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Abstract

Natural language understanding (NLU) mod-
els are a core component of large-scale con-
versational assistants. Collecting training data
for these models through manual annotations
is slow and expensive that impedes the pace of
model improvement. We present a three stage
approach to address this challenge: First, we
identify a large set of relatively infrequent ut-
terances from live traffic where the users im-
plicitly communicated satisfaction with a re-
sponse (such as by not interrupting), along
with the existing model outputs as candidate
annotations. Second, we identify a small sub-
set of these utterances usings Integrated Gra-
dients based importance scores computed with
the current models. Finally, we augment our
training sets with these utterances and retrain
our models. We demonstrate the effectiveness
of our approach in a large-scale conversational
assistant, processing billions of utterances ev-
ery week. By augmenting our training set
with just 0.05% more utterances through our
approach, we observe statistically significant
improvements for infrequent tail utterances: a
0.45% reduction in semantic error rate (Se-
mER) in offline experiments, and a 1.23% re-
duction in defect rates in online A/B tests.

1 Introduction

Large-scale, voice-based conversational assistants
such as Alexa, Siri, Google Assistant and Cor-
tana process each utterance through a multi-stage
pipeline that includes wakeword detection, auto-
matic speech recognition (ASR), natural language
understanding (NLU), entity resolution, and text-
to-speech. This is a well-understood sequence
(Sarikaya, 2017) and each of these steps leverage
multiple machine learning models. The NLU sys-
tem is often modularized into a number of domains
that handle distinct classes of utterances such as
Music, Weather, etc. (Su et al., 2018). The assistant
system comprises models for domain classification

(DC), intent classification (IC), and named entity
recognition (NER).

A key challenge in building, extending and main-
taining such a system is that the underlying mod-
els need annotated training data. Collecting large
volumes of such data through manual labeling is
expensive and does not scale. Our work aims at im-
proving the efficiency of this process. In contrast to
previous approaches which identify utterances with
defective responses, we instead focus on identify-
ing cases that were processed successfully by the
conversational assistant, and automatically retrain-
ing models with the additional data. However, this
introduces two challenges. First, the vast majority
of utterances are already processed correctly by the
deployed system, resulting in an overwhelmingly
large set of augmentation candidates. Secondly,
implicit signals for satisfaction are noisy, as users
might frequently ignore incorrect responses with-
out making the effort to reformulate their query
or provide a response that reflects dissatisfaction
with the experience. Thus, simply adding all ut-
terances from the full candidate pool (potentially
billions/week) is infeasible and might actually de-
grade performance due to noise. We present a novel
approach to address this based on Integrated Gra-
dients (IG) (Sundararajan et al., 2017), a technique
for understanding model behavior through feature
importance scores. We propose a sample impor-
tance score that aggregates word scores and ranks
the utterances in our initial candidate set, followed
by training set augmentation with a small fraction
of the top utterances.

Our experiments on live traffic data from a large
scale conversational assistant indicate that retrain-
ing models with training sets, augmented by as
little as 0.05% in size, produces a statistically sig-
nificant (p−value < 0.05) improvement in seman-
tic error rate (SemER) in offline test sets – 0.27%
overall and 0.45% on a more challenging set of less
frequent "tail" utterances. In online A/B tests, we
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observe a 1.23% and 0.96% improvement in defect
rates for all and tail utterances, respectively. In
contrast, simply adding all utterances from our ini-
tial candidate set degrades SemER by 1.74% and
3.13% on the full and tail data sets, respectively. Fi-
nally, we demonstrate the repeatability and general-
izability of our approach on public benchmark data
sets. Despite the lack of label noise, we see small
but consistent accuracy gains of 0.21% resp. 0.65%
on the Snips and AGNews data sets.

2 Related Work

Several approaches have been proposed recently
to use distant or weak supervision to address spar-
sity of labeled data (see e.g. the survey in (Hed-
derich et al., 2020)). A number of works iden-
tify utterances with processing errors through of-
fline analysis (Sethi et al., 2021; Gupta et al., 2021;
Chada et al., 2021; Khaziev et al., 2022). These
approaches however still need human annotation
in an active learning loop to improve production
models. Query rewriting based approaches (Pon-
nusamy et al., 2020; Sodhi et al., 2021; Su et al.,
2019; Hao et al., 2020) aim to address this limita-
tion and enable self-learning without the need for
human annotation. They detect instances where
a user reformulates a query due to an unsatisfac-
tory response and learn to map the failed utterance
to a subsequent successful one. However, such
approaches do not generalize to other utterance
shapes. Falke et al. (2020) leverage user paraphras-
ing behavior in dialog systems to automatically
collect annotations for long-tail utterances. Mo-
erchen et al. (2020) present an approach where
implicit negative feedback from the user is used to
train a re-ranker that is then applied to pick correct
annotations for under-performing utterances.

A range of post-hoc model interpretability meth-
ods for machine learned models has been devel-
oped in recent years (see e.g., (Madsen et al., 2021;
Sundararajan et al., 2017; Ribeiro et al., 2016;
Lundberg and Lee, 2017). Local black-box meth-
ods typically measure the influence of individual
features of an input example (e.g., individual words
in a sentence) on the output prediction. Other tech-
niques aim to score complete examples with respect
to prototypicality (Carlini et al., 2019), influence
on test predictions (Garima et al., 2020), and diffi-
culty (Agarwal et al., 2022). Our word-occurrence
based approach can be seen as a computationally
scalable linear approximation to such measures.

Bhatt et al. (2019) conducted a survey on how
organizations use model interpretability in prac-
tice. They identified model debugging as one of
the primary uses of model explainability, seeking
explicit human feedback on gathering more data
for improving model performance.

Our approach differs from previous work as fol-
lows:

• There has been no prior work on the use of
model interpretability in the context of data
augmentation (though inversely, Chen and
Ji (2019) proposed data augmentation to im-
prove model explainability).

• Instead of detecting failed user interactions,
we focus on utterances with implicit positive
feedback.

• We leverage interpretability techniques in an
automated way, without the need for human
inspection.

3 Implicit User Feedback based Data
Augmentation

NLU services which cater to a large number of
users such as voice controlled agents typically col-
lect implicit feedback metrics for each interaction.
As a simplistic example, the absence of any nega-
tive feedback from the user to the agent’s action (no
interruption, no repetition, etc.) can suggest that
the agent successfully served the user’s request. In
this paper, we propose a mechanism that relies on
successful user interactions to identify additional
data for building NLU models.

Oftentimes, an unsuccessful action from our vir-
tual agent is followed by the user rephrasing their
request. If the rephrase is successfully served by
the agent, then this indicates that the NLU hypoth-
esis for the rephrased request is likely correct. We
believe that a correctly served rephrased turn is
a stronger positive feedback when compared to
a single-turn interaction with an implicit positive
feedback (i.e no negative feedback from the user).
We create a new training sample using the ASR
transcript of the rephrased user request and the
NLU hypothesis. We call this data set weak signal
labeled (WSL) data since we rely on weak supervi-
sion from the user to obtain NLU labels. We score
these utterances using integrated gradient technique
as described in Section 4 before using them as ad-
ditional data source for building NLU models.
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Figure 1: Model improvement based on feature attribu-
tion.

4 Importance Score Computation

We describe our approach for scoring utterances
according to their importance to the performance
of a classification model (e.g., a domain or intent
classifier). Let T be the original training data, A
be a pool of augmentation data, V be a validation
data set, and Y be the test set. The model trained
on T typically makes some mistakes on V . The
objective is to use word attribution scores computed
with a local black-box interpretability technique
(Sundararajan et al., 2017; Ribeiro et al., 2016) on
V to score utterances in A; then, by adding some
of them to T , we hope to train a model that is more
robust against failures on Y that are similar to those
observed on V . Thus, our approach can be roughly
subdivided into three steps:

1. Calculation of an attribution score for each
word in a misclassified utterance in V (with
respect to the target and/or predicted class).

2. Aggregation of word scores over all instances.
3. Scoring of utterances in A based on the occur-

rences of important words.
See Figure 1 for a high level flow chart of our

approach. We describe the details of each of these
steps in the following sections.

4.1 Model interpretability

In this paper, we conduct experiments using the
Integrated Gradients (Sundararajan et al., 2017)
method. It is a local interpretation technique that
addresses the problem of attributing a prediction of
a deep network to its input features. Our approach
is not restricted to it and it could be replaced with
other methods such as LIME (Ribeiro et al., 2016)
or SHAP (Lundberg and Lee, 2017). However,
integrated gradients has several advantages:

word True Pred T-Attr P-Attr
tell Books Information -0.61 +3.29
us Books Information -1.01 +0.64
a Books Information +0.37 +0.93

bedtime Books Information -2.85 +3.27
story Books Information +7.82 -3.80

Table 1: Feature attributions for true and predicted
classes.

• It is scalable to large volumes of data.
• Its computed attributions are deterministic.
• It satisfies the desirable axioms of linear-

ity, implementation invariance, and sensitivity
(Sundararajan et al., 2017), which facilitate
comparability of attributions across features
and instances.

Integrated gradients require a non-informative
baseline input. In the context of text processing,
a natural choice is a sequence formed of padding
tokens of the same length as the input. We inter-
pret the words of an utterance as the features to be
attributed, by averaging over token embedding vec-
tors. Our implementation makes use of the PyTorch
Captum package (Kokhlikyan et al., 2020).

Table 1 illustrates an example utterance in the
validation set of the domain classifier along with
the feature attributions of the words towards the
true class (Books) as well as the predicted class
(Information). We can see that the word story
has positively influenced the model towards the
true class but was not able to influence enough
to make a right prediction. The word tell has
positively influenced the utterance towards an in-
correct prediction, while the word bedtime has
negative influence towards the true class and high
positive influence towards the predicted class. The
objective, therefore, is to alter the training data so
that the words tell and bedtime become more
strongly associated with the class Books, especially
in the context of the anchor word story.

4.2 Aggregation of word scores

The interpretability method produces an attribution
mapping ρ: (u, w, c, M ) → R, where u is an
utterance in the validation set, w is a word in u, c
is the class label, and M is the interpreted model.
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Let the aggregated word scores be

g(w, c) =∑
(u,c)∈V,c′∈C

max(0,−ρ(u,w, c′,M) · δ(c, c′,M))

(1)
The function δ indicates the direction of the in-

fluence gap based on the true label of the utterance
and the model prediction. Negative attributions
with respect to the true class (c = c′), and posi-
tive attribution towards wrongly predicted classes
(c 6= c′ = M(u)) are summed over the validation
set. Our objective is to enrich the training set with
examples for the true class containing these words.

δ(c, c′,M) =


1 c = c′

−1 c 6= c′ =M(u)

0 otherwise

(2)

4.3 Score an utterance using word
attributions

LetG = {(w, c)} be the set of all word attributions
computed according to Eqn. 1. The most straight-
forward way of computing the score of utterance u
of class c is the greedy method of summing up the
importance scores of all word occurrences:

h(u, c) =
∑
{g(w, c)‖w ∈ u, (w, c) ∈ G} (3)

Then, we select the top n utterances from A
according to this score.

The greedy method has the drawback that it can
become too narrowly focused on just a few high-
scoring words, thus leading to heavily imbalanced
augmentation data sets. We introduce a diversity
method as a remedy. The idea is to incrementally
discount a score pair after selecting an utterance
containing it. One simple way of doing so is by
dividing the word importance by the number of
such utterances, as outlined in Algorithm 1.

5 Experimental Setup

We first present initial results of our approach
on the open source intent classification (IC) data
sets (Snips (Coucke et al., 2018) and AGNews
(Del Corso et al., 2005)), and then demonstrate
the impact of our approach on a joint intent clas-
sification and named entity recognition (IC-NER)
task on live traffic of a commercial conversational
assistant.

Algorithm 1 Diversity method for utterance scor-
ing.

function SELECT_DIVERSITY(n,G,A)
for all (w, c) ∈ G do

n(w, c)← 1
end for
S ← {}
for i← 1, ..., naugment do

for all (u, c) ∈ A \ S do
h(u, c)←

∑
{g(w, c)/n(w, c)‖
w ∈ u, (w, c) ∈ G}

end for
(u′, c′)← argmaxu,c h(u, c)
A← A ∪ {(u′, c′)}
for all w′ ∈ u′, (w′, u′) ∈ G do

n(w′, c′)← n(w′, c′) + 1
end for

end for
return S

end function

5.1 Data sets

5.1.1 Open source data sets

Snips (Coucke et al., 2018) is a natural language
understanding benchmark data set of over 16 000
crowdsourced queries distributed among 7 NLU
intents. It is pre-split into a training set (13 084
utterances), validation set, and test set (700 utter-
ances each with 100 queries per intent).

With AGNews (Del Corso et al., 2005), we chose
a data set with a slightly different but related task
(news topic classification), due to its sufficient size.
It contains 4 classes each containing 30 000 train-
ing samples and 1 900 testing samples. The total
number of training and testing data is 120 000 and
7 600, respectively. We apply stratified random
sampling to subdivide the training further for a
validation set of 7 600 instances.

Apart from the usual partitions of data into train,
validation and test sets, our experiments consider
a further sub-partition of the train set into base set
and augmentation set. The base set is a randomly
down-sampled version of the full train set to a de-
sired target size (e.g., 50% of the data). The rest of
the training data is the augmentation set from which
additional samples are selected. The validation set
is used for computing the feature attributions.
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5.1.2 Proprietary data from conversational
assistant

In these experiments, we work with logs of user
interactions with our conversational assistant. This
data is prepared in accordance with our general
strict privacy protection procedures. All produc-
tion data is de-identified so that it is not personally
identifiable.

We evaluate our approach on the utterances from
a random partition of live traffic as well as on a set
of low frequency tail utterances. Tail utterances
constitute a significant portion of the overall traf-
fic, and measure the statistical model’s ability to
generalize to a wide gamut of real-world utterances
of users. Improving a machine-learned model’s
performance on rare utterances is of increasing in-
terest among industrial and academic applications,
as defects in frequently recurring head utterances
can often readily be addressed using rule based
systems. We compare models in terms of offline
NLU performance, but also run live traffic A/B
experiments to directly measure the user impact.

Our weak signal labelled data stems from unique
utterances with implicit positive user feedback
across all domains over a period of time. For im-
proved precision, we remove utterances with ASR
confidence scores below an empirically determined
threshold. We rank the utterances within each do-
main using the scores obtained using interpretabil-
ity methods, greedy and diversity, as described in
Section 4.1. The WSL data set thus prepared rep-
resents ≈8.5% of the total training data size. For
each domain, we rank WSL utterances in the order
of decreasing relevance: we favor utterances which
are likely to influence the domain classification
model predictions the most. We select a small frac-
tion of the most influential utterances (0.05% of the
training data) and fine-tuned IC-NER models. The
amount of data that can be augmented is limited
by engineering constraints (e.g., model build times,
storage capacity), hence the interpretability-based
scores are useful to identify an optimum subset of
utterances that provide the most utility.

5.2 Models

On the live traffic data set, we use a joint IC-NER
model with a distilled version of BERT encoder
pretrained with MLM objective on a combination
of public and internal data sets. The total parameter
count of the encoder is 17M . We use a sentence-
piece tokenizer of size 150K sub-word units. For

each of IC and NER tasks, the model uses feed-
forward layers of hidden size 256 followed by soft-
max layer. We train with early stopping, up to
10 epochs, at a learning rate of 5e−5 and a batch
size of 32. For the simpler public domain datasets,
we fine-tune the DistilBERT model from Hugging-
face1 (65M parameters) as an intent classifier.

6 Experiments and Results

6.1 Snips
For the experiments with data augmentation on
Snips, we use the model trained on ≈50% of the
training data (T ) – constituting 8 192 out of 13 084
samples – as the base model. The remaining data
is considered the augmentation set (A). We inves-
tigate the accuracy impact of augmenting a small
fraction of examples to the training set with our
importance scoring approach. Specifically, we ex-
plore the greedy and diversity methods as explained
in Section 4.3, with a set of 82 (≈1%) augmenta-
tion utterances selected from A. As shown in Table
2, the diversity method improves performance to
0.976 compared to the baseline accuracy of 0.974,
while a model trained with the full augmentation
data set has 0.978 accuracy.

6.2 AGNews
For our interpretability experiments on the AG-
News data set, we choose a base model trained on
≈25% of data set, achieving an accuracy of 0.923.
According to Table 2, the diversity method achieves
a test accuracy of 0.929, an improvement over the
baseline by 0.6%.

6.3 Data augmentation with weak signal data
We evaluate the utility of WSL data augmentation
using model interpretability scores for NLU models
of the conversational assistant. We build a domain-
specific IC-NER model using the same training
data as in the production setting. All IC-NER mod-
els share a common encoder as described in Section
5. The output dimension for each model depends
on the number of intents and slot labels for each do-
main. We use similar training parameters (epochs,
learning rate, optimizer, etc.) as production settings
and defer any hyper-parameter tuning experiments
for future work. We refer to this model as baseline.

For each domain, we build a second model
(WSL) using the same architecture and training pa-
rameters as the baseline model. We augment all

1https://huggingface.co/distilbert-base-uncased
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data set Full size Baseline size Modification size Baseline accuracy Augmentation Full accuracy
Diversity Greedy

Snips 13,084 8,192 82 0.974 0.976 0.971 0.978
AGNews 112,400 32,768 64 0.923 0.929 0.926 0.942

Table 2: Accuracy of intent classification on Snips and topic classification on AGNews data sets, comparing
different approaches with random selection baseline. Each number is the average over 5 runs with different seeds.

Table 3: Relative semantic error rates (SemER) for IC-
NER models trained on all WSL data (WSL), and WSL
data filtered with interpretability-based scores, greedy
and diversity, (WSL-IG). All metrics are reported rela-
tive to baseline model (p < 0.05∗).

Model All Tail
Baseline 0% 0%
WSL (no filtering) 1.74%∗ 3.13%∗

WSL-IG (greedy) -0.27% -0.45%∗

WSL-IG (diversity) -0.13% -0.33%∗

the WSL data described in Section 3 to the train-
ing data, before applying importance scores for
utterance selection. Finally, we build a third model
(WSL-IG) which uses interpretability-based scores
to select the most relevant utterances.

We report the IC-NER task performance using
weighted semantic error rate (SemER; (Makhoul
et al., 1999; Su et al., 2018)) metric. We construct a
label sequence for each utterance by concatenating
the intent and slots (in order). Given the total count
of erroneous insertion (I), erroneous deletions (D),
substitutions (S) and correct labels (C), SemER
is computed as: S = (I+D+S)

(C+D+S) . In Table 3, we
report the weighted mean of SemER relative to
the baseline model and weighted by the domain’s
test utterance count. We compare the baseline and
proposed models on two test sets: (i) All contains
user queries from the entire traffic; (ii) Tail contains
only low-frequency requests.

From Table 3, we notice that the interpretability-
based filtering plays an important role in improving
the semantic error rate on both test sets. SemER
reductions obtained with WSL-IG models are sig-
nificant at p < 0.05 on the tail test set. The magni-
tude of SemER improvement is higher on the Tail
test set, which is likely due to the similar nature
of WSL utterances (sourced from low-frequency
traffic). Interestingly, WSL models which are built
using the largest training data sizes are significantly
worse than the baseline, illustrating the noisy na-
ture of implicit user feedback. In contrast to our
Snips and AGNews results, the greedy method per-

Table 4: Relative defect rate from online A/B exper-
iment comparing NLU models built with WSL data.
The defect rates are reported for low-frequency utter-
ances (Tail) and all utterances (All) relative to the con-
trol model (p < 0.05∗).

Overall General Information
All -1.23%∗ -0.27% -1.04%∗

Tail -0.96%∗ -1.32%∗ -1.64%∗

forms better than diversity – possibly due to the
much larger training size, and suggesting a more
diverse range of defect patterns.

We followed up with an online A/B experiment
on our voice-controlled agent to test the impact of
WSL data on live traffic. We experiment with two
domains: General which serves generic requests
such as turn on device, change volume, etc. and
Information, which serves general knowledge re-
lated requests. For both domains, user requests
on the treatment group were served by NLU mod-
els trained with additional WSL data which were
filtered using interpretability-based scores, (WSL-
IG). We measure the outcome of the A/B experi-
ment using an internal business metric (referred to
as defect rate) which estimates whether the agent
was successful in serving the user’s request. Suc-
cess is estimated based on the user’s perception
following the agent’s response. For example, it is
likely that the agent has misinterpreted the user’s re-
quest when the user rephrases/repeats their request
or the agent communicates that it cannot serve the
user’s request: "sorry I don’t know the answer to
that". We present the relative change in defect
rate on both low-frequency utterances (Tail) and
all utterances (All). From Table 4, we observe im-
provements in the defect rate across both deployed
domains and the overall traffic. For both domains,
while defect reductions are observed on both All
and Tail test sets improvements in the latter are
more noticeable, which demonstrate the utility of
interpretability-based filtering of implicit customer
feedback for NLU model building.
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7 Conclusions and Future Work

A key challenge in building state-of-the-art deep
learning models is the cost and effort involved in
obtaining large volumes of manually labeled data.
Our work is part of a line of investigations into
leveraging unlabeled or weakly supervised data at
scale. We extract large amounts of user dialogs
with a conversational assistant which are deemed
successful according to implicit feedback. How-
ever, it is not sufficient to add all such examples
indiscriminately to the training data – doing so does
not improve the model, nor is it computationally
scalable. We show how to leverage model inter-
pretability techniques to prioritize the most impor-
tant instances that should be added to the training
set. Our approach leads to statistically significant
error rate reductions of our live system. We also
demonstrate transferability on public NLU data
sets, Snips and AGNews.

In the future, we will apply our approach to other
challenging public data sets which suffer from sig-
nificant label noise and ambiguity. We will investi-
gate other types of data set modifications, such as
removal and replacement of examples.
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