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Abstract

Product question answering (PQA) aims to au-
tomatically address customer questions to im-
prove their online shopping experience. Cur-
rent research mainly focuses on finding an-
swers from either unstructured text, like prod-
uct descriptions and user reviews, or structured
knowledge bases with pre-defined schemas.
Apart from the above two sources, a lot of
product information is represented in a semi-
structured way, e.g., key-value pairs, lists, ta-
bles, json and xml files, etc. These semi-
structured data can be a valuable answer source
since they are better organized than free text,
while being easier to construct than struc-
tured knowledge bases. However, little atten-
tion has been paid to them. To fill in this
blank, here we study how to effectively incorpo-
rate semi-structured answer sources for PQA
and focus on presenting answers in a natu-
ral, fluent sentence. To this end, we present
semiPQA: a dataset to benchmark PQA over
semi-structured data. It contains 11,243 written
questions about json-formatted data covering
320 unique attribute types. Each data point
is paired with manually-annotated text that de-
scribes its contents, so that we can train a neural
answer presenter to present the data in a nat-
ural way. We provide baseline results and a
deep analysis on the successes and challenges
of leveraging semi-structured data for PQA. In
general, state-of-the-art neural models can per-
form remarkably well when dealing with seen
attribute types. For unseen attribute types, how-
ever, a noticeable drop is observed for both
answer presentation and attribute ranking.

1 Introduction

Product question answering (PQA) is playing an
increasingly important role in e-commerce plat-
forms. It is able to greatly improve the online shop-
ping experience since customers do not need to
traverse over the detailed web pages to seek infor-
mation themselves. Traditional approaches built

structured knowledge bases for product attributes
and mapped customer questions into executable
queries(Frank et al., 2007; Tapeh and Rahgozar,
2008; Hui et al., 2013; Li et al., 2019). In recent
years, with the rapid progress of large-scaled pre-
trained neural models, many research works have
achieved promising results by leveraging only un-
structured text, like product descriptions, user re-
views and community answers (Cui et al., 2017;
Gupta et al., 2019; Gao et al., 2019; Zhang et al.,
2020). Lying between these two source types, a lot
of product information is often organized in a semi-
structured form, e.g., key-value pairs, lists and ta-
bles from product web pages, json and xml files
from internal databases, etc. These semi-structured
data can be a valuable answer source since they are
better organized and more precise than free text,
while being much cheaper to maintain than struc-
tured knowledge bases. Nonetheless, few research
works have ever considered them and there is no
public available dataset for its study. This paper
aims to fill in this blank and study how to effectively
incorporate semi-structured answer sources for
PQA and present answers in a natural sentence. To
this end, we construct a dataset to benchmark this
study. It contains 11,243 product questions about
json-formatted semi-structured data 1. The data
contains 320 unique attribute types (size, material,
color, etc) spanning a diverse set of semi-structured
forms like key-value pairs, lists and hierarchies.
Each data is paired with manually annotated text
that describes its contents. Table 1 shows some
examples from the dataset. Given a question, there
are two steps we need to get an answer: (1). At-
tribute ranking: selecting the proper attribute that
contains the information to answer the question.
Modern pre-trained neural models and QA datasets
mainly focus on plain text, so they may not gen-

1As json is a standard format for storing data with arbitrary
types/schemata, other representations (such as tables or xml
files) can be easily mapped to it.

111



eralize well to ranking semi-structured attributes,
especially with limited training data. (2). Answer
presentation: presenting the answer in a fluent sen-
tence. It is not user-friendly to directly present the
semi-structured data to customers, especially for
applications like voice assistants. We apply data-
to-text generation models to convert these data into
fluent text.

For attribute ranking, we build our model
upon state-of-the-art pre-trained language mod-
els. Due to the small size of our training
data, we follow the common practice of pre-
finetuning the attribute ranker on four large-scale
QA datasets: Natural Questions (Kwiatkowski
et al., 2019), AmazonQA (McAuley and Yang,
2016), NewsQA (Trischler et al., 2017) and
Squad (Rajpurkar et al., 2016). Since these are
all based on unstructured text, we also experiment
with converting semi-structured attributes into text
before being passed to the ranker. Our results
show that text-based QA models are quite robust to
semi-structured data representations, and can rank
attributes correctly with only keyword matching
without the extra order information.

For answer presentation, we consider a question-
independent answer presenter, which is less risky
than question-dependent presentation while being
more flexible than span extraction or multi-choice
selection. We evaluate both a template-based sys-
tem and a neural sequence-to-sequence genera-
tion model. Each template is one or more sen-
tences with gaps that can be filled with pre-defined
rules (Deemter et al., 2005). However, semi-
structured data does not follow any unified schema,
so designing rules to cover all possible data forms
or unseen attributes is infeasible. Our neural gener-
ation models are initialized with Bart (Lewis et al.,
2020) and T5 (Raffel et al., 2020), two represen-
tative pretrained models for generative tasks, and
fine-tuned on a small set of annotated examples.
Compared with the template system, we show the
neural approach improves not only the fluency, but
also the faithfulness of presented answers.

Finally, we discuss and analyse the challenge
of generating factually-correct sentences without
hallucinate information, as well as the difficulty
of handling unseen attributes in both ranking and
answer presentation.

2 Dataset

The data collection contains 3 stages: semi-
structured attribute collection, text annotation and
question sourcing. This section will explain these
three stages in order then present the statistics.
Attribute Collection We obtain the semi-
structured attributes of product information from
our internal database. These attributes are aggre-
gated from different providers with varied schema.
We select 320 unique attribute types from it, filter
out information only for internal use and indica-
tor tags containing no actual information like "lan-
guage_tag", "attribute_id" etc. For each of the 320
attribute types, we randomly sample 20 products
containing such attribute from 5M products sold
in the US market (The 5M products are randomly
sampled from different categories), then extract
their attribute instances. After removing duplicate
ones, we get 3,316 unique attribute instances in the
end. We then preprocess them to lower-case all
characters, remove emojis and normalize all floats
to contain at most 2 decimals.
Text Annotation After obtaining the semi-
structured attributes, we hire annotators from Ama-
zon Mechanical Turk to write a natural sentence for
each attribute instance. We restrict to US-based an-
notators who completed > 500 tasks, out of which
more than 97% had been accepted. Before the for-
mal annotation, we did a pilot study with 100 sam-
ples. Without extra information, we find 16% of
attributes are not understandable to humans, which
indicates proper context is necessary to understand
the meanings of attributes. Therefore, we also pro-
vide the product image and title in the second round
of pilot study. By adding the extra information,
only 4% of them are not understandable. We then
continue with this setting and get all attributes an-
notated. We also remove all attributes that are not
understandable to annotators (usually those that
rely on other information to interpret), and end up
with 3,191 attribute instances annotated with their
description text.
Question Sourcing We collect questions on Me-
chanical Turk by present annotators with the image,
title and rating of the product plus one of its asso-
ciated attribute instances. Annotators are asked
to imagine themselves as potential customers, and
their task is to ask four questions about this at-
tribute, which means that the attribute contains the
information to answer their question. We explicitly
add three criteria that annotators must follow: ques-
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Table 1: Examples of question-data-text triples in the dataset. The data features diverse forms of semi-structures like key-value
pairs, lists and hierarchies.

Question: Is the body made out of nylon?
Data (key-value): fabric_type:{ value:"Body: Nylon/spandex; cup linings:100% polyester;cup pad:100% polyurethane."}

Text: The body is made of nylon and spandex, the linings in ...
Question: What kind of devices fit in this?
Data (list): compatible_devices: {value:“apple ipad mini 4"}; {value:“apple ...

Text: The product is compatible with apple ipad mini 4, apple ipad air...
Question: Is this metal?

Data (hierarchy): blade:{material:[{value:“Plastic"}],length:[{unit:inches,value:3.0}]}
Text: The blade on this measures 3 inches and is plastic.

tion must be (1) Meaningful, having a reasonable
chance of being asked in daily shopping, and not
parroted, rigid questions like "what is the [attribute
name]"; (2) Diverse, so the three questions must not
be paraphrase each other, and (3) Answerable by
the attribute, ensuring that the attribute contains the
information to answer the questions. After getting
these questions, we lower case them and remove
duplicate questions about the same products.
Dataset Split and Statistics The dataset will be
used to train and evaluate the (1) attribute ranker
and (2) answer presenter. For both, we have two
test scenarios, one containing only seen attributes
with unseen values, and the other containing only
unseen attributes to test the model generalization
capability. For the unseen scenario, we randomly
sample 30 attribute types from all 320 types. We
sample 58 instances from them and add into the
dev set, while the rest are used as test set. For the
seen scenario, we randomly sample 440 instances
from the remaining 290 attribute types. 220 of
them are added into the dev set and the rest serve
as the test set. We use one fixed dev set contain-
ing both seen (220) attributes and unseen (58) at-
tributes. All remaining instances serve as training
set. Due to the small data size, we perform cross
validation to get more reliable results. We repeat
the above process ten times with different seeds to
get 10 different splits, then train/evaluate on them
and average the results. For each question asking
about one attribute, we treat all other attribute in-
stances belonging to the same product as negative
candidates. The candidate positive-negative ratio
is 1:17.89.

3 Attribute Ranking

Attribute ranking aims to select the proper attribute
that contains the information to answer the user-
posed question.

We start from a tf-idf baseline, which has been

shown a strong baseline for sentence matching
tasks (Arora et al., 2017). We count the frequency
based on the attribute instances on the training set.
At test time, we convert question and answer can-
didate into tf-idf vectors based on the counted fre-
quency, then compute their cosine similarity as the
ranking score.

Following the common practice, we also tried
concatenating the question and candidate attribute
into one sequence then feeding into the Roberta-
base encoder (Liu et al., 2019), a Transformer-
based neural model pretrained on billions of text.
The final classifier is built on top of the represen-
tation of the first [CLS] token. The multi self-
attention layers of the encoder makes sure each
token is able to interact with all other tokens to
capture the dependency relations. The model is
trained to maximize the likelihood of the positive
candidates and minimize that of the negative candi-
dates. As for the input form of the semi-structured
attribute, we experimented with 5 forms: (1) name-
only: only use the attribute name as input. (2)
value-only: only use the attribute value as input.
(3) linearized: use the linearized json which con-
catenates the attribute name and value as input. (4)
template: use the template system to generate its
corresponding text, then use the generated text as
input. (5) neural: use the neural generator to gen-
erate its corresponding text, then use the generated
text as input.

Due to the limited size of our training data, we
follow a two-step setting (Garg et al., 2020) where
the Roberta-base model is first fine-tuned on a large-
scale QA dataset, then fine-tuned on our semiPQA
training data. This has been shown to improve
performance in the low-resource setting (Hazen
et al., 2019; Garg et al., 2020). We consider 4
datasets: (1) NQ: the Google Natural Questions
dataset. We use its sentence selection version (Garg
et al., 2020), where its negative samples are cate-

113



gorized into 4 classes to improve the robustness
of the model. It contains 61,186 questions from
the Google queries for training. (2) AmazonQA:
QA pairs from the Amazon community QA web-
site (Gupta et al., 2019). We remove answers con-
taining “I don’t know", “I’m not sure" etc, and
filter questions more than 32 words and answers
more than 64 words. Negative candidates are an-
swers about different questions under the same
product. It contains 1,065,407 community ques-
tions for training. (3) NewsQA: QAs about news
articles (Trischler et al., 2017). We convert it into
sentence selection and drop the span label. For
each question, we sample 5 negative sentences not
labeled as correct for training. The training dataset
contains 75,473 questions. (4) Squad: QAs about
wikipedia paragraphs (Rajpurkar et al., 2016). We
treat sentences containing the ground-truth span as
positive and other sentences in the same paragraph
as negative. The training dataset contains 87,599
questions. Notably, all answers in the above 4
datasets are in form of unstructured sentences..

We analyzed the performance under three set-
tings: (1) zeroshot where the model is applied di-
rectly to the testsets without using our training data,
(2) performance on seen attributes after finetuning
on the training data and (2) performance on unseen
attributes after finetuning on the training data 2.
Precision@1 results are shown in Figure 1. We
also computed other metrics like MAP, MRR and
HIT@5, but they show a similar trend and are omit-
ted for space limit.
Zeroshot Performance The zeroshot results are
visualized in the upper part of Figure 1, where we
apply the rankers finetuned on different datasets
to directly test on our data. As can be seen, when
only the attribute name or value is available, the
performance is significantly lower than the others,
both for neural models and the tf-idf baseline. This
suggests we need information from both the at-
tribute name and value to rank attributes properly.
Neither of them are sufficient by its own. Neural
models finetuned on unstructured text can gener-
ally adapt well to semi-structured data (linerized
form), except for the one finetuned on NQ which
performs poorly compared with others. One rea-
son could be that the negative samples from NQ
are finer-grained. It must learn to differentiate be-
tween sentences containing correct answer spans

2In the zeroshot setting, we only evaluate on the seen
attribute split since there is no concept of "seen" or "unseen"
for zeroshot evaluation.

Figure 1: p@1 in zeroshot/finetuned settings.

but talking about irrelevant things, and correct sen-
tences. Therefore, it must rely on the sentence
structure to infer the meaning and decide whether
it is relevant or not (Garg et al., 2020). When di-
rectly tested on semi-structured jsons, it cannot
easily interpret non-natural sentences. When fine-
tuned on other datasets like NewsQA, AmazonQA
and Squad, negative samples are randomly sam-
pled and hardly contain the correct answer span,
so the model might only rely on span detection
and do not need well-formed sentences. Using
template-generated text leads to the best zeroshot
performance for all models, next come the neural-
generated text and linearized json which perform
slightly worse. Among all datasets used for finetun-
ing, AmazonQA adapts best for all input formats.
This is not surprising considering that it is also
about product questions and has the largest data
size for finetuning.
Finetuned Performance on Seen Attributes The
finetuned results on seen attributes is visualized
in the middle of Figure 1. "Roberta" indicates
the model is initialized with the Roberta-based
checkpoint without being finetuned on any other
QA datasets in advance. "NQ" indicates that the
Roberta-based model is first finetuned on NQ, then
finetuned on our training data, same for "Ama-
zonQA", "NewsQA" and "Squad". Similarly to the
zeroshot setting, using only the attribute name or
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Figure 2: p@1 with varying input formats.

value leads to significantly worse results, although
attribute names seem to be more important when
finetuning on the training data. Using the linearized
json format and the template-generated text have
the best overall performance, achieving a precision
score of over 85%. Using more natural and flu-
ent text does not help the ranking performance on
seen attributes. Although neural generated text are
of higher-quality according to human evaluations
(to be shown in Section 4), this does not make the
ranking task easier and leads to performance drop,
suggesting that presentation is not a requirement
for ranking and can be addressed separately. Pre-
finetuning on large-scale text-based QA datasets
also does not help the performance on seen at-
tributes, as the Roberta result already achieves sim-
ilar performance. The model is able to quickly
learn the correspondence between questions and
seen attributes even with the limited training data.

Finetuned Performance on Unseen Attributes In
the bottom of Figure 1, we show the finetuned per-
formance when testing on unseen attributes. As
expected, a significant performance drop is ob-
served for all models, especially when using at-
tribute names only as this is mostly equivalent to
classification over unseen labels. Using neural-
generated text as input achieves the best perfor-
mance in all settings. We hypothesise that the
neural-generated texts are less rigid and more di-
verse than template-generated or linearised json
data, which prevents the model from overfitting.

Finetuning from Roberta directly performs the
worst on average, and finetuning first on Ama-
zonQA generally leads to a smaller performance
drop with respect to seen attributes. The large
amount of questions in AmazonQA, though not
helpful for seen attributes, do improve the model
robustness over unseen attributes.
Analysis As shown above, directly using the lin-
earized json format performs well in the zeroshot
setting, which indicates that models finetuned on
QA datasets are able to learn to generalize to the
json format when finetuning on the sentence format.
To investigate this surprising finding, we perform
an ablation study in the following settings:

1. Remove all quotation marks plus curly braces
from the json.

2. On top of (1), further remove all colons from
the json.

3. On top of (2), further shuffle the word order
in json.

By gradually removing the structural features of
the representation, we aim to evaluate whether the
model needs this json structure for attribute ranking.
The zeroshot p@1 scores obtained are reported in
Figure 2. We also do the same to text generated
from the template and neural models.

As can be seen, removing the json structure does
not have a great effect on performance. Even after
shuffling the word orders completely, the perfor-
mance drop is within 5% for most models. How-
ever, removing either the attribute name or value
does lead to significant performance drops, which
indicates that the model relies more on semantic
matching against both attribute name and value
for prediction, rather than on the structure or word
order information.

Finally, the bottom figure shows that in the ze-
roshot setting, shuffling the word order reduces
the performance for both the linearized, template
and neural format. The drop is more for template
and neural format but less for the linearized json
format. This implies the pretrained QA models
are more sensitive to word orders in the sentence
format than the structured json format. When fine-
tuned on the training data, however, word orders
loses importance. Interestingly, when testing on
unseen attribute, shuffling the word order even im-
proves model performance. This further confirmed
that for this task, the model does not need to rely on
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the word order to make predictions, shuffling the
word order can even improve the model robustness
on generalizing to unseen attributes.

4 Answer Presentation

The first approach we consider for answer presen-
tation is to use handcrafted templates. However,
defining a perfect template for each attribute is chal-
lenging due to the lack of a standard schema and
templates cannot scale to unseen attributes. With
this concern, we also experiment with training a
neural data-to-text generator trained with annotated
text as the target.
Template System When designing the template
system, we aim to capture general rules across dif-
ferent attribute types so that one template can be
reusable to other similar attributes. We define each
template should contain (1) a precondition special-
izing when to apply the template, (2) one or several
corresponding text with gaps to fill, and (3) a set
of rules defining how to fill in the gaps. For exam-
ple, the following is a template defined from the
attribute type ARE_BATTERIES_REQUIRED:

Precondition: applies if the POS
tag of the attribute
name follows the pattern of
be_NOUN_VERBed.
Rule: (1) If the value is "Y" or
"yes" or "True":
output "It VERBs the NOUN".
(2) Otherwise: output "It does
not VERB the NOUN".

where VERBs and VERBed mean the third
person singular and past particle form of the
verb. For ARE_BATTERIES_REQUIRED, VERBs
would be “requires" and VERBed is “required". It
can also apply to other attribute types following
the same pattern like “is_assembly_required" and
“is_software_included".

During template construction, we maintain a
template bank starting from empty. As we see more
attribute types, we check if any template from the
bank can be applied, and if so, whether it generates
the correct text or whether we need to manually
update the template. Otherwise, we create a new
template for this attribute type. This process is re-
peated until we go over all the 320 attribute types
three times, to refine, merge and fix the template
bank and rules. After these rounds, we end up with
a total of 23 distinct templates.

Nevertheless, during the construction process,

Attribute value Text
{ value:"gas-
powered"}

The product is gas-
powered.

{ value:"batteries"} It runs on batteries.
{ value:"Manual" } This doesn’t have

power.
{ value:"NA" } This doesn’t run on

any power.

Table 2: Different instances of the attribute type
“power_source_type" and human annotated text.

we realize it is nearly impossible to devise a tem-
plate system to cover all cases well, even for the
limited 320 attribute types that we focus on. The
difficulty lies in the following two diversities in the
data: (1) linguistic diversity: The attribute values
do not follow any strict rule. They can be free text
as long as it conveys the meaning, which makes
it hard to design general rules even for a single
attribute type. (2) structural diversity: The json
format is a loose structure. The same semantic
meaning can be organized in different ways and
hierarchies. Applying one rule for different struc-
tures can easily lead to parsing errors. Table 2
shows some examples of different values for the
same attribute type. We can see that even for one
single attribute, it requires many verbalizing rules
to handle different structures and attribute values,
let alone extending the template rules to multiple
attribute types.
Neural Generator To avoid pre-defined rules and
to generalise to unseen attributes, we train a neural
generator model initialized either with Bart (Lewis
et al., 2020) or T5 (Raffel et al., 2020), two state-
of-the-art generative models pretrained on large
amount of web text with self-supervised objectives.
As input, we feed the linearized json-formatted
data 3 and the output is the annotated text.

We further normalize the numbers in both the
attribute and text to keep them in a consistent form,
to help the model learn their correspondence in the
generation task. For example, we turn forms like
“1.", “1.0" and “1.00" into 1, and normalize words
to numeric values (“one" → “1" etc).

To minimize the changes of hallucination in the
generation, we also delexicalize words in the an-

3We also tried other input formats like flattening the hi-
erarchical structure, adding instruction prompts (Schick and
Schütze, 2020; Liu et al., 2021) etc, but did not find significant
improvements.
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Model BLEU chrF PARENT-F1 #PARAMs Faith Cov Flu
Performance on Seen Attributes

Template - - - - 0.9612 0.9546 3.203
Reference - - - - 0.9574 0.9728 3.532
Bart-Base 0.3704 0.571 0.36445 139M - - -
Bart-Large 0.3917 0.615 0.38748 406M - - -
T5-Small 0.3267 0.542 0.33128 60M - - -
T5-Base 0.4061 0.601 0.38214 220M - - -
T5-Large 0.4060 0.616 0.40806 770M 0.9731 0.9776 3.657

T5-L (delex) 0.3911 0.604 0.39277 770M 0.9620 0.9640 3.632
Performance on Unseen Attributes

Reference - - - - 0.9401 0.8050 3.520
Bart-Base 0.3386 0.553 0.31463 139M - - -
Bart-Large 0.3541 0.586 0.33292 406M - - -
T5-Small 0.3187 0.512 0.31379 60M - - -
T5-Base 0.3293 0.544 0.33113 220M - - -
T5-Large 0.3869 0.610 0.37365 770M 0.9125 0.9231 3.610

T5-L (delex) 0.3696 0.597 0.35275 770M - - -

Table 3: Automatic Metric and human evaluation Results for Answer Presentation

notated text that match with the attribute values,
replacing them by a tag in the input attribute, a com-
mon technique used in data-to-text generation (Wen
et al., 2015; Ferreira et al., 2019; Chang et al.,
2020b,a). The tag is the linearized path from the
root node (attribute name) to the tag of the value.
For example, for the second sentence in Table 1,
the text “The product is compatible with ..." will be
delexicalized into “The product is compatible for
(concatenated) [value]." In the testing phase, after
the model decodes the delexicalized text, the tag
is then replaced to the corresponding value in the
input attribute. While this can provide the model
with a clear correspondence between input and out-
put, it also adds the risk of losing the linguistic
information like tense, singular/plural after delexi-
calization.

Automatic Evaluation For the automatic met-
rics, we report the BLEU (Papineni et al., 2002),
chrF (Popović, 2015) and PARENT-F1 (Dhingra
et al., 2019) score. The results of automatic met-
rics are shown in Table 3, where we try different
sizes of models and list their number of model
parameters (#PARAMs). Generally all the three
metrics correlate well with each other. As expected,
larger models tend to perform better than smaller
models, with a larger difference on unseen versus
seen attributes, which suggests that larger models
generalize better than smaller models on unseen
attributes. This could be because larger models
are encoded with more language knowledge, which
makes them less likely to overfit to the attributes in
the training data.

T5-large achieves the best performance across

all metrics. Therefore, we train with the delexi-
calized text as mentioned in Section 4 based on
T5-large to see if the delexicalization can improve
the performance further (T5-L (delex) in the table).
All scores are evaluated on the lexicalized text out-
put, which means that all delexicalized parts have
been replaced with the input attribute values so that
we can have a fair evaluation.

Delexicalization, unfortunately, does not help
with the performance. It lowers down the scores
over all metrics compared with directly using the
original text as the target. The reason could be that
T5 is pretrained with natural text itself. It has no
delexicalized slots in its training corpus. Therefore,
it fails to adapt well to the format of delexicalized
text. Indeed, we find that T-5 sometimes generates
text with slot names that do not exist in the input
attribute which affects its performance. For future
research, it would be interesting to see how to adapt
pretrained generative models to delexicalized text,
or even directly pretraining large-scaled generative
models on delexicalized text.

Human Evaluation We conduct a human evalua-
tion of the generated texts, focusing the following
three dimensions: (1) Faithfulness, whether the
text is faithful to the attribute (binary). (2) Cov-
erage, whether the text covers all contents in the
attribute (binary). (3) Naturalness, whether the
text is a natural sentence rather than a machine-
generated rigid one. 4-ary score from 1(rigid),
2(slightly rigid), 3(slightly natural) to 4(natural)
On seen attributes, we evaluate the T5-large and T5-
large with delexicalized text (T5-L (delex)), plus
the template system and the annotated reference.
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Attribute From Template From T5-large
allergen_information: {
value:gluten_free }; { value:dairy_free
}

allergen warning: the product contains
gluten free,dairy free.

this product is gluten free and dairy
free.

team_name: { value:"null" } the team name of the product is null. this does not have a team name.
speaker_type: {value:"portable blue-
tooth speakers"}

the product has a portable bluetooth
speakers speaker.

this is a portable bluetooth speaker.

installation_type: value:"driver side" the product is installed using the driver
side.

this is installed on the driver side.

Table 4: Example of template-generated texts that are labeled as unfaithful.

Attribute Reference From T5-large
size_per_pearl: { value:"iphone" } it is an iphone. the product has an iphone size pearl.
switch_type: { value:"rotary switch" } this has a switch that turns. the product has a rotary switch.
target_species: { value:"Dog" } for dogs. this is for dogs.
installed_size:[{unit: un-
known_modifier, value:32.}]

its cache memory installed_size:[{unit:
unknown_modifier, value:32.}]

the product has a cache memory of 32
units.

Table 5: Example references which are labeled as unfaithful(first two rows) or unnatural (last two rows).

On unseen attributes, we only evaluate T5-large
and the reference since handcrafted templates can-
not be applied to unseen attributes at all. From each
of 10 data splits, we randomly sample 50 attributes
from it such that each model has 500 attribute-text
pairs being evaluated. Each pair is evaluated by
three annotators. The final scores are averaged
over the 500 pairs for each model. We show the
results and the agreement score among annotators
in Table 3 and Table 6 respectively.

Faithful Coverage Natur-4class Natur-2class
0.97762 0.97402 0.80499 0.92569

Table 6: Agreement Score for Answer Presentation.

Overall, the evaluation has a rather high agree-
ment score. Naturalness has the lowest agreement
since it is 4-ary. We also calculate the binary score
for naturalness by combining natural and slightly
natural into one bucket, and combining rigid and
slightly rigid into the other bucket. The agreement
score grows to over 0.92 by this means. We then
manually checked and corrected all attribute-text
pairs that do not have an agreement score of 1 for
faithfulness and coverage. For naturalness, as it is a
rather subjective metric anyway, we do not correct
it. We also manually verified the faithfulness and
coverage for the attribute nutritional_info, which
we find especially hard to be evaluated correctly
due to its complexity.

Overall all models have high scores on both faith-
fulness and coverage, and differences are small.
For naturalness, as expected, templates have the

lowest score. Using delexicalization underper-
forms the standard neural model, which is con-
sistent with the findings from the automatic metric
scores. We observe two interesting phenomena:
(1) Neural models outperform templates even for
faithfulness and (2) Neural models outperform hu-
man references for faithfulness and naturalness. In
Table 4 and 5, we list examples of text generated
from templates/references that are labeled as un-
faithful/unnatural to the attribute. As can be seen,
errors in template-generated texts usually occur be-
cause the templates designed for certain values do
not apply to a new value. Errors in humans refer-
ences are due to annotation noise, which is usually
inevitable. The T5 model outperforms the refer-
ence, suggesting that it is able to round up these
few annotation errors and learn the general pattern
from the most correct references.

5 Conclusion

In this work, we study how to effectively lever-
age semi-structured data for product question an-
swering. As there is no public datasets for this
problem, we collect a dataset containing manually
annotated questions together with description text
about semi-structured attributes from our internal
database. We present empirical results and findings
about two key challenges of this problem: attribute
ranking and answer presentation . Experiments
show that neural models can provide superior text
than template systems and perform well for ranking
seen attributes, albeit there is still a noticeable drop
when it comes to unseen attributes for both ranking
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and generation.
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