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Abstract

Question-answering datasets require a broad set
of reasoning skills. We show how to use ques-
tion decompositions to teach language mod-
els these broad reasoning skills in a robust
fashion. Specifically, we use widely avail-
able QDMR representations to programmati-
cally create hard-to-cheat synthetic contexts
for real questions in six multi-step reasoning
datasets. These contexts are carefully designed
to avoid common reasoning shortcuts preva-
lent in real contexts that prevent models from
learning the right skills. This results in a pre-
training dataset, named TeaBReaC, containing
525K multi-step questions (with associated for-
mal programs) covering about 900 reasoning
patterns. We show that pretraining standard
language models (LMs) on TeaBReaC before
fine-tuning them on target datasets improves
their performance by up to 13 F1 points across
4 multi-step QA datasets, with up to 21 point
gain on more complex questions. The result-
ing models also demonstrate higher robustness,
with a 5-8 F1 point improvement on two con-
trast sets. Furthermore, TeaBReaC pretrain-
ing substantially improves model performance
and robustness even when starting with numer-
ate LMs pretrained using recent methods (e.g.,
PReasM, POET). Our work thus shows how to
effectively use decomposition-guided contexts
to robustly teach multi-step reasoning.'

1 Introduction

Multi-step Question Answering (QA) is a complex
problem that requires a wide variety of reasoning
skills. In addition to basic reading comprehen-
sion (RC), models must connect multiple pieces
of information, sometimes employ numerical and
other forms of discrete reasoning, and compose
these skills as needed for the question. However,
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Figure 1: TEABREAC & Dataset Construction: We
leverage widely available question decomposition anno-
tations (QDMRs) for real questions from a broad range
of datasets to carefully construct synthetic contexts such
that answering the resulting & question requires proper
multi-step reasoning. These questions are further re-
balanced to help teach a broad set of reasoning skills.

even though questions in multi-step datasets often
cover a broad range of interesting reasoning pat-
terns, most questions follow only a few patterns,
which is what models trained on these datasets nat-
urally focus on. Moreover, the contexts occurring
in existing RC datasets often contain artifacts and
reasoning shortcuts (Min et al., 2019a; Chen and
Durrett, 2019; Trivedi et al., 2020). Such contexts
allow models to find the answer while bypassing
some reasoning steps, in turn preventing models
from learning the intended reasoning skills.

How, then, can we teach models broad multi-
step reasoning skills? One way is to have greater
control over the distribution of reasoning patterns
and the types of input contexts models see during
training—contexts that don’t allow models to easily
succeed via shortcuts. We observe that questions
in existing datasets (henceforth referred to as “real
questions”) already cover a wide variety of reason-
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ing patterns. The challenge, then, is to teach these
reasoning patterns robustly, even when they are rel-
atively rare (e.g., 4-6 step reasoning). As a means
to this end, we turn to synthetic context generation
for real questions. Specifically, we propose to con-
struct contexts for real questions synthetically from
scratch (instead of perturbing existing contexts),
resulting in much greater control over reasoning
shortcuts. Further, context generation also enables
us to balance out the distribution of reasoning pat-
terns, e.g., by synthesizing additional contexts (and
thereby examples) for questions from the long-tail
of underrepresented reasoning patterns.

Our use of synthetic contexts to reliably teach
broad skills is inspired by three strands of recent
RC QA research. One strand has shown that skills
learnt over synthetic data can indeed transfer to real
datasets (Geva et al., 2020; Yang et al., 2021; Yoran
et al., 2022; Pi et al., 2022). A second strand has
shown that perturbing the existing (natural) con-
texts of RC instances in a targeted fashion can re-
duce artifact-based reasoning (Jia and Liang, 2017;
Trivedi et al., 2020). A third strand has shown
that carefully constructing contexts (for synthetic
questions) to have sufficient distractors can reduce
artifacts (Trivedi et al., 2022; Khot et al., 2022a).

Building upon these three strands, we introduce
TEABREAC,? a teaching dataset that includes care-
fully constructed synthetic contexts for a broad set
of real multi-step questions sourced from six ex-
isting datasets. TEABREAC was designed with
the goals of strong control over cheatability and
balanced coverage of reasoning patterns. To iden-
tify the intended reasoning, we leverage question
decomposition annotations, specifically Question
Decomposition Meaning Representation or QDMR
annotations which are widely available for a broad
set of datasets (Wolfson et al., 2020).

Figure 1 shows the overview of our construction
process for TEABREAC. Our approach relies on
treating a question decomposition as an unambigu-
ous typed program that can be used to generate a
synthetic context and can be executed to provide an
answer. To this end, we first turn natural language
QDMRs into a precise typed program. We then
construct a synthetic context by asserting a set of
facts that relate to various parts of the multi-step
question. We do this by grounding the predicates
of QDMR (e.g., field goals of Shayne Graham in

>TEABREAC = “Teaching Broad Reasoning skills via
decomposition-guided Contexts”; pronounced “Tea Break".

Fig. 1) with randomly generated entities. We also
add distractor statements to the context to ensure
that bypassing reasoning steps results in an incor-
rect answer. The resulting contexts are hard to
cheat on and thereby force models to learn the
intended reasoning. We then add an outer loop
around this process that ensures that the reason-
ing patterns—as measured by the program signa-
tures of the questions—remain balanced in the final
dataset. This forces models to learn a broad range
of reasoning patterns instead of focusing on the few
dominant ones. Finally, similar to prior work (Geva
et al., 2020), we also add simpler single-step ques-
tions to teach individual primitive skills underlying
our formal programs.

Our experiments demonstrate that pretraining®
large language models (LMs) on TEABREAC be-
fore fine-tuning on target multi-step QA datasets
results in significant improvements on multiple
in-distribution evaluation sets (DROP (Dua et al.,
2019), TAT-QA (Zhu et al., 2021), IIRC (Ferguson
et al., 2020)), NumGLUE (Mishra et al., 2022) by
up to 13 F1 points, as well as on two contrastive
evaluation sets of DROP by 5-8 points. Further-
more, even if we start with numerate LMs already
pretrained on similar past work (Geva et al., 2020;
Yang et al., 2021; Yoran et al., 2022; Pi et al., 2022),
TEABREAC provides further improvement by up
to 11 F1 points. Interestingly, TEABREAC is sub-
stantially more beneficial for more complex ques-
tions (those with more reasoning steps), improving
the T5-Large model by about 20 F1 points on ques-
tions with 5 or more steps. More generally, we ex-
pect TEABREAC to be most valuable for datasets
that require complex aggregation operations and
their diverse compositions.

In summary, we make three contributions:

(1) A novel methodology to create a teaching
dataset (a) with broad reasoning skills covering a
wide range of multi-step reasoning patterns and (b)
leveraging existing QDMR annotations to carefully
construct contexts that require true multi-step rea-
soning. (2) The TEABREAC teaching dataset with
over 525K questions covering about 900 reasoning
patterns or program signatures. (3) An empirical
demonstration that pretraining on TEABREAC be-
fore fine-tuning makes both regular and numerate
LMs much more effective and robust at multi-step
reasoning, especially for more complex questions.

3We use the word pretraining to mean fine-tuning on our

generated QA data before (hence pretraining) fine-tuning on
the target dataset.
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2 Related Work

Question Decompositions have been used to build
stronger models (Talmor and Berant, 2018; Min
et al., 2019b; Khot et al., 2021) and challenge eval-
uation sets by modifying the questions (Geva et al.,
2022). In contrast, our goal in this work is to use de-
compositions to teach broad multi-step reasoning
skills to any text-to-text model by creating chal-
lenging contexts for real questions.

Building synthetic datasets to teach requisite
skills has been considered in prior work, but lim-
ited to only numeric reasoning skills (Geva et al.,
2020; Yang et al., 2021) or few templated multi-
step reasoning patterns (Yoran et al., 2022; Pan
et al., 2021). Even pretraining on program exe-
cutions (arithmetic, logic-based, and SQL-based)
has been shown to help on multi-step QA tasks (Pi
et al., 2022). In this work, we use real questions
from a wide variety of datasets and show larger
gains than these prior models. We even improve
these prior models by fine-tuning on our dataset.

We create more robust models by teaching rea-
soning skills via a dataset carefully designed to
avoid shortcuts. Past work often focuses on iden-
tifying lack of robustness via analysis (Min et al.,
2019a; Trivedi et al., 2020) or challenge evaluation
sets (Jiang and Bansal, 2019; Geva et al., 2022).

Lastly, we define new conditions for constructing
contexts for real questions with minimal reasoning
shortcuts. This differs from prior work that only
provides conditions to measure reasoning short-
cuts in existing datasets (Trivedi et al., 2020). The
“MuSiQue condition” of Trivedi et al. (2022) targets
the construction of new non-cheatable multi-step
datasets. We enforce this condition in TEABREAC
and introduce two additional ones that are espe-
cially pertinent to our construction. Appendix A
includes additional discussion.

3 Teaching Broad-Coverage Reasoning
Skills in a Robust Fashion

Multi-step questions come in a wide variety. Some
involve numeric operations (Dua et al., 2019), some
involve assessing whether complete information is
present or not (Ferguson et al., 2020), some involve
tables and text (Zhu et al., 2021), and so on. One
way to surface the reasoning needed for answering
these questions is to look at their decomposition
into smaller reasoning steps. E.g., consider the
question in Fig. 1, From what yard-line did Shayne
kick two field goals?. This can be decomposed

as follows: list the field goals by Shayne Graham,
identify the yard-lines for each of them, map each
yard-line with the field goal and count them, and
select the yard-line with two field goals.

While questions in multi-step QA datasets are
authored with the intent that such multi-step rea-
soning will be used to answer them, the context
associated with the questions often allows mod-
els to cheat by taking shortcuts (Min et al., 2019a;
Chen and Durrett, 2019; Trivedi et al., 2020). E.g.,
if the context mentions field goals only by Shayne
Graham and no one else, models can ignore the
player name and still succeed.

Our key observation is that the decomposition
of a question can be leveraged to carefully de-
sign a synthetic context for it that is hard to cheat,
thereby allowing us to teach models a broad range
of reasoning skills in a robust fashion. To achieve
this, we procedurally create a large pretraining RC
dataset, TEABREAC, by using real multi-step ques-
tions (from existing datasets) and their decomposi-
tions (available in the form of QDMRSs), and care-
fully building synthetic contexts.

QDMR or Question Decomposition Meaning
Representation (Wolfson et al., 2020) is a common
way to represent the reasoning in many types of
multi-step questions as a structured decomposition
graph. QDMR has standardized operators (repre-
sented as nodes) such as select, project, group,
etc., that transform their input. These are connected
together to a final node which produces the answer.
Figure 1 shows the above example question paired
with its QDMR graph. Importantly, QDMRs are al-
ready available for several multi-step QA datasets.

Briefly, our method involves the following main
steps; these are described in more detail in §4.

Making QDMRs more precise. To create QA in-
stances that teach the precise reasoning in QDMRs,
we need a precise and formal representation of rea-
soning captured in QDMRs. QDMRs, although
structured, don’t quite do so, as they are written in
natural language and don’t specify the datatypes of
their inputs/outputs. Since this is crucial for our ap-
proach, we convert QDMRs into formal programs
with over 44 executable primitive operations along
with their input/output types (§ 4.1).

Teaching robust compositional skills. Past
work has shown that compositional questions don’t
necessitate multi-step reasoning as datasets often
have reasoning shortcuts (Min et al., 2019a; Chen
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and Durrett, 2019; Trivedi et al., 2020). To teach
the reasoning reflected our formal programs ro-
bustly, our QA instances must be such that models
cannot bypass the reasoning steps and still arrive
at the correct answer. To achieve this goal, we
create a synthetic QA instance from a question-
program pair, where the question is the same as the
original question, but the context is procedurally
constructed by grounding the predicates in QDMR
in a careful way such that models can’t cheat their
way to the correct answer.

Teaching a broad range of reasoning patterns
Although QDMRs cover a broad range of reasoning
patterns, we find that the natural distribution of rea-
soning patterns in QDMRs is extremely skewed to-
wards popular reasoning patterns (§ 4.2). Training
on QA instances generated from such a distribution
leads models to overfit to only a few most represen-
tative reasoning patterns, and not learn broad-range
reasoning skills. To ensure this doesn’t happen, we
make sure our synthetic dataset is more balanced
in terms of reasoning patterns (§ 4.2).

Teaching a broad range of reasoning primitives.
In addition to our process of constructing a pre-
training dataset to teach compositional skills de-
scribed thus far, we observe that it also helps if we
teach models the constituent primitive reasoning
skills. To achieve this, similar to prior work (Geva
et al., 2020), we procedurally generate QA in-
stances based on fixed templates for each of the 44
primitives present in our formal programs (§ 4.3).

4 TEABREAC Dataset Construction

The overview of TEABREAC construction pipeline
is shown in Fig. 2. We discuss the QA instance
generator in § 4.1 and the dataset generator in § 4.2.

4.1 Instance Generator

The Instance Generator takes a question () and its
QDMR decomposition D as input, and generates a
synthetic context C' and the corresponding answer

A as its output. The tuple (Q, C, A) is the gener-
ated RC QA instance. This conversion happens in
two steps: (i) QDMR to Typed Program, (ii) Typed
Program to Context and Answer.

4.1.1 QDMR to Typed Program:

Our goal is to generate a synthetic context C' that
can be used to answer the question () (based on the
QDMR D), and to also provide the answer A. To
generate C' and A, we must be able to create facts
corresponding to steps in the QDMR reasoning
graph (i.e., ground the QDMR predicates*) and
compute the final answer by stepping through it.

To achieve this, we need a formal representa-
tion (Program) that captures the precise reasoning
implied by D, and that can be executed step-by-
step (e.g., in a programming language like Python).
This isn’t possible directly via QDMRs as (i) al-
though structured, they are written in natural lan-
guage and have variation inherent in natural lan-
guage; (ii) they don’t have input and output type
information, e.g., it is unclear whether the project
operator should generate a dictionary, a list, or a
scalar, making it difficult to make execute it.

To convert a QDMR D into a Program P, we
define a set of python functions (primitives)’ like
select, filter, grouped_count, etc, and parse
QDMRs into these functions using rules and heuris-
tics. An example conversion is shown in Fig. 3.

#1: return field goals
QDMR #2: return players who kicked #1
#3: return number of #1 for each #2
#4: return number #2 where #3 is least goals

v

: select(*What are the field goals”)

: project(*What player kicked #17?”)
#3: grouped_count(“#2”, “#1”)

:filter_a_where_b_is_min(“‘#2”, “#3")

Program

Typed Program
#1: select("What are the field goals”) = ListfNamedEntity]
#2: project(“What player kicked #1?”) = List{fNamedEntity]
#3: grouped_count(“#2”, “#1”) = Dict[NamedEntity, Number]
#4: filter_a_where_b_is_min(“#2”, “#3") = NamedEntity

Figure 3: Example conversion of a QDMR decomposi-
tion (top) to a Typed Program (bottom).

These primitives don’t always have a clearly
defined output type. While in most cases the
output type is obvious (e.g., arithmetic_sum
returns a number), for some of them (select,

*E.g., the step “return players who kicked #1" has
the predicate “return players who kicked __".

>We have 44 primitives operating over various types (num-
ber, date, named entity) and structures (scalar, list, dictionary)
of inputs and outputs. The full list is given in App. L.
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Q: How many touchdowns did Edwards throw in the 1st quarter?

#1: list of named entities
(“touchdowns by Edwards”)

touchdowns by Edwards =
touchdowns by Edwards =
touchdowns by Edwards = FGH
touchdowns by Edwards = PQR

(upper half)

touchdowns by Tom = MNO
touchdowns by Tom = IOH

Synthetic Context

touchdowns by Tom = DPE

(lower half)

.

#2: list of named entities

#3: number

(“#1 from1st quarter”) ("#2")

what is from 1st quarter? =

what is from 1st quarter? =

what is from 1st quarter? = MNF

what is from 1st quarter? = IOU

what is from 2nd quarter? = MNO

what is from 2nd quarter? = XRT

Figure 4: A simplified example of a QA instance in TEABREAC, with a (simplified) real question from the DROP
dataset and the synthetic context we construct for it using the question’s 3-step decomposition. Statements in red,
yellow and green form the synthetic context. The instance satisfies desirable properties P1, P2, and P3, and thus

helps robustly teach multi-step reasoning skills.

project, filter), it’s under-defined. E.g.,
select("number of soldiers in USA")
should output a number, select("when did

India get independence") should output a date,
and select("countries surrounding India")
should output a list of named entities. For such
primitives, we use heuristic rules and type propaga-
tion on the global structure of P to infer expected
types and structures of output. We call the program
having type information for each step a Typed Pro-
gram P, an example of which is shown in Fig. 3.6

4.1.2 Synthetic Context + Answer:

Next, we generate C' and A from the typed pro-
gram P. We generate C' by grounding the pred-
icates derived from the QDMR D with random
entities. Fig. 4 shows an example of C for a pro-
gram with three steps. Predicates: The predicates
that need to be grounded belong to four primitives,
i.e., select, project, filter, boolean. Exam-
ple in Fig. 4 uses select and filter. Exam-
ples involving project and boolean are shown
in App. H. Entities: The grounded entities are of
3 types: number, date, or named entity’. Since
our programs are typed, we know which predicate
should be grounded with which entity type. E.g.,
select("number of soldiers in USA") should
be grounded with a number.

8Since these programs are more precise and executable,
future work may also use them to design better explicit multi-
step reasoning systems (Khot et al., 2021).

"Numbers are in 0 to 1 million, dates are from year 1100
to 2022, and named entities are any sequence of 3 letters.

Minimizing reasoning shortcuts. Naively cre-
ating C' using QDMR D can introduce shortcuts
that models can exploit and bypass the necessary
reasoning. Note that QDMR is a sequence of steps
where each step s; can use answers from zero or
more previous steps; e.g., “return number #2
where #3 is least goals” in Fig 3 (top) uses
the answer from step #2 and #3. However, if there
is only one player who scored field goals, all the
steps can be ignored. To ensure models learn the in-
tended reasoning, our goal is to create C such that
one can’t bypass the intended reasoning (or pro-
gram) steps and still arrive at the correct answer A.
To this end, we ground the predicates with entities
such that the following three properties hold:

P1: Answers to dependent steps can’t be ig-
nored. If step s; is dependent on step s;, then
the answer to s; can’t be identified without know-
ing the answer to s;. E.g., in Fig 4, step #2 is asking
“which of the touchdowns by Edward are from the
first quarter". Since there are many touchdowns
“from the Ist quarter”, and only some of them are
“touchdowns by Edward" (indicated in blue), one
can’t narrow down the answer to step #2 without
knowing step #1’s answer. We ensure this property
for different operators differently. E.g., for filter,
we ensure the answer is always a proper subset of
all the entities grounded with that predicate ({ ABC,
DXE} C {ABC, DXE, MNF, IOU} in Fig. 4).

P2: Steps can’t be no-op. The input and output
of steps can’t be the same, as otherwise the rea-
soning in that step can be bypassed. E.g., in Fig 4,
step #2 is asking “which of the touchdowns by Ed-
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ward are from the 1st quarter". There are many
“touchdowns by Edward", but only some of them
are “from the Ist quarter"” (indicated in blue). So,
ignoring step #2 (i.e., treating it as a no-op) would
result in an incorrect answer being used for subse-
quent steps. We ensure this property for different
operators differently. E.g., for filter operator, we
ensure the answer to the step is always a proper
subset of the answer to the dependent step ({ ABC,
DXE} C {ABC, DXE, FGH, PQR} in Fig. 4).

Properties P1 and P2 ensure step-by-step execu-
tion will lead to the gold answer, but there is only
one possible complete execution that leads to an
answer. As a result, the question can be completely
ignored. To fix this, we have a third property:

P3: Context also supports a different answer
to a contrastive question. Just as we generate
facts for the gold chain of reasoning (upper half in
Fig. 4), we also generate facts for distractor chain
(lower half in Fig. 4), using potentially perturbed
predicates (e.g., Edward = Tom, 1st = 2nd). This
ensures there is always one minimally different
(contrastive (Gardner et al., 2020)) question that
results in a different answer in the same context.
E.g., “How many touchdowns did Tom throw in
the 2nd quarter" results in the answer 1, differ-
ent from the gold answer 2 in Fig. 4. To perturb
predicates, we swap numbers, dates, and named
entities (PERSON, ORG, etc.) with a similar en-
tity of the same type. The cases where predicate
doesn’t have an entity, we use a similar but differ-
ent and type-consistent predicate from a different
question as a perturbed predicate. E.g., “yards of
rushing touchdowns" could be perturbed to “yards
of passing touchdowns". To do this, we retrieve the
top 30 type-consistent predicates with the highest
word-overlap not exceeding 75%, and sample one.

We note that past work of Trivedi et al. (2022)
has also considered similar properties to create
hard-to-cheat multi-step QA datasets. Our P1 is
similar to the first part of their MuSiQue condition
(the 2nd part isn’t needed here as artificial entities
make it impossible to ignore the context). Our P2
is new and especially pertinent to TEABREAC be-
cause of its list-based filter operations. Our P3 is
also new and results in stronger question depen-
dence than MuSiQue because of the emphasis on a
minimally contrastive reasoning chain (as opposed
to any additional reasoning chain which a context
in MuSiQue often also supports).

To construct QA instances with properties P1-P3,
we iterate through the program steps maintaining
the step-wise answers and distractors for gold rea-
soning chain (upper half of Fig. 4) and the distrac-
tor reasoning chain (lower half of Fig. 4) respec-
tively. For steps containing grounding predicates
(select, filter, project, boolean), we ground
the predicate with random entities of appropriate
type and cardinality as defined by typed program.
While doing such groundings we make sure the
aforementioned properties satisfy. The final step
answer is the answer A for the QA instance. The
detailed description and pseudo-code to generate
QA instances is given in App. B.

4.2 Dataset Generator

Now that we have a way to generate QA instance
from a (question, QDMR) pair, we can generate a
dataset by just using questions from datasets with
annotated QDMRs. However, we find that the nat-
ural distribution of the reasoning patterns in these
datasets is extremely long-tailed. We define rea-
soning pattern as a unique sequence of primitives
in the program. E.g., program in Fig. 4 has 3 steps
having select, filter and count primitives, so
the reasoning pattern is “select filter count”.

Generating instances uniformly from such
QDMRs would end up skewing the distribution
of questions towards the popular patterns and re-
sult in the model overfitting to these patterns. To
fix this, our dataset generator: (i) samples a rea-
soning pattern, (ii) samples a question-QDMR pair
from that reasoning pattern, (iii) possibly perturbs
question entities (named entities, dates, numbers,
ordinals) with a closely similar entity of the same
type,® and (iv) invokes the instance generator. The
resulting training dataset has about 900 reasoning
patterns with the top 10 common patterns having
only 4% of examples (compared to 70% had we
not done such balancing).

4.3 Additional QA Instances for Primitives

We also generate instances to teach 44 indi-
vidual primitives, using simple templates simi-
lar to Geva et al. (2020). E.g., for primitive
filter_a_where_b_is_compared_to, a question
could be “Entities that have value larger than

8¢.g., Edward = Tom to create a new question: "How
many touchdowns did Tom throw in the 1st quarter?". Since
this perturbation is similar to the one used to create distractor
chains, it makes distinguishing these distractor chains in the
unperturbed questions from the gold chains in the perturbed
questions much harder and better enforces property P3 in §4.1.
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948768.92?" and context could be “Entity AFE has
value 871781. Entity RQX has value 989,517.24."
resulting in the answer ['RQX’]. App. I gives exam-
ple instances for all the primitives. Each primitive
has 30K training and 1K development instances.

4.4 Final Dataset

Final TEABREAC dataset has 525K and 15K train
and development multi-step QA instances respec-
tively, and has about 900 reasoning patterns. To
create it we use publicly available QDMRs from
QA and semantic parsing datasets, DROP (Dua
et al., 2019), ComplexWebQuestions (Talmor and
Berant, 2018), HotpotQA (Yang et al., 2018), SPI-
DER (Yu et al., 2018), ComQA (Abujabal et al.,
2019), ATIS (Price, 1990). We use both low and
high level QDMRs limited to 2-6 reasoning steps.

5 Experiments

To test the effectiveness of TEABREAC pretrain-
ing, we compare models directly fine-tuned on
target datasets with models first pretrained on
TEABREAC? before fine-tuning.

Datasets. We evaluate in-distribution perfor-
mance using DROP (Dua et al., 2019), TAT-
QA (Zhu et al., 2021), IIRC (Ferguson et al., 2020),
and NumGLUE (Mishra et al., 2022). For IIRC,
we consider two settings: IIRC-G uses only gold
supporting sentences as context while IIRC-R uses
paragraphs obtained using a retrieval marginaliza-
tion method (Ni et al., 2021). We evaluate robust-
ness using the DROP contrast set (Gardner et al.,
2020) and the DROP BPB contrast set (Geva et al.,
2022)!9. To do this, we directly evaluate DROP
fine-tuned models on contrast sets.

Models. We evaluate TEABREAC pretraining on
two kinds of (language) models or LMs. For Plain
LMs, we use T5-Large (Raffel et al., 2020) and
Bart-Large (Lewis et al., 2020). For Numerate
LMs—those pretrained to perform numeric reason-
ing via different approaches—we use NT5 (Yang
et al., 2021) based on T5-Small,'! PReasM (Yoran
et al., 2022) based on T5-Large, and POET (Pi
et al., 2022) based on BART-Large. Henceforth,

“Models work well on TEABREAC (see App. E).

1We use the human validated set. We also remove yes/no
questions from it as DROP does not contain yes/no ques-
tions but TEABREAC does, and hence it unfairly favors
TEABREAC pretrained models.

"'N'T5 is only available in small size.

we will use suffixes “-S”, “-L”, and “-3B” to refer
to the model size.

We use author-provided checkpoints as our ini-
tial models and then fine-tune on the target datasets.
Following NT5 and POET, we use character tok-
enization in all considered models during the fine-
tuning stage. In some cases, prior work has also
performed similar experiments (with different im-
plementations and hyper-parameters) that we re-
port in App. C for completeness.'? Our models are
implemented using PyTorch (Paszke et al., 2019),
Huggingface Transformers (Wolf et al., 2019), and
AllenNLP (Gardner et al., 2017). §G includes im-
plementation details and training hyperparameters.

5.1 Results
TEABREAC improves model performance

In-distribution evaluation in Table 1 compares per-
formance on DROP, TAT-QA, IIRC-G, IIRC-R and
NumGLUE. For all considered plain language mod-
els (Bart-L, T5-L, and T5-3B), TEABREAC pre-
training results in substantial improvements across
all datasets — 4-7 F1 points on DROP, 10-13 F1
points on TAT-QA, 10-11 F1 points on IIRC-G,
4-10 F1 points on IIRC-R, and 5-7 F1 points on
NumGLUE. For numerate language models (NT5-
S, PReasM-L, and POET-L), TEABREAC pre-
training improves performance by 2-3 F1 points
on DROP, 1-11 F1 points on TAT-QA, and 3-15
F1 points on NumGLUE. TEABREAC pretraining
doesn’t improve NT5-S performance on IIRC-G
and IIRC-R, but it improves PReasM-L and POET-
L performances on both datasets by 2-7 F1 points.
The fact that TEABREAC further improves models
already pretrained on previous synthetic datasets
highlights its complementarity.

Furthermore, TEABREAC-pretrained T5-3B
achieves new state-of-the-art performance relative
to the best previously published results on IIRC-G,
IIRC-R, and NumGLUE, reported in the last row of
Table 1. Moreover, even the smaller TEABREAC-
pretrained PReasM-L and POET-L models im-
prove over previously published numbers on IIRC-
G and NumGLUE respectively. On DROP and
TAT-QA, specialized architectures (with special
task-specific modules) developed for those datasets
outperform TEABREAC-pretrained models.

Since numerate LMs are derived by pretraining
plain LMs on respective synthetic datasets, we can

?Models with TEABREAC pretraining outperform both
our and previously reported fine-tuning implementations.

6547



In-distribution Evaluation

Robustness Evaluation

Model DROP TAT-QA [IRC-G IIRC-R  NumGLUE DROP-CS DROP-BPB
Bart-L 7231733  44.8|439 669|650 448|417  46.0]41.9 53.7 51.5
, +TEABREACE 813807 54.2]53.7 762|753 48.5|45.6  52.5|49.1 61.8 59.3
§ T5-L 76.177.1 472|463  68.0|63.6 454|389  49.7]42.9 53.4 56.4
.§ +TEABREACE& 814(81.1 583|569 729|728 46.11457 53.3|49.8 60.1 63.2
&~ T53B 820821 49.8|51.1 709|682 464|409 549|497 61.8 63.6
+TEABREAC & 86.7|86.5 65.5|63.8 78.6/79.5 52.5|51.0 57.3|54.3 66.8 69.7
NT5-S 7271730 519|519 713|714 452|443  37.0]|327 46.4 51.8
= +TEABREACE& 75.1|753 53.4[528 704|703 44.9|442  50.7|47.5 52.9 54.2
—
o PReasM-L 80.080.2 487497 745|733 455|409 523|464 573 56.1
£ +TEABREAC:: 83.2[834 617|604 772|779 50.5|47.6 53.1]49.2 60.8 64.4
§ POET-L 79.6 794  52.8|53.1 71.8|73.8 475|443  50.7]455 58.3 55.6
+TEABREAC & 822821 556|541 768|760 49.1|46.6 53.4|502 64.0 60.7
Best Published 87.5|87.8° %81.3]78.0° 77.4|75.0° 50.6|50.5% n/a|48.8° = 54.2f 65.99

Table 1: F1 scores of in-distribution and robustness evaluation of language models (LMs) with and without &&
TEABREAC pretraining on dev and test sets. Pretraining LMs on TEABREAC improves their in-distribution
performance and robustness across multiple QA datasets, for both plain and numerate LMs. In-distribution
evaluation scores are (dev | test) scores. Robustness evaluations are on test-only contrast sets. The suffixes ‘-3B’, ‘-L”
and ‘-S’ refer to model sizes 3B, large and small, respectively. Green (underlined) indicates TEABREAC pretraining
improves the underlying model’s performance, while red (not underlined) indicates it does not. Bold indicates that
the TEABREAC-pretrained model sets a new state of the art among published models. EM scores are provided in
Appendix F. a : Zhou et al. (2022), b : Zhou et al. (2022), ¢ : Yoran et al. (2022), d : Ni et al. (2021), e : Mishra
et al. (2022), f : Gardner et al. (2020), g : Geva et al. (2022).

also directly compare such pretraining approaches
with TEABREAC pretraining. From Table 1, we
can also see that the T5-L + TEABREAC model is
better than the PReasM-L model (T5-L pretrained
on PReasM data), and the Bart-L + TEABREAC
model is better than the POET-L model (Bart-L
pretrained on POET data). See App. D for addi-
tional comparisons.

TEABREAC improves model robustness

We evaluate the robustness in Table 1 by compar-
ing performance on the DROP contrast set and the
DROP BPB set. For all plain language models,
T5-L, T5-3B and Bart-L, TEABREAC pretraining
shows substantial improvements in robustness —
5-8 F1 points improvements on DROP contrast
set and on DROP BPB set. For numerate LMs,
NTS5-S, PReasM-L and POET-L, TEABREAC pre-
training results in 4-7 F1 points of improvement on
DROP contrast set and 2-8 points of improvement
on DROP BPB set.

355 o .
2 1Improves more on more complex questlons

We further investigate how the improvements pro-
vided by TEABREAC vary based on the complexity
or number of steps of the question. To obtain the

number of reasoning steps, we use our programs. '3

But since QDMRs, and as a result programs, are
not available for all the questions, we use the num-
ber of reasoning steps in predicted programs (using
a T5-Large model trained on the BREAK dataset
followed by conversion into our typed programs).
Figure 5 compares the performance of
TEABREAC pretraining on questions with increas-
ing (estimated) number of steps. While the T5-L
baseline model drops significantly from 79 to 58,
T5-L with TEABREAC pretraining stays mostly
invariant to the number of steps. We thus observe a
significantly larger improvement for more complex
questions, where the original T5-L model struggles
(e.g., 20 points gain on 4+ steps vs. 5 points gain
on average). Similarly, for the numeracy-aware
language model PReasM-Large, we see more
improvement on more complex questions (e.g.,
9-10 points on 4+ steps, 3.2 points on average).
We see similar trends for the other models as well.
We also observe that more complex questions are
much less frequent in the DROP development set
(e.g., 4+ steps constitute only 25%). This makes
our large gains on more complex questions not

BOur programs may differ in the number of steps than the
source QDMR due to additional normalization and processing.
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Figure 5: F1 scores for plain and numerate LMs with and without & TEABREAC pretraining on DROP across
varying numbers of steps, as determined by our programs. TEABREAC pretraining helps more on more complex
questions. The effect is more prominent on plain LMs like T5-L than on numerate LMs like PReasM-L. (Top
Right) Histogram of percentage of questions for each step count. Because more complex questions are less frequent,
improvements by TEABREAC pretraining don’t show up as well on the average metric for the entire dataset.

quite visible in the aggregate metric (Table 1).

TEABREAC Ablations

To assess the contribution of various aspects of
TEABREAC to the overall performance, we per-
form ablation experiments with T5-L on the DROP
dataset. Fig. 6 shows the results for DROP con-
trast set and BPB set. Pretraining on just primi-
tive QA instances helps by 0.5-2.3 points, which
further improves by 2.7-3.5 points when adding
multi-step QA instances without QDMR-balancing
(§ 4.2). Finally, if we add multi-step instances with
QDMR-balancing instead, we get an additional 1.7-
2.8 points of improvement. DROP development set
has similar trends but with lower absolute differ-
ences, potentially due to shortcuts (see App. F).

6 Conclusions

Despite large LMs’ impressive reading abilities
and the availability of large scale multi-step QA
datasets requiring a rich set of reasoning skills, LM-
based QA models do not reliably learn to use such
skills for answering complex questions. In this
work, we show that the greater control that syn-
thetic contexts offer can be leveraged to create a
teaching dataset where models can learn a broad
range of reasoning skills in a reliable manner, espe-
cially for more complex questions.

Our transfer results from synthetic data to ac-

mws DROPBPB 632

64 E DROP CS

T5-L + Primitive  + Multi-step + QDMR
instances instances balancing

(w/o QDMR

balancing)

(311

Figure 6: & TEABREAC Ablations: All aspects of
TEABREAC pretraining data contribute to the overall
performance: (i) primitive QA instances (ii) multi-step
QA instances (iii) balancing of QDMR distribution.

tual QA datasets add to the growing line of work
that shows synthetic datasets can in fact be used
to inject useful skills are valuable for real, natural
language tasks. Given the artifact issues in real
datasets (specifically, in their contexts) and the dif-
ficulty in controlling for them via perturbations,
we present a viable alternative: leveraging exist-
ing multi-step questions for their broad reasoning
patterns but using synthetic contexts for carefully
constructing teaching datasets, where models can
learn the right way to reason.
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Ethical Considerations

The source dataset that TEABREAC is created
from, i.e., BREAK, is publicly available with the
MIT license which allows us to modify and release
the dataset. TEABREAC models and datasets are
released under the CC BY 4.0 License.'*

Since TEABREAC uses questions and decompo-
sitions from existing datasets, it may also inherit the
social biases present in these underlying datasets.
We haven’t taken any explicit steps to remove such
potential biases as it’s not in the scope of this work.
But we advise the users of the TEABREAC dataset
and models to take appropriate caution if deploying
them in any real user-facing application.

Limitations

We proposed a pretraining approach to teach a
broad range of multi-step reasoning skills to lan-
guage models. Even though such pretraining
doesn’t have to be repeated for each target dataset,
there is a significant computational cost to pretrain-
ing. E.g., our T5-Large pretraining takes 5 days on
a RTX A6000 GPU. This is precisely the reason
why we haven’t conducted experiments with even
larger models such as T5-11B. Identifying more
compute-efficient ways to teach models such skills
remains an interesting open problem.

In general, we expect TEABREAC pretraining to
improve downstream performance on the datasets
that require complex aggregation operations and
diverse compositions of them. We have shown the
effectiveness of TEABREAC pretraining on sev-
eral multi-step QA datasets which fit this criteria.
However, this is not the case for other multi-step
QA datasets like QASC, HotpotQA, 2WikiMul-
tihopQA, and MuSiQue, which involve simpler
compositions. TEABREAC pretraining thus may
not lead to similar gains on these datasets. More
broadly, multi-step QA datasets we have consid-
ered form only a small subset of the vast number
of QA and NLU tasks the NLP community is inter-
ested in. It’s possible that TEABREAC pretraining
is unhelpful and even harmful to the performance
of LMs on these other tasks where our learned
multi-step skills are not as relevant, such as com-
monsense understanding.

The skills taught in TEABREAC are limited
by the skills captured (or capturable) by QDMRs.
While expanding the scope of QDMR operators

14https ://creativecommons.org/licenses/by/4.0

and the datasets annotated with them can automati-
cally expand the scope of TEABREAC, the current
approach is still limited to datasets where one can
easily define and obtain QDMRs.

Lastly, while TEABREAC enables the teaching
of reasoning skills to any text-to-text model, these
black-box models don’t provide explanations, mak-
ing it hard to analyze their underlying reasoning.
Hence, we are unable to check whether models
trained on it are necessarily performing the required
multi-step reasoning. We only provide indirect em-
pirical evidence by evaluations on contrast sets.
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A Related Work

Question Decomposition. Several recent multi-
step QA datasets come with question decompostion
annotations (Khot et al., 2020; Talmor and Berant,
2018; Geva et al., 2021; Trivedi et al., 2022; Khot
et al., 2022a). These works have enabled the de-
velopment of explicit multi-step reasoning systems
that first decomposes a question into sub-questions,
and answers the sub-questions step-by-step to ar-
rive at the answer (Min et al., 2019b; Khot et al.,
2021; Trivedi et al., 2022; Patel et al., 2022; Khot
et al., 2022b). In contrast, our goal is to use de-
compositions to teach language models multi-step
reasoning implicitly (within the model).

Since each dataset has its own decomposition
format, they have led to narrow dataset-specific so-
lutions. In contrast, the BREAK dataset (Wolfson
et al., 2020) defined a standardized format for sev-
eral QA datasets. So in this work, we use them to
build a teaching dataset for broad reasoning skills.

Robust Multi-step Reasoning. Past work has
shown how to perturb existing multi-step QA in-
stances to prevent shortcuts and incentivize robust
reasoning. Jiang and Bansal (2019); Ding et al.
(2021) created adversarial multi-step question by
perturbing the reasoning chains in HotpotQA (Yang
et al., 2018). Other datasets (Trivedi et al., 2020,
2022; Lee et al., 2021) incentivize robustness via
minimally perturbed unanswerable questions. Our
approach targets a broader set of questions and
eliminates multiple reasoning shortcuts.

The closest work to ours is the Break-Perturb-
Build (BPB) dataset (Geva et al., 2022). BPB also
uses QDMR but to create contrastive questions via
small question perturbation (Kaushik et al., 2019;
Gardner et al., 2020). Unlike us, they use the ex-
isting context with reasoning shortcuts that can
be hard to eliminate with only question perturba-
tion (e.g., no distractors). Additionally it is mainly
used for evaluation (as we also do) and hasn’t been
shown to improve models by training on it.

Data Augmentation for QA. Several past works
have used data augmentation via synthetic datasets
to improve QA performance. Following works
are most relevant to our approach. Geva et al.
(2020) created a synthetic dataset using a few hand-
crafted templates for injecting numerical reasoning
skills (along with a specialized architecture). This
dataset was also later used to build a numeracy-
aware TS5 (Raffel et al., 2020) model: NT5 Yang

etal. (2021). Yoran et al. (2022) created a synthetic
dataset using 13 handcrafted multi-step QA reason-
ing patterns applied on wikipedia tables. Lastly, Pi
et al. (2022) showed that pretraining language mod-
els on synthetic dataset derived from input and out-
put of program executors (arithmetic, logic-based
and SQL-based) can also improve downstream QA
performance. In contrast to these works, we use ac-
tual questions from a wide range of real datasets to
teach a broad range of multi-step reasoning skills.

B Algorithm to Generate QA Instances

Algorithm 1 shows the pseudo-code for generat-
ing QA instances satisfying the three properties
discussed in § 4. The GenQAInstance function
takes question Q, QDMR D and expected answer
cardinality N of the answer, and attempts to gen-
erate a QA instance with desirable properties for
200 maximum tries. For a given question, QDMR
pair, we vary N € {1,2,3,4}. The facts repre-
sent list of grounded predicates that form the con-
text, state.ans represents stepwise answers for
gold reasoning chain (e.g., green boxes in Fig. 4),
and state. dis represents stepwise answers for dis-
tractor reasoning chain (e.g., red boxes in Fig. 4).
These are initialized to ()(L3) and updated during
the instance generation.

To construct a QA instance, we iterate through
the program (or QDMR) steps. For each step, we
create facts for the gold reasoning chain by ground-
ing the predicate in the QDMR and update the facts
and answer state accordingly using the execute
function. E.g., in step #2 in Fig. 4, the facts in the
top-half are added and {ABC, DXE} is marked
as the current answer state. The execute func-
tion will generate these facts and answers such that
properties P1 and P2 are satisfied or return False
if it can’t. We similarly generate facts and update
the state for the distractor reasoning chain (L7) by
using a perturbed (L6) QDMR predicate (e.g., Ed-
ward = Tom, 1st = 2nd in Fig. 4). This generates
the facts and reasoning chain shown in the lower
half of Fig. 4 ensuring property P3 is satisfied.

The implementation of execute function is de-
pendent on the program primitives (Table 7) and
will be provided in the released code. But broadly
speaking there are two classes of primitives: (1)
primitives like select and filter that need to
first add facts by grounding the predicate, and then
update the answer state for that step (e.g., step #1
and #2 in Fig. 4) (2) primitives like count with no
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Algorithm 1 Pseudo-code for generating QA in-
stances from question Q, QDMR D, and answer
cardinality N

1: function GENQAINSTANCE( Q, D, N)

2 for 1 <i < 200do > Max retries

3 state.ans, state.dis, facts < )

4: for step € qdmr.steps do

5: ans_succ <— execute(step, state.ans, facts) >
Update for gold reasoning chain

6: maybe_perturb(step) > Perturb predicate for
distractor chain

7. dis_succ «— execute(step, state.dis, facts) >
Update for distractor reasoning chain

8: if not ans_succ or not dis_succ then

9: failed < True

10: break

11: end if

12: end for

13: if (not failed and

14: accept(state, facts, ans_num)) then

15: return QA(Q, > question

16: facts, > context

17: state.ans[-1]) > gold answer

18: end if

19:  end for

20: end function

additional grounding of facts and only need to up-
date the state based on the underlying computation
(e.g., step #3 in Fig. 4).

If all the steps finish with success, we check if
the generation is acceptable (L14) before creating
a QA instance. For it to be acceptable, the gener-
ated answer cardinality must match the expected
value, the number of facts must be within 25, and
the final answer for gold and distractor reasoning
chains must be different. We create a reading com-
prehension QA instance with the input question Q
as question, facts as the context (concatenated after
shuffling), and the answer at the final step as the
gold answer.

C Our Implementation vs Previously
Reported Numbers

To test the effectiveness of TEABREAC pretrain-
ing, we compare models directly fine-tuned on
target datasets with models first pretrained on
TEABREAC and then fine-tuned on target datasets.
For a fair comparison of the fine-tuning experi-
ments, we do the direct fine-tuning on the target
datasets using our implementation instead of re-
lying of previously reported numbers which may
have other differences. Moreover, previously re-
ported numbers are only sparsely available across
the model-dataset pairs we consider, which is an-
other reason to use our implementation. Table 2

shows results obtained by our implementation vs
results reported by prior works (NT5 (Yang et al.,
2021), PReasM (Yoran et al., 2022) and POET (Pi
et al., 2022)), where available. Irrespective of im-
plementation, models with TEABREAC outper-
form prior approaches.

Note that following Yang et al. (2021) and Pi
et al. (2022), we employ character tokenization for
numbers, but it wasn’t employed by Yoran et al.
(2022). Therefore, our results obtained by our im-
plementation are significantly better than the ones
reported in Yoran et al. (2022) for DROP, where
numerical reasoning is crucial.

D Direct Comparison of TEABREAC vs
Previous Pretraining Methods

Table 1 shows that TEABREAC pretraining im-
proves both plain and numerate LMs. However,
since the numerate LMs (PReasM and POET) are
derived by pretraining plain LMs on the respec-
tive synthetic datasets, we can also directly com-
pare TEABREAC pretraining with PReasM and
POET pretraining. Table 3 shows this comparison.
The results are limited to T5-Large and Bart-Large
as PReasM and POET checkpoints are not avail-
able in other sizes considered. We find that LM
with TEABREAC pretraining outperforms LM with
PReasM or POET pretraining.

E Performance of LMs on TEABREAC

Since our goal is to teach models the reasoning
skills in TEABREAC, we assess how well mod-
els do on the TEABREAC dataset. As shown in
Table 4, models are able to learn both primitive
and multi-step QA skills required in TEABREAC.
On primitives instances models get 92-98 F1, and
on multi-step instances, models get 84-88 F1. We
show in our experiments that these scores are good
enough to make progress on real datasets. At the
same time, these aren’t perfect scores, demonstrat-
ing limitations of vanilla LM-based neural models.
Thus, TEABREAC can also serve as a benchmark
to help design better multi-step models.

F Results in Exact Match (EM) metric

In addition to the F1 results reported in Table 1,
we also report the corresponding EM numbers in
Table 5. We see the same trends discussed in § 5.
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In-distribution Evaluation Robustness Evaluation

Model DROP  TAT-QA IIRC-G  IIRC-R NumGLUE DROP-CS DROP-BPB
Bart-L (Pi et al. (2022)) 69.2 |-  46.7|- — — — — —
% Bart-L (our implemented) 723|733 44.8[43.9 669|650 448|417 46.0[41.9 537 51.5
2+ TEABREAC & 81.3(80.7 54.2|53.7 76.2|75.3 48.5|45.6 52.5|49.1 618 59.3
£ T5-L (Yoran et al. (2022)) 646|650  —  69.9]|67.1 47.4]41.0 — — —
A T5-L (our implemented) 76.1|77.1 472|463 68.0|63.6 454|389 497|429 534 56.4
+ TEABREAC & 81.4|81.1 583|569 72.9|72.8 46.1|457 533|498  60.1 63.2
NT5-S (Yang et al. (2021)) 70.3 | 70.8 — — — — — —
NT5-S (our implemented) 72.7173.0 51.9[51.9 713|714 452|443 37.0|327 464 51.8
2 + TEABREAC & 751|753 534|528 704|703 449|442 507|475 = 529 542
ﬂ PReasM-L (Yoran et al. (2022)) 72.3 | 72.6 — 77.4|75.0 50.0]45.1 — — —
5 PReasM-L (our implemented) 80.0|80.2 48.7|49.7 74.5|73.3 455|409 52.3|464 57.3 56.1
S +TEABREAC & 83.2[83.4 617|604 772|779 50.5]|47.6 53.1|492  60.8 64.4
Z POETL (Pi et al. (2022)) 80.6 -  49.6 |- — — — — —
POET-L (our implemented) ~ 79.6 | 79.4 52.8|53.1 71.8|73.8 475|443 507|455 583 55.6
+ TEABREAC & 82.2|82.1 55.6|54.1 76.8|76.0 49.1]|46.6 53.4[502  64.0 60.7

Table 2: Comparison of: (i) Results reported by prior works (NT5 (Yang et al., 2021), PReasM (Yoran et al., 2022)
and POET (Pi et al., 2022)) where available (ii) Results obtained from our implementation (iii) Results obtained by
our implementation with & TEABREAC pretraining. Irrespective of implementation, models with TEABREAC
outperform prior approaches. In-distribution evaluation scores are (dev | test) scores. Robustness evaluations are on
test-only contrast sets. The scores are in terms of F1 metric. Green (underlined) indicates TEABREAC pretraining
improves the underlying model’s performance, while red (not underlined) indicates it does not.

In-distribution Evaluation Robustness Evaluation
Model DROP TAT-QA IIRC-G IIRC-R NumGLUE DROP-CS DROP-BPB
T5-L 76.1|77.1 472|463 68.0|63.6 454|389 49.7]429 53.4 56.4
PReasM (T5-L based) 80.0|80.2 48.7]49.7 745|733 455|409 523|464 57.3 56.1
T5-L + TEABREAC 81.4|81.1 583|569 729|728 46.1|457 53.3]49.8 60.1 63.2
Bart-L 723|733 448|439 669|650 448|417 46.0|41.9 53.7 51.5
POET-L (Bart-L based) 79.6|79.4 52.8|53.1 71.8|73.8 475|443 50.7|455 58.3 55.6
Bart-L + TEABREAC 81.3]|80.7 54.2|53.7 762|753 48.5|45.6 52.5]|49.1 61.8 59.3

Table 3: F1 scores of in-distribution and robustness evaluation of large-sized models with previous and our
pretraining. Pretraining on TEABREAC leads to better results than pretraining on PReasM or POET. Green
(underlined) indicates TEABREAC pretraining leads to better results, while red (not underlined) indicates PReasM
or POET leads to better results.
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Model & Primitive & Multi-step
Bart-L & 91.8 86.5
T5-L & 93.8 87.6
T5-3B &z 94.2 88.9
NT5-S & 98.1 84.1
PReasM-L & 94.2 88.3
POET-L & 91.5 87.4

Table 4: F1 scores of models pretrained on TEABREAC
on its Primitive and Multi-step dev sets. Models learn
the skills required in TEABREAC during pretraining
well, but achieving perfect score is challenging for
vanilla LM-based neural models.

84
82
80
78
76
74
72
70

+ Primitive + Multi-step  + QDMR

T5-L
instances
(w/o QDMR
balancing)

instances balancing

Figure 7: TEABREAC Ablations: All the three aspects
of TEABREAC pretraining data contribute to overall
performance: (i) primitive QA instances (ii) multi-step
QA instances (iii) balancing of QDMRs to construct
the multi-step QA dataset. The results are F1 scores
on DROP dev set. The effect on DROP dev set is less
prominent than in DROP CS and BPB sets, potentially
due to shortcuts in DROP dev set.

TEABREAC Ablations on DROP dev set

TEABREAC ablation on DROP dev set is provided
in Fig. 7.

G Implementation Details

We train all models on a RTX A6000 (48GB) GPU.
We pretrain on TEABREAC by sampling a batch
from multi-step and primitive synthetic instances
in an alternating fashion. The hyperparameters for
pretraining and fine-tuning are given in Table 6.
The only hyperparameter we sweeped over is learn-
ing rate (107°, 5 x 107°, 1074, 5 x 1074, 10793).
The number of epochs were set to a large num-
ber with early stopping based on validation score.
We’ve used Adafactor optimizer for all our exper-

iments (Shazeer and Stern, 2018). We selected
training hyper-parameter (learning rate) for each
baseline model and dataset, based on the valida-
tion set performance. Our fine-tuning experiments
using models pretrained on TEABREAC use this
identical learning rate.

H Examples of Multi-Step QA Instances

Example multi-step QA instances with project
and boolean primitives are shown in Fig. 8.

I List of Primitives (Python Functions)

List of primitives (python functions) and a corre-
sponding example is given in Table 7.
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In-distribution Evaluation Robustness Evaluation

Model DROP TAT-QA IIRC-G IIRC-R  NumGLUE DROP-CS DROP-BPB
Bart-L 69.2|70.0 374|358 624|605 41.7|39.1 44.5|404 47.0 46.7
, +TEABREACE& 78.0|77.1 459|439 724[709 452|425 509]47.6 52.8 53.9
5 T5-L 732|739 394|374 640]593 424|360 482|413 46.7 51.2
£ +TEABREAC @& 782|778 504]47.8 69.1]69.0 43.1]|427 51.7|483 52.7 57.3
& T53B 79.1|79.5 42.5|43.1 663|642 44.0|380 53.4|482 54.7 58.3
+TEABREAC & 83.9(83.8 582|558 745|754 49.01484 558|528 58.6 64.4
NTS5-S 69.2]69.4 442|423 66.6|669 419|417 342|292 38.8 46.3
<  +TEABREACE& 717|717 44.8[433 656653 42.0[41.6 49.3]46.0 45.5 48.2
—
o PReasM-L 76.9|77.0 40.8|41.2 70.0|69.1 42.1|38.1 50.9|44.8 49.9 50.6
5§  +TEABREACE 80.1]80.1 54.5|51.6 73.01729 473|446 51.5|47.7 53.6 59.0
§ POET-L 76.6|763 456|446 67.6|69.7 444|417 492|440 51.2 50.9
+TEABREAC & 79.1(78.6 47.5|450 722|715 462|440 519|486 55.4 54.8

Table 5: EM scores of in-distribution and robustness evaluation of language models (LMs) with and without
& TEABREAC pretraining on dev and test sets. Pretraining LMs on TEABREAC improves their in-distribution
performance and robustness across multiple QA datasets, for both plain and numerate LMs. In-distribution evaluation
scores are (dev | test) scores. Robustness evaluations are on test-only contrast sets. The suffixes -3B’, ‘-L’ and
‘-S’ refer to model sizes 3B, large and small, respectively. Green (underlined) indicates TEABREAC pretraining

improves the underlying model’s performance, while red (not underlined) indicates it does not.

Q: Who was Liz Taylor married too that died on 1958-03-22?

named entities #2: list of named entities #3: list of named entities
liz taylor married to") (“when #1 died”) ("#1", "#2", "03-22-1958")

who was Liz Taylor married to = i
who was Liz Taylor married to = KSX s died  March 22, 1558 >

who was Liz Taylor married to = QFY
who was Liz Taylor married to = RZF when PYS died = March 22, 1958
who was Liz Taylor married to = ZZH when QFY died = August 16, 1533

who was Confucius married to = AFE when AFE was born = March 22, 1958
who was Confucius married to = EBI
who was Confucius married to = PMQ
who was Confucius married to = UFL

Synthetic Context

when EBI was born = January 02, 1990
when PMQ was born = February 01, 1960

#2: boolean #3: list of named entities
(“if Kosar started the game at quarterback for th ys (["#1", "#2"] "true")

Jerry started the game at quarterback for the cowboys >

o [

#1: boolean
(“if Aikmen started the game at quarterback for the coy s”) >

Aikmen started the game at quarterback for the cowboys >

Synthetic Context

I -

Figure 8: Synthetic reading comprehension QA instances involving project (top) and boolean (bottom) primitives.
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Model Dataset LR  Epochs BS

Bart-L TEABREAC 107° 20 16
T5-L TEABREAC 10°* 20 8
T5-3B TEABREAC 5x107° 10 8
NT5-S TEABREAC 1073 20 32
PReasM-L TEABREAC 5 x 107> 20 8
POET-L TEABREAC 107° 20 16

Bart-L DROP 107° 20 8
T5-L DROP 1074 20 8
T5-3B DROP 5x10° 10 8
NT5-S DROP 1073 40 32

PReasM-L DROP 5x10° 20 8
POET-L DROP 107° 20 8
Bart-L TAT-QA 1075 20 8
T5-L TAT-QA 1074 20 8
T5-3B TAT-QA 5x107° 10 8
NT5-S TAT-QA 1073 40 32
PReasM-L TAT-QA 5x10° 20 8
POET-L  TAT-QA 107° 20 8
Bart-L IIRC 1075 20 8
T5-L IIRC 1074 20 8
T5-3B IIRC 5x107° 10 8
NT5-S IIRC 1073 40 32
PReasM-L  IIRC 5x107° 20 8
POET-L IIRC 107° 20 8
Bart-L NumGLUE 107° 20 8
T5-L  NumGLUE 10~* 20 8
T5-3B  NumGLUE 5x 107> 10 8

NT5-S NumGLUE 1073 40 32
PReasM-L. NumGLUE 5x 107> 20 8
POET-L NumGLUE 107° 20 8

Table 6: Top: Hyperparameters (HPs) for pretraining
LMs on TEABREAC. For large and 3B sized models,
each epoch constitutes 200000/batch-size steps. For
the small sized model (NT5-S), each epoch constitutes
2000000/batch-size steps. For each step, we uniformly
randomly sample a batch of TEABREAC multi-step
instances or primitive instances. We’ve used identical
HPs for pretraining ablations discussed in § 5.1. Bot-
tom: HPs for fine-tuning LMs on target datasets. We
use the same HPs for fine-tuning LMs with or without
TEABREAC pretraining. The HPs for IIRC-G and IIRC-
R experiments are the same. LR is learning rate and BS
is batch size.
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Table 7: List of primitives (python functions) and a corresponding example.

Primitive Example

compare_numbers(#1, #2, “>") = False

compare_numbers State:
#1: 25
#2: 28

compare_dates(#1, #2, “>") = False

compare_dates State:
#1: 25 Jan 2012
#2: 28 Jan 2012

maximum_date([#1, #2]) = 28 Jan 2012

maximum_date State:
#1: 25 Jan 2012
#2: 28 Jan 2012

minimum_date([#1, #2]) = 25 Jan 2012

minimum_date State:
#1: 25 Jan 2012
#2: 28 Jan 2012

date_subtraction(#1, #2, “days") = 3

date_subtraction State:
#1: 25 Jan 2012
#2: 28 Jan 2012

arg_maximum_date([#1, #2]) = #2

arg_maximum_date State:
#1: 25 Jan 2012
#2: 28 Jan 2012

arg_minimum_date([#1, #2]) = #1

arg_minimum_date State:
#1: 25 Jan 2012
#2: 28 Jan 2012

arg_bool([#1, #2], “true") = #1

arg_bool State:
#1: True
#2: False

count(#1) = 3

count State:

#1: [ABC, XZE, PQR]

addition(#1) = 2657.3

addition State:

#1: [3, 2564.2, 90.1]

subtraction(100, #1): 75

subtraction
State:

#1: 25

multiplication(#1, 5): 125

multiplication State:

#1: 25

division(#1, 100): 254.2
division State:
#1: 25420

Continued on next page
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Table 7 — Continued from previous page

Primitive

Example

mean

mean(#1) = 885.8

State:
#1: [3,2564.2,90.1]

maximum_number

maximum_number(#1) = 2564.2

State:
#1: [3, 2564.2, 90.1]

minimum_number

minimum_number(#1) = 3

State:
#1: [3, 2564.2, 90.1]

arg_maximum_number

arg_maximum_number([#1, #2, #3]) = #2

State:
#1:3

#2: 2564.2
#3: 90.1

arg_minimum_number

arg_minimum_number([#1, #2, #3]) = #1

State:
#1:3

#2: 2564.2
#3: 90.1

kth_highest

kth_highest(#1, 2) = 90.1

State:
#1: [3, 2564.2, 90.1]

kth_lowest

kth_lowest(#1, 2) = 90.1

State:
#1: [3, 2564.2, 90.1]

are_items_same

are_items_same(#1, #2) = False

State:
#1: ABC
#2: EDX

are_items_different

are_items_different(#1, #2) = True

State:
#1: ABC
#2: EDX

filter_a_where_b_is_max_num

filter_a_where_b_is_max_num(#1, #2) = PQR

State:
#1: [ABC, PQR, MNZ]
#2: [3, 2564.2, 90.1]

filter a_where_b_is_min num

filter_a_where_b_is_min_num(#1, #2) = ABC

State:
#1: [ABC, PQR, MNZ]
#2: 3, 2564.2, 90.1]

filter_a_where_b_is_given_value

filter_a_where_b_is_given_value(#1, #2, MNO) = ABC

State:
#1: [ABC, PQR, MNZ]
#2: [MNO, XER, OIY]

Continued on next page
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Table 7 — Continued from previous page

Primitive Example

filter_a_where_b_is_compared_to(#1, #2, 80, >) = [PQR,
MNZ]
filter_a_where_b_is_compared_to State:
#1: [ABC, PQR, MNZ]
#2:[3, 2564.2, 90.1]

filter_a_where_b_is_in_range_num(#1, #2, 80, 100) =
[MNZ]
filter_a_where_b_is_in_range State:
#1: [ABC, PQR, MNZ]
#2: (3, 2564.2, 90.1]

filter_a_where_b_is_compared_to_date(#1, #2, 25 Feb
2012, >) = [PQR, MNZ]
filter_a_where_b_is_compared_to_date State:
#1: [ABC, PQR, MNZ]
#2: [25 Jan 2012, 18 March 2012, 13 Oct 2019]

filter_a_where_b_is_in_range_date(#1, #2, 25 Feb 2012,
1 Nov 2021, 100) = [PQR, MNZ]
filter_a_where_b_is_in_range_date State:
#1: [ABC, PQR, MNZ]
#2: [25 Jan 2012, 18 March 2012, 13 Oct 2019]

filter_a_where_b_is_max_date(#1, #2) = MNZ

filter_a_where_b_is_max_date State:
#1: [ABC, PQR, MNZ]
#2: [25 Jan 2012, 18 March 2012, 13 Oct 2019]

filter_a_where_b_is_min_date(#1, #2) = ABC

filter_a_where_b_is_min_date State:
#1: [ABC, PQR, MNZ]
#2: [25 Jan 2012, 18 March 2012, 13 Oct 2019]

grouped_count(#1, #2) = ABC: 2, XYI: 2, PQR: 1

grouped_count State:
#1: [ABC, XYI, ABC, PQR, XYI]
#2: [UIQ, QWA, OUE, UHI, RVC]

grouped_sum(#1, #2) = ABC: 4, XYI: 7, PQR: 4

grouped_sum State:
#1: [ABC, XYI, ABC, PQR, XYT]
#2:[1,2,3,4,5]

grouped_mean(#1, #2) = ABC: 2, XYI: 3.5, PQR: 4

grouped_mean State:
#1: [ABC, XYI, ABC, PQR, XYI]
#2:[1,2,3,4,5]

union(#1, #2, #3) = [ABC, PQR, MNO, JHI, KMR]

_ State:

union #1: [ABC, PQR]
#2: [MNO]
#3: [JHI, KMR]

Continued on next page
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Table 7 — Continued from previous page

Primitive Example

intersection(#1, #2) = [PQR]
intersection State:

#1: [ABC, PQR, MNO]

#2: [PQR]

arg_intersection

arg_intersection(#1, #2, #3) = [WEC]

State:

#1: [XYI, ORE, WEC]
#2: [ABC, PQR, MNO]
#3: [null, null, MNO]

list_subtraction

list_subtraction(#1, #2) = [XYI, WEC]

State:
#1: [XYI, ORE, WEC] ; #2: [ORE]

logical_and

logical_and(#1, #2) = False

State:
#1: False ; #2: True

logical_or

logical_or(#1, #2) = True

State:
#1: False ; #2: True

select

select("touchdowns by Edwards") = [ABC, DXE, FGH]

Facts in context:

touchdowns by Edwards = ABC
touchdowns by Edwards = DXE
touchdowns by Edwards = FGH

filter

filter(“#1 from 1st quarter") = [ABC, DXE]

State:
#1: [ABC, DXE]

Facts in context:

what is from 1st quarter? = ABC
what is from 1st quarter? = DXE
what is from 1st quarter? = MNF
what is from 1st quarter? = IOU

project

project(“when #1 died") = [March 22, 1958]

State:
#1: [MNS]

Facts in context:

when PYS died = March 22, 1958
when MNS died = March 22, 1958
when QFY died = August 16, 1533

boolean

boolean(“if Aikmen started the game at quarterback for
the cowboys") = True

Facts in context:
Aikmen started the game at quarterback for the cowboys
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J Examples of Instances for Individual
Primitives

Examples of template based QA instances for teaching
individual primitives are given in Table 8.
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Table 8: Examples QA instances for individual primitives (python functions)

Primitive

Example

compare_numbers

Quesion: Is 984,486.24 greater than 594147.75?
Context:
Answer : [’yes’]

compare_dates

Quesion: Is 1934-9-4 greater than 27 May 18997
Context:
Answer : [’yes’]

maximum_date

Quesion: Which of the following dates come later?
Context: 11/30/1690 , 1690-05-17
Answer : [’November 30, 1690’]

minimum_date

Quesion: Which of the following dates come before the
other?

Context: 1925-4-12, 18 Apr 1696

Answer : [’ April 18, 1696’]

date_subtraction

Quesion: How many days passed between 1567-6-29 and
May 28, 15677

Context:

Answer : [’32’]

arg_maximum_date

Quesion: Which event has highest date: OUM or NKE?
Context: Event OUM has date 1977-3-13. Event NKE
has date November, 5 2011.

Answer : ['NKE’]

arg_minimum_date

Quesion: Which event happened earliest: KSX or KBO
or JIT?

Context: Event KSX has date 11/9/1705. Event KBO has
date 04 Jul, 1786. Event JJT has date 04/11/1729.
Answer : ['KSX’]

count

Quesion: How many total entities the following list has?
Context: DMX NQX LFD RIN AMG
Answer : [’5°]

addition

Quesion: Given the list of numbers, give their total sum.
Context: 977.98 ; 710 ; seven ; 4.72
Answer : ['1699.7°]

subtraction

Quesion: What is 721,251 - 325617
Context:
Answer : [’688690’]

multiplication

Quesion: If you multiply forty-eight with 41, what do
you get?

Context:

Answer : ['1968’]

division

Quesion: What is 47 divided by 6 in nearest integer?
Context:
Answer : ['7]

mean

Quesion: What is the average of the following numbers
in nearest integer?

Context: 172 ;691

Answer : [’431°]

maximum_number

Quesion: Given the following list, what is the largest
number?

Context: 6603 ; 3.76 ; 636,337.65 ; 91.72

Answer : [’636337.65’]

minimum_number

Quesion: What is the smallest of the following numbers?
Context: 60,810.74 ;2.24 ; 48.8
Answer : ['2.24°]
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Quesion: Which entity has biggest value: ROJ or ZZH or
KFI?

arg_maximum_number Context: Entity ROJ has value 91,889. Entity ZZH has
value 0.93. Entity KFI has value 9,223.7.
Answer : ['ROJ’]

Quesion: Which entity has lowest value: TXM or KPG
or JLD?

arg_minimum_number Context: Entity TXM has value 195.35. Entity KPG has
value 861878. Entity JLD has value 41.
Answer : ['JLD’]

Quesion: Give the 2nd maximum value of #17?
Context: #17 has values 20787.56, 8265.18. #9 has values
January 25, 1787, January 27, 1787, January 08, 1787,
January 18, 1787. #3 has values February 14, 1994. #18
has values 3.47, 4692.13, 735.31.

Answer : [’8265.18’]

kth_highest

Quesion: Which is the 3rd lowest value of #1?

Context: #7 has values July 24, 1506, July 04, 1506, July
kth_lowest 02, 1506, July 15, 1506. #1 has values 2, 9, 23866. #11

has values KFI, DXK, TFM.

Answer : [’23866’]

Quesion: Are the following entities the same?
are_items_same Context: Jan 07, 1696 and 01-7-1696.
Answer : [‘yes’]

Quesion: Are the following entities different?
are_items_different Context: HUU and 09-29-1771.
Answer : [’yes’]

Quesion: What entity has biggest value?

Context: Entity OGQ has value 59. Entity HDU has value
94. Entity KLM has value 28,742. Entity LGV has value
713. Entity KGH has value 701. Entity DXK has value
373.

Answer : ['KLM’]

filter_a_where_b_is_max_num

Quesion: Which entity has the minimum value?
filter a where b is min num Context: Entity FYO has value 266. Entity XHY has
- e value 199052. Entity EQO has value 534.
Answer : ['FYO’]

Quesion: Which entities with value equal to 6.45?
Context: Entity KSX has value 6.45. Entity NLV has
value 887.41. Entity OJP has value 603145.31.
Answer : ['KSX’]

filter_a_where_b_is_given_value

Quesion: Entities that have value larger than 948768.92?

. Context: Entity AFE has value 871781. Entity RQX has
filter_a_where_b_is_compared_to value 989.517.24.

Answer : ['RQX’]

Quesion: List the entities with date below Jul 20 1646?
Context: Entity ZBK has date 9-12-1560. Entity AGU
has date July 17 1953.

Answer : ["ZBK’]

filter_a_where_b_is_compared_to_date

Quesion: Which entity has latest date?

. Context: Entity SML has value 11-28-1882. Entity PYS
filter_a_where_b_is_max_date has value Nov 19 1882.

Answer : ['SML’]

Quesion: What entity has least recent date?

Context: Entity SDA has value 5 March, 1523. Entity
filter_a_where_b_is_min_date HXJ has value 14 March 1523. Entity RZO has value

1-26-1523. Entity ZMH has value 23 Jul, 1523.

Answer : ['RZO’]
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Quesion: How many times do each of EBC, HNQ occur
in #14?

grouped_count Context: #14 has HNQ, EBC, HNQ. #3 has OZB, LNW,
LYP, AGU, HVP, SDA. #17 has ULN, ZZH, RZO
Answer : ['1°,°2’]

Quesion: What are the addition of values for each of
QWU, JLD?
rouped sum Context: QWU has value 179541.17. JLD has value
grouped.. 6,641.78. JLD has value 3.15. QWU has value 6,053.93.
QWU has value 44,251.33. JLD has value 411.83.
Answer : ['229846.43°, >7056.76’]

Quesion: For each of TKR, NLV, what are the mean of
values in integers?

grouped_mean Context: TKR has value 929. TKR has value 737. TKR
has value ninety-five. NLV has value 928.
Answer : [’587’,°928’]

Quesion: Give answer union of #20, #12, #13?

Context: #20 has answer 29.77. #12 has answer KBE.
union #11 has answer June 10, 1701. #13 has answer January

23, 1503.

Answer : ['29.77°, ’KBE’, ’January 23, 1503’]

Quesion: List the entities that occur in both #10 and #7?
intersection Context: #1 has entities ICU, WAT. #10 has entities WAT,

ICU. #7 has entities WAT, ICU.

Answer : ['ICU’, "WAT’]

Quesion: List the entities contain values common in both
#9 and #20?
are intersection Context: Entity KBE has value UJI for #20. Entity KLM
&~ has value ARU for #20. Entity KBE has no value for #9.
Entity KLM has value ARU for #9.
Answer : ['KLM’]

Quesion: What is logical AND of the given booleans?
logical_and Context: True False
Answer : ['no’]

Quesion: What is logical OR of the given booleans?
logical_or Context: False False
Answer : ['no’]
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