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Abstract

Recent work has shown that language mod-
els (LMs) trained with multi-task instructional
learning (MTIL) can solve diverse NLP tasks in
zero- and few-shot settings with improved per-
formance compared to prompt tuning. MTIL
illustrates that LMs can extract and use infor-
mation about the task from instructions beyond
the surface patterns of the inputs and outputs.
This suggests that meta-learning may further
enhance the utilization of instructions for effec-
tive task transfer. In this paper we investigate
whether meta-learning applied to MTIL can
further improve generalization to unseen tasks
in a zero-shot setting. Specifically, we pro-
pose to adapt meta-learning to MTIL in three
directions: 1) Model Agnostic Meta Learn-
ing (MAML), 2) Hyper-Network (HNet) based
adaptation to generate task specific parameters
conditioned on instructions, and 3) an approach
combining HNet and MAML. Through exten-
sive experiments on the large scale Natural In-
structions V2 dataset, we show that our pro-
posed approaches significantly improve over
strong baselines in zero-shot settings. In partic-
ular, meta-learning improves the effectiveness
of instructions and is most impactful when the
test tasks are strictly zero-shot (i.e. no similar
tasks in the training set) and are "hard" for LMs,
illustrating the potential of meta-learning for
MTIL for out-of-distribution tasks.

1 Introduction

Given some basic instructions and a few demon-
strations, humans are capable of conducting di-
verse tasks without any supervision. Can language
models perform similarly on unseen tasks when
trained with instructions? Specifically can such an
approach work on complex generation tasks with
relatively smaller language models (LMs)?

The recent advances in large LMs have shown
tremendous potential in diverse AI applications
and have the capability to change the way model

developers and users interact with intelligent sys-
tems. The inherent representative power of such
models has shown that diverse NLP tasks can be
solved purely by appending prompts or demonstra-
tions in context before a test input (Radford et al.,
2019; Brown et al., 2020). This has led to the rise
of prompt-based training (Liu et al., 2021) where
even much smaller models trained on a large set
of tasks in a multi-task setting with prompts, can
behave similarly (Schick and Schütze, 2021).

A natural extension of the prompt tuning concept
involves adding instructions about the task along
with the demonstrations. Instructions are more in-
formative than prompts and aid the language mod-
els to solve unseen tasks better. Instructions can
have different forms, for example to convey a short
task specific statement (e.g. "Provide a short sum-
mary for the following input") (Schick and Schütze,
2021b), or a natural language question ("How
would you rephrase that in a few words?") (Sanh
et al., 2022; Wei et al., 2022; Bach et al., 2022).
However, for complex generation tasks, short in-
structions can be ambiguous and non-informative
and thus need large LMs which can encode a much
richer prior knowledge.

In contrast, (Wang et al., 2022) define instruc-
tions in the Natural Instructions V2 (NIV2) dataset
comprising of detailed task descriptions, positive
and negative examples, and explanations. Instruc-
tions in NIV2 are similar to annotation guide-
lines, and thus potentially more beneficial1. Us-
ing multi-task instructional learning (MTIL) on
diverse tasks, (Wang et al., 2022) showed that even
smaller models can be competitive with larger mod-
els on zero-shot generalization to unseen tasks.

Results in (Wang et al., 2022) illustrated that
LMs can extract useful information from instruc-
tions beyond the surface patterns available in the
prompts for solving a task. This suggests that

1The instructions in NIV2 are in-fact taken from annotation
guidelines for each of the tasks
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learning-to-learn or meta-learning paradigm can
further enhance the utilization of instructions by
learning about task at deeper levels. In this pa-
per, we investigate how smaller LMs could best
benefit from the natural instructions and whether
meta-learning paradigms can further improve the
zero-shot generalization ability of LMs in MTIL.
Meta-learning has been shown to be effective in
adapting knowledge with little supervision but to
the best of our knowledge has not been adapted to
MTIL in zero-shot settings.

Specifically, we explore two different meta-
learning approaches. First we propose to adapt
Model Agnostic Meta Learning (MAML) (Finn
et al., 2017) for MTIL, an optimization based
approach. Second, we explore hyper-network
(HNet) (Ha et al., 2017) based MTIL, a black-box
approach. HNet introduces an auxiliary LM which
encodes instructions to produce task specific param-
eters which are added to the main LM parameters
to generate a task specific LM at prediction time.
In addition, we evaluate a third approach which
combines the two into a HNet-MAML by training
the HNet model using MAML.

We conduct extensive experiments specifically
designed to test the generalization ability of LMs
trained with instructions under different zero shot
conditions. We use two sets of training tasks from
the NIV2 dataset: 1) all natural language tasks and
2) natural language generation tasks. We evalu-
ate the models for two sets of held out generation
tasks conveying different levels of zero-shot gener-
alization ability: 1) weak generalization set with
a random selection of generation tasks with poten-
tial overlap of categories with training tasks and
2) strong generalization set (or strict zero-shot
conditions) using summarization and title genera-
tion tasks with no overlap in categories from the
training tasks. We further investigate the task sets
under difficulty levels of easy, medium, and hard
based on their baseline ROUGE scores.

The main conclusion from our study is that under
strict zero-shot conditions, meta-learning with in-
structions significantly improves the performance.
The improvements become more significant for the
strong generalization task set and when the task
difficulty level is hard (i.e. tasks where the LM
struggles to generate correct outputs in zero-shot
setting). Moreover, meta-learning increases the
effectiveness of instructions under all conditions.
While both MAML and HNet models show im-

provements over the baselines, HNet (along with its
MAML extension) by explicitly enforcing the use
of instructions through task specific conditioning of
parameters, results in larger gains. In summary, the
main contributions of the paper are two-fold. First,
we adapt meta-learning approaches to MTIL. Sec-
ond, we study their efficacy and show significant
improvements under strict zero-shot conditions.

2 Related Work

Learning from instructions: An extension of the
basic prompt-based in-context learning is append-
ing task specific instructions with prompts. Sev-
eral recent works which include FLAN (Wei et al.,
2022), T0 (Sanh et al., 2022) and (Reif et al., 2021),
train a large LM in a multi-task setting with instruc-
tions. InstructGPT (Ouyang et al., 2022) takes
slightly different approach by training the GPT3
model (Brown et al., 2020) with human anno-
tated dataset of demonstrations of desired user in-
tents and use reinforcement learning to improve
the model to follow such instructions. Yet an-
other direction called pattern-exploiting training
(PET) (Schick and Schütze, 2021a; Schick and
Schütze, 2021) combines the idea of formulating
instructions as cloze questions and show that even
small LMs can be good few-shot learners and work
with language generation.

Meta-learning for language generation: Meta
learning has been applied in several language gen-
eration settings such as (Lin and Lee, 2020) to
induce persona in a chatbot, (Mi et al., 2019) for
task oriented dialog systems, (Gu et al., 2018) for
low resource machine translation, and (Chen and
Shuai, 2021) for abstractive summarization in a
low-resource transfer learning but do not use in-
structions for zero-shot transfer. Our MTIL sce-
nario is closely related to MetaICL (Min et al.,
2022) which applies multi-task learning in-context
in a K-shot setting for classification tasks, but dif-
fers in that it is a k-shot in-context scenario and
does not use instructions or meta-learning optimiza-
tion. While these works are related, to the best of
our knowledge, meta-learning has not been used
to generalize to unseen generation tasks in zero
shot settings using instructions and thus the paper
provides several novel insights and approaches.

Hyper-Networks (HNet) in NLP applica-
tions: (Karimi Mahabadi et al., 2021) use HNet
to train LMs in a multi-task setting with adapters
and (von Oswald et al., 2020) propose a contin-
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ual learning framework with HNets conditioned on
unique task IDs to reduce catastrophic forgetting.
HNets have been used for input conditioning a de-
coder in (Ivison and Peters, 2022) which produces
a unique decoder for each input, and thus is similar
to our approach. However these the approaches
are not strictly applicable in our zero-shot scenario
or in general NLP tasks with task descriptions in
natural language.

Language model editing: Our HNet based ap-
proach is based on the architecture in (Cao et al.,
2021) which uses it to edit factual knowledge in
LMs. While the architecture is similar, we use the
HNet to encode task specific instructions and is
intended for controlling task-level LM behavior
unlike the micro-behavior targeted in (Cao et al.,
2021). Similar to ours and (Cao et al., 2021),
Bayesian hyper networks (Krueger et al., 2018)
linearizes the number of parameters for predictions
by constraining the HNet outputs to scale and shift
parameters. (Sinitsin et al., 2020; Mitchell et al.,
2022) propose Meta Learning approaches for edit-
ing errors in a neural network but is not directly
applicable for MTIL in a zero-shot setting.

MTIL: Finally, the work most closely related
to this paper is the Tk-Instruct model from (Wang
et al., 2022) which fine tunes a T5 model (Raffel
et al., 2020) with instructions, which we use as the
baseline. We use the same dataset and training set-
tings as Tk-Instruct but instead use the pretrained
BART model (Lewis et al., 2020) as it is task ag-
nostic compared to T5 (T5 may not represent a
true zero-shot setting). In addition, we enhance
this model with meta-learning and consider signif-
icantly different training, evaluation, and model
settings to test zero-shot generalization resulting in
unique contributions and conclusions orthogonal
to the findings in (Wang et al., 2022).

3 Problem Setup

In this section we briefly outline our problem set-
tings and baselines used in this paper.

3.1 Natural Instructions V2 Dataset

We use the Natural Instructions V2 (NIV2)
dataset (Wang et al., 2022)2 to investigate meta-
learning approaches for instructional learning. The
NIV2 is a meta-dataset with over 1600 tasks.

In NIV2, each task contains instructions and mul-
tiple training instances with input and output. The

2https://instructions.apps.allenai.org/

instructions consist of: 1) Categories (classifica-
tion, summarization etc.), 2) Short description (a
short sentence about the task), 3) Long description
(a detailed description of the task similar to anno-
tation guidelines), 4) Positive examples (inputs
with correct outputs), 5) Negative examples (in-
puts with incorrect outputs), and 6) Explanations
for the positive or negative examples.

(Wang et al., 2022) train a pretrained T5 lan-
guage model (Raffel et al., 2020) on input-output
pairs with instructions (Tk-Instruct) appended be-
fore the input in a multi-task setting. During testing,
held out unseen tasks are predicted by appending
similar instructions to the test input. (Wang et al.,
2022) provide detailed ablations and baseline com-
parisons with related models showing the impact of
instructions. Following the results there, we only
use the task descriptions and positive examples in
this study as negative examples and explanations
were not shown to have any positive contributions.

3.2 Baseline Model with Standard Training

Based on results in (Wang et al., 2022) where Tk-
Instruct was shown to comfortably beat much larger
T5, GPT3, InstructGPT3, and T0 models, we use
the Tk-Instruct setting as our baseline, i.e. we
train a pre-trained encoder-decoder LM on multiple
tasks with instructions. We also explored append-
ing the instructions before the decoder sequence
but did not find any improvements. However, we
did observe that by pre-pending a special prefix
to the decoder (we use "[Output]:") improves the
overall prediction performance. We refer to this
model as the standard training model.

For our base LM, we use the pretrained BART
model (Lewis et al., 2020) as it is task agnostic
compared to T53 and thus represents a stronger
zero-shot setting. Interested readers should refer to
the (Wang et al., 2022) paper for detailed ablations
specific to the NIV2 dataset and the T5 model.

3.3 Evaluation Settings

We focus specifically on the zero-shot generaliza-
tion on generation tasks. While the general settings
remain similar to (Wang et al., 2022) we consider
some specific settings to illustrate the generaliza-
tion capabilities of models to different tasks.

For training, we use two sets of tasks 1) All EN
tasks in the NIV2 dataset and 2) Generation tasks.

3Publicly available T5 models are pre-trained on a multi-
task mixture of unsupervised and supervised tasks.

6794



For evaluation, we consider two sets of generation
tasks with different zero-shot levels : 1) weak gen-
eralization set using a random set of generation
tasks with potential similarity to the training tasks
and 2) strong generalization set using tasks from
summarization and title generation categories with
no overlap with the training tasks. The list of eval-
uation tasks with short descriptions are provided in
the appendix in Figures 11 and 12.

We further divide the evaluation tasks into diffi-
culty levels of "easy", "medium" and "hard" based
on the ROUGE scores from the baseline model
(low scores indicate out-of distribution and difficult
tasks) to see to what extent meta-learning helps in
improving performance of the out-of-distribution
tasks.

4 Meta-Learning with Instructions

Training on a large number of diverse tasks and
testing on unseen tasks lend itself to the paradigm
of learning-to-learn or meta-learning, which has
been successfully applied for generalizing in both
zero- and few- shot scenarios. Task meta-data in the
form of instructions can also provide discriminative
information about the task process in addition to
the surface patterns of the input and output strings.
We investigate whether meta-learning can aid such
learning and adapt three approaches to MTIL.

4.1 Standard Training + MAML

We adapt Model Agnostic Meta Learning (MAML)
(Finn et al., 2017) to instructional learning of LMs
as a way to generalize to unseen tasks by training
on large number of diverse tasks.

The standard training with MAML is described
in Algorithm 1 in the appendix. At any training
iteration, we sample two different sets of k tasks
for MAML meta-train and meta-test steps. We
uniformly sample across tasks to maximize the
diversity of tasks in each batch. The data format
is same as the standard training. Since we test
zero-shot conditions, we do not have any test time
optimization typically employed in MAML.

4.2 Standard Training + HNET

Both standard and MAML training do not explic-
itly enforce the use of instructions during decoding.
The model can thus minimize the loss simply by
ignoring the instruction part of the encoder by at-
tending to the input and output texts. This can lead
to sub-optimal use of the instructions.

Instructions (Iτ)
Description: ….
Positive Examples:
[Input]: …
[Output]: … 

[Input]:x

[Output]:y

Encoder Decoder
+ Main-LM (BART)

Encoder Decoder

HNET-LM (BART) ∆θ1
τFFN1

FFN2

FFNn

∆θ2
τ

∆θn
τ

H1 H2 Hn

[1,2,…n]
θτ = θ0 + ∆θτ

HNET-FF

Figure 1: Encoding instructions using a Hyper-network

We propose a hyper-network (HNet) based archi-
tecture (Ha et al., 2017) to produce task specific
model parameters conditioned on the instructions.
The HNet architecture consists of an auxiliary LM
(HNet-LM) along with the Main-LM. The HNet-
LM produces task specific parameters of the main
LM by conditioning on instructions.

In particular, we adapt a specific type of HNet
architecture from (Cao et al., 2021) which predicts
the delta-parameters of the Main-LM, which are
then added to the Main-LM parameters to produce
the task specific LM. This preserves the parame-
ters in the Main-LM utilizing the shared generation
capability of the LM while specializing in task spe-
cific behavior. However, there are some specific
differences based on our requirements for instruc-
tional training, which are described next.

4.2.1 The HNet Language Model (HNet-LM)
Since the input to the HNet model is text, we use
a pretrained encoder-decoder LM (BART in this
paper) to encode the instructions4 and use the de-
coder’s hidden states for conditioning the layer spe-
cific parameters of the Main-LM.

In (Cao et al., 2021) the last hidden state from
an LSTM is used for conditioning the parameters
of the main model. To increase the effective band-
width of the HNet while keeping the number of
parameters same, we use the last N hidden states
(for N layers of the main LM). This simple trick
allows the model to independently attend to and
condition each layer on the input instructions while
still keeping the model parameters the same.

The HNet-LM takes instruction Iτ for a task τ
and sequence of decoder indexes dn as input and
produces N hidden states hτ (n). The decoder in-
dex sequence we use is simply 1, ..., n. Decoder
indexes provide different inputs to the decoder to
influence the generation of distinct parameters for
each layer of the main LM. This is not strictly re-

4In contrast (Cao et al., 2021) used an untrained LSTM.
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quired as the position embeddings can in principle
drive the input/output of the HNet to produce dif-
ferent parameters for each target layer. However,
we found that adding different decoder indexes im-
proves the performance as it provides additional
differentiation to the decoder.

The HNet-LM can produce the parameters of all
or a subset of layers of the Main-LM. We experi-
mented with three settings: encoder, decoder, and
both. The best metrics are obtained when the HNet
is used to generate parameters of the decoder of the
Main-LM, which is what we use in reporting the
results.

4.2.2 HNet-FF Projections
Next, the output hidden states from the HNet-LM
decoder are projected to the Main-LM parameter
space using the HNet Feed Forward (HNet-FF)
layer consisting of one dense layer with Tanh ac-
tivation. Let ψ denote the parameters of the HNet-
LM, πn the parameters of the N HNet-FF layers,
and dn an input index to the decoder.

The hτ (n) is then projected using the FF net-
work to five parameter vectors αn, βn, γn, δn, ηn
as given in Equation 2. Finally the delta parame-
ters ∆θτ of the main LM layers are generated using
equation 3. Here σ denotes the sigmoid function
and σ′ is the softmax. The projection process is
equivalent to (Cao et al., 2021) but slightly differs
in that we do not use the gradients of the Main-
LM parameters as we target a zero-shot scenario
and during test time, the target labels are not avail-
able. The model is illustrated in Figure 1 and Algo-
rithm 2 in the appendix.

hτ (n) = HNetLM(ψ; Iτ , dn) (1)
αn, βn, γn, δn, ηn ← HNetFFn(πn;hτ (n)) (2)

∆θτ = σ(η) · (σ′(α)γT + σ′(β)δT ) (3)
θτ = Θ0 +∆θτ (4)

4.2.3 Alternating Training Schedule
The HNet-LM along with the Main-LM can be
jointly trained end-to-end. We tested with different
configurations such as partially or fully freezing the
Main-LM, but best metrics were achieved with the
Main-LM fully trained along with the HNet. How-
ever, with this comes convergence issues and sig-
nificantly increased training cost. First, the training
can be unstable when both the HNet and Main-LMs
are updated, requiring low learning rates. Second,
joint training requires twice as much memory and
computation.

We address both issues by using an alternating
training schedule for the HNet and Main LMs,
where we freeze one of the LMs for a few steps
while updating the other and vice-versa. Thus, in
the backward step only one of the LM’s parameters
are updated, which leads to lower memory require-
ments, stable loss convergence, and better metrics.
Moreover, during the HNet training phase (i.e.,
when the Main-LM is fixed), the model is forced to
update the HNet parameters using the instructions
as input thus allowing itself to learn instruction-
specific patterns. The HNet based model training
is described in Algorithm 2 in the appendix.

4.3 Standard Training + HNet + MAML

Since the HNet model comprising of the HNet-
LM, HNet-FF, and Main-LM is end-to-end differ-
entiable, we can employ MAML training loop for
this combined network. Here, inside the HNet loop,
we employ the alternate training schedules in the
MAML inner loop, while the outer training loop
remains the same. The HNet-MAML training is
described in Algorithm 3 in the appendix.

5 Experiments

5.1 Experimental Setup

We use the NIV2 dataset in all our experiments in
a multi-task setting similar to prior work (Wang
et al., 2022) for training LMs to interpret instruc-
tions. I.e. we train on a large number of tasks with
instructions and analyze the zero-shot generaliza-
tion capability on held-out evaluation tasks.

We first split the instances in NIV2 dataset for
each each task into training, validation, and evalu-
ation sets consisting of 80%, 10%, and 10% split
respectively. We filter out any non-English tasks
for this study, which leads to around 1000 tasks.
We consider two sets of training and evaluation
tasks which are intended to better understand the
generalization capability of LM with instructions.
We first create two tasks sets as follows:

1) All-tasks set which has all EN tasks from
NIV2 dataset consisting of around 1000 tasks.

2) Generation-tasks set which consists of lan-
guage generation tasks by filtering out task cat-
egories such as classification, sequence tagging,
multiple choice QA, etc. This consists of around
400 tasks.

Next we randomly split (90%/10%) the Gener-
ation task set into training and evaluation tasks.
Additionally the tasks from the held out strong gen-
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eralization set (described next) are also removed
from the training sets. After filtering, we have 916
tasks in the All-tasks training set and 306 tasks in
the Generation-task training set.

For evaluation, we consider two language gener-
ation task sets which differ in the level of dissimi-
larity from the training tasks and thus test different
levels of generalization ability of the trained LMs.

Weak generalization evaluation set (81 tasks):
This set (also used as a validation set) comprises of
10% of tasks randomly split from the Generation
task set. Since it is a random split, this set has
overlap in the categories with the training set.

Strong generalization evaluation set (33
tasks): This set consists of tasks with no overlap
in categories with either the training or the valida-
tion sets. We select text compression categories of
Summarization and Title Generation tasks as they
require complex understanding of language com-
ponents, and are sufficiently distinct from training
tasks (majority of which are Q/A generation, text
manipulation etc.).

While both the evaluations sets are held-out dur-
ing training, second set tests a stricter level of zero-
shot generalizability to unseen tasks.

Instruction components: We use four config-
urations of the instruction components appended
to the input of train instances: 1) None uses the
short task description, 2) Desc uses the long task
description. 3) PosEx adds one positive example of
input/output pairs, and 4) Desc + PosEx includes
both the task description and one positive example.

Training parameters: For training, we ran-
domly select a maximum of 100 instances from
each task, and train for around 20 epochs5. We use
the pre-trained BART-base model for most of our
experiments and analysis (BART-large numbers are
also briefly reported). We use maximum context
lengths of 1024 (encoder) and 128 (decoder) to-
kens. We do not truncate the sequences but instead
filter out sequences which do not fit in the context
length. We make sure that all models and config-
urations get exposed and evaluated on the same
data by pre-filtering out instances for the longest
input configuration (Desc + PosEx). All models are
trained on a single NVIDIA-V100 GPU with 32GB
memory, and takes around 24-72 hours (depending
on the model complexity and data size) to train.
More training details are provided in the appendix.

5Similar to (Wang et al., 2022), we see that more instances
or epochs can overfit on the training data and lead to poor zero-
shot generalization.

For evaluation, we follow the NIV2 settings
where a maximum of 100 instances per task was
used for evaluation to reduce overhead for large
scale experimentation. This leads to around 3000
instances for the smaller strong generalization set,
and around 5000 for the larger weak generaliza-
tion set with multiple references per instances. We
generate predictions using greedy decoding and
compute ROUGE-2F and ROUGE-L (both follow
similar trends with minor differences). However,
we found that ROUGE-2F was slightly more ro-
bust with less variance in the zero-shot scenario,
when in the initial stages of training, the model
frequently copies the input prompt/instruction to
output giving unnaturally high ROUGE-L scores.
ROUGE-2F was less susceptible to such a scenario
and thus we use ROUGE-2F metrics for our anal-
ysis (ROUGE-L is reported in the appendix). We
compute both the overall metrics as well as the task
level metrics and analyze them in detail.

For implementation, we adapted code from sev-
eral open source packages: HuggingFace Trans-
formers (Wolf et al., 2020), learn2learn (Arnold
et al., 2020), Higher (Grefenstette et al., 2019), and
KnowledgeEditor (Cao et al., 2021)6. Our adapta-
tions and complete training and evaluation scripts
will be open sourced for further research.

5.2 Summary of Results

We first provide a short summary of conclusions
from our study before diving into the details.

Task descriptions: Descriptions improve per-
formance when used by itself. When used with
positive examples, it improves the performance,
for the strong generalization set. For the weak set,
positive examples are sufficient.

Training sets: The all-tasks set has better per-
formance even though the generation-set is more
similar to the evaluation tasks. I.e. it is better to
train on a larger number of diverse tasks for better
zero-shot generalization.

Evaluation sets: For the strong generalization
set, instructions and meta-learning improve the per-
formance. For the weak set, meta-learning im-
proves performance only when using task descrip-
tions without demonstrations or with the smaller
training set.

Model performance: Both MAML and HNet
models improve performance but HNet with task
specific encoding is better. HNet-MAML improves

6https://github.com/nicola-decao/KnowledgeEditor
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Evaluation Tasks Instructions Standard MAML HNET HNET_MAML
BART BASE + Generation Tasks Train Set (306)

Strong Generalization 
Eval Set: 

Summarization + Title 
Generation (33 Tasks)

None 0.101 0.1078 0.0963 0.0922
Desc 0.11 0.1112 0.1071 0.1022
PosEx 0.1168 0.1123 0.1189 0.1157

Desc + PosEx 0.1237 0.1269 0.1282 0.1306

Weak Generalization 
Eval Set: Random 

Split (81 Tasks)

None 0.1 0.0964 0.0973 0.1029
Desc 0.1004 0.1021 0.1028 0.1045
PosEx 0.1353 0.1312 0.1353 0.1324

Desc + PosEx 0.1198 0.1154 0.1167 0.1169
BART BASE + All Tasks Train Set (916) 

Strong Generalization 
Eval Set: 

Summarization + Title 
Generation (33 Tasks)

None 0.0196 0.0162 0.0359 0.0395
Desc 0.1135 0.1148 0.1196 0.1219
PosEx 0.1301 0.1311 0.1332 0.1297

Desc + PosEx 0.1302 0.1321 0.1337 0.137

Weak Generalization 
Eval Set: Random 

Split (81 Tasks)

None 0.0921 0.0943 0.0961 0.1
Desc 0.106 0.1037 0.1036 0.108
PosEx 0.1369 0.1335 0.1327 0.1326

Desc + PosEx 0.1158 0.1171 0.124 0.1218

Figure 2: Metrics (ROUGE-2F) with different models
and instruction fields on the two training and evaluation
sets. Instructions improve the performance specially for
the strong generation set. Best metrics are obtained with
HNet-MAML using Desc+PosEx.

the performance by almost 30% overall in the
strong generation set, showing the effect of twin
enhancements.

Task difficulty level: Meta-learning signifi-
cantly improves performance (by almost 100%)
for "hard" tasks, with HNet-MAML having the
best performance. Meta-learning also significantly
increases the impact of using instructions: impact
increases from 250% for standard to 1500% using
HNet-MAML.

5.3 Performance of Different Models
Baseline metrics on the standard training with ab-
lations on instruction components, and a short ab-
lation study comparing the different models are
presented in the appendix in Figures 8 and 9.

Here, we compare the overall performance of the
standard model with the meta-learning approaches
in Figure 2 which reports the overall ROUGE
scores for the different evaluation sets.

Role of instructions: Instructions improve met-
rics for the strong generalization set across all
the models and for both the training sets. As
the instructions get more detailed (None through
Desc+PosEx) we see improved performance with
the more complex models. When no instructions
are used (None), MAML performs the best. When
entire instruction is used (PosEx+Desc) HNet-
MAML has the best performance. The results il-
lustrate that instructions are more effective with
meta-learning, particularly for the strong general-
ization set. However, for the weak generalization
set, the surface patterns of the positive examples are
sufficient and task descriptions do not improve the

generalization capability. In addition, the standard
training achieves the best performance for the weak
set showing that meta-learning is not as effective
for weak generalization conditions.

Training sets: Overall, the performance is better
with the larger training set but mostly for the strong
generalization set. For the weaker set, the smaller
training set of just 306 tasks is competitive with the
larger set (achieved with just the positive examples
and standard training), showing that task similarity
in train and evaluation does matter. However, under
stricter zero-shot conditions it is better to have a
more diverse and larger set of training tasks.

Strong generalization eval set: We see im-
proved performance of MAML and HNet variants
for the strong generalization set for both sets of
training tasks. When instructions are most de-
tailed (Desc + PosEx), HNet-MAML has the best
performance with both the training sets. The re-
sults illustrate the effectiveness of creating task
specific model parameters through the HNet espe-
cially under strict zero shot settings. Moreover,
HNet-MAML has the best performance showing
that the twin optimizations utilize instructions and
generalize better to out-of-distribution tasks.

Weak generalization eval set: For the weak set
(when the model has seen similar tasks in training),
task descriptions are not useful and best metrics are
achieved using just the positive examples across
all models. It is also interesting to note that the
smaller train set has comparable metrics with the
larger set, showing that the set can learn mostly
from the set of tasks in the generation train set.
Moreover, results here show that standard training
from (Wang et al., 2022) is a strong baseline and
thus further distinguishes the performance of meta-
learning in utilizing instructions under strict zero-
shot conditions.

5.4 Effect of Instructions on Tasks with
Different Difficulty Levels

Next, we analyze how the models utilize the dif-
ferent instruction components by breaking down
the performance to different difficulty levels in Fig-
ure 3. We compute the ROUGE scores for each
task separately, and deem tasks whose metrics from
the baseline (standard training) are low as hard and
ones with high as easy. Then we sort the tasks
by the scores and divide them into three difficulty
groups: "easy", "medium" and "hard". For the
strong generalization set of summarization and title
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Difficulty None Desc PosEx Desc + PosEx

Hard 0.0118 103.01% 437.03% 642.19%
Medium 0.0417 25.38% 84.72% 78.01%

Easy 0.1847 30.67% 19.31% 29.02%
Overall 0.0794 53.02% 180.36% 249.74%

Hard 0.0109 130.72% 856.93% 944.96%
Medium 0.0436 37.34% 80.77% 138.71%

Easy 0.2212 8.91% -12.61% -2.76%
Overall 0.0919 58.99% 308.36% 360.30%

Hard 0.0088 209.36% 1290.04% 1598.32%
Medium 0.0413 9.51% 43.69% 36.04%

Easy 0.215 9.29% 1.14% 14.53%
Overall 0.08841 76.05% 444.95% 549.63%

Hard 0.007273 79.69% 737.02% 4217.57%
Medium 0.038718 36.34% 190.14% 146.61%

Easy 0.236009 24.13% 15.35% -6.22%
Overall 0.094 46.72% 314.17% 1452.65%

Standard

MAML

HNET

HNET-
MAML

Figure 3: The % improvements with different instruc-
tion components. Tasks are split into easy/medium/hard
based on the ROUGE-2F scores from standard training
with the None setting. Instructions help the hard tasks
across all models with best results using HNet-MAML.

Evaluation Tasks Difficulty MAML HNET HNET_MAML

Hard 42.87% 67.29% 90.69%
Medium 9.51% 8.32% 13.27%

Easy -0.37% -1.57% -1.60%
Overall 17.34% 24.68% 34.12%

Hard 60.10% 81.18% 88.73%
Medium 8.14% 0.34% 17.18%

Easy -4.00% -7.19% -1.87%
Overall 21.41% 24.78% 34.68%

Hard 79.68% 11.23% 87.35%
Medium 1.99% 13.55% 6.65%

Easy -1.24% -0.16% -5.37%
Overall 26.81% 8.21% 29.54%

Hard 15.54% 33.86% 62.79%
Medium 8.06% 15.21% 49.62%

Easy -0.11% 1.59% -2.20%
Overall 7.83% 16.89% 36.74%

Weak Generalization 
Eval Set: Random Split 

(81 Tasks)

BART BASE + Generation Tasks Train Set (306)
Strong Generalization 

Eval Set: Summarization 
+ Title Generation (33 

Tasks)

Weak Generalization 
Eval Set: Random Split 

(81 Tasks)
BART BASE + All Tasks Train Set (916) 

Strong Generalization 
Eval Set: Summarization 

+ Title Generation (33 
Tasks)

Figure 4: % differences from standard training with
other models for the two training and evaluation sets.
HNet-MAML and hard tasks have the largest improve-
ments across the different train and eval sets.

generation tasks (33 tasks), we have 11 tasks while
for the weak generalization set (81 tasks), we have
27 tasks per group. We report the % change in the
metrics with different instruction components for
each model with the "None" setting as the baseline
in Figure 3.

Instructions help hard tasks: Figure 3 shows
that instructions have the biggest impact on the hard
tasks and when both positive examples and descrip-
tions are used. For example, we get an improve-
ment of 642% with standard training and 4000%
for Hnet-MAML using instructions (compared to
the None setting). For easy tasks, instructions can
even lead to regression in metrics. For example, we
see a -6.22% regression with HNet-MAML model.

Meta-learning increases the effectiveness of
instructions: Figure 3 also shows that meta-
learning can significantly boost performance. Over-
all, HNet-MAML is able to increase the perfor-
mance by 1452% using instructions over the None
setting compared to around 250% for standard,
360% for MAML, and 549% for HNet. Thus, while
MAML is able to utilize the instructions better than
standard training, HNet by explicitly conditioning
the parameters on instructions can improve it fur-
ther for out-of-distribution tasks where the addi-
tional information from instructions are most use-
ful. In addition, we see that the twin meta-learning
optimizations with HNet and MAML maximize the
utilization of instructions.

5.5 Detailed Task Level Analysis of Models

Next we analyze the metrics across the two train-
ing and evaluation sets for the different models.
Here we employ the full instruction (Desc+PosEx)
and use the metrics from standard training. We
divide the tasks into the three difficulty levels of
easy/medium/hard and report the % changes with
other models in Figure 4.

It is interesting to contrast Figure 4 with the
overall metrics reported in Figure 2. While the
overall metrics show small ROUGE differences,
breaking down the metrics at the task difficulty
levels illustrate significant differences. This is due
to the large range of ROUGE scores across tasks,
which can normalize the overall differences.

Train sets: In Figure 4, we see that relative
performance improvement with meta-learning ap-
proaches are similar for the two training sets across
the models even if the absolute numbers differ.
HNet-MAML has the best performance across
the two train sets with an overall improvement of
around 30% compared to standard training.

Eval sets: For the two eval sets, when broken
down into task difficulty levels, we surprisingly see
that meta-learning models are better for both the
weak and the strong sets. This is because even in
the weak set, there are hard tasks for which the
meta-learning models improve the generalization.
Moreover, the hard tasks get the highest improve-
ments using HNet-MAML and shows the impact
of twin optimization on out-of-distribution tasks
inside both weak and strong generalization sets.

Per-task metrics: We report the per-task met-
rics for the three groups in Figure 5 for the strong
generalization set. The standard model does really
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Hard Tasks Standard MAML HNET HNET_MAML
task569_recipe_nlg_text_generation 0.001 226.32% 10.53% 131.58%
task613_politifact_text_generation 0.001 0.00% 0.00% 0.00%

task620_ohsumed_medical_subject_headings 0.0038 0.00% 0.00% 0.00%
task1290_xsum_summarization 0.009 1.90% 51.43% 10.48%

task1342_amazon_us_reviews_title 0.0092 109.78% 14.13% 46.74%
task743_eurlex_summarization 0.0105 23.35% 26.95% 17.96%

task1357_xlsum_summary_generation 0.0153 -15.69% -28.76% 1.96%
task589_amazonfood_summary_text_generation 0.0167 112.22% 100.00% 210.00%

task510_reddit_tifu_title_summarization 0.0203 -5.42% 572.41% 574.88%
task511_reddit_tifu_long_text_summarization 0.0236 8.05% 8.90% -1.69%
task500_scruples_anecdotes_title_generation 0.039 11.03% -15.38% 5.64%

0.0135 42.87% 67.29% 90.69%
Medium Tasks

task1540_parsed_pdfs_summarization 0.0464 -11.05% -1.52% 3.05%
task418_persent_title_generation 0.0525 16.38% 1.94% 20.26%

task219_rocstories_title_answer_generation 0.0582 52.41% 57.56% 35.05%
task1639_doqa2.1_travel_text_summarization 0.0592 -19.17% -32.75% -6.23%

task1358_xlsum_title_generation 0.0626 9.55% 17.68% 9.24%
task1356_xlsum_title_generation 0.0628 5.74% 7.60% -17.06%
task1586_scifact_title_generation 0.069 -5.71% -31.71% -17.57%
task618_amazonreview_summary 0.07 17.97% 10.00% 39.24%
task1161_coda19_title_generation 0.0772 10.43% 0.29% 7.39%
task288_gigaword_summarization 0.079 26.17% 30.83% 24.74%

task899_freebase_qa_topic_generation 0.0878 1.94% 31.66% 47.84%
0.0658 9.51% 8.32% 13.27%

Easy Tasks
task1637_doqa2.1_cooking_text_summarization 0.0949 -16.46% -3.25% -5.24%

task1572_samsum_summary 0.0954 -18.76% -4.11% -0.32%
task668_extreme_abstract_summarization 0.1038 7.51% -13.68% 8.38%

task619_ohsumed_abstract_title_generation 0.1153 0.94% -1.03% -16.74%
task1659_title_generation 0.1165 17.95% 0.95% -7.89%

task1638_doqa2.1_movies_text_summarization 0.1771 11.91% 12.93% 11.80%
task1355_sent_comp_summarization 0.2075 0.10% 5.16% 0.24%

task1499_dstc3_summarization 0.3023 -1.49% -4.83% -4.50%
task1340_msr_text_compression_compression 0.5043 -1.30% -4.43% -3.99%

task769_qed_summarization 0.5239 -0.38% -4.12% 5.12%
task645_summarization 0.6015 -4.07% -0.81% -4.46%

0.2584 -0.37% -1.57% -1.60%

Figure 5: % differences listed for individual tasks di-
vided into easy/medium/hard difficulty levels. Results
show that MAML, HNet and HNet-MAML models have
significant improvements for the hard tasks)

poorly in some of the hard tasks. Essentially these
are tasks where the patterns are significantly differ-
ent from the training tasks and the model is unable
to generalize to the new instruction patterns. This
is where meta-learning and in particular the twin
optimization of MAML and HNet significantly im-
prove the scores. This improvement can be the key
factor whether zero-shot based predictions can be
used practically and can result in big difference in
how users perceive the model quality.

BART-Large: We also report the task level met-
rics for BART-Large in Figure 6. Meta-learning
has a higher impact with BART-large compared to
BART-Base. However, the performance for HNet
and HNet-MAML is mixed. HNet-MAML with
BART-large is difficult to train on a single GPU
due to high memory requirements (requiring small
batch sizes), which might have reduced its effec-
tiveness (See appendix on the training parameters
for different models and further discussion).

6 Conclusions

In this paper we investigate whether meta-learning
applied to multi-task instructional learning (MTIL)
can boost the generalizability of LMs to unseen
tasks in a zero-shot setting. Specifically, we eval-

Evaluation Tasks Difficulty MAML HNET HNET_MAML

Hard 15.68% 101.31% 80.53%
Medium 8.96% -0.92% -2.17%

Easy -5.95% -6.71% -7.68%
Overall 6.23% 31.23% 23.56%

Hard 176.08% 116.76% 316.10%
Medium 11.30% 17.48% 5.37%

Easy 0.50% -1.59% -7.77%
Overall 62.63% 44.22% 104.57%

BART LARGE + All Tasks Train Set (916) 
Strong Generalization 

Eval Set: Summarization 
+ Title Generation (33 

Tasks)

Weak Generalization 
Eval Set: Random Split 

(81 Tasks)

Figure 6: % differences from standard training with
other models with BART-Large. HNet has the best
performance for the strong generalization set.

uate MTIL in three directions with MAML, HNet
and HNet-MAML. To test the generalization abil-
ity, we consider two sets of training and evalua-
tion task sets and through extensive experiments
on the NIV2 dataset, show that meta-learning can
significantly boost the performance by increasing
the effectiveness of instructions particularly under
strict zero shot conditions and for "hard" tasks.

While the models perform relatively well under
zero-shot conditions, the performance is far from
fully supervised models. It remains to be seen at
what point we can match fully supervised models
(for example using a k-shot setting). In addition,
the impact of HNet-MAML on the BART-Large
model was lower. It will be interesting to see how
meta-learning scales with model sizes and whether
the additional bandwidth from larger models can
negate the impact of meta-learning in encoding
and utilizing instructions. This is subject of future
work.

7 Limitations

There are several limitations of the proposed meta-
learning based approaches in its present form.

• Computation and memory overhead: Meta-
learning approaches have higher resource re-
quirements which can limit the usage specially
for larger models. For example with BART-
large, the HNet-MAML model on a single
GPU is inefficient to train since we have to
use small batch sizes which leads to lower
performance.

• Regressions with easy tasks: We see some re-
gression in metrics for the easy tasks. Further
analysis and research is needed to understand
the factors and improve the models such that
model enhancements are uniform across tasks.

• Hyper-parameter tuning: Meta learning mod-
els have more hyper-parameters and thus
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might be more difficult to tune than the stan-
dard training approach.

• Overall zero-shot performance: The zero-shot
performance even with the best meta-learning
approaches is quite far from state-of-the-art re-
sults. It will be interesting to see at what point
(e.g. with k-shot learning) the performance
can match a fully supervised model.
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A Model Details

A.1 Standard Training with MAML
The training loop for MAML with instructions is
given in Algorithm 1. At each step, we sample two
sets of tasks for the MAML fast-adaptation and
meta-update steps. To increase the generalization
of the process, we force tasks to be unique across
the two sets. This forces the use of different sets
of instructions for the two MAML steps. We also
sample tasks uniformly to maximize the diversity
of tasks the model gets exposed to during train-
ing. These factors improve the performance over a
proportionate sampling method.

For MAML training, we consider the following
hyper-parameters: inner and outer learning rates,
the inner batch sizes, the number of inner loop
iterations, and the number of tasks in the loop. We
use first-order MAML as it takes significantly more
memory to maintain the second order gradients and
fit large batches in a single GPU.

We conducted ablations studies to find the best
hyper-parameters for MAML. It is important to
note that the hyper-parameters are constrained by
memory. For example if we increase the batch
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size, or the number of tasks, we have to reduce the
number of inner steps to keep the training memory
within the GPU memory limits. Based on our abla-
tions we use 3 inner steps, a batch size of 10, and
2 tasks per MAML step. We use a inner learning
rate of 5e− 3 and an outer learning rate of 5e− 4
for all the experiments. For BART-Large we use a
batch size of 4. With gradient accumulation steps
we can increase the effective batch sizes to up-to
around 400 for BART-base and 200 for Bart-Large.

Algorithm 1 MAML Loop with Instructions
MAML(θMainLM ; Iτ , x, y)

Sample K Support and Target tasks τs, τt
Θ0 ← θ
for k ∈ 0 : Ktasks do

for n ∈ 0 : Nsteps do
Θn+1,k ← GDL(Θn,k, , (Iτs , x, y)

end for
end for
θ = ΘN − β∇Θ0

∑
k L(ΘN,k; (Iτt , x, y))

A.2 Standard Training with HNET
Standard training with HNet is described in Algo-
rithm 2. The HNet model consists of HNet-LM,
HNet-FFs and the Main-LM. We use the BART
model for both the HNet-LM and Main-LM. While
potentially any pretrained text encoder could have
been used for the HNet-LM, we keep the two LMs
the same. This is mostly a practical consideration
which allows us to use a single tokenizer to process
the text. This also maintains the uniformity of input
across models (for examples instructions fed into
the HNet-LM vs. Main-LM) and allows flexibility
in the use the tokenized text in either LMs.

Algorithm 2 HNet with Instructions
HNET (θMainLM ,ΦHNetLM ; Iτ , x, y)

Sample a task τ and mini-batch from the task
∆θτ ← Φ(Iτ )
θτ ← θMain +∆θτ
if Alternating then

if steps%k = 0, Freeze θ then
Φ′ ← LGD(Φ; θτ (Iτ , x, y))

elseFreeze Φ
θ′ ← LGD(θ; θτ (Iτ , x, y))

end if
else

θ′,Φ′ ← LGD(Φ, θ; θτ)(Iτ , x, y))
end if

During training, each instance for a given task
produces a unique task specific LM. This prevents
training in batch-mode when the batch consists
of a random set of tasks, and considerably slows
down the training. To speed up training, we always

Ablation type ROUGE-2F ROUGE-L

Different target layers, 
Alternating Opt

Decoder 0.1282 0.2479
Encoder 0.1268 0.2476

Both 0.128 0.245

Different target layers, 
Joint Optimization

Decoder 0.1269 0.2411
Encoder 0.1258 0.2385

Both 0.125 0.2378

Last vs sequence of 
hidden states

FALSE 0.1282 0.2479
TRUE 0.1194 0.2331

Different Hidden 
dimensions

32 0.1229 0.2409
64 0.1289 0.2456

128 0.1282 0.2479
256 0.1244 0.2366
512 0.1221 0.2359

1024 0.1182 0.2308

Number of Alternating 
steps

1 0.1253 0.2428
5 0.126 0.2418

10 0.1282 0.2479
20 0.128 0.2436
25 0.1255 0.2443
50 0.1274 0.2442

100 0.1229 0.2388

Figure 7: Ablation studies with HNET model.

create a batch of instances from the same task such
that at any step there is a single task specific LM
through which we do the forward and backward
steps. While this reduces the metrics to an extent,
it leads to much faster training of the HNet models.

We conducted extensive ablations with the HNet
model to understand the best hyper-parameters.
The ablations are based on the following hyper-
parameters and configurations, shown in Figure 7
and discussed below.

• HNet target layers: Since the Main-LM has
two transformer stacks in the encoder and
decoder, we consider predicting the param-
eters of encoder, decoder, or both using the
HNet. Targeting the decoder has the best per-
formance.

• Last vs. sequence of output hidden states
from HNet-LM: Since the HNet-LM is also
an encoder-decoder model, we compare using
last hidden state vs. the sequence of hidden
states for projecting to the Main-LM param-
eter space. We find that sequence of hidden
steps has better performance.

• HNet hidden dimension: The dimension of
the hidden layer for the FF projections for
each layer. Our ablations show that the best
metrics are achieved with a dimension size of
128.

• Training Schedule: Joint vs. Alternating. We
found that the alternating schedule has better
performance. Having a schedule frequency of
10 steps leads to the best results.
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Algorithm 3 HNET-MAML with Instructions
HNETMAML(θMainLM ,ΦHNetLM ; Iτ , x, y)

Θ0 ← [θ0,Φ0]
Sample Support and Target tasks τs, τt
Sample mini-batches from τs, τt
for n ∈ 0 : N do

θn+1,Φn+1 ← HNET (θn,Φn; Iτs , x, y)
end for
Θ0 ← θN − β∇θ0HNET (θn,Φn; Iτt , x, y)

A.3 HNet-MAML model
The HNet-MAML model is described in Algo-
rithm 3. Here, the input model to the MAML loop
is the HNet model comprising of the HNet-LM,
HNet-FFs and the Main-LM. Within the MAML
inner steps, each individual step uses the HNet in-
ner step (i.e. first project the instructions to the
Main-LM parameter space and then generate using
the Main-LM). Similar to the HNet training, we use
the alternating training schedule for the HNet inner
loop. The HNet’s inner alternating frequency takes
into account the number of inner MAML steps, gra-
dient accumulation steps and extra steps due to the
fast adaptation and meta-update steps of the outer
MAML loop to ensure that only one of the LMs are
updated during the inner and outer MAML loops.

For BART-base we use an inner batch size of
10, 3 inner steps and 2 tasks per MAML loop. For
BART-Large, we use an inner batch size of 2, with
3 inner steps and 2 tasks (one each for MAML train
and test steps). As with the HNET model, to enable
batch processing, we sample instances in each step
from the same task. Using gradient accumulation,
with BART-base models we are able to train with
batch sizes up-to 200. While this is lower than the
other models, it is still significantly high enough
to get good training convergence. However, with
BART-large this number reduces significantly to
around 50. This might be one of the reasons why
we do not get similar improvements with BART-
Large models. Since the training complexity of
HNet-MAML is higher compared to the other mod-
els, we only train the model for 10 epochs. In
contrast, we train the other models for 20 epochs.

B Experimental settings

In the main section of the paper we have summa-
rized the settings for our experiments. Here we
provide some more details.

We use the BART encoder for both the HNet
and the Main-LM models. We use a maximum
context length of 1024 for the encoder and 128 for

Model ROUGE-2F ROUGE-L
1 Standard + PosEx 0.0992 0.1904
2 Standard + Desc + PosEx 0.1012 0.2044
3 MAML + PosEx 0.1031 0.1948
4 HNET_Joint + PosEx 0.1095 0.2081
5 HNET_Alternate + PosEx 0.1136 0.2173
6 MAML + Desc + PosEx 0.1141 0.2171
7 HNET_Alt + Desc + PosEx 0.117 0.2199
8 HNET_Alt_HidSeq + PosEx 0.1194 0.222
9 HNET_Alt_HidSeq + Desc + PosEx 0.1226 0.2315

Figure 8: Ablation studies on the validation set for dif-
ferent models. The proposed model enhancements im-
prove the performance.

Train 
Tasks

Strong Generalization set: 
Summarization + Title 
Generation (33 Tasks)

Weak Generalization 
Set: Random Split

(81 Tasks)
Instructions ROUGE-2F ROUGE-L ROUGE-2F ROUGE-L

Generati
on Tasks 
(~306)

None 0.101 0.1965 0.1 0.2248
Desc 0.11 0.2045 0.1004 0.2291
PosEx 0.1168 0.2269 0.1353 0.3089

Desc + PosEx 0.1237 0.2368 0.1198 0.2875

All Tasks 
(~916)

None 0.0196 0.0548 0.0921 0.2222
Desc 0.1305 0.2291 0.106 0.2497
PosEx 0.1301 0.249 0.1369 0.3102

Desc + PosEx 0.1302 0.2521 0.1158 0.2852

Figure 9: Baseline metrics with standard training and
different instructional fields. Instructions improve the
performance over the None setting. Best metrics are
obtained when using Desc + PosEx.

the decoder. Note that in MTIL, the inputs to the
encoder includes the task description, one positive
example and the training instance with an input
and output text. This significantly increases the
context length of inputs compared to traditional
supervised training. In addition, we consider tasks
such as summarization, whose inputs are typically
long. Thus some of the instances of training and
evaluation cannot be fitted into the chosen context
windows.

We do not truncate the inputs. Instead we re-
move those instances which exceed the maximum
context lengths. I.e. we compute the tokenized
lengths of instances with the longest input config-
uration (Instruction = Desc + Positive Example)
and remove all instances which exceed the context
lengths of encoder (we do the same for the decoder
max length of 128). Thus for all configurations, the
training, validation and the evaluation instances re-
main the same irrespective of the input instruction
configurations. Some tasks such as CNN-Daily
mail summarization get completely filtered by this
process due to the long input as well as the long
instructions. For others it is partial, but since we
use a maximum of 100 instances per task during
training (much lower than total instances available),
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each task has similar number of instances. For the
all tasks training set, we have a total of around 120k
train instances, while we have around 52k for the
smaller generation task sets.

C Baseline Metrics with Standard
Training

Here, we report the baseline performance using the
standard training approach, and different instruc-
tion components in Figure 9.

Role of task description: Long task descrip-
tions by themselves are useful ("Desc" is better
than "None") for both train task sets. Task descrip-
tion has a bigger impact when using the all-tasks
set of 916 tasks. This is possibly because the short
task description becomes ambiguous (e.g. several
question generation tasks may have the same short
description) across more number of tasks.

Weak vs. strong generalization eval set: De-
scriptions improve generalization but only for the
strong generalization set. For the weak set, the
best metrics are achieved by using one positive
example.

Tasks vs number of instances: Using a larger
number of tasks leads to better performance as seen
Figure 9 (all tasks set is better than the generation
set). The effect is not just due to more data in
the all-task set. We tested with similar data sizes
between the two training sets and found similar
results.

BART Large: Performance significantly im-
proves for the the larger LM but the overall trends
remain the same.

D Pilot Studies with Different Models

We conducted a pilot study with around 100 train
tasks and 10% of the validation data and compared
metrics for different models under different settings
and hyper-parameters. Here the aim was to find the
ideal hyper-parameters as well as quickly validate
if the proposed solutions work as expected, before
doing more detailed analysis. Moreover, we wanted
to use approximately similar settings for different
models as this is likely to be the case in a zero
shot setting, where we would not have validation
datasets to tune our hyperparameters.

We summarize the best performance from dif-
ferent models in this pilot study in 8. We see that
using both the task description as well as a posi-
tive example has the best performance across all
models. For the HNet based model, we see that

using the training schedule of alternately freezing
the Main and HNet language model has better per-
formance than jointly training both the networks.
We also see that using the sequence of hidden states
instead of the last hidden from the HNET decoder
leads to better performance as expected.
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Hard Tasks Standard-R2F Standard-RL MAML-R2F MAML-RL HNET-R2F HNET-RL HNET_MAML-R2F HNET_MAML-RL
task569_recipe_nlg_text_generation 0.001 0.1174 226.32% 30.07% 10.53% 22.01% 131.58% -5.61%
task613_politifact_text_generation 0.001 0.0146 0.00% 8.60% 0.00% -5.45% 0.00% 5.54%

task620_ohsumed_medical_subject_headings_answer_generation 0.0038 0.0695 0.00% 32.19% 0.00% 98.63% 0.00% 71.23%
task1290_xsum_summarization 0.009 0.0433 1.90% -1.59% 51.43% 3.63% 10.48% -8.40%

task1342_amazon_us_reviews_title 0.0092 0.0506 109.78% 3.95% 14.13% 5.14% 46.74% 14.23%
task743_eurlex_summarization 0.0105 0.1131 23.35% 0.85% 26.95% 42.19% 17.96% 3.08%

task1357_xlsum_summary_generation 0.0153 0.1169 -15.69% 4.79% -28.76% 3.85% 1.96% -4.45%
task589_amazonfood_summary_text_generation 0.0167 0.0941 112.22% 15.01% 100.00% 30.48% 210.00% 29.56%

task510_reddit_tifu_title_summarization 0.0203 0.0662 -5.42% 11.48% 572.41% 294.41% 574.88% 297.89%
task511_reddit_tifu_long_text_summarization 0.0236 0.1238 8.05% 3.47% 8.90% 5.01% -1.69% 8.00%
task500_scruples_anecdotes_title_generation 0.039 0.1331 11.03% 9.84% -15.38% 0.60% 5.64% 10.89%

0.0135 0.0856 42.87% 10.79% 67.29% 45.50% 90.69% 38.36%
Medium Tasks

task1540_parsed_pdfs_summarization 0.0464 0.1533 -11.05% 1.77% -1.52% -2.17% 3.05% -4.22%
task418_persent_title_generation 0.0525 0.1753 16.38% 0.65% 1.94% 4.50% 20.26% 4.44%

task219_rocstories_title_answer_generation 0.0582 0.1654 52.41% 30.17% 57.56% 55.99% 35.05% 36.88%
task1639_doqa2.1_travel_text_summarization 0.0592 0.1256 -19.17% -4.42% -32.75% -13.40% -6.23% -7.32%

task1358_xlsum_title_generation 0.0626 0.1925 9.55% 8.54% 17.68% 10.06% 9.24% 10.44%
task1356_xlsum_title_generation 0.0628 0.1839 5.74% 15.92% 7.60% 20.22% -17.06% -5.81%
task1586_scifact_title_generation 0.069 0.1635 -5.71% -0.99% -31.71% -16.53% -17.57% -9.87%

task618_amazonreview_summary_text_generation 0.07 0.1621 17.97% 4.58% 10.00% -3.27% 39.24% 13.73%
task1161_coda19_title_generation 0.0772 0.2154 10.43% -1.28% 0.29% 2.32% 7.39% 5.99%
task288_gigaword_summarization 0.079 0.1836 26.17% 8.36% 30.83% 5.80% 24.74% 5.39%

task899_freebase_qa_topic_generation 0.0878 0.2476 1.94% -1.37% 31.66% 23.83% 47.84% 21.37%
0.0658 0.1789 9.51% 5.63% 8.32% 7.94% 13.27% 6.45%

Easy Tasks
task1637_doqa2.1_cooking_text_summarization 0.0949 0.2666 -16.46% -11.90% -3.25% -7.84% -5.24% -2.92%

task1572_samsum_summary 0.0954 0.2193 -18.76% -3.75% -4.11% 0.08% -0.32% 2.25%
task668_extreme_abstract_summarization 0.1038 0.2265 7.51% 2.91% -13.68% -10.20% 8.38% -0.09%

task619_ohsumed_abstract_title_generation 0.1153 0.2222 0.94% 3.20% -1.03% -1.79% -16.74% -5.28%
task1659_title_generation 0.1165 0.2123 17.95% 9.95% 0.95% 2.66% -7.89% -6.08%

task1638_doqa2.1_movies_text_summarization 0.1771 0.3216 11.91% 5.38% 12.93% 10.42% 11.80% 9.14%
task1355_sent_comp_summarization 0.2075 0.2756 0.10% 0.44% 5.16% 4.54% 0.24% 0.76%

task1499_dstc3_summarization 0.3023 0.4532 -1.49% -2.54% -4.83% -4.41% -4.50% -5.54%
task1340_msr_text_compression_compression 0.5043 0.6965 -1.30% -0.97% -4.43% -3.24% -3.99% -2.92%

task769_qed_summarization 0.5239 0.6518 -0.38% -1.11% -4.12% -3.06% 5.12% 1.92%
task645_summarization 0.6015 0.8414 -4.07% -0.44% -0.81% -0.70% -4.46% -6.82%

0.2584 0.3988 -0.37% 0.11% -1.57% -1.23% -1.60% -1.41%

Figure 10: % differences listed for individual tasks divided into easy/medium/hard difficulty levels. Results show
that MAML, HNet and HNet-MAML models have significant improvements for the difficult tasks)
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Valid Task Names Short Description
task003_mctaco_question_generation_event_duration Writing questions that involve commonsense understanding of "event duration".
task005_mctaco_wrong_answer_generation_event_duration Writing an implausible answer to the given "event duration" question.
task007_mctaco_answer_generation_transient_stationary Answering questions that involve commonsense understanding of "transient vs. stationary" events.
task014_mctaco_wrong_answer_generation_absolute_timepoint Writing an implausible answer to the provided "absolute timepoint" question.
task029_winogrande_full_object Creating a pair of fill in the blank question-answer pairs on objects.
task030_winogrande_full_person Creating a pair of fill in the blank questions on persons.
task034_winogrande_question_modification_object Modifying a fill in the blank question on objects.
task051_multirc_correct_answer_single_sentence Generating correct answer to single-sentence questions.
task054_multirc_write_correct_answer Writing a Correct Answer for a Reading Comprehension Task.
task060_ropes_question_generation Constructing questions regarding relations in the given paragraph.
task074_squad1.1_question_generation Generate guestions based on SQuAD 1.1.
task080_piqa_answer_generation Generate a solution to a goal regarding physical knowledge about the world.
task084_babi_t1_single_supporting_fact_identify_relevant_fact Given a question and an answer, identify the relevant piece of evidence.
task102_commongen_sentence_generation Given a collection of concepts, use them in a coherent sentence.
task112_asset_simple_sentence_identification Given two excerpts of text, choose the one that is simpler and easier to understand by non-native speakers.
task127_scan_long_text_generation_action_command_all Given a sequence of actions, provide its natural language command.
task131_scan_long_text_generation_action_command_long Given a long sequence of actions, provide its natural language command.
task138_detoxifying-lms_classification_fluency Given a prompt and two completions, determine which completion is more fluent.
task156_codah_classification_adversarial Given a prompt, select the completion that is the most plausible.
task191_hotpotqa_question_generation Given a set of context, supporting facts and an answer, generate the question asked based on them.
task193_duorc_question_generation Generate a question based on a given plot.
task216_rocstories_correct_answer_generation Given the title and the first four sentences of a five sentence story, write a correct story ending.
task221_rocstories_two_choice_classification Given three sentences and title of a five sentence story, choose which two sentences from the options given will complete the story.

task235_iirc_question_from_subtext_answer_generation
Given a context statement, further information on a linked term in the statement, and an answer term, generate a question that can 
use the information provided to obtain the given answer

task247_dream_answer_generation Given a conversation and a question, answer the question based on the conversation.

task270_csrg_counterfactual_context_generation
Given premise, initial context with ending, and new counterfactul ending, generate counterfactual context which supports the new
story ending.

task281_points_of_correspondence Find the entity or event that is in common between the given three sentences.
task283_dream_incorrect_answer_generation Given a conversation and a question, write an incorrect answer to the question.
task287_casehold_legal_incorrect_answer_generation Given a prompt from a judicial decision and multiple potential holdings, choose one of the incorrect options.
task344_hybridqa_answer_generation Given a question, answer the question based on your knowledge.
task361_spolin_yesand_prompt_response_classification Given a prompt and a response, classify whether the response is "yes, ands" type
task385_socialiqa_incorrect_answer_generation You're given a context, a question, three options. Your task is to return an incorrect answer from the option.
task405_narrativeqa_question_generation Given a plot summary, create questions that can be answered based on it
task456_matres_intention_classification Given a context and a verb, answer if the given verb is about an intention or not
task460_qasper_answer_generation Given a context and a question, answer the question based on the context.
task471_haspart_answer_generation Generating entity which is in has-part-relationship with input entity
task568_circa_question_generation Given an answer, Predict the question.
task580_socialiqa_answer_generation Given a context, a question and three options; provide correct answer for the question based on the context.
task581_socialiqa_question_generation Generate a question based on the given context and an answer.
task591_sciq_answer_generation Given a scientific question, generate a correct answer to the given question
task595_mocha_answer_generation Generating answers to MOCHA questions
task619_ohsumed_abstract_title_generation Generating title to Ohsumed dataset abstracts
task620_ohsumed_medical_subject_headings_answer_generation Generating MESH terms to Ohsumed dataset abstracts
task621_ohsumed_yes_no_numerical_answer_generation Generating Yes/No answer to Ohsumed dataset questions
task672_nummersense Given a cloze question, identify the missing numerical value
task672_amazon_and_yelp_summarization_dataset_summarization Generating summaries to amazon/yelp reviews
task741_lhoestq_answer_generation_place Given a passage and a question, answer the question based on the passage to output a particular place or position of something.
task748_glucose_reverse_cause_event_detection Given a story and a selected sentence, find an event that is directly caused or made possible by that sentence
task770_pawsx_english_text_modification Given a sentence in English, provide an equivalent paraphrase in said language
task820_protoqa_answer_generation Given a question, generate a relevant answer to the question
task849_pubmedqa_answer_generation Generating answer from context and question (based on pubmed_QA)
task860_prost_mcq_generation Generating MCQs
task870_msmarco_answer_generation Generating answers based on natural language passage and related query from MS MARCO
task886_quail_question_generation Generating questions based on passages
task897_freebase_qa_topic_question_generation Generate question for the given topic
task959_e2e_nlg_text_generation_identify Identify the named entity that is the subject of the excerpt.
task964_librispeech_asr_text_auto_completion Text Auto Completion of partial English sentences
task1161_coda19_title_generation Given a paragraph from a research paper, your task is to generate the title of the paper
task1217_atomic_answer_generation Given a sentence, fill in the blank with a plausible word.
task1355_sent_comp_summarization Given text generate summary about the text
task1358_xlsum_title_generation Generates title for the text in xlsum
task1359_numer_sense_answer_generation Generates answer to numer sense
task1364_hans_answer_generation Generating answers (based on Hans)
task1368_healthfact_sentence_generation Generate a claim based on a given paragraph
task1369_healthfact_sentence_generation Generate an explanation for a claim based on a given paragraph
task1380_quarel_correct_option_generation Given a sentence and a question, choose the correct option number instead of exact answer based on the sentence.
task1400_obqa_incorrect_answer_generation Given a fact and question, generate an incorrect answer to the question
task1415_youtube_caption_corrections_grammar_correction Given a set of closed captions (from `youtube_caption_corrections`), produce a grammatically correct version of those captions

task1437_doqa_cooking_question_generation
Given a paragraph about cooking, and a set of conversational question answers about the paragraph, generate a relevant question to 
the topic of the paragraph

task1482_gene_extraction_chemprot_dataset Given a sentence from the ChemProt dataset, return the list of tokens that mentions of protein.
task1486_cell_extraction_anem_dataset Given a sentence from the AnEM dataset, return the list of tokens that mentions of cells in the body.
task1487_organism_substance_extraction_anem_dataset Given a sentence from the AnEM dataset, return the list of tokens that mentions of organs in the body.
task1515_imppres_longtextgeneration Given a premise, generate hypothesis
task1517_limit_classfication Classifying sentence based on the condition that it contains a motion of a physical entity or not.
task1555_scitail_answer_generation Generating answers to SciTail Sentence-Questions
task1566_propara_structured_text_generation Generate entities from given text
task1590_diplomacy_text_generation Text generation based on diplomacy_detection
task1600_smcalflow_sentence_generation Given a agents' reply, generate a users' utterance
task1603_smcalflow_sentence_generation Given a user utterance, generate agents' utterance
task1608_xquad_en_answer_generation Generating answers to xquad en questions
task1609_xquad_en_question_generation Generating questions (based on xquad en)
task1656_gooaq_answer_generation short_answer generation for given question
task1665_trainglecopa_question_generation Generating a Question for the given premise from traingleCOPA dataset
task1711_poki_text_generation Given a title, generate a short poem that should look like written by a kid.
task1729_personachat_generate_next Generate the next utterance in a conversation

Figure 11: Weak generalization evaluation set: List of tasks with the short task descriptions for the weak generaliza-
tion set of 81 generation tasks
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Eval Task Names Short Description
task219_rocstories_title_answer_generation Given a five sentence story, generate an appropriate title for the story.
task288_gigaword_summarization Given a text of article, generate a title for the article.
task418_persent_title_generation Given a document, generate a short title of the document.

task500_scruples_anecdotes_title_generation
Given a real-life anecdote of a complex ethical situation, generate a title that describes the 
main event/root cause of the situation

task510_reddit_tifu_title_summarization Given the text of a social media post, generate a title summarizing the post
task511_reddit_tifu_long_text_summarization Given the text of a social media post, generate a short summary the post
task522_news_editorial_summary Given an article text, select spans of text that show a summary of the thesis of the article.
task569_recipe_nlg_text_generation Predict the title given its required ingredients and directions.
task589_amazonfood_summary_text_generation Given a review of amazon's food product, you have to generate the summary of the review.

task613_politifact_text_generation
Given a statement from a politifact.com you task is to generate the subject of discussion of the 
statement.

task618_amazonreview_summary_text_generation Given an Amazon product review your task is to generate the summary of the review.
task619_ohsumed_abstract_title_generation Generating title to Ohsumed dataset abstracts

task620_ohsumed_medical_subject_headings_answer_generation Generating MESH terms to Ohsumed dataset abstracts
task645_summarization Generating summary for Data
task668_extreme_abstract_summarization Generate a summary of this abstract.

task672_amazon_and_yelp_summarization_dataset_summarization Generating summaries to amazon/yelp reviews
task743_eurlex_summarization Generate headline (summary) for legal act article
task769_qed_summarization Generating titles for passage
task899_freebase_qa_topic_generation Generate the specific topic for a given question
task1161_coda19_title_generation Given a paragraph from a research paper, your task is to generate the title of the paper
task1290_xsum_summarization Given an article, summarize it.
task1291_multi_news_summarization Given some news, summarize them.
task1340_msr_text_compression_compression Generating Compressed text based on MSR dataset
task1342_amazon_us_reviews_title Generating Title for Amazon US review dataset
task1355_sent_comp_summarization Given text generate summary about the text
task1356_xlsum_title_generation Generating title for the text in xlsum
task1357_xlsum_summary_generation Generating summary for the text in xlsum
task1358_xlsum_title_generation Generates title for the text in xlsum
task1499_dstc3_summarization Summarization of conversations in DSTC 3
task1540_parsed_pdfs_summarization Given a text, generate a title for it
task1553_cnn_dailymail_summarization Generating summary to news articles
task1572_samsum_summary Generate a summary of given conversations
task1586_scifact_title_generation Title Generation
task1637_doqa2.1_cooking_text_summarization Generating title from text (based on DoQA 2.1 cooking data)
task1638_doqa2.1_movies_text_summarization Generating title from text (based on DoQA 2.1 movie data)
task1639_doqa2.1_travel_text_summarization Generating title from text (based on DoQA 2.1 travel data)
task1658_billsum_summarization Generating summary (based on billsum)
task1659_title_generation Generating Title (based on billsum)

Figure 12: Strong generalization evaluation set: List of tasks with the short task descriptions for the strong
generalization set of 33 generation tasks from summarization and title generation categories
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