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Abstract

In the domain of virtual assistants or conver-
sational systems, it is important to empathise
with the user. Being empathetic involves under-
standing the emotion of the ongoing dialogue
and responding to the situation with empathy.
We propose a novel approach for empathetic
response generation, which leverages predicted
intents for future response and prompts the
encoder-decoder model to improve empathy
in generated responses. Our model exploits the
combination of dialogues and their respective
emotion/intent to generate empathetic response.
As responding intent plays an important part in
our generation, we also employ more than one
intent and show empirically that two intents
can generate text with appropriate empathy in
a given situation.

1 Introduction

Empathy is the ability to understand, feel and re-
spond to the feelings of another with empathy. It
is a fundamental human trait for smooth social
interactions and is paramount to designing conver-
sational systems (especially ones that target much
more than task-oriented). The complexity of empa-
thetic behaviour makes it challenging to design an
empathetic system with computational paradigms.

Over the last few years, with the development
of auto-regressive language models to generate
texts, most of the existing neural conversational
systems can generate syntactically and contextually
well-formed responses. Yet, fine-grained control
in terms of empathy gets less attention than the
semantics of generations.

In previous studies, encoder-decoder transformer
architectures have been used (Majumder et al.,
2020; Li et al., 2020) along with emotion under-
standing to generate empathetic dialogues so that
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Speaker: Christmas was the best time of
year back in the day!

Generate listener response with intents:
acknowledging, nostalgic

Empathetic response: That’s so true! I
used to love it when I was a kid.

Speaker: I recently spoke with my ex-
girlfriend on the phone. The conversation
went pretty well, and it reminded me of my
past experiences with her.

Generate listener response with intents:
encouraging, consoling

Empathetic response: That’s good to hear.
I hope things work out for you.

Figure 1: Example generations

the model can be more perceptive towards the emo-
tion of the speaker. (Li et al., 2020) employs a
semantic discriminator and an emotion discrimi-
nator to interact with the user feedback. (Li et al.,
2022) uses an emotional context graph, an emo-
tional context encoder and an emotion-dependency
decoder. The context graph is constructed by inter-
action of dialogue data with external knowledge,
and the context encoder employs a graph-aware
transformer.

A limited number of works have employed in-
tents conditioned on emotions of the previous ut-
terances for a guided empathetic generation. In-
tents are fundamentally different from emotions,
wherein emotions are the feelings of the speaker
of the utterance, and the intent is a response strat-
egy. For example, consoling and enquiring can be
responding intents in case of a frustrating situation
in the speaker’s life.
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We propose a novel approach to leverage these
intents of responding in a conversation, which are
predicted from a classifier - built on dialogue his-
tory and respective emotion labels. Using the pre-
dicted intents, we structure the input that can guide
a pre-trained encoder-decoder language model. Ad-
ditionally, we do ablation studies on the benefits
of using one or more intents and observe a sweet
spot of 2 intents giving the best generations with
empathy; for the brevity of paper length, we will
include results only from 1 and 2 intents.

From what we observe, most existing works
require custom transformer models to be trained
from scratch or employ a strategy of using external
knowledge sources to provide emotional grounding
for generations. Our approach is easily adaptable
to new domains as it tries to probe the pre-trained
models and only needs fine-tuning that does not
take long.

We show with automatic and human evaluations
that our models achieve significant improvements
over the baselines discussed in further sections,
which along with the adaptability of this approach,
highlights the inherent potential.

2 Methodology

2.1 Architecture

The key idea behind our approach is to use transfer
learning and build a dialogue generation model,
utilising the knowledge acquired by T5 during pre-
training. The idea of transfer learning is to gain
knowledge, like vocabulary and word representa-
tion using an auxiliary data-rich task and then use
this pre-trained model on a downstream task ex-
ploiting its knowledge. The treatment of every text
processing problem as a text to text problem by
TS5 motivated us to try the model for dialogue gen-
eration. Its encoder-decoder stack is very similar
to the original transformer model (Vaswani et al.,
2017) based on the attention mechanism, with some
minor changes. We also tried using decoder-only
models like DialoGPT from (Zhang et al., 2019),
but our results and findings from (Soltan et al.,
2022) show that large-scale seq2seq models are
better at in-context learning when the context is
long.

2.2 Empathetic Response

According to (Welivita and Pu, 2020), the speaker’s
utterances in the Empathetic Dialogue dataset be-
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long to one of the 32 categories of emotions, and
the listener intents belong to 9 categories out of
the defined 15 intents (7 least occurring intents are
combined as a Neutral intent). As stated in (We-
livita and Pu, 2020), an example utterance - "Those
symptoms are scary! Do you think it’s Corona?"
will have different intent labels "Acknowledging"
and "Questioning" together.

To better control the generation, we would
require the speaker and listener’s emotions and
intents, respectively. To acquire those, a ROBERTa
based classifier (Liu et al., 2019), is fine-tuned to
predict the emotion/intent (out of 41 labels) for
each utterances given the context. The labelled
listener turns to facilitate the option to learn intent
prediction, and this is the intent we use to guide
the generations. Our experiments involve using
one or more intents to generate listener turns in a
conversation. The top-1 accuracy of the classifier
is 65.88%. The predicted emotion-intent labels
are concatenated with corresponding utterances to
form the input to our model for a generation.

Input format: <EMOT> Emotion <UTT>
Utterance <SEP> <EMOT> Intent <UTT>
Response <SEP> <EMOT> Emotion <UTT>
Utterance <EMOT> Intent <UTT>

The input to the T5 model is structured in a way
where we pair the emotion and intent of utterances,
with the utterances. In the input format above (also
shown in Figure 2), the part between two <SEP>
tokens indicates this pairing. <EMOT>, <UTT>
are the special tokens defined to indicate the emo-
tion or intent of the utterances and utterances them-
selves, respectively. <SEP> is a sep_token,which
distinguishes a (emotion, utterance) pair from an-
other (emotion,utterance) pair in the conversation.
The placeholders, like Emotion , Intent, are
the emotion tag and actual texts from the dataset.
The penultimate text in the input always ends with
the intent label tag, i.e. <EMOT>, followed by a
<UTT> tag, which is a prompt for the transformer
to generate a response. Out of our many experi-
ments, we present our three best-performing mod-
els.

In our base model IAEmp-L, we fine-tune a
T5-large to generate the listener’s turn with only a
single intent as the control parameter. The model
IAEmpMix-SL learns to generate speaker and lis-
tener turns with two predicted intents. IAEmpMix-
L learns to generate only the listener turn with two
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Figure 2: Representation of the input format

predicted intents. The idea of having two differ-
ent intents is to generate the listener turn’s text
with both the intents combined so that the machine-
generated text can be very similar to spoken text.
As an example, if the top-2 predicted intents are
consoling and encouraging, we expect the model
to generate a text which looks like "Everything is
fine, and I know you can do better".

3 Experiments

3.1 Dataset

We conduct our experiments on Empathetic Dia-
logues (Rashkin et al., 2019), a large-scale dataset
containing 25k multi-turn empathetic conversations
between two crowd-sourced workers. Given an
emotion label, the speaker is asked to initiate a con-
versation by describing a situation relating to the
label, and the listener has to respond with empa-
thy. The labels come from a set of 32 emotions,
and we augment the data with response intents that
come from the most commonly occurring intents (a
set of 9 intents including neutral) as per (Welivita
and Pu, 2020) paper. Our training dataset contains
64636 examples in the training dataset, 9308 for
the validation dataset and 5259 samples for the test
dataset.

The response intents come from manual la-
belling on 500 responses, then training a classifier
to extend the labelling to the entire dataset. The
task is to build a model that can play the role of a lis-
tener and respond to the speaker’s utterances with
empathy. Our goal is to generate coherent, infor-
mative and empathetic responses to the speaker’s
utterances.
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3.2 Baselines

We select the following baseline models for com-
parison:

* Meed2: encoder-decoder architecture, sup-
plementing emotional understanding with a
RoBERTa-based classifier, and this informa-
tion goes into the decoder for control.(Xie and
Pu, 2021)

KEMP: has an emotional context graph, con-
text encoder and a decoder to include exter-
nal emotional knowledge in generating empa-
thetic responses. (Li et al., 2022)

EmpDG: encodes semantic context and the
multi-resolution emotional context, and the
decoder fuses the semantic context and emo-
tional context to generate responses. (Li et al.,
2020)

MIME: based on the assumption that empa-
thetic responses often mimic the emotion of
the speaker, this work enforces emotion un-
derstanding in the context representation by
classifying user emotion during training, uses
transformers.(Majumder et al., 2020)

3.3 Training

We fine-tune the large T5 model as an encoder-
decoder part of the architecture to leverage its pre-
trained linguistic knowledge. We perform a hyper-
parameter search using the RayTune library and
use the best ones out of 5 trials. The model is fine-
tuned with Adafactor (Shazeer and Stern, 2018)
optimizer with learning rate of 1.3e-4, weight de-
cay of 0.144, and for 5 epochs. The remaining
hyper-parameters are similar to the T5-large fine-
tuning setup as mentioned in (Raffel et al., 2020).



The training sample size is 64636, which is trained
on 8 P40 GPUs for quicker turnaround on exper-
iments with an average training time of around 5
hours for five epochs, with a batch size of 2 per
GPU. We also experimented with two different for-
mats of input formation, as mentioned in Section
2.2.

4 Evaluations

4.1 Automatic Evaluation

BLEU correlates weakly with human judgements
of the response quality, as evidenced by (Liu et al.,
2016). Also, there can be more than one way to
correctly respond in empathetic situations, which
is not considered with word overlap metrics. ME-
TEOR (Banerjee and Lavie, 2005) and ROUGE
(Lin, 2004) have similar problems. Therefore we
employ below automated metrics to evaluate our
models.

* Distinct-N: is a metric that measures the di-
versity of a sentence. It focuses on the number
of distinct n-grams of a sentence and thus pe-
nalizes sentences with many repeated words.
It is also free of any reference to a ground
truth sentence. (Li et al., 2016)

Sentence similarity: we use Sentence-BERT
to calculate an encoded vector for generated
and ground truth sentences. Cosine similarity
between the two vectors is calculated, which is
also termed sentence similarity in this context.
(Reimers and Gurevych, 2019)

The results of the automatic evaluation are shown
in Table 1 and for the human assessment in Tables
2 and 3. The best performing numbers for a metric
are shown in bold.

Models D-1 D-2 SES

MIME 0.380 0.793 0.206
KEMP 0.422 0.818 0.209
EmpDG 0.420 0.797 0.233
Meed2 0.036 0.140 0.299
IAEmp-L 0.498 0.862 0.317
IAEmpMix-SL 0.500 0.871 0.335
TAEmpMix-L 0.540 0.878 0.315

Table 1: Automatic evaluation

Following the automated evaluation in Table 1,
IAEmpMix-L turns out to have the best Distinct-
1 and Distinct-2 scores across all baselines and
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our experiments but has a slightly low sentence
similarity score compared to IAEmpMix-SL.

4.2 Human Evaluation

We evaluate the generated texts on empathy, rele-
vance, and fluency apart from automated metrics.
Empathy - measures if the generated response em-
pathises with the speaker’s emotions, Relevance -
measures whether the responses are on-topic with
the dialogue history, and Fluency - measures the
grammatical correctness and readability of gener-
ated responses. All three parameters are measured
on a scale of 1-5 (1 - poor and 5 - excellent). We
take help from 5 human evaluators to conduct the
above and an A/B test where we compare IAEmp’s
generations to other baselines and classify the com-
parison as a win, loss or tie from the perspective of
IAEmp’s generations.

Models Empathy | Relevance| Fluency
MIME 3.87 3.60 428
KEMP 3.49 3.92 3.65
EmpDG 3.58 3.91 3.67
IAEmp-L 3.79 3.72 4.64
IAEmpMix-SL | 3.72 3.73 4.80
IAEmpMix-L 391 4.01 4.80
Table 2: Human evaluation - |
Models Win | Tie Loss
IAEmp vs MIME 0.59 |0.31 | 0.09
IAEmp vs KEMP 0.58 | 0.20 | 0.22
IAEmp vs EmpDG | 0.72 | 0.13 | 0.14

Table 3: Human evaluation - II

5 Conclusion

We propose an easily adaptable approach to gen-
erating empathetic responses in a conversational
setting, where we leverage emotions of dialogue
history and intents to generate responses. We show
empirically that responses generated with a mixture
of emotions tend to be better in our experiments.
Our automatic and human evaluations show that
our models with single intent and models with a
mixture of intents perform significantly better com-
pared to existing works.
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