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Abstract

Multi-hop Question Answering (QA) is a chal-
lenging task since it requires an accurate ag-
gregation of information from multiple context
paragraphs and a thorough understanding of
the underlying reasoning chains. Recent work
in multi-hop QA has shown that performance
can be boosted by first decomposing the ques-
tions into simpler, single-hop questions. In this
paper, we explore one additional utility of the
multi-hop decomposition from the perspective
of explainable NLP: to create explanation by
probing a neural QA model with them. We
hypothesize that in doing so, users will be bet-
ter able to predict when the underlying QA
system will give the correct answer. Through
human participant studies, we verify that ex-
posing the decomposition probes and answers
to the probes to users can increase their ability
to predict system performance on a question
instance basis. We show that decomposition
is an effective form of probing QA systems as
well as a promising approach to explanation
generation. In-depth analyses show the need
for improvements in decomposition systems. 1

1 Introduction

As natural language understanding tasks have be-
come increasingly complex, the field of explain-
able natural language processing (exNLP) aims to
help users understand the performance of NLP sys-
tems. Multi-hop question answering is one such
task in which questions seemingly require multiple
reasoning steps to answer. To accurately answer
a multi-hop question, one must start by decom-
posing the given multi-hop question into simpler
sub-questions, then try to answer them respectively,
and finally aggregate together the information ob-
tained from all the sub-questions. For instance,
consider the multi-hop question “What year did the
band that sang ‘With Or Without You’ form?”. To

1Our code and data are available at https://github.
com/kaigexie/decompositional-probing.

How do I know it has  
the right answer?

What year did the band that sang "With or
Without You" form?

1976

U2

Which band sang "With or Without You"?

What year did U2 form?

1976

I think the agent knows  
what it is talking about

Figure 1: An overview of our method. Users wonder
if they are able to trust the answer. Sub-questions are
generated by a decomposer agent (gear) to probe the
question-answering agent.

answer the question, one must first figure out the
band that sang that song from one context para-
graph and then find the year in which that band
formed from another one. A typical approach to
multi-hop QA systems is to automatically decom-
pose the question into sub-questions, answer those
questions, and then synthesize the answers to the
sub-questions to answer the original question (Min
et al., 2019; Perez et al., 2020; Khot et al., 2021).

From the perspective of explainable NLP, we
explore the utility of multi-hop decompositions
to create explanations. One role of explanations
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is to help users construct a mental model of the
underlying system (Chandrasekaran et al., 2017;
Chakraborti et al., 2019; Jacovi et al., 2022). In
doing so, users will be better equipped to know
when the system answers can be trusted. This is
especially important for large, general-purpose QA
systems that can answer a wide range of questions
but might have greater competencies when answer-
ing questions about some topics versus others. We
hypothesize that question decompositions used to
probe a neural QA model can improve users’ abili-
ties to predict whether the QA system will answer
the original question correctly or not.

Khot (2021) observed that improved decomposi-
tional reasoning chains for multi-hop QA correlate
with increased user perceptions of trust, understand-
ability, and preference. While perceptions of trust
are important, it is also important that the trust is
appropriately calibrated (Muir, 1987; Dzindolet
et al., 2003; Lee and See, 2004; Zhang et al., 2020;
Perkins et al., 2021). That is, the user should trust
the system when it is worthy of that trust. For
general-purpose question-answering systems built
upon large-scale language models, the ability to ac-
curately answer a question is likely to be variable
based on the specific question asked.

How does a user know when to trust a QA sys-
tem’s answer to a particular question? If just pre-
sented with an answer, one has no cues from which
to make an assessment. End-to-end QA systems
that generate answers and explanations are trained
to justify the answer as opposed to provide evi-
dence of the system’s competencies on a topic.

We introduce probing as an explanation strat-
egy that helps a user determine whether to trust an
answer. Probing is a process whereby a model is
provided similar inputs to determine if its perfor-
mance is stable when handling related inputs. In
this work, we show that exposing the decomposi-
tion probes and answers to the probes to users can
increase their ability to predict whether the system
will answer the original question correctly. This
indicates that users—without knowing the partic-
ulars of the underlying QA system—are receiving
actionable cues from which to model the behav-
ior of the system. Instead of asking for subjective
perceptions of the overall system, we objectively
measure the effect of the probes on instance-level
interactions.

To the best of our knowledge, this paper is the
first to show that probing can have a measurable

Context: Learning, Inc. is an educational software
and hardware company co-founded in 1999 by Texas
businessman Neil Bush and a year later Ken Leonard.
He is the fourth of six children of former President
George H. W. Bush and Barbara Bush (née Pierce).
Question: Who is the mother of the Texas business man
that co-founded Ignite! Learning, Inc?
Answer: Barbara Bush

Sub-question 1: Who is the Texas business man who
co founded Ignite Learning, Inc?
Answer: Neil Bush
Sub-question 2: Who is Neil Bush’s mother?
Answer: Barbara Bush

Table 1: Example from the validation set of HOTPOTQA
(Yang et al., 2018), as well as the associated silver ques-
tion decompositions from Khot et al. (2021).

impact on users in multi-hop QA. These results
are also complementary to Tang et al. (2021) who
use decompositions to assess whether multi-hop
QA systems successfully go through multiple hops
when answering questions. In summary, our main
findings are:

1. Decomposition is an effective form for prob-
ing neural QA models.

2. Explanation created by probing the neural QA
model with question decompositions can help
human construct a mental model on which
they can rely to predict the model behavior.

3. Quality of decompositions matters—from the
explainability perspective, existing question
decomposers still have a long way to go.

A summary of our method is given in Figure 1.

2 Preliminaries

2.1 Dataset
We use a popular English question-answering /
reading comprehension task designed to test multi-
hop reasoning: HOTPOTQA (Yang et al., 2018).
Examples are given in Table 1. The HOTPOTQA
task involves answering questions by finding infor-
mation over multiple Wikipedia articles.2

2.2 Question Decompositions
As a source of high-quality question decomposi-
tions and answers, we use the sub-questions and
answers provided for a subset of the HOTPOTQA
validation set by Khot et al. (2021).3 These sub-
questions are generated using distant supervision in

2We make simplifying assumptions for this task, detailed
in §2.3.

3https://github.com/allenai/modularqa
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the form of task-specific hints to a BART-LARGE

(Lewis et al., 2020) model trained to generate ques-
tions in the SQUAD 2.0 dataset (Rajpurkar et al.,
2018). The answers are generated by a ROBERTA-
LARGE (Liu et al., 2019) model trained on SQUAD
2.0. These silver sub-question-and-answer pairs
are relatively high-quality, in that the authors are
able to use them to train a next-question genera-
tor that achieves high task performance on HOT-
POTQA as part of a larger modular system.

All instances in the validation set have at least
two sub-questions; certain questions have a third
math operation sub-question that we abandon as
this format only suits models with a numerical rea-
soning module (i.e., not conducive to being asked
as a probe to the language model). The authors sam-
pled 5 chains of sub-questions for each instance
and filtered out noisy ones; we select the first from
the remaining chains for our probes, and find that
overall, the sub-questions and answers are of high
quality and do not vary much across samples. This
results in 676 instances for HOTPOTQA that have
a silver question decomposition. Examples of ques-
tion decompositions are given in Table 1.

Our choice of tasks is motivated by two factors:
the existence of high-quality question decompo-
sitions and answers, and the task labels are not
limited to predefined categories (such as yes/no),
which limits the outputs that a fine-tuned gener-
ative model can produce when probed with sub-
questions (i.e., if the dataset only contains yes/no
questions, a model trained on it is unlikely to be
able to answer sub-questions with anything other
than yes/no). Future work can focus on extend-
ing fine-tuning protocols to apply the sub-question
probing method to datasets with categorical labels.

2.3 Models

We fine-tune two popular pretrained models to per-
form the multi-hop QA tasks: T5-BASE (220M
parameters; Raffel et al., 2020) and BART-BASE

(140M parameters; Lewis et al., 2020). Both mod-
els are built on text-to-text encoder-decoder Trans-
former (Vaswani et al., 2017) architectures pre-
trained with denoising objectives. Both models
treat question-answering tasks as generation tasks,
making them well-suited for probing since they can
thus also answer sub-questions in free-form natural
language (rather than predicting from a fixed set
of classification labels). We fine-tune the models
using standard cross-entropy loss to generate the

Metric Metric (On Subset)

Model EM F1 EM Manual F1

T5 66.73 79.97 70.27 91.27 85.41
BART 62.21 76.18 65.98 88.31 82.12

Table 2: Task performance of pretrained models on the
validation set and a subset of it (see §2.4). “Manual”
indicates our manual annotation for answer correctness,
which is more accurate than EM. A comparable model
on HOTPOTQA (Tu et al., 2020) achieves 61.32 EM
and 74.81 F1 on the full validation set.

answer given the question and context. While one
subtask for HOTPOTQA is to select the relevant
context, i.e., the supporting paragraph from which
to extract an answer, we focus on general architec-
tures that are not designed for retrieval. Therefore,
we provide the gold context paragraph as input.
More details, including input-output formatting,
are given in Appendix A.

The HOTPOTQA leaderboard relies on two met-
rics for determining answer correctness, originally
from SQUAD (Rajpurkar et al., 2016): exact match
(EM), whether a prediction and the ground-truth
answer matches exactly, and F1 score, the (macro-
averaged) token-level overlap between a prediction
and the ground-truth answer (treating both as a
bag-of-tokens). Using gold context paragraphs,
our models achieve comparable performance to
standard baselines on the answering task, reported
in Table 2. T5 outperforms BART on both met-
rics. Our goal is not to build the best model but
to establish a model with sufficient performance
on questions and sub-questions to test our hypothe-
ses about the effect of question decompositions as
explanations.

Crucially, we never fine-tune on sub-questions.
This allows our probing method to represent what a
model that is only trained for the task knows about
the task, without introducing any new information
that may shift the predictions of the model in favor
of the explanation fine-tuning corpus (such as is
done in prior work; Roberts et al., 2020).

2.4 Probing with Sub-Questions

Given the fine-tuned models, we probe on a subset
of the validation instances for which we have sil-
ver sub-questions—676 instances for HOTPOTQA.
This is done at inference-time following the same
format as the main task, i.e., by feeding each sub-
question for an instance with the instance’s gold
context as input to the trained model. For each
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instance in the dataset, this process results in a
tuple of the form: main question (Q), gold con-
text paragraph (C), the model’s predicted answer
to the main question (A), two silver sub-questions
(SUB-Q1 and SUB-Q2), and the model’s predicted
answers to the sub-questions (SUB-A1 and SUB-
A2).

To avoid bias introduced by requiring an exact
token match or determining an F1 cutoff for cor-
rectness of a model answer, we manually annotate
the instances (both main and sub-questions) for cor-
rectness. This leads to a slight increase in accuracy
due to instances where EM=0 but we determine
the predicted answer to be correct (e.g., the correct
answer is “Nashville”, and the model predicted
“Nashville, Tennessee”). For an example of how
accuracy numbers change as the result of manual
annotation, see the 4th and 5th columns of Table 2.

2.5 Simulatability

To understand how faithful explanations are to the
underlying model as reflected by the mental model
humans can develop of a machine learning sys-
tem, the explainable AI community has long turned
to simulatability experiments (Kim et al., 2016;
Doshi-Velez and Kim, 2017; Ribeiro et al., 2018;
Nguyen, 2018; Chandrasekaran et al., 2018; Hase
and Bansal, 2020, inter alia). Doshi-Velez and
Kim (2017) define “forward simulation/prediction”
as the task by which “humans are presented with
an explanation and an input, and must correctly
simulate the model’s output”. They class this as
a form of human-grounded evaluation, which has
strengths over automatic evaluation methods be-
cause it investigates the understanding of real hu-
man users, and thus tests the utility of explanations
in settings closer to true applications. Simulata-
bility, to date, is one of the only human-grounded
evaluation methods that tests the interpretability
of explanation methods rather than human pref-
erences, and is the most widely used due to its
versatility.

We design a simulatability experiment to judge
the quality of explanations. Here, we define qual-
ity as fidelity to the underlying model (Wiegreffe
and Pinter, 2019; Jacovi and Goldberg, 2020) and
information content that provides sufficient insight
into the underlying model.

Our studies are performed using the Prolific
crowdsourcing platform.4 These studies were ap-

4https://www.prolific.co/

Model Sub-Q
Model Pred. n Accuracy

T5 Correct 617 85.09
Incorrect 59 64.41

BART Correct 597 85.59
Incorrect 79 60.76

Table 3: Combined sub-question task performance, split
by whether the model predicted the main question cor-
rectly or not.

proved by our institution’s Institutional Review
Board (IRB). We randomly select a subset of
dataset instances from the 676 HOTPOTQA val-
idation instances with silver decompositions. Par-
ticipants are paid at $15/hour, and we qualify partic-
ipants by first giving them a qualification question
and verifying answers manually. We require partic-
ipants to be located in the U.S. and to speak English
as a first language. For each set of experiments, we
source a distinct set of participants (no overlap) to
avoid any bias in annotations that could occur from
seeing past versions of the task or questions. For all
experiments, we report Fleiss’ κ (Fleiss, 1971) for
binary or nominal data, and Kendall’s τ (Kendall,
1938) for ordinal data.

For performance metrics, we report accuracy, F1,
precision, recall, and Matthew’s Correlation Coef-
ficient (MCC; also known as the phi coefficient
outside machine learning).

3 Sub-question answering can distinguish
incorrect and correct model predictions

We first investigate the extent to which performance
on sub-question-answering is tied to performance
on the main QA tasks. We split the validation set in-
stances into two groups: those for which the model
predicts the answer for the main question correctly,
and those for which it does not. Results are pre-
sented in Table 3, which suggests sub-question ac-
curacy is indicative of model performance, with
a meaningful difference in sub-question accuracy
observed between the instances which the model
predicts correctly vs. those it does not.

4 Sub-question explanations allow
humans to predict model behavior

Given the correlations between model’s perfor-
mance on main QA and sub-QA, we take a step
forward to ask: can humans gain any useful in-
sight from such correlations? We perform a sim-
ulatability experiment to measure how well the
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sub-question explanations can help humans predict
model behaviors on the main HOTPOTQA task.

To this end, we design and conduct a human
participant study to investigate crowd annotators’
ability to make accurate predictions about model
performance given question decompositions as ex-
planations, following the protocol given in §2.5.
We select a random 100-instance sample from the
676 HOTPOTQA validation instances, balanced
such that the model predicts 50 instances correctly
and 50 incorrectly, and perform the probing pro-
cedure described in §2.4 on the best-performing
model (T5-BASE), which results in tuples of the
form (Q, C, A, SUB-Q1, SUB-A1, SUB-Q2, SUB-
A2), where all answers are predicted by the model.

Our goal is to observe how much the SUB-QA
explanations help human annotators predict model
behavior over a baseline that does not include these
explanations, as well as investigate how the con-
text (C) & the predicted answer (A) could poten-
tially impact human’s performance of diagnosing
model errors. We design five different settings in
which human participants are provided with differ-
ent combinations of information. After reading the
combination of information we present, the partic-
ipants are asked to make their predictions about
model’s behavior on the main question (Q), i.e.,
whether or not the model will be able to correctly
answer the given Q.

We recruit 50 participants on Prolific and split
them into 5 batches, each of which contains 10 par-
ticipants. Given the 100-instance sample, we split
it into 5 batches of 20 questions each. We follow
a Latin Square design, similarly to (Gonzalez and
Søgaard, 2020), to ensure that each group of par-
ticipants only sees each set of questions under one
condition: (Q, A), (Q, A, SUB-Q), (Q, A, SUB-Q,
SUB-A), (Q, SUB-Q, SUB-A), or (Q, C, SUB-Q,
SUB-A), yet each condition is tested on both all
50 annotators and all 100 questions. This ensures
that no bias in human predictions occurs due to
having previously seen the questions and model
predictions. Example of the UI that participants
see is given in Figure 3. Finally, we collect their
predictions and compute the performance scores
using the actual main question’s answer correctness
as the ground truth.

Results are presented in Table 4. The average
inter-annotator agreement is κ = 0.24. In order to
ensure that human users are not simply perform-
ing the HOTPOTQA labelling task themselves, we

validate this by first providing users with (Q, A)
pairs, asking them “Do you think the answer to the
given multi-hop question provided by the question-
answering system is correct?”. Because they are
not given the context, C, this serves as a lower
bound in quantifying any biases the participants
may have about AI systems.

We apply the two-sided Mann-Whitney U test
(Mann and Whitney, 1947) for statistical signifi-
cance on accuracy numbers. Participant accuracy
given (Q, A, SUB-Q, SUB-A) is statistically signif-
icantly different at p = 0.01 from all other settings,
and results in substantially higher performance
across all metrics except recall. This demonstrates
that our proposed SUB-QA explanation method
does help humans make more accurate predictions
about model behavior on the main question (Q)
than simply seeing model predictions (Q, A). We
additionally validate that both sub-questions and
sub-answers are important—when we ablate sub-
answers, humans do poorly at the simulatability
task given (Q, A, SUB-Q), resulting in no signifi-
cant performance difference over (Q, A) pairs.

Having the answer (A) greatly improves the pre-
diction performance, whereas the context (C) does
not significantly impact human’s prediction per-
formance. Meanwhile, the proved feasibility of
human’s making accurate prediction about model
behavior using SUB-QA explanations suggests a
potential future direction for establishing an alter-
native for carrying out real annotation activities in
order to diagnose QA system’s error. The benefit of
such alternative is obvious: humans will no longer
have to conduct the question decomposition and
perform the actual multi-hop reading comprehen-
sion by themselves. Instead, they may solely rely
on or at least gain useful insights from their mental
model about the QA system to save time and effort
when trying to diagnose the error.

5 Quality of question decompositions
matters

Prior work has shown that predictions from ques-
tion decomposition models can improve task per-
formance on HOTPOTQA when being part of a
larger modular system (Min et al., 2019; Perez
et al., 2020; Khot et al., 2021), but qualitative in-
spection reveals a lack of quality in many cases. To
investigate whether such sub-question-generation
models can provide interpretability, we explore the
effect of sub-question quality on utility of ques-
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Metric

Setting Acc. F1 Precision Recall MCC

(Q, A) 58.171.55 65.741.63 55.361.59 83.482.29 19.153.40
(Q, A, SUB-Q) 56.571.20 62.941.82 53.781.71 79.322.80 15.412.87
(Q, A, SUB-Q, SUB-A) 63.50∗

1.39 68.951.15 60.821.46 82.121.60 29.502.92

(Q, SUB-Q, SUB-A) 53.071.43 61.251.54 52.491.71 76.882.26 8.293.13
(Q, C, SUB-Q, SUB-A) 57.001.66 64.611.62 54.821.72 80.371.78 14.793.67

Table 4: Simulatability performance of human participants on 100 validation instances of HOTPOTQA given
different input combinations. The majority baseline for accuracy is 50.00 since the dataset is fully balanced. All
the statistics are computed by averaging across 50 participants, with standard errors included in subscripts. ∗: The
setting’s accuracy score distribution over 50 annotators is statistically significantly different from all other methods
at p = 0.01 using two-sided Mann-Whitney U tests.

tion decompositions as explanations in our probing
setup. Namely, we conduct simulatability exper-
iments and measure performance variation in hu-
mans’ ability to guess model predictions based on
the quality of the SUB-QA explanations they re-
ceived.

We use decomposition predictions from three
trained question decomposers developed as part
of larger modular QA systems in prior work: a)
MODULARQA (Khot et al., 2021); b) One-to-
N Unsupervised Sequence transduction (ONUS;
Perez et al., 2020); and c) DECOMPRC (Min
et al., 2019). MODULARQA is a next-question-
prediction BART-LARGE model trained on the sil-
ver decompositions described in §2.2. ONUS is
trained to decompose complex questions from the
internet into simpler questions using supervision
from noisy pseudo-decompositions. DECOMPRC
is trained on a mix of supervision and heuristics to
create sub-questions from the tokens in the original
question, framing the task as span prediction. Ex-
amples of the question decompositions produced by
each method are in Table 5. ONUS and DECOM-
PRC always produce two sub-questions; MODU-
LARQA follows the form of SILVER and thus also
results in 2 sub-questions per-instance once math
operations are removed (§2.2).

We repeat the crowdsourcing process in §4, ran-
domly sampling a subset of 30 correctly-predicted
instances and 30 incorrectly-predicted instances
from the 100 selected in §4. We probe the T5
model with SUB-Q1 and SUB-Q2 produced by
each of the 4 sources: {SILVER, MODULARQA,
ONUS, DECOMPRC}, and collect its SUB-A1,
SUB-A2 responses. Tuples of (Q, A, SUB-Q1,
SUB-A1, SUB-Q2, SUB-A2) are presented to 30
new annotators (who have not participated in previ-
ous experiments) following the setup in §4.

Similar to §4, we perform a Latin Square de-
sign by equally splitting the participants and the
questions into 3 batches, such that each partici-
pant group only observes each subset of questions
under one experimental condition (either MODU-
LARQA, ONUS, or DECOMPRC predictions). An-
notator performance metrics at predicting answer
correctness, averaged across all 30 participants, are
presented in Table 6, along with annotator perfor-
mance given SILVER sub-questions. The average
inter-annotator agreement is κ = 0.29.

We apply the two-sided Mann-Whitney U test
(Mann and Whitney, 1947) for statistical signifi-
cance on accuracy numbers. Human performance
scores from the trained decomposers are all worse
than the SILVER decomposer at a statistically-
significantly different level (p = 0.05). This in-
dicates that there are still notable gaps between
the quality of SILVER’s and other existing decom-
posers’ SUB-QA explanations. ONUS question
decompositions consistently provide the least ex-
planatory power. Despite DECOMPRC’s method-
ological simplicity, the explanatory power of its
question decompositions is comparable to MOD-
ULARQA, though MODULARQA is the highest-
performing predictive model overall. This is further
supported by statistical significance results, which
reveal that both MODULARQA and DECOMPRC
are statistically-significantly different from ONUS,
but not from one another (p = 0.05).

To further investigate the quality differences of
different sources of question decompositions as
measured by human preferences, we conduct an
additional study where participants are asked to
rank sources of SUB-QA explanations based on
their quality. Specifically, we again recruit 30 new
participants and each of them is asked to rank four
decomposers’ SUB-QA explanations for 30 ran-
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SILVER (Khot et al., 2021)

Sub-question 1: During what war was Pavillon du Butard occupied by the Prussians?
Sub-question 2: What was the name that the French called the Franco-Prussian War?
MODULARQA (Khot et al., 2021)

Sub-question 1: During what war was the Pavillon du Butard occupied?
Sub-question 2: What is the French name for the Franco-Prussian War?
ONUS (Perez et al., 2020)

Sub-question 1: What is the name the french give to the war?
Sub-question 2: During which war did the prussians occupy the pavillon du butard?
DECOMPRC (Min et al., 2019)

Sub-question 1: which war during which the prussians occupied the pavillon
Sub-question 2: what is the name the french give to Franco-Prussian War du butard?

Table 5: Examples of the question decompositions produced by {SILVER, MODULARQA, ONUS, DECOMPRC}
for the question “What is the name the French give to the war during which the Prussians occupied the Pavillon du
Butard?”.

Metric

Decomposer Acc. F1 Precision Recall MCC

SILVER 63.50∗
1.39 68.951.15 60.821.46 82.121.60 29.502.92

MODULARQA 58.331.94 63.192.06 59.111.54 69.223.07 16.234.22
DECOMPRC 57.67∗1.51 60.901.79 60.331.55 64.613.34 15.643.07
ONUS 53.111.53 52.802.70 55.961.53 54.134.05 6.073.22

Table 6: Simulatability performance of human participants on 60 validation instances of HOTPOTQA, where SUB-Q
are provided by different question decomposers and SUB-A are obtained from our T5-BASE model. The majority
baseline for accuracy is 50.00 since the dataset is fully balanced. All but SILVER statistics (copied from Table 4)
are computed by averaging across 30 participants, with standard errors included in subscripts. ∗: The method’s
accuracy score distribution over 30 annotators is statistically significantly different from all the methods below it at
p = 0.05 using two-sided Mann-Whitney U tests.

dom question samples in terms of three criteria:
well-formedness, relatedness, and informativeness.
Example of the UI that participants see is given in
Figure 5. Results are presented in Table 7. Inter-
annotator agreement, as measured by Kendall’s Tau
(Kendall, 1938), is τ = 0.32. SILVER decomposer
is consistently preferred under all measurement cri-
teria; MODULARQA is consistently second-best,
followed by ONUS and DECOMPRC. This also
echoes results reported in Khot et al. (2021) (who
only compared MODULARQA to DECOMPRC).

6 Related Work

Multiple prior works have concluded that question-
answering as a form (Gardner et al., 2019) is a good
choice for probing pretrained models (Roberts
et al., 2020; Marasović et al., 2021). Roberts et al.
(2020) fine-tune a model on a dataset of questions
and answers, but claim this does not introduce new
information to the model and only teaches form for
effective QA probing. However, this claim is not
well-supported, as fine-tuning removes any guaran-

tees that the questions answered at test-time reflect
information learned during pre-training alone, and
is not zero- or few-shot. We avoid this by perform-
ing probing in a truly zero-shot manner (i.e., we
never fine-tune on sub-questions). Additionally,
the method of Roberts et al. (2020) does not probe
for instance-level prediction explanations; the au-
thors instead use a fixed set of questions on general
topics. In our work, we use the instance-level expla-
nations we obtain from probing with sub-questions
to test whether these explanations give humans an
accurate mental model of the system (Jacovi et al.,
2022).

Most related to our work is that of Tang et al.
(2021), who also investigate whether model archi-
tectures for multi-hop QA can answer single-hop
questions. They find that there is a significant per-
centage of questions for which the model answers
the main question correctly, but cannot correctly an-
swer the corresponding single-hop sub-questions.
However, because they use a model to produce
question decompositions, their results may be con-
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Well-formedness Relatedness Informativeness

Decomposer 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

SILVER 50.23.3 37.32.9 6.41.3 6.11.2 41.83.0 37.62.7 11.51.4 9.11.3 41.73.0 37.42.8 11.71.3 9.21.3
MODULARQA 35.52.8 45.13.5 12.01.9 7.41.5 37.02.5 36.72.9 14.91.6 11.41.3 36.52.5 38.32.9 14.21.8 11.01.4
ONUS 9.11.3 13.22.0 54.94.5 22.82.2 14.11.3 18.61.6 37.83.6 29.52.2 15.71.5 17.01.6 40.13.4 27.22.0
DECOMPRC 5.21.5 4.41.0 26.72.7 63.73.8 7.11.3 7.11.2 35.82.4 50.03.2 6.11.3 7.31.2 34.02.5 52.63.1

Table 7: Percentages (%) of the time each decomposer is listed in a ranking spot. Human participants rank all four
question decomposers in terms of the well-formedness, relatedness, and informativeness of their corresponding
questions and answers. Each annotator judges the same 30 instances, and results are averaged across 30 annotators.
Subscripts indicate standard errors over 30 annotators.

founded by errors or low quality of the questions
themselves, which our work circumvents by using
a silver source of sub-questions; we also investi-
gate the effect of sub-question quality on the final
results.

7 Conclusions

We have demonstrated the utility of question de-
composition as an effective means to probe pre-
trained multi-hop question-answering models for
supporting evidence. Through simulatability ex-
periments, we show the effectiveness of this expla-
nation form at allowing humans to predict model
behavior, a sign that it helps humans to form an
accurate mental model of the machine learning sys-
tem (Jacovi et al., 2022). This ability to predict
system performance occurs at the instance level in-
stead of a sense of trust of the overall system, which
can be important if the accuracy of the system is
variable based on the question.

Our results indicate that explanations based on
decompositional probes can be beneficial to users
when the sub-questions are of reasonable quality.
Our analyses indicate that existing decomposition
systems, however, have considerable room for im-
provement. We can now look at the state of re-
search in decomposition systems not only as to
whether they improve multi-hop question answer-
ing, but whether they provide users with more cali-
brated trust.

8 Limitations

Our simulability study results (Section 4) are con-
ducted on silver labels. As Section 5 reveals, there
is a need for higher-quality question decomposi-
tions. While we have demonstrated the potential
for decomposition probes to help users build men-
tal models of system behavior, these results are not
fully realizable in real applications until decompo-
sition systems improve.

The probing strategy explored in this paper is
particular to the QA setting and datasets that don’t
have predefined categories of answers. Other prob-
ing strategies may exist that are not explored in this
paper.

It is noted that multi-hop questions do not al-
ways require multi-hop reasoning to solve. In-
deed we intentionally use a non-multi-hop question-
answering model to answer the original question
to disadvantage the system so that explanations are
required. Multi-hop questions afford the use of a
decompositional probing strategy. Our study did
not look at non-multi-hop questions, which may
require other probing strategies yet to be invented.

9 Ethics & Broader Impacts

All datasets used in this work are public. We did
not collect any personal information from our hu-
man participants nor did we present them with any
harmful model outputs.

QA systems, as with all language model based
systems, are prone to unwanted biases; this is be-
yond the scope of our paper. QA systems present
safety issues when humans act upon answers that
are wrong. Our paper is a step toward helping hu-
man users understand when they should or should
not trust the answers.
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A Additional Details

We use Huggingface Datasets (Lhoest et al., 2021)
and Huggingface Transformers (Wolf et al., 2020).
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Models are trained with a learning rate linearly de-
caying from 5E− 5, a batch size of 64, and default
values for Adam (Kingma and Ba, 2015), gradient
clipping, and dropout. We train for a maximum 200
epochs, performing early stopping on the validation
loss with a patience of 10 epochs. All models are
trained on an NVIDIA GeForce GTX 1080 GPU
(8 GB memory) and on average take approximately
14 hours to train, converging in around 12 epochs.
Input-output formatting is:
input_string = (f"question: {question}

context: {passage}")
output_string = (f"{answer}")

The HOTPOTQA dataset has 90,447 train and
7,405 validation instances. In the HOTPOTQA
leaderboard, there are two evaluation settings: dis-
tractor and full-wiki. In the distractor setting, mod-
els are given 10 paragraphs where 2 of them are
gold paragraphs needed to answer the question
and the other 8 are “distractors”. In the full-wiki
setting, models are given the first paragraphs of
all Wikipedia articles without the gold paragraphs
specified. We do not submit to the leaderboard
and thus cannot report test set performance, since
we simplify the task and pass the 2 gold context
paragraphs as input directly (§2.3), which does not
align with either evaluation setting.

The Prolific interfaces for the human participant
studies conducted in section 4 are shown in Fig-
ure 2 and Figure 3; the Prolific interfaces for the
human participant studies conducted in section 5
are shown in Figure 4 and Figure 5.
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Figure 2: The Prolific interface for simulatability experiments in section 4.
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Figure 3: The Prolific interface for simulatability experiments in section 4.
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Figure 4: The Prolific interface for ranking experiments in section 5.
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Figure 5: The Prolific interface for ranking experiments in section 5.
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