lines” (Rashkin et al., 2018),
which could contribute to solving a given task, such
as question-answering (Talmor et al., 2019; Feng et al.,
2020).
AAmong the several types of commonsense knowledge
resources (Ilievski et al., 2021), ConceptNet (Speer et
al., 2017) may be one of the most popular resources,
as it maintains a large number of knowledge assertions
in multiple languages. Most of the work using this re-
source treats it as a gigantic graph and tries to bene-
fit from a path that connects a starting node with an
ending node (Lin et al., 2019; Paul and Frank, 2019).
For example, the path ⟨computer →UsedFor →work
→AtLocation−1 →office⟩ in the graph shown in
Figure 1 hints the relation between computer and of-
fice via work. On the other hand, adoption of the path
⟨edge tool →IsA−1 →plane →UsedFor →travel⟩
may cause a problem because usually an edge tool has
nothing to do with travelling. This issue is caused by
the polysemous nature of the node labeled “plane.”
In the present work, we refer to the issue exemplified
by such a path as semantic gap issue and try to es-
tablish a method to detect potential semantic gaps in a
path in advance to the exploitation in a commonsense

Figure 1: A part of ConceptNet. Each node is associ-
ated with a concept, or more precisely, an implicit set
of concepts, associated with a word or phrase that is
used as the node label. A directed edge represents an
inter-node relation labeled with the relation type.

reasoning process. As our approach relies on machine
learning, we created a pilot dataset using ConceptNet
and trained a few baseline classifiers to detect a seman-
tic gap in the path of length two. We name such a path
as knowledge triple chain, which is considered a fun-
damental building block to form a longer path. A set of
pilot experiments were then conducted to explore po-
tentially effective features in the classification.
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Our contributions in this paper are summarized as fol-
lows.

• Although not highly formal, we defined the is-
sue of semantic gap in commonsense knowledge
chain and argued that the approach with precise
word sense disambiguation should not be feasible
nor desirable.

• We created an initial dataset of knowledge triple
chains1 using ConceptNet, each labeled whether
it involves a semantic gap or not.

• We trained a few baseline classifiers and com-
pared them in pilot experiments, confirming that
sense embeddings ARES (Scarlini et al., 2020)
and contextualized word representations achieved
by BERT (Devlin et al., 2019) could be effectively
employed in detecting semantic gaps.

2. Semantic Gaps in a Commonsense
Knowledge Grpah

In the present work, we work on a commonsense
knowledge resource known as ConceptNet2 (Speer et
al., 2017). ConceptNet has been widely used in re-
search projects that deal with commonsense, as it is a
large multilingual resource that is freely available. It,
however, poses several issues that should be addressed.
Most of these issues stem from the innate nature of
commonsense as well as the resource construction pro-
cess.

2.1. ConceptNet and the Semantic Gap Issue
ConceptNet maintains a large number of triples, each
representing a fragmental or episodic commonsense
knowledge. Many of these triples have been collected
by the Open Mind Common Sense3 crowdsourcing
project. These triples are generally considered as col-
lectively forming a large graph.
However, as pointed out by Zhou et al. (2019), Con-
ceptNet has several issues, such as unverified noisy
triples, under-specified triples that are only relevant in a
specific context/situation, and the nodes that are gener-
ally not being disambiguated. In the present work, we
focus on potential semantic gaps that could be found
in an arbitrarily chosen path in the ConceptNet graph.
This issue can be primarily attributed to the nodes over-
loaded by multiple meanings.
Figure 1 is presented to exemplify the issue of seman-
tic gaps. The figure depicts a part of ConceptNet rep-
resented as a graph, where we see four triples around
the node labeled “plane.” Three of them are associated
with the airplane sense of “plane,” while one of them is

1https://sites.google.
com/site/yoshihikohayashi/
semantic-gaps-in-conceptnet-triple-chains

2https://conceptnet.io/
3https://media.mit.edu/projects/

open-mind-common-sense
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Figure 2: A knowledge triple chain c consists of two
adjacent knowledge triples, t1 and t2. The direction-
ality of an edge is arbitrary, as we can think of the in-
versely directed relation (e.g., IsA−1) given a directed
relation (e.g., IsA). Also, an undirected relation, such
as SimilarTo can be represented by a set of two op-
positely directed triples.

related to the tool sense of “plane.” This means that we
may be in danger of taking an inadequate path, such as
⟨edge tool →IsA−1 →plane →UsedFor →travel⟩,
in conducting a sort of commonsense reasoning. Obvi-
ously, an edge tool has nothing to do with traveling.
This semantic gap issue arises whenever a common
node is polysemous, and different meanings are in-
tended in the adjoined triples. An ontologically cor-
rect way to resolve this issue is segregating a polyse-
mous node according to the intended meanings and re-
arranging the corresponding edges. This reconstruction
process manifestly requires precise word-sense disam-
biguation. This solution may be not only costly but
could affect the usability of the commonsense knowl-
edge resource. Thus, we would like to establish a way
to only adopt a path without or less explicit semantic
gaps by making use of machine-learning technologies.

2.2. Definitions and Notations
A knowledge triple ⟨x, r, y⟩ consists of two concept
nodes, x and y, and the edge in between with the rela-
tion label r. Knowledge triples in ConceptNet are re-
ferred to as assertions4. The inventory of the Concept-
Net relations is presented on the Web page5, in which
verbal definitions of 34 relation types are given.
As illustrated in Figure 2, a knowledge triple chain c,
in the present work, is formed by two adjacent knowl-
edge triples: t1 = ⟨u, r1, w⟩ and t2 = ⟨w, r2, v⟩, in
which the node w is shared by t1 and t2. In the follow-
ing, the node w is referred to as hinge node, and the
corresponding word used as the label as hinge word,
denoted as wl. Notice that a knowledge triple chain can
be considered as a primary component of an arbitrary

4https://github.com/commonsense/
conceptnet5/wiki/Downloads

5https://github.com/commonsense/
conceptnet5/wiki/Relations

https://sites.google.com/site/yoshihikohayashi/semantic-gaps-in-conceptnet-triple-chains
https://sites.google.com/site/yoshihikohayashi/semantic-gaps-in-conceptnet-triple-chains
https://sites.google.com/site/yoshihikohayashi/semantic-gaps-in-conceptnet-triple-chains
https://conceptnet.io/
https://media.mit.edu/projects/open-mind-common-sense
https://media.mit.edu/projects/open-mind-common-sense
https://github.com/commonsense/conceptnet5/wiki/Downloads
https://github.com/commonsense/conceptnet5/wiki/Downloads
https://github.com/commonsense/conceptnet5/wiki/Relations
https://github.com/commonsense/conceptnet5/wiki/Relations
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length knowledge path p.
We say that a semantic gap exists in the knowledge
triple chain c if the intended meaning of w with re-
spect to t1 may be different from the one with respect
to t2. Note that this is not a very rigorous definition
but allows us to benefit from the commonsense knowl-
edge resource that maintains not necessarily rigorously
correct in the ontological sense but potentially useful
knowledge compositions.

3. Creation of the Pilot Dataset
We started with creating a pilot dataset in which human
assessments on semantic gaps are collected. With this
dataset, we can devise and compare machine learning-
based methods for semantic gap detection.

3.1. Selection of Knowledge Triple Chains
To initiate the dataset creation process, knowledge
triple chains have to be sampled from ConceptNet. We
first selected hinge nodes whose label words are poly-
semous but not highly abstract. We initially selected
the words from the “List of English homographs”6,
and added some words which are largely known as
polysemous. We subsequently consulted the Con-
ceptNet (version 5.7.0) assertions and sampled knowl-
edge triple chains around these candidate hinge nodes,
which amount to 4,316 chains. In the sampling pro-
cess, we excluded knowledge triples whose relation is
highly vague or lexical7.

3.2. Labeling of Knowledge Triple Chains
In this step, each knowledge triple chain is judged ei-
ther of without-gap or with-gap and labeled accord-
ingly. For example, the chain ⟨edge tool →IsA−1

→plane →UsedFor →travel⟩, is labeled with-
gap, while ⟨machine →IsA−1 →plane →UsedFor
→travel⟩ is labeled without-gap, respectively.
Among the sampled chains, 3,000 of them were ran-
domly chosen and fed into the human labeling process.
An English native speaker did the first-round labeling,
and then the author of this paper adjusted the initial de-
cisions. In the labeling process, the annotators were
allowed to consult WordNet (Fellbaum, 1998) synsets
with their definitions, as well as the super-senses (lexi-
cographer file names). In general, if each of the mean-
ings of a hinge node word is likely to have different
super-senses, the node is judged to have a semantic gap.
As the given context is limited, judging if the given
knowledge triple chain has a semantic gap in the hinge
concept was sometimes quite hard even for the En-
glish native speaker. Besides, during the labeling pro-
cess, we profoundly recognized that ConceptNet in-

6https://en.wikipedia.org/wiki/List_
of_English_homographs

7These relations are: RelatedTo,
HasContext, Antonym, DistinctFrom,
DerivedFrom, EtymologicallyRelatedTo,
EtymologicallyDerivedFrom, and FormOf.

cludes a certain amount of invalid or spurious knowl-
edge triples, as noted by (Zhou et al., 2019). We
flagged these knowledge triple chains as erroneous.
However, for the sake of convenience, the knowledge
triple chains containing these invalid triples were la-
beled as with-gap. This means that a knowledge triple
chain labeled with-gap should not be used in reasoning,
while that labeled without-gap may be safe to use.

To help the labeling process, we applied a set of
relation-specific checking rules to mechanically detect
presumably invalid knowledge triples (Appendix-A).
Each of the rules looks at the potentially valid set of
parts-of-speech for the hinge node word. For exam-
ples: Synonym relation requires the POS of w in t1
and that in t2 is identical; CapableOf specifies the
POS of w in t1 is noun while that in t2 to be verb.

Here, we especially note that we finally decided to as-
sign without-gap to a hinge node that carries mutually
associated derivative meanings (e.g., “red” as a noun
on one side and an adjective on the other side). In ad-
dition, we admitted a hinge node that exhibits so-called
systematic polysemy (Peters and Peters, 2000) (e.g.,
“school” as building and institution) as without-gap.
These decisions may not closely adhere to ontological
principles. Nevertheless, we made these decisions ex-
pecting that they would allow more useful knowledge
triple chains to be involved in the reasoning that uses
knowledge paths.

3.3. Resulting Dataset

The resulting dataset maintains 3,000 unique knowl-
edge triple chains, each carrying a semantic gap label,
as well as a flag for indicating an invalid knowledge
triple. Table 1 presents basic statistics of the resulting
dataset. It shows that more than half of the chains are
labeled with-gap, suggesting that an arbitrarily selected
ConceptNet knowledge path may be dangerous to fol-
low. Remind that a knowledge triple chain including
at least one invalid triple is considered with-gap in the
present work.

Item Count
total # of chains 3,000

# of chains without-gap 1,313
# of chains with-gap 1,687
of which, # of invalid triples 262

# of unique triples 4,316
of which, # of triples flagged invalid 196

# of unique hinge words 255
# average degree of polysemy 10.5

Table 1: Statistics of the resulting dataset. The average
degree of polysemy measures the average number of
synsets classified in WordNet 3.0.

https://en.wikipedia.org/wiki/List_of_English_homographs
https://en.wikipedia.org/wiki/List_of_English_homographs
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Figure 3: BERT-based baseline.

4. Baseline Detection Methods
This section presents baseline methods for detecting
a semantic gap in the knowledge triple chain. These
baselines and their combinations are compared in the
preliminary experiments described in the next section.
In the following, we often need to separate the repre-
sentation of a hinge word wl depending on the context
given by each of the adjoining triples, t1 and t2. We
respectively denote them as wl1 and wl2.

4.1. BERT-based Baseline
Detecting a semantic gap in the given knowledge triple
chain could be primarily accomplished by comparing
the semantic nature of the hinge word wl in t1 context
and that in t2 context. That is, if these two are vastly
different, we can expect that there is a semantic gap
at the hinge node. Suppose we could capture appro-
priate context-dependent vector representations for wl1

and wl2. In that case, these vectors can be used as fea-
tures for the classifier in charge of detecting a semantic
gap. By feeding a typical sentence that verbally repre-
sents the content of a knowledge triple into a sentence
encoder such as BERT, we can extract the contextual-
ized representation of the hinge word wl in the triple
context. We should, however, use multiple sentences
with a variety, not a single sentence, in this process to
improve the generality of the representation.
Figure 3 illustrates this approach. Given a knowledge
triple chain, we generate the sets of sentences S1 and
S2, respectively, for t1 and t2 by applying a set of
relation-specific sentence generation templates, which
we hand-coded. For example, sentences such as “A
plane is used for a travel” and “You can use a plane to
travel” are generated for the ConceptNet triple, ⟨plane,
UsedFor, travel⟩. The average number of templates
across the relation types is 3.67, with the maximum
number being 14 for the AtLocation relation.
These generated sentences are fed into a BERT en-
coder, and we create a unified hinge word representa-
tion by average-pooling the contextualized vectors as-

signed to the hinge word in these generated sentences.
The resulting vectors w′

1 and w′
2 are then concatenated

and finally sent to the binary classifier. In the ex-
periments, we primarily used a publicly available pre-
trained BERT encoder8 and subsequently fine-tuned it
with the present classification task.

4.2. ARES-based Baseline
A semantic resource such as WordNet can be con-
sulted as a standard for semantic comparison. More
specifically, the present work employs the WordNet
senses/synsets of a hinge word wl as the semantic foun-
dation on which wl1 and wl2 are compared. By em-
ploying WordNet as a firm backbone, we expect that
more robust features for semantic gap detection can
be obtained than directly comparing the contextualized
word representations.
Figure 4 overviews this approach, which relies on the
WordNet sense inventory and the corresponding sense
embeddings ARES (Scarlini et al., 2020). Note that the
ARES embedding vectors are generated by making use
of the same BERT encoder described in the previous
subsection, which allows us to directly compare a word
with a WordNet sense/synset. This is the exact reason
for us to utilize the ARES embeddings.
Given a target hinge word w, we first consult Word-
Net and retrieve the corresponding senses θ1 through
θn, where n counts the number of senses of w. In par-
allel, the contextualized word representations w′

1 and
w′

2 are generated by the same procedure described in
the previous subsection. Subsequently, w′

1 and w′
2 are

independently compared with each of the ARES sense
vectors, yielding similarity vectors sv1 and sv2, respec-
tively. The resulting vector svi captures the distribu-
tion of similarities of w′

i across the associated WordNet
senses.
The size of the resulting similarity vectors sv1 and sv2
is determined by the number of senses of the hinge
word wl, meaning that it is not a constant across hinge
words. Thus, the concatenation of sv1 and sv2 cannot
be used as features on its own. Therefore, we sum-
marize these vectors into an array of metrics for mea-
suring the closeness of the distributions. We namely
computed the Euclid distance, cosine similarity, KL-
divergence, and correlation coefficients (Pearson’s and
Spearman’s) between the similarity vectors. The result-
ing array of coefficients is finally fed into the binary
classifier.
As discussed earlier in this paper, we believe that a
soft or relaxed semantic matching approach should be
preferred over a rigid sense-disambiguation approach.
The use of semantic distribution can be a way to facili-
tate this direction. Besides, this approach could remedy
the issue of too fine-grained sense distinctions made in
WordNet.

8We used the BERT-large-uncased model provided by
the HuggingFace transformers library that is available at
https://huggingface.co/docs/transformers.

 https://huggingface.co/docs/transformers
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Figure 4: ARES-based baseline.

4.3. NumberBatch-based Baseline
Two words can be, to some extent, mutually disam-
biguated by seeking a sense combination that maxi-
mizes the sense-level similarity, provided a sense in-
ventory and an effective similarity measure are avail-
able (Resnik, 1995). Following this classical idea, we
estimate the similarity between two ConceptNet nodes,
or more precisely, between their intended meanings
in the knowledge triples. The similarities among the
nodes that are computed in this way can be used as the
features for detecting a semantic gap. More specifi-
cally, in the present work, we use similarities between
ConceptNet nodes u and w1l, w2l and v, as well as that
between u and v (refer to Figure 1), which are com-
puted as described below. We explore the effectiveness
of these similarities as features. They could approxi-
mate the validity of a knowledge triple chain involving
particular combinations of relations, such as a consec-
utive occurrence of SimilarTo relations.
We estimate the similarity simCN (x, y) between Con-
ceptNet nodes x and y as formulated in (1): We adopt
the maximum similarity between a possible combina-
tion of their WordNet synsets.

simCN (x, y) = max
a∈synsets(x),b∈synsets(y)

simWN (a, b).

(1)

The similarity simWN (a, b) between two WordNet
synsets a and b is then computed as follows9: We com-
pute the averaged similarity between the pairs of the
related synsets given by rels(a) and rels(b).

simWN (a, b) = average
p∈rels(a),q∈rels(b)

simNB(p
′, q′).

(2)

In this specific computation, we use the NumberBatch
word similarity simNB(p

′, q′) as the proxy of synset

9Instead of using the ARES embeddings, we explore the
effectiveness of the NumberBatch embeddings with this base-
line method.

similarity. That is, p′ and q′ that respectively denote
the first lemmas of the synsets are compared by using
the NumberBatch word embeddings. The set of related
synsets rel(a) is created by consulting the WordNet
graph: the k-neighbor synsets of a are first collected;
then, presumably irrelevant synsets are excluded. In
this filtering process, we measure the similarities be-
tween synsets by using the same NumberBatch-based
similarity simNB and applying a threshold θ. In the ex-
periments, we used the parameters k = 2 and θ = 0.8.
To sum up this procedure, we fundamentally adopt the
classic idea of word sense disambiguation, but we ex-
ploit the graph structure of WordNet to enrich poten-
tially useful information for the disambiguation. Be-
sides, we exploit the NumberBatch word similarity as
a proxy of sense-level similarity.

4.4. Additional Features: Relations and the
Directionalities

Further features attainable from a knowledge triple
chain are the involved relations and their directional-
ities. As these features are not informative enough on
their own, we use these features as auxiliary features.
Specifically, we vectorize these features by employing
one-hot encoding and concatenate them with the pri-
mary feature vectors.

4.5. Alternative Baseline: Simple
BERT-based Classifier

The contextualized word representations for wl1 and
wl2 used in the BERT and ARES baselines could po-
tentially be improved by fine-tuning the BERT encoder
with the present target task. If this is the case, we
could alternatively use the vectors obtained with the
fine-trained BERT encoder.
To investigate this idea in the experiments, we fine-tune
the BERT encoder by using the same set of sentences
generated by the relation-specific templates. More
specifically, an input data instance is formed as: [CLS]
s1i [SEP] s2j . Here, s1i denotes the i-th sentence
generated for t1, and s2j designates the j-th sentence
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generated for t2, respectively. We distribute the gold
semantic-gap label initially assigned to a knowledge
triple chain to the corresponding sentence pairs.
In the experiments, we fine-tuned the BERT encoder
with a classification head provided by the underlying
training framework10. We used the AdamW optimizer
with the learning rate 2e-5. The training with batch
size eight was nicely converged with two epochs of it-
erations.

5. Experiments and the Results
5.1. Experimental Setup
The baselines described in the previous section and
their combinations were compared in the preliminary
experiments. In combining more than two baseline
models, we simply concatenated their feature vectors.
We used Logistic Regression, Random Forest, and
Support Vector Machine as the binary classifier11 and
compared the performances. We only present the re-
sults with the Random Forest classifier in the following
as it generally achieved better results than others. De-
tailed performance figures are given in Appendix-B.
As the currently available dataset is not large in size,
we conducted four-fold cross-validation in the exper-
iments: in each of the four runs, 75% of the data was
used for training, and the rest 25% was used for testing.
Needless to say, the same data splits were employed in
fine-tuning the BERT encoder. We use macro-averaged
precision, recall, and F1 to summarize the experimental
results.

5.2. Results with Pre-trained BERT
Table 2 presents the results of baselines and their com-
binations. Remind that the BERT and ARES baselines
employ BERT-originated contextualized word repre-
sentations, while the NumberBatch baseline has noth-
ing to do with these BERT vectors.

BERT ARES NumBat P R F1
✓ 0.68 0.65 0.65

✓ 0.64 0.61 0.60
✓ 0.66 0.65 0.65

✓ ✓ 0.69 0.65 0.66
✓ ✓ 0.69 0.68 0.68

✓ ✓ ✓ 0.70 0.67 0.67

Table 2: Experimental results with the pre-trained
BERT. P and R stand for precision and recall, respec-
tively. All the reported numbers are macro-averaged
metrics.

Among the baselines, the NumberBatch baseline, even
with only three similarity numbers, achieved almost

10The AutoModelForSequenceClassification
class provided by the transformers library was used.

11We used the scikit-learn (https://
scikit-learn.org/) toolkit.

comparable performance with the BERT baseline. The
NumberBatch baseline combined with the ARES base-
line exhibited the best overall score with F1=0.68,
whereas the full combination method displayed the best
precision, 0.70. These results suggest that relatively
concise features, in terms of dimensionality, are some-
times more effective than large-sized vector features. It
implies that the full combination method could achieve
better results with the properly dimensionality-reduced
BERT vectors.

5.3. Results with Fine-tuned BERT
Table 3 presents the results, in which contextualized
word representations of wl1 and wl2 obtained by the
fine-tuned BERT (described in section 4.5) are used
as features. As expected, the BERT and ARES base-
lines exhibited better results than those with the pre-
trained BERT. In this setting, the full combination
method achieved the best overall score with F1=0.67,
which is, however, slightly worse than the best result of
0.68 achieved with the pre-trained BERT. These results
should be more closely investigated, but it may suggest
that the contextualized word representations fine-tuned
with this particular task may be slightly incompatible
with the NumberBatch-based features that refer to the
WordNet graph structure and the static NumberBatch
embeddings.

BERT ARES NumBat P R F1
✓ 0.67 0.66 0.66

✓ 0.65 0.65 0.64
✓ ✓ 0.67 0.66 0.66

✓ ✓ 0.68 0.66 0.66
✓ ✓ ✓ 0.67 0.67 0.67

Table 3: Experimental results with the fine-tuned
BERT. The NumberBatch baseline is excluded from
this table as it does not use BERT-originated vectors.

Pre-trained BERT Fine-tuned BERT
1 simCN (u, v) Pearson’s
2 KL-distance Spearman’s
3 cosine similarity Euclid distance
4 Euclid distanc KL-distance
5 simCN (u,w1l) cosine similarity

Table 4: Importances of features. All but simCN (u, v)
and simCN (u,wl1) are features used with the ARES
baseline.

5.4. Feature Importances
By using the functionality provided by the Random
Forest classifier, we can probe into the importance of
each feature. Table 4 sorts the five most essential fea-
tures in the ARES+NumberBatch combination method,
where the second and third columns present the results

https://scikit-learn.org/
https://scikit-learn.org/
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with the pre-trained and fine-tuned BERT, respectively.
As this table contrasts, the pre-trained BERT jointly
uses both feature groups, while the fine-tuned BERT
heavily relies on the ARES features.

5.5. Results with the Simple BERT-based
Classifier

As described in section 4.5, we fine-tuned the BERT
with a classification head with the current task; thereby,
the trained classifier was directly used on its own in
this task. Table 5 displays its performance. The
first line shows the sentence pair-wise results, whereas
the second line displays the results aggregated in the
knowledge triple-chain, which could be compared with
other baseline methods. In the aggregation process, a
straight-forward majority voting on the sentence pair-
wise results was conducted: If the voting for a knowl-
edge triple chain ends in a tie, we predicted it as with-
gap.

Level P R F1
Sentence pair-wise 0.73 0.74 0.73
Chain-level 0.70 0.70 0.70

Table 5: Experimental results with the simple BERT-
based classifier.

As shown in the table, this method achieved the best re-
sults of F1=0.70 amongst the other compared methods.
The gap between the sentence pair-wise result and that
of the chain-level suggests that we need to further sta-
bilize the majority voting results. This could be accom-
plished by feeding more sentences with more variations
into the BERT encoder. These results also suggest that
the overall performance could be further enhanced by
combining the BERT-based classifier with other classi-
fiers that employ other features.

6. Related Work
Knowledge graph, in general, has been widely consid-
ered a vital ingredient to realizing intelligent systems
in many fields of AI. Most systems using a knowledge
graph rely on the paths retrieved from the graph to ac-
complish a kind of reasoning. Hence, selecting valid
and better paths, given a particular target task, is a
vital issue. Several attempts to validate a knowledge
triple (Huaman et al., 2021) or to measure its trustwor-
thiness (Jia et al., 2019) have been made. However,
these works focus on fact-based knowledge graphs, not
on a commonsense knowledge graph.
If we shift our focus to the topic of commonsense
knowledge graphs, Zhou et al. (2019) proposed a
learning-based method to predict ConceptNet path
quality. They created a dataset maintaining crowd-
sourced human assessments of the “naturalness” of the
sampled paths. One of the notable aspects of this work
is that they did not give a concrete definition of natu-
ralness to the crowd-workers, suggesting the difficulty

of formally defining a valid commonsense knowledge
path. It also highlights the differences between fact-
based knowledge graphs with commonsense knowl-
edge graphs. Davison et al. (2019) proposed a scheme
for assessing the quality of a knowledge path, espe-
cially for evaluating the validity of a knowledge triple
generated from a large pre-trained language model.
Similar to our present work, they use relation-specific
hand-crafted templates to generate sentences that are
subsequently masked to train the model.
As discussed in this paper, our task is related to the
ever-lasting issue of word sense disambiguation. As
early as 2011, Chen and Liu (2011) tried to disam-
biguate ConceptNet nodes by measuring the related-
nesses among the word groups that presumably associ-
ated with a sense of the target word. Our NumberBatch
baseline is similar to their method in that both rely on
a set of presumably related synsets or words.
We used the ARES sense embeddings (Scarlini et al.,
2020), which is one of the representative sense embed-
ding resources (Bevilacqua et al., 2021). Thanks to
the nature of ARES embeddings that they can be di-
rectly compared with the BERT-based contextualized
word embeddings, they are exceptionally convenient in
a semantic task like the present work.

7. Concluding Remarks
This paper discussed a critical but not significantly dis-
cussed issue of semantic gaps that potentially exist in
arbitrarily chosen paths in ConceptNet. To investigate
the feasibility of a machine learning-based method, we
created a pilot dataset in which the validity of each
of the collected knowledge triple chains was human-
annotated. In the preliminary experiments, we com-
pared several baseline methods, which gave us several
insights, including the potential efficacy of sense em-
beddings and contextualized word representations en-
abled by a pre-trained language model. However, the
detection accuracies obtained with the presented meth-
ods are far from the desired level, implying that the tar-
get task itself is not trivial. As discussed in (Becker
et al., 2019) that assessed the difficulty of ConceptNet
relation classification, the difficulty of the present task
may partly be attributed to the ontologically-loose na-
tures of ConceptNet.
For future work, we would extend the initial dataset,
preferably with crowdsourcing, and device better de-
tection methods on top of it. We would achieve better-
contextualized word representations by feeding more
relation-specific sentences into the sentence encoder,
which requires the improvement of the sentence gener-
ation templates. We will also implement a joint learn-
ing framework in which contextualized work represen-
tations work in tandem with the sense embeddings and
other features. In parallel, we will work on a knowl-
edge path evaluation method that effectively employs a
version of the semantic gap detection method.
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Appendix
A: Relation-specific Checking Rules
Table 6 summarizes the relation-specific checking rules
for flagging presumably invalid knowledge triples.
The column “p1=p2” presents a part-of-speech con-
straint: “y” requires the parts-of-speech of the head
and tail should be identical. The columns “p1” and
“p2” respectively constrain the part-of-speech that the
head/tail of a knowledge triple should carry. We con-
sult WordNet to retrieve the possible set of parts-of-
speech for a word. If none of them match the con-
straints specified by the relevant rule, the correspond-
ing knowledge triple is flagged invalid in advance to the
human annotation process.

B: Detailed Experimental Results
Tables 7 and 8 respectively display the detailed experi-
mental results obtained with three classifiers. Note that
each of the tables corresponds to the summarized Ta-
bles 2 or 3. Each block in these tables consists of three
rows, respectively presenting the result with Logistic
Regression (L), Random Forest (R), and Support Vec-
tor Machine (S). Recall that the summarized Tables 2
and 3 only display the results with the RF classifier.

Relation p1 = p2 p1 p2
AtLocation - - n
CapableOf - n v
Causes - - -
CausesDesire - - -
CreatedBy - n -
DefinedAs - - -
Desires - n -
Entails y - -
HasA y n n
HasFirstSubevent y v v
HasLastSubevent y v v
HasPrerequisite - - -
HasProperty - n a
HasSubevent y v v
InstanceOf y n n
IsA y - -
LocatedNear - - n
MadeOf y n n
MannerOf - - v
MotivatedByGoal - v -
NotCapableOf - n v
NotDesires - n -
NotHasProperty - n a
PartOf y n n
ReceivesAction - n v
SimilarTo - - -
SymbolOf - - -
Synonym y - -
UsedFor - - -

Table 6: Relation-specific checking rules. n, v, and
a respectively denote parts-of-speech, noun, verb, and
adjective.
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BERT ARES NumBat P R F1
L ✓ 0.62 0.62 0.62
R ✓ 0.68 0.65 0.65
S ✓ 0.67 0.66 0.65
L ✓ 0.64 0.63 0.62
R ✓ 0.64 0.61 0.60
S ✓ 0.64 0.62 0.62
L ✓ 0.66 0.66 0.66
R ✓ 0.66 0.65 0.65
S ✓ 0.66 0.66 0.66
L ✓ ✓ 0.67 0.66 0.66
R ✓ ✓ 0.69 0.65 0.66
S ✓ ✓ 0.67 0.66 0.66
L ✓ ✓ 0.68 0.68 0.68
R ✓ ✓ 0.69 0.68 0.68
S ✓ ✓ 0.68 0.68 0.68
L ✓ ✓ ✓ 0.66 0.65 0.65
R ✓ ✓ ✓ 0.70 0.67 0.67
S ✓ ✓ ✓ 0.68 0.67 0.67

Table 7: Detailed experimental results with the pre-
trained BERT. The first column indicates the classifier
employed: L, R, and S respectively denote Logistic Re-
gression, Random Forest, and Support Vector Machine.
All the reported numbers are macro-averaged metrics.

BERT ARES NumBat P R F1
L ✓ 0.67 0.67 0.67
R ✓ 0.67 0.66 0.66
S ✓ 0.67 0.67 0.67
L ✓ 0.62 0.62 0.62
R ✓ 0.65 0.65 0.64
S ✓ 0.62 0.63 0.62
L ✓ ✓ 0.67 0.67 0.67
R ✓ ✓ 0.67 0.66 0.66
S ✓ ✓ 0.67 0.67 0.67
L ✓ ✓ 0.67 0.66 0.66
R ✓ ✓ 0.68 0.66 0.66
S ✓ ✓ 0.67 0.66 0.66
L ✓ ✓ ✓ 0.68 0.67 0.68
R ✓ ✓ ✓ 0.67 0.67 0.67
S ✓ ✓ ✓ 0.67 0.67 0.67

Table 8: Detailed experimental results with the fine-
tuned BERT. The NumberBatch baseline is excluded
from this table, as it does not use BERT embeddings.
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