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Abstract

Commit messages are important for software
development and maintenance. Many neu-
ral network-based approaches have been pro-
posed and shown promising results on auto-
matic commit message generation. However,
the generated commit messages could be repet-
itive or redundant. In this paper, we pro-
pose RACE, a new retrieval-augmented neu-
ral commit message generation method, which
treats the retrieved similar commit as an ex-
emplar and leverages it to generate an accu-
rate commit message. As the retrieved com-
mit message may not always accurately de-
scribe the content/intent of the current code diff,
we also propose an exemplar guider, which
learns the semantic similarity between the re-
trieved and current code diff and then guides
the generation of commit message based on
the similarity. We conduct extensive experi-
ments on a large public dataset with five pro-
gramming languages. Experimental results
show that RACE can outperform all base-
lines. Furthermore, RACE can boost the per-
formance of existing Seq2Seq models in com-
mit message generation. Our data and source
code are available at https://github.com/
DeepSoftwareAnalytics/RACE.

1 Introduction

In software development and maintenance, source
code is frequently changed. In practice, code
changes are often documented as natural language
commit messages, which summarize what (con-
tent) the code changes are or why (intent) the code
is changed (Buse and Weimer, 2010; Cortes-Coy
et al., 2014). High-quality commit messages are
essential to help developers understand the evo-
lution of software without diving into implemen-
tation details, which can save a large amount of

§Yanlin Wang and Hongbin Sun are the corresponding
authors.

†Work done during the author’s employment at Microsoft
Research Asia

time and effort in software development and main-
tenance (Dias et al., 2015; Barnett et al., 2015).
However, it is difficult to write high-quality com-
mit messages due to lack of time, clear motivation,
or experienced skills. Even for seasoned develop-
ers, it still poses a considerable amount of extra
workload to write a concise and informative com-
mit message for massive code changes (Nie et al.,
2021). It is also reported that around 14% of com-
mit messages over 23,000 projects in SourceForge
are left empty (Dyer et al., 2013). Thus, automat-
ically generating commit messages becomes an
important task.

Over the years, many approaches have been
proposed to automatically generate commit mes-
sages. Early studies (Shen et al., 2016; Cortes-Coy
et al., 2014) are mainly based on predefined rules
or templates, which may not cover all situations or
comprehensively infer the intentions behind code
changes. Later, some studies (Liu et al., 2018;
Huang et al., 2017, 2020) adopt information re-
trieval (IR) techniques to reuse commit messages of
similar code changes. They can take advantage of
similar examples, but the reused commit messages
might not correctly describe the content/intent of
the current code change. Recently, some Seq2Seq-
based neural network models (Loyola et al., 2017;
Jiang et al., 2017; Xu et al., 2019; Liu et al., 2019;
Jung, 2021) have been proposed to understand code
diffs and generate the high-quality commit mes-
sages. These approaches show promising perfor-
mance, but they tend to generate high-frequency
and repetitive tokens and the generated commit
messages have the problem of insufficient infor-
mation and poor readability (Wang et al., 2021a;
Liu et al., 2018). Some studies (Liu et al., 2020;
Wang et al., 2021a) also explore the combination
of neural-based and IR-based techniques. Liu et al.
(2020) propose an approach to rank the retrieved
commit message (obtained by a simple IR-based
model) and the generated commit message (ob-
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tained by a neural network model). Wang et al.
(2021a) propose to use the similar code diff as aux-
iliary information in the inference stage, while the
model is not trained to learn how to effectively uti-
lize the information of retrieval results. Therefore,
both of them fail to take advantage of the informa-
tion of retrieved similar results well.

In this paper, we propose a novel model RACE
(Retrieval-Augmented Commit mEssage genera-
tion), which retrieves a similar commit message as
an exemplar, guides the neural model to learn the
content of the code diff and the intent behind the
code diff, and generates the readable and informa-
tive commit message. The key idea of our approach
is retrieval and augmentation. Specifically, we first
train a code diff encoder to learn the semantics
of code diffs and encode the code diff into high-
dimensional semantic space. Then, we retrieve the
semantically similar code diff paired with the com-
mit message on a large parallel corpus based on the
similarity measured by vectors’ distance. Next, we
treat the similar commit message as an exemplar
and leverage it to guide the neural-based models to
generate an accurate commit message. However,
the retrieved commit messages may not accurately
describe the content/intent of current code diffs and
may even contain wrong or irrelevant information.
To avoid the retrieved samples dominating the pro-
cessing of commit message generation, we propose
an exemplar guider, which first learns the semantic
similarity between the retrieved and current code
diff and then leverages the information of the ex-
emplar based on the learned similarity to guide the
commit message generation.

To evaluate the effectiveness of RACE, we
conduct experiments on a large-scale dataset
MCMD (Tao et al., 2021) with five programming
language (Java, C#, C++, Python and JavaScript)
and compare RACE with 11 state-of-the-art ap-
proaches. Experimental results show that: (1)
RACE significantly outperforms existing state-of-
the-art approaches in terms of four metrics (BLUE,
Meteor, Rouge-L and Cider) on the commit mes-
sage generation. (2) RACE can boost the per-
formance of existing Seq2Seq models in com-
mit message generation. For example, it can
improve the performance of NMTGen (Loyola
et al., 2017), CommitBERT (Jung, 2021), CodeT5-
small (Wang et al., 2021b) and CodeT5-base (Wang
et al., 2021b) by 43%, 11%, 15%, and 16% on av-
erage in terms of BLEU, respectively. In addition,

we also conduct human evaluation to confirm the
effectiveness of RACE.

We summarize the main contributions of this
paper as follows:

• We propose a retrieval-augmented neural com-
mit message generation model, which treats
the retrieved similar commit as an exemplar
and leverages it to guide neural network model
to generate informative and readable commit
messages.

• We apply our retrieval-augmented framework
to four existing neural network-based ap-
proaches (NMTGen, CommitBERT, CodeT5-
small, and CodeT5-base) and greatly boost
their performance.

• We perform extensive experiments includ-
ing human evaluation on a large multi-
programming-language dataset and the results
confirm the effectiveness of our approach over
state-of-the-art approaches.

2 Related Work

Code intelligence, which leverages machine learn-
ing especially deep learning-based method to un-
derstand source code, is an emerging topic and
has obtained the promising results in many soft-
ware engineering tasks, such as code summariza-
tion (Zhang et al., 2020; Shi et al., 2021a, 2022b;
Wang et al., 2020) and code search (Gu et al., 2018;
Du et al., 2021; Shi et al., 2022a). Among them,
commit message generation plays an important role
in the software evolution.

In early work, information retrieval techniques
are introduced to commit message generation (Liu
et al., 2018; Huang et al., 2017, 2020). For instance,
ChangeDoc (Huang et al., 2020) retrieves the most
similar commits according to the syntax or seman-
tics in the code diff and reuses commit messages
of similar code diffs. NNGen (Liu et al., 2018) is a
simple yet effective retrieval-based method using
the nearest neighbor algorithm. It firstly recalls the
top-k similar code diffs in the parallel corpus based
on cosine similarity between bag-of-words vectors
of code diffs. Then select the most similar result
based on BLEU scores between each of them (top-
k results) and the input code diff. These approaches
can reuse similar examples and the reused commit
messages are usually readable and understandable.

Recently, many neural-based approaches (Loy-
ola et al., 2017; Jiang et al., 2017; Xu et al., 2019;
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Liu et al., 2019, 2020; Jung, 2021; Dong et al.,
2022; Nie et al., 2021; Wang et al., 2021a) have
been used to learn the semantic of code diffs and
translate them into commit messages. For exam-
ple, NMTGen (Loyola et al., 2017) and Commit-
Gen (Jiang et al., 2017) treat the code diffs as plain
texts and adopt the Seq2Seq neural network with
different attention mechanisms to translate them
into commit messages. CoDiSum (Xu et al., 2019)
extracts both code structure and code semantics
from code diffs and jointly models them with a
multi-layer bidirectional GRU to better learn the
representations of code diffs. PtrGNCMsg (Liu
et al., 2019) incorporates the pointer-generator net-
work into the Seq2Seq model to handle out-of-
vocabulary (OOV) words. CommitBERT lever-
age CodeBERT (Feng et al., 2020), a pre-trained
language model for source code, to learn the se-
mantic representations of code diffs and adopt a
Transformer-based (Vaswani et al., 2017) decoder
to generate the commit message. These approaches
show promising results on the generation of com-
mit messages.

Recently, introducing retrieved relevant results
into the training process has been found useful in
most generation tasks (Lewis et al., 2020; Yu et al.,
2021; Wei et al., 2020). Some studies (Liu et al.,
2020; Wang et al., 2021a) also explore the combi-
nation of neural-based models and IR-based tech-
niques to generate commit messages. ATOM (Liu
et al., 2020) ensembles the neural-based model and
the IR-based technique through the hybrid rank-
ing. Specifically, it uses BiLSTM to encode ASTs
paths extracted from ASTs of code diffs and adopt
a decoder to generate commit messages. It also
uses TF-IDF technique to represent code diffs as
vectors and retrieves the most similar commit mes-
sage based on cosine similarity. The generated and
retrieved commit messages are finally prioritized
by a hybrid ranking module. CoRec (Wang et al.,
2021a) is also a hybrid model and only considers
the retrieved result during the inference. Specif-
ically, at the training stage, they use an encoder-
decoder neural model to encode the input code diffs
by an encoder and generate commit messages by a
decoder. At the inference stage, they first use the
trained encoder to retrieve the most similar code
diff from the training set. Then they reuse a trained
encoder-decoder to encode the input and retrieved
code diff, combine the probability distributions (ob-
tained by two decoders) of each word, and generate

the final commit message step by step. In summary,
ATOM does not learn to refine the retrieved results
or the generated results, and CoRec is not trained
to utilize the information of retrieval results. There-
fore, both of them fail to take full advantage of
the retrieved similar results. In this paper, we treat
the retrieved similar commit as an exemplar and
train the model to leverage the exemplar to enhance
commit message generation.

3 Proposed Approach

The overview of RACE is shown in Figure 1. It
includes two modules: retrieval module and gener-
ation module. Specifically, RACE firstly retrieves
the most semantically similar code diff paired with
the commit message from the large parallel training
corpus. The semantic similarity between two code
diffs is measured by the cosine similarity of vectors
obtained by a code diff encoder. Next, RACE treats
the retrieved commit message as an example and
uses it to guide the neural network to generate an
understandable and concise commit message.

3.1 Retrieval module

In this module, we aim to retrieve the most seman-
tically similar result. Specifically, we first train
an encoder-decoder neural network on the large
commit message generation dataset. The encoder
is used to learn the semantics of code diffs and
encode code diffs into a high-dimension seman-
tic space. Then we retrieve the most semantically
similar code diff paired with the commit message
from the large parallel training corpus. The seman-
tic similarity between two code diffs is measured
by the cosine similarity of vectors obtained by a
well-trained code diff encoder.

Recently, encoder-decoder neural network mod-
els (Loyola et al., 2017; Jiang et al., 2017; Jung,
2021), which leverage an encoder to learn the
semantic of code diff and employ a decoder to
generate the commit message, have shown their
superiority in the understanding of code diffs
and commit messages generation. To enable the
code diff encoder to understand the semantics
of code diffs, we train it with a commit mes-
sage generator on a large commit message gen-
eration dataset, which consists of about 0.9 million
<code diff , commit message> pairs.

To capture long-range dependencies (e.g. a vari-
able is initialized before the changed line) and
more contextual information of code diffs, we em-
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Figure 1: The architecture of RACE. It includes two modules: retrieval module and generation module. The retrieval
module is used to retrieve the most similar code diff and commit message. The generation module leverages the
retrieved result to enhance the performance of neural network models.

ploy a Transformer-based encoder to learn the se-
mantic representations of input code diffs. As
shown in Figure 1, a Transformer-based encoder is
stacked with multiple encoder layers. Each layer
consists of four parts, namely, a multi-head self-
attention module, a relative position embedding
module, a feed forward network (FFN) and an add
& norm module. In b-th attention head, the input
Xb =

(
xb
1 ,x

b
2 , ...,x

b
l

)
( where Xb = X[(b− 1) ∗

headdim : b ∗ headdim], X is the sequence of code
diff embedding, headdim is the dimension of each
head and l is the input sequence length. ) is trans-
formed to (Headb = headb

1 ,head
b
2 , ...,head

b
l )

by:

headb
i =

l∑

j=1

αij

(
WVxb

j + pV
ij

)

eij =
(WQxb

i )
T
(
WKxb

j + pK
ij

)
√
dk

(1)

where αij =
exp eij∑n

k=1 exp eik
, WQ, WK and WV are

learnable matrix for queries, keys and values. dk
is the dimension of queries and keys; pK

ij and pV
ij

are relative positional representations for positions
i and j.

The outputs of all heads are concatenated and
then fed to the FFN modules which is a multi-layer
perception. The add & norm operation are em-
ployed after the multi-head attention and FFN mod-
ules. The calculations are as follows:

Head = Concat
(
Head1,Headd,HeadB

)

Hid = add & norm (Head,X)

Enc = add & norm (FFN (Hid) ,Hid)

(2)

where add & norm (A1,A2) = LN (A1 +A2),
B is the number of heads and LN is layer nor-
malization. The final output of encoder is sent to
Transformer-based decoder to generate the commit
message step by step. We use cross-entropy as loss
function and adopt AdamW (Loshchilov and Hut-
ter, 2019) to optimize the parameters of the code
diff encoder and the decoder at the top of Figure 1.

Next, the retrieval module is used to retrieve the
most similar result from a large parallel training
corpus. We firstly use the above code diff encoder
to map code diffs into a high-dimensional latent
space and retrieve the most similar example based
on cosine similarity.

Specifically, after being trained in the commit
message generation dataset, the code diff encoder
can capture the semantic of code diff well. We use
well-trained code diff encoder following a mean-
pooling operation to map the code diff into a high
dimensional space. Mathematically, given the in-
put code diff embedding X = (x1,x2, ...,xl),
the code diff encoder can transformed them to
Enc = (enc1, enc2, ..., encl). Then we obtain
the semantic vector of the code diff by pooling
operation:

vec = pooling(Enc) = mean (enc1, enc2, ..., encl)
(3)

where mean is a dimension-wise average operation.
We measure the similarity of two code diffs by co-
sine similarity of their semantic vectors and retrieve
the most similar code diff paired with the commit
message from the parallel training corpus. For each
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code diff, we return the first-ranked similar result.
But, for the code diff in the training dataset, we
return the second-ranked similar result because the
first-ranked result is itself.

3.2 Generation module

As shown at the bottom of Figure 1, in the genera-
tion module, we treat the retrieved commit message
as an exemplar and leverage it to guide the neural
network model to generate an accurate commit
message. Our generation module consists of three
components: three encoders, an exemplar guider,
and a decoder.

First, following Equation 1, 2, three Transformer-
based encoders are adopted to obtain the rep-
resentations of the input code diff (Encd =
encd1, enc

d
2, ..., enc

d
l ), the similar code diff

(Encs = encs1, enc
s
2, ..., enc

s
m), and similar com-

mit message (Encm = encm1 , encm2 , ..., encmn )
(step 1⃝ in Figure 1), where subscripts l,m, n are
the length of the input code diff, the similar code
diff, and the similar commit message, respectively.

Second, since the retrieved similar commit mes-
sages may not always accurately describe the con-
tent/intent of the input code diffs even express to-
tally wrong or irrelevant semantics. Therefore, we
propose an exemplar guider which first learns the
semantic similarity between the retrieved and in-
put code diff and then leverages the information of
the similar commit messages based on the learned
similarity to guide the commit message generation
(step 2⃝ ). Mathematically, exemplar guider calcu-
late the semantic similarity (λ) between the input
code diff and the similar code diff based on their
representation Encdl and Encsm (step 2⃝ and 3⃝):

λ = σ(Ws[mean(Encd),mean(Encs)]) (4)

where σ is the sigmoid activation function, Ws is
a learnable matrix, and mean is a dimension-wise
average operation.

Third, we weight representations of code diff
and similar commit message by 1 − λ and λ, re-
spectively and then concatenate them to obtain the
final input encoding.

Encdm = [(1− λ) ∗Encd : λ ∗Encs] (5)

Finally, we use a Transformer-based decoder
to generate the commit message. The decoder
consists of multiply decoder layer and each lay-
ers includes a masked multi-head self-attention, a

Language Training Validation Test

Java 160,018 19,825 20,159
C# 149,907 18,688 18,702
C++ 160,948 20,000 20,141
Python 206,777 25,912 25,837
JavaScript 197,529 24,899 24,773

Table 1: Statistics of the evaluation dataset.

multi-head cross-attention module, a FFN mod-
ule and an add & norm module. Different from
multi-head self-attention module in the encoder,
in terms of one token, masked multi-head self-
attention in the decoder can only attend to the pre-
vious tokens rather than the before and after con-
text. In b-th cross-attention layer, the input encod-
ing ( Encdm =

(
encdm1 , encdm2 , ..., encdml+m

)
) is

queried by the output of the preceding commit mes-
sage representations Msg = (msg1, ...,msgt)
obtained by masked multi-head self-attention mod-
ule.

Decheadbi
=

l+m∑

j=1

αij

(
WDec

V encbj

)

Deceij =

(
WDec

Q msgb
j )

T (WDec
K encbi

)
√
dk

(6)

where αij =
expDeceij∑n

k=1 expDeceik
, WDec

Q , WDec
K and

WDec
V are trainable projection matrices for queries,

keys and values of the decoder layer. t is the length
of preceding commit message.

Next, we use Equation 2 to obtain the hidden
states of each decoder layer. In the last decoder
layers, we employ a MLP and softmax operator to
obtain the generation probability of each commit
message token on the vocabulary. Then we use
the cross-entropy as the loss function and apply
AdamW for optimization.

4 Experimental Setup

4.1 Dataset
In our experiment, we use a large-scale dataset
MCMD (Tao et al., 2021) with five programming
languages (PLs): Java, C#, C++, Python and
JavaScript. For each PL, MCMD collects commits
from the top-100 starred repositories on GitHub
and then filters the redundant messages (such as
rollback commits) and noisy messages defined in
Liu et al. (2018). Finally, to balance the size of data,
they randomly sample and retain 450,000 commits
for each PL. Each commit contains the code diff,
the commit message, the name of the repository,
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and the timestamp of commit, etc. To reduce the
noise data in the dataset, we further filter out com-
mits that contain multiple files or files that cannot
be parsed (such as .jar, .ddl, .mp3, and .apk).

4.2 Data pre-processing
The code diff in MCMD are based on line-
level code change. To obtain more fine-grained
code change, following previous study (Pan-
thaplackel et al., 2020), we use a sequence
of span of token-level change actions to rep-
resent the code diff. Each action is struc-
tured as <action> span of tokens <action end>.
There are four <action> types, namely, <keep>,
< insert >, <delete>, and <replace>. <keep>
means that the span of tokens are unchanged.
< insert > means that adding span of tokens.
<delete> means that deleting span of tokens.
<replace> means that the span of tokens in the old
version that will be replaced with different span
of tokens in the new version. Thus, we extend
<replace> to <replace old> and <replace new>
to indicate the span of old and new tokens, respec-
tively. We use difflib 1 to extract the sequence of
code change actions.

4.3 Hyperparameters
We follow (Tao et al., 2021) to set the maximum
lengths of code diff and commit message to 200
and 50, respectively. We use the weight of the
encoder of CodeT5-base (Wang et al., 2021b) to
initialize the code diff encoders and use the de-
coder of CodeT5-base to initialize the decoder in
Figure 1. The original vocabulary sizes of CodeT5
is 32,100. We add nine special tokens (<keep>,
<keep_end>, < insert >, <insert_end>, <delete>,
<delete_end>, <replace_old>, <replace_new>,
and <replace_end>) and the vocabulary sizes of
code and queries become 32109. For the optimizer,
we use AdamW with the learning rate 2e-5. The
batch size is 32. The max epoch is 20. In addi-
tion, we run the experiments 3 times with random
seeds 0,1,2 and display the mean value in the paper.
The experiments are conducted on a server with 4
GPUs of NVIDIA Tesla V100 and it takes about
1.2 hours each epoch.

4.4 Evaluation metrics
We evaluate the quality of the generated mes-
sages using four metrics: BLEU (Papineni et al.,

1https://docs.python.org/3/library/difflib.
html

2002), Meteor (Banerjee and Lavie, 2005), Rouge-
L (Lin, 2004), and Cider (Vedantam et al., 2015).
These metrics are prevalent metrics in machine
translation, text summarization, and image cap-
tioning. There are many variants of BLEU be-
ing used to measure the generated message, We
choose B-Norm (the BLEU result in this paper is
B-Norm), which correlates with human perception
the most (Tao et al., 2021). The detailed metrics
calculation can be found in Appendix.

4.5 Baselines

We compare RACE with four end-to-end neural-
based models, two IR-based methods, two hybrid
approaches which combine IR-based techniques
and end-to-end neural-based methods, and three
pre-trained-based models. Four end-to-end neural-
based models include CommitGen (Jiang et al.,
2017), CoDiSum (Xu et al., 2019), NMTGen (Loy-
ola et al., 2017), PtrGNCMsg (Liu et al., 2019)
and ATOM (Liu et al., 2020). They all train
models from scratch. Two IR-based methods are
NNGen (Liu et al., 2018) and Lucene (Apache,
2011), they retrieve the similar code diff based on
different similarity measurements and reuse the
commit message of the similar code diff as the fi-
nal result. CoRec and ATOM are all hybrid models
which combine the neural-based models and IR-
based techniques. Three pre-trained models are
CommitBERT, CodeT5-small, and CodeT5-base.
They are pre-trained on the large parallel code and
natural language corpus and fine- tuned on the com-
mit message generation dataset. All baselines ex-
cept Lucene, CodeT5-small and CodeT5-base are
introduced in Section 2. Lucene is a traditional IR
baseline, which uses TF-IDF to represent a code
diff as a vector and searches the similar code diff
based on the cosine similarity between two vectors.
CodeT5-small and CodeT5-base are source code
pre-trained models and have achieved promising
results in many code-related tasks (Wang et al.,
2021b). We fine-tune them on MCMD as strong
baselines. In addition, we only evaluate ATOM
on Java dataset as the current implementation of
ATOM only supports Java.

5 Experimental Results

5.1 How does RACE perform compared with
baseline approaches?

To evaluate the effectiveness of RACE, we con-
duct the experiment by comparing it with the 11
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Model Java C# C++ Python JavaScript

BLEU Met. Rou. Cid. BLEU Met. Rou. Cid. BLEU Met. Rou. Cid. BLEU Met. Rou. Cid. BLEU Met. Rou. Cid.

IR-based NNGen 19.41 12.40 25.15 1.23 22.15 14.77 26.46 1.55 13.61 9.39 18.21 0.73 16.06 10.91 21.69 0.92 18.65 12.50 24.45 1.21
Lucene 15.61 10.56 19.43 0.94 20.68 13.34 23.02 1.36 13.43 8.81 16.78 0.67 15.16 9.63 18.85 0.85 17.66 11.25 21.75 1.02

End-to-end

CommitGen 14.07 7.52 18.78 0.66 13.38 8.31 17.44 0.63 11.52 6.98 16.75 0.45 11.02 6.43 16.64 0.42 18.67 11.88 24.10 1.08
CoDiSum 13.97 6.02 16.12 0.39 12.71 5.56 14.40 0.36 12.44 6.00 14.39 0.42 14.61 8.59 17.02 0.42 11.22 5.32 13.26 0.28
NMTGen 15.52 8.91 21.13 0.86 12.71 8.11 17.16 0.62 11.57 7.06 17.46 0.51 11.41 7.18 18.43 0.48 18.22 12.07 24.43 1.12
PtrGNCMsg 17.71 11.33 24.32 0.99 15.98 10.18 21.16 0.83 14.06 9.63 20.17 0.63 15.89 11.36 23.49 0.76 20.78 14.52 27.87 1.29

Hybrid ATOM 16.42 11.66 22.67 0.91 / / / / / / / / / / / / / / / /
CoRec 18.51 11.26 24.78 1.13 18.41 11.70 23.73 1.12 14.02 8.63 20.10 0.72 15.09 9.60 22.35 0.80 21.30 13.84 27.53 1.40

Pre-trained
CommitBERT 22.32 12.63 28.03 1.42 20.67 12.31 25.76 1.25 16.16 10.05 19.90 0.94 17.29 11.31 22.36 1.01 23.40 15.64 30.51 1.54
CodeT5-small 22.28 14.16 29.71 1.37 18.92 11.71 24.95 1.05 16.08 11.19 21.60 0.79 17.49 12.46 24.65 0.90 21.97 14.48 28.65 1.42
CodeT5-base 22.76 14.57 30.23 1.43 22.21 14.51 29.08 1.33 16.73 11.69 22.86 0.85 17.99 12.74 25.27 0.96 22.87 15.12 29.81 1.50

Ours RACE 25.66 15.46 32.02 1.76 26.33 16.37 31.31 1.84 19.13 12.55 24.52 1.14 21.79 14.68 28.35 1.40 25.55 16.31 31.79 1.84
↑13% ↑6% ↑6% ↑23% ↑19% ↑13% ↑8% ↑38% ↑14% ↑7% ↑7% ↑34% ↑21% ↑15% ↑12% ↑46% ↑12% ↑8% ↑7% ↑23%

Ablation RACE -Guider 23.37 13.98 30.01 1.53 21.33 13.56 27.33 1.31 17.43 12.10 22.03 0.95 19.44 13.89 26.4 1.01 23.39 15.64 30.51 1.54

Table 2: Comparison of RACE with baselines under four metrics on five programming languages. Met., Rou., and
Cide. are short for Meteor, Rouge-L, and Cider, respectively. All results are statistically significant (with p < 0.01).

baselines including two IR-based approaches, four
end-to-end neural-based approaches, two hybrid ap-
proaches, and three pre-train-based approaches in
terms of four evaluation metrics. The experimental
results are shown in Table 2.

We can see that IR-based models NNGen and
Lucene generally outperform end-to-end neural
models on average in terms of four metrics. It
indicates that retrieved similar results can provide
important information for commit message genera-
tion. CoRec, which combines the IR-based method
and neural method, performs better than NNGen on
C++ and JavaScript dataset but lower than NNGen
on Java, C# and Python. This is because CoRec
only leverages the information similar code diff
at the inference stage. ATOM, which priorities
the generated result of the neural-based model and
retrieved result of the IR-based method, also out-
performs the IR-based approach Lucene and three
neural-based models CommitGen, CoDiSum, and
NMTGen. Three pre-trained-based approaches out-
perform other baselines in terms of four metrics
on average. CodeT5-base performs best among
them on average. Our approach performs the best
among all approaches on 5 programming languages
in terms of four metrics. This is because RACE
treats the retrieved similar commit message as an
exemplar and leverages it to guide the neural net-
work model to generate an accurate commit mes-
sage.

We also give an example of commit messages
generated by our approach and the baselines in Fig-
ure 2. IR-based methods NNGen and Lucene can
retrieve semantically similar but not completely
correct commit message. Specifically, retrieved

commit messages contain not only the important
semantic (“Filter out unavailable databases”) of
the current code diff but also the extra informa-
tion (“Revert”). Neural network models generally
capture the action of “add” but fail to further un-
derstand the intend of the code diff. The hybrid
model CoRec cannot generate the correct commit
message either. Our model treats the retrieved re-
sult (Revert "Filter out unavailable databases”) as
an exemplar, and guides the neural network model
to generate the correct commit message.

5.2 What is the effectiveness of exemplar
guider?

We conduct the ablation study to verify the effec-
tiveness of exemplar guider module. Specifically,
as shown at the bottom of Figure 1, we directly con-
catenated the representations of retrieved results
and fed them to the decoder to generate commit
messages without using the exemplar guider. As
shown at the bottom of the Table 2, we can see
that the performance of the ablated model (RACE
-Guide) degrades in all programming languages in
terms of four metrics. It demonstrates the effective-
ness of our exemplar guider.

5.3 What is the performance when we reteieve
k relevant commits?

We also conduct experiments to recall k (k=1, 3,
5, 7, 9) most relevant commits to augment the gen-
eration model. Specifically, as shown in Figure 1
the relevance of the code diffs is measured by the
cosine similarity their semantic vectors obtained by
Equation 3. Then retrieved k relevant commits are
encoded and fed to the exemplar guidar to obtain
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Code Diff
apache: superset/views/core.py

...

+ class DatabaseFilter(SupersetFilter):

+    def apply(self, query, func):

+        if self.has_all_datasource_access():

+            return query

+        perms = self.get_view_menus('database_access')

+       return query.filter(self.model.perm.in_(perms))

...

+    base_filters = [['perm', DatabaseFilter, lambda:[]]]

Reference Filter out unavailable databases

Baselines
NNGen Revert “ Filter out unavailable databases”
Lucene Revert “ filter out unavailable databases ”
CommitGen Merge pull request from mistercrunch / UNK
NMTGen Add <unk> to <unk>
PtrGNCMsg Add support for dashboards in database
CoRec Remove <unk>
CommitBERT Add DatabaseFilter ( )
CodeT5-small [database] Add databasefilter to filter all users
CodeT5-base [hotfix] Adding databasefilter to core.py

RACE Stage I : Revert “ Filter out unavailable databases ”
Stage II : Filter out unavailable databases

Figure 2: An example of generated commit messages.
Reference is the developer-written commit message.
The results of our approach in stage I and II are re-
turned by the retrieved module and generation module,
respectively.

semantic similarities by Equation 4, respectively.
Finally, we weight representations of code diff and
similar commit messages according to the seman-
tic similarities and feed them to the decoder to
generate commit messages step by step. The exper-
imental results are shown in Figure 3. We can see
that the performance is generally stable on different
k. In our future work, we will continue to study
alternatives on leveraging the information of the re-
trieved results, e.g., how many commits to retrieve
and how to model the corresponding information.

5.4 Can our framework boost the
performance of existing models?

We further study whether our framework can en-
hance the performance of the existing Seq2Seq
neural network model in commit message gen-
eration. Therefore, we adapt our framework to
four Seq2Seq-based models, namely NMTGen
(M1), CommitBERT (M2), CodeT5-small (M3)
and CodeT5-base (M4). Specifically, we use the
encoder of these models as our code diff encoder
and obtain the high-dimensional semantic vectors
in the retrieval module (Figure 1). In the genera-
tion module, we use the encoder of their models
to encode input code diffs, similar code diffs, and
similar commit messages. We also use the decoder

1 3 5 7 9
k most relevant results
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Figure 3: Performance of models augemented with k
retrieved relevant commits.

Java C# C++ Python JavaScript

     M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

+ Gain 21.52 24.06 23.91 25.66 22.05 22.34 21.33 26.33          18.69   19.12   19.13   17.58   20.45   20.88   21.79   22.24   25.19   25.71   25.55

Original 15.52 22.32 22.28 22.76 12.71 20.67 18.92 22.21 11.57 16.16 16.08 16.73 11.41 17.29 17.49 17.99 18.22 21.97   22.87

0

5

10

15

20

25

30

BL
EU

39%
73%

37%
54%

22%

8%
8%

16%
18%

8%
7%

13%

19%
19%

17%13% 19%

14%

21%

12%

M1:NMTGen 
M2:CommitBERT

Gain from    ur F  ramework

23.4

0

0

15.9 

oM3:CodeT 5-small 
M4:CodeT 5-base

Figure 4: Performance gains on four models. The origi-
nal performance of the models are in yellow and gains
from our framework are in green. The percentage value
in each bar is the rate of improvement.

of their models to generate commit messages.
The experimental results are shown in Figure 4,

we present the performance of four original models
(yellow) and gains (green) from our framework on
five programming languages in terms of BLEU 2

score. Overall, we can see that our framework
can improve the performance of all four neural
models in all programming languages. Our frame-
work can improve the performance of the original
model from 7% to 73%. Especially, after applying
our framework, the performance of NMTGen has
more than 20% improvement on all programming
languages. In addition, Our framework can boost
the performance of NMTGen on BLUE, Meteor,
Rouge-L, and Cider by 43%, 49%, 33%, and 61%
on average, boost CommitBERT by 11%, 9%, 11%,
and 12%, boost CodeT5-small by 15%, 14%, 11%,
and 26%, and boost CodeT5-base by 16%, 10%,
8%, and 32% 3.

2We show results of other three metrics in Appendix due
to space limitation. Our conclusions also hold.

3The result can be found in 1-4 of Appendix
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Model Informativeness Conciseness Expressiveness

CommitBERT 1.22 (±1.02) 2.03 (±1.04) 2.46 (±0.99)
NNGen 1.03 (±1.00) 1.74 (±1.01) 2.36 (±0.95)
NMTGen 0.74 (±0.92) 1.56 (±0.93) 2.11 (±0.94)
CoRec 1.05 (±1.09) 1.80 (±1.05) 2.43 (±0.88)

RACE 2.49 (±1.10) 3.08 (±0.96) 2.85 (±0.84)

Table 3: Results of human evaluation (standard devia-
tion in parentheses).

5.5 Human evaluation

We also conduct a human evaluation by following
the previous works (Moreno et al., 2013; Panichella
et al., 2016; Shi et al., 2021b) to evaluate the se-
mantic similarity of the commit message generated
by RACE and four baselines NNGen, NMTGen,
CommitBERT, and CoRec. The four baselines
are IR-based, end-to-end neural network-based,
hybrid, and pre-trained-based approaches, respec-
tively. We randomly choose 50 code diff from
the testing sets and their commit message gen-
erated by four approaches. Finally, we sample
250 <code diff , commit message> pairs to score.
Specifically, we invite 4 volunteers with excellent
English ability and more than three years of soft-
ware development experience. Each volunteer is
asked to assign scores from 0 to 4 (the higher the
better) to the generated commit message from the
three aspects: Informativeness (the amount of im-
portant information about the code diff reflected
in the commit message), Conciseness (the extend
of extraneous information included in the commit
message), and Expressiveness (grammaticality and
fluency). Each pair is evaluated by four volunteers,
and the final score is the average of them.

To verify the agreement among the volunteers,
we calculate the Krippendorff’s alpha (Hayes and
Krippendorff, 2007) and Kendall rank correlation
coefficient (Kendall’s Tau) values (Kendall, 1945).
The value of Krippendorff’s alpha is 0.90 and the
values of pairwise Kendall’s Tau range from 0.73 to
0.95, which indicates that there is a high degree of
agreement between the 4 volunteers and that scores
are reliable. Table 3 shows the result of human
evaluation. RACE is better than other approaches
in Informative, Conciseness, and Expressiveness,
which means that our approach tends to generate
concise and readable commit messages with more
comprehensive semantics. In addition, we confirm
the superiority of our approach using Wilcoxon
signed-rank tests (Wilcoxon et al., 1970) for the

human evaluation. Results 4 show that the improve-
ment of RACE over other approaches is statistically
significant with all p-values smaller than 0.05 at
95% confidence level.

6 Conclusion

This paper proposes a new retrieval-augmented
neural commit message generation method, which
treats the retrieved similar commit message as
an exemplar and uses it to guide the neural net-
work model to generate an accurate and read-
able commit message. Extensive experimental re-
sults demonstrate that our approach outperforms
recent baselines and our framework can signifi-
cantly boost the performance of four neural net-
work models. Our data, source code and Ap-
pendix are available at https://github.com/
DeepSoftwareAnalytics/RACE.

Limitations

We have identified the following main limitations:
Programming Languages. We only conduct ex-

periments on five programming languages. Al-
though in principle, our framework is not specifi-
cally designed for certain languages, models per-
form differently in different programming lan-
guages. Therefore, more experiments are needed
to confirm the generality of our framework. In the
future, we will extend our study to other program-
ming languages.

Code base. Compared with purely neural
network-based models, our method needs a code
base to retrieve the most similar example from
that. This limitation is inherited from IR-based
techniques.

Training Time. In addition to modeling the in-
formation of input code diffs, our model needs to
retrieve similar diffs and encode them. Thus, our
model takes a long time to train (about 35 hours to
train the model).

Long Code Diffs. Longer code diffs may contain
more complex semantics or behaviors. Long diffs
(over 512 tokens) are truncated in our approach
and some information would be lost. In our future
work, we will design mechanisms to better handle
long diffs.
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