Prompting for Multimodal Hateful Meme Classification

Rui Cao, Roy Ka-Wei Lee, Wen-Haw Chong, Jing Jiang


Abstract
Hateful meme classification is a challenging multimodal task that requires complex reasoning and contextual background knowledge. Ideally, we could leverage an explicit external knowledge base to supplement contextual and cultural information in hateful memes. However, there is no known explicit external knowledge base that could provide such hate speech contextual information. To address this gap, we propose PromptHate, a simple yet effective prompt-based model that prompts pre-trained language models (PLMs) for hateful meme classification. Specifically, we construct simple prompts and provide a few in-context examples to exploit the implicit knowledge in the pre-trained RoBERTa language model for hateful meme classification. We conduct extensive experiments on two publicly available hateful and offensive meme datasets. Our experiment results show that PromptHate is able to achieve a high AUC of 90.96, outperforming state-of-the-art baselines on the hateful meme classification task. We also perform fine-grain analyses and case studies on various prompt settings and demonstrate the effectiveness of the prompts on hateful meme classification.
Anthology ID:
2022.emnlp-main.22
Volume:
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Month:
December
Year:
2022
Address:
Abu Dhabi, United Arab Emirates
Editors:
Yoav Goldberg, Zornitsa Kozareva, Yue Zhang
Venue:
EMNLP
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
321–332
Language:
URL:
https://aclanthology.org/2022.emnlp-main.22
DOI:
10.18653/v1/2022.emnlp-main.22
Bibkey:
Cite (ACL):
Rui Cao, Roy Ka-Wei Lee, Wen-Haw Chong, and Jing Jiang. 2022. Prompting for Multimodal Hateful Meme Classification. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 321–332, Abu Dhabi, United Arab Emirates. Association for Computational Linguistics.
Cite (Informal):
Prompting for Multimodal Hateful Meme Classification (Cao et al., EMNLP 2022)
Copy Citation:
PDF:
https://preview.aclanthology.org/landing_page/2022.emnlp-main.22.pdf