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Introduction

Welcome to the Sth International Conference on Natural Language and Speech Processing (ICNLSP
2022), held online on December 16th, 17th 2022.

ICNLSP is the right choice to select as a forum for researchers, students, and also for industrials to
exchange ideas and discuss research and trends in the field of Natural Language Processing, and also to
publish their results in the field. As examples of companies present during the conference, we mention
here, Mercedes Benz (Germany), and Vail Systems company (USA), and Elm (KSA) and many others.

The program committee accepted 37 papers (long and short ones) which is around 40% of the received
submissions (from 31 countries). The accepted papers are of good quality thanks to the high-quality level
of the reviews done by the program committee members. All papers have been presented orally, that is
why the program was quite long. Various topics of NLP are discussed, as Semantics, language modelling,
text classification, speech recognition, information extraction, natural language understanding, etc.

As it is mentioned in the program of the conference, there are three keynotes. The first one was presented
by Prof. Eric Laporte from Gustave Eiffel University (France), who exposed his thoughts about hybrid
natural language processing in the deep learning era. The second one, dealing with an interesting and
challenging topic, was given by Dr. Ahmed Ali from Qatar Computing Research Institute (Qatar), entitled
“Multilingual and Code-Switching Speech Recognition”. The third talk was programmed to be presented
by Prof. Jan Niehues, from Karlsruhe Institute of Technology (Germany), and entitled “Plug-and-Play
Abilities for Neural Machine Translation”. We will be happy to make all the talks and presentations
available on the website of the conference.

We hope readers enjoy reading the content of the 5 ICNLSP proceedings. We would like also to invite
them to check the proceedings of the past versions of ICNLSP:

Mourad Abbas, Abed Alhakim Freihat, Proceedings of the Fourth International Conference on Natural
Language and Speech Processing (ICNLSP 2021), 12-13 November 2021, Association for Computational
Linguistics, https://aclanthology.org/2021.icnlsp-1

Mourad Abbas, Abed Alhakim Freihat, Proceedings of the 3rd International Conference on Natural Lan-
guage and Speech Processing (ICNLSP 2019), 12-13 September 2019, Association for Computational
Linguistics, https://aclanthology.org/volumes/W19-74/

Mourad Abbas, Proceedings of the 2nd International Conference on Natural Language and Speech Pro-
cessing (ICNLSP 2018), 25-26 April 2018, IEEE, https://ieeexplore.ieee.org/stamp/
stamp. jsp?tp=&arnumber=8374402

Mourad Abbas, Ahmed Abdelali, Proceedings of the 1st International Conference on Natural Language
and Speech Processing, Procedia Computer Science, 128, Elsevier. https://www.sciencedirect.
com/journal/procedia—-computer—-science/vol/128

We would like to express our gratitude to the organizing and the program committees for making this
event a success.

Mourad Abbas and Abed Alhakim Freihat
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Invited Talks

Hybrid natural language processing in the deep learning era
Prof. Eric Laporte, Gustave Eiffel University, France

In this talk, we examine critically the current wave of interest in pure deep learn-
ing for natural language processing. What can symbolic resources do for natural
language processing? Among other examples, we take into account the languages
with more restricted graphical delimitation than English. Then we discuss the fore- :
seeable future of the synergy between machine learning and symbolic resources: i ;\
are the goals of formalisation, precision, reliability, adaptability within reach for '
linguistic data?

Multilingual and Code-Switching Speech Recognition
Dr. Ahmed Ali, Qatar Computing Research Institute, Qatar

The prevalence of code-switching (CS) in spoken content has enforced automatic
speech recognition (ASR) systems to handle mixed input. Yet, designing a CS-
ASR has many challenges, mainly due to the data scarcity, grammatical structure
complexity and mismatch along with unbalanced language usage distribution. Our
CS will feature both intersentential (switching between-utterances) and intrasen-
tential (within utterances). The evaluation of the designed system and the analysis
of the phenomena will be driven based on real test cases, collected from real meet-
ings and interviews.

We show our results on investigating novel techniques to build practical large vocabulary continuous
speech recognition systems capable of dealing with both monolingual and code-switching spoken ut-
terances. We study data augmentation and state of the art modelling techniques to address the lack of
balanced transcribed CS data. Moreover, we investigate various challenges of evaluating code-switching
ASR output. Finally, we highlight our effort in understanding where/why CS happens in speech analysis
for system/human code-switching points.

Plug-and-Play Abilities for Neural Machine Translation
Prof Jan Niehues, Karlsruhe Institute of Technology, Germany

Advances in neural machine translation have led to impressive results and broad
areas of application. Using multitask learning, these models have even abilities to
process different input and generate a variety of output languages. However, this
progress is often backed by millions of training examples. In order to cover the
approximately 7000 languages in the words, it is essential to not only generalize

to unseen examples, but also to unseen tasks. Therefore, we need to recombine the
abilities of NMT systems to process and generate different languages in a plug-
and-play fashion.

In this presentation, we will investigate two use cases: translating zero-shot directions in multilingual
machine translation and end-to-end speech translation. First, we will dissect the challenges in the zero-
shot condition. Motivated by the findings, we will present several methods to promote the possibility
to combine the different abilities of an NMT system in order to perform unseen tasks. Finally, we will
discuss the effect of the presented ideas on multi-lingual machine translation and speech translation.
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Error correction and extraction in request dialogs

Stefan Constantin and Alex Waibel
Karlsruhe Institute of Technology
Institute for Anthropomatics and Robotics
{stefan.constantin|waibel}@kit.edu

Abstract

We propose a dialog system utility component
that gets the two last utterances of a user and
can detect whether the last utterance is an error
correction of the second last utterance. If yes,
it corrects the second last utterance according
to the error correction in the last utterance. In
addition, the proposed component outputs the
extracted pairs of reparandum and repair entity.
This component offers two advantages, learn-
ing the concept of corrections to avoid collect-
ing corrections for every new domain and ex-
tracting reparandum and repair pairs, which of-
fers the possibility to learn out of it.

For the error correction one sequence label-
ing and two sequence to sequence approaches
are presented. For the error correction detec-
tion these three error correction approaches
can also be used and in addition, we present
a sequence classification approach. One error
correction detection and one error correction
approach can be combined to a pipeline or the
error correction approaches can be trained and
used end-to-end to avoid two components. We
modified the EPIC-KITCHENS-100 dataset to
evaluate the approaches for correcting entity
phrases in request dialogs. For error correc-
tion detection and correction, we got an accu-
racy of 97.54 % on synthetic validation data
and an accuracy of 69.27 % on human-created
real-world test data.

1 Introduction

Errors and ambiguities are difficult to avoid in a
dialog. Corrections allow to recover from errors
and to disambiguate ambiguities. For example, a
household robot gets the request “Put the cleaned
spoons into the cutlery drawer”, but the robot does
not know which one of the drawers is the cutlery
drawer. It can choose one of the drawers and puts
the spoons there. If its choice is wrong, the user
must correct the robot, e. g. “No, into the drawer
right of the sink”. Alternatively, the robot can ask
which one of the drawers is the cutlery drawer. The

clarification response of the user, e.g. “It’s the
drawer right of the sink”, is also a correction be-
cause the response disambiguates the ambiguity.
Another type of correction occurs when the user
changes their mind, e. g. “I changed my mind, the
forks”, or when the system misunderstands the user
request (e. g. because of automatic speech recogni-
tion or natural language understanding errors).

All these correction types can be processed in
the same manner and therefore we propose a com-
ponent that gets a request and a correction and
outputs a corrected request. To get this corrected
request, the phrases in the correction phrase re-
place their corresponding phrases in the request. In
this work, we restrict on entity phrases like “drawer
right of the sink”. To replace other phrases like verb
phrases is out of scope for this work. The request
“Put the cleaned spoons into the cutlery drawer”
with its correction “No, into the drawer right of the
sink” is converted to ‘“Put the cleaned spoons into
the drawer right of the sink”. Such a component
has two advantages compared to handling the cor-
rections in the actual dialog component. First, it
reduces the amount of required training data for the
actual dialog component because corrections will
not need to be learned if there is an open-domain
correction component. Second, this kind of correc-
tion component can be extended so that it outputs
the extracted pairs of reparandum and repair entity.
In our example there is one pair: “cutlery drawer”
and “drawer right of the sink™. These entity pairs
can be used, for example, for learning in a life-long
learning component of a dialog system to reduce
the need for correction in future dialogs, e. g. the
robot can learn which one of the drawers is the
cutlery drawer.

2 Related Work

Studies have been conducted in the area of interac-
tive repair dialog. In (Suhm et al., 1996) a multi-
modal approach is used. The user can highlight
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wrong phrases and respeak or spell the correct
phrase, or choose from alternatives in the n-best list
of the automatic speech recognition component, or
use handwriting to write the correct phrase. These
error strategies are improved in (Suhm and Waibel,
1997) by considering the context. In (Suhm et al.,
1999, 2001) the previous approaches are evaluated
in more detail in a dictation system with real users.
Different human strategies for error correction are
presented in (Gieselmann, 2006).

Sagawa et al. (2004) propose an error handling
component based on correction grammars. These
correction grammars have the advantage that they
can be used domain-independently. However, they
need a grammar based dialog system. An error
correction detection module and strategies to han-
dle the detected errors are proposed by Griol and
Molina (2016). The corrected request must be han-
dled by the Spoken Language Understanding com-
ponent. That means, for every domain the Spo-
ken Language Understanding component must be
adapted to the possible corrections. Kraljevski and
Hirschfeld (2017) propose a domain-independent
correction detection by checking the speech for
hyperarticulation. Other features than hyperarticu-
lation are not used.

In (Béchet and Favre, 2013), a system is pre-
sented that detects errors in automatic speech recog-
nition transcripts and asks the user for a correction.

There are also studies that research automatic
error correction without user interaction. In (Xie
et al., 2016) a character-based approach to correct
language errors is used. They used a character-
based approach to avoid out-of-vocabulary words
because of orthographic errors. In (Weng et al.,
2020), the authors used a multi-task setup to correct
the automatic speech recognition outputs and do
the natural language understanding.

The task of request correction presented in the
introduction is related to the task of disfluency re-
moval. In disfluency removal, there are the reparan-
dum (which entity should be replaced), the inter-
ruption point (where the correction begins), the
interregnum (which phrase is the signal phrase for
the correction), and the repair phrase (the correct
entity) (Shriberg, 1994).

In Figure 1, a disfluent utterance annotated with
this terminology is depicted.

spoon into the drawer uh  sink
—— ~—~ ~ =

reparandum interruption pt. interregnum repair

Figure 1: disfluent utterance annotated with repair ter-
minology

A lot of work has been conducted for disfluency
removal (Cho et al., 2014; Dong et al., 2019; Wang
et al., 2016; Jamshid Lou et al., 2018). In all these
works, it is assumed that it is enough to delete
tokens of the disfluent utterance to get a fluent
utterance. A disfluent utterance with the copy and
delete labels is depicted in Figure 2.

spoons into the drawer uh sink
C C C D D C

Figure 2: disfluent utterance labeled with copy and
delete labels

However, in the task of corrections, long-
distance replacements can occur. That means, that
between the reparandum and the repair are words
that are important and must not be deleted. Such a
long-distance replacement is depicted in Figure 3.

spoon into the drawer no  forks
N , ~—~ ~—
reparandum interruption pt. interregnum repair

Figure 3: request and correction phrase annotated with
repair terminology

3 Dataset

Our dataset is based on the annotations in natu-
ral language of the EPIC-KITCHENS-100 dataset
(Damen et al., 2020, 2022). The EPIC-KITCHENS-
100 dataset comprises 100 hours of recordings of
actions in a kitchen environment. An example an-
notation of such an action is “put pizza slice into
container” and the corresponding verb is “put-into”
and the corresponding entities are “slice:pizza” and
“container”. Annotations in this dataset have one
verb and zero to six entities. The verb, the cor-
responding verb class, the entities and the corre-
sponding entity classes are explicitly saved to ev-
ery annotation. The order of the entities and the
corresponding entity classes is the same as in the
annotation. If the verb has a preposition, the verb
is saved including its preposition. The words of the
entities are represented in a hierarchy. The most
general word of the hierarchy is left and the words
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are more specialized the further to the right of the
hierarchy. The words of each hierarchy are sep-
arated by a colon. There are 67218 annotations
in the training and 9669 annotations in the valida-
tion dataset of the EPIC-KITCHENS-100 dataset.
There is no test dataset. Some annotations occur
multiple times, because different recordings of the
100 hours recordings have the same annotation. By
considering only the unique annotations, 15 968 an-
notations are in the training and 3835 annotations
are in the validation dataset.

For our dataset, we used only the annotations
that have one or two entities. We excluded the
annotations with no entities because we need at
least an entity that can be corrected. Annotations
including more than two entities amount only to
less than 1.15 % of all annotations and therefore
we decided to exclude them because of dataset
balancing reasons.

The verb classes of the EPIC-KITCHENS-100
datasets are imbalanced. To get a better balance in
the validation dataset, we removed annotations of
verb classes that occur very often from the valida-
tion dataset. We wanted a more balanced dataset
to evaluate whether the model gets along with very
different verb classes. We calculated the number
of desired remaining annotations of a verb class,
called r, by dividing the number of annotations,
called a, by 100, but we determined a minimal num-
ber of remaining annotations of verb classes: 2 for
one entity annotations (r = max(2,a/100)) and
4 for two entity annotations (r = maxz(4, a/100)).
In some cases, there are less than the desired re-
maining annotations of a verb class in the EPIC-
KITCHENS-100 dataset. We then used the pos-
sible number. We chose the values for minimal
examples to get a nearly balanced dataset: 142 an-
notations with one entity and 122 annotations with
two entities. To get the annotations of a verb class,
we chose the verbs occurring in a verb class equally
distributed. In total, we have 264 annotations in the
reduced validation dataset. The number of unique
annotations in respect to the verb class before and
after the reduction are depicted in Figure 4.

In the EPIC-KITCHENS-100 dataset, the train-
ing and validation datasets are similar: all 78 verb
classes of the validation dataset occur in the train-
ing dataset and 346 of the 372 first level word of the
entity hierarchies of the validation dataset occur in
the training dataset. Because of this, we decided to
reduce the training dataset to have more difference

1000

=
1<)
S

=
15)

unigue narrations
containing exactly one entitiy

verb class (sorted by number of unique narrations)

@ EP|C-KITCHENS-100 validation dataset reduced dataset

1000

100

unigue narrations
containing exactly two entities

verb class (sorted by number of unique narrations)

e EP| C-KITCHENS-100 validation dataset reduced dataset

Figure 4: unique annotations in respect to the verb class
before and after the reduction of the EPIC-KITCHENS-
100 validation dataset

between them. We removed the verb classes of the
49 less frequent occurring verb classes (in total 98
verb classes are in the training dataset) from the
training dataset and removed all entities from the
training dataset when its first part was also in the
validation dataset. That means, if bowl:washing:up
was in the validation dataset, an annotation with
bowl:salad in the training dataset was removed. Af-
ter the reduction 4822 annotations were left in the
training dataset.

To use these annotations for training and evalu-
ating the error correction detection and correction
component, we had to add corrections to the anno-
tations. For the training and validation dataset, we
generated the corrections synthetically. There are
three options for the entitiy replacement: the first
entity should be replaced, the second entity should
be replaced, or both entities should be replaced. We
drew uniformly distributed which of these three op-
tions should be applied. If both entities should be
corrected, we drew uniformly distributed in which
order they should be corrected. For the training
and validation dataset, we had 8 and 6, respectively,
templates to introduce the correction phrase, fol-
lowed by the corrected entities. An entity could be
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replaced by an entity that occurs in an annotation
of the same verb class in the same position. An
example for one corrected entity is “Be so kind
and pick the oregano” for the request and “it’s the
chilli” for the correction and an example for two
corrected entities is “Could you put the tin in the
Cupboard?” for the request and “no the olives in
the Fridge” for the correction.

For the test dataset, we had nine human data
collectors who could freely write the corrections,
they only knew what entities should be replaced
with what other entities (but were allowed to use
synonyms for the other entities) and whether the
correction should be a correction to a wrong action
of the robot, a clarification, or a correction because
the user changed their mind (equally distributed).

We added 19 and 14 templates before the narra-
tion to increase the variety of the natural language
of the training and validation dataset, respectively.
In the EPIC-KITCHENS-100 dataset, the articles
of the entities are missing, therefore we added a
“the” before the entities. For the test dataset, we
used the narrations of our validation dataset and let
the same nine annotators that created the correc-
tions for our test dataset paraphrase them.

The test dataset is more challenging than the
validation dataset because it differs even more from
the training dataset. The nine data collectors were
told to use a large variety of natural language.

We used the 4822 annotations of the reduced
training dataset to generate with the different data
augmentations 52 357 request and correction pairs
for the error correction training dataset. The error
correction validation dataset has 264 request and
correction pairs and the error correction test dataset
has 960 request and correction pairs.

To train and evaluate the error correction detec-
tion, we need examples where the last utterance is
no correction. To achieve this, the second last and
the last utterance are made of all the requests of
the error correction data. The requests were shuf-
fled for the last utterance. This approach doubled
the number of examples to the correction exam-
ples, that means, we have 104 714 pairs in the error
correction detection and error correction training
dataset, 528 pairs in the error correction detection
and error correction validation dataset, and 1920
pairs in the error correction detection and error
correction test dataset.

The target for the error correction datasets is the
corrected request and the reparandum repair pairs

and the target for the error correction detection
and error correction dataset depends whether the
source has a request and correction pair or a request
and request pair. In the first case, there is an error
correction and the target is the same as in the error
correction datasets, in the second case, the target
is to copy both requests. There is a further dataset,
the error correction detection dataset. The sources
are the same as in the error correction detection and
error correction dataset but the target is the binary
value whether there is a correction or not.

We created the described datasets in different
forms for the different approaches. For the se-
quence labeling approach, we labeled the source
tokens with different labels, see Figure 5 and Sec-
tion 4 for an explanation of the labels.

For the sequence to sequence approach with gen-
erative token generation, we created source and
target pairs, see Figure 6. For the sequence to
sequence approach with generation by copying
source tokens, we added the order of copy oper-
ations. Additionally, the separator tokens that are
needed in the target will be inserted to the source,
see Figure 7.

would C
it C

be C
possible C
to C
wash C
the C
table R1
?7C

D

noD

the D
wok S1
instead D
of D

the D
table D
.D

Figure 5: sequence labeling data example

source file: Would it be possible to wash the table
? I no the Wok instead of the table .

target file: Would it be possible to wash the Wok ?
| table -> Wok

Figure 6: sequence to sequence with fixed vocabulary
data example



source file: Would it be possible to wash the table
? I no the Wok instead of the table . - ->

target file: Would it be possible to wash the Wok ?
| table -> Wok

copy target file (considering the T5 prefix and the
TS5 tokenization): 34567891617 11121310
26271617 28

Figure 7: sequence to sequence with copy source token
approach data example

4 Models

For the error correction and extraction, we devel-
oped three different approaches. The first approach
is a sequence labeling approach, the second ap-
proach is a sequence to sequence approach where
the output tokens are sampled from a fixed vocab-
ulary, and the third approach is a sequence to se-
quence approach where output tokens are copied
from the source tokens.

For the sequence labeling approach, every word
is labeled with one of the following labels: C
(copy), D (delete), R1 (entity 1 potentially to be
replaced), R2 (entity 2 potentially to be replaced),
S1 (entity to replace entity 1), or S2 (entity to re-
place entity 2). For the correction target, the S1 and
S2 labeled entities are used to replace the R1 and
R2 labeled entities, respectively. For the extraction
target, the output is the pairs R1 and S1 as well as
R2 and S2 if there is a replacement available for
the first or second entity, respectively. In Figure 8,
an example request and correction pair is labeled
and both targets are given.

For the sequence labeling, we propose fine-
tuning the cased BERT large model (24 Trans-
former encoder blocks, hidden size of 1024, 16
self-attention heads, and 340 million parameters)
(Devlin et al., 2019).

For the sequence to sequence approach where
the output tokens are sampled from a fixed vocab-
ulary, we propose fine-tuning a TS5 large model
(Raffel et al., 2020). The T5 model is a pre-trained
Transformer network (Vaswani et al., 2017) and the
T5 large model has the following properties: 24
Transformer encoder blocks, 24 Transformer de-
coder blocks, hidden size of 1024 (in- and output)
and 4096 (inner-layer), 16 self-attention heads, 737
million parameters.

The probability distribution over the fixed vocab-
ulary V' can be calculated in the following way:

Pgenerate(v) = SOftmax(decT : Wgenerate)

where dec is the output of the Transformer decoder
and Wgenerate c Rhidden size decoder X vocabulary size is a
learnable matrix.

We call this T5 model T5 generate.

In the corrected request there are only tokens
of the input sequence. To utilize this property, we
developed a pointer network model (Vinyals et al.,
2015) with the T5 large model that calculates which
input token has the highest probability to be copied
to the output sequence. This is our third approach.
The probability distribution over the input sequence
tokens V' can be calculated in the following way:

Preopy (V') = softmaz(dec” - ench)

where dec is the output of the Transformer decoder
and enc € Rsouree input length X embedding size.

To utilize the knowledge of the pre-trained
model, we feed the source input token with the
highest probability into the encoder instead of the
position of the source input token. That means, that
in the generation stage the copy mechanism is only
used, otherwise it is like a normal T5 model. To
be able to output the separators, we add this to the
source, so that they can also be copied. We call this
modificated TS5 model TS5 copy.

To decide whether an utterance is a correction
for the previous request command, the described
three approaches can also be used. If all output
labels of the sequence labeling approach are C, no
error correction is detected, otherwise there is an
error correction. The sequence to sequence ap-
proaches detect an error correction if the source
and the target without the separators are not equal,
otherwise there is no error correction. In the T5
copy approach, the source for the comparison is the
original source and not the source with the inserted
separators.

In addition to these three approaches, a sequence
classification can also be used for the error correc-
tion detection. For the sequence classification, we
propose to fine-tune the cased BERT large model
(24 Transformer encoder blocks, hidden size of
1024, 16 self-attention heads, and 340 million pa-
rameters) (Devlin et al., 2019).

S Implementation

We used the HuggingFace (Wolf et al., 2020) Py-
torch (Paszke et al., 2019) BERT and TS5 models
for our implementations of the models described in
Section 4 and published our implementations and
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request Il correction

put the milk into the shelf

no the soja milk into the left shelf

labels C Rl RI

R2 R2 R2

D S1 St St S2 S2 S2 S2

corrected request

put the soja milk into the left shelf

pairs of reparandum
and repair entity

milk — soja milk - into the shelf — into the left shelf

Figure 8: error correction example

our models !.

6 Evaluation

In this section, we will first evaluate the different
error correction detection component approaches
described in Section 4. After that, the error correc-
tion component approaches described in Section 4
are evaluated. Third, we will compare whether it
is better to separate the error correction detection
and error correction in separate components and
use a pipeline approach or whether an end-to-end
approach is better. For all evaluations, we used the
datasets described in Section 3.

We fine-tuned the sequence classification and
labeling approaches one epoch with the following
hyperparameters: AdamW optimizer (Loshchilov
and Hutter, 2019) with learning rate of 2 - 1072,
batch size of 32 and maximum input length of 128.

The T5 generate and T5 copy models were fine-
tuned one epoch with the following hyperparame-
ters: Adam optimizer (Kingma and Ba, 2015) with
learning rate of 2.5 - 104, batch size of 24 and
a maximum input length of 12; in the embedding
layer, the first two encoder blocks were frozen.

The results of the error correction detection com-
ponents are depicted in Table 1. Accuracy means
how many examples were classified correctly, pre-
cision is how many of the positive classified ex-
amples are really positive, recall how many of the
positive examples are found by the component and
the F;-score is the harmonic mean of the preci-
sion and recall. We calculated the precision, recall
and F;-score for the case that detecting corrections
were the positive examples and for the case that de-
tecting no corrections were the positive examples
to get better insights in the quality of the differently
trained models. The sequence classification ap-
proach was trained with the error correction detec-
tion dataset and the other approaches were trained
with the error correction detection and error cor-

'nttps://github.com/msc42/
seq2seqg-transformer https://github.com/
msc42/seg-labeling—and-classification

rection dataset. The best approach is the sequence
labeling approach (if all words have the copy label
C, it is no error correction, otherwise it is an error
correction). It has an accuracy of 100 % for the
validation and 88.49 % for the test dataset. The
recall for detecting no corrections is 99.90 % and
the precision 81.34 % (F-score 89.67 %) in the test
dataset. That means, if there is no correction, the
component detects it in most of the cases and make
no unnecessary correction. This is a good prop-
erty, because it is better not detecting a correction
than correcting something which is already correct.
The error correction detection and error correction
component should improve the overall system and
not make it worse. Nevertheless, the results for
detecting corrections with a recall of 77.08 % and
a precision of 99.87 % (F;-score 87.01 %) in the
test dataset are good. In some cases where the
component fails, it is really difficult to detect the
correction like in “Kindly turn off the heat on the
oven | Please turn off the water tap on the oven”.
The classification approach has similar results to
the sequence labeling approach: 100 % accuracy
for the validation dataset and 87.86 % for the test
dataset. This approach also prefers detecting no
corrections over corrections. The T5 generate ap-
proach is worse. It has an accuracy of 98.67 % on
the validation dataset and an accuracy of 84.01 %
on the test dataset. The worst results are from the
TS5 copy approach (71.78 % and 77.45 % validation
and test dataset accuracy, respectively).

The results of the error correction components
are depicted in Table 2. We evaluated the error
correction with the metric accuracy. The correc-
tion is correct if the predicted correction and the
reference correction are the same. The extraction
of the reparandum and repair pairs is correct if the
predicted pairs are equal to the reference pairs. The
order and entities that map to themselves are ig-
nored. Both are correct if the correction as well as
the extraction are correct. For this evaluation the
error correction datasets are used. On the valida-
tion dataset, the sequence labeling approach that
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detecting corrections detecting no corrections

dataset model accuracy | precision recall Fi-score | precision recall F;-score
valid. classification | 100 % 100 % 100 % 100 % 100 % 100 % 100 %

valid. seq. labeling | 100 % 100 % 100 % 100 % 100 % 100 % 100 %

valid. TS5 generate 98.67% | 98.13% 99.24% 98.68% | 99.23% 98.11% 98.67 %
valid. TS5 copy 71.78% | 63.92% 100 % 7799 % | 100 % 43.56 % 60.69 %
test classification | 87.86% | 99.86 % 75.83% 86.20% | 80.52% 99.90% 89.17 %
test seq. labeling | 88.49% | 99.87% 77.08% 87.01% | 81.34% 9990% 89.67 %
test TS generate 84.01% | 96.58% 70.52% 81.52% | 76.78% 97.50% 85.91%
test TS5 copy 7745% | 73.63% 8552% 79.13% | 82.73% 69.38% 7547 %

Table 1: evaluation results of the error correction detection, all models except the classification were trained on
the error correction detection and error correction dataset and the classification was trained on the error correction

detection dataset

validation dataset test dataset

model correction extraction both correction extraction both

seq. labeling 96.21 % 94.70 % 94710 % | 40.10 % 48.75 % 39.06 %
E2E seq. labeling | 96.59 % 95.08 % 95.08% | 39.27 % 43.54 % 38.65 %
TS5 generate 92.80 % 95.83 % 91.29% | 73.65 % 77.81 % 71.98 %
E2E T5 generate | 96.21 % 95.08 % 94.710% | 37.40 % 38.75 % 36.25 %
T5 copy 50.38 % 87.12 % 50.00% | 50.52 % 62.19 % 47.92 %
E2E T5 copy 70.83 % 92.42 % 68.94 % | 27.50 % 35.00 % 25.31%

Table 2: evaluation results of the error correction (metric accuracy), the end-to-end (E2E) models were trained on
the error correction detection and error correction dataset and the other models were trained on the error correction

dataset

model(s) validation dataset test dataset
correction extraction both correction extraction both

detection and seq. labeling 96.21% 94.710% 94.70%| 34.27% 36.88% 33.54%
detection and E2E seq. labeling 96.59% 95.08% 95.08%| 39.27% 43.54% 38.65%
E2E seq. labeling 98.30% 97.54% 97.54%| 69.58% 71.77% 69.27 %
classification and TS generate 9280% 95.83% 91.29%| 56.98% 60.21% 56.04 %
classification and E2E TS5 generate | 96.21 % 95.08% 94.70 %| 36.67% 38.23% 35.73%
E2E TS5 generate 97.54% 97.16% 96.40%| 68.07% 68.49% 66.88 %
classification and TS5 copy 50.38% 87.12% 50.00%| 36.98% 46.88% 35.21%
classification and E2E T5 copy 70.83% 92.42% 68.94%| 26.67% 34.38% 24.79%
E2E T5 copy 69.70% 78.03% 56.25%| 55.00% 5891% 47.40%

Table 3: evaluation results of the error correction detection and error correction (metric accuracy), the end-to-end
(E2E) models were trained on the error correction detection and error correction dataset and the other models were
trained on the error correction dataset, “and” means that the error correction detection was done by the best error
correction detection model (sequence labeling) and the error correction detection by the model mentioned after the

“and” if a correction was detected



was trained on the error correction detection and
error correction datasets has the best overall accu-
racy (95.08 %). The accuracy for the correction is
96.59 % and for the extraction 95.08 %. On the test
dataset, the TS generate approach that is trained on
the error correction dataset has the best accuracy
(71.98 %). In general, all approaches trained on
the error correction detection and error correction
dataset have a higher accuracy on the validation
dataset and all approaches trained on the error cor-
rection dataset have a higher accuracy on the test
dataset. The TS5 copy extraction could be optimized
by bookkeeping the order of copy operations, stop-
ping after finishing the correction and use the book-
keeping to reconstruct the reparandum and repair
pairs. We relinquished this optimization because
the correction results were much worse and we did
not see any sense in further optimizations that will
only lead to minimal improvements.

The results of the error correction detection and
error correction components are depicted in Ta-
ble 3. We used the same metric accuracy as in the
error correction evaluation. For the error correc-
tion detection in the pipeline approach, we used the
best error correction detection model evaluated in
this section. It is the sequence labeling approach
where no correction is in the example if all labels
are C. After the error correction detection, the er-
ror correction will occur. We evaluated all three
approaches described in Section 4 in their version
trained on the error correction detection and error
correction dataset and their version trained on the
error correction dataset. In the end-to-end setting, a
component executes the error correction detection
and the error correction in one run. The results are
that the end-to-end approaches are better than the
pipeline approaches except for the end-to-end T5
copy approach for the validation dataset because
of its bad error correction detection results on the
validation dataset. The best approach is the end-to-
end sequence labeling approach with an accuracy
of 97.54 % on the validation and 69.27 % accuracy
on the test dataset. This approach also has the
best results in the error correction detection and
error correction of the end-to-end approaches and
therefore it is clear that it is the best approach for
the combined error correction detection and error
correction. However, the end-to-end T5 genera-
tor approach is not much worse with 96.40 % and
66.88 % validation and test accuracy, respectively.

The evaluation results show that the test dataset

is more challenging than the validation dataset. The
nine data collectors were able to introduce even
more variety of natural language than the validation
dataset has.

7 Conclusions and Further Work

The proposed error correction detection and error
correction component shows high potential. For
the validation dataset, we got very good results:
in 97.54 % of the cases, we could detect whether
there is a correction or not and if there is a cor-
rection, it outputs a correct corrected request and
could extract correctly the reparandum and repair
pairs. The results for the human-generated real-
world data with 69.27 % shows that the proposed
component is learning the concept of corrections
and can be developed to be used as an upstream
component to avoid the need for collecting data for
request corrections for every new domain. In addi-
tion, the extraction of the pairs of reparandum and
repair entity can be used for learning in a life-long
learning component of a dialog system to reduce
the need for correction in future dialogs.

In future work, the training dataset could be
extended to a bigger variety of natural language
which will enable the model to learn the concept
of corrections better and to get better results on
human-generated real-world data. The mentioned
life-long learning component could also be part
of future work and the classification of correction
types could improve the performance of such a life-
long learning component. To improve the accuracy,
architectures that have a better NER performance
than our used BERT model, like the architecture
proposed by (Baevski et al., 2019), could be used.
A further future research goal is to be able to cor-
rect all phrases and not only entity phrases.
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Abstract

The adoption of pre-trained language models
in task-oriented dialogue systems has resulted
in significant enhancements of their text gener-
ation abilities. However, these architectures are
slow to use because of the large number of train-
able parameters and can sometimes fail to gen-
erate diverse responses. To address these limi-
tations, we propose two models with auxiliary
tasks for response selection - (1) distinguishing
distractors from ground truth responses and (2)
distinguishing synthetic responses from ground
truth labels. They achieve state-of-the-art re-
sults on the MultiWOZ 2.1 dataset with com-
bined scores of 107.5 and 108.3 and outperform
a baseline with three times more parameters.
We publish reproducible code and checkpoints
and discuss the effects of applying auxiliary
tasks to T5-based architectures.

1 Introduction

Task-oriented dialogue (TOD) systems are devel-
oped to lead conversations with users and assist
them with the completion of various tasks. Un-
like traditional solutions which rely on natural lan-
guage understanding, state tracking, language gen-
eration, and other modules, end-to-end systems
utilize a single network for all required function-
ality (Young et al., 2013). The recent research in
the field has concentrated on leveraging language
models pre-trained on general-domain corpora (De-
vlin et al., 2018; Radford et al., 2019; Raffel et al.,
2020) to produce more robust architectures fine-
tuned specifically for TOD generation. This has
bridged the gap between production-ready modular-
ized pipelines and single-network models in terms
of accuracy and human-sounding results. However,
such architectures are big and computationally ex-
pensive; they are also prone to overfitting on the
final task and "forgetting" useful capabilities from
the pre-training phase (Greco et al., 2019; Kul-
hanek et al., 2021). Multiple studies (Section 2)

Todor Kolev
Obecto Ltd.
Sofia, Bulgaria
tkolev@obecto.com

have demonstrated that learning related auxiliary
tasks can improve the generation performance of a
model while making it less affected by the overfit-
ting issue.

In this paper, we study the effects of learning
auxiliary response selection tasks together with an
architecture based on the T5 (Raffel et al., 2020)
text-to-text transformer. We use MTTOD (Lee,
2021), trained on the MultiwWOZ 2.1 (Eric et al.,
2019) dataset, as a baseline and evaluate two main
approaches for response selection:

* Binary classifier to distinguish between en-
codings of ground truth responses and encod-
ings of distractor sentences sampled from the
dataset.

* Binary classifier to tell apart ground truth re-
sponses from decoder-generated sequences.

Reproducible code and model checkpoints
are available at https://github.com/
radi-cho/RSTOD.

2 Related Work

TOD sequence-to-sequence models usually gener-
ate a belief state based on the dialogue history and
then use the belief state (in addition to the previous
context) to generate a response (Lei et al., 2018).
Pre-trained Language Models such as BERT
(Devlin et al., 2018), GPT-2 (Radford et al., 2019),
and T5 (Raffel et al., 2020) significantly enhance
dialogue systems when they are fine-tuned for
sequence tasks. The first study to validate this
on GPT-2 is (Budzianowski and Vuli¢, 2019).
SOLOIST (Peng et al., 2020), UBAR (Yang et al.,
2021), and SimpleTOD (Hosseini-Asl et al., 2020)
further develop the end-to-end setting of the prob-
lem by considering database results and generated
responses during training. MinTL (Lin et al., 2020)
provides a minimalistic transfer learning dialogue
system with multiple backbones. TOD-BERT (Wu
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et al., 2020) utilizes a contrastive objective function
to mimic a response selection task. (Yang et al.,
2022) augments data by ignoring nonessential to-
kens and also adversarially filters “easy” samples
to enhance model robustness.

Auxiliary Learning - training additional tasks
which improve the performance of the primary text
generation task - is increasingly applied in TOD
systems. AuGPT (Kulhéanek et al., 2021) demon-
strates that response selection tasks are helpful on
top of GPT-2. MTTOD (Lee, 2021) has a span se-
lection auxiliary task. GALAXY (He et al., 2022)
(with UniLM (Dong et al., 2019) as a backbone)
optimizes four objectives, one of which is a selec-
tion between ground truth responses and randomly
sampled responses. PPTOD (Su et al., 2022) is
also trained for multiple tasks in a plug-and-play
fashion (Dathathri et al., 2019).

3 Method

3.1 Dialogue System Baseline

As a baseline, we use the end-to-end system set-
ting introduced in (Lee, 2021) (Figure 1) with T5
encoder-decoder backbone. The encoder input con-
sists of a dialogue history concatenated with a user
utterance. A belief state decoder generates a se-
quence of a domain name, slot names, and slot
values. There is an option for querying a domain-
specific database based on the belief state to gen-
erate a DB state which is then used to condition a
final response decoder. The response output con-
tains a system action state - a sequence of a domain
name, action types and slots - and a system re-
sponse. Since the decoder works autoregressively',
response generation is automatically conditioned
on the system action.

As shown in figure 1, MTTOD utilizes a classi-
fier as an auxiliary task for span matching, inspired
by recent dialogue state tracking approaches. La-
bels for this task are the extractive informable slots
defined in (Gao et al., 2020).

The loss to be jointly minimized is

ey

where Lpeier and Lyesp are negative log-
likelihood language modeling losses for the two
decoders and Ly, is a cross-entropy loss for the
span task. For compatibility with (Lee, 2021) the

L=« £belz‘ef +3 Eresp + Espom

' An autoregressive decoder uses information from previ-
ous time steps to generate the value at the current time step.

coefficients «, 5 and ~y are set to 1.0, 1.0 and 0.5
respectively. Refer to section 5 for baseline bench-
marks.

3.2 Response Selection as an Auxiliary Task

Our study aims to evaluate the effects of using
response selection as an additional auxiliary task
for the presented T5-based dialogue system. We
propose two variants for such a task (Figure 2) and
modify the full objective to

L=a ﬁbelz’ef +ﬁ ‘Cresp +v ﬁspan +6 [fselect (2)

In our experiments 0 is also set to 0.5.

3.2.1 Distinguishing distractor encodings

The first proposal for a response selection task in
our system is a binary classifier head - a linear
layer or a simple multilayer perceptron - distin-
guishing randomly sampled distractor responses
from ground truth responses. During training, the
dialogue context C} at time step t (consisting of
history H; and user utterance U,) is concatenated
with both the ground truth labels 7} - forming a
sequence (C,T;) - and a distractor response Dy
sampled from the dataset - forming a sequence
(Cy, Dy). Encodings for both sequences are gener-
ated by the already implemented T5 encoder and
are then fed to the response selection head. The
class label is O for (Cy, D;) and 1 for (Cy, T3). The
binary cross entropy loss to be minimized is defined
as

'Cselect = - lng (l =1 ’ CtaTt)

3

—logp(le]Ct,Dt) ()
sigmoid (¢a(¢£(Cy, Tp))) € R

“4)

p(l=0]Ct Dy) =
1 — sigmoid (¢4(¢5(Cy, Dy))) € R

where ¢ denotes the encoder and ¢, - the final
classifier.

Optimizing the auxiliary response selection task
affects the gradients of the encoder parameters. We
empirically prove that this is beneficial for the over-
all score improvements on multiple metrics.
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Figure 1: Dialogue generation architecture.

3.2.2 Distinguishing generated sequences

We also propose another independent auxiliary task
for response selection inspired by Generative Ad-
versarial Networks (Goodfellow et al., 2014). Its
goal is to distinguish between responses from the
transformer I?; and ground truth sequences 7.
The baseline response decoder generates a se-
quence of token logits 7y, m2, ..., T, Where 7; is a
vector of unnormalized class outputs over a vocab-
ulary with size v. To obtain token ids we usually

apply

jelv—1] 5)

arg max [log m;;],
J

for every ;. However, such a step is not differen-
tiable, and when subsequent layers are optimized,
transformer gradients won’t be affected, making
the auxiliary task useless. One way to overcome
the limitation is to re-encode the sequences as pre-
viously described in 3.2.1 and thus backpropagate
knowledge to the TS encoder. Instead, we propose
a classifier that works with differentiably sampled
token representations and backpropagates knowl-

edge to the whole architecture during training.

We sample vocabulary class probabilities y;1,
Yi2, -.-» Yip fOT every token representation m; from
a Gumbel-Softmax distribution (Jang et al., 2016;
Maddison et al., 2016; Gumbel, 1954):

i = exp((log(ms;) + g5)/7)
Y o exp((log(mik) + gr) /7)

(6)

where 7 is a temperature, treated as a hyper-
parameter, and g; is a noise sample from a
Gumbel(0, 1) distribution which can be computed
by drawing a u ~ Uniform(0, 1) and applying

g = —log(—log(u)) @)

For consistency with ground truth response se-
quences which are represented with v-dimensional
one-hot vectors j;, we programmatically® convert
the probabilities y; to one-hot vectors but compute
gradients with their continuous values.

*Refer to the hard flag in http://pytorch.
org/docs/stable/generated/torch.nn.
functional.gumbel_softmax
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Figure 2: Binary classification response generation tasks.

Finally, both y and ¢ are fed to the binary clas-
sifier ¢, and the loss to be minimized is computed
as

*Cselect = - Ing (l =1 | Q)
—logp(I=0]y)

p(l =1 ] g}) = sigmoid (¢b@)) eR!
p(l=0|y)=1—sigmoid (¢(y)) € R!
4 Experiments

®)

(€))

4.1 Dataset

In our workflow, we use the large-scale TOD
dataset MultiwOZ 2.1 (Eric et al., 2019) for bench-
marks and comparisons with baselines. We follow
the preprocessing techniques from (Zhang et al.,
2020; Lee, 2021) to replace the specific slot values
with placeholders. Table 1 presents more in-depth
details and statistics on the contents of the dataset.

4.2 Training procedure

Train/development/test sets are generated with
80%/10%/10% of the samples. We optimize the
objectives from section 3 for 15 epochs and report
the results from the best performing checkpoint
on the development set. In our experiments, we
tested different learning rate schedule strategies
and found the best results to be achieved with a
constant learning rate initialized as 5 x 10~* with
liner warmup for the first 10% of the samples.
For variant 2 of our architecture, a scheduler
is used to linearly decrease the Gumbel-Softmax
temperature 7 with each training iteration. The
optimal initial value for 7 used to derive the results
in Table 2 is 4 and is gradually decreased to 0.8.

4.3 Evaluation Metrics

During inference, the response selection head is
not used and the model performs the same way
in terms of speed as the T5-small baseline. We
compute BLEU (Papineni et al., 2002), Inform and
Success metrics for both architecture variants. In-
Sform validates whether system entities are correct
and Success checks whether relevant information
is given for all user inquiries. A combined score is
derived as 0.5 x (Inform + Success) + BLEU which
is consistent with previous studies.

5 Results
5.1 MultiwOZ Benchmarks

Table 2 compares the calculated benchmarks for
the two proposed variants of our auxiliary task. As
a baseline, we present the results of MTTOD with
T5 base backbone, which has more than 360 mil-
lion trainable parameters. In contrast, our models,
which use T5 small as a backbone, have 102.2 and
105.5 million parameters but achieve higher overall
results with total scores of 107.4 and 108.3, respec-
tively.

6 Discussion

Response selection tasks similar to variant 1 of our
architecture have been previously applied in mod-
els for chit-chatting and question answering (Wolf
et al., 2019). For TOD systems such tasks are used
in architectures with GPT-2 (AuGPT) and UniLM
(GALAXY) backbones resulting in responses with
higher text-generation metrics. Our study is the
first to provide an in-depth analysis of whether a
T5-based model in a task-oriented setting would
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Table 1: MultiWOZ dataset statistics

Domain Train dialogues Dev dialogues Test dialogues
Police 245 0 0
Hospital 287 0 0
Attraction 127 11 12
Taxi 326 57 52
Train 282 30 33
Hotel 513 56 67
Restaurant 1199 50 62
Train + Attraction 883 148 163
Hotel + Attraction 437 55 50
Restaurant + Attraction 396 78 70
Restaurant + Train 875 157 155
Restaurant + Hotel 462 59 49
Hotel + Train 1077 149 144
Restaurant + Hotel + Taxi 454 41 42
Restaurant + Attraction + Taxi 431 53 59
Hotel +Attraction + Taxi 444 56 42
Total 8438 1000 1000
Table 2: Benchmark results on MultiwOZ 2.1
Model Backbone Selection task Parameters Inform Success BLEU Score
MTTOD" TS5 base None 360.9 M 92.30 84.00 19.41 107.56
MTTOD" T5 small  None 1022 M 89.20 80.50 19.14 103.99
RSTOD (ours) T5 small  After encoder 102.2 M 92.10  83.30 19.69 107.39
RSTOD (ours) T5small Differentiable 105.5M 93.50 84.70 19.24 108.34

* MTTOD benchmarks are reproduced using its public source code. A slight deviation from the results in (Lee, 2021) is
caused by a correction in the evaluation scripts as acknowledged on https://github.com/bepoetree/MTTOD.

benefit from selection tasks. The results we present
are consistent with related literature since we also
observe an increase in generation performance.
Most of the solutions relying on pre-trained lan-
guage models have big amounts of trainable param-
eters making them slow to train. In our study, we
use a modification of the baseline with T5-small
instead of T5-base, reducing the parameters more
than 3 times. In variant 1 the shared encoder is
responsible for processing more sequences than
the baseline - it is slower to train but identical in
terms of inference speed and amount of storage
space required for its weights. Variant 2 is com-
parable in terms of train-time and inference-time
speed to the baseline but is able to achieve a higher
overall score. It employs techniques for overcom-
ing backpropagation issues with the discrete token

representations of a generated response sequence>.

3Usually text is generated by picking the most likely tokens

7 Future Work

Directions for further research on the topic of TOD
systems include testing our proposals on bigger
backbone models to evaluate their effectiveness
against overfitting, experimenting with additional
auxiliary tasks for the current baseline, and intro-
ducing data augmentations. Also, whether our
classifier heads could be used during inference to
perform real-time response selection should be ex-
plored.

As a long-term development in the field, we con-
sider various possibilities for building production-
ready end-to-end dialogue systems by employing
reinforcement learning or semi-supervised learning
methods. More experimentally, a generative adver-
sarial network for creative text generation could

from a probability distribution over the token space. This is not
a differentiable operation and prevents gradient computations.
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also be tested.

8 Conclusion

In this paper, we propose two independent auxiliary
tasks for response selection on top of a TOD sys-
tem transformer baseline. Both tasks demonstrate
state-of-the-art results on multiple text generation
metrics despite having 3+ times less trainable pa-
rameters. The first variant involves a classifier,
distinguishing between distractor and ground truth
responses, which affects the transformer encoder
during training and achieves results consistent with
related literature. The second variant applies a
novel technique for the TOD problem and involves
a classifier, distinguishing between synthetic and
ground truth responses. We publish reproducible
code implementations of our proposals and present
potential directions for future research.
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Abstract

A multi-turn dialogue always follows a specific
topic thread, and topic shift at the discourse
level occurs naturally as the conversation pro-
gresses, necessitating the model’s ability to cap-
ture different topics and generate topic-aware
responses. Previous research has either pre-
dicted the topic first and then generated the
relevant response, or simply applied the atten-
tion mechanism to all topics, ignoring the joint
distribution of the topic prediction and response
generation models and resulting in uncontrol-
lable and unrelated responses. In this paper, we
propose a joint framework with a topic refine-
ment mechanism to learn these two tasks simul-
taneously. Specifically, we design a three-pass
iteration mechanism to generate a coarse re-
sponse first, then predict corresponding topics,
and finally generate a refined response condi-
tioned on predicted topics. Moreover, we utilize
GPT2DoubleHeads and BERT for the topic pre-
diction task respectively, aiming to investigate
the effects of joint learning and the understand-
ing ability of the GPT model. Experimental
results demonstrate that our proposed frame-
work achieves new state-of-the-art performance
at the response generation task and the great
potential understanding capability of the GPT
model.

1 Introduction

Natural Language Generation (NLG), is the task
of generating language that is coherent and under-
standable to humans, and has been applied to many
downstream tasks such as text summary (Zhang
et al., 2019a; Bar-Haim et al., 2020; Cho et al.,
2020; Huang et al., 2020; Gholipour Ghalandari
and Ifrim, 2020), machine translation (Li et al.,
2020; Baziotis et al., 2020; Cheng et al., 2020;
Zou et al., 2020), and dialogue response genera-
tion (Radford et al., 2019; Zhou et al., 2018b; Tuan
et al., 2019; Zhao et al., 2020; Liu et al., 2020a;
Wolf et al., 2019).

*These authors contributed equally to this work

Recent works in dialogue response genera-
tion usually formulate this task as a sequence-
to-sequence problem, leading to inconsistent, un-
controllable, and repetitive responses (Ram et al.,
2018). Furthermore, each dialogue has its specific
goal and each utterance of the dialogue may con-
tain multiple topics, regardless it is an open-domain
dialogue or task-oriented dialogue. As shown in left
part of Figure 1, the patient seeks medical advice
from a doctor and informs him of the attributes
and symptoms of the specific disease which form
the topics of the conversation. Also, some open-
domain dialogue systems have specific goals, such
as recommendations, education, etc. For example, a
conversational agent interacts with a user to recom-
mend some interesting movies (as shown in right
part of Figure 1). The entire content flow is guided
by the topic thread. These various conversational
scenarios propose more challenges for the current
multi-turn end-to-end dialogue system, necessitat-
ing the model’s capability to generate a more infor-
mative and topic-related response.

Many researchers propose different methods to
guide or control the generation of responses con-
ditioned on specific topics. Some representative
works consider incorporating topic information
into the sequence-to-sequence framework which
applies an attention mechanism to all topics (Xing
et al., 2017; Dziri et al., 2019). Other works cast
this task as a pipeline system, predict the keywords,
then capture the topic, and finally retrieve corre-
sponding response (Tang et al., 2019; Zhou et al.,
2020). Another line of work focuses on single-turn
topic-aware response generation conditioned on
previously given topics (Feng et al., 2018; Yang
et al., 2019; Huo et al., 2020). All these methods
fall short in two ways. Most of these approaches ei-
ther heavily rely on the non-autoregressive models
like BERT (Devlin et al., 2019) to predict topics or
utilize the attention mechanism on all pre-defined
topics which do not consider the effect of the histor-
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(1).Bot : What are you up to?
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+ Toften miss childhood. i

*  Idesire love. miss
1 like nuptial tuberdes.
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(6)-User : That's truc. T want to be a kid again. By the way, are there
any movies about childhood? Although T can't go back, it's good to
Took at other people’s childhood memories.
(7).Bot : How about Father-son? I recommend it to you. I once saw it
/ by chance. It is very impressive and wonderful.

Jser : 1 just saw this movie, it really good, the documentary style
of this movie takes the childhood memories assaulting me, ha ha, I
have some nostalgia for those childhood toys, I really miss them
(9)-Bot : Well, toys are children's friends, children's childhood without

childhood

i

User Interaction History toys toys will be incomplete.
. (10).User : Yeah, recommend me a movie about children's childhood.
children (11).Bot : I recommend The Naked Childhood, which is a peaceful

film, telling the story of border children step-by-step. Just see it.

2 7| Reviews Candidates Conversation

Figure 1: Left: MedDG Dataset Right: TG-ReDial Dataset. Adapted from (Liu et al., 2020a) and (Liu et al., 2020b) respectively.

ical topic path of multi-turn conversations. Besides
that, these works do not model the joint distribu-
tion of attribute model p(a|x) and unconditional
language model p(x), which is proved effective
and powerful (Dathathri et al., 2019).

In this paper, we formulate this problem as a
topic-aware dialogue response generation task, aim-
ing to generate informative and topic-related re-
sponses that can engage the users. More specifi-
cally, we design a three-stage iteration mechanism
for the topic-aware response generation task. We
generate the coarse response given historical di-
alogue context and previous topics first, then we
require the model to explicitly predict correspond-
ing topics, and then we concatenate the generated
coarse response at the first step and the predicted
topics at the second step as input to generate a final
refined topic-related response. Thus, the model is
forced to learn a joint distribution of topics and
related responses by optimizing for these three ob-
jectives simultaneously.

* We formulate a traditional response genera-
tion problem as a topic-aware generation prob-
lem and propose a joint framework that can
learn topic prediction and dialogue response
generation simultaneously.

* We design a topic refine mechanism to con-
trol the generation of dialogue response. Our
ablation study confirms it can help to generate
more informative and topic-related responses,
leading to better performance.

* We evaluate our model on two different
datasets which consist of two application sce-
narios: medical auto-diagnosis and conversa-
tional recommendation, and we achieve new
state-of-the-art performance on both datasets
and demonstrate that joint distribution and

topic refinement is effective but the under-
standing ability of GPT?2 still needs to be im-
proved.

2 Problem Definition

Given a dialogue d = {u',u?u?,...,u"},

a corresponding speaker role path sr =
{s!,52, 53, ..., 5"} and its corresponding topic path

{tw!, tw? tw?, ..., tw"} where s € R,
tw € T. R and T are pre-defined speaker sets
and topic sets. An utterance at ¢th time step can
be expressed by (u?, s, tw*) which represents the
sentence, the speaker, and the topics included in
this sentence. tw’ consists of multiple topics or
zero topic and each topic is expressed by sev-
eral words. The problem then can be defined as:
given a ¢th historical dialogue context, speaker role
and topic path, 7! = {u}, ... uf 1}, s =
{si, .., 8?71}, tp;“l = {tw}, ..., tw?fl}, find the
next topic and generate related responses.

nfl)

ey

where 7" and tw" stand for the response and

corresponding topics at turn n respectively,. User
profile information p = {p1,po, ..., px} is often
provided as additional input, which consists of &
sentences to express personal information such as
interest. Thus, the objective changes accordingly:

y* = argmax p(r", tw™|d" 1, tp" 1, sr
0

*

y* = arg max p(r", tw"|d" L, tp" L, s
0

Lp)
)

Different from other methods, we divide the
whole problem into three sub-problems (see the
section below). Our objective can be formulated as
the following joint distribution:
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y* = arg gnaXP(T’fld"_l, s tpn )

p(twn|dn717 S’I”nil, tpnfl)
p(r?!d”_l, sr gt (ri, tw™))

3

where  p(r?|d"~L, sr" L tp"~1)  generate
the relatively abbreviated response first, then
p(tw™|d™=t sy~ tp" 1) predict the corre-
sponding topics at turn n, and finally, the model
refines the abbreviated response 7] by maximizing
p(ry|d =1, srm =1 tp" =1 (r}, tw™)) with the first
response 71 and corresponding predicted topics
tw™ as additional input, which leads to more
informative and topic-related response 75.

3 Model

Our model can be divided into three different parts:
1) Stage-One: Response Generation and 2) Topic
Prediction; and 3) Stage-Two: Topic Refinement,
which corresponds (a), (b), (¢) shown in Figure 2
respectively. More details can be checked in the
following subsections 3.1, 3.2, and 3.3.

3.1 Stage-One: Response Generation

We formulate the response generation problem us-
ing conditional language models e.g. GPT (Rad-
ford et al., 2019). Given many dialogues D =
{di1,da,ds, ...,d,}, ith dialogue d contains ser-
val training samples (r", tw™|d" !, sy~ tpn 1)
from different turn n, our objective here is to build
a statistical model parameterized by # to maximize
po(r™d™—1,tp"~1, sr™~1). Since here we use au-
toregressive language models to take account of
the sequential structure of the response, we need
to decompose the joint probability of " using the
chain rule as follows:

T
po(r|d* p s ) = T po(rf 1) (4)
t=1

where I stands for (r%,,d"~1 tp"=t srn=1)

and rZ, represents all tokens before ¢ at turn n.
The objective of stage one is performed by maxi-
mizing the loglikelihood (MLE) of the conditional
probabilities in (4) over the entire training dataset:

|D| |dl T

Lope = — Z Z ZZOQPO(T?m‘rzlinfom)

m=1n=1 t=1
)

where rﬁn’n is tth token of nth resposne of

mth dialogue in training dataset, H,, represents
(d™™, tp™", sr™ ™) before current response.

3.2 Topic Prediction

Given the historical #,,, of m*" dialogue !, we need
not only to generate a suitable response but also to
predict the correct topic. Some prior works solve
this problem by predicting the topic first and then
generating the response (Liu et al., 2020a; Zhou
et al., 2020). In this section, different from these
works, we propose a framework to jointly learn
this task with dialogue response generation task
as shown in Figure 2. There are two methods to
predict the corresponding topics: (1) BERT-Based
Prediction, and (2) GPT-Based Prediction.

3.2.1 BERT-Based Prediction.

Consistent with previous work in text classification
(Chen et al., 2019a), we utilize the embedding h; of
first token [C' LS| from BERT (Devlin et al., 2019)
to predict the topics, followed by a so ftmax layer.

f(z) = softmax(Why + b) (6)

3.2.2 GPT-Based Prediction.

We adapt GPT2DoubleHeads model (Wolf et al.,
2020) to perform the prediction followed (Wolf
et al., 2019), since there are two heads: language
modeling head and the classification head in the
model while the latter one can be used to classify
the input dialogue information. Besides that, the
shared parameters of GPT may benefit both topic
prediction and response generation tasks.

It is noted that there are two types of classifi-
cation in topic prediction task: multi-class clas-
sification and multi-label classification, owing to
the unique characteristic and differences of two
datasets: MedDG (Liu et al., 2020a) and TG-
ReDial (Liu et al., 2020b). For a multi-class clas-
sification problem, the global optimization can be
reached by minimizing cross-entropy loss defined
as follow:

K
Ltopic = — Z yclog(pc”’[m)

c=1

(N

For a multi-label classification problem, it is
usually formulated as a sequence of binary decision
problems which are optimized by:

'Tt is noted that we do not use 7, as input information
here.

21



[CLS] F % A

7 W

[EOS]

First Coarse Response Final Refined Response
LM Head “Sometimes it happens.” LM Head “Sometimes happens.”
BERT
= HEEEE— aw ok w
Decoder ! Topic Words Decoder
/CLS Emb \
Decoder ! T2 (bellyache) Decoder
I I II 5K (duration) i
(_Feed Forward Neural Network| ) — (WL I (hiccup) (Feed Forward Neural Network )
eal
( Masked Self-Attention ) ( Masked Self-Attenktion )
[CLS k] 33 i 1 L [EOS]
“Do u feel bellyache?” GPT . .
“Sometimes it happens.” “bellyache”
= +
£l ENCE
Positional Token -
Embedding Embedding [eLs ioll | 4 Kl L [EOS) First Coarse Response Topic words
(a) (b) (c)

Figure 2: TopicRefine: Joint Framework of Our Proposed Model, which consists of three different modules (a) Stage-One:
Response Generation (b) Topic Prediction (c) Stage-Two: Topic Refinement. The (b) module can be implemented by two
methods: BERT and GPT, we utilize Stage-One (GPT) and Stage-Two (GPT) to represent the framework with GPT as the

backbone for all three modules (
dashed line) in later experiment section.

K
Liopic = — Y _ Yelog(pe|Hum)+(1=ye)log(pe| Hm)
c=1
®)

3.3 Stage-Two: Topic Refinement

To generate a more informative and topic-related
response, we introduce the topicRefine mechanism
that refines the generated response condition on the
predicted topic 2, as shown in Figure 2 (c).

The refine decoder receives the first generated
response 7] from the stage-one module and the
predicted topic tw™ from the Topic Prediction
module as input and outputs a refined response
ry. More specifically, we utilize < topic >
to indicate the position of topics, so the input
can be represented as {[CLS], w}, w?, ..., wl, <
topic >, w}, w?, ..., wl, < topic >} where r7
[w}, w2, ..., wl], tw" = [w},w?,...,w}]. The
learning objective is formulated as:

Lrefine = = s Soner S logno (r" " (125" Hon, ™)
€))
where Eq 9 is similar with Eq 5 except the intro-
duced topic information tw"™ here. The parameters
are shared by all three modules unless we state
otherwise.

2If there are k topics predicted by module b, then we simply
concatenate all of them together

), and Stage-Two (BERT) to replace GPT with BERT for (b) module (blue

3.4 Training Objective

The learning objective of our model is the sum
of three parts, jointly trained using the “teacher-
forcing" algorithm. During training, we feed the
ground-truth response only in stage-one and stage-
two and minimize the following objective.

Lmodel = Lope + Ltopic + Lrefine (10)

At test time, we choose the predicted word by
y* = argmaxyp(y|z) at each time step, and we
use greedy search to generate both the response

and refined response.

4 Experiment

In this section, we will introduce datasets and base-
lines first, and then presents implementation details
and evaluation metrics of our proposed framework.

4.1 Datasets

MedDG (Liu et al., 2020a) A large-scale high-
quality medical dialogue dataset that contains 12
types of common diseases, more than 17k conver-
sation, and 160 different topics consisting of symp-
toms and attributes. Noted the topic-prediction task
here is a multi-label classification problem.

TG-ReDial (Zhou et al., 2020) consists of 10000
two-party dialogues between the user and a rec-
ommender in the movie domain which explicitly
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incorporates topic paths to enforce natural semantic
transitions towards recommendation scenario. For
topic-prediction task here, it is a multi-class classi-
fication problem. The details of these two datasets
can be found in Table 1.

response generation and topic prediction tasks
(i.e. a and b module in Figure 2) based on the
GPT2DoubleHeads model. In this way, the train-
ing objective changes t0 Lyodei = Lone + Liopic
without Ly fine. We called this method GPT2DH
to represent GPT2DoubleHeads (Wolf et al., 2020)

Dataset MedDG TG-ReDial
Task Domain Task-oriented | Recommendation
Language Chinese Chinese
Classification Type | Multi-Label Multi-Class
Dialogue Domain Medical Movie

f Dialogues 17864 10000

# Utterances 385951 129392

# Topics 160 2571

which have two heads for classification and genera-
tion respectively.

Stage-One (GPT) and Stage-Two (GPT). As
shown in Figure 2, this variant represents
all three components are implemented by
GPT2DoubleHeads model, while Stage-One

Table 1: Statistics of Two Datasets

4.2 Baselines

Seq2Seq. (Sutskever et al., 2014) is a classical
attention-based sequence-to-sequence model which
builds on top of vanilla RNN encoder and decoder.
HRED. (Serban et al., 2016) extends the tradi-
tional RNN encoder by stacking two RNNs in a
hierarchical way: one at the word level and one
at the utterance level. It is frequently used as a
dialogue encoder.

GPT2. (Radford et al., 2019) is a strong baseline
for response generation task which demonstrates
powerful performance in many related works. It
is noted all three methods mentioned above can
utilize topic information as additional input which
concatenates with utterance in the dialogue. We use
Seq2Seq-Topic, HRED-Topic and GPT-Topic to
represent these methods respectively.

Redial (Li et al., 2018) is proposed especially for
conversational recommendation systems by utiliz-
ing an auto-encoder for the recommendation.
KBRD (Chen et al., 2019b) stands for Knowledge-
Based Recommendaer Dialog System, which com-
bines the advantages of recommendation system
and dialogue generation system.

Transformer (Vaswani et al., 2017) applies a
Transformer-based encoder-decoder framework to
generate proper responses.

TG-RG (Zhou et al., 2020) is current state-of-the-
art method comes with the release of dataset. It
predicts the topic first and then generates the re-
sponse.

4.3 Variants of Our Framework

GPT2DH. The method removes the refinement
stage from our framework and jointly trains the

(GPT) represents the first generated response 77
and Stage-Two (GPT) represents the refined re-
sponse 75 in Equation (3).

Stage-Two (BERT). We replace GPT with BERT
only for (b) module in Figure 2. The variant is
designed for poor understanding capability of GPT
model which leads to noisy predicted topic.

4.4 Implementation Details

We use the same settings for these two datasets.
The learning rate is set as 1.5e-4, repetition penalty
as 1.0, batch size as 4, warmup steps as 2000, ex-
cept max context length as 500, max decode length
as 50, epochs as 20 for TG-ReDial, max context
length as 600, max decode length as 100, epochs
as 10 for MedDG. We use ADAMW (Loshchilov and
Hutter, 2019) to train the model. We emphasize that
the role path information is missing in the test data
of MedDG. Thus we only use dialogue and topic
information in the experiment to keep consistent
with test data. It is important to note that our meth-
ods do not pre-train on any other big corpus, we
just load the parameters provided by (Wolf et al.,
2020) and directly fine-tune on the target dataset.

4.5 Evaluation Metrics

For the sake of fair comparison, we adopt the same
evaluation metrics as the original two papers (Liu
et al., 2020a) and (Zhou et al., 2020). For MedDG,
we report BLEU-1, BLEU-4, and Topic-F1 for
response generation task, and Precision, Recall,
and F1 score for the topic prediction task. For
TG-ReDial, we calculate BLEU-1, BLEU2, and
BLEUS3 for generation and Hit@1, Hit@3, Hit@5
for prediction. It is noted that Topic-F1 requires
the topic words appears exactly in the generated
response at MedDG dataset.
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5 Result and Analysis

In this section, we evaluated the proposed Topi-
cRefine framework at two datasets MedDG and
TG-ReDial respectively. And then we further in-
vestigate the effects of different response lengths
and provide an analysis of human evaluation for
dialogue response generation task. At the last, we
also investigate the understanding capability of the
GPT model in these two datasets.

5.1 Main Result
Model BLEU-1 BLEU-4 Topic-F1  Avg
Seq2Seq 26.12 14.21 12.63 17.65
Seq2Seq-Topic 35.24 19.20 16.73  23.72
HRED 31.56 17.28 12.18 2034
HRED-Topic 38.66 21.19 16.58  25.48
GPT2 29.35 14.47 9.17 17.66
GPT2-Topic 30.87 16.56 17.08  21.50
Stage-Two (GPT) 45.12 27.49 5.40 26.00
Stage-Two (BERT) | 44.49 24.62 17.94  29.02
Stage-One (GPT) 43.86 24.62 1136 26.61
GPT2DH 43.93 24.35 11.91 26.73

Table 2: Dialogue response generation at MedDG
dataset. It is notes that “-Topic" methods use the ground
truth topic information in the dataset.

Model BLEU-1 BLEU-2 BLEU-3
Redial 0.177 0.028 0.006
KBRD 0.223 0.028 0.009
Transformer 0.283 0.068 0.033
GPT2-Topic 0.278 0.064 0.031
TG-RG 0.282 0.067 0.033
Stage-Two (GPT) | 0.293 0.085 0.042
Stage-Two (BERT) | 0.294 0.086 0.043
Stage-One (GPT) 0.284 0.082 0.041
GPT2DH 0.288 0.086 0.041

Table 3: Recommendation Response Generation at TG-
ReDial dataset. It is notes that “~Topic" methods use the
ground truth topic information in the dataset.

Table 2 and Table 3 demonstrates the perfor-
mance of baselines and our proposed framework
in both MedDG and TG-ReDial dataset respec-
tively. Our topicRefine framework outperforms the
previous state-of-the-art models at both datasets
(i.e. GPT2-Topic model at MedDG and TG-RG
model at TG-ReDial). More specifically, Stage-
Two (GPT) reaches better BLEU score and Stage-
Two (BERT) achieves higher Topic-F1 score at
MedDG, owing to the existence of noisy topic in
former method. Consistent with MedDG dataset,

our method gets better performance no matter in
Stage-Two (GPT) or Stage-Two (BERT) as shown
in Table 3. BLEU-1, BLEU-2, and BLEU-3 all
have been improved by different degrees. Another
interesting finding is that when explicitly concate-
nating topic words with dialogue utterances, the
GPT-Topic model achieves a higher topic-f1 score,
whereas the Stage-Two (GPT) model achieves a
lower topic-f1 score, indicating the effectiveness
of simply concatenating topic words and the noisy
prediction results by GPT.

5.2 Ablation Study

To further investigate the effectiveness of our pro-
posed framework, we add some variants of our
proposed framework (i.e. Stage-One (GPT) and
GPT2DH) as ablation study. As shown in Ta-
ble 2 and Table 3, Stage-One (GPT) and GPT2DH
achieve comparable results. On the one hand,
compared with previous state-of-the-art models,
GPT2DH demonstrate more powerful capability
which shows the effectiveness of joint learning
by incorporating topic prediction. Besides, any
Stage-Two model reaches higher BLEU scores than
GPT2DH which demonstrate the effectiveness of
refine mechanism (i.e. Ly¢fine). On the other hand,
Stage-Two (GPT) outperforms Stage-One (GPT)
in BLEU score (45.12 vs 43.86) but Topic-F1 score
(5.40 vs 11.36). We argue that the model tends to
generate more topic-related words instead of a spe-
cific topic word in the response. This is reasonable
since the model is optimized to generate a more
informative and topic-related response rather than
a specific word.

5.3 Effects of Response Length

To evaluate the impact of different ground-truth
response length, we compare the average BLEU
score between our model and previous state-of-the-
art model (i.e. GPT2-Topic and TG-RG) in MedDG
and TG-ReDial respectively. As shown in Figure 3
and Figure 4, our model reaches better performance
when the length of golden response is greater than
20 (occupies about 47.6% and 81.9% of test set
respectively). As the golden length increases, our
improvements also get boosted, which is more ob-
vious at TG-ReDial dataset.

5.4 Generated Sample

Table ?? (See Appendix due to page limit) given
some generated response at both datasets. To sum-
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marize, our generated result has the following fea-
tures:

* For MedDG, since we drop the information of
the speaker role path during training and the
dialogue between the doctor and the patient is
not alternate, some generated responses may
represent the perspective of the patient.

* For TG-ReDial, there are some meaningless
repeated characters in the result of Stage-One.
For example, - " and “iX“1>F" (this movie)
appears twice in response generated by Stage-
One. Stage-Two can alleviate this problem by
incorporating topic refinement.

* Our Stage-Two model can generate more in-
formative responses conditioned on given top-
ics. Taking the sample of TG-ReDial in Ta-
ble ?? as an example. For the topic of “mem-
ories", the response of ground truth is just a
rhetorical question, while the response of our
model not only grasps this topic but also rec-
ommends one specific movie name related to
this topic, which suggests that our model is
able to ground multi-turn dialogue generation

MedDG TG-ReDial
Model I 5 I F
Human | 699 628 | 740 7.28
Baseline | 6.18 5.51 | 6.20 5.69
One 632 481|662 5.66
Two 6.57 6.13 | 730 642

Table 4: The result of human evaluation. I and F repre-
sent Information and Fluency respectively. The baseline
represents previous sota model GPT2-Topic and TG-RG
in MedDG and TG-ReDial dataset respectively. One
represents Stage-One (GPT) and Two represents Stage-
Two (GPT)

to some specific topics and tends to be more
informative with respect to context.

5.5 Human Evaluation

To perform human evaluation, we randomly select
50 examples from the outputs of the previous sota
model, and our Stage-One (GPT) and State-Two
(GPT) method. The annotators are required to as-
sign two scores for each sentence according to two
criteria: (1) information and (2) fluency, ranging
from O to 10. information measures which sentence
contains more information (e.g. less repetition).
Fluency measures which sentence is more proper
as a response to a given dialogue context. The eval-
uation results are calculated by averaging these two
scores of all sentences.

Table 4 demonstrates the result of human eval-
uation. Generally, the score at TG-ReDial dataset
is relatively higher than score in MedDG dataset.
We attribute this to the MedDG dataset necessitates
more expert knowledge and contains many termi-
nologies. Besides that, there is still a large gap
between generated response and human response,
especially at fluency criteria. In detail, the Stage-
One (GPT) performs better than baseline models at
information but worse at fluency. Stage-Two (GPT)
model gets better scores in both information and
fluency criteria than Stage-One (GPT) model and
baseline.

5.6 Understanding of GPT Model

Model P R F1
BERT 1448 3295 20.13
Stage-Two (GPT) || 22.22 11.16 14.88

Table 5: Result of topic prediction task (multi-label clas-
sification) at MedDG dataset
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Model
BERT
Stage-Two (GPT)

Hit@l Hit@3 Hit@5
0.7651 0.8023 0.8189
0.5640 0.7931 0.8122

Table 6: Result of topic prediction task (multi-class clas-
sification) at TG-ReDial dataset

Table 5 and Table 6 demonstrate the performance
of topic prediction task at MedDG and TG-ReDial
datasets respectively. It is obvious that BERT (De-
vlin et al., 2019) demonstrates more strong under-
standing ability than GPT (Wolf et al., 2020) model.
However, the comparable performance of Hit@3
and Hit@5 between BERT and GPT in Table 6
clearly demonstrates the latter’s high understanding
potential. The unlocking of potential necessitates a
more meticulously designed algorithm or architec-
ture (Dathathri et al., 2019; Liu et al., 2021).

6 Related Work

6.1 Topic-aware Dialogue System

Data-driven, knowledge-grounded dialogue system
(Zhou et al., 2018b; Tuan et al., 2019; Zhao et al.,
2020) attracts much attention due to the release of
large pre-trained language models such as GPT2
(Radford et al., 2019) and DialoGPT (Zhang et al.,
2019b). According to different types of knowledge,
previous works can be clustered into the following
categories: (1) attributes (Zhou et al., 2018a; Zhang
et al., 2018a; Xu et al., 2019) (2) persona (Li et al.,
2016; Zheng et al., 2019; Wu et al., 2020a; Zhang
et al., 2018b) (3) external knowledge graph such as
commonsense knowledge (Tuan et al., 2019; Yang
et al., 2019; Moon et al., 2019).

Most of previous works for topic-aware dialogue
system (Xing et al., 2017; Dziri et al., 2019; Yang
etal., 2019; Huo et al., 2020) utilize attention mech-
anism on all topics at the decode stage to bias
the generation probability. (Tang et al., 2019) pro-
poses a structured approach that introduces coarse-
grained keywords to control the intended content
of system responses and (Xu et al., 2020) proposes
Topic-Aware Dual-attention Matching (TADAM)
Network to select suitable response but all of their
systems are retrieval-based.

6.2 Refine Mechanism

Refine mechanism has been proved to be a effective
and compelling technique in both natural language
understanding and generation tasks (Zhang et al.,
2019a; Wu et al., 2020b; Song et al., 2021). For

natural language understanding, (Wu et al., 2020b)
design a novel two-pass iteration mechanism to
handle the uncoordinated slots problem caused by
conditional independence of non-autoregressive
model, in which the model utilizes B-label out-
put from first phase as input at second phase. For
natural language generation, (Zhang et al., 2019a)
use refine mechanism to generate refined summary
which firstly applies BERT as decoder. Recently, a
novel BERT-over-BERT (BoB) model is proposed
to solve response generation task and consistency
understanding simultaneously (Song et al., 2021).
In this paper, we utilize topicRefine framwork to
build a topic-aware multi-turn end-to-end dialogue
system, aiming to generate informative and topic-
related dialogue response.

7 Conclusion and Future Work

In this paper, we propose a joint framework with
a topic refinement mechanism to solve the topic-
aware multi-turn end-to-end dialogue generation
problem based on the auto-regressive language
model — GPT2 (Wolf et al., 2020). More specif-
ically, we design a three-pass mechanism to jointly
learn topic prediction and dialogue response gener-
ation tasks, aiming to generate an informative and
topic-related response to engage users. Compre-
hensive experiments demonstrate that our method
outperforms previous state-of-the-art models on
both MedDG (Liu et al., 2020a) and TG-ReDial
(Liu et al., 2020b) datasets, which verifies that the
effectiveness of joint learning and refinement mech-
anism. We will investigate more refined techniques
in our future work.
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Abstract

Few-shot slot tagging is an emerging re-
search topic in Natural Language Understand-
ing (NLU). Conventional few-shot approaches
use all the data from the source domains with-
out considering inter-domain relations and im-
plicitly assume each sample in the domain con-
tributes equally. However, our experiments
show that transferring knowledge from dissim-
ilar domains will introduce extra noises that
decrease the performance of models. We pro-
pose an effective similarity-based method to
select data from the source domains to tackle
this problem. In addition, we propose a Shared-
Private Network (SP-Net) for the few-shot slot
tagging task. The words from the same class
would have some shared features. We extract
those shared features from the limited anno-
tated data on the target domain and merge
them as the label embedding to help us pre-
dict other unlabelled data on the target domain.
The experiment shows that our method out-
performs the state-of-the-art approaches with
fewer source data. The result also proves that
some training data from dissimilar sources are
redundant and even negative for the adaptation.

1 Introduction

Slot tagging (Tur and De Mori, 2011), one of the
crucial problems in Natural Language Understand-
ing (NLU), aims to recognize pre-defined semantic
slots from sentences and usually is regarded as a
sequence labeling problem (Sarikaya et al., 2016).
For example, given the sentence “Book a ticket to
London", the word “London" should be recognized
as the slot “CITY" by the NLU model.

Currently, most of the methods for the slot tag-
ging task have a notorious limitation in that they
require a lot of annotated data. However, there are
almost infinite long tail domains in the real scenar-
i0s (Zhu et al., 2014) so it is nearly impossible to
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Figure 1: The difference between training with (a) all
data and (b) data selection. The dashed line represents
the distance among different domains in the parameter
space with the centroid (®). With data selection, we
remove the dissimilar domains D4 and D5 from training
and the centroid will be closer to the target domain D’.

annotate sufficient data for each domain. Therefore,
few-shot learning methods (Ravi and Larochelle,
2016) have received attention as they can transfer
the knowledge learned from the existing domains
to new domains quickly with limited data.
Current works (Yoon et al., 2019; Liu et al.,
2020; Wang et al., 2021) proposed various methods
to improve the performance of slot tagging few-
shot learning, but most of them focus on “how" to
transfer rather than “what" should be transferred.
The knowledge from the not-relevant source do-
main is hard to help the model identify the slots in
the new domain. Further, such kind of knowledge
is redundant and sometimes could be regarded as
noises that even deteriorate the performance (Wang
et al., 2019; Meftah et al., 2021). We observe this
phenomenon and prove the existence of the neg-
ative transfer in the experiment. To this end, we
propose a similarity-based method to evaluate the
inter-domain relation and indicate which domains
should be selected for training. Specifically, we
calculate three different similarities, including tar-
get vocabulary covered (TVC), TF-IDF similarity
(TIS), and label overlap (LO) between domains,
and combine them with different weights. The
combined similarity function selects data from both
corpus level and label level, which is more com-
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prehensive. In this way, the dissimilar sources will
be rejected, and the initial parameters of the model
will be naturally more closed to the local optimum
of the target domain. A high-level intuition of the
difference between training with all data and train-
ing with data selection is shown in Figure 1.

After selecting pertinent data, we also propose a
solution about “how" to transfer knowledge for a
few-shot slot tagging task. Specifically, we build
a Shared-Private Network to capture stable label
representations under the few-shot setting. Many
works (Hou et al., 2020; Zhu et al., 2020; Liu
et al., 2020) try to enhance the accuracy of slot
identification from the label representation engi-
neering. They assign each label with a semantic
vector (Snell et al., 2017; Hou et al., 2020; Zhu
et al., 2020; Yoon et al., 2019) rather than a sim-
ple one-hot encoding. However, the quality of the
label representations highly depends on the vol-
ume of the training samples and suffers from the
unstable problem under the few-shot setting due
to the extremely biased data distribution. Hence,
we propose the Shared-Private Network separate
the shared and private features from the limited
samples. The words with the same label share com-
mon information. They are extracted and saved
as shared features. Other parts are regarded as de-
tailed information related to the words and will be
saved as private features. After filtering the detailed
information out, the label representation generated
according to the shared features will be more ro-
bust against the annotation shortage problems in
the few-shot setting.

The contributions of this work are as follows:

* We propose a similarity-based method to mea-
sure the relation among domains to guide data
selection and to avoid negative knowledge
transfer in few-shot learning.

* We propose the Shared-Private Network to
extract more stable label representation with
limited annotations.

* We prove the existence of negative transfer
via experiments and give explanations about
this phenomenon via visualization.

2 Related Work

Convention studies in slot tagging mainly focus
on proposing and utilizing deep neural networks
to recognize the semantic slots in given contexts
(Shi et al., 2016; Kim et al., 2017). However, most
of these models need a large amount of annotated

data which is scarce in the real world, especially
for those minority domains. Recent works (Bapna
et al., 2017; Shah et al., 2019; Rastogi et al., 2019;
Liu et al., 2020) propose several few-shot learning
methods for slot tagging and developed domain-
specific model with limited annotated data. It is
worth noting that, due to the lack of annotation on
the target domain, both approaches paid attention to
label representation engineering rather than using
conventional one-hot encoding directly. But build-
ing label representation with limited annotations is
still a challenge. To stabilize the effectiveness of
label representation, we proposed a Shared-Private
network to learn representation from shared infor-
mation of words.

Besides that, negative transfer that transferring
knowledge from the source can have a negative im-
pact on the target has been founded in many tasks
(Wang et al., 2019; Chen et al., 2019; Gui et al.,
2018). Because of this phenomenon, recent meth-
ods for relation analysis between source and target
domains have been proposed. Gururangan et al.
(2020) use vocabulary overlap as the similarity be-
tween two datasets and emphasize the significant
impact of domain-adaptive for pre-training. Dai
et al. (2019) study different similarity methods, in-
cluding target vocabulary covered (TVC), language
model perplexity (PPL), and word vector variance
(WVYV) to select data for pre-training tasks. How-
ever, a single similarity function does not work well
in the few-shot setting. Different similarity meth-
ods always give diverse data selection strategies
and are hardly consistent. To this end, we propose
a comprehensive indicator that combines three sim-
ilarity functions to guide the data selection in the
few-shot setting.

3 Problem Definition

We follow the same task definition as Hou et al.
(2020). Given a sentence X = (1,22, -, Ty)asa
sequence of words, slot tagging task aims to assign
the corresponding label series y = (y1, Y2, "+, Yn)
to indicate which classes the words should belong
to. A domain D = {(x(),y®)} 2 is a set of
(x,y) pairs that from same scenario and Np is the
number of sentences in domain D.

In few-shot setting, models are trained from
source domain {D;,Ds,---} and are applied to
the target domain {D}, D), - - -} which are new to
the models. It is worth note that there are only few
labeled samples, which make up the support set
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S = {(X(i),y(i))}f\fl, in each target domain D;.
For each unique N labels (N-way) in support set
S, there are K annotated samples (K-shot). Be-
sides that, the samples in the target domain D} are
unlabeled.

Thus, few-shot slot tagging task is defined as
follows: given a K-shot support set S and a query
sentence X = (z1,x9, -, xy,), determine the cor-
responding labels sequence y*:

(1

Y= Wi ys s yn) = arg;naxp(YIx,S)

4 Data Selection

In this section, we first show the existence of neg-
ative knowledge transfer among domains. The
phenomenon demonstrates the necessity of data
selection. Then introduce our similarity-based data
selection strategy that can be used to avoid nega-
tive knowledge transfer to improve performance in
few-shot slot tagging.

4.1 Negative Knowledge Transfer

Due to negative knowledge transfer, some knowl-
edge the model learned before is useless and may
affect the judgment of the model on the new do-
mains, which will degrade the performance. In the
preliminary study, we train the model with all dif-
ferent combinations of source domains and record
their performance. The relation between the num-
ber of source domains and their corresponding per-
formance is shown in Figure 2. Overall, with more
training domains, the performance would be bet-
ter. However, comparing the maximum values, it
is evident that training with three source domains
outperforms training with 4. This phenomenon
indicates that more source domains may even de-
crease the performance and proves the existence of
negative knowledge transfer. It also inspires us that
the model will achieve a better result with proper
data selection.

4.2 Selection Strategy

An indicator is needed to select data or source do-
mains before training to avoid negative knowledge
transfer. Given a group of data from source domain
and the data of target domain, the indicator should
output a score that can reflect how fit are these
source data for transferring knowledge to the target.
Ideally, the indicator score behaves linearly with
the performance so that a higher indicator score can
lead to better performance. In this way, the group
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Figure 2: The relationship between performance (y-
axis), specifically the F1 score, and the number of source
domains (x-axis).

of source data with the highest indicator score can
be selected as the best choice for training.

The data that can be leveraged includes the
source domains {Dy, - - -, Dps } with sufficient la-
bels, the support set S; with labels in the target
domain D}, and the query set Q; without labels.
Notice that the data in the support set §; is much
less than the query set Q;. Considering the at-
tributes mentioned above and the data we can use,
we investigate three similarity functions as indica-
tors for data selection.

Target Vocabulary Covered (TVC) is a signifi-
cant corpus level feature that represents the overlap
of vocabulary between source domain(s) and a tar-
get domain and is defined as:

(@)

where Vp, and VD;_ are the vocabularies (sets of
unique tokens) of the source domain D; and the
target domain Dj respectively and | - | is the norm
operation that indicates the size of the set. Intu-
itively, if most of words in the target domain have
already appeared in the sources, the word embed-
dings should have been well trained so that im-
proves the performance.

TF-IDF Similarity (TIS) is another corpus level
feature (Bao et al., 2020). We treat each domain as
a document and calculate their t £-1idf features
(Salton and Buckley, 1988; Wu et al., 2008). Co-
sine similarity is used to evaluate the correlation
between the sources and the target. Compared with
TVC, TIS assigns each word a weight according
to the term frequency and inverse document fre-
quency, which takes fine-grained corpus feature
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into account. The details are shown below:

tf; j = 3)

Nij
Dk Mk
where n;; is the times of word ¢; appeared in do-

main D;.

| M

where M is the total number of domains. And the
t £-1df feature is the product of t £ and idf:

tf—idfj = tfi’j - idf; 5)
tf-idf; can be regarded as the word distribution
feature of the domain j, and cosine similarity is
used to evaluate the correlation between the two
domains:

tfidfp, - tfidfp,
|Itfidfp, ||z - |[tfidfp,[|o

TIS(D;, D) = ©)

where || - ||2 is the Euclidean norm.

Label Overlap (LO) is a label level feature that
represents the overlap of labels between source
domains and the target domain. Although labels
are scarce in the target domain under the few-shot
setting, the types of labels are not. Every label on
the target domain at least appeared K times (K-
shot) in the support set S and therefore, the types
of the labels are complete. Hence, label overlap is
also a good choice as a data selection indicator:

_ [YinYj|

LO(Y;,Y;) = 7
J

)

where Y; and Y; stand for the unique label set of
the source domain D; and the target domain D',
respectively.

Each similarity function only focus on a single
aspect, i.e. the corpus level information or the label
level. Therefore, it is inevitable to introduce bias
when we select data with them. Naturally, we come
up with a strategy that combines all three similarity
scores as the indicator to give a more stable guid-
ance for data selection. Assume that one of the
combinations, i.e. Cp, g,0,(TVC;, TIS;,LO;) =
01TVC; + 05TIS; + 63L.0;, is linear with the per-
formance, our goal is to find the best value of
01, 02, and 03. For a better reading experience,
Co,,0,,05(TVC;, TIS;,LO;) is abbreviated to Cj.

Algorithm 1 Training with combination of source
domains

Require: Set of source domains {D1, - - -, Dy }; Target do-
main D’; Model F;
1: forl1 <i< M do
2: all_combination =
combination({D1,- -, D}, 1)
/I Select ¢ domain(s) from M for training.

3: for 1 < j < |all_combination| — 1 do
4: combination = all_combination[j]
// e.g. combination = [D1, Ds]
S Dtraining < Merge(combination)
6: TVC = TVC(Dyaining: D')
7 TIS = TIS(Dtrainingv Dl)
8: LO = LO(Dtraining D/)
9: train (]—' (Dtraining)> until Loss converge
10: pi = eval((F(D'))
11: end for
12: end for

Following the least squares method (Merriman,
1877), we design the objective function as follows:

arg min NLE ZZJ\E | [wC; + b] — pi||?
01,02,03,w,b
st. w>0,6>0

(®)

where w and b are the weight and bias of the linear
function to simulate the linear relation between the
indicator score and the performance. Ng is the
number of the experiments, and p; is the actual
performance of the experiment ¢. TVC;, TIS;, and
LO; are the TVC score, TIS score, and LO score
between the source domains and the target domain
in the experiment .

To solve the problem in equation (8), we design
a scheme to generate samples with the combination
of source domains. We pre-define the number of
source domains and enumerate all combinations.
The three similarity scores between the combina-
tion of source domains and target domains will be
calculated and recorded. Then we train the model
with the combination and record the final perfor-
mance on the target domain. In this way, we get
sufficient tuples (TVC,TIS,LO,p) to figure out
the optimum 61, 05, and 63 (see Algorithm 1).

With sufficient samples, we fit them with the
linear function in equation ( 8) and optimize w,
b, 01, 02, and #3 via SGD (Curry, 1944). Due to
the data distribution bias of different domains, we
finally assign different w; and b; for each target
domain D;- to acquire a better linear relation. For
the combination weights 61, 62, and 63, we keep
same for different target domains. Further, we still
have the following points to declare:
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* The parameters w and b are learnable but un-
necessary for data selection. They are not
a part of the indicator and are only used to
observe the linear relation between the combi-
nation similarity scores and the corresponding
performance.

* Due to the cross-validation setting in the real
dataset (e.g., SNIPS), to avoid data leakage
of the target domain, we obtain 1, 62, and 03
according to the validation domain for each
target. The combination from the validation
domain still works well on the target and can
prove the generality of this strategy.

* Although training with a combination of
source domains is time-consuming, it can be
adapted to different domains once the opti-
mum combination weights have been found.

After that, we can select domains according to

the optimum w*, b*, 07, 63, and 3. The domains
which can achieve a higher combined similarity
score may lead to better performance, and this can
be formulated as:

arg max
7

)

And due to w > 0, equation ( 9) is equivalent to:

(10)

arg max
i

03 TVC; + 03TIS; + 65LO;

In this way, the domain specific w and b are elimi-
nated.

5 Shared-Private Network

Based on the Prototypical Network (Snell et al.,
2017), we propose the Shared-Private Network (SP-
Net) to gain more representative label embeddings.
The workflow is divided into two stages: SP-Net
extracts label embeddings for each class from the
support set in the first stage. SP-Net predicts each
query sentence in the second stage according to the
label embeddings extracted from stage one. Fig-
ure 3 illustrates this process.

(a) Encode Firstly, sentences are encoded into
word embeddings via BERT (Devlin et al., 2019).
Given a sentence X = (z1,Z2, -+, Ty) as a se-
quence of words, BERT will generate their cor-
responding contextual word embeddings E =
(B, Es,---,E,), where E; € R, h is the hid-
den size of the word embedings.

(b) Extract shared features Although words
are different, there is common information among

words from the same class. Intuitively, the same
class words always appear in a similar context with
similar syntax. And in some cases, they can even be
replaced with each other without any grammatical
mistakes. For example, even though we replace the
phrase “Hong Kong" with “New York" in Figure 3,
the sentence still makes sense. Common informa-
tion can help us generate scalable label embeddings
that can represent most of the words in a class. The
shared layer in the framework is designed for this.
In this work, we implement the shared layer with a
residual linear function, and the shared feature of a
word is calculated as follows:

Ef = E; + RELU(E;W, + b;) (1)

where W € R"*" and b, € R are the weight and
bias of the shared layer, respectively. RELU is the
rectified linear unit function (Maas et al., 2013).
(c) Extract private features Besides the shared
information, each word still has its specific infor-
mation. Recalling the phrase replacing case men-
tioned in Figure 3, although the sentence is without
any grammatical mistakes after phrase replacing,
the meaning has been changed. This is due to the
private information carried by the word. The pri-
vate information is ineffective and can be harmful
to label embeddings as they lack generality. Less
private information can lead to a better quality of
label embeddings, and therefore, the private layer
is designed to extract private information from the
word embeddings. The private layer is also im-
plemented with a residual linear function, and the
private feature of a word is calculated as follows:

EP = E; + RELU(E;W, +b,)  (12)

where W, € R"" and b, € R" is the weight and
bias of the private layer, respectively. So far, the
shared layer and private layer are symmetrical and
share the same design.

(d) orthogonality constrain To ensure the
shared features and private features are separated
completely, we introduce the following constraints:

* The shared features of the words in the same

class should be close to each other.

* The private features of words should be di-
verse even though they belong to the same
class.

* The shared and private features of a word
should not overlap.

For the first requirement, Chen et al. (2020) pro-

posed using contrastive loss that can make the same
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Figure 3: This is the workflow of SP-Net. In this case, the support set contains 2 sentences, and the query set contains
1. The details of processes (a) encode, (b) extract shared features, (c) extract private features, (d) orthogonality
constrain, (e) extract label embeddings, and (f) predict are introduced in the main body.

samples close and different samples far apart. The
similarity between samples are defined as follows:

sT s
im(Ef, FS) = ——2_ 13
SmlELE) = Eme P

The loss in the first requirement is defined as:
esinn(Ef,Eg)/r

{isyi=c} {jiyj=c}
SIM(E; E3) /7

{i;1€8} {5;7€S}

L1=E |—log

(14)
where 7 is the temperature parameter and c is the
class. The numerator is the sum of the similar-
ity scores whose class is ¢. The denominator is
the sum of all the similarity scores. Specifically,
embeddings in the same class present a high simi-
larity score and the numerator is large, and the loss
decreases.

For the second requirement, according to the co-
variance of two variables, we define the divergence
between two embeddings as:

D(E?,EY) = (Ef —EP)"(EY —EP)  (15)
where [EP is the mean vector of all private embed-
dings in the set. The loss in the second requirement
is:

(16)

Lo=— ’&QE:E:mgpzﬁJﬁ)

€S jES

where |S| is the size of the support set, i.e., the
number of words. Higher divergence among the
private embeddings will lead to lower loss. We also

implement L2 -norm to restrain the increase of the
parameters.

The third requirement refines the shared features
further. We introduce the orthogonality constraints
(Liu et al., 2017) to force the shared embedding
independent of the private embedding:

1
L3=— Hl;?rﬁﬁ
51 2 |E B

where || - ||2 is the Euclidean norm.

(e) Extract label embeddings Label embed-
dings are extracted from shared embeddings for
each class. We take the mean vector of the shared
embeddings which belong to class c as the label
embedding:

(17)

o1 > E; (18)
Hyi=c}l =,

where E° is the label embedding of the class c.

(f) Predict We calculate the similarity between
shared embeddings of the query sentence with the
label embeddings. We provide various options, and
here we take cosine similarity as an example:

EsTEe
e i 19
P = B E] (1%

where p{ is the similarity between word ¢ with
class c and can also be regarded as the confidence
that the word belongs to this class. The class with
the highest similarity will be considered as the pre-
diction for the word. We take the binary cross-
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Model We Mu Pl Bo Se Re Cr Avg.
SimBERT 36.10 37.08 35.11 68.09 41.61 42.82 2391 40.67
1-shot | TransferBERT 5582 38.01 45.65 31.63 21.96 41.79 3853 39.06
L-TapNet+CDT+PWE (Hou et al., 2020)  71.53 60.56 66.27 84.54 76.27 70.79 62.89 70.41
L-ProtoNet+CDT+VPB (Zhu et al., 2020) 73.12 57.86 69.01 8249 75.11 73.34 7046 71.63
BERT-ProtoNet 60.01 4333 5242 4437 47.86 5091 39.04 45.65
SP-Net 70.67 59.27 69.58 82.80 76.92 7249 74.63 7234
SP-Net + Domain Selection 76.07 64.29 71.10 84.19 81.63 73.66 76.41 75.34(+3.71)
SimBERT 53.46 54.13 42.81 7554 57.10 5530 3238 5296
5-shot | TransferBERT 59.41 42.00 46.07 20.74 2820 67.75 58.61 46.11
L-TapNet+CDT+PWE(Hou et al., 2020)  71.64 67.16 75.88 84.38 82.58 70.05 73.41 75.01
L-ProtoNet+CDT+VPB(Zhu et al., 2020) 82.93 69.62 80.86 91.19 86.58 81.97 76.02 81.31
BERT-ProtoNet 68.98 59.31 6242 8135 7891 67.57 71.69 70.03
SP-Net 83.92 69.37 79.47 8943 8795 77.75 80.31 81.17
SP-Net + Domain Selection 84.03 71.09 82.01 92.13 89.44 80.71 80.88 82.90 (+1.59)
Table 1: F1 scores of few-shot slot tagging on SNIPS dataset.
Model 1-shot 5-shot
News Wiki Social Mixed Avg. News Wiki Social Mixed Avg.
SimBERT 19.22 691 5.18 13.99 11.32 32.01 10.63 8.20 21.14  18.00
TransferBERT 475 057 271 346 2.87 1536 3.62 11.08 35.49 16.39
L-TapNet+CDT+PWE 4430 12.04 2080 15.17 23.08 4535 11.65 2330 2095 2531
L-ProtoNet+CDT+VPB 4347 10.95 2843 33.14 29.00 56.30 18.57 3542 44771 38.75
SP-Net 4395 13.02 27.77 34.05 29.70 57.70 18.62 36.41 4497 39.42
SP-Net Domain Selection 43.95 13.02 27.77 34.05 29.70 (+0.70) 57.70 21.11 36.41 4497  40.05 (+1.30)

Table 2: F1 scores of few-shot slot tagging on NER dataset. The performance improvements of SP-Net Domain
Selection compared to all baselines are significant (validated by Student’s t-test with p-value < 0.01).

entropy loss to measure the error in each class:

Q ¢
1 c ¢
54:@5 E yi log pi + (1 —y;) log (1 — pf)

(20)
where C' is the number of unique labels in the query
set and | Q| is the number of words in the query set.

Finally, we combine the £1, Lo, L3, and £4 with
different weights as the cost function:

L=ali+PBLs+~vLs+ Ly 21

where «, 3, v, and § are hyperparameters deter-
mined by the experiments.

6 Experiments

6.1 Dataset

We evaluate the proposed method following the
same experiment setting provided by Hou et al.
(2020) on SNIPS (Coucke et al., 2018) and NER
dataset (Zhu et al., 2020). SNIPS contains seven
domains, including Weather (We), Music (Mu),
PlayList (Pl), Book (Bo), Search Screen (Se),
Restaurant (Re), and Creative Work (Cr), and the
sentences in SNIPS are annotated with token-level
BIO labels for slot tagging. Each domain will be

tested in turn following the cross-validation strat-
egy. Five domains are used for training and one for
evaluation in each turn. In each domain, the data
are split into 100 episodes (Ren et al., 2018). For
the sake of fair peer comparison, the selection of
evaluation domain and episodes construct are kept
the same with Hou et al. (2020). The NER dataset
contains four domains: News, Wiki, Social, and
Mixed. In addition, because the number of domains
in the NER dataset is too short, we randomly split
domains into pieces and select those pieces via the
combined similarity function. More training details
can be found in the appendix.

6.2 Baselines

SimBERT assigns a label to the word according
to cosine similarity of word embedding of a fixed
BERT.

TransferBERT directly transfers the knowledge
from the source domain to the target domain by
parameter sharing.

L-TapNet+CDT+PWE (Hou et al., 2020) com-
bines with the label name representation and a spe-
cial CRF framework.

L-ProtoNet+CDT+VPB (Zhu et al., 2020) utilizes
the powerful distance function VPB to boost the
performance of the model.
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BERT-ProtoNet is the model proposed in this
work which is without the Shared-Private layer.
This model is used for ablation study.

SP-Net is the Shared-Private Network proposed in
this work.

SP-Net + Domain Selection is also SP-Net, but
it is trained with the selected data according to the
data selection strategy we proposed.

6.3 Main Results

Table 1 shows the results of 1-shot and 5-shot on
the SNIPS dataset. Generally speaking, the SP-
Net achieves the best performance on the 1-shot
setting and comparable performance on the 5-shot
setting (0.14% adrift of SOTA). The data selection
strategy dramatically enhances the performance on
both the 1-shot and 5-shot settings. With the data
selection, the performance of SP-Net is far beyond
other baselines.

The result on the NER dataset also proves the
effectiveness of our method (See Table 2). It is
noticed that, due to the short of the data, combined
similarity select all data on most domains except
Wiki of 5-shot task. Therefore the result of SP-
Origin and SP-Domain Selection are nearly the
same.

o support sample
4 true center

- inferred center
a distance

— bias

Figure 4: This is diagram shows the automatic correc-
tion of distribution bias when the number of supports
increased. The circles are samples in the support set
and triangles are the inferred center, as well as label
embedding, according to the supports. Stars are the true
center of classes.

The effect of the Shared-Private Network is more
remarkable if the number of support samples is less.
The SP-Net outperforms all baseline in the 1-shot
setting, but in 5-shot, it achieves comparable per-
formance. The shared-private Network essentially
corrects the bias between the label embedding and
the center of the class. The bias will be more se-
vere if the support is less. With the increase in the
number of supports, bias could be suppressed to
some extent (see Figure 4). Some other methods,
like label description (Hou et al., 2020), can also
correct such kind of bias if enough supports are
given. But when the supports are highly scarce,
Shared-Private Network performs the best.

6.4 Analysis

We further visualize the relation between the per-
formance with the similarity function and compare
combined similarity with TVC in Figure 5. We
firstly sample some combinations of source do-
mains and train the model. Then we calculate their
similarity with the target domain and record per-
formance. From the left part of Figure 5, the per-
formance generally positively correlates with TVC.
However, its precision is poor, so that cannot be
used as an indicator. Points around the green line
have similar TVC scores, but the performance is
quite diverse, i.e., the green points’ are from 20%
to 70%. A similar conclusion can be drawn from
the horizontal direction: blue points around the
blue line have identical performance, but their TVC
scores are 36% to 87%. Therefore, data selection
with TVC suffers severe performance fluctuation.
By comparison, there is an apparent positive linear
correlation between combined similarity and per-
formance in the target domain (See the right part
of Figure 5).
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Figure 5: The relation between performance (y-axis)
and the similarity function (x-axis). Different target
domains are in different colors.

More analysis of (1) the comparison between the
combination similarity function with its component
TVC, TIS, and LO, and (2) inter-domain relations
are shown in the appendix.

7 Conclusions and Future Work

In this paper, we prove the existence of negative
knowledge transfer in few-shot learning and pro-
pose a similarity-based method to select pertinent
data before training. We propose a Shared-Private
Network (SP-Net) for the few-shot slot tagging
task. We prove the effectiveness and advantages
of both the data selection method and SP-Net with
experiments. In the future, we will investigate the
relations among domains and improve our data se-
lection method to select episodes or samples rather
than domains.
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Abstract

To investigate the role of linguistic knowl-
edge in data augmentation (DA) for Natu-
ral Language Processing (NLP), we designed
two adapted DA programs and applied them
to LCQMC (a Large-scale Chinese Question
Matching Corpus) for a binary Chinese ques-
tion matching classification task. The two DA
programs produce augmented texts by five sim-
ple text editing operations (or DA techniques),
largely irrespective of language generation
rules, but one is enhanced with a pre-trained
n-gram language model to fuse it with prior
linguistic knowledge. We then trained four neu-
ral network models (BOW, CNN, LSTM, and
GRU) and a pre-trained model (ERNIE-Gram)
on the LCQMC’s train sets of varying size as
well as the related augmented train sets pro-
duced by the two DA programs. The results
show that there are no significant performance
differences between the models trained on the
two types of augmented train sets, both when
the five DA techniques are applied together or
separately. Moreover, due to the inability of
the five DA techniques to make strictly para-
phrastic augmented texts, the results indicate
the need of sufficient amounts of training ex-
amples for the classification models trained on
them to mediate the negative impact of false
matching augmented text pairs and improve per-
formance, a limitation of random text editing
perturbations used as a DA approach. Similar
results were also obtained for English.

1 Introduction

Data augmentation (DA) is a common solution to the
problems of limited and imbalanced data. It works by
generating novel and label-preserving data from the ex-
isting data (Xie et al., 2020), which would otherwise
be unavailable or expensive to collect. Owing to the in-
creasing popularity of supervised deep learning models
that demand large-scale labeled data as well as more
studies on understudied/under-resourced language and
text domains, the Natural Language Processing (NLP)
community has seen a growing interest in DA in re-
cent years (Feng et al., 2021; Liu et al., 2020; Shorten

et al., 2021). However, unlike image and speech, whose
physical features can be relatively easily manipulated
without deviating from the original labels, text aug-
mentation poses a bigger challenge. This is simply
because there is no easy and automatic way to para-
phrase a randomly given piece of text while preserv-
ing its linguistic integrity and, above all, meaning. As
such, while there are well established and widely ap-
plied DA techniques as well as frameworks in image and
speech recognition research! with noteworthy success
(Iwana and Uchida, 2021; Park et al., 2019; Shorten and
Khoshgoftaar, 2019), DA for NLP as a whole remains
underexplored (Feng et al., 2021).

The main purpose of this paper is to investigate a fun-
damental question we found unanswered to the best of
our knowledge: the role of linguistic knowledge in DA
for NLP; in particular, whether more linguistic knowl-
edge leads to a better DA approach. By a better DA
approach, we mean one that can lead to superior trained
models’ performance on a given NLP task. Intuitively,
with more linguistic knowledge instilled, a DA approach
is expected to augment text of higher-quality or more
grammatical and thus to be presumably better. We be-
lieve a deeper understanding of what counts as a better
DA approach and the role of linguistic knowledge will
trigger more in-depth experiments and discussions and
advance this research area to the next stage. Eventually,
these efforts will turn into potential great benefits, both
academically and commercially, helping train robust
NLP models with small data.

To conduct our research, we present two DA pro-
grams and train five supervised classification models on
the augmented train sets for a binary Chinese question
matching classification task. For simplicity and inter-
pretability concerns, the DA programs used in this study
are adapted from the Easy Data Augmentation (EDA)
program (Wei and Zou, 2019), which augments text by
four naive text editing operations, largely irrespective of
language generation rules. The only difference between
the two adapted programs is whether they have a pre-
trained statistical n-gram language model (LM) to select
the most linguistically likely outputs, an effective mech-

! Although there is certain overlap between speech recogni-
tion and NLP, they are two independent fields with divergent
concerns and specializations (Manning and Schiitze, 1999).
Typically, NLP is about text processing only.
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anism to fuse a program with probabilistic linguistic
knowledge. We choose n-gram LM over neural LMs be-
cause it is more efficient to train, and most importantly,
more interpretable for its straightforward frequency-
based approach. As the EDA approach has shown suc-
cess (Wei and Zou, 2019) in various sentiment-related
and sentence type classification tasks with small datasets
(e.g., mostly around 10k examples), we choose LCQMC
(a Large-scale Chinese Question Matching Corpus) com-
piled by Liu et al. (2018) to compare the goodness of
the two adapted programs, a large labeled corpus with
over 260k examples. Since our corpus is much larger
and the question matching task involves comparing a
pair of text, instead of one, for label prediction, it is a
more reliable way to test the capacity and generalizabil-
ity of a DA approach. In principle, if a DA approach
can work well for the question matching task, it should
also show promise for those simpler and related NLP
tasks, as question matching, or text matching, is one of
the most basic tasks for NLP.

The contributions of this paper are threefold. First,
we present the first study on the role of linguistic knowl-
edge in DA for NLP with a special focus on the effects
of probabilistic linguistic knowledge on a DA approach
or technique. Second, we propose two DA programs
adapted from the EDA program. Although the adapted
programs are for augmenting Chinese, several changes
we made, including a new DA technique and the added
n-gram LM, can be universal for tailoring the EDA pro-
gram to other languages. Third, we also fill the research
gaps in two understudied areas: DA for question match-
ing classification task and DA for Chinese NLP.

The code, data, and results for this study are avail-
able at https://github.com/jaaack-wang/
linguistic-knowledge—-in-DA-for-NLP.

2 Related Works

Thus far, various DA techniques has been employed in
NLP research, such as thesaurus-based (Zhang et al.,
2015) and embedding-based (Wang and Yang, 2015)
word replacement, random text-editing perturbation
(Wei and Zou, 2019), rule-specific generation (Asai and
Hajishirzi, 2020; Kang et al., 2018), back translation
(Sennrich et al., 2016; Singh et al., 2019), and neural-
model-based predictive text transformation (Hou et al.,
2018; Kobayashi, 2018; Kurata et al., 2016) etc. Most
of these studies find slight but stable performance gains
for training models with augmented data for given NLP
tasks, such as text classification, question answering,
machine translation, for a common reason that the aug-
mented data introduces noise to the original train set
and prevents the trained models from overfitting, which
improves the models’ generalizability on the test set.
As the NLP community is more engaged in exploring
the usefulness of DA for specific NLP tasks, we have
not been able to find any focused studies from the exist-
ing literature related to the subject matter of this study,
i.e., the role of linguistic knowledge in DA for NLP.

However, some indirect evidence seems to be affirma-
tive. For example, Kobayashi (2018) trained a recurrent
neural network (RNN) LM, which replaces words with
paradigmatic relations predicted by the RNN LM to
generate new examples. Since this approach ignores the
semantic association between the replaced words and
the corresponding labels, he also constrained the LM to
predict words more compatible with the given labels by
probability. By so doing, he found about 0.2% overall
improvements in accuracy for 5 sentiment-related and
one question type classification tasks. According to the
results reported by Kang et al. (2018), we also find that
while not consistently, a sequence to sequence (seq2seq)
DA model blended with a few hand-crafted rules in-
creases more test set accuracy than the base seq2seq
DA model when certain ratios of two textual inference
datasets were augmented. However, since these neural
DA models already encode and learn implicit linguistic
knowledge through complex representation learning, it
is not possible to fully recognize the effects of those
added linguistic knowledge, either implicit or explicit,
in them.

Relevant to our hypothesis on what counts as a better
DA approach, we can find strong supports by thinking
in reverse. That is, although text augmentation helps in-
crease the size of the training texts, which then improves
the performance of the trained models through regular-
ization, it is still incomparable to the human-produced-
and-annotated training texts of a same size, which by
default we assume to be superior in quality as well as
more diverse. For example, in Wei and Zou (2019), they
augmented the original training examples by a factor of
9, giving them 5,000 training examples when 500 were
given. Although the augmented train set shows average
3% performance gains in accuracy on the test set for 5
classification tasks, compared to that without augmenta-
tion, this is still significantly lower than the average 10%
performance improvements when the models are trained
on 5,000 of the original training examples”. Therefore,
we expect that coupled with a n-gram LM, the adapted
EDA program that utilizes random text-editing perturba-
tions, will augment higher-quality text, and thus achieve
better trained models’ performance.

3 Experimental Setup

31 LCQMC

LCQMC contains over 260k question pairs, extracted
from BaiduKnows, a Quora-like online Q&A platform.
Each question pair is manually annotated by three exter-
nal professional annotators with a label, 1 or 0, to repre-
sent whether a question pair matches or not in terms of
the expressed intents. As judgements vary from person

2Wei and Zou (2019) claims that with the augmented texts,
their classification models achieve higher average accuracy
using only 50% of the train set than when the models are
trained on the entire train set without augmentation. This
is misleading since the performance of their models starts
plateauing when the models see 20% of the train set.
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Dataset  Total Pairs Matched Mismatched
Train 238,766 138,574 100,192
Dev 8,802 4,402 4,400
Test 12,500 6,250 6,250

Table 1: The basic statistics of LCQMC data sets.

to person and the interpretation of some question pairs
is bound to contexts, there are about 15% annotation in-
consistency and 20% annotation uncertainty (Liu et al.,
2018). In this study, we keep the original separation of
the train set, the development set, and the test set as is
in LCQMC, whose basic statistics are shown in Table 1.

3.2 Two adapted DA programs

The base DA program developed in this study is adapted
from the EDA program? (Wei and Zou, 2019) and the
control DA program is the base program combined with
a pre-trained statistical n-gram LM (refer to the next sec-
tion). We name these two programs as the REDA pro-
gram and the RED A, y¢ program respectively, where
REDA stands for Revised Easy Data Augmentation.

Like the EDA program, the REDA program also has
four text editing operations, i.e., Synonym Replacement
(SR), Random Swap (RS), Random Insertion (RI), and
Random Deletion (RD). Their functions are as follows:
SR works by randomly replacing synonyms for eligi-
ble words based on a given dictionary, while RS works
by randomly swapping word pairs. RI inserts random
synonyms, if any, instead of random words, to avoid un-
controlled label change. In contrast, RD deletes words
at random. We used jieba*, a popular Chinese text seg-
mentation tool, to tokenize Chinese text throughout this
research.

To further diversify the augmented texts, we also cre-
ated a new text editing operation called Random Mix
(RM), which randomly selects 2-4 of the other four op-
erations to produce novel texts. Besides, a few major
changes were also made to fix few bugs we found on the
EDA program and to better serve our needs of augment-
ing Chinese and conducting this research, including:

1. We rewrote the entire program to ensure that there
are no duplicates in the augmented texts, includ-
ing one for the original text. Duplicates can occur
when there are no synonyms to replace (SR) or
insert (RS) for words in the original texts, or when
the same words are replaced or swapped back dur-
ing SR and RS operations.

2. The REDA program does not preprocess the input
text by removing punctuations or by introducing
stop words. We did not find this type of preprocess-
ing helpful and necessary in general or makes sense
for the basic idea of random text editing behind the
EDA program.

Shttps://github.com/jasonwei20/eda_
nlp/tree/master/code.
*nttps://github.com/fxsjy/jieba.

3. Instead of using WordNet for SR, we compiled a
preprocessed Chinese synonym dictionary leverag-
ing multiple reputational sources’, including Chi-
nese Open Wordnet®. Moreover, unlike the EDA
program, the REDA program only replaces one
word at a given position at a time, instead of re-
placing all its occurrences, which we see as extra
edits.

The REDA, ny¢ program inherits the base REDA
program but additionally utilizes the n-gram LM pre-
trained to select the most likely augmented text(s) for
each text editing operation from a variety of possible
outputs. We have open-sourced two separate versions of
code for these two DA programs, but during this study,
we always combined them together in one working pro-
cedure so that the augmented texts outputted by these
two programs are selected from the same pool. The
implementation of this combination is also available at
the open-sourced GitHub repository.

3.3 N-gram LM

To train the n-gram LM, we first compiled an indepen-
dent corpus of BaiduKnows Q&A texts based on an
existing project found on GitHub, which scrapes over 9
million question-answer pairs from BaiduKnows plat-
form’. This compiled corpus contains over 654 million
words (or over 1.1 billion Chinese characters). Then,
the relative frequency of unigram, bigram, trigram, and
4-gram for this corpus was calculated based on words
and line by line with the results saved in four separate
json dictionaries as the pre-trained parameters. When
counting these n-grams, we added two special tokens,
<START> and <END>, in the beginning and end of each
line, to keep track of their tendency to stay ahead or at
the end of a line. For efficiency concerns, we adjusted
the relative frequency for the unigrams simply by assign-
ing unseen vocabulary the same frequency with those
one-off unigrams and employed stupid backoff without
discounting unseen non-unigrams (Brants et al., 2007).
Finally, the n-gram LM takes the relative frequency of
the n-grams as an estimation to their true probability of
occurrence and calculates the maximum log probabil-
ity of input text based on the chain rule of probability
(Jurafsky and Martin, 2009) as follows:

log P(NG1 : NG,,) = log H P(NG;) = Z log P(NG;)
i=1

i=1

where NG represents n-gram that is automatically gener-
ated by our n-gram LM. The n-gram starts with 4-gram,
if any, and keeps backing off into low-order n-gram
combination, if a higher-order n-gram is not available
in the pre-made json dictionaries.

Shttps://github.com/jaaack-wang/
Chinese-Synonyms.

®http://compling.hss.ntu.edu.sg/cow/.

"https://github.com/liuhuanyong/
MiningZhiDaoQACorpus.
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3.4 Classification models

We chose four neural network (NN) models and one
transformer-based pre-trained model as the classifi-
cation models. The NN models include the Bag of
Words (BOW) model, the Convolutional Neural Net-
work (CNN) model, and two RNN models: Long Short-
Term Memory (LSTM) and Gated Recurrent Units
(GRU). BOW model is a conventional technique to
represent a text by summing up the embeddings of its
words, and the similarity between texts is then often
measured by Euclidean distance or cosine distance of
the texts’ embeddings. Since Kim (2014), CNN has
been proven to be effective in various text classification
tasks, including text pairing (Severyn and Moschitti,
2015). LSTM and GRU are two popular sequence mod-
els that consider word orders and have also been ap-
plied to semantic similarity tasks (Tai et al., 2015; Tien
et al., 2019), which we think may be especially useful
for distinguishing the augmented texts from the natural
texts, and more importantly, distinguishing the casu-
ally augmented texts by the REDA program from the
conditionally augmented texts by the RED A y¢ pro-
gram in terms of the test set performance. Finally, the
pre-trained model ERNIE-Gram (Xiao et al., 2020) was
also chosen for its state-of-the-art performance on the
LCQMC dataset.

The models were constructed using Baidu’s deep
learning framework Paddle® and its NLP software Pad-
dleNLP’.

4 Results

4.1 Quality of the augmented texts

To evaluate the quality of the augmented texts generated
by the REDA and RED A ny¢ programs, we designed
three simple experiments to check their ability to restore
to natural texts when modified texts or a pseudo syn-
onym dictionary were given for three basic text editing
operations, i.e., SR, RS, and RD. We skipped RI and
RM because inserting random synonyms is generally
not the natural way of language use however (un)natural
the input text is and the text quality resulting from RM
can be inferred from the other basic operations directly.

The experiments went as follows. For SR, we de-
signed a pseudo synonym dictionary made up of 3855
one-word-four-synonym pairs, where every word is
mapped to four pseudo synonyms, one being the word
itself and the rest non-synonym random words. All the
words in the dictionary are those whose frequencies
rank between the 1000th and the 10000th place in the
unigram dictionary complied for the n-gram LM. For
RS and RD, we randomly reordered the natural texts
and added random words sampled from the texts respec-
tively before RS and RD were performed. 10,000 pieces

$https://github.com/PaddlePaddle/
Paddle

‘https://github.com/PaddlePaddle/
PaddleNLP

One Edit Two Edits  Three Edits
SR REDA 22% 6% 2%
+N-gram 88% 79% 64%
RS  REDA 9% 4% 4%
+N-gram 69% 41% 34%
RD REDA 16% 5% 2%
+N-gram 39% 22% 15%

Table 2: The average accuracy scores of the two DA
programs in three text restoration tasks based on differ-
ent number of edits. SR: Synonym Replacement; RS:
Random Swap; RD: Random Deletion. Best perfor-
mance given a DA technique is highlighted in bold.

of texts were randomly sampled from the LCQMC'’s
train set for 5 times for every comparison we made. The
average accuracy scores are reported in Table 2.

As can be seen, while both programs’ performance de-
clines as the number of edits increase, the RED A y&
program always outperform the REDA program in
restoring to the natural texts. In fact, for the REDA
program, restoring the modified texts to the original
ones is a matter of chance equal to the inverse of the
number of possible outputs available. However, the
REDA, N program augments texts of maximum like-
lihood, which tends to be closer to the natural texts
expected. This is also true when natural texts are given
as inputs. For example, through manual inspections,
we found the RED A y¢ program does much better
in selecting the appropriate synonyms according to the
linguistic contexts, which is a problem for the REDA
program due to the ubiquitous existence of polysemy.
By measuring the bigram overlap rate and edit distances
of output texts randomly swapped twice from the natu-
ral texts, we found that the average overlap rate for the
REDA program is much lower (i.e., 0.29 versus 0.77)
and the average edit distances are much larger (i.e., 3.0
versus 1.4) than the REDA | ng program, meaning
the latter preserves more collocational features of the
natural texts and thus augments higher-quality texts.

Nevertheless, the REDA | yg program is also not
free of considerable text quality decrease when more
text edits are performed. This is largely due to the
drastic increase of possible output texts as well as the
more likely semantic shift of the original texts with large
proportion of the input texts changed. Therefore, to
conduct our research, the number of text edits performed
is set proportional to the number of words of the input
texts, so that a large quality difference of the augmented
texts by the two programs can be maintained. More
concretely, in the study, we set the SR and SR rate at 0.2
and the RI and the RD rate at 0.1 and applied Python
rounding rules'®. RM will only randomly select two
of the other four text editing operations with one text
edit each for every input text to make the study more
controlled.

"When an even number ends with “.5”, it will be rounded
down; otherwise, rounded up.
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LCQMC 5,000 10,000 50,000 100,000 238,766
REDA 66,267 132,513 563,228 929,176 2,218,512
+N-gram 64,358 128,649 544,583 893,779 2,133,163

Table 3: The train set size for the corresponding REDA and RE DA y¢ augmented train sets.

Models Sk 10k 50k 100k  Full Set  Average
BOW 594% 604% 654% 67.8%  73.8% 65.4%
+REDA 58.1% 609% 682% 722%  76.4% 67.2%
+REDA+ng 588% 59.6% 68.1% 712%  76.0% 66.7%
CNN 593% 634% 672% 69.0%  72.9% 66.4%
+REDA 59.8% 62.6% 66.8% 698%  74.9% 66.8%
+REDA ng 603% 62.0% 679% 69.1%  74.0% 66.7%
LSTM 60.0% 62.1% 662% 69.6%  74.8% 66.5%
+REDA 589% 61.5% 67.7% T71.8%  76.4% 67.3%
+REDA ng 577% 609% 61.7% 71.7%  75.9% 66.8%
GRU 59.8% 619% 68.1% 703%  76.8% 67.4%
+REDA 587% 613% 68.7% 727%  76.8% 67.6%
+REDA ng 588% 60.0% 67.8% 72.5%  76.6% 67.1%
ERINE-Gram  78.7% 81.7% 859% 871% 87.4% 84.2%
+REDA 77.5% 80.3% 84.1% 85.0%  85.7% 82.5%
+REDA ng 78.6% 80.1% 83.8% 84.6%  85.8% 82.6%
Average 63.5% 659% 70.6% 728% T17.1% 70.0%
+REDA 62.6% 653% 71.1% 743%  78.0% 70.3%
+REDAing 628% 645% 71.1% 738% 77.7% 70.0%

Table 4: Test set accuracy of the five classification models trained on the three types of train sets of varying size.
Best performance given a train set size (of original training examples) is highlighted in bold.

4.2 Effects of the two DA programs

We trained the five classification models in Baidu Ma-
chine Learning (BML) CodeLab on its Al Studio!! with
Tesla V100 GPU and 32GB RAM. The models were
trained with 64 mini batches, a fixed Se-4 learning rate
(5e-5 for ERNIE-Gram model), and constantly 3 epochs.
We used Adaptive Moment Estimation (Adam) opti-
mizer and cross entropy loss function. We kept the
original development set for validation purposes.

The following training sizes were experimented: 5k,
10k, 50k, 100k, and full size, approximately equal to
2%, 4%, 21%, 42%, and 100% of the LCQMC’s train
set respectively. When the train set size is Sk and 10k,
we augmented two new texts for SR and RS, and one
new text for RI, RD, and RM, because the last three
text editing operations show smaller differences for the
REDA and RED A n¢ programs in terms of text qual-
ity (refer to the last section), which we want to hold
as large as possible for the sake of this research. That
translates into maximum 7 new texts for every text and
up to 14 new texts for every text pair due to deduplica-
tion. Every augmented text was crossed paired with the
other text that was a pair to the text being augmented
with the original label kept for the newly made text
pair. To make the training more manageable, we only
augmented 5 new texts for every text with one output
for every text editing operation, meaning a maximum
tenfold increase in size when the associated train set
size is 50k and more. The corresponding augmented
train set size is given in Table 3.

"https://aistudio.baidu.com/aistudio/
index

The accuracy scores as well as the average preci-
sion, recall, and F1 scores on the test set are presented
in Table 4 and Table 5, respectively. Contrary to our
expectation, we do not find that the RED Ay aug-
mented train sets lead to better test set performance
than the REDA augmented train sets, when it comes
to the four metrics used in this study. According to
the pairwise Mann-Whitney U tests we ran, there is
no statistically significant difference across the four
metrics among each type of models trained on the two
types of augmented train sets, as the p-values were con-
stantly far greater than .05. Although the former pro-
gram does produce higher-quality augmented texts from
a linguistic perspective as discussed above, evidence
shows that models trained on the REDA augmented
train sets outperform those trained on the RED A na
augmented train sets by an average 0.3% both in the ac-
curacy and F1 scores. As can be seen from Table 4, the
REDA, yg-led models only outperform the REDA-
led ones in terms of the test set accuracy when the
train set size is 5k for four models except the LSTM
model and when the ERNIE-Gram models were fine-
tuned on the full augmented train sets. Moreover, for any
classification model trained on the REDA augmented
train sets, in most cases, it achieves a slightly better
score for the four metrics than the model trained on the
REDA, nyg augmented counterparts. It follows that
the role of probabilistic linguistic knowledge instilled in
the RED A n¢ program is overall minimal and some-
times harmful to DA applied to the binary question
matching task.

Also noticeable from Table 4 is that 50k training ex-
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Models Baseline REDA REDA NG
Precision  Recall F1 Precision  Recall F1 Precision  Recall F1

BOW 61.5% 82.5% 70.4% 63.3% 81.7% 71.3% 62.9% 81.8% T71.1%
CNN 62.8% 80.5% 70.5% 63.6% 78.1%  70.0% 63.8% 76.2%  69.3%
LSTM 62.5% 82.7% T11.2% 63.4% 81.4% 71.3% 63.0% 82.1% 71.3%
GRU 63.4% 82.4% T71.7% 63.8% 81.9% 71.7% 63.3% 81.7% 71.4%
ERINE-Gram 78.0% 95.8% 85.9% 75.8% 95.9% 84.6% 76.0% 95.3% 84.6%
Average 65.6% 84.8% 73.9% 66.0% 83.8% 73.8% 65.8% 83.4% T73.5%

Table 5: Average test set precision, recall, and F1 scores for the five classification models trained on the three types
of train sets. Best performance given a metric (precision, recall, or F1) is highlighted in bold.

amples appear to be the threshold where the two DA
programs start bringing gains to the related test set ac-
curacy scores compared to the baselines, except for the
finetuned ERNIE-Gram models. However, as shown
in Table 5, there is also a gap in the recall scores in
favor of the baseline models, which may be attributed
to the false matching text pairs produced by the two DA
programs due to the inability of the underlying text edit-
ing operations to make strictly paraphrastic augmented
texts. But these noisy augmented texts in return enable
the classification models to generalize better on those
matching text pairs judged to be non-matching by the
baseline models, as indicated by the average larger preci-
sion scores. In addition, the advantage of the pre-trained
model over the traditional NN models is significant: the
ERNIE-Gram models, finetuned on all the three types of
train sets, show about 12% to 17% average gains across
the four metrics in relation to the other four trained
models. This shows the promise of applying transfer
learning to DA for NLP, which may be worth further
studying in the future.

4.3 Ablation study: each DA technique

To gain a more nuanced understanding of the role of
linguistic knowledge in each one of the DA techniques
performed by the two DA programs, we conducted an
ablation study where we trained models on train sets
augmented by only one DA technique. That means, for
a train set of given size randomly sampled from the
LCQMC’s train set, there are five types of correspond-
ing augmented train sets. Our analyses are based on
comparing the average test set performance of the five
models trained on the three types of train sets for the
five augmentation scenarios. We also excluded ERNIE-
Gram models, which are revealed to be distinct from the
rest models across the four metrics in the last section, to
see if there is a noticeable difference.

As the training sizes are shown to have an effect on
whether the DA-led models outperform the baseline
models, to further validate that, we chose 11 training
sizes for this ablation study, namely, 5k, 10k, 25k, 50k,
75k, 100k, 125k, 150k, 175k, 200k, and full set, roughly
equal to 2%, 4%, 10%, 21%, 31%, 42%, 52%, 63%,
73%, 84%, and 100% of the LCQMC’s train set respec-
tively. The basic hyperparameters are same with the
previous section. However, to make the training more
manageable, we only trained 2 epochs when the base-

line training size is 50k or 100k and 1 epoch when the
baseline training size is over 100k for the three types of
train sets. Since it is evident from Table 4 that a larger
training size under the same condition always leads to
a higher test set performance, spending extra time in
training a total of 605 models'? with fixed 3 epochs
may thus not be worthwhile to re-verify. Moreover, we
only augmented 2 texts per text per DA technique when
the baseline training size is no less than 50k and 1 text
when otherwise, with the cross pairing applied, similar
to what we did in the previous section. Please refer to
the Appendix for more details.

Figure 1 shows the average test set accuracy scores of
the five classification models trained on the three types
of train sets under different text editing conditions and
across different training sizes. In line with the previous
finding, the effect of probabilistic linguistic knowledge
on each one of the five DA techniques is minimal and
of no statistically significant difference, both individu-
ally and on average. Although with certain text editing
operations, such as RS, RI, and RM, there exist several
points in which there is a relatively large difference in
the accuracy scores between the two DA-led models,
these differences fluctuate along the x-axis and even-
tually get reduced to be negligible when the average
performance are concerned. This basic pattern remains
true when we plotted the average test set performance
based on any one of the four metrics with or without the
ERNIE-Gram models.

Also related to the previous finding is that there does
exist a threshold where the DA-led models outperform
the baseline models in the test set accuracy scores,
which appears to be the 100k training size or so, in-
stead of 50k as in Table 4. The discrepancy may be
explained by the different epoch numbers (e.g., 2 vs 3
for 50k) and possibly more importantly the separation
of the DA techniques, which, however, are beyond the
scope of this study. We also examined plots based on the
other three metrics with or without the ERNIE-Gram
models to explore the cause of such phenomenon. Fig-
ures 2 and 3 present the average test set precision and

12Since there are 11 training sizes and 5 classification mod-
els, that translates into 55 models for the baseline train sets.
As there are 5 DA techniques applied in 2 different ways (with
or without n-gram LM), that translates into 550 (55 * 5 * 2)
models for the augmented train sets. Hence, we have 605
models to train in total.
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Figure 1: Average test set accuracy scores of the three models
under different conditions (i.e., text editing type, training data
size) for the two types of LCQMC's train sets. The sixth plot
averages the statistics of the previous five plots.

recall scores of the five classification models trained on
the three types of train sets respectively. As can be seen,
there is no general trend in which the baseline models
surpass the DA-led counterparts in the test set recall
scores, but a similar pattern that resembles that of Fig-
ure 1 also exists in Figure 2. That means, the increase
in the precision scores, after certain amounts of training
examples are trained, are the main driver that makes the
baseline models outperformed by the DA-led ones in
terms of test set accuracy scores as well as the F1 scores,
which are not shown here to save space. Moreover, this
conclusion also largely holds when the ERNIE-Gram
models are excluded.
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Figure 2: Average test set precision scores of the five classifi-
cation models.
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Figure 3: Average test set recall scores of the five classification
models.

5 Discussions and Conclusions

In this study, we examined the effects of linguistic
knowledge on DA for a binary Chinese question match-
ing task. We proposed two DA programs, i.e., the REDA

and RED A, n¢ programs, that augment text by five
random text editing operations (or DA techniques), with
the RED A N program combined with a n-gram LM
to fuse it with probabilistic linguistic knowledge. Sur-
prisingly, we found that the RED A yg-led classifica-
tion models did not surpass the REDA-led counterparts
in the test set performance (i.e., accuracy, precision, re-
call, and F1 scores), which is also true when the five DA
techniques in the two programs are applied and com-
pared separately. In other words, our study indicates
strongly that instilling more linguistic knowledge into a
DA approach or technique does not necessarily make it
a better one when it comes to training a better question
matching classifier for Chinese, although doing so may
make the augmented texts higher quality from a pure
linguistic point of view.

However, since the two DA-led models achieve very
close scores in the four metrics with trivial advantages
for the REDA-led models, it is not possible for us to
explain why adding probabilistic linguistic knowledge
as a constrain does not make a meaningful difference,
positive or negative. A possible explanation might be
that as the five deep learning models compare a pair
of texts in vector space and the way how word em-
beddings encode linguistic knowledge is different from
humans, performing simple text editing operations in
two different ways (i.e., random, conditional) on a text
may result in different meanings for humans, but that
for machines nevertheless is less distinguishable in the
high dimension of vector space. Moreover, as we only
used probabilistic linguistic knowledge as a filter to se-
lect augmented texts closer to human language use, the
inherent inability of the underlying text editing opera-
tions made by the two DA programs to produce strictly
paraphrastic augmented texts means the two types of
augmented texts are to a considerable extent compara-
ble in that they are mostly not the paraphrases to the
original texts being augmented. However, such interpre-
tation cannot explain why the REDA-led models often
outperform the REDA | ng-led ones by a slight but
consistent margin.

Unlike Wei and Zou (2019) who show general suc-
cess of their EDA program in bring performance gains
for several sentiment-related and text type classification
tasks across train sets of varying sizes, we only found
such gains when the classification models were trained
with sufficient amounts of training examples. As we
expected in the beginning, question matching presents
a more difficult and fundamental classification task be-
cause it involves comparing a pair of texts, instead of
a single text, to predict the label for the given text pair.
This nature makes question matching, or text match-
ing in general, inherently much more sensitive to and
subject to some tiny semantic changes caused by text
augmentation. To further validate this hypothesis, we
adjusted the two REDA programs and ran a post hoc
experiment similar to Section 4.2 for English using the
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Models 10k 50k 100k 150k Full Set (260k)  Average
BOW 64.4% 699% T2.1% T4.2% 77.7% T1.7%
+REDA 62.5% 68.5% T71.6% T4.8% 78.0% 71.1%
+REDAiNe 629% 694% 74.0% 75.5% 78.2% 72.0%
CNN 66.1% 71.1% 72.6% 73.4% 75.9% 71.8%
+REDA 63.7% 699% T2.7% 75.3% 77.6% 71.8%
+REDAiNnGg 635% 693% 727% 74.7% 77.7% 71.6%
LSTM 657% 71.6% 729% 75.0% 77.9% 72.6%
+REDA 64.0% 698% T2.5% 75.1% 78.1% 71.9%
+REDAiNne 649% 703% 727% 75.0% 78.1% 72.2%
GRU 672% 71.0% 743% T4.7% 77.4% 72.9%
+REDA 63.3% 70.0% 72.8% T4.8% 78.1% 71.8%
+REDAiNne 640% 702% 73.8% 75.7% 78.9% 72.5%
Average 659% 709% T73.0% 74.3% 77.2% 72.3%
+REDA 63.4% 69.6% 724% 75.0% 78.0% 71.7%
+REDA+NnGg 638% 698% 733% 752% 78.2% 72.1%

Table 6: Test set accuracy of four classification models trained on the three types of train sets of QQQD with
varying sizes. Due to cost concerns, we did not finetune a pre-trained model, such as BERT, this time.

Models Baseline REDA REDA NG
Precision  Recall F1 Precision  Recall F1 Precision  Recall F1
BOW 70.9% 735% 72.1% 69.2% 76.1%  72.5% T1.1% T4.4%  72.7%
CNN 70.5% 75.4% 72.8% 70.7% 76.0% 73.1% 70.2% 76.5% 73.1%
LSTM 70.5% 782% 74.1% 70.5% 75.4% 72.8% 71.4% 74.1% 72.7%
GRU 71.8% 75.5% 73.5% 69.8% 76.9% 73.2% 71.6% 74.5% 73.0%
Average 70.9% 75.6% 73.1% 70.1% 76.1% 72.9% 71.1% 749% 73.9%

Table 7: Average test set precision, recall, and F1 scores for the four classification models trained on the three types

of train sets of QQQD.

Quora Question Pairs Dataset (QQQD)!3, from which
we created three label-balanced data sets of comparable
sizes to the LCQMC counterparts. The average test set
accuracy scores in Table 6 clearly show that models
trained on the augmented train sets also need to see
ample original training examples (near 150k or above)
to stably outperform the baseline models, although the
threshold is higher here. Therefore, for random text
editing DA approach to work for question matching,
there is a need of sufficient training examples to enable
the trained models to mediate the negative impact of the
false matching augmented text pairs resulting from ran-
dom text editing perturbations and turn it into a means of
regularization that improves the models’ generalizabil-
ity. This is a general limitation of random text editing
perturbations applied as a DA approach.

Lastly, comparing the results from these two exper-
iments, or between Table 4 and Table 6, and between
Table 5 and Table 7, we can see that the discussions
and conclusions drawn from the LCQMC experiment
mostly apply for the QQQD experiment as well, since
the obtained data shares similar patterns. Besides the
threshold difference noted above, which may be dataset
specific, a noteworthy difference is that RED A yg-
led models slightly but consistently outperformed the
REDA-Ied counterparts of test set accuracy and preci-
sion, although there is also no statistically significant
difference and the average F1 scores are same. This fact

Bhttps://quoradata.quora.com/

First—-Quora—-Dataset—-Release—Question—-Pairs

again demonstrates the difficulty of fully accounting for
modern deep learning experiments, but it also strongly
confirms the negligible role of probabilistic linguistic
knowledge in text augmentation.

6 Limitations and future studies

Although we are highly confident that observations
made in this study are reliable, we were nevertheless
unable to experiment with different initializations of
the two REDA programs and different configurations
of the classification models, constrained by available
resources. Moreover, systematically and fairly evaluat-
ing a DA approach for NLP is uneasy or even unknown.
The current study only illustrates a tip of the iceberg.

In light of the limitations above, future studies may
carry out similar experiments with differing setups, dif-
ferent NLP tasks, or even distinct methods of fusing a
DA approach or technique with linguistic knowledge.
Because of the simplicity and low cost of the five DA
techniques employed in this study, it may also be impor-
tant to re-examine the effectiveness and limitations of
these random text editing operations for assorted NLP
tasks. This may then give us some useful insights into
building cheap and (highly) universal DA techniques
for NLP, which is currently lacking in the field.
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A. Size of augmented train sets for the ablation Figure 4: Average test set accuracy scores of the four classifi-
experiment cation models excluding ERNIE-Gram.

Table 8 contains the size of the train sets for the ablation
experiment on LCQMC. Please note that, for simplicity,
240k is used to refer to the full size of LCQMC, which is
238,766 to be exact. Also, due to deduplication, differ-
ent text editing operations may result in augmented train
sets with non-trivial difference in size, as discernible in
Table 8.

Precision

Precision

B. Average test set performance for the ablation evsesssess evssasass s
experiment Data Size Data ize Data Size

Figure 4, 5, and 6 show the average test set performance Figure 5: Average test set precision scores of the four classifi-
(accuracy, precision, and recall, respectively) of the  cation models excluding ERNIE-Gram.

four classification models, excluding the ERNIE-Gram

model. It is clear that the observations made in the . SR
section 4.3 still hold.

Recall
Recall

C. Size of QQQD-related data sets

We created three label-balanced data sets based on
QQQD’s original train set since the test set is made
unlabeled for online competition. The size of the cre-
ated train, development, and test sets is 260k, 20k, and
18,526, respectively. Table 9 shows the size of aug-
mented train sets for QQQD.

Recall
Recall

Data Size Data Size

Data Size

Figure 6: Average test set precision scores of the four classifi-
cation models excluding ERNIE-Gram.
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Abstract

Known vulnerabilities in software are solved
through security patches; thus, applying such
patches as soon as they are released is crucial
to protect from cyber-attacks. The diffusion
of open source software allowed to inspect the
patches to understand whether they are security
related or not. In this paper, we propose some
solutions based on state-of-the-art deep learn-
ing technologies for Natural Language Process-
ing for security patches detection. In the exper-
iments, we benchmarked our solutions on two
data sets for Java security patches detection.
Our models showed promising results, outper-
forming all the others we used for comparison.
Interestingly, we achieved better results train-
ing the classifiers from scratch than fine tuning
existing models.

1 Introduction

The use of Open Source Software (OSS) has be-
come a common practice in proprietary projects,
especially thanks to the speed up in software pro-
duction and the costs reduction (Vaughan-Nichols,
2015). However, this practice comes with the risk
of introducing vulnerabilities in private code-bases.
In this context, we introduce the concept of security
patches: a security patch is a special type of code
patch, which is a set of changes to be applied to
some software to update, fix, or improve it. These
security patches are designed to solve code vulner-
abilities that causes the exposure to cyber-attacks.

The aforementioned code vulnerabilities have
been categorised using different notations. The
most famous are the Common Vulnerabilities and
Exposures (CVE) and the Common Weakness Enu-
meration (CWE); both provide a description of the
vulnerabilities discovered and the second one is
organised hierarchically. Moreover, there exists
data bases containing a list of vulnerable commits

(changes to the software code base) like the Na-
tional Vulnerability Database (NVD) and the Soft-
ware Assurance Reference Dataset (SARD), which
offer an helpful reference to understand these vul-
nerabilities. They contain examples of vulnerable
code paired with the non-vulnerable counterpart,
thus providing test cases for software production.

In this work we focus on OSS projects in Java
maintained on GitHub. On this platform, a commit
represent an update to the code base and is com-
posed of two parts: commit message (a short de-
scription in natural language of the updated piece(s)
of code) and patch (sometimes called code changes,
it consists of one or more hunks). Hunks are the
differences between the old version and the new
version of source code files. These hunks are usu-
ally surrounded by context lines of the original
untouched source code and marked with line num-
bers. Deleted rows are marked with an initial —,
while the added rows start with a +.

Usually, in the process of software development,
the software maintainers are overwhelmed by the
number of patches released in their dependencies,
which can refer to one of those OSS projects. Since
applying patches requires extra work and down-
time, it is important to prioritise security patches.
In this sense, we propose a method based on Nat-
ural Language Processing (NLP) technologies to
analyse the code modified in the patch, focusing
on the semantics expressed in the code, to detect
security patches, and thus allow to prioritise them.

We organise this paper as follows: in Section 2
we present the related research works for code anal-
ysis and classification, in Section 3 we presents
the data sets we used as benchmarks in the experi-
ments, in Section 4 we provide an overview of the
models we considered and how we used them to
tackle the detection task, in Section 5 we present
the experimental approach we followed and the re-
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sults we obtained, and in Section 6 we provide final
remarks and propose possible future extensions.

2 Related work

NLP is the area of Artificial Intelligence (Al) fo-
cused on the analysis and synthesis of human lan-
guage. Recently, the introduction of Deep Learn-
ing-based techniques in this area has pushed signif-
icantly forward the state-of-the-art on many prob-
lems. In particular, the development of Deep Prob-
abilistic Language Models based on the Trans-
former Architecture (Vaswani et al., 2017) like
GPT (Brown et al., 2020), BERT (Devlin et al.,
2019) and T5 (Raffel et al., 2020) seems to have
enabled an impressive step forward. These models
for sequence analysis are pre-trained on large text
data sets doing simple tasks like next token/word
prediction and can be fine-tuned for any problem,
yielding impressive results due to the informative
hidden representations learnt during pre-training.

These same models and techniques used for nat-
ural language, can be also applied for artificial lan-
guages, such as programming languages. In fact,
according to the Naturalness Hypothesis (Hindle
et al., 2016; Allamanis et al., 2018), we can treat
source code in the same way of a document writ-
ten in plain natural language. As a result, deep
learning models for sequence and graph processing
have been actively used to process code, includ-
ing vulnerability classification (Otter et al., 2018;
Semasaba et al., 2020; Wu, 2021).

The application of deep learning techniques to
source code analysis evolved similarly to natural
language. Early solution tackled the problem of
extracting a distributed continuous representation
of code pieces similarly to early works for NLP
based on embeddings (i.e., vector semantic repre-
sentations).

Initially, word embedding models for NLP used
static and shallow embedding matrices to project
words into compact and dense representations
(Mikolov et al., 2013a,b; Pennington et al., 2014;
Bojanowski et al., 2017). Such word representa-
tions can be further combined to obtain semantic
vectors representing sentences (Pagliardini et al.,
2018; Arora et al., 2017; Zhelezniak et al., 2019;
Muffo et al., 2021, 2022) or even entire documents
(Le and Mikolov, 2014; Chen, 2017; Hosseini et al.,
2022).

Following these approaches, Code2Vec (Alon
et al., 2019) was developed to extract distributed

representations of the tokens in a piece of code.
However, Code2 Vec exploits more complex struc-
tures than vanilla word emebedding models, like
Abstract Syntax Trees (AST), to compute the vector
representations.

More recently, models for contextual representa-
tion from sequence analysis have emerged: Code-
BERT (Feng et al., 2020) , for instance, employs the
BERT auto-encoder to carry out source code and
natural language analysis, serving as impressive
feature extraction model that can be used on many
downstream tasks, including vulnerability detec-
tion. There are also pre-trained models trained di-
rectly for patch analysis, like CommitBERT (Jung,
2021), however their accessibility is still limited.

Besides feature extraction for code analysis,
many works focused also on specific tasks. In the
context of security patch detection/classification,
many solution work on C/C++ data sets (due to
to higher data availability) and employ multiple
sub-models to break down the input analysis.

In the case of SPI (Zhou et al., 2022) and
PatchRNN (Wang et al.,, 2021), both models
use multiple Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) networks fed
using Word2Vec embeddings trained on C code
tokens. SPI uses two LSTMs to extract features
respectively from the added and deleted lines of
code in a patch and it further enhance the input
with the commit message to carry out the classifi-
cation. PatchRNN uses a twin LSTM solution to
analyse the code before and after the patch with the
information from the commit message to classify
the patch. Both models encode the commit mes-
sage using standard embedding techniques, namely
Word2Vec, and use a mixture of experts to combine
the results of code analysis with that of the commit
messages. Differently, CC2Vec (Hoang et al., 2020)
processes only the code changes and exploits the
hierarchical structure of a patch (divided into token,
line, and hunk) thorough a Hierarchical Attention
Network (HAN). It analyses with two separate net-
works added and deleted lines and the post-process
together the extracted feature vectors. This last
approach was employed also for the classification
of C language patches to identify the stable ones.

Concerning Java-specific solutions for security
patches classification, Commit2Vec (Lozoya et al.,
2021) represent the closest work to the one we ap-
resent in this paper. However, the data set used
by Commit2Vec is only partially available, making
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impossible a direct comparison with our work. The
Commit2Vec model is based on Code2Vec embed-
dings: it encodes the AST of previous and current
versions code (with respect to the patch), then an at-
tention layer further processes the embedded code
differences to perform the classification.

All the aforementioned works use binary classes
division to categorise the security patches, while we
are also interested in macro-classes identification.

Recent results showed that handcrafted features
and a Random Forest classifier (Breiman, 2001)
are sufficient to obtain reasonable performances on
a set of ten macro-classes derived by the original
CVE labels (Wang et al., 2020).

3 Data

To the end of this work, we focused only on Java se-
curity patches. In particular, we used three separate
data sets: the first two are private data collections,
while the latter is publicly available and was cu-
rated by Ponta et al. (2019).

We merged the first two data sets into one com-
prising 123 000 samples (i.e., code patches, with
1157 being related to security issues). Samples
from the former data set use a binary labelling sys-
tem, while those from the latter used both CVE and
CWE notations. After merging, labels were uni-
formed to the binary system with the two classes be-
ing security and non-security. The training set was
composed of 933 and 918 samples (respectively
for the two classes) and the test set was composed
of 224 and 239 samples (respectively for the two
classes). To cope with the unbalance in the data set
we undersampled the non-security class.

The third data set (Ponta et al., 2019) is com-
posed of 1175 security patches labelled with the
CVE notation. Due to the high number of different
classes, that would have prevented effectively train-
ing a classifier, we first converted the CVE notation
to CWE (yielding 605 different classes instances)
and then we clustered manually the resulting labels
down to five:

Improper management of resources patches to
solve vulnerabilities connected to resources
and variables (e.g., buffer overflow).

Cryptography features patches to solve vulnera-
bilities connected to data security and infor-
mation leakage.

Authentication errors patches to solve vulnera-

bilities connected to access control, authenti-
cation, and user sessions.

Other all the security patches that don’t fall under
the previous categories (e.g., channel errors).

Non-security complementary class to the security
patches (e.g., bug fixes, new features, etc.).
Samples from this class were taken randomly
from the first two data sets.

Pre-processing steps of all data sets consisted in:

* the extraction of added and deleted lines from
the patches;

* replacement of comments, strings, and num-
bers with as many special tokens;

* splitting of function and variable names (we
used the most common naming conventions
like snake case, camel case, and kebab case);

* deletion of special characters and stopwords
(with the exception of java specific ones).

We divided code tokens on spaces and lowercased
to all non-special tokens.

4 Methodology

In the following, we describe how we encoded the
input sequence representing the code to analyse
and the neural network models we considered to
carry out the classification task. We distinguished
between baseline models, used to get an idea of the
performances achievable on the considered data
sets, and advanced models, which exploit more
complex architectures to obtain the best results.

4.1 Embedding

As happens for natural language, we converted the
sequence of tokens written in Java into a continu-
ous vector representation compatible with neural
networks. For this task we considered different
embedding models:

Uninitialised embeddings we employed 32-
dimensional randomly initialised embeddings
we trained with the overall models.

Word2Vec we trained a 100-dimensional embed-
ding model on the code contained in the pri-
vate data sets.

Code2Vec we resorted to a pre-trained model with
128-dimensional embeddings.
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Tests showed that uninitialised embeddings yield
a better representations for our task. This is also
supported by the results we report in Section 5:
uninitialised models achieve the best scores.

4.2 Baseline models

We considered two baseline classification models:

XGBoost (Chen and Guestrin, 2016) we trained
this model on handcrafted features, similar
to those used by Wang et al. (2020), and we
employed a count encoder for the patch.

LSTM we employed this baseline similarly to the
work on Commit2Vec, we employed this base-
line; however, we fed it with the added and
deleted lines concatenated with a special sep-
arator token.

4.3 Advanced models

As premised, a part from the baselines, we con-
sidered more complex models. For many of them
we considered a base version and the patch ver-
sion, were the internal model is replicated to anal-
yse separately added and deleted lines as in the
work on PatchRNN. We leveraged both pre-trained
models coming from previous works or generic
uninitialised models:

PatchRNN inspired by the original work, we used
twin recurrent networks to encode separately
added and deleted lines. We used Gated Re-
current Units (GRU) (Cho et al., 2014) with
64 hidden units to build this model.

HAN as for the PatchRNN, we took inspiration
from the HAN used in CC2Vec, and imple-
mented a three layer version of it (respectively
for word, hunk and file level). In each layer
we used GRUs, with 64 hidden units, and at-
tention was computed on top of it. During the
hyperparameters search, we fixed the number
of files to two and hunks to three for the sake
of parallelisation.

CodeBERT we employed a pre-trained trans-
former trained on source code as it is common
practice nowadays in NLP tasks. The input
structure is the same of the LSTM baseline.
We used both the original pre-trained model
and a variant available via the Transfomers
library (Wolf et al., 2020) (alternative model
link). Additionally, for this model we tested
both fine-tuning and simple transfer learning.

PatchCodeBERT we used the pre-trained Code-
BERT to build a twin version of it, replicating
the initial model and feeding one with the
added lines and one with the deleted lines.

Transformer we considered an uninitialised
Transformer encoder with bi-directional atten-
tion (as BERT), thus re-proposing a smaller
version of CodeBERT.

PatchTransformer similarly to what we did with
the Transformer and CodeBERT, we used a
smaller uninitialised version of PatchCode-
BERT that we trained from scratch.

Since many of the models we considered use
separate encoders for added and deleted lines in
the patches, we developed a merging layer working
on the intermediate hidden vectors. The proposed
layer, similarly to the one employed by CC2Vec,
concatenates the two vectors, their product, their
difference, and their cosine and euclidean distances.
The resulting vector is passed through a final classi-
fication layer. The remaining models directly apply
the final projection on the hidden representation.

S Experiments and results

Table 1: Results on the private data sets.

Fq

Method Validation Test

XGBoost 0.692 £0.033 0.695
LSTM 0.823 £0.008 0.829
PatchRNN 0.696 +0.007  0.635
HAN 0.787 +£0.007 0.777
CodeBERT 0.767 £0.019 0.764
PatchCodeBERT 0.731 £0.023  0.728
Transformer 0.841 +0.014 0.870
PatchTranformer 0.831 +=0.014  0.827

Table 2: Results on the data set by Ponta et al. (2019).

macro F;
Method Validation  Test
LSTM 0.661 +£0.054  0.607
Transformer 0.667 £0.033 0.635
PatchTranformer 0.643 = 0.020 0.601
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We divided the experiments following the data
sets division. First, we trained multiple models
on the private data sets with the binary labelling
system. We selected the best models from the first
step for training on the third data set with the five
macro-categories. To assess the goodness of the
results we measured the F7-score achieved by the
classifiers on the test and validation sets. The F;-
score on the third data set is computed applying
macro averaging among the macro-categories. Re-
sults on validation sets are reported as avg. + std
because we applied 3-fold cross validation.

We reported the results on the private data sets
in Table 1. The transformer based solutions clearly
outperformed the other models we considered. In
this case we employed a 2 layers Transformer net-
work with 32 hidden units, 4 attention heads, and
a maximum of 768 tokens in the input sequence.
Interestingly Transformer, LSTM, and PatchTrans-
former models, which achieved the best results,
didn’t undergo any pre-training, indicating that fine-
tuning may be counterproductive in some cases.

We reported the results on the third data set in
Table 2. Here we considered only the three best
methods from the first experiment. The results
confirmed those of the private data sets: the Trans-
former model performed better than all the other
considered solutions. In this case we increased
the hidden units size of the Transformer to 128.
The drop in the F}-score with respect to the previ-
ous experiment was expected since we moved to a
multi-class problem where the issue of unbalance
has most probably harmed the performances.

6 Conclusion

In this paper we evaluated different approaches for
security patches detection in Java OSS using NLP
technologies. Despite the general improvements in
many NLP tasks due to the use of pre-trained mod-
els, in our experiments we found that uninitialised
models yield better results than fine-tuned ones;
this is most probably due to the insufficient pres-
ence of Java code in the pre-training of the consid-
ered models. Differently from previous works, we
also noticed that using separate sub-models yields
wors