
Linear-Time Calculation of the Expected Sum
of Edge Lengths in Random Projective
Linearizations of Trees

Lluı́s Alemany-Puig
Universitat Politècnica de Catalunya
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The syntactic structure of a sentence is often represented using syntactic dependency trees. The
sum of the distances between syntactically related words has been in the limelight for the past
decades. Research on dependency distances led to the formulation of the principle of dependency
distance minimization whereby words in sentences are ordered so as to minimize that sum.
Numerous random baselines have been defined to carry out related quantitative studies on lan-
guages. The simplest random baseline is the expected value of the sum in unconstrained random
permutations of the words in the sentence, namely, when all the shufflings of the words of a sen-
tence are allowed and equally likely. Here we focus on a popular baseline: random projective per-
mutations of the words of the sentence, that is, permutations where the syntactic dependency
structure is projective, a formal constraint that sentences satisfy often in languages. Thus far, the
expectation of the sum of dependency distances in random projective shufflings of a sentence has
been estimated approximately with a Monte Carlo procedure whose cost is of the order of Rn,
where n is the number of words of the sentence and R is the number of samples; it is well known
that the larger R is, the lower the error of the estimation but the larger the time cost. Here we pre-
sent formulae to compute that expectation without error in time of the order of n. Furthermore, we
show that star trees maximize it, and provide an algorithm to retrieve the trees that minimize it.

1. Introduction

A successful way to represent the syntactic structure of a sentence is a dependency
graph (Nivre 2006) that relates the words of a sentence by pairing them with syntactic
links, as in Figure 1. Each link is directed and the arrow points from the head word to
the dependent word (Figure 1). There are several conditions that are often imposed on
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Figure 1
Examples of sentences and their syntactic dependency structure. Here arc labels indicate
dependency distances. The word within a rectangle is the root of the sentence, and the number
on top of each edge denotes its length. (a) Projective dependency tree (adapted from Groß and
Osborne 2009). (b) Planar (but not projective) syntactic dependency structure (adapted from
Groß and Osborne 2009). (c) Non-planar syntactic dependency structure (adapted from
Nivre 2009).

the structure of dependency graphs (Nivre 2006). The first is well-formedness, namely,
the graph is (weakly) connected. The second is single-headedness, that is, every word
has at most one head. Another condition is acyclicity, that is, if two words, say wi and wj,
are connected via following one or more directed links from wi to wj then there is no path
of directed links from wj to wi. By definition, syntactic dependency trees always have a
root vertex, that is, a vertex (word) with no head. The fourth condition is projectivity,
often informally described as the situation where edges do not cross when drawn above
the sentence and the root is not covered by any edge.

When a dependency graph is well-formed, single-headed, and acyclic, the graph is
a directed tree, called a syntactic dependency tree (Kuhlmann and Nivre 2006; Gómez-
Rodrı́guez, Carroll, and Weir 2011). In addition, a syntactic dependency structure is
projective if, for every vertex v, all vertices reachable from v, that is, the yield of v, form
a continuous substring within the linear ordering of the sentence (Kuhlmann and Nivre
2006). Equivalently, a syntactic dependency structure is projective if the yield of each
vertex of the tree forms a contiguous interval of positions in the linear ordering of the
vertices. Kuhlmann and Nivre (2006) define an interval (with endpoints i and j) as the
set [i, j] = {k | i ≤ k and k ≤ j}.

A linear arrangement of a graph is planar if it does not have edge crossings (Sleator
and Temperley 1993; Kuhlmann and Nivre 2006). Then projectivity can be characterized
as a combination of two properties: planarity and the fact that the root is not covered
(Mel’čuk 1988). Planarity was, to the best of our knowledge, first thought of as one-
page embeddings of trees by Bernhart and Kainen (1979). Figure 1 shows an example
of a projective tree 1(a), a planar tree 1(b), and a non-planar tree 1(c) (see Bodirsky,
Kuhlmann, and Möhl [2005] for further characterizations of syntactic dependency
structures).

A free tree T = (V, E) is an undirected acyclic graph (Figure 2(a)), where V is the set
of vertices and E is the set of edges. Here we represent the syntactic dependency struc-
ture of a sentence as a pair consisting of a rooted tree and a linear arrangement of its ver-
tices. A rooted tree Tr = (V, E; r) is a free tree T = (V, E) with one of its vertices, say r ∈ V,
labeled as its root and with the edges oriented from r toward the leaves (Figure 2(b)).
A linear arrangement π (also called embedding) of an n-vertex graph G = (V, E) is a
(bijective) function that assigns every vertex u ∈ V to a position π(u). Throughout this
article, we use the terms “linear arrangement,” “linear ordering,” “arrangement,” and
“linearization” interchangeably. In addition, we assume that π(u) ∈ [n] = {1, · · · , n}.
Linear arrangements are often seen as determined by the labeling of the vertices (Chung
1984; Kuhlmann and Nivre 2006), but here we consider that the labeling of a graph and
π are independent. In order to clarify our notion of linear arrangement of a labeled
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Figure 2
a) A free tree T = (V, E). b) The tree T rooted at r = 4, yielding Tr = (V, E; r) with r = 4. c) Two
different projective linear arrangements of Tr: π1(5) = π2(5) = 1 (thus π−1

1 (1) = π−1
2 (1) = 5);

π1(8) = 6, π2(7) = 6.

graph G, we say that two linear arrangements π1 and π2 of G are equal if and only if, for
every vertex u ∈ V, it holds that π1(u) = π2(u).

In any linear arrangement π of a graph G = (V, E), one can define properties on
the graph’s edges and on the arrangement as a whole. The length of an edge between
vertices u and v is their distance in the linear arrangement, usually defined as

δuv(π) = |π(u)− π(v)| (1)

Thus, the length of an edge in the arrangement is the number of vertices between its
endpoints plus one, as in previous studies (Iordanskii 1987; Shiloach 1979; Chung 1984;
Hochberg and Stallmann 2003; Ferrer-i-Cancho 2004; Gildea and Temperley 2007, 2010;
Ferrer-i-Cancho 2019). A less commonly used definition of edge length is (Hudson 1995;
Hiranuma 1999; Eppler 2005; Liu, Xu, and Liang 2017)

δ∗uv(π) = |π(u)− π(v)| − 1 (2)

Here we use Dπ(G) =
∑

uv∈E δuv(π) as the definition for the sum of edge lengths of
G when it is linearly arranged by π, but we also derive some results for D∗π(G) =∑

uv∈E δ
∗
uv(π).

There exists sizable literature on the calculation of baselines for the sum of
edge lengths on trees. These baselines are crucial for research on the Dependency
Distance Minimization (DDm) principle (Ferrer-i-Cancho 2004; Liu, Xu, and Liang 2017;
Temperley and Gildea 2018). DDm was put forward by comparing actual dependency
distances against a random baseline (Ferrer-i-Cancho 2004). Concerning the computa-
tion of the minimum baseline, Iordanskii (1987) and Hochberg and Stallmann (2003)
independently devised an O(n)-time algorithm for planar (one-page) embedding of free
trees. Gildea and Temperley (2007) sketched an algorithm for projective embeddings of
rooted trees. Alemany-Puig, Esteban, and Ferrer-i-Cancho (2022) reviewed this problem
and presented, to the best of our knowledge, the first O(n)-time algorithm. Polynomial-
time algorithms for unconstrained embeddings were presented by Shiloach (1979), with
complexity O(n2.2), and later by Chung (1984), with complexities O(n2) and O(nλ),
where λ is any real number satisfying λ > log 3/ log 2. Concerning random baselines,
the precursors are found in Zörnig’s research on the distribution of the distance between
repeats in a uniformly random arrangement of a sequence assuming that consecutive el-
ements are at distance zero (Zörnig 1984) as in parallel research on syntactic dependency
distances (Hudson 1995; Hiranuma 1999; Eppler 2005; Liu, Xu, and Liang 2017). Later,

493



Computational Linguistics Volume 48, Number 3

Ferrer-i-Cancho (2004, 2016) studied the expectation of the random variable D(T)
defined as

D(T) =
∑
uv∈E

δuv (3)

in uniformly random arrangements, where δuv is a random variable defined over uni-
formly random unconstrained linear arrangements of the tree T, resulting in

E[D(T)] = n2 − 1
3 (4)

Notice that E[D(T)] does not depend on the topology of T.
While there are constant-time formulae for the expectation of D(T) in unconstrained

arrangements (Equation (4)), a procedure to calculate the expected value of D(T) under
projectivity is not forthcoming. Our primary goal is to improve the calculation of
the expected sum of edge lengths in uniformly random projective arrangements with
respect to the Monte Carlo method or random sampling method put forward by Gildea
and Temperley (2007). Such a widely used procedure (Park and Levy 2009; Futrell,
Mahowald, and Gibson 2015; Kramer 2021) estimates the expectation of D of an n-vertex
tree with an error that is negatively correlated with R, the amount of arrangements
sampled, while its cost is directly proportional to that amount, that is, O(Rn). This raises
the question of what the minimum value of R would be to obtain accurate-enough
estimations of the expectation of D(T) in projective arrangements. In recent research
(Futrell, Mahowald, and Gibson 2015; Kramer 2021), R = 10, R = 100 were used. Here
we demonstrate that there is no need to answer this question since we provide formulae
to calculate its exact value.

We improve upon these techniques by providing closed-form formulae for the
expected value of D(Tr) in uniformly random projective arrangements of Tr that can
be evaluated in O(n)-time. More formally, our goal in this article is to find closed-
form formulae for Epr[D(Tr)], the expectation of the random variable D(Tr) conditioned
to the set of projective arrangements, where the subscript “pr” indicates “projective
linear arrangement.” Notice that E[D(T)] in Equation (4) has no subscript to indicate
unconstrained linear arrangement. An unconstrained linear arrangement is one of the
n! possible orderings. Epr[D(Tr)] is a widely used random baseline for research on DDm
(Park and Levy 2009; Gildea and Temperley 2010; Futrell, Mahowald, and Gibson 2015;
Kramer 2021).

The structure of this article is as follows. We first derive, in Section 2, an arithmetic
expression for Epr[D(Tr)], given by

Theorem 1
Let Tr = (V, E; r) be a tree rooted at r ∈ V. The expected sum of edge lengths D(Tr)
conditioned to uniformly random projective arrangements is

Epr[D(Tr)] =
dr(2nr + 1) + nr − 1

6 +
∑
u∈Γr

Epr[D(Tr
u)] (5)

= 1
6

(
−1 +

∑
v∈V

nv(2dv + 1)

)
(6)
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where nu denotes the number of vertices of the subtree Tr
u rooted at u ∈ V, that is, nu =

|V(Tr
u)|, Γv denotes the set of children of vertex v, and dv = |Γv| is the out-degree of

vertex v in the rooted tree. If dr = 0 then Epr[D(Tr)] = 0.
Section 3 characterizes the class of trees that maximize Epr[D(Tr)], detailed in

Theorem 2.

Theorem 2
For any n-vertex rooted tree Tr, we have that Epr[D(Tr)] ≤ Epr[D(Sh

n )] with equality if,
and only if, Tr = Sh

n , where Sh
n denotes the star tree of n vertices.

Then, a tight upper bound of Epr[D(Tr)] is given by E[D(T)], as detailed in the next
corollary.

Corollary 1
Given any n-vertex rooted tree Tr = (V, E; r) rooted at r ∈ V, it holds that

Epr[D(Tr)] ≤ Epr[D(Sh
n )] = E[D(T)] = n2 − 1

3 (7)

where E[D(T)] is the expected sum of edge lengths in uniformly random (uncon-
strained) linear arrangements (Equation (4)) and T is the free tree variant of Tr.

Theorem 1 and Corollary 1 indicate that, for each n, a star tree rooted at its hub (Sh
n)

maximizes Epr[D(Tr)], achieving (n2 − 1)/3. Section 3 also shows that the minima can
be calculated with a dynamic programming algorithm.

Section 4 compares our new method to calculate Epr[D(Tr)] exactly against the
Monte Carlo estimation method using dependency treebanks and finds that commonly
used values of R can yield a large relative error in the estimation on a single tree. This
new method is available in the Linear Arrangement Library (Alemany-Puig, Esteban,
and Ferrer-i-Cancho 2021). We finally present some conclusions and propose future
work in Section 5.

2. Expected Sum of Edge Lengths

We devote this section to characterize projective arrangements (Section 2.1) and to
derive an arithmetic expression to calculate the sum of expected edge lengths in said
arrangements (Section 2.3). We end this section with some instantiations of said expres-
sion for particular classes of trees (Section 2.4).

2.1 The Number of Random Projective Arrangements

The number of unconstrained arrangements of an n-vertex tree T is N(T) = |P(T)| = n!,
where P(T) denotes the set of all n! arrangements of T, hence N(T) is independent from
the tree structure. The number of projective arrangements of a tree, however, depends
on its structure, in particular on the out-degree sequence of the tree, as is shown later
in this section. Counting the number of projective arrangements of a tree motivates a
proper characterization that underpins the proof of Theorem 1. For this, we need to
introduce some notation.

Henceforth we denote directed edges of a rooted tree Tr = (V, E; r) as uv =
(u, v) ∈ E; all edges are oriented toward the leaves. We denote the set of children of
a vertex v ∈ V as Γv, and thus the out-degree of v is dv = |Γv| in the rooted tree.
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Figure 3
A tree Tr rooted at r. The children of the root are Γr = {u1, u2, · · · , udr}, where dr is the out-degree
of r. Each Tr

u, for u ∈ Γr, denotes the subtree of Tr rooted at u.

In particular, we refer to the root’s children as Γr = {u1, · · · , udr} ⊂ V. We denote the
subtree of Tr rooted at u ∈ V as Tr

u; we denote its size (in vertices) as nu = |V(Tr
u)|; notice

that nu ≥ 1. We say that Tr
v is an immediate subtree of Tr

u if uv is an edge of the tree.
Figure 3 depicts a rooted tree and the immediate subtrees of Tr.

We provide a closed-form formula for the number of projective arrangements of a
rooted tree, Npr(Tr). This result helps us characterize said arrangements.

Proposition 1
Let Tr = (V, E; r) be a tree rooted at r ∈ V.

Npr(Tr) = (dr + 1)!
∏

u∈Γr

Npr(Tr
u) (8)

=
∏
v∈V

(dv + 1)! (9)

where dv is the out-degree of vertex v in the rooted tree. If dr = 0, then Npr(Tr) = 1.
The fact that subtrees span over intervals (Kuhlmann and Nivre 2006) is central to

the proof of Proposition 1. Because intervals are associated with a fixed pair of starting
and ending positions in a linear sequence, we use the term segment of a rooted tree Tr

u to

Figure 4
A permutation τ of the segments associated with r. Each rectangle represents the segment of the
root r and those of the subtrees rooted at u, v, w ∈ Γr, denoted as Tr

u, Tr
v, Tr

w. The representative
vertices of the segments are, from left to right: u, r, v and w. The anchor of edge ru (whose length
is αru), and the coanchor of edge ru (whose length is βru), are delimited by the dotted lines above
edge ru.
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refer to a real segment within the linear ordering containing all vertices of Tr
u (Figure 4);

technically, that segment is an interval of length nu whose starting and ending positions
are unknown until the whole tree is fully linearized. Thus, a segment is a movable
set of vertices within the linear ordering. The concept of segment is equivalent to the
notion of continuous constituent in headed phrase structure representations (Kuhlmann
and Nivre 2006). Hereafter, for simplicity, we refer to the “segment of a tree in a linear
arrangement” simply as “segment of a tree,” assuming that such a segment is defined
with respect to a linear arrangement.

Proof of Proposition 1. We can associate a set of segments to each vertex. The set of vertex u
contains du + 1 segments: one segment corresponds to u (the only segment of length 1),
and the remaining du segments correspond to the immediate subtrees of Tr

u. We obtain a
projective linear arrangement by permuting the elements of each set for all vertices.
Therefore, a projective arrangement can be seen as being recursively composed of
permutations of sets of segments. Such “recursion” starts at the permutation of the set
of segments associated with r. Note, then, that there are (du + 1)! possible permutations
of the segments associated to vertex u. For a fixed permutation of the segments associ-
ated with r, there are

∏
u∈Γr

Npr(Tr
u) different projective arrangements of its immediate

subtrees Tr
u, hence the recurrence in Equation (8). Equation (9) follows upon unfolding

the recurrence. �
The proof of Proposition 1 can be used to devise a simple procedure to generate

projective arrangements uniformly at random, and another to enumerate all projective
arrangements, of a rooted tree. As explained in previous articles (Gildea and Temperley
2007; Futrell, Mahowald, and Gibson 2015), the former method consists of first gener-
ating a uniformly random permutation of the dv + 1 segments associated with every
vertex v ∈ V and, afterward, constructing the arrangement using these permutations.
When a tree is linearized using the permutations of the sets of segments, we say that
each segment becomes an interval.

2.2 The Expected Sum of Edge Lengths in Random Arrangements

We first review the problem of computing E[D(T)]—the expected value of D(T) in
uniformly random unconstrained arrangements—so as to introduce the methodology
applied for Epr[D(Tr)]. The calculation requires two steps: first, the calculation of E[δuv],
the expected length of an arbitrary edge joining vertices u and v, and second, the calcu-
lation of E[D(T)]; henceforth we denote these values as E[D] and E[δ] since they only
depend on the size of T, not on its topology. For simplicity, we assume the definition of
edge length in Equation (1).

The calculation of E[δ] requires the calculation of P(δ), that is, the probability
that an edge linking two vertices has length δ. This is actually the proportion of un-
constrained linear arrangements such that the two vertices are at distance δ. Because
arrangements are unconstrained, said probability, and the corresponding expectation,
do not depend on the edge. There are N(T) = n! unconstrained linear arrangements and
2(n− δ)(n− 2)! unconstrained arrangements where the pair of vertices are at distance
δ, hence

P(δ) =
2(n− δ)(n− 2)!

n! =
2(n− δ)
n(n− 1) (10)
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as expected from previous research (Zörnig 1984; Ferrer-i-Cancho 2004). Then, the
expected length of an edge in an unconstrained random arrangement is (Zörnig 1984;
Ferrer-i-Cancho 2004)

E[δ] =
n−1∑
δ=1

δP(δ) (11)

= 2
n(n− 1)

(
n

n−1∑
δ=1

δ−
n−1∑
δ=1

δ2

)
(12)

= 2
n(n− 1)

(
n1

2 (n− 1)n− 1
6 (n− 1)n(2n− 1)

)
(13)

= n + 1
3 (14)

The third equality follows from well-known formulae on the sum of integer numbers.
The second step is the calculation of E[D], the expected value of D in an unconstrained
arrangement. Since a tree has n− 1 edges and applying linearity of expectation, E[D] =
(n− 1)E[δ], which gives Equation (4). Note that neither E[δuv] nor E[D(T)] depend on
T’s topology (excluding n, the size of the tree).

2.3 The Expected Sum of Edge Lengths in Random Projective Arrangements

To obtain an arithmetic expression for Epr[D(Tr)], we follow again a two-step approach.
First, we calculate the expected length of an edge in uniformly random projective
arrangements. However, unlike the unconstrained case, the edge must be incident to
the root. Second, we calculate the expected Epr[D(Tr)] applying the result of the first
step. Before we proceed, we need to introduce some notation.

An edge connecting the root of the tree (r) with one of its children (u) can be
decomposed into two parts: its anchor (Shiloach 1979; Chung 1984) and its coanchor
(Figure 4). Such decomposition is also found in Gildea and Temperley (2007) and Park
and Levy (2009), but using different terminology. In the context of projective linear ar-
rangements, we defineαru(π) as the length of the anchor, that is, the number of positions
of the linear arrangement covered by the edge ru in the segment of Tr

u including the
end of the edge π(u); similarly, we define βru(π) as the number of positions of the
linear arrangement that are covered by that edge in segments other than that of Tr

u
and r. Put differently, αru(π) is the width of the part of Tr

u covered by the edge ru
including the end of the edge π(u); similarly, βru is the total width of Tr

v over all r’s
children v that fall between r and u. Then the length of an edge connecting r with u is
δru(π) = |π(r)− π(u)| = αru(π) + βru(π).

The next lemma shows that the expected value of δru depends only on the size of
the whole tree (nr) and the size of the subtree rooted at the child (nu).

Lemma 1
Let Tr = (V, E; r) be a tree rooted at r ∈ V. Given an edge ru ∈ E, its anchor’s expected
length in uniformly random projective arrangements is

Epr[αru] =
nu + 1

2 (15)
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and the expected length of its coanchor is

Epr[βru] =
nr − nu − 1

3 (16)

Therefore, the expected length of an edge ru ∈ E in such arrangements is

Epr[δru] = Epr[αru + βru] =
2nr + nu + 1

6 (17)

Proof. By the law of total expectation,

Epr[αru] = Epr[αru|π(u) < π(r)]Ppr(π(u) < π(r))

+ Epr[αru|π(u) > π(r)]Ppr(π(u) > π(r))
(18)

where Ppr(π(u) < π(r)) is the probability that u precedes r in a random projective linear
arrangement and Ppr(π(u) > π(r)) + Ppr(π(u) < π(r)) = 1. As any projective linear ar-
rangement such that u precedes r has a reverse projective arrangement where u follows
r, then Ppr(π(u) < π(r)) = 1/2 and

Epr[αru] = 1
2
(
Epr[αru|π(u) < π(r)] + Epr[αru|π(u) > π(r)]

)
(19)

Now, let qu be the relative position of vertex u in its segment in the (projective) linear
arrangement (the ith vertex of said segment is at relative position i). If u precedes r in
the linear arrangement (π(u) < π(r)) as in Figure 4, then αru = nu − qu + 1. If u follows r
in the linear arrangement (π(r) < π(u)), αru = qu. Applying these two results, we obtain

Epr[αru] = 1
2
(
Epr[nu − qu + 1|π(u) < π(r)] + Epr[qu|π(u) > π(r)]

)
(20)

By symmetry, Epr[qu|π(u) < π(r)] = Epr[qu|π(u) > π(r)] and then Epr[αru] = (nu + 1)/2,
hence Equation (15).

In order to calculate βru, we define sru as the number of intermediate segments
between r and the segment of Tr

u in the linear arrangement. Therefore,βru can be decom-
posed in terms of the lengths of each of these segments. The length of the ith segment
in, say, the left-to-right order, is denoted as ϕ(i)

ru . Formally, βru can be decomposed as

βru =

sru∑
i=1

ϕ
(i)
ru (21)

By the law of total expectation,

Epr[βru] =

dr−1∑
s=1

Epr[βru|sru = s]Ppr(sru = s) (22)
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where Epr[βru|sru = s] is the expectation of βru given that u and r are separated by s
segments, and Ppr(sru = s) is the probability that u and r are separated by s segments,
both in uniformly random projective arrangements. On the one hand,

Epr[βru|sru = s] = Epr

[
s∑

i=1

ϕ
(i)
ru

]
= sEpr

[
ϕ

(i)
ru

]
(23)

where

Epr

[
ϕ

(i)
ru

]
=

nr − nu − 1
dr − 1

(24)

is the average length of the segments excluding those of r and Tr
u. On the other hand,

Ppr(sru = s) is the proportion of projective linear arrangements where the segments of
Tr

u and that of r are separated by s segments in the linear arrangement, that is

Ppr(sru = s) =
2(dr − s)(dr − 1)!

∏
u∈Γr

Npr(Tr
u)

(dr + 1)!
∏

u∈Γr
Npr(Tr

u)
=

2(dr − s)
(dr + 1)dr

(25)

Plugging Equations (23) and (25) into Equation (22), one finally obtains Equation (16),

Epr[βru] = 2 nr − nu − 1
(dr + 1)dr(dr − 1)

dr−1∑
s=1

s(dr − s) =
nr − nu − 1

3 (26)

�
Now we can derive an arithmetic expression for Epr[D(Tr)].

Proof of Theorem 1 (stated on page 494). Consider the random variable D(Tr) over the
probability space of uniformly random (unconstrained) linear arrangements of Tr, as
defined above. This variable can be decomposed into two summations

D(Tr) =
∑
u∈Γr

D(Tr
u) +

∑
u∈Γr

δru (27)

The first summation groups the edges by subtrees of Tr. The second summation groups
the edges incident to the root r. Then, we can use linearity of expectation to obtain

Epr[D(Tr)] =
∑
u∈Γr

Epr[D(Tr
u)] +

∑
u∈Γr

Epr[δru] (28)

The recurrence in Equation (5) follows easily from applying Lemma 1 to Equation (28),
which gives

∑
ru∈E

Epr[δru] = 1
6

∑
ru∈E

(2nr + 1) + 1
6

∑
ru∈E

nu =
dr(2nr + 1) + nr − 1

6 (29)
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Equation (6) follows upon unfolding the recurrence. �
In the proof above we implicitly use our definition of edge length δuv(π)

(Equation (1)). Nevertheless, the expression in Equation (6) can be easily adjusted to
use different definitions of edge length, for example, δ∗uv(π) (Equation (2)). It suffices to
find an appropriate transformation of our definition of D(Tr) (Equation (3)) into the one
desired, namely, D∗(Tr). The next corollary gives the solution.

Corollary 2
Let Tr = (V, E; r) be a tree rooted at r ∈ V. We have that

Epr[D∗(Tr)] =
dr(2nr − 5) + nr − 1

6 +
∑
u∈Γr

Epr[D∗(Tr
u)] (30)

= 1
6

(
5− 6nr +

∑
v∈V

nv(2dv + 1)

)
(31)

Proof of Corollary 2. The fact that Epr[D∗(Tr)] = Epr[D(Tr)]− (nr − 1), transforms
Equation (5) into Equation (30) immediately as well as Equation (6) into Equation (31)
thanks to∑

u∈Γr

Epr[D(Tr
u)] =

∑
u∈Γr

(Epr[D∗(Tr
u)] + nu − 1) = nr − 1− dr +

∑
u∈Γr

Epr[D∗(Tr
u)] (32)

�
It is easy to see that Equations (6) and (31) can both be evaluated in O(n)-time and

O(n)-space, where n is the number of vertices of the tree: One only needs to compute
the values nv in O(n)-time, store them in O(n) space, and then evaluate the formula, also
in O(n)-time using those values. In the analysis above, we are assuming that the values
of dv are already computed; depending on the data structure used to represent the tree,
the cost of computing dv might be relevant.

2.4 Formulae for Classes of Trees

Here we consider three kinds of free trees that are later transformed into rooted trees
(Harary 1969; Valiente 2021). First, linear (or path) trees are trees in which the maximum
degree is 2. Star trees consist of a vertex connected to n− 1 leaves; also, a complete
bipartite graph K1,n−1. A quasi-star tree is a star tree in which one of its edges has
been subdivided once with a vertex in the middle.1 For the following analyses, we
define the hub of a rooted tree as the vertex of the underlying free tree that has the
highest degree; we also use the term “leaf” to refer to a leaf in the underlying free
tree. We now instantiate Equations (6) and (9) for several classes of trees (Table 1):
Star trees, Sn, rooted at the hub, Sh

n , and at a leaf, S l
n; Quasi-star trees, Qn, rooted at

the hub, Qh
n, at a leaf adjacent to the hub, Qhl

n , at the leaf not adjacent to the hub Qe
n,

1 Alternatively, an n-vertex quasi-star tree is obtained by joining to a 2-vertex complete graph, K2, a
pendant vertex to one end and n− 3 pendant vertices to the other end of K2; a quasi-star tree is a
particular case of bistar tree (San Diego and Gella 2014).
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Table 1
Instantiations of Npr(Tr) and Epr[D(Tr)] for several classes of trees (Figure 5).

Class of tree Tr Npr(Tr) Epr[D(Tr)]
Star Sh

n n! (n2 − 1)/3
S l

n 2(n− 1)! n(2n− 1)/6
Quasi-star (n ≥ 4) Qh

n 2(n− 1)! (2n2 − 2n + 3)/6
Qe

n 4(n− 2)! (2n2 − 2n + 3)/6
Qb

n 6(n− 2)! (2n2 − 3n + 7)/6
Qhl

n 4(n− 2)! (2n2 − 3n + 7)/6
Linear L0

n 2n−1 (n− 1)(n + 2)/4
Lk

n, (k > 0) 3 · 2n−2 [(n− 1)(3n + 10) + 6k(k + 1− n)]/12

Figure 5
Linear trees (Ln), star trees (Sn), and quasi-star trees (Qn) of n vertices. Labels 0 and k in Lk

n
denote the distance of the labeled vertex from the same leaf. A circled dot marks a tree’s root.

and at the only internal vertex that is not the hub, Qb
n; Linear trees when rooted at

a vertex at distance k ≥ 0 from one of the leaves, Lk
n. Each class of tree is depicted

in Figure 5. These classes of trees are chosen for graph theoretic reasons. Linear trees
minimize the variance of the degree (Ferrer-i-Cancho 2013); star graphs maximize it
(Ferrer-i-Cancho 2013) and all their unconstrained linear arrangements are planar;
concerning Sh

n , all its linear arrangements are projective; quasi-star trees maximize the
variance of the degree among trees whose set of unconstrained arrangements contains
some non-planar arrangement (Ferrer-i-Cancho 2016).

We choose linear trees to illustrate how one can instantiate Equation (6). In order to
ease this task, we rewrite Equation (6) using vectorial notation as

Epr[D(Tr)] = 1
6

(
−1 + 2

∑
v∈V

nvdv +
∑
v∈V

nv

)
= 1

6

(
−1 + 2−→nv ·

−→
dv +−→nv ·

−→
1
)

(33)
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For L0
n, we have

−→nv = (n, n− 1, n− 2, · · · , 3, 2, 1)
−→
dv = (1, 1, 1, · · · , 1, 1, 0)

Then

Epr[D(L0
n)] = 1

6

(
−1 + 2

n∑
i=2

i +
n∑

i=1

i

)
=

(n− 1)(n + 2)
4 (34)

For Lk
n with k > 0, we have

−→nv = (1, 2, · · · , k− 1, k, n, n− k− 1, n− k− 2, · · · , 2, 1)
−→
dv = (0, 1, · · · , 1, 1, 2, 1, 1, · · · , 1, 0)

and then

Epr[D(Lk
n)] = 1

6

−1 + 2

2n +
k∑

j=2

j +
n−k−1∑

j=2

j

+

n +
k∑

j=1

j +
n−k−1∑

j=1

j

 (35)

=
(n− 1)(3n + 10) + 6k(k + 1− n)

12 (36)

Regarding Equation (9) for L0
n and Lk

n, we have that

Npr(L0
n) = (0 + 1)!

n−1∏
i=1

(1 + 1)! = 2n−1 (37)

Npr(Lk
n) = (2 + 1)!(0 + 1)!(0 + 1)!

n−3∏
i=1

(1 + 1)! = 3 · 2n−2 (38)

3. Maxima and Minima

In this section, we tackle the problem of computing the minima and characterizing
the maxima of Epr[D(Tr)], both over all n-vertex root trees (keeping n constant). In
particular, we give a closed-form formula for the maximum value of Epr[D(Tr)] and
characterize the trees that maximize it, as well as outline a dynamic programming
algorithm to compute the minima. Henceforth, we use Tn to denote the set of n-vertex
(unlabeled) rooted trees. Evidently, any tree that maximizes (respectively, minimizes)
Epr[D(Tr)] also maximizes (respectively, minimizes) Epr[D∗(Tr)]; thus we restrict our
study to the former. Throughout this section, we use ni to refer to the size of the subtree
rooted at the ith child of the root for 1 ≤ i ≤ dr.

The construction of projective minimum linear arrangements has optimal sub-
structure: Optimal arrangements are composed of optimal arrangements of subtrees
(Hochberg and Stallmann 2003; Gildea and Temperley 2007; Alemany-Puig, Esteban,
and Ferrer-i-Cancho 2022). Similarly, the construction of n-vertex rooted trees Tr ∈ Tn
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that maximize (respectively, minimize) Epr[D(Tr)] also has optimal substructure. The
following lemma proves this claim.

Lemma 2
Let Tn be the set of all unlabeled rooted trees of n vertices. f (n), the optimal value of
Epr[D(Tr)] satisfies

f (n) = opt
Tr∈Tn

{Epr[D(Tr)]} (39)

= opt
0≤dr≤n−1

dr(2n + 1) + n− 1
6 + opt

n1+···+ndr =n−1
ni≥1


dr∑

i=1

f (ni)


 (40)

Proof. We can construct an n-vertex optimal tree using optimal subtrees. We can
obtain the right-hand side of Equation (40) using the recurrence in Equation (5). An
optimal n-vertex tree is one whose cost value is optimal among all optimal n-vertex trees
whose root has fixed degree dr ∈ {1, · · · , n− 1}. Given a fixed root degree dr such that
1 ≤ dr ≤ n− 1, an optimal n-vertex rooted tree can be built by constructing an optimal
(n− 1)-vertex forest of dr rooted trees, each of size ni vertices and optimal among the ni-
vertex trees. Choosing the dr trees to be ni-optimal makes the sum of their costs,

∑
i f (ni),

optimal. �
In subsequent paragraphs we use fM(n) to denote the maximization variant and fm(n)

to denote the minimization variant of f (n), respectively. Theorem 2 characterizes the
maxima of Epr[D(Tr)]. Perhaps not so surprisingly, the only maximum of Epr[D(Tr)]
is obtained by Sh

n .

Proof of Theorem 2 (stated on page 495). We prove this by induction on n using the
formalization of the optimum in Equation (40). The base cases can be easily obtained by
an exhaustive enumeration of the (unlabeled) rooted trees of n vertices for some small
n. Indeed, the only tree that maximizes Epr[D(Tr)] for n ≤ 2 are the one-vertex tree and
the two-vertex tree, which are both star trees.

In order to prove that Epr[D(Tr)] ≤ Epr[D(Sh
n )] for n ≥ 3, it suffices to prove that

Epr[D(Sh
n )] = n2 − 1

3 > max
0≤dr≤n−2

{
dr(2n + 1) + n− 1

6 + L(n, dr)
}

(41)

where

L(n, dr) = max
n1+···+ndr =n−1

ni≥1


dr∑

i=1

fM(ni)

 (42)
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For this we need to know the maximum value of L(n, dr). Applying the induction
hypothesis (each maximum subtree of a tree of n vertices is a star tree), we have that

L(n, dr) = max
n1+···+ndr =n−1

ni≥1


dr∑

i=1

n2
i − 1

3

 = 1
3

−dr + max
n1+···+ndr =n−1

ni≥1


dr∑

i=1

n2
i


 (43)

Notice that any vector (n1, · · · , ni, · · · , ndr ), such that 1 ≤ n1 ≤ · · · ≤ ndr , can be trans-
formed into another vector (n1, · · · , ni − 1, · · · , ndr + 1), for any ni ≥ 2, such that the
sum of squared components is strictly larger while the sum of the components remains
constant. Therefore, the maximum sum of squares is obtained by choosing ndr = n− dr
and ni = 1 for 1 ≤ i < dr, yielding

L(n, dr) = 1
3
[
−dr + (n− dr)2 + (dr − 1)

]
=

(n− dr)2 − 1
3 (44)

and the theorem holds if, and only if

n2 − 1
3 > max

0≤dr≤n−2

{
dr(2n + 1) + n− 1

6 +
(n− dr)2 − 1

3

}
(45)

After rearranging the terms that do not depend on d to the left-hand side we obtain

−n + 1 > max
0≤dr≤n−2

{dr(2dr − 2n + 1)} (46)

The right-hand side of the inequality is maximized for dr = n− 2. Because this last
inequality holds true when n > 5/2, we are done. �

It is easy to see that Epr[D(Tr)] is bounded above by the expected value of D(T) as
stated in Corollary 1 and justified in its proof below.

Proof of Corollary 1 (stated on page 495). Because of Theorem 2, the maximum value
of Epr[D(Tr)] is maximized by Sh

n , formally Epr[D(Tr)] ≤ Epr[D(Sh
n )], which, in turn,

becomes Epr[D(Sh
n )] = (n2 − 1)/3, as shown in Table 1. Finally, recall that E[D(T)] =

(n2 − 1)/3 (Equation (4)), and thus Epr[D(Sh
n )] = E[D(T)]. �

We devised a dynamic programming algorithm based on Lemma 2 to calculate the
distinct trees up to isomorphism minimizing Epr[D(Tr)]. The method to obtain said
values and trees is outlined in Algorithm 1. That algorithm has two parameters: n, the
number of vertices, and H a hash table whose keys are natural numbers k and the value
associated with each key is a pair formed by fm(k) and the k-vertex trees Tr that attain
that fm(k). Notice that n is an input parameter, while H is an input/output parameter.
In order to calculate the minimum n-vertex trees, the values of the parameters of the
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Algorithm 1: Calculate the minimum value and trees of Epr[D(Tr)].

Input: n ∈ N, the number of vertices of the trees. H is a hash table whose keys are
natural numbers k ∈ N and the value of each key is the pair formed by
fm(k) and the k-vertex trees Tr for which Epr[D(Tr)] = fm(k).

Output: The hash table H updated to contain the results for n′ ≤ n.
1 Function MINIMUM E PROJECTIVE(n, H) is
2 if hash table H contains key n then Stop.
3 fm ← (n2 − 1)/3 // The minimum value initialized at a maximum

4 T∗ ← ∅ // The set of n-optimal trees

5 if n ≤ 2 then
6 T∗ ← {the only rooted tree Tr of n vertices}
7 fm ← Epr[D(Tr)]

8 else
9 for each dr ∈ [1, n− 1] do

10 P ← The set of partitions of ‘n− 1’ in dr summands.
11 for each partition P = {n1, · · · , ndr} ∈ P do

// Initialize the cost of the trees

12 C← (dr(2n + 1) + n− 1)/6
// Evaluate the partition recursively

13 for each ni ∈ P do
// Calculate the ni-minimum trees

14 MINIMUM E PROJECTIVE(ni, H)
15 f (i)

m , {T∗}(i) ← H[ni] // Retrieve the trees from H

16 C← C + f (i)
m

17 if C > fm then
18 Stop evaluating P and move on to the next partition

// Modified Cartesian product of all {T∗}(i) (see text)

19 F← {T∗}(1) × · · · × {T∗}(d)

// W is the set of (n, d, P)-optimal trees

20 W∗ ← add a root to every forest in F
21 if C < fm then fm ← C, T∗ ←W∗

22 else if C = fm then T∗ ← T∗ ∪W∗

23 Store 〈 fm, T∗〉 in H[n]

first call to Algorithm 1 are the value n and an empty H. Now, Algorithm 1 is a
direct evaluation of Equation (40), that is, for every value of out-degree of the root
dr (1 ≤ dr ≤ n− 1), it computes the value fm(n) by finding the partition of n− 1 into
d summands that minimizes

dr(2n + 1) + n− 1
6 + opt

n1+···+ndr =n−1
ni≥1


dr∑

i=1

fm(ni)

 (47)
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Table 2
The columns indicate, from left to right, the number of (unlabeled) rooted trees (Sloane
1964–2022), the number of trees that minimize Epr[D(Tr)], and the value of Epr[D(Tr)] for such
trees. The trees yielding these values are displayed in Figure 7. The horizontal line over a
decimal digit denotes it is an infinitely repeating digit; thus 1/3 = 0.3.

n # trees # opt trees Epr[D(Tr)] n # trees # opt trees Epr[D(Tr)]

1 1 1 0 11 1,842 1 22
2 1 1 1 12 4,766 1 25.16
3 1 1 2.5 13 12,486 2 28.3
4 4 2 4.5 14 32,973 1 31.5
5 9 1 6.3 15 87,811 1 34.6
6 20 1 8.6 16 235,381 1 38
7 48 1 11 17 634,847 1 41.5
8 115 2 13.83 18 1,721,159 2 45
9 286 1 16.5 19 4,688,676 2 48.5

10 719 2 19.3 20 12,826,228 2 52

where fm(ni) is calculated recursively and stored in the hash table H. Therefore, the
algorithm’s complexity heavily depends on the number of partitions of n− 1, denoted
as p(n− 1). The worst-case complexity of Algorithm 1, then, is superpolynomial in
n due to the exponential nature of p(n) (Hardy and Ramanujan 1918). Finally, notice
that the “Modified Cartesian” product in line 19 of Algorithm 1 must ensure that no
repeated trees are produced. Repeated trees arise in the standard Cartesian product
due to the fact that some partitions may have repeated parts. As an example, consider
the partition of 37 with two repeated parts (11, 13, 13); such parts have 1 and 2 non-
isomorphic minimum trees, respectively (Figure 7). Let t11 = {TA} be the unique 11-
vertex minimum tree, and t13 = {TB, TC} be the two 13-vertex minimum trees. The
Cartesian product t11 × t13 × t13 produces four forests, two of them being isomorphic:
(TA, TB, TC) and (TA, TC, TB); the other two forests are (TA, TB, TB) and (TA, TC, TC). In
order to obtain the unique n-vertex trees (up to isomorphism) that attain fm(n), we
modify the standard Cartesian product. Let {T∗}(i) be the list of ni-vertex minimum
trees. Thus, one element in the Cartesian product is obtained by choosing the trees in
the j1th, · · · , jdr th positions of the lists, that is,

({T∗}(1)
j1

, · · · , {T∗}(dr )
jdr

) ∈ {T∗}(1) × · · · × {T∗}(dr ) (48)

where 1 ≤ ji ≤ |{T∗}(i)| for all i ∈ [1, dr]. Now, tree uniqueness is ensured by forcing
indices of every pair of lists {T∗}(i), {T∗}(i+1) such that ni = ni+1 is ji ≤ ji+1.

In this article, we do not characterize the minima of Epr[D(Tr)] because, unlike the
number of maxima, which shows a clear regularity, the number of minima varies with
n in a non-monotonic fashion. Table 2 shows that the number of these minima oscillates
between 1 and 2 for n ≤ 20 and Figure 6 shows the number of minimum trees in linear-
log scale for n ≤ 178. Figure 7 suggests that the shape of the trees does not seem to fit
into a simple class. Moreover, Figure 8 shows the values of fm(n) in log-linear scale. The
straight line that is found in that scale for sufficiently large n suggests fm(n) = O(n log n)
asymptotic behavior, to be confirmed in future research.
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Figure 6
Number of distinct n-vertex (unlabeled) trees Tr that minimize Epr[D(Tr)] (that is,
Epr[D(Tr)] = fm(n)) for n ≤ 178. Notice the logarithmic scale for the y-axis. The number is
computed via Algorithm 1.

4. Exact versus Approximate Calculation of the Expected Sum of
Dependency Distances

In previous research the random baseline for D under projectivity has been estimated
with a Monte Carlo approximation method2 (Gildea and Temperley 2007; Park and Levy
2009; Gildea and Temperley 2010; Futrell, Mahowald, and Gibson 2015; Kramer 2021)
whose cost O(Rn), where R is the number of random arrangements sampled and O(n)
is the cost of generating a random arrangement and computing D on it. Our method,
as well as providing exact values, has a much lower complexity O(n) as there is no
need for random sampling. We used the UD2.5 (de Marneffe et al. 2019) treebanks
for Catalan, English, and German to measure the relative error of the Monte Carlo
approximation method for values of R used in past research. English and German are
selected because they have been used in previous research utilizing projective random
baselines (Gildea and Temperley 2007; Park and Levy 2009; Gildea and Temperley 2010).
Catalan is included as the native language of the present authors. For each sentence Tr

in a treebank, we calculated Epr[D(Tr)] in two ways. First, exactly with Equation (6).
Second, approximately by averaging the value of D obtained in R = 10i, for 1 ≤ i ≤ 4,
uniformly random projective arrangements (denoted as Ẽpr[D(Tr)]). More precisely,
given {πi}R

i=1 random projective arrangements of a given rooted tree,

Ẽpr[D(Tr)] = 1
R

R∑
i=1

Dπi (T
r) (49)

2 This Monte Carlo method consists of averaging the values of D obtained via random sampling of R
random projective arrangements of a rooted tree. It is well known that the error of such methods
decreases as the number of samples increases.
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Figure 7
The trees that minimize Epr[D(Tr)] for n ≤ 20. Their values of Epr[D(Tr)] are given in Table 2.
Roots are drawn atop each tree and each edge should be regarded as oriented away from
the root.
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Figure 8
Values of fm(n)/(n− 1) in log-linear scale for n ≤ 178, computed via Algorithm 1.

Using these values we calculated the relative error εrel(Tr) for every tree as

εrel(Tr) =
Ẽpr[D(Tr)]− Epr[D(Tr)]

Epr[D(Tr)] (50)

εrel(Tr) > 0 indicates that Ẽpr[D(Tr)] overestimates Epr[D(Tr)]; εrel(Tr) < 0 indicates un-
derestimation error. Figure 9 shows the average, minimum, maximum, and confidence
interval of the relative error as a function of sentence length (see the Appendix for
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a parallel analysis of the standard deviation of D(Tr)). This figure can be seen as a
confirmation of the correctness of Theorem 1 via simulation.

In previous research, the value of R is sometimes indicated, for example, R = 10
(Kramer 2021) and R = 100 (Futrell, Mahowald, and Gibson 2015), and sometimes not
reported (Park and Levy 2009; Gildea and Temperley 2010). When R = 10, Figure 9
shows that the relative error peaks between n = 10 and n = 20 (close to the mean
sentence length in English [Rudnicka 2018]) and tends to decay from then onward.
However, the confidence interval of the relative error clearly broadens for sufficiently
large n, for example, n = 30 or n = 40 onward. These behaviors smooth out for R = 100
while the range of variation and the confidence interval are narrower. As expected, the
relative error reduces dramatically for larger R. In sum, Figure 9 indicates that a large
R must be used to estimate Epr[D(Tr)] with high numerical precision. However, that
increases the computation time. An implication of that figure is that the best solution in
terms of numerical precision and speed is provided by Equation (31).

5. Conclusions and Future Work

In this article, we have derived several simple closed-form formulae related to projective
arrangements of rooted trees in Section 2. First, we have given a simple closed-form
formula to calculate the number of different projective arrangements a rooted tree ad-
mits, Npr(Tr) (Proposition 1). The proof reveals a straightforward way of enumerating
such arrangements for an input rooted tree, and of generating this kind of arrangement
uniformly at random without a rejection method. Second, and more importantly, we
have provided a way of calculating, for any given rooted tree, the expected value
of the sum of edge lengths over the space of uniformly random different projective
arrangements, Epr[D(Tr)] (Theorem 1 and Corollary 2). This means that future studies
in which such value is calculated approximately via random sampling of arrangements
can now be calculated exactly and much faster. The O(Rn) Monte Carlo method to
estimate true expectation with an error that tends to zero as R tends to infinity can
now be replaced by our fast O(n) with zero error. Moreover, these formulae can be
instantiated in particular classes of trees (as shown in Section 2.4). In Section 3, we have
characterized the trees that maximize Epr[D(Tr)] and proven that there exists a dynamic
programming method to calculate the minima of Epr[D(Tr)]. A precise characterization
of the minima should be the subject of future research. Finally, in Section 4 we have
highlighted the obvious advantages of an exact and fast calculation of Epr[D(Tr)] for
future quantitative dependency syntax research.

The present article is part of a research program on the calculation of random
baselines for D via formulae or exact algorithms under formal constraints on linear
arrangements that started about two decades ago with the unconstrained case, for
example Equation (4) (Zörnig 1984; Ferrer-i-Cancho 2004). Here we have covered the
projective case. In a forthcoming article, we will focus on planar linearizations of (free)
trees—those in which there are no edge crossings—and obtain a closed-form formula,
and a O(n)-time algorithm, to calculate Epl[D(T)], the expected value of D(T) in uni-
formly random planar arrangements of a given (labeled free) tree T (Alemany-Puig and
Ferrer-i-Cancho 2022). In the future, the problem of the calculation of the variance of
D(Tr) in random projective arrangements should also be considered. The analysis of the
distribution of dependency distances—for example, their first and second moments of
D(Tr), in random arrangements that are not uniformly random (but still projective and
planar)—could benefit from applying general-purpose algorithmic frameworks (Eisner
2002; Li and Eisner 2009; Wang and Eisner 2018).
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Figure 9
The statistical properties of εrel, the relative error in the estimation of Epr[D(Tr)] calculated with a
Monte Carlo method (Equation 50), as a function of the size of the tree n. For all sentences of the
same length, we show the average εrel (solid black line), its 99% confidence interval calculated
with a bootstrap method (shaded gray region), and the maximum and minimum εrel (vertical
blue bars). The end of each row indicates R, that is, the number of random projective
arrangements used to estimate Epr[D(Tr)] (from R = 10 for the top row to R = 104 for the
bottom row).

511



Computational Linguistics Volume 48, Number 3

Our research paves the way to investigate the optimality of dependency distances
of languages under projectivity. Recently, that optimality has been evaluated in 93
languages from 19 families with the help of a new score, Ω(T), which is defined with
respect to the minimum and random baseline in unconstrained linear arrangements.
Ω(T) is defined as (Ferrer-i-Cancho et al. 2022)

Ω(T) =
E[D(T)]−D(T)

E[D(T)]−m[D(T)] (51)

where m[D(T)] is the minimum Dπ(T) over all unconstrained linear arrangements π,
known as the Minimum Linear Arrangement problem (Garey, Johnson, and Stockmeyer
1976; Shiloach 1979; Chung 1984). However, projectivity is the most widely used con-
straint to investigate dependency distances and to define the corresponding minimum
and random baselines (Futrell, Mahowald, and Gibson 2015; Gulordava and Merlo 2015;
Futrell, Levy, and Gibson 2020). With the result in Theorem 1, one could replicate the
aforementioned study under the projectivity constraint by redefining the score as

Ωpr(Tr) =
Epr[D(Tr)]−D(Tr)

Epr[D(Tr)]−mpr[D(Tr)] (52)

where the minimum sum of edge lengths under the projectivity constraint is denoted as
mpr[D(Tr)] (Hochberg and Stallmann 2003; Gildea and Temperley 2007), and is linear-
time computable (Alemany-Puig, Esteban, and Ferrer-i-Cancho 2022). While Ω(T) ≤ 1
holds for any sentence (Ferrer-i-Cancho et al. 2022), as it is equivalent to D(T) ≥
m[D(T)], the statement Ωpr(Tr) ≤ 1 only holds when applied to projective sentences. In
other words, Ωpr(Tr) ≤ 1 needs not hold because we can have that D(Tr) > mpr[D(Tr)].
In the absence of any word order constraint on a sentence, Ω is expected to be zero
while Ωpr(Tr) is expected to be zero if the only word order constraint is projectivity.
Formally, E[Ω(T)] = 0 and Epr[Ωpr(Tr)] = 0. Thanks to our article, such investigation of
the optimality of dependency distances can be carried out, reducing the computational
cost and maximizing numerical precision with respect to an approach based on a Monte
Carlo estimation of Epr[D(Tr)].

Here we have focused on Epr[D(Tr)], the expectation of D(Tr) on random arrange-
ments of an individual tree. Finally, future research should consider the problem of
E[Epr[D]], the expectation of Epr[D] on ensembles of random trees of a fixed size n.
E[Epr[D]] is indeed the average value of Epr[D(Tr)] among all n-vertex rooted trees Tr.
Although there are at least two ensembles possible, that is, uniformly random labeled
trees and uniformly random unlabeled trees, a closed-form formula (or algorithm) to
calculate E[Epr[D]] seems easier to obtain in the former.
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Figure A.1
The statistical properties of σ, the standard deviation in the estimation of Epr[D(Tr)] calculated
with a Monte Carlo method (Equation A.1), as a function of the size of the tree n. This figure has
the same format as Figure 9. For all sentences of the same length, we show the average σ (solid
black line), its 99% confidence interval calculated with a bootstrap method (shaded gray region),
and the maximum and minimum εrel (vertical blue bars). The end of each row indicates R, that is,
the number of random projective arrangements used to estimate Epr[D(Tr)] (from R = 10 for the
top row to R = 104 for the bottom row).
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Appendix A. The Standard Deviation of D(Tr ) in Projective Arrangements

Besides estimating the relative error of a Monte Carlo method to approximate
Epr[D(Tr)], we also calculated the standard deviation σ(Tr) of Dπ(Tr) over R random
projective arrangements π via

σ2(Tr) = 1
R− 1

R∑
i=1

(
Dπi (T

r)− Epr[D(Tr)]
)2 (A.1)

Notice that σ is calculated using Epr[D(Tr)] and not Ẽpr[D(Tr)]. Figure A.1 shows that σ
increases with n (as expected) but that it does not decrease as R increases; furthermore,
the apparent linear trend for sufficiently large n suggests an O(n) growth of σ, to be
confirmed in future research.
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