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Abstract

We introduce a method for unsupervised pars-
ing that relies on bootstrapping classifiers to
identify if a node dominates a specific span in
a sentence. There are two types of classifiers,
an inside classifier that acts on a span, and an
outside classifier that acts on everything out-
side of a given span. Through self-training and
co-training with the two classifiers, we show
that the interplay between them helps improve
the accuracy of both, and as a result, effec-
tively parse. A seed bootstrapping technique
prepares the data to train these classifiers.
Our analyses further validate that such an ap-
proach in conjunction with weak supervision
using prior branching knowledge of a known
language (left/right-branching) and minimal
heuristics injects strong inductive bias into the
parser, achieving 63.1 F1 on the English (PTB)
test set. In addition, we show the effectiveness
of our architecture by evaluating on treebanks
for Chinese (CTB) and Japanese (KTB) and
achieve new state-of-the-art results.1

1 Introduction

Pre-trained language models (PLMs) have become
a standard tool in the Natural Language Process-
ing (NLP) toolkit, offering the benefits of learning
from large amounts of unlabeled data while pro-
viding modular function in many NLP tasks that
require supervision. Recent work has shown that
PLMs capture different types of linguistic regulari-
ties and information, for instance, the lower layers
capture phrase-level information which becomes
less prominent in the upper layers (Jawahar et al.,
2019), span representations constructed from these
models can encode rich syntactic phenomena, like
the ability to track subject-verb agreement (Gold-
berg, 2019), dependency trees can be embedded

1Our code and pre-trained models are available at
https://github.com/Nickil21/
weakly-supervised-parsing.

Figure 1: A depiction of a syntax tree, with the
inside string as depicted by the sequence xi · · ·xj
and the outside string as depicted by the sequence
(x1 · · ·xi−1, xj+1 · · ·xn) that provides external con-
text for the inside representations.

within the geometry of BERT’s hidden states (He-
witt and Manning, 2019), and most relevantly to
this paper, syntactic information via self-attention
mechanisms (Wang et al., 2019; Kim et al., 2020).

We offer another perspective on the way PLMs
represent syntactic information. We demonstrate
the usability of PLMs to capture syntactic informa-
tion by developing an unsupervised parsing model
that makes heavy use of PLMs. The learning algo-
rithm is light in the injection of hard bias to parse
text, emphasizing the role of PLMs in capturing
syntactic information.

Our approach to unsupervised parsing is inspired
by recent work in the area of spectral learning for
parsing (Cohen et al., 2014, 2013) and unsuper-
vised estimation of probabilistic context-free gram-
mars (PCFGs; Clark and Fijalkow, 2020). At its
core, our learning algorithm views the presence or
absence of a node dominating a substring in the fi-
nal parse tree as a latent variable, where patterns of
co-occurrence of the string that the node dominates
(the “inside” string) and the rest of the sentence (the
“outside” string) dictate whether the node is present
or not. With spectral learning for latent-variable
PCFGs (L-PCFGs; Cohen et al., 2014; Cohen and
Collins, 2014) the notion of inside trees versus out-
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side trees is important, but in our case, given that
the trees are not present during learning, we have
to further specialize it to extract information only
from the strings.

Consider the diagram of a syntax tree in Figure 1,
decomposed into two parts. Following the main
notion in spectral learning, each of these parts (the
orange part and the blue part) is a “view” of the
whole tree that provides information on the identity
of the node that spans the words xi · · ·xj . In the
case of the tree being unobserved during training,
we have to rely only on the substrings that are
spanned by the blue part or the orange part, to
hypothesize whether indeed a node exists there.

To represent the inside and outside views, we
make use of PLMs. We encode these substrings,
and then bootstrap a classifier that determines
whether a given span is a constituent or not. The
bootstrapping process alternates between the two
views, and at each point adds predictions on the
training set that it is confident about to train a new
classifier. This can be thought of as a form of
co-training (Yarowsky, 1995; Blum and Mitchell,
1998), a training technique that relies on multiple
views of training instances. We formulate the task
of identifying constituents and distituents (referring
to spans that are not constituents) in a sentence as a
binary classification task by devising a strategy to
convert the unlabeled data into a classification task.
Firstly, we build a sequence classification model by
fine-tuning a Transformer-based PLM on the unla-
beled training sentences to distinguish between the
true and false inside strings of constituents. Sec-
ondly, we use the highly-confident inside strings to
produce the outside strings. Additionally, through
the use of semi-supervised learning techniques, we
jointly use both the inside and outside passes to
enrich the model’s ability to determine the break-
points in a sentence. Our final model achieves 63.1
sentence F1 averaged over multiple runs with ran-
dom seed on the Penn Treebank test set. We also
report strong results for the Japanese and Chinese
treebanks.

2 Problem Formulation and Inference

We give a treatment to the problem of unsupervised
constituency parsing. In that setup, the training
algorithm is given an unlabeled corpus (set of sen-
tences) and its goal is to learn a function mapping
a sentence x to an unlabeled phrase-structure tree
y that indicates the constituents in x. In previous

work with models such as the Constituent-Context
Model (CCM; Klein and Manning 2002), the De-
pendency Model with Valence (DMV; Klein and
Manning 2005), and Unsupervised Maximum Like-
lihood estimator for Data-Oriented Parsing (UML-
DOP; Bod 2006), the parts of speech (POS) of the
words in x are also given as input both during infer-
ence and during training, but we do not make use
of such POS tags.

Inference While our learning algorithm is gram-
marless, for inference we make use of a dynamic
programming algorithm, akin to CYK, to predict
the parse tree. Inference assumes that each possible
span in the tree was scored with a score function
s(i, j) where i and j are endpoints in the sentence.
The score function is learned through our algorithm.
We then proceed by finding the tree t∗ such that:

t∗ = argmax
t∈T

∑
(i,j)∈t

s(i, j),

where T is the set of possible binary trees over
the sentence and (i, j) ∈ t, with a slight abuse of
notation, denotes that the span (i, j) appears in t.

When s(i, j) is the probability of a span (i, j)
being in the correct tree, this formulation gives the
tree with the highest expected number of correct
constituents (Goodman, 1996). This formulation
has been used recently by several unsupervised con-
stituency parsing algorithms (Kim et al., 2019b,a;
Cao et al., 2020; Li et al., 2020a).

3 Training Algorithm

At the core of our approach lies the notion of in-
side and outside strings. For a given sentence
x = x1 · · ·xn and a span (i, j), the inside string
of span (i, j) is the sequence xi · · ·xj while the
outside string is the pair (x1 · · ·xi−1, xj+1 · · ·xn).
We denote by hin(i, j) representations for inside
strings and hout(i, j) representations for outside
strings. Both are vectors derived from a PLM
(RoBERTa; Liu et al. 2019, as we see later).

These two types of strings provide two views
of a given possible splitting point in the syntax
tree. We offer three ways, with increasing com-
plexity, to bootstrap a score function that helps
identify whether a node should dominate a given
span. The main idea behind this bootstrapping is
to start with a small seed set of training examples
(x, i, j, b) where (i, j) is a span in a sentence x and
b ∈ {0, 1}, depending on whether the span (i, j)
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is dominated by a node in the syntactic tree or not.
Bootstrapping the seed set is dependent only on
either the inside string or the outside string, and
the corresponding classifier built from this boot-
strapped seed set returns a probability p(b | x, i, j).
Once a classifier is learned using the bootstrapping
seed set, the classifier is applied on the training set,
and the seed set is added to more examples where
the classifier is confident of the label b. This is
also known as self-training (McClosky et al., 2006,
2008).

In the next three sections, we present three learn-
ing algorithms of increasing complexity in their
use of inside and outside strings.

3.1 Modeling Using Inside Strings

The inside model min which is modeled at a sen-
tence level, computes an inside score sin(i, j) from
the inside vector representation hin(i, j) of each
span in the unlabeled input training sentence U.
To compute hin(i, j), we fine-tune the sequence
classification model that encodes a fixed-vector
representation for each token in the dataset. This
captures the phrase information of the inner content
in the span. In order to prepare the features for the
inside model, we make use of a seed bootstrapping
technique (Section 4.2.1). Once we build the inside
model min, we get the most confidently-classified
inside strings from U based on a set threshold
τ = (τmin, τmax). Here, τmin and τmax, form the
confidence bounds to select distituents and con-
stituents respectively. We select a random sample
of c constituents and d distituents with appropri-
ate labels from these most confident inside strings
comprising the labeled inside set I.

3.2 Modeling Using Inside and Outside
Strings

To perform the iterative self-training procedure, we
follow the steps as detailed in Figure 2. While
building the outside model, we extract the tokens
at the span boundaries of the pair of outside strings,
which is of the form consisting of the triple (xi−1,
[MASK], xj+1). The outside model computes an
outside score sout(i, j) from the outside vector rep-
resentation hout(i, j) of each span, which models
the contextual information of the span. To com-
pute hout(i, j), we extract the triple for every span
(i, j) in the dataset and fine-tune another sequence
classification model that encodes a fixed-vector rep-
resentation for each triple.

Inputs: I represents the labeled inside set; U is a set of
unlabeled training sentences;

Algorithm:
• Loop for K iterations:

1. Learn the inside classifier min based on
hin(i, j) derived from I

2. Use min to label U to get the predicted inside
strings ŷin

3. If ŷin > τmax, extract c constituents randomly
and add it to the set of pseudo-constituents Xc

4. If ŷin < τmin, extract d distituents randomly
and add it to the set of pseudo-distituents Xd

5. I = Xc ∪ Xd

• Get outside strings for each I; Assign to the set of
labeled output sentences O

• Learn outside modelmout based on hout(i, j) derived
from O

Output: inside model min, outside model mout

Figure 2: Our self-training algorithm.

3.3 An Iterative Co-training Algorithm
Co-training (Blum and Mitchell, 1998) is a classic
multi-view training method, which trains a clas-
sifier by exploiting two (or more) views of the
training instances. Our final learning algorithm
is indeed inspired by it, where we consider the in-
side and the outside strings to be the two views.
Once we have the inside min and the outside classi-
fiers mout that are trained on their respective con-
ditionally independent inside hin(i, j) and outside
hout(i, j) feature sets, we can make use of an iter-
ative approach. At each iteration, only the inside
strings Î that are confident to be likely the insides
of constituents and distituents according to the out-
side model are moved to the labeled training set
of the inside model I. Thus, the outside model
(teacher) provides the labels to the inside strings
on which the inside model (student) is uncertain.
Similarly, only the outside strings Ô that are con-
fident to be the likely outsides of constituents and
distituents according to the inside model are moved
to the labeled training set of the outside model O.
Thus, the inside model provides the labels to the
outside strings on which the outside model is un-
certain. We describe the steps in Figure 3. Finally,
we combine the scores obtained by the inside and
the outside model to get the score s(i, j) for each
span:

s(i, j) = sin(i, j) · sout(i, j).

Co-training requires the two views to be indepen-
dent of each other conditioned on the label of the
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Inputs: I is the set of labeled inside sentences; O is the set
of labeled outside sentences; U is a set of unlabeled sentences.

Algorithm: Loop for K iterations:
• Choose c pseudo-constituents and d pseudo-distituents

from the most confidently predicted outside strings ŷout
from U based on τ

• Extract the inside strings Î corresponding to the c
pseudo-constituents and d pseudo-distituents of outside

• I = I ∪ Î
• Train the inside model min based on hin(i, j) derived

from I
• Choose c pseudo-constituents and d pseudo-distituents

from the most confidently predicted inside strings ŷin
from U based on τ

• Extract the outside strings Ô corresponding to the c
pseudo-constituents and d pseudo-distituents of inside

• O = O ∪ Ô
• Train the outside modelmout based on hout(i, j) derived

from O

Output: Two models min, mout, that predict the inside and
outside scores for unlabeled sentences. We combine these pre-
dictions by multiplying together and optionally re-normalizing
their class probability scores.

Figure 3: Our co-training algorithm.

training instance. This is the type of assumption
that, for example, PCFGs satisfy, when breaking a
tree into an outside and inside tree: the two trees
are conditionally independent given the nontermi-
nal that connects them. In our case, we satisfy this
assumption by creating inside and outside string
representations separately, as we see later in Sec-
tion 4.

Figure 4 illustrates the underlying pipeline of
our weakly supervised parsing framework in an
end-to-end fashion.

4 Experimental Setup

In this section, we describe our experimental setup:
the data we use, the exact details of the experimen-
tal use of our approach to unsupervised parsing,
and our evaluation methodology.

4.1 Data

We evaluate our methodology on the Penn Tree-
bank (PTB; Marcus et al. 1993) with the standard
splits (2-21 for training, 22 for validation, 23 for
test). For preprocessing, we keep all punctuation
and remove any trailing punctuation. To maintain
the unsupervised nature of our experiments, we
avoid the common practice of using gold parses of
the validation set for either early stopping (Shen
et al., 2018, 2019; Drozdov et al., 2019) or hyper-
parameter tuning (Kim et al., 2019a). Addition-

ally, we experiment on Chinese with version 5.1
of the Chinese Penn Treebank (CTB; Xue et al.
2005) with the same splits as in Chen and Manning
(2014), and the Japanese Keyaki Treebank (KTB;
Butler et al. 2012). For KTB, we shuffle the corpus
and use 80% of the sentences for training, 10% for
validation, and 10% for testing.

4.2 Multi-view Learning

In this section, we devise the task of identifying
constituents in a sentence by training two mod-
els with different views of the data. Ideally, these
views complement each other and help each model
improve the performance of the other.

4.2.1 Seed Bootstrapping
We treat identifying constituents from unlabeled
sentences as a sequence classification task. To
generate the constituent class, we take the com-
plete sentence (start:end), as a sentence in it-
self is a constituent, and also the largest among
all of its other constituents. To generate the
distituent class, we take (start:end-1), · · · ,
(start:end-6) slices, where start and end de-
note the 0th and Nth position (sentence length) re-
spectively. We select the distituents in this manner
because the longer the sentence, there would be a
significantly unlikely chance that the span of the
constituents extends till the very end of the sen-
tence. Additionally, we make use of casing-specific
information by adding contiguous title-case words
while allowing only the apostrophe mark. Since
all of the sentences for the constituent class start
with capital letters, we identify the most common
first word and generate lower-case equivalents of
contiguous title-case words, which starts with it to
account for bias due to the casing of spans. While
we do use a fixed template to perform the seed
bootstrapping process, this is part of the inductive
bias of the algorithm, and is relatively easy to ac-
quire. In our analysis, we assume the language
is already known before and thereby its structure
(left/right-branching), a form of weak supervision.

For CTB, we follow the exact same process
as PTB for preparing the input data for the first-
level sequence classifier, but we do not rely on
case-specific information and perform no post-
processing. Meanwhile, since KTB is a treebank of
a strongly left-branching language, we design our
modeling approach slightly differently compared
to before, although along the same style. To pre-
pare the data for the sequence classifier, we choose

1277



Unlabeled

Sentences

sentence 1

       ....

       ....

sentence N

Seed 

Bootstrap

Sentence   is_constituent

sample 1           1 

sample 2           0

    ....      

sample N           0 

Teacher Model

Transformer

Transformer

...

...

Label

Student Model

Transformer

Transformer

...

...

Label

Select a random sample of 'c' pseudo-constituents 
and 'd' pseudo-distituents from the most confident 
inside strings to form the synthentically prepared 
dataset

Create 
Synthetic

Labels

Train (II)

Train (I)
Extract the outside strings 
corresponding to the inside strings 
after the self-training procedure 

Self-train 5 times

Inside Model

Transformer

Transformer

...

...

Label

Outside Model

Transformer

Transformer

...

...

Label
Train (III)

Extract the inside strings 
from the most confident 
outside strings

Train (IV) 

Extract the outside strings 
from the most confident 
inside strings

Train (V)

Co-train 2 times

Compute the span scores 
based on the final co-trained 
inside and outside models
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(0, 5)

(1, 2)

(1, 3)

(1, 4)

(1, 5)

(2, 3)

(2, 4)

(2, 5)

(3, 4)

(3, 5)

(4, 5)

(S (S (S the) (S boy)) (S (S ate) (S (S the) (S apple))))

Figure 4: Block diagram detailing our approach. We perform the self-training procedure for five iterations which
follow multiple steps; (I): Fine-tune a RoBERTaBASE model (teacher) on a downstream task using a cross-entropy
loss after seed bootstrapping; (II): Synthetically annotate this data using the teacher model and select top K samples
corresponding to each class to form the final synthetic dataset; We fine-tune a RoBERTaBASE model (student) on
this dataset using hard labels and retrieve the outside strings from the most confident insides; (III): Train the
outside classifier on these outside strings; We perform the co-training procedure for two iterations which follow
a two-fold optimizing step; (IV): Retrieve the inside strings from the most confident outsides and train the inside
classifier; (V): Retrieve the outside strings from the most confident insides and train the outside classifier.

the slice (start:end) in the sentence to label the
constituent class, whereas, (start+1:end), · · · ,
(start+4:end) slices are chosen to label the dis-
tituent class. We also split the sentences on “*”
mark and treat the resulting fragmented parts as
constituents too. Our training does not depend
on the development set with the gold-standard an-
notated trees since we base the necessary string
slicing decision on the feedback from the valida-
tion split after the bootstrapping procedure in an
iterative fashion (increment/decrement the value
of slice counter by 1) until we see a degradation
in performance (measured using F1 score) on the
synthetic set of seed constituents and distituents.

4.2.2 Inside Model
We fine-tune the RoBERTa model with a sequence
classification layer on top using a cross-entropy
loss (see Section A.1 in Appendix for training
and hyperparameter details). As we supply input
data, the entire pre-trained RoBERTaBASE model
and the additional untrained classification layer is
trained on our specific downstream task. To com-
pute hin(i, j), we run the RoBERTaBASE model and

retrieve the [CLS] token representation for the
span enclosed between the ith and the jth element.
The inside model is evaluated on MCC (Matthews
Correlation Coefficient) as well as F1 because the
classes are imbalanced. After fine-tuning, our best
inside model achieves 0.62 MCC and 0.91 F1 on
the internal validation set. Finally, we fine-tune the
inside model on the unlabeled training sentences
that generates an inside score sin(i, j) for every
span. Since our major focus was on PTB, we have
listed a few heuristics that inject further bias into
the algorithm acting as the another form of weak
supervision. Moreover, incorporating such rules
was not necessary for CTB and KTB as our models
showed superior performance without them.

Once we compute the inside score, sin(i, j), we
use the following refinement strategies to prune
out false constituents: We delete any constituent
if it starts or ends with the most common word
succeeding the comma punctuation. Additionally,
we take the most common starting word and check
if its accompanying word does not belong to the
NLTK stop words list. We assign the scores of
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these corresponding spans in the CYK chart cell to
the maximum value. Intuitively, from the linguistic
definition of constituents, we refrain from bracket-
ing if we identify a contiguous group of rare title-
case or uppercase words (tokens not in the top 100
most frequent list in the PTB training sentences).
These heuristics only contribute to a certain extent
in making the parser strong, and should be consid-
ered as a standard post-processing step. Overall,
we observe 3.8 F1 improvements in the case of the
inside model. We further note that the contribu-
tion due to additional heuristics is much less than
the combined self-training and co-training gains
since their effect becomes insignificant after multi-
ple iterations of the self-training process due to the
predictions approximately following the template
rules. As described in Figure 2, we perform self-
training on the inside model for five iterations.2

4.2.3 Outside Model
We extract the outside strings of spans having
the inside score satisfying a pre-determined cut-
off value. The Constituent-Context Model (Klein
and Manning, 2002) use a smoothing ratio of 1:5
(constituents to distituents) for the WSJ-10 sec-
tion to take into account the skewness of random
spans more likely to represent distituents. In the
same vein, the values of lower and upper bounds
of the threshold are chosen to ensure the distri-
bution of class labels is about 1:10 (with the dis-
tituent class being the majority) which is a crude
estimate considering much larger sentence lengths
in the WSJ-Full section. Moreover, from a linguis-
tic standpoint, we can be certain that the distituents
must necessarily outnumber the constituents. For
the self-training experiments, we set the thresholds,
τmin as 0.0005 and τmax as 0.995. We treat the out-
side strings satisfying the upper and lower bounds
of the threshold as gold-standard outside of con-
stituents and distituents respectively. To compute
hout(i, j), we run the RoBERTaBASE model on left-
outside, i.e., (i− 1)th element and right-outside,
i.e., (j + 1)th element, along with a [MASK] place-
holder token separating the two, and extract the
[CLS] token representation. As done previously,
we fine-tune the outside model on the unlabeled
training sentences that generates an outside score
sout(i, j) for every span.

2We only use the top 5K inside strings for self-training to
cover maximum possible iterations as it is representative of
the whole training set in terms of the average sentence length
and punctuation marks.

Model WSJ-Full WSJ-10
Mean Max Mean Max

Trivial Baselines:

Left Branching (LB) 8.7 17.4
Balanced 18.5
Right Branching (RB) 39.5 58.5

Unsupervised Parsing approaches:

PRPN† (Shen et al., 2018) 37.4 38.1 58.4 –
URNNG? (Kim et al., 2019b) – 45.4 – –
ON† (Shen et al., 2019) 47.7 49.4 63.9 –
Tree Transformer†? (Wang et al., 2019) 50.5 52.0 66.2 –
Neural PCFG† (Kim et al., 2019a) 50.8 52.6 64.6 –
DIORA? (Drozdov et al., 2019) – 58.9 60.5 –
Compound PCFG† (Kim et al., 2019a) 55.2 60.1 70.5 –
S-DIORA†? (Drozdov et al., 2020) 57.6 64.0 71.8 –
Constituency Test? (Cao et al., 2020) 62.8 65.9 68.1 –
Ours? (using inside) 55.9 57.2 66.2 –
Ours? (using inside w/ self-training) 61.4 64.2 71.7 –
Ours? (using inside and outside w/ co-training) 63.1 66.8 74.2 –

Oracle Binary Trees 84.3 82.1

Table 1: Unlabeled sentence-level F1 on the full as
well as sentences of length ≤ 10 of the PTB test set
without punctuation or unary chains. We evaluate each
model using the evaluation script provided by Kim et al.
(2019a) and take the baseline numbers of certain mod-
els from (Kim et al., 2019a; Cao et al., 2020). † denotes
models trained without punctuation and ? denotes mod-
els trained on additional data.

4.2.4 Jointly Learning with Inside and
Outside Models

Once we have the outside model, we run it on the
training sentences and choose the outside string
that the classifier is highly confident about. We
extract their inside strings again using the same
bounds of the threshold as done previously and re-
train the inside model on the old highly confident
inside strings along with the new inside strings
obtained from the highly confident outside strings.
Similarly, the same technique can be applied to the
outside model to augment its input data too. We
repeat this process twice (Figure 3).

4.3 Evaluation

We report the F1 score with reference to gold trees
in the PTB test set (section 23). Following prior
work (Kim et al., 2019a; Shen et al., 2018, 2019;
Cao et al., 2020), we remove punctuation and col-
lapse unary chains before evaluation, and calculate
F1 ignoring trivial spans, i.e., single-word spans
and whole-sentence spans, and we perform the av-
eraging at sentence-level (macro average) rather
than span-level (micro average), which means that
we compute F1 for each sentence and later aver-
age over all sentences. We also mention the oracle
upper bound, which is the highest possible score
with binarized trees since we compare them against
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Model CTB
Mean Max

Trivial Baselines:

Left Branching (LB) 9.7
Random Trees 15.7 16.0
Right Branching (RB) 20.0

Unsupervised Parsing approaches:

PRPN (Shen et al., 2018) 30.4 31.5
ON (Shen et al., 2019) 25.4 25.7
Neural PCFG (Kim et al., 2019a) 25.7 29.5
Compound PCFG (Kim et al., 2019a) 36.0 39.8
Ours (using inside) 37.8 38.4
Ours (using inside w/ self-training) 40.6 41.7
Ours (using inside and outside w/ co-training) 41.8 43.3

Oracle Binary Trees 81.1

Table 2: Unlabeled sentence-level F1 on the CTB test
set. We evaluate each model using the evaluation script
provided by Kim et al. (2019a) and take the baseline
numbers also from Kim et al. (2019a).

non-binarized gold trees according to the conven-
tion, as most unsupervised parsing methods output
fully binary trees. We additionally use the stan-
dard PARSEVAL metric computed by the evalb
program.3 Although evalb calculates the micro
average F1 score, it differs from our micro average
metric in the sense that it counts the whole sentence
spans, and calculates duplicated spans instead of
removing them. Following the recommendations
put forth by previous work that has done a compre-
hensive empirical evaluation on this topic (Li et al.,
2020b), we report results on both length ≤ 10 as
well as all-length test data.

5 Results and Discussion

Table 1 shows the unlabeled F1 scores for our
model compared to existing unsupervised parsers
on PTB. The vanilla inside model is in itself com-
petitive and is already in the range of previous
best models like DIORA (Drozdov et al., 2019),
Compound PCFG (Kim et al., 2019a).4 See Ap-
pendix A.5 to assess our model’s performance on
unsupervised labeled parsing.

We further evaluate how our method works for
languages with different branching types – Chinese

3https://nlp.cs.nyu.edu/evalb
4We do not include the results of Shi et al. (2021) in our

analysis because their boost in the performance is contingent
on the nature of the supervision data (especially the QA-SRL
dataset) rather than on the actual learning process itself. Fur-
thermore, the authors mention that a vast amount of hyperlinks
match syntactic constituents, hence restricting the scope for
the actual algorithm to derive meaningful trees.

Model KTB-40 KTB-10
Mean Max Mean Max

Trivial Baselines:

Left Branching (LB) 29.4 51.6
Right Branching (RB) 9.8 22.9

Unsupervised Parsing approaches:

PRPN (Shen et al., 2018) 27.2 31.8 30.1 33.6
URNNG (Kim et al., 2019b) 10 10.2 22.7 22.7
DIORA (Drozdov et al., 2019) 24.9 26.0 42.3 43.3
DIORA-all (Hong et al., 2020) 36.4 40.0 47.1 48.9
Ours (using inside) 33.7 36.3 53.8 55.9
Ours (using inside w/ self-training) 37.6 39.8 55.5 58.2
Ours (using inside and outside w/ co-training) 39.2 41.1 56.7 59.1

Upper Bound 76.5 76.6

Table 3: Evalb F1 on the full (F1-all) and length ≤ 10
(F1-10) sentences of the KTB test set discarding punc-
tuation corresponding to KTB-40 and KTB-10, respec-
tively. We take the baseline numbers of models from Li
et al. (2020b). See Table 7 to view the hyperparameters
used for evalb.

(right-branching) and Japanese (left-branching).
We use Transformer models for the representations
of the spans for both Chinese and Japanese. See
Section A.1 in the Appendix for training details. Ta-
bles 2 and 3 shows the results for CTB and KTB
respectively. Moreover, we do not include a few
models chosen previously for PTB during our anal-
ysis, as extending those models for CTB or KTB
is non-trivial due to several reasons: such as lack
of domain-related datasets (as DIORA uses SNLI
and MultiNLI for training), and lack of linguistic
knowledge expertise (not easily cross-lingual trans-
ferable notion for designing constituency tests).

Figure 8 in the Appendix shows step-wise qual-
itative analysis for a sample sentence taken from
the PTB training set. See Figures 9 and 10 in Ap-
pendix to see the visualization for an example tree
at every stage of the pipeline for CTB and KTB re-
spectively. As we can observe from all the example
tree outputs, the parser using the inside and outside
models after the co-training stage produces fewer
crossing brackets than the vanilla inside model.

5.1 Effect of Self-training

PLMs that possess rich contextualized textual rep-
resentations can assist parsing when we have a
large volume of unlabeled data. For this reason, we
might expect that self-training in combination with
pre-training adds no extra information to the fine-
tuned parser. However, we find that self-training
improves the performance of the parser by about
9.8%, demonstrating that self-training provides ad-
vantages complementary to the pre-trained contex-
tualized embeddings (see Table 5 in Appendix for
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PRPN ON URNNG
Compound

PCFG
S-DIORA

Constituency
Test

Our Best
Parser

SBAR 50.0 51.2 74.8 56.1 59.2 66.1 81.7
NP 59.2 64.5 39.5 74.7 78.0 79.4 73.5
VP 46.7 41.0 76.6 41.7 78.9 68.2 70.4
PP 57.2 54.4 55.8 68.8 67.1 86.2 77.8
ADJP 44.3 38.1 33.9 40.4 49.1 62.6 40.9
ADVP 32.8 31.6 50.4 52.5 59.9 63.9 70.4

Table 4: Average recall per constituent category (i.e. label recall) in (%). The results of PRPN, ON, URNNG, and
Compound PCFG are taken from Kim et al. (2019a), S-DIORA from Drozdov et al. (2020), and Constituency Test
from Cao et al. (2020).

a more detailed analysis at different stages).

5.2 Effect of Co-training
The question of how to integrate multi-view infor-
mation is important. One of the options would be
to concatenate both the inside and outside vectors
while performing training and inference. With this
experiment setting, we see negligible improvement
as it only scores 13.2 F1 on the PTB test (without
self-training). The whole idea of separating the two
models for co-training is to learn constituent bound-
aries to identify the splitting points in a sentence
through independent views of data. This corrobo-
rates the effectiveness of co-training compared with
concatenation: the simple concatenation strategy
cannot fully harvest the information corresponding
to each view and indeed render the optimization
intractable. After co-training, the parser achieves
63.1 F1 averaged over four runs, outperforming
the previous best-published result (see Table 6 in
Appendix to view the improvement at each step).
Figure 6 in Appendix compares the performance of
different models over varying sentence length (see
Figure 5 in Appendix to understand the extent to
which bootstrapping helps compared to the vanilla
inside model).

5.3 Effect of Distituent Selection
To understand the extent to which the type of the
disitituent selection impacts the performance, we
assess two settings on the PTB – random and left-
branching bias. In the random setting, we select
distituents from the slice (start:r), where r is a
random number generated between start+1 and
end-1, both inclusive. This produces 19.3 F1 for
the inside model. Whereas, in the left-branching
bias setting, we prepare the seed bootstrapping pro-
cess as explained in the Section 4.2.1 similar to
KTB (a left-branching treebank). This results in
11.2 F1 score for the inside model. Hence, the man-
ner in which we perform the initial classification

has a strong impact on the final tree structures.

5.4 Linguistic Error Analysis

Table 4 shows that our model achieves strong ac-
curacy while predicting all the phrase types except
for the Adjective Phrase (ADJP). We list some of
the most common mistakes our parse makes and
suggest likely explanations for each:

Bracketing inner NP of a definite Noun
Phrase. When a definite article is linked with
a singular noun, the inner spans need to be shelved,
accommodating the larger span with the definite
article. E.g.: the [ stock market ]

Grouping NP too early overlooking broader
context. Due to the way it is trained, the parser ag-
gressively groups rare words in the corpus. Build-
ing a better outside model can fix this type of error
to a considerable extent. E.g.: Shearson [ Lehman
Hutton ] Inc.

Omitting conjunction joining two phrases. It
shows poor signs of understanding co-ordination
cases in which conjunction is an adjacent sibling
of the nodes being shifted, or is the leftmost or
rightmost node being shifted. E.g.: Notable [ &
Quotable ]

Confusing contractions with Possessives. Due
to the presence of a lot of contraction phrases like
(they’re, it’s), the parser confuses it with that of
the Possessive NPs, causing unnecessary splitting.
Expanding the contractions can be a good way to
correct these systematic errors. E.g.: the company
[ ’s $ 488 million in 1988 ]

In the future, we would like to develop error
analysis protocols for both CTB and KTB using
human-in-the-loop process (leveraging feedback
from the respective language experts) and provide
an in-depth statistical analysis.
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6 Related Work

Recently, neural network-based approaches have
shown promising results on inducing parse trees
directly from words. Our weakly-supervised parser
is comparable in behavior to a fully unsupervised
parser as it does not rely on syntactic annotations.
We highlight some themes most relevant to our
method.

Learning from distant supervision. A related
work to ours (Shi et al., 2021) uses answer frag-
ments and webpage hyperlinks to mine syntactic
constituents for parsing. Many previous studies
depend on punctuation as a strong signal to detect
constituent boundaries (Spitkovsky et al., 2013;
Parikh et al., 2014).

Incorporating bootstrapping techniques. Co-
training (Yarowsky, 1995; Blum and Mitchell,
1998; Abney, 2007) and self-training (Steedman
et al., 2003; McClosky et al., 2006; Cohen and
Smith, 2010) are bootstrapping methods that at-
tempt to convert a fully unsupervised learning prob-
lem to a semi-supervised learning form. More re-
cently, Mohananey et al. (2020); Shi et al. (2020);
Steedman et al. (2003) have shown the benefits of
using self-training as a standard post-hoc process-
ing step for unsupervised parsing models.

Using inside-outside representations con-
structed with a latent tree chart parser. Draw-
ing inspiration from the inside-outside algorithm
(Baker, 1979), DIORA (Drozdov et al., 2019)
optimizes an autoencoder objective and computes
a vector representation for each node in a tree by
combining child representations recursively. To
recover from errors and make DIORA more robust
to local errors when computing the best parse in
the bottom-up chart parsing, an improved variant
of DIORA, S-DIORA (Drozdov et al., 2020)
achieves it.

Inducing tree structure by introducing an in-
ductive bias to RNNs. PRPN (Shen et al., 2018)
introduces a neural parsing network that has the
ability to make differentiable parsing decisions us-
ing structured attention mechanism to regulate skip
connections in an RNN. ON-LSTM (Shen et al.,
2019) enables hidden neurons to learn information
by a combination of gating mechanism as well as
activation function. In URNNG, Kim et al. (2019b)
employs parameterized function over latent trees to
handle intractable marginalization and inject strong
inductive biases for the unsupervised learning of

the recurrent neural network grammar (RNNG;
Dyer et al. 2016). Peng et al. (2019) introduces
PaLM that acts as an attention component on top
of RNN.

Enhancing PCFGs. Compound PCFG (Kim
et al., 2019a) which consists of a Variational Au-
toencoder (VAE) with a PCFG decoder, found the
original PCFG is fully capable of inducing trees if
it uses a neural parameterization. Jin et al. (2019)
show that the flow-based PCFG induction model
is capable of using morphological and semantic
information in context embeddings for grammar
induction. Zhu et al. (2020) proposes neural L-
PCFGs to simultaneously induce both constituents
and dependencies.

Concerning PLMs. Tree Transformer (Wang
et al., 2019) adds locality constraints to the Trans-
former encoder’s self-attention such that the at-
tention heads resemble a tree structure. Kim et al.
(2020) extract trees from pre-trained transformers.

Refining based on constituency tests. With the
help of transformations and RoBERTa model to
make grammaticality decisions, (Cao et al., 2020)
were able to achieve strong performance for unsu-
pervised parsing.

7 Conclusion

We propose a simple yet effective method of in-
ducing constituency trees which is the first of its
kind in achieving performance comparable to the
supervised binary tree RNNG model and setting a
new state-of-the-art result for unsupervised parsing
using weak supervision. Our model generalizes
to multiple languages of known treebanks. We
have done comprehensive linguistic error analysis
showing a step-by-step breakdown of the F1 per-
formance for the inside model, inside model with
self-training, and the inside-outside model with a
co-training-based approach. The effectiveness of
our multi-view learning strategy is evident in our
experiments. Future work could aim to augment
the parser’s capabilities to investigate cross-domain
generalization and efficient cross-lingual transfer.
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A Further Details

A.1 Training Details

We use the Adam optimizer and, on the boot-
strapped dataset, fine-tune roberta-base con-
sisting of default 125M trainable parameters with
a learning rate 3e − 5, batch size 32, maximum
epochs 10, maximum sequence length 256, and
gradient checkpointing for all our models. The
values were chosen as default based on sequence
classification tasks on the GLUE benchmark5 as
mentioned in HuggingFace Transformers.6 We use
a train/validation random split of 80/20 on the boot-
strapped dataset which contains 100,000 sentences
(50,152 for the distituent class and 49,848 for the
constituent class) to monitor the validation loss
and perform early stopping. The average sentence
length is about 22 tokens. Note that the develop-
ment set of PTB is kept untouched. We set the
patience value at 2. Model checkpointing, as well
as logging, is carried out after every 100 steps.

We use a p3.8xlarge AWS instance with a sin-
gle GPU having 64 GB memory to conduct all
our experiments. The estimated training time for
the inside model is about 0.2h, inside model with
self-training (3 iterations) is about 12h, and inside-
outside model with co-training (2 iterations) is
about 18h. While the inference time for all the
models is roughly 1h.

For the Chinese monolingual experiment, we
use bert-base-chinese which is trained
on cased Chinese Simplified and Traditional
text, and for Japanese monolingual experiment,
we use cl-tohoku/bert-base-japanese
which is trained on Japanese Wikipedia available
at https://huggingface.co/models.

Training Data We tried several strategies to aug-
ment the distituent class for our models, but with-
out concrete gains. Some of those include word
deletion (randomly selects tokens in the sentence
and replace them by a special token), span deletion
(Same as word deletion, but puts more focus on
deleting consecutive words), reordering (randomly
sample several pairs of span and switch them pair-
wise) and substitution (sample some words and
replace them with synonyms).

5https://gluebenchmark.com/
6https://huggingface.co/transformers/

v2.3.0/examples.html#glue
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Figure 5: F1 grouped by sentence length on the PTB
test set for different strategies.

Model #ST-steps
0 1 2 3

Inside 55.9 57.7 59.5 61.4

Table 5: Unlabeled sentence-level F1 on the full PTB
test set after applying the iterative Self-training algo-
rithm on the Inside model.

A.2 Effect of Bootstrapping

As shown in Figure 5, the final model with co-
training identifies constituents from shorter sen-
tences (WSJ-10) much more precisely compared
to the rest of the models. There is a lower perfor-
mance in F1 around sentence length of 50-55 zone,
but that improves for longer sentences.7

A.3 Stages of Self-training

Self-training boosts the performance of the inside
model by 5.5 F1 points as shown in Table 5. As can
be seen, the effect of the initial set of candidate con-
stituents and distituents on the final performance is
55.9 F1 which is not insignificant.8

A.4 Stages of Co-training

After co-training, the performance of the inside-
outside joint model increases by 1.7 F1 points as
shown in Table 6. Compared to using self-training,
one of the reasons the benefit is not significant
may be attributed to the fact that the inside vec-
tors (built upon Transformer architecture) inher-

7For evaluating PTB and CTB, we use Yoon
Kim’s script available at https://github.com/
harvardnlp/compound-pcfg. Whereas for evalu-
ating KTB, we use Jun Li’s script available at https:
//github.com/i-lijun/UnsupConstParseEval.

8For analysis purposes, we use the test set instead of the
standard validation set to avoid tuning on the test set based on
feedback received from the validation set to keep the nature
of our experiments purely unsupervised.
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Model #CT-steps
0 1 2

Inside and
Outside 61.4 62.9 63.1

Table 6: Unlabeled sentence-level F1 on the full PTB
test set after applying the iterative Co-training algo-
rithm on the joint Inside and Outside model.

ently possesses contextual knowledge due to being
trained on a large corpus.

A.5 Unsupervised Labeled Parsing

We explore unsupervised labeled constituency pars-
ing to identify meaningful constituent spans such
as Noun Phrases (NP) and Verb Phrases (VP) to
see if the parser can extract such labels. Labeled
parsing is usually evaluated on whether a span
has the correct label. We can effectively induce
span labels using the clustering of the learned
phrase vectors from the inside and outside strings.
When labeling a gold bracket, our method achieves
61.2 F1 on the full PTB test set and is compa-
rable with the current best model, DIORA. See
Figure 7 to view the visualization of induced and
linguistic alignment. RoBERTa does not strictly
output word-level vectors. Rather, the output are
subword vectors which we aggregate with mean-
pooling to achieve a word-level representation us-
ing SentenceTransformers.9 We use 600
codes while doing the clustering initially, such that
we are left with about 25 clusters after the most
common label assignment process, i.e., the number
of distinct phrase types. The phrase clusters are
assigned to {‘NP’: 7, ‘PP’: 5, ‘WHPP’: 3, ‘ADVP’: 3,

‘ADJP’: 2, ‘S’: 2, ‘WHADVP’: 1, ‘UCP’: 1, ’VP’: 1,

‘PRN’: 1, ‘QP’: 1, ‘SBAR’: 1, ‘WHNP’: 1, ‘CONJP’: 1}

according to the majority gold labels in that cluster.
These 14 assigned phrase types correspond with the
14 most frequent labels. Table 8 lists the induced
non-terminal grouped across different clusters and
also their correctness in identifying the gold labels.
The further course of action would be to have a
joint single model that is capable of achieving both
bracketing and labeling. Further, these induced
labels can function as features for the inside and
outside models to achieve even better predictive
ability. It also warrants a multi-lingual exploration
in this area.

9https://github.com/UKPLab/
sentence-transformers
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Figure 6: F1 of different models grouped by sentence
length on PTB test set.

A.6 Non-Terminal Label Alignment
Figure 7 shows the alignment between gold and
induced labels. We observe that some of the in-
duced non-terminals clearly align to linguistic non-
terminals. For instance, S-2 non-terminal has a
high resemblance with NP. Similarly, S-8 has a
high resemblance with ADVP.

DEBUG 0
MAX_ERROR 1
CUTOFF_LEN 10
LABELED 0
DELETE_LABEL_FOR_LENGTH -NONE-
EQ_LABEL ADVP PRT

Table 7: The hyperparameters used for evalb
.
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Figure 7: Alignment between induced and gold labels of the top-performing clusters. We cluster the constituent
inside vectors derived from the ground truth parse (without labels) using the K-Means algorithm and assign each
constituent with the most common label within its cluster. Accuracy is the probability of correctly predicting the
most common label.
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Figure 8: Displays the parse tree output for a sample sentence: (a) Using Inside (b) Using Inside and Outside (c)
Gold Tree. After the co-training procedure (b), the parser correctly identifies constituents “the new post" and “of
world-wide advanced materials operations" which were earlier identified as distituents by the inside model (a). It
makes two errors due to crossing brackets - namely “of vice president”, “the new post of vice president", and “the
new post of vice president of world-wide advanced materials operations".
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Figure 9: Example tree taken from the CTB training set. After the co-training procedure (b), the parser correctly
identifies constituents “十四点四一亿元", “新增贷款十四点四一亿元", and “去年新增贷款十四点四一亿元"
compared to the previous step using the inside model (a). It only makes 3 errors due to crossing brackets at “贷款
十四点四一亿元", “年增加八亿多元", and “上年增加八亿多元".
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Figure 10: Example tree taken from the KTB training set. After the co-training procedure (b), the parser correctly
identifies constituents “そんなに", “私を", “*hearer*そんなに私を *を*信じられないならば", “*pro*
よろしい", “この市", and “この市に", while incorrectly tagging “セリヌンティウスという石工が" as a
distituent compared to the previous step using the inside model (a).
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Constituent Predicted Status
Cluster ID Label

0

NP the space shuttle Atlantis NP 3

NP Once the chief beneficiaries NP 3

PP in the offing NP 7

PP in the thrift NP 7

S the dollar was weak NP 7

SBAR If the new Cheer sells well NP 7

1
ADJP higher than most anticipated NP 7

NP more than one billion Canadian dollars 851 mil... NP 3

QP at least 600 to 700 NP 7

12

NP A. Boyd Simpson NP 3

NP Justice John Harlan NP 3

NP Robert D. Cardillo NP 3

NP James D. Awad NP 3

NP Clark S. Spalsbury Jr NP 3

NP L.J. Hooker NP 3

30
NP one ’s testimony NP 3

NP the stock market ’s plunge Friday NP 3

PP in the market ’s decline NP 7

75

ADVP two years ago ADVP 3

ADVP two weeks ago ADVP 3

PP just like two years ago ADVP 7

PP between now and two years ago ADVP 7

310

NP action on capital gains VP 7

NP the three airlines being dropped VP 7

NP news footage of the devastated South Bronx VP 7

NP the prospect of a fight with GEC for Ferranti VP 7

PP before declining again trapping more investors VP 7

S This small Dallas suburb ’s got trouble VP 7

S the earnings picture confuses VP 7

SBAR it acquired 5 % of the shares in Jaguar PLC VP 7

SBAR the market is going through another October ’87 VP 7

VP may be dubbed Eurodynamics VP 3

VP resuscitate the protagonist of his 1972 work A... VP 3

VP said after the 1987 crash VP 3

VP has a base of 100 set in 1983 VP 3

514

NP its two classes of preferred stock PP 7

NP Oil company refineries PP 7

PP to depository institutions PP 3

PP of Remic mortgage securities PP 3

PP of the preferred-share issue PP 3

PP in the patent-infringement proceedings PP 3

PP of mainframe computers PP 3

PP from mature conventional fields in western Canada PP 3

PP of its North American vehicle capacity PP 3

VP have big commodity-chemical operations PP 7

533

NP Bateman Eichler Hill Richards NP 3

NP KLM Royal Dutch Airlines NP 3

NP owners Anna and Morris Snezak NP 3

NP Mehta & Isaly NP 3

PP at Hambrecht & Quist in San Francisco NP 7

Table 8: Investigation of phrase clusters that shows several syntactic properties. Clearly, there are patterns sur-
rounding identification of people/organization names, time-related signals, quantities etc.
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