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Abstract

Machine translation (MT) metrics often fail
to achieve very high correlations with human
assessments. In terms of MT system evalua-
tion, most metrics pay equal attentions to ev-
ery sample in an evaluation set, while in hu-
man evaluation, difficult sentences often make
candidate systems distinguishable via notable
fluctuations in human scores, especially when
systems are competitive. We find that samples
with high entropy values, which though usually
count for less than 5%, tend to play a key role
in MT evaluation: when the evaluation set is
shrunk to only the high-entropy portion, cor-
relations with human assessments are actually
improved. Thus, in this paper, we propose a
fast and unsupervised approach to enhance MT
metrics using entropy, expanding the dimension
of evaluation by introducing sentence-level dif-
ficulty. A translation hypothesis with a signifi-
cantly high entropy value is considered difficult
and receives a large weight in aggregation of
system-level scores. Experimental results on
five sub-tracks in the WMT19 Metrics shared
tasks show that our proposed method signifi-
cantly enhanced the performance of commonly-
used MT metrics in terms of system-level cor-
relations with human assessments, even out-
performing existing SOTA metrics. In partic-
ular, all enhanced metrics exhibit overall sta-
bility in correlations with human assessments
in circumstances where only competitive MT
systems are included, while the corresponding
standard metrics fail to correlate with human
assessments1.

1 Introduction

Automatic evaluation plays an indispensable role in
the evaluation of machine translation (MT) systems,
working as a proxy of human assessment as well
as a promising approach to give instant feedback
during the development of MT systems. However,

∗∗ Corresponding author
1Code at https://github.com/lunyiliu/EE-Metrics

it has been a challenge for automatic evaluations
to correlate with human judgement. For instance,
major discrepancy is detected between human as-
sessments and automatic evaluations in terms of
system ranking in WMT19 English-German eval-
uation tasks (Barrault et al., 2019). Experiments
conducted by Mathur et al. (2020) and Thompson
and Post (2020) further indicate that when inferior
systems are excluded, current automatic metrics
expect major falling on correlations with human
referees, sometimes even down to the degree of
negative correlations.

In order to improve the evaluation of MT sys-
tems, many meticulously designed metrics are pro-
posed. However, popular MT metrics focus on a
segment-level comparison between references and
hypotheses, and output system-level scores by a
simple arithmetic average over segment scores, ig-
noring the differences among samples in an evalua-
tion set (Zhang et al., 2019; Sellam et al., 2020; Rei
et al., 2020; Lo, 2020). In contrast, the core idea of
assigning different weights to samples in a dataset
is proven effective in the field of curriculum learn-
ing (Liu et al., 2020; Zhan et al., 2021b). For MT
evaluation, it is not likely that human raters treat
every source-reference pair equally. Those simple
samples can be easily translated, leading to similar
human scores given to different hypotheses, while
the more challenging part in an evaluation set often
distinguishes top candidates from inferior systems.
Inspired by recent work of Zhan et al. (2021a), who
determine the difficulty of sub-units in translation
hypotheses by reviewing performances of corre-
sponding sub-units among K candidate systems,
we further introduce sentence-level difficulty into
MT evaluation, which functions as a weight in the
aggregation of final system scores. In determina-
tion of proposed sentence-level difficulty, instead
of using an embedding-based approach similar to
Zhan et al.’s, we adopt a fast and unsupervised
entropy-based measurement.
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In information theory, entropy is a measure of
the uncertainty in a random variable. The entropy
H of a discrete random variable X with possible
values x1, x2, ..., xn is defined by Shannon (1948)
as

H(X) = −
n∑

i=1

P (xi)log2P (xi), (1)

where P (xi) is the probability for xi to appear in
the stream of characters. The entropy H(X) will
be higher if the values x1, x2, ..., xn are more de-
centralized. So the entropy can reflect the degree
of disorder of variable X’s distribution. Shannon’s
standard entropy is interpreted differently when be-
ing applied to MT evaluation (Zhao et al., 2019; Yu
et al., 2015). Zhao et al. (2019) define xi in Eq.(1)
as the ith candidate among all possible translations
of a source token X , while Yu et al. (2015) di-
rectly model one hypothesis produced by a system
as random variable X and consider xi as the ith
sub-segment in the hypothesis matched with corre-
sponding reference sentence. We follow the idea
of chunk entropy in Yu et al. (2015). Compared
with token difficulty in Zhan et al. (2021a), which
requires a loop of K systems’ hypotheses for each
token, chunk entropy can determine the difficulty
of hypotheses in constant time, reflecting both ad-
equacy and fluency of a hypothesis. This will be
further discussed in section 3.

In this paper, we propose entropy enhanced (EE)
metric, a criterion that can enhance the perfor-
mances of automatic MT metrics via a sentence-
level translation difficulty weight determined by
entropy. The difficulty score of each hypothesis-
reference pair is acquired based on its chunk en-
tropy and then serves as a weight in aggregation
of the system-level score. Experiments carried on
WMT19 evaluation tasks show that the EE ver-
sion of BERTScore (Zhang et al., 2019) corre-
lates better with system-level human ratings than
DA-BERTScore (Zhan et al., 2021a) and outper-
forms SOTA metrics involved in WMT metrics
shared tasks. Also, owing to the sentence-level
difficulty dimension and the underlying essence of
entropy, the proposed method should be compat-
ible with a wide range of MT evaluation metrics.
We test the effectiveness on several representative
metrics in addition to BERTScore: BLEU (Pap-
ineni et al., 2002), CHRF (Popović, 2015) and ME-
TEOR (Denkowski and Lavie, 2014). Extensive
experiments on five sub-tracks in WMT19 indi-
cate an overall improvement on correlations with

human evaluations when standard metrics are re-
placed by corresponding EE metrics. Moreover,
in circumstances where only competitive systems
are included, EE metrics alleviate the significant
crash of standard metrics on correlations, and some-
times even achieve perfect agreements with human
rankings.

It is surprising to see a straightforward imple-
mentation under the idea of sentence-level diffi-
culty weights based on entropy, involving no deep-
learning techniques, yet enhanced the performance
of a BERT-based MT metric. The aim of this paper
is to introduce the concepts and show the effective
roles entropy and sentence-level difficulty play in
enhancing MT evaluation quality, but not to ex-
plore optimal techniques integrating them into MT
evaluation.

2 Related Work

Existing reference-based MT metrics can be
roughly categorized into three types: matching-
based metrics (Doddington, 2002; Papineni et al.,
2002; Popović, 2015; Snover et al., 2006; Leusch
et al., 2006; Denkowski and Lavie, 2014),
embedding-based metrics (Zhang et al., 2019;
Chow et al., 2019; Lo, 2019) and end-to-end
metrics (Sellam et al., 2020; Rei et al., 2020).
Matching-based metrics estimate quality of transla-
tion by hand-crafted features, such as n-grams, edit
distance and alignments. BLEU (Papineni et al.,
2002) is a classical criterion based on word-level
n-gram matching between references and hypoth-
esis and is widely employed as baselines in MT
system evaluation, while CHRF (Popović, 2015)
computes an F-score based on character-level n-
grams. METEOR (Denkowski and Lavie, 2014)
focuses on semantic matched chunks acquired by
alignment, where lengths of chunks are dynami-
cally determined and the limitation of maximum
matching length of n-gram based metrics is par-
tially relieved. In contrast, BERTScore and its
variants (Zhang et al., 2019; Zhan et al., 2021a),
owing to powerful contextual embedding acquired
from modern language models, catch deep-level
semantic information inside the translation pairs
and achieve high rankings across MT evaluation
benchmarks in terms of correlations with human
assessments.
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3 Our Proposed Method

3.1 Motivation

In the evaluation of MT systems, most automatic
metrics rate a system by the average scores on
sentences in the evaluation set, treating each seg-
ment equally, while assigning weights to samples
has been successful in the practice of curriculum
learning (Liu et al., 2020). Like examinations in
real world, where questions are assigned different
weights in the final score based on variant difficul-
ties, evaluation metric of MT should also encourage
systems that perform better on relatively difficult
samples. Also, in competitive circumstance where
candidates can handle most of the easy translations,
difficult samples can better represent the abilities
of candidates. In contrast to (Zhan et al., 2021a),
where they compute the difficulty of each sub-unit
inside a hypothesis, we directly assign different
weights to high-entropy and low-entropy hypothe-
ses so that the more difficult translations weight
higher in the final system score.

When entropy is higher, the translation is faced
with more uncertainty, leading to potential blem-
ish in adequacy and fluency. Motivated by this
mechanism, we use entropy as a measurement of
sentence-level difficulty. Empirically, we found
that there is a high negative correlation between
entropy and BLEU score of a translation, as shown
in Fig. 1. The linear fit shows that BLEU score
exhibits a linear decline when entropy increases,
with |r| = 0.986. When a certain source sentence
is difficult to translate, the quality of generated
hypothesis may be affected, causing a relatively
low average BLEU score. So the difficult sam-
ples in an MT evaluation set tend to appear in the
high-entropy area, and should be assigned a higher
weight in the assessment.

3.2 Entropy Enhanced MT Metric

In this section, we illustrate the working process
of the proposed EE method. As shown in Fig. 2,
first, entropy of each hypothesis (H) is calculated
and guides the computation of the difficulty weight
(W ). Then, in aggregation of the final score, W is
assigned to the corresponding hypothesis, weight-
ing its sentence-level score.

Chunk Entropy Entropy measures uncertainty
or disorderness of the distribution of a variable. In
machine translation, a hypothesis generated from
a source can be modeled as a random variable

Figure 1: Average sentence-level BLEU score as a
function of entropy. Each data point (e, b) represents
mean BLEU across sentences with entropy in a range
of [e− 0.05, e+ 0.05) among outputs of all 22 systems
in WMT19 English→German evaluation set.

Xh = {w1, w2, ..., wN} with wi (i ∈ [1...N ]) de-
noting each token in the hypothesis. Given a ref-
erence R = {r1, r2, ..., rM}, Xh can be rewritten
as Xh = x1 · u1 · x2 · u2 · ... · um · xn, where
xi ∈ X = {wsi , wsi+1, ..., wei | i ∈ [1...n], 1 ≤
si ≤ ei ≤ N, ∀ l ∈ [si, ei], wl ∈ R}, and
ui ∈ U = {wbi , wbi+1, ..., woi | i ∈ [1...m], 1 ≤
bi ≤ oi ≤ N, ∀ l ∈ [bi, oi], wl /∈ R}. In other
words, xi denotes the ith continuously matched
chunk with reference, while U denotes unmatched
parts between aligned chunks. Since X and U are
complementary, the distribution of Xh can be fully
described by

P (xi) =
ei − si + 1∑n

j=1(ej − sj + 1)
, (2)

where xi ∈ X and si, ei represent the start index
and end index of the ith matched chunk, respec-
tively. By substituting Eq. (2) into Eq. (1), we ob-
tain the formula of chunk entropy (Yu et al., 2015)

H(Xh) = −
∑n

i=1
ei−si+1∑n

j=1(ej−sj+1)
log( ei−si+1∑n

j=1(ej−sj+1)
) (3)

From Eq. (3), when a hypothesis is perfectly
matched with corresponding reference, P (xi) from
Eq. (2) is always 1 since there is only one chunk
x1, leading to a zero chunk entropy. Another cor-
ner case is that, when there is no token in common
between the hypothesis and the reference, there is
no matched chunk. In this case, we define P (xi)
as 0 and the entropy approaches positive infinity,
suggesting no certainty at all. In practice, a ma-
chine generated hypothesis often fails to preserve
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Figure 2: Workflow of proposed entropy enhancement method. Metricstandard denotes the system-level score
given by a standard MT metric with f(·) as the corresponding sentence-level score function, while EE-Metric
denotes system score aggregated by the corresponding EE metric.

full meaning of the source sentence, or suffers
disfluency in the target language (Banchs et al.,
2015). Table 1 shows two cases of ascended en-
tropy caused by deficiencies in adequacy or flu-
ency. The mistranslated word sheep in hypothesis 1
sharply increases entropy, while the incorrect word
order in hypothesis 2 further deviates the entropy.

Sentence Deficiency Entropy
Reference A tiger stays in the woods - 0
Hypothesis 1 A sheep stays in the woods adequacy 0.217
Hypothesis 2 A stays sheep in the woods adequacy+fluency 0.292

Table 1: Toy examples of how defect in adequacy and
fluency may lead to increment in entropy of a translation.
The matched words in hypotheses are in bold.

Difficulty Weight Calculation With the increas-
ing of entropy, a segment might be faced with
more fluctuations in human scores and tends to
be representative of quality of systems. Thus, for
a certain system, all its generated hypotheses can
be divided into the difficult part and easy part by
a threshold value of entropy. Those difficult hy-
potheses are most likely to reflect the ability of a
system and distinguish performances among sys-
tems, and thus should be weighted higher than
those in the easy part. Based on this idea, given
χ
S
= {XS

h1
, XS

h2
, ..., XS

hL
} as the collection of hy-

potheses produced by system S in an evaluation set
containing L segments, the difficulty weight func-
tion can be defined as a two-piece step function:

W (H) =


w

Ne
, H < h

1− w

Nd
, H ≥ h,

(4)

where Ne = |χe| and Nd = |χd| are two nor-
malization factors representing the number of
easy and difficult hypotheses, respectively, with
χe = {Xhk

| H(Xhk
) < h,∀Xhk

∈ χ
S
} and

χd = {Xhk
| H(Xhk

) ≥ h,∀Xhk
∈ χ

S
}. And w

is a balance coefficient ranging from 0 to 1, and h
is the difficulty threshold.

In Eq. (4), h can be defined as the minimal en-
tropy of a generally difficult translation among P
systems S1, S2, ..., SP . Let Xsk be the source sen-
tence of the kth sample in the evaluation set and
X̂sk = {XS1

hk
, XS2

hk
, ..., XSP

hk
} be the collection of

translation hypotheses all P systems produced. For
system Sp, if XSp

hk
∈ X̂sk has significantly high

entropy among other hypotheses in X̂sk , it is rea-
sonable to doubt the quality of hypothesis XSp

hk
and

conclude that the source sentence Xsk might be a
difficult sample for system Sp. In contrast, when
HX̂sk

(the average entropy of hypotheses in X̂sk )
is significantly higher than that of hypotheses from
other source sentences, source Xsk becomes a gen-
erally difficult sample. For such a group of source
sentences, the minimum value of average entropy
among them is actually a threshold to classify easy
hypotheses and difficult hypotheses, namely,

h = min{HX̂si
| P (HX̂si

< HX̂sj
) < α, ∀i, j ∈ [1, L], j ̸= i},

(5)
where α is a small constant, i.e., 0.05 or 0.01.
So the collection of general difficult source sen-
tences can be defined as Ds = {Xsk | ∀k ∈
[1, L], HX̂sk

≥ h}.
From Eq. (5), we can see that the number of easy

samples, i.e., when H < h, should be larger than
the number of difficult ones. So in Eq. (4), we have
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Metric
En→ De De→ En En→ Zh Zh→ En En→ Gu

r τ ρ r τ ρ r τ ρ r τ ρ r τ ρ

BLEU 0.959 0.755 0.904 0.890 0.655 0.825 0.713 0.606 0.755 0.888 0.695 0.857 0.736 0.709 0.864
CHRF 0.983 0.772 0.919 0.917 0.639 0.822 0.822 0.545 0.650 0.952 0.714 0.868 0.851 0.709 0.891
METEOR 0.986 0.764 0.917 0.837 0.571 0.763 0.513 0.455 0.594 0.946 0.752 0.882 0.820 0.673 0.836
BERTScore 0.990 0.807 0.931 0.954 0.756 0.890 0.909 0.667 0.776 0.986 0.829 0.932 0.902 0.818 0.945
ESIM 0.991 - - 0.941 - - 0.931 - - 0.988 - - - - -
YiSi-1 0.991 - - 0.949 - - 0.951 - - 0.979 - - 0.909 - -
DA-BERTScore 0.991 0.798 0.930 0.951 0.807 0.932 - - - - - - - - -
EE-BLEU 0.965 0.772 0.913 0.882 0.740 0.872 0.727 0.697 0.797 0.907 0.733 0.875 0.787 0.709 0.873
EE-CHRF 0.983 0.798 0.933 0.894 0.639 0.770 0.831 0.545 0.706 0.965 0.752 0.900 0.886 0.745 0.909
EE-METEOR 0.987 0.816 0.940 0.792 0.706 0.854 0.611 0.545 0.636 0.951 0.810 0.936 0.884 0.636 0.836
EE-BERTScore 0.994 0.859 0.952 0.956 0.840 0.947 0.952 0.818 0.888 0.989 0.905 0.975 0.939 0.818 0.945

Table 2: Correlations with system-level human assessments on WMT19 metrics shared task. Best correlations in
each column are highlighted in bold. The dashed line separates proposed EE metrics from others. Correlations
of DA-BERTScore are directly from Zhan et al. (2021a), and ESIM, YiSi-1 from Ma et al. (2019). Numbers of
participated systems for each language pairs are 22, 16, 12, 15 and 11, respectively.

Ne ≫ Nd, which means simpler samples receive
an extremely lower weight than difficult samples.
Ideally, the value of W (H) should only be deter-
mined by the average entropy of the difficult or
simple sample group. To alleviate the distortion
caused by unbalanced size between the difficult
group and easy group, w, as shown in Eq. (4), is
introduced as a balancing coefficient, and can be
estimated by the distribution of average entropy
within a given dataset. See more analysis on w in
appendix B.

System Score Aggregation The designations
of most automatic MT metrics focus on the seg-
ment level. When outputting system-level ratings,
a conventional approach is to aggregate segment-
level scores via simple arithmetic averaging. In
contrast, the proposed EE metric, when computing
system-level scores, assigns a normalized weight,
computed by Eq. (4), to the score of each segment.
Let f(·) be the unit score function, and the final
score is given by

EE-Metric =
∑L

i=1(W (H(Xhi
)) · f(Xhi

, Ri)), (6)

where H(Xhi
), the chunk entropy of the ith transla-

tion, is determined by Eq. (3). For standard metrics,
the weight W (H(Xhi

)) is constantly 1/L.
In cases where a metric outputs a system-level

score based on a whole set of sentences with no
segment-level scores involved, i.e., system-level
score is directly given by f(χ

S
), an alternative

form of EE metric can be obtained via an equivalent
transform of Eq. (6):

EE-Metric = wf(χe) + (1− w)f(χd) (7)

4 Experiments

Data We follow the experiment settings in Zhan
et al. (2021a) for the convenience of comparison
and evaluate the performance of EE metrics on
WMT19 English↔German (En↔De) evaluation
tasks, which is reported to be challenging due to
major discrepancy between human assessments
and automatic metrics in MT system ranking (Fre-
itag et al., 2020; Barrault et al., 2019). Extended
experiments on WMT19 English↔Chinese and
English→Gujarati are also conducted to further
validate the effectiveness of the proposed approach
on both high-resource (En↔Zh) and low-resource
(En→Gu) languages, without loss of generality.
For every translation task, human ratings of partic-
ipated systems, in the form of Direct Assessment
(DA), are given and the goal of the experiment is to
correlate with system-level human DA. Human as-
sessors are asked to rate a given translation by how
adequately it expresses the meaning of the corre-
sponding reference translation or source language
input on a rating scale of 0-100 (Barrault et al.,
2019). For each translation task, there are 21523
assessments and 1592 assessments per participated
system in average, given by a total of 1706 crowd-
sourced workers. For the sake of quality control,
about 20% of the efforts are wasted. Overall, the re-
liability of human annotators is still relatively high,
with the lowest language pair still reaching 88% of
workers showing no significant difference in scores
for repeat assessment of the same translation.

Comparing Metrics To examine the universal
feasibility of the proposed method, we employ four
most commonly used MT evaluation metrics as
backbones to implement corresponding EE met-
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Metric / EE-Metric
En→ De (Top 4) De→ En (Top 4)

r τ ρ r τ ρ

BLEU / EE-BLEU -0.946 / -0.980 -0.667 / -0.667 -0.800 / -0.800 -0.787 / -0.341 -0.548 / -0.183 -0.632 / -0.316
CHRF / EE-CHRF -0.677 / 0.013 -0.667 / -0.333 -0.800 / -0.400 -0.659 / -0.240 -0.548 / -0.183 -0.632 / -0.316
METEOR / EE-METEOR -0.781 / 0.460 -0.667 / 0.667 -0.800 / 0.800 -0.648 / 0.035 -0.548 / 0.183 -0.632 / 0.316
BERTScore / EE-BERTScore -0.497 / 0.682 0.000 / 0.667 -0.200 / 0.800 0.567 / 0.479 0.183 / 0.183 0.316 / 0.316

Zh→ En (Top 4) Average (× 100%)

r τ ρ ∆r ∆τ ∆ρ

-0.675 / 0.416 -0.333 / 0.333 -0.600 / 0.400 +50.10% +34.37% +43.87%
-0.353 / 0.657 0.000 / 0.667 0.000 / 0.800 +70.63% +45.53% +50.53%
-0.062 / 0.724 0.333 / 0.667 0.400 / 0.800 +90.33% +79.97% +98.27%
0.095 / 0.895 0.333 / 1.000 0.400 / 1.000 +63.03% +44.47% +53.33%

Table 3: WMT19 system-level human correlations, for top 4 systems only. EE metrics alleviated or eliminated
the phenomenon of negative correlations reported in recent literature and brought a significant improvement on
correlations in Average.

rics: BLEU, CHRF, METEOR and BERTScore,
as discussed in section 2. Enhanced versions
of these metrics are denoted by EE-BLEU, EE-
CHRF, EE-METEOR and EE-BERTScore, respec-
tively, and are compared to their standard counter-
parts. We further compared proposed EE metrics
with ESIM (Mathur et al., 2019) and YiSi-1 (Lo,
2020), since these two metrics consistently achieve
remarkable performances across benchmarks of
WMT19, WMT20 and WMT21. In addition, DA-
BERTScore (Zhan et al., 2021a), which outper-
forms existing metrics in MT system evaluation
owing to its unique token-level difficulty, is also
involved in the comparison experiment.

Implementation Details In our implementation
of EE metric, we use fast_align2 (Dyer et al., 2013)
to obtain aligned chunks between reference and
hypothesis,.i.e., ei, si in Eq. (3). For other met-
rics, we utilize sacreBLEU3 (Post, 2018) toolkit to
acquire BLEU and CHRF, and NLTK4 toolkit to
compute METEOR. For BERTScore5, we use the
default models except that the model for English is
replaced with deberta-xlarge-mnli (He et al., 2021),
as recommended by the authors of BERTScore.

Main Results Following the criterion of recent
research (Zhan et al., 2021a; Freitag et al., 2020)
as well as WMT official organization, three coef-
ficients: Pearson’s correlation r, Kendall’s τ and
Spearman’s ρ, are used to validate system-level
correlations with human DA as well as the agree-
ment with human rankings. Values of the three

2https://github.com/clab/fast_align
3https://github.com/mjpost/sacrebleu
4https://www.nltk.org/api/nltk.html
5https://github.com/Tiiiger/bert_score

coefficients range from -1 to 1, with a bigger pos-
itive value indicating a stronger positive correla-
tion with human assessments, and a smaller neg-
ative value indicating a stronger negative correla-
tion. Table 2 displays the main results. It can be
seen that EE metrics achieve competitive corre-
lations in the comparison. Among the enhanced
metrics, EE-BERTScore further improves standard
BERTScore and consistently outperforms other
metrics, including DA-BERTScore and best met-
rics in WMT19, across different correlation mea-
surements and translation directions. The case anal-
ysis in appendix A might help to reveal the practical
meaning of the higher correlation numbers brought
by EE metrics, by displaying how EE-BERTScore
corrects the relative ranking of two systems given
by BERTScore in En→ De. It should be noted that,
even the improvement on correlations is little some-
times (e.g., r from 0.990 to 0.994 in En→ De for
BERTScore), the number of corrected relative rank-
ings between system pairs may be notable (seven
more corrected cases after EE-BERTScore being
applied in En→ De, similar to the one in appendix
A).

The result in Table 2 shows that the four EE met-
rics bring average improvements of 1.65%, 4.96%
and 3.18% on r, τ and ρ, respectively, compared
with corresponding standard metrics across the
five datasets. Despite divergent underlying mech-
anisms, all four backbone metrics experienced en-
hancement on correlations averaged across five
translation tracks, which proves the universal feasi-
bility of the proposed EE approach. The sentence-
level difficulty introduced in the EE metric works
as an extra dimension in system-level score aggre-
gation, which, by assigning larger weights to high
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entropy hypotheses, encourages systems that han-
dle difficult translations well. This strategy, as well
as the computation of entropy, is independent of
particular MT metrics. Thus, the proposed method
is compatible with a wide range of MT metrics.

Effect of Top-K Systems As reported in Ma
et al. (2019), Thompson and Post (2020) and
Mathur et al. (2020), in the circumstances where
only top systems are preserved, most existing met-
rics suffer a drastic drop on correlations with hu-
man evaluations. This phenomenon is extremely
notable in WMT19 En→De, De→En and Zh→En
for top 4 systems, where metrics exhibit zero or
even strong negative correlations with human as-
sessments. Current research attributes this to unsta-
ble noises or outlier systems, while we found the
proposed EE method helpful to alleviate the degra-
dation of correlations owing to the extra sentence-
level difficulty. In extreme competitive situations,
all systems involved provide nearly perfect trans-
lations for most of the easy samples, while the
high-entropy hypotheses, due to the fluctuation in
translation qualities, tend to be key for humans to
rank those top systems. In such a scenario, sim-
ple samples might even be harmful noises to the
automatic evaluation, causing the failure of distin-
guishing top systems using existing metrics. In
contrast, EE metrics focus on high-entropy parts
in the evaluation set. Thus, as shown in Table
3, EE metrics avoid the negative correlations phe-
nomenon (e.g., in En→De, r from -0.497 to 0.682
for BERTScore, ρ from -0.800 to 0.800 for ME-
TEOR) or even achieve perfect correlations with
human rankings (e.g., in Zh→En, τ from 0.333
to 1.000, ρ from 0.400 to 1.000 for BERTScore).
Averagely speaking, for top 4 systems, substan-
tial improvements can be expected after proposed
enhancement being applied.

Fig. 3 shows the process of degradation on cor-
relations when low-performance systems are grad-
ually removed. It can be seen that existing metrics
fail to correlate with human judgments when K is
smaller than 10, and start to exhibit negative cor-
relation when K is smaller than or equal to 6. In
contrast, EE-BERTScore only suffers minor drop
on correlation and keeps effective with the decrease
of K. The effectiveness of EE metrics further indi-
cates the key role high-entropy samples play in an
evaluation set.

Figure 3: Effect on Pearson’s correlation when only
top-K systems are included in the En→De evaluation.
EE-BERTScore keeps a high correlation with human
judgments with the elimination of inferior systems.

5 Discussion

5.1 Estimation of Difficulty Threshold h

(a) En→De (b) De→En

(c) En→Zh (d) Zh→En

Figure 4: Distributions of mean entropy averaged across
systems, i.e., HX̂si

, extracted from (a) En→De, (b)
De→En, (c) En→Zh and (d) Zh→En, fitted according
to N (µ, σ). The areas in shadow are two standard devi-
ations away from mean values.

The parameter h functions as the threshold en-
tropy value for a hypothesis to be classified as dif-
ficult in an evaluation set. From Eq. (5), h is
estimated by examining those samples whose aver-
age translation entropy is significantly higher than
others. HX̂si

, the average entropy of sample Xsi ,
is calculated by

HX̂si
= 1

P (H(XS1
hi
) +H(XS2

hi
) + ...+H(XSP

hi
)), (8)
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where ∀p ∈ [1, P ], X
Sp

hi
∈ X̂si . Since X

Sp

hi
, the

translation hypothesis of the ith source sentence
produced by system p, is modeled as a random
variable in Eq. (2), by central limit theorem, the
distribution of HX̂si

can be estimated according
to N (µ, σ), assuming that P, the number of candi-
date systems, is large enough and XS1

hi
...XSP

hi
in

the translation of a certain language pair is i.i.d.
Let α in Eq. (5) be 0.05. Then according to three-
sigma rule of normal distribution, the two standard
deviations serve as a borderline separating easy
and difficult translations, with the difficult sam-
ples (around 5%) possessing significantly higher
entropy. So h is estimated by

h = µ+ 2σ (9)

Empirically obtained h is in accordance with
Eq. (9), as shown in Fig. 4. We search for op-
timal h within a range from 0 to 1 for every lan-
guage pair. For the high-resource language pairs
(En↔De, En↔Zh), the group of candidate systems
is relatively large, and thus µ+2σ provides a good
estimation of h, with an average error of only 0.018
on the four evaluation sets.

5.2 Ablation Study
Table 4 shows the result of ablation experiments
conducted in order to acquire a better understand-
ing of mechanisms of the proposed EE metric.

Approach h w r τ ρ

BERTScore - - 0.990 0.807 0.931
EE-BERTScore 0.53 0.35 0.994 0.859 0.952

Different Thresholds
h = µ + 2.5σ 0.83 0.35 0.929 0.477 0.630
h = µ + 1.5σ 0.23 0.35 0.991 0.816 0.949

Group Remove
Only easy 0.53 1.00 0.988 0.781 0.920
Only difficult 0.53 0.00 0.990 0.833 0.939

Module Ablation
w/o entropy - - 0.984 0.721 0.870
w/o difficulty - - 0.437 0.252 0.366

Table 4: Ablation experiment of EE-BERTScore con-
ducted on WMT19 En→De evaluation. Values in
bold indicate better correlations compared to standard
BERTScore.

Different Thresholds A higher threshold means
fewer difficult hypotheses. When h is 2.5-σ away
from mean, only most difficult samples (around
1.24%) are weighted. Since extreme high entropy

is often caused by noises in references or miscalcu-
lated alignments in hypotheses, these samples can-
not reflect performance of systems and thus cause a
drop in agreement with human rankings. Reducing
the threshold, on the other hand, amplifies contribu-
tions of some less representative segments without
damaging the core difficult group and results in a
minor improvement on correlations.

Group Remove By setting w to 1 or 0, diffi-
cult or easy hypotheses are zero weighted, and
thus we can examine the standalone role of each
group. As shown in Table 4, completely remov-
ing the low-entropy hypotheses still leads to an
improvement on correlations as compared to
the standard metrics. While this result further
supports our intuition in this paper that the por-
tion of high-entropy samples might be enough to
determine the performance of MT systems, it is
interesting to explore the possibility of distillation
of an MT evaluation set to enhance its ability to
distinguish candidates in the future.

Module Ablation Instead of calculating the
entropy, we randomly divide easy and difficult
groups while maintaining the original group sizes
(repeated 1000 times). For the removal of diffi-
culty, we directly compute the correlations between
human ratings and average entropy of a system.
The result indicates that the effectiveness of the
proposed EE method relies on both entropy and
sentence-level difficulty.

5.3 Stability Across MT Systems
Compared with standard reference-based metrics,
which compute the score of an MT system utilizing
only its hypotheses and the references, EE metrics
introduce additional information of other partici-
pated systems in the computation of system-level
scores, i.e., the score assigned to a certain MT
system may vary with its competitors. To better
understand the impact caused by the difference and
possible limitations of EE metrics, we investigated
the stability of EE metrics across MT systems by
applying EE metrics on a series of random subsets
of systems. Specifically, we randomly choose n
systems (n=4,6,8,10) in En→ De (22 systems) and
test the correlations with human scores for all four
metrics (standard and EE versions). For each n,
we repeat 100 times, i.e., 100 random combina-
tions of n systems. The results in Table 5 show
that EE Metrics steadily outperform standard met-
rics, with average improvements of 6.90%, 8.25%,



304

Metric
Random 4 Random 6 Random 8 Random 10

r τ ρ r τ ρ r τ ρ r τ ρ

BLEU 0.883 0.794 0.855 0.921 0.763 0.861 0.912 0.744 0.865 0.928 0.758 0.880
CHRF 0.902 0.744 0.819 0.945 0.780 0.879 0.944 0.789 0.895 0.959 0.784 0.898
METEOR 0.904 0.777 0.848 0.929 0.760 0.865 0.945 0.768 0.884 0.944 0.765 0.893
BERTScore 0.929 0.839 0.886 0.943 0.815 0.901 0.957 0.830 0.916 0.957 0.814 0.914
EE-BLEU 0.878 0.752 0.813 0.935 0.769 0.868 0.942 0.761 0.873 0.952 0.782 0.897
EE-CHRF 0.934 0.820 0.877 0.959 0.780 0.894 0.958 0.791 0.894 0.961 0.793 0.906
EE-METEOR 0.945 0.814 0.873 0.950 0.809 0.896 0.957 0.803 0.906 0.957 0.805 0.912
EE-BERTScore 0.945 0.886 0.921 0.969 0.892 0.941 0.966 0.855 0.926 0.977 0.870 0.943

Table 5: Performances of MT metrics when only Random n systems are involved from 22 systems in En→ De
translation task. For each n, the correlations are averaged across 100 random combinations of systems.

4.59% and 6.57% on correlations, for n=4, 6, 8, 10,
respectively.

6 Conclusion and Future Work

In this paper, we find that the high-entropy hy-
potheses, though holding only a minor portion in
an evaluation set, play a significant role in terms
of correlations with human judgments in MT eval-
uation. By rebalancing the weights between low-
entropy and high-entropy hypotheses, an entropy
enhancing approach for MT metrics is proposed.
Experimental results on five sub-tracks in WMT19
metric tasks show that our proposed approach suc-
cessfully enhances the performance of popular MT
metrics and achieves remarkable correlations with
human assessments, especially in the evaluation of
competitive systems. Our analysis introduces the
concept of sentence-level difficulty into MT evalua-
tion and reveals the importance of difficult samples
in system-level evaluations.

There are several directions for future explo-
ration. First, entropy-based difficulty can work as
a measurement to the quality of an MT evaluation
set. If an evaluation set contains more high-entropy
samples, its ability to rank systems is better. Sec-
ond, using entropy, we can dig the hard samples out
of an evaluation set and, by filtering easy samples,
we can make a distillation of evaluation set. Third,
there is still room for optimization in calculation
of entropy and difficulty weights.
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A Case Study

The two cases in Table 6 illustrate how
EE-BERTScore enhances the performance of
BERTScore via the discussed strategy. The system-
level score of MSRA’s translation system, given by
BERTScore, is higher than that of Facebook’s, lead-
ing to a misalignment with human rankings (Face-
book ranks the 1st in En→De while MSRA ranks
the 4th). In contrast, EE-BERTScore successfully
recognizes Facebook as the superior system. From
Table 6, Facebook outperforms MSRA in difficult
translations (Case 1), despite defeated in easier sen-
tences (Case 2). In BERTScore, the difference of
segments are ignored and all segment-level scores
are of the same contribution to the final system
score. As a result, the final score of Facebook is
slightly lower than MSRA. In human evaluation,
ratings for simple hypotheses produced by different
systems tend to similar, because these hypotheses
are already in good alignment with the reference.
While scores of the difficult ones, implying a chal-
lenging segment in source language, often separate
top systems from inferior candidates. Utilizing this
strategy, EE-BERTScore amplified the contribu-
tion of difficult segments in case 1 for both sys-
tems (0.039%→0.276%, 0.042%→0.311%), while
reduces the contribution of simpler hypotheses
(0.037%→0.015%, 0.034%→0.013%). Conse-
quently, Facebook exceeded MSRA owing to its
advantages in difficult hypotheses.

As discussed in section 3.2, in the proposed
method, determination of sentence-level difficulty
relies on entropy values. In Table 6, entropy val-

ues of hypotheses in case 1 are higher than h, the
threshold determined by Eq. (5), while the easy
hypotheses in case 2 hold smaller values of en-
tropy. The reason is that hypotheses in case 2 are
divided into smaller groups of aligned chunks, and
the lengths of chunks are more evenly distributed,
as highlighted by the colored boxes, implying a less
disordered distribution of hypothesis and lower en-
tropy of translation.

B Estimation of Coefficient w

Figure 5: An empirical fit of Eq. (10). The x-axis, Ratio
of total entropy, represents the right side of Eq. (10),
and y-axis denotes left side of Eq. (10). Data points are
computed based on the five WMT19 evaluation sets and
corresponding empirically obtained w.

The determination of sentence-level difficulty
weight, i.e., W in Eq. (4), relies on h and w. In
section 5.1, based on definitions in Eq. (5), we pre-

BERTScore EE-BERTScore
Sentence Entropy

Seg. / Sys. Contrib. Seg. / Sys. Contrib.

Case 1: Difficult sentence contribute more in calculation of EE-BERTScore

Src - - - -
Likening the suit to "extortion," Plasco said his wife was just two months off having a baby
and was in a "very difficult situation."

-

Ref - - - -
Plasco sagte, dass seine Frau im siebten Monat schwanger und nicht in bester Verfassung
gewesen sei, und bezeichnete die Klage als „Erpressung“.

-

MSRA 0.648 / 0.830 0.039% 0.648 / 0.799 0.276%
Plasco verglich den Anzug mit „Erpressung“ und sagte, seine Frau sei nur
zwei Monate von einem Baby entfernt und befinde sich in einer „sehr schwierigen Situation“.

0.663

Facebook 0.689 / 0.828 0.042% 0.689 / 0.801 0.311%
Plasco verglich die Klage mit „Erpressung“ und sagte, seine Frau habe gerade zwei
Monate kein Baby bekommen und befinde sich in einer „sehr schwierigen Situation“.

0.642

Case 2: Easy sentence contribute less in calculation of EE-BERTScore

Src - - - - When that momentum gets going one way, it puts a lot of pressure on those middle matches. -

Ref - - - -
Wenn sich erstmal eine Eigendynamik entwickelt hat, übt das großen Druck auf die mittleren
Matches aus.

-

MSRA 0.609 / 0.830 0.037% 0.609 / 0.799 0.015% Wenn diese Dynamik in eine Richtung geht, übt sie viel Druck auf diese mittleren Spiele aus. 0.459
Facebook 0.555 / 0.828 0.034% 0.555 / 0.801 0.013% Wenn dieses Momentum in eine Richtung geht, setzt es diese mittleren Spiele stark unter Druck. 0.226

Table 6: Examples from the En→ De evaluation, where EE-BERTScore corrects the ranking of two systems given by
BERTScore. Seg. and Sys. denotes segment-level and system-level scores given by metric, respectively, and Contrib.
denotes contribution of the particular segment to final system score(e.g. 0.039% = 0.648÷1997÷0.830, 0.311% =
0.689× 0.65÷ 180÷ 0.801). The difficulty level of cases are determined by their entropy value. Chunks indicate
the alignments with reference.
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sented an estimation of optimal h. Now, w, the bal-
ancing coefficient which is introduced to alleviate
the distortion caused by unbalanced size between
the difficult group and easy group, theoretically
satisfies the following equation:

(1−w)(L−|Ds|)
w|Ds| ∝

L∑
t=1,Xst /∈Ds

HX̂st

L∑
k=1,Xsk

∈Ds

HX̂sk

(10)
Eq. (10) guarantees that the weights W assigned
to difficult group and easy group are determined by
the ratio of average entropy in two groups. From
Eq. (10), difficulty weight W on a particular evalu-
ation set is fully determined by distribution of av-
erage entropy within a given dataset, via different
balancing coefficients w. When the total entropy
of difficult samples in an evaluation set decreases,
which means the translations in this evaluation set
are easier, the weights assigned on difficult samples
should also be higher to better distinguish difficult
hypotheses from easy ones. In experiment, we
search for optimal w within a range from 0 to 1 for
every language pair. The empirically obtained op-
timal w is highly related to the statistics described
in Eq. (10) with |r| = 0.960, as shown in Fig. 5.
Linear fit based on the five WMT19 evaluation sets
provides an empirical estimation of w:

w =
RN

9.62RH +RN − 22.23
(11)

where RH =

∑
{HX̂st

| ∀t∈[1,L],Xst /∈Ds}∑
{HX̂sk

| ∀k∈[1,L],Xsk
∈Ds}

, RN =

L−|Ds|
|Ds| , are defined in Eq. (10) and fully deter-

mined by distribution of translation entropy within
an evaluation set.

C Parameters

Parameters En→ De De→ En En→ Zh Zh→ En En→ Gu

h 0.53 0.52 0.84 0.76 0.72
w 0.35 0.30 0.22 0.54 0.37

Table 7: Parameters used in our experiment. All exper-
imentally acquired parameters are in accordance with
our theoretical analysis.

D Additional Experimental Results

Metric
En→ De Zh→ En

r τ ρ r τ ρ

BLEU 0.831 0.714 0.821 0.360 0.357 0.571
CHRF 0.917 0.810 0.893 0.425 0.357 0.524
METEOR 0.854 0.619 0.714 0.678 0.643 0.738
BERTScore 0.754 0.429 0.536 0.742 0.643 0.810
EE-BLEU 0.810 0.714 0.821 0.322 0.214 0.405
EE-CHRF 0.890 0.810 0.893 0.510 0.357 0.524
EE-METEOR 0.805 0.619 0.714 0.770 0.786 0.857
EE-BERTScore 0.724 0.429 0.536 0.895 0.714 0.833

Table 8: Performances of EE Metrics on WMT 2020
news test (without human), using human MQM scores
as the ground truth. Parameters h and w are computed
according to Eq. 9 and Eq. 11. The result shows
an average of 2.67 % improvements on correlations
with human MQM scores after the enhancement on the
standard metrics being applied.

Metric
En→ De Zh→ En

r τ ρ r τ ρ

BLEU 0.918 0.897 0.967 0.549 0.282 0.429
CHRF 0.813 0.692 0.868 0.366 0.154 0.297
METEOR 0.813 0.718 0.885 0.432 0.282 0.385
BERTScore 0.911 0.795 0.945 0.577 0.308 0.484
EE-BLEU 0.910 0.821 0.934 0.528 0.333 0.484
EE-CHRF 0.764 0.692 0.857 0.361 0.231 0.313
EE-METEOR 0.869 0.718 0.874 0.416 0.231 0.308
EE-BERTScore 0.876 0.846 0.945 0.630 0.487 0.626

En→ Ru

r τ ρ

0.576 0.385 0.521
0.768 0.451 0.653
0.772 0.495 0.670
0.776 0.538 0.692
0.720 0.451 0.587
0.725 0.560 0.741
0.784 0.582 0.736
0.655 0.473 0.644

Table 9: Performances of EE Metrics on WMT 2021
news test (without human), using human MQM scores
as the ground truth and ref A as the reference. Parame-
ters h and w are computed according to Eq. 9 and Eq.
11. The result shows an average of 4.48 % improve-
ments on correlations with human MQM scores after
the enhancement on the standard metrics being applied.


