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Abstract 

Clinical data annotation has been one of the 
major obstacles for applying machine 
learning approaches in clinical NLP.  Open-
source tools such as NegBio and CheXpert 
are usually designed on data from specific 
institutions, which limit their applications 
to other institutions due to the differences in 
writing style, structure, language use as 
well as label definition. In this paper, we 
propose a new weak supervision annotation 
framework with two improvements 
compared to existing annotation 
frameworks: 1) we propose to select 
representative samples for efficient manual 
annotation; 2) we propose to auto-annotate 
the remaining samples, both leveraging on 
a self-trained sentence encoder. This 
framework also provides a function for 
identifying inconsistent annotation errors. 
The utility of our proposed weak 
supervision annotation framework is 
applicable to any given data annotation 
task, and it provides an efficient form of 
sample selection and data auto-annotation 
with better classification results for real 
applications.      

1 Introduction 

Previous work (Wang et al., 2019) has showed 
clinical text classification can significantly benefit 
from supervised learning approaches when 
annotated data is available. However, annotation 
of clinical data is extremely expensive and time 
consuming since annotation needs human experts’ 
domain knowledge. To circumvent this, some 
rule-based methods have been developed using 
expert knowledge, e.g., NegBio (Peng et al., 

2018) and CheXpert (Irvin et al., 2019) using rule 
labeler to automatically detect the presence of 
observations in radiology reports. McDermott et 
al. (2020) mentioned that CheXpert is 
computationally slow, and its output is non-
differentiable, so they proposed to train a BERT 
based classier (CheXpert++) based on the output 
of CheXpert. Likewise, Smit et al. (2020) 
proposed to combine automatic labelers with 
expert knowledge by first fine-tuning BERT 
classifier on output of CheXpert and then on a 
small set of expert annotations augmented with 
automated backtranslation.  

While annotation is data and task specific 
(Irena et al., 2020), it is further complicated by the 
differences in writing style, structure, language 
use such as the vocabularies and phrase variability 
among different institutes and different countries. 
For example, phrases “airspace changes” and 
“infective change(s)” are commonly seen in our 
local data to describe pneumonia, but rarely seen 
in MIMIC data (Alistair et al., 2019). In addition, 
label definitions vary among institutes. For 
example, CheXpert classifies the sentence 
“suspicious for pneumonia” as “pneumonia 
uncertainty” based on their rule definition, while 
our clinicians/radiologists would consider it as an 
implication of “pneumonia positive”. These 
differences limit the application of open-source 
tools on different data, and further limit the 
applications of methods (McDermott et al., 2020; 
Smit et al., 2021) which heavily rely on open-
source tools.    
    Some active learning (Chen et al., 2015) and 
interactive learning methods (Wang et al., 2017) 
have been commonly used for reducing the 
experts’ annotation burden. Chen et al.  (2015) 
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proposed uncertainty-based and diversity-based 
sampling to annotate clinical NERs. Both 
sampling approaches adopt random sampling and 
longest sentence sampling, for comparison, to 
build the initial set for manual annotation. For 
subsequent annotation and updating, the 
uncertainty-based sampling relies on model’s 
predictions while diversity-based selects samples 
based on pair-wise sentence similarity. Pair-wise 
sentence similarity is calculated based on 
individual words, syntax or clinical concepts, with 
the aim to select samples with lower similarity to 
annotated samples in the initial set. Wang et al. 
(2017) proposed an interactive learning method, 
ReQ-ReC, which is very similar to the 
uncertainty-based sampling.  The method 
leverages on human experts’ domain knowledge 
to build a list of sense-specific contextual words 
and use them to search for related sentences to 
form the initial annotation set.  For subsequent 
sampling, it is based on the model’s prediction 
too. The more ambiguous samples will be selected 
for annotation.   

For the above approaches, it is not efficient in 
practice since they incur many rounds of model 
retraining (Chen et al., 2015) and multiple cycles 
of annotation by experts. Time taken for human 
annotation is normally affected more by the 
duration of the annotation cycle than by the 
sample sizes as experts are not readily available, 
especially in the clinical domain. Pair-wise 
sentence similarity is limited by using words, 
syntax or extracted clinical concepts to represent 
sentence since they cannot capture the semantic 
meaning of the whole sentence. In our data, it is 
very common to have sentences with the same 
clinical concepts annotated differently due to 
negation or speculation. In addition, distribution 
and the number of samples selected for initial 
annotation affects the performance of the model, 
which will then affect the prediction quality of the 
remaining samples.  

To effectively select samples for initial 
annotation and avoid multiple training cycles and 
annotation by human experts, in this paper, we 
propose a new weak supervision annotation 
framework to overcome the retraining and 
multiple annotation process. Within the proposed 
framework, we adopt deep neural networks 
(DNN) for sample selection and text 
classification, which can fill the gap of using 
DNNs in active learning for text classification 

(Schroder et al., 2020). Our work has the 
following contributions: 

1) We propose a generic weak supervision 
data   annotation framework which relies 
on sentence embedding for sample 
selection, error checking and auto-
annotation. 

2) We propose to select representative 
samples through sentence clustering to 
kick start the human annotation process, 
which is a more efficient approach than 
random selection and longest sentence 
selection (Chen et al., 2015). 

3) We show that our proposed annotation and 
training approach achieves better 
performance and requires fewer number of 
annotated samples.  

2 Related Works 

    Supervised Sentence Encoder. Earlier 
sentence encoders are trained in supervised way. 
InferSent (Conneau et al., 2017) is trained on 
Stanford natural language inference (SNLI) data 
with three labels. Universal Sentence Encoder 
(Cer et al., 2018) augments unsupervised learning 
on labelled SNLI dataset for improved 
performance. Reimers et al. (2019) proposed 
SBERT, built by adding a Siamese network on top 
of BERT model and then fine tuning on NLI data 
sets. Their experimental results show that SBERT 
achieves much better results compared to 
InferSent and Universal Sentence Encoder on 
STS tasks (Reimers et al., 2019).  For other tasks 
and domains, retraining SBERT on domain 
sentence pairs with labels are also preferred.  

Unsupervised Sentence Encoder. As to 
unsupervised approaches, with the advent of 
pretrained language models (PLMs), Devlin et al. 
(2018) tried to get sentence embeddings from 
BERT by either averaging the vectors obtained 
from the last layer or using [CLS] token.  
Recently, Wang et al. (2021) proposed the 
transformer-based sequential denoising auto-
Encoder (TSDAE) method by exploiting the 
encoder-decoder structure of transformer. During 
training, the encoder converts corrupted sentences 
into fixed-sized vectors and the decoder 
reconstructs the original sentences from this 
fixed-sized vectors. To make reconstruction as 
good as possible, the sentence embedding from 
the encoder must well represent the semantic 
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meaning of the sentences. At inference, only the 
encoder will be used for generating sentence 
embeddings.  

Sentence Textual Similarity (STS) in clinical 
domain. In clinical domain, there are also related 
work for evaluating sentence similarity.  Mahajan 
et al. (2020) proposed an iterative intermediate 
training (IIT) approach for calculating clinical 
STS by using multi-task learning (MTL). The 
final system attains promising results for clinical 
STS tasks by integrating module of Clinical 
BERT with other language models (BioBERT, 
MT-DNN, RoBERTa). But the method is not 
efficient for training sentence encoder as it 
involves high computation cost for the various 
pairs of regression tasks due to many possible 
combinations. Wang et al. (2020b) proposed to 
take advantage of general domain STS dataset and 
a small-scale in-domain training data to achieve 
an impressive result for clinical STS task.  

In this paper, we present both supervised and 
unsupervised sentence encoder training methods 
in our weak supervised framework for CXR data 
annotation (See Section 3.2). We evaluate both 
sentence encoders using a small set of CXR data 
with pathology labels for a multi-label 
classification task. We show that our proposed 
weak supervision framework is effective for semi-
supervised data annotation.   

3 Methodology 

          Diseases 
 
Sentences 

CXR diseases annotation  
CAT
1 

CAT
2 

CAT
3 

CAT
4 

atelectasis is seen at 
the right lower zone 
with vague air-space 
changes.   

  u      + 

the heart size cannot 
be accurately 
assessed in this 
projection but 
appears to be 
enlarged. no obvious 
consolidation is seen. 

  -    +    

Table 1.  Annotation examples of our CXR data. ‘’ 
indicates the pathology is not mentioned  

Our annotation task is to label each sentence in the 
CXR report into four pathologies, mainly 
pneumonia (CAT1), pneumothorax (CAT2), 
cardiomegaly (CAT3) and other diseases (CAT4) 
as illustrated in Table 1. For each pathology, we 

further label it as being ‘positive’(+), ‘negative’(-
), or ‘uncertain’(u). One sentence may have more 
than one pathology with one pathology as 
positive, while describing another pathology as 
negative or uncertain. If there are no pathologies 
described, we label it as ‘no findings’. 

3.1 The Proposed Framework 

Our proposed framework is depicted in Figure 1. 
This proposed new weak supervision annotation 
framework is applicable to any data annotation 
task. It exploits an efficient sentence encoder to 
get high quality sentence embeddings. Using 
these embeddings, 1) we perform unsupervised 
clustering to obtain the natural grouping of data 
based on its distribution.  2) We then select 
representative sentences for human annotation 
from each sentence cluster using sematic 
similarity score.  3) Auto error checking is then 
performed on the human annotations to reduce 
bias and inconsistences caused by human errors.  
4) We then perform automatic annotation on the 
remaining data in each cluster by measuring their 
semantic similarity with the annotated samples. 
Using this approach, we are able to obtain a set of 
high-quality data for our classification task.  
 
 
 
 
 

 

 

Figure 1. Proposed weak supervision annotation 
framework. Sentence Encoder is on our CXR data. 
Auto-checking checks the inconsistence and bias in the 
human annotation.  

3.2 Sample Selection Strategy 

We used HDBScan as our clustering method and 
divide the clusters into noisy clusters and clean 
clusters. We define the first cluster as Noisy 
Cluster as HDBScan always put all sentences it 
cannot group into this cluster. This noisy cluster 
has many variations on sentence length and 
keywords (mentions). For example, in Cluster 1 
of Table 2, sentence 1 mentions both 
cardiomegaly (enlarged heart) and pleural 
effusion (water in the lung), which are keywords 
used in CAT3 and CAT4 categories. Sentence 2 is 
much shorter with only the keyword “cardiac” 

sentence 
clustering  

target cxr reports  
in sentence level 

sentence 
embedding 

sentence 
encoder 

representative 
sentences ( 

~2000) for human 
expert annotation  

auto-annotation of 
remaining 
sentences  

auto-checking 
of data 

annotation 
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without further information. As the ambiguity is 
high in this pool, it would be a good source of 
sentences for human annotation. In our 
experiment, we selected all samples from this 
noisy cluster for expert annotation.   

We treat all other clusters as clean clusters and 
further divided them into Clean-Relevant and 
Clean-Irrelevant. Clean-Irrelevant (see Table 2) 
refers to clusters where most sentences do not 
mention keywords in any pathologies, and 
therefore are easily annotated, so we just choose 1 
or 2 samples for expert annotation. Clean-
Relevant clusters normally group sentences with 
the same pathology, but some sentences may 
describe more than one or different pathology 
with similar writing pattern. We selected more 
samples from them for expert annotation to have 
a more effective training dataset. 

Cluster 1: (Noisy Custer) 
1. comparing with the previous x-ray dated 
0/0/0 findings, cardiac size cannot be 
completely assessed on the given projection 
there is increasing homogeneous opacification 
of the right hemithorax, likely in keeping with 
underlying pleural effusion.  
2. suggest correlation cardiac size cannot be 
assessed on this suboptimal study 
3. nipple markers are noted.  
 … … 
Cluster 2: (Clean-Relevant) 
1. cardiac size is enlarged with perihilar 
vascular prominence. 
2. cardiac silhouette appears enlarged with 
prominent hilar vessels and upper lobe 
diversion 
3. cardiac size is enlarged with mild perihilar 
vascular congestion and bilateral perihilar air 
space shadows.  
…… 
Cluster 3: (Clean-Irrelevant) 
1. previous image done on 16 July 2016 is 
reviewed. 
2. findings were noted at time of reporting. 
3. comparison made with previous study dated 
17 Apr. 2013. 
…… 

Table 2. Examples of the Noisy, Clean-Relevant, 
Clean-Irrelevant clusters 

    Our data selection strategy can be illustrated 
in Equation (1). Assuming there are 𝑁  clean 
clusters and 𝐶௜  indicates the 𝑖 -th cluster ( 𝑖 =
1,2 … 𝑁),  𝑛௜ indicates the number of samples to 

be selected from 𝐶௜  . We first rank sentences 
based on their length for each cluster. Then we 
select 𝑙௜  samples comprising the longest one 
(𝑛௟௢௡௚௘௦௧), the shortest one (𝑛௦௛௢௥௧௘௦௧ ) and the 
one with medium length (𝑛௠௘ௗ௜௨௠) . For each 
sentence in 𝑙௜samples, we use our trained sentence 
encoder to compute the cosine similarity between 
it with the rest of the sentences and select the least 
similar sentences to obtain 𝑛௜  samples for human 
annotation. 

 
here 𝑛௟௢௡௚௘௦௧, 𝑛௦௛௢௥௧௘௦௧ and  𝑛௠௘ௗ௜௨௠ are used to 
control the length distribution in our training data. 
    In our experiments, we tried  
𝑛{௟௢௡௚௘௦௧,௦௛௢௥௧௘௦௧,௠௘ௗ௜௨௠} = 1,2,3,  and find out 
n=2 works best by obtaining enough 
representative samples selected for efficient 
expert annotation. There are samples showing that 
within a cluster, the longer the sentence, the more 
pathologies it tends to describe.  For example, the 
third sample in cluster 2 describe ‘pneumonia’ 
(keyword: ‘air space shadows’) and ‘other 
diseases’ (keyword: ‘vascular congestion’) 
besides ‘pneumothorax’ (keyword: ‘cardiac size’ 
or ‘cardiac silhouette’) as the first and second 
samples do.  This is consistent with the 
assumption observed by Chen et al. (2015) in their 
clinical NER task too. 

3.3 Inconsistent Error Checking and 
Auto-annotation 

We also use the self-trained supervised sentence 
encoder to assist us in checking the 
inconsistencies among the human annotations via 
pairwise sentence comparison among the 
annotated sentences. If two sentences have high 
semantic similarity but different labels, we will 
flag out to the radiologists for label confirmation.  

With this high-quality set of human annotated 
samples, we can auto-annotate the remaining 
sentences using the same sentence encoder. This 
is done by assigning the sentence with the same 
label of the human annotated sentence with 
highest similarity score. During this automatic 
labelling process, we set a threshold to reject auto 
labelling. The rejected sample will be sent for 
human annotation. A label is assigned only if the 
cosine similarity value between two sentences is 
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more than 0.9. This threshold has been proved to 
be efficient in our experiment.   

3.4 CXR Sentence Encoder 

A good sentence encoder is important for our 
annotation framework on sample selection, error 
checking, and auto-annotation. We use supervised 
SBERT (Reimers et al., 2019) and unsupervised 
TSDAE (Wang et al., 2021) for sentence encoder 
training in our experiments (Figure 2).  
    To obtain our supervised sentence encoder, we  
utilize sentence transformer1 for sentence encoder 
training and testing. We first do a domain adapted 
fine-tuning on a pretrained language model using 
our in-house CXR and MIMIC data (Alistair et al., 
2019) based on Transformer 2   with default 
parameters. We use Roberta-large as the 
pretrained model as it performs significantly 
better than other pretrained models based on our 
experiments. We further train this fine-tuned 
model on large Semantic Textual Similarity (STS) 
tasks using SBERT architecture and apply a 
pooling operation to our fine-tuned language 
model to get a fixed size sentence embedding 
output. Different from Wang et al (2020b), we 
include both general STS and clinical STS in the 
training and validation. Besides STS tasks, we 
also study the effect of fine-tuning on Natural 
Language Inference (NLI) for our data annotation 
task. 

 
 
 
 
 
 
 
 
(a2) 
 
 
 
 
 
 

Figure 2.  Supervised Sentence Encoder Training: (a1) 
to get domain adapted model (CXR-Roberta-large) 
through behavior fine tuning on pretrained model; (a2) 
further trains the adapted model (CXR-Roberta-large) 
to obtain a supervised sentence encoder (CXR-
SBERT) on labelled clinical NLI or STS data. 

 
1 https://github.com/UKPLab/sentence-transformers 

Unsupervised Sentence Encoder Training: (b) train 
unsupervised sentence encoder on unannotated CXR 
sentences and Roberta-large.  

   The unsupervised TSDAE training is shown in 
Figure 2 (b). The data used for domain adaptation 
in (a1) is also used to train the TSDAE sentence 
encoder. We use Roberta-large as the base model 
and train 10 epochs with the batch size of 16 in 
our experiment.  As to other parameters, we use 
the default values as Wang et al. (2021) used.     

3.5 CXR Report Classification 

We frame our CXR disease labelling task as a 
multi-label classification task. We adopt one-hot 
encoding label strategy. For each sentence, we use 
one-hot vector with dimension 13 for the labelling.   
The first 12 dimensions refer to the labeling of the 
four diseases, each of which has three dimensions 
namely ‘1,0,0’ ‘0,1,0’”, ‘0,0,1’ to indicate ‘disease 
positive’, ‘disease negative’, and ‘disease 
uncertain’ respectively. The last dimension refers to 
the labelling of ‘no_findings’, we use ‘1’ to indicate 
no disease mentioned and ‘0’ for one or more 
diseases mentioned. For example, if the sentence 
has pneumonia positive and other disease 
uncertainty, its one-hot vector label will be 
[1,0,0,0,0,0,0,0,0,0,0,1,0]. This gives us a 
maximum of  (3ସ + 1)  labels, with label values 
within one disease mutually exclusive to each other 
and label values among different diseases 
independent to each other. Let 𝑋 =
{𝑋ଵ, 𝑋ଶ, … , 𝑋௠}  denotes the input space,  Y =
{𝑌ଵ, 𝑌ଶ, … , 𝑌௖}   denotes the finite set of labels, in 
which c is the number of labels, 𝑌௜ =
[𝐿ଵ, 𝐿ଶ ..., 𝐿ଵଷ] and 𝐿௜ ∈ {0,1}.  Our classification 
task is to build a multi-label classifier H that maps 
an instance 𝑥 to its associated set of labels: 𝐻(𝑥) =
𝑃(𝑦|𝑥), in which 𝑥 ∈ 𝑋, y ∈ 𝑌.  
    In this multi-label classification, the prediction 
may be partially correct, which we do not consider 
it as a correct prediction. We use precision, recall 
and F-score to measure the performance for each 
disease, and use accuracy to measure the 
performance on sentence or report level.   

4 Experiments 

4.1 Data Processing 

We use 8 years of CXR reports extracted from our 
local hospitals. All data have been anonymized 

2 https://github.com/huggingface/transformers 
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and annotation is performed by professional 
radiologists with more than 13 years of experience 
who are native English speakers. 

We segment all reports into sentences by using 
NLTK sentence tokenization tool (Bird et al. 
2009). The length of the sentences varies from 1 
to 52 words with an average of 10 words per 
sentence. We filter out all single word sentences 
as they do not have much context to infer 
pathology. We also filter out sentences describing 
other body parts (e.g., Abdomen, Supine, Neck, 
Back) as they are not related to our pathology. We 
obtain 12,350 sentences at the end after removing 
duplicates.  

The data used for unsupervised TSDAE training 
and supervised SBERT training are summarized in 
Table 3.   MIMIC CXR (Alistair et al., 2019) and 
in-house CXR are used to fine-tune Roberta-Large 
and TSDAE on the clinical domain. The data used 
to fine-tune the SBERT sentence encoders include 
(i) Combined NLI comprising MEDNLI 
(Romanov et al., 2018), general domain NLI 
(StanfordNLI (Bowman et al., 2015) and multi-
genre NLI (Nangia et al., 2017);   (ii) STS-B (STS 
Benchmark, Cer et al., 2017) consists of a mixture 
of news, captions, and forums; (iii) SemEval STS 
2012-2016 (Agirre et al., 2012-2016) for semantic 
textual similarity tasks; (iv) Clinical STS 2018  (v) 
Clinical STS 2019 (Wang et al., 2018 & 2020c) are 
the only available STS data in clinical domain. We 
use all the 5 datasets for SBERT training. 

 
data  train/dev/test average

length    
data for domain adaptation and TSDAE 
in-house CXR 12350 10  
MIMIC CXR 248k 14  
data for SBERT sentence encoder  
combined NLI 956k 11.4 
STS-B 5749/1500/1379 10.2  
STS 2012-2016 23,778 12 
clinicalSTS 2018  749/318 25.4  
clinicalSTS 2019 1641/412 19.3 

Table 3. Data used for sentence encoder training  

4.2 Experiments & Results 

4.2.1    Sentence Encoder   

We studied our proposed framework using three 
supervised sentence encoders and one 
unsupervised sentence encoder.  All three 
supervised sentence encoders are based on CXR-
SBERT but trained on different datasets. The open-

source sentence encoder “sts-robert-large” from 
sentence-transforms1 is used as the baseline in our 
experiment. The settings for the supervised 
sentence encoder are descried below. 

1) CXR-SBERT-nli-stsb: train CXR-SBERT 
on both NLI and STS-B, followed by 
continuous training on STS 2012-2016. 

2) CXR-SBERT-nli-sts: train CXR-SBERT 
on both NLI and STS-B, followed by 
continuous training on all data from STS 
2012-2016, clinicalSTS 2018 and Clinical 
STS2019. 

3) CXR_SBERT-sts: train CXR-SBERT on 
STS-B and STS 2012-2016, followed by 
continuous training on Clinical STS 2018 
and clinical STS 2019.   

    For training on NLI data set, we use 
classification objective function with the mean 
pooling strategy and the mean squared error loss. 
We set num_epoch as 4 and batch_size as 16.  We 
use Adam optimizer with learning rate 2e−5, and 
a linear learning rate warm-up over 10% of the 
training data. For training on STS data, we use 
regression objective function with mean pooling 
strategy and cosine similarity loss (Reimbers et al 
2019). We set num_epoch as 5 and batch_size as 
16. Other parameters are the same as Reimers et 
al (2019).  
 

Sentence encoder Accuracy  
sts-roberta-large 93.33 

CXR-SBERT-nli-stsb  94.33 
CXR-SBERT-nli-sts  98.33 
CXR-SBERT-sts 98.33 

CXR-TSDAE 96.67 

Table 4.  Sentence encoders’ comparison on auto-
annotation performance on a small CXR data set.  

    To select a suitable sentence encoder for our 
task, we use 360 CXR sentences from clean 
clusters generated by each sentence encoder for 
experts’ annotation. We use 60 as training data and 
300 as test data. The 60 sentences are distributed 
across clusters and are used for auto-annotating the 
300 sentences.  
    The results are shown in Table 4. From the 
result, we can see that sentence encoder CXR-
SBERT-sts and CXR-SBERT-nli-sts produce 
better results than other encoders, which means 
the encoders trained on large STS data generate 
better sentence embeddings on our data. The 
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model CXR-SBERT-nli-stsb has better 
performance than the out-of-the-box model (sts-
roberta-large), which means domain adapted fine 
tuning is helpful. The unsupervised sentence 
encoder CXR-TSDAE performs well but is not so 
good as SBERT encoder CXR-SBERT-sts. 

4.2.2      Semi Auto-annotation Strategy  

With good quality sentence embeddings obtained, 
we leverage HDBscan with Umap3 for clustering.  
We set parameters n_neighbors as 200 and 
n_components as 500 (original data dimension is 
1024) for Umap. We set HDBscan parameters 
min_samples as 10, min_cluster_size as 30. Using 
the above setting, we generate 94 clusters for 12 
thousand sentences (See Appendix A.1 for 
parameters setting).   

We follow the selection criterion in Section 3.2 
to select different number of samples for 
annotation (see Table 6). The selected samples are 
first annotated by two professional radiologists 
and checked by a third annotator. After human 
annotation, we conduct label auto-checking 
through similarity values. Some inconsistent 
annotations could be found during auto-checking 
due to human bias or mistake. These 
inconsistencies are verified by human annotators 
again and the verified annotated data is added to 
the reference for automatic annotation of the 
remaining sentences by measuring the similarity 
scores of the remaining sentences with these 
references. 

Categories (+) (-) (u) total  
pneumonia  949 489 79 1517 
penumothorax 900 294  76 1210 
cardiomeglay 1511 520 775 2806 
other diseases 3850 974 132 4956 
no_finiding            3436 

Table 5. The in-house data statistics, in which “(+) / (-
) / (u)” indicates positive/negative/uncertainty of each 
pathology.  

A total of 11,114 sentence samples are 
annotated using our proposed framework, during 
which 150 confusing samples were sent for 
further verification by our annotators.  The final 
data statistics is shown in Table 5. Most of the 
data (88%) include only one pathology, while 
12% of data include multiple pathologies.   

 
3 https://umap-
learn.readthedocs.io/en/latest/clustering.html#umap
-enhanced-clustering 

We perform analysis on the size of human 
annotation samples with respect to the accuracy of 
auto-annotation of the remaining data.  From the 
results shown in Table 6, we can see the 
annotation accuracy increased from 69.98% to 
90.05% by annotating about 19.8% of data, from 
a test set of 1,236 reports. 

#sents selected (% data) Auto annotation 
Accuracy 

876  ( 7.8%) 69.98% 
1236 (11.12%) 81.07% 
1656 (14.9%) 85.60% 
2200 (19.80%) 90.05% 

 
Table 6. Performance of auto-annotation performance 
on different number of samples selected from further 
annotation. ‘%data’ indicates the percentage of 
data selected from 11,114 sentence samples. 
 
4.2.3      Pathology classification  

In the experiment, we used 
SimpleTransformer 4  library for the multi-label 
classifier training and testing. We used train and 
evaluation batch of 8, epoch of 3, learning rate of 
4e-5 and threshold of 0.5. For other parameters, 
we use the default values. We split the annotated 
sentence samples into train data 9879, dev (1235) 
and test data (1236). The experiment results are 
shown in Table 7. We can see that most of the 
categories have f-score at around or more than 
95% except two uncertainty cases (pneumonia 
and others). This model also has been recently 
tested on 988 reports from local hospital with an 
accuracy of 98.1% on report level. This successful 
application of this framework on CXR data boosts 
our confidence on its application on other 
annotation tasks (See Appendix A.2). 

5 Discussion  

5.1 The Robustness of the classifier   

We observe that although the SBERT sentence 
encoder was trained on out-domain labelled STS 
data, it performs better than the unsupervised 
TSDAE sentence encoder. The result is consistent 
with the observation in Schick et al. (2021), who 
mentioned and demonstrated supervised sentence 
encoders perform better than unsupervised 

4 
https://github.com/ThilinaRajapakse/simpletransfor
mers 
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sentence encoders. Our auto-annotation 
experiments demonstrate very good performance 
on our CXR data. One possible reason can be due 
to the characteristics of our data.  Our data is in 
sentence level and some sentences are very 
similar (not much variation), so clustering can 
generate some very clean clusters which make the 
annotation inside those clusters very efficient; 
Besides, the average length of our data is about 10 
words, which possibly captures a good embedding 
for the sentence representation.     

 
Category precision recall f-score 
pneumonia (+) 93.30 98 95.59 
pneumonia (-) 94.70 94.74 94.74 
pneumonia (u) 85.71 75.00 78.00 
pneumothorax(+) 97.92 96.91 97.41 
pneumothorax(-) 86.96 95.24 94.05 
pneumothorax(u) 100 100 100 
cardiomegaly (+) 96.27 99.36 97.79 
cardiomegaly(-) 100 98.15 99.07 
cardiomegaly (u) 98.55 94.44 96.45 
others (+) 90.41 94.83 92.57 
others (-) 90.70 92.86 91.77 
others(u) 77.78 50 60.87 
no_finding 97.80 93.93 95.36 

Table 7. The classification comparison on each 
pathology, in which “(+) / (-) / (u)” indicates 
positive/negative/uncertainty of each pathology.   

Though sentence encoder could potentially be 
used as an annotation tool, it has limitations. It 
cannot differentiate multi-labels because it treats 
multi-label as one power set of labels. A classifier 
trained on annotated data is much more robust 
than a sentence encoder for label assignments 
because during classifier training, the weights of 
the classifier in multiple layers are iteratively 
updated to represent a sentence in a more accurate 
way. On the other hand, a sentence encoder 
converts each sentence to a vector in a fixed way 
and treats each dimension of sentence 
embeddings equally (Reimers et al., 2019).  
Therefore, we fine-tuned cxr-roberta-large on the 
annotated data to obtain a more robust classifier 
(see Section 4.2.3).   

5.2.  The Effectiveness of our method  

To demonstrate the effectiveness of our proposed 
annotation method, we compare our method with 
the uncertainty-based sampling method with the 
initial set selected randomly and based on 
sentence length (Chen et al., 2015). The reasons 

of using the two baselines of random sampling 
and sentence length-based sampling are because 
1) although random sampling is simple and 
straightforward, it performs competitive to most 
sophisticated strategies (Schroder et al., 2020); 
2)The length strategy is a data driven strategy, 
which is simple and has been tested to be effective 
for medical data (Chen et al., 2015), and it is 
slightly better than random sampling for medical 
data. 
    We use the total number of samples selected for 
manual annotation as an evaluation measure for the 
annotation efforts among different methods. Note 
that other methods will incur additional time for 
updating model and waiting time of more cycles of 
experts’ annotation. In this experiment, we used the 
same library and setting as Section 4.2.3. For data 
setup, we have 10k+ data for annotation 
experiments and 2000 data used for model 
evaluation.  For the batch sizes used in active 
learning, we use batch size of N= [100, 300, 600, 
1000, 1500, 2200, 2800, 3600, 4500, 5500, 6700, 
10350] for 12 iterations in our experiment, for the 
comparison among different annotation methods 
(see Figure 3).  

From Figure 3, we can see that with more data 
for training, the performances of all models 
increase. The performance increases faster when 
the number of samples is less than 2000. After 2000 
samples, the increasing trend slows down.  Our 
proposed method demonstrates better and faster 
performance improvement than other two methods 
as our method selects more representative 
sentences for human annotation and model 
training. The auto-checking further assists us to 
check for errors and control our data quality.  The 
sampling strategy based on longest sentences are 
better than the random selection, but when more 
and more samples are selected for training, the gap 
becomes smaller. Our experiment shows our 
proposed approach requires only 2200 manually 
annotated samples to perform auto-annotation of 
the remaining samples to reach the best 
performance where other methods need to 
manually annotate almost all the sentences to reach 
around 95.06% accuracy. This can contribute to our 
auto-annotation strategy with auto-checking 
process which reduces human annotation bias and 
errors and has a positive impact on the quality of 
the annotation data. 
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6 Conclusion 

We propose a semi-supervised annotation scheme 
which avoids multiple model re-training and 
expert annotation which is applicable to CXR text 
data and other domain data annotation (Appendix 
A.2). Within the framework, we investigate a gap 
mentioned by Schroder et al. (2020) by using fine-
tuning-based models in active learning for text 
classification. We utilize a self-trained sentence 
encoder for effective sample selection through 
clustering, error auto-detection and sample auto-
annotation. Based on the annotated data, we 
further fine-tune a pre-trained language model to 
obtain a robust classifier which demonstrates high 
performance on CXR data disease detection. This 
method greatly improves data annotation 
efficiency and relieves human annotation burden.  

 
Figure 3. Comparison of different annotation methods  
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A   Appendix  

A.1  HDBSCAN & UMAP parameters setting  

We had performed extensive clustering 
experiments on this CXR data.  The UMAP is for 
dimension reduction and n_neighbors and 
n_components are two of the most important 
parameters. The bigger n_neighbors, it will look 
at more global manifold structure.  If there are no 
ground truth labels, it is hard to know which 
values are best for those two parameters. And 
those values may change for different data.   

HDBSCAN has two important parameters 
min_cluster_size and min_samples, which can 
cause quite different clustering if we change them 
in a wide range. The large min_cluster_size, more 
data points will be rejected. Our strategy is to 
obtain the initial results using the default 
parameters and then adjust the values within a 
range to get good clustering. This clustering has 
been tried on another set of finance data and 
compared with K-means which needs to have the 
number of clusters specified first. The clusters 
generated by HDBSCAN with UMAP is much 
more sensible and preferred by clients.  

A.2   Application of the proposed method on 
anther data 

We have used the method on another financial in-
house data set for topic classification. The number 
of sentences used for training is 5044, and the 
average length of sentences is around 11, with 
maximum length 48 and minimum length 1.  The 
number of clusters generated is 24. Through the 
auto error checking and auto-annotation, we 
achieved satisfactory classification result.  


