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Abstract

Recent advances in natural language processing
and transformer-based models have made it eas-
ier to implement accurate, automated English
speech assessments. Yet, without careful exam-
ination, applications of these models may ex-
acerbate social prejudices based on gender and
race. This study addresses the need to exam-
ine potential biases of transformer-based mod-
els in the context of automated English speech
assessment. For this purpose, we developed
a BERT-based automated speech assessment
system and investigated gender and racial bias
of examinees’ automated scores. Gender and
racial bias was measured by examining differ-
ential item functioning (DIF) using an item re-
sponse theory framework. Preliminary results,
which focused on a single verbal-response item,
showed no statistically significant DIF based
on gender or race for automated scores.

1 Introduction

Automated speech assessment systems have be-
come prominent at the K-12 and post-secondary
levels (Collier and Huang, 2020; Educational Test-
ing Service, 2005). Scores produced by automated
systems are used for high stakes decisions, such
as allocating public funds and determining univer-
sity admissions decisions. Compared to human
raters, automated assessments may be more effi-
cient and affordable (Evanini et al., 2017), and they
may improve reliability (Zechner, 2020). Yet auto-
mated assessments have a unique set of challenges
(Williamson et al., 2012), and it is important that

test developers and researchers continue to improve
the overall enterprise of automated speech assess-
ment.

Researchers have recently begun applying
transformer-based models (Devlin et al., 2018) to
English speech assessment. Largely, these research
efforts have been directed towards improving the
accuracy of automated scoring systems. For in-
stance, Ormerod et al. (2021) has conducted re-
search on BERT-based methods in automated essay
scoring. In English speech assessment, Wang et al.
(2021) compared the performance of BERT and
XLNet for the purpose of scoring examinees’ tran-
scribed responses. Results have demonstrated that
transformer-based models are highly accurate and
correlate strongly with human ratings.

Although transformer-based models can produce
accurate scores, less attention has been devoted to
examining the biases of these models. In the field
of English speech assessment, no such analyses
have been conducted to date. In the broader field
of natural language processing (NLP), research has
demonstrated that transformer-based models can
propagate and, in some cases, exacerbate gender
and racial prejudice (e.g. Zhao et al., 2017; Kir-
itchenko and Mohammad, 2018). Biased scoring
models certainly have the potential to cause allo-
cational harms (Blodgett et al., 2020), underscor-
ing the importance of conducting detailed analysis
prior to implementation.

Beyond text modeling, there are additional
sources of potential bias in audio processing. Au-
dio speech recognition (ASR), in particular, may be
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less accurate for certain language-minority groups
(e.g. Koenecke et al., 2020). Less accurate tran-
scripts, in turn, could lead to biased scores.

There are multiple ways to measure bias, and the
most appropriate method varies depending on the
specific research context. Most techniques, how-
ever, are similar in that they deteremine the ex-
tent to which language modeling outputs—whether
word embeddings (e.g. Dev et al., 2020) or infer-
ences (e.g. Zhang et al., 2020)—conform to pro-
stereotype expectations. This study takes a similar
overall approach, but is unique in using measure-
ment tools from educational assessment.

This study examines a type of bias known as
differential item function (DIF), which is defined
as the systematic difference (in scores) between
a reference group and a focal (minority) group,
while controlling for overall proficiency (Angoff,
1993). Although bias and fairness are conceptually
distinct in educational testing, detection of DIF may
provide evidence for a larger claim about fairness
for certain groups of examinees (Camilli, 2006).
Although analysis of DIF is common in educational
assessment, it has not been applied to studies of
bias in NLP.

In order to detect DIF, we use the Improved Wald
Test, which is rooted in item response theory (IRT)
(Cai, 2012). There are a variety of methods used
to detect DIF but, in general, IRT tends to offer
the most statistical power (Osterlind and Everson,
2009). The Improved Wald Test, in particular, has
gained widespread adoption because it is sensitive
to small group differences, holding constant exami-
nees’ overall proficiency (Woods et al., 2013).

The research design of this study involves three
principal components: (1) constructing an ASR
system, (2) training a transformer-based scoring
model, and (3) investigating potential gender and
racial bias based on these automated scores. Our
analyses focus on a single speaking item. Although
we found no statistically significant result in the
automated scores for this item, analyses will soon
be expanded to a larger pool of items and multiple
grade bands which may be more susceptible to
automated scoring bias.

2 Methods

Below, we describe the key methodological aspects
of the research project. These include (1) the source
of data used in analyses, (2) the design and develop-
ment of our automated English speech assessment

system, and (3) the statistical techniques used to
measure gender and racial bias.

2.1 Data
This study draws on data from the English Lan-
guage Proficiency Assessment for the Twenty-First
Century (ELPA21), a collaborative of 7 state ed-
ucation agencies in the United States (Huang and
Flores, 2018). Approval for this research project
was granted by the consortium and the a university
institutional review board. Confidentiality agree-
ments and ethical considerations prevent sharing
test items or student-level data publicly.

For test items in the speaking domain, students
speak into a microphone, and their responses are
recorded and subsequently sent to a third party
to be scored. Currently, all verbal responses are
scored by human raters.

For this study, we selected a single speaking
item that was administered to students in grade
2-3. This particular item elicited responses that
were short in duration (median response length =
4.8 seconds). Responses were scored 0, 1, or 2,
with the highest score being given to examinees
who correctly answered the question, even if small
grammatical mistakes were made. A score of 0
indicated that the question was not addressed at all.

Home language was used as an indicator of race
because it afforded several advantages. First, it was
more fine-grained, i.e., included more categories,
than the alternative indicator of race. Second, it
was more related to examinees’ speech, which was
a focal point of the study. Home language does
not necessarily indicate cultural identity, however,
or native language. Respondents whose home lan-
guage had fewer than 200 responses were removed
from analysis.

2.2 Automated Speech Assessment
Chen et al. (2018) enumerate four components of
automated speaking assessment systems. These
include (1) an automated speech recognition (ASR)
system, which includes speech-to-text transcrip-
tion, (2) the extraction of linguistic features from
audio and text data, (3) a filter model to remove
non-scorable responses, and (4) a scoring model
to combine linguistic features into a single score.
Below, we discuss each of these components in
turn.
ASR System We compared the performance of
several ASR systems, based on both accuracy and
efficiency (see Appendix A for details). Ultimately,

2



n %
GENDER

Male 4, 988 52.5
Female 4, 517 47.5

LANGUAGE

Spanish 6, 881 72.4
Russian 858 9.0
Vietnamese 440 4.6
Chinese 420 4.4
Ukrainian 381 4.0
Arabic 321 3.4
Persian 204 2.1

Table 1: Descriptive Statistics of the Sample

we opted to use Google’s speech-to-text service to
generate text transcripts from examinees’ speech.
Of the 10, 147 total responses, Google produced
9, 505 non-blank transcripts, all of which were in-
cluded in analyses. Descriptive statistics of the sam-
ple, disaggregated by gender and home-language,
are presented in Table 1.

To assess Google’s transcription accuracy for
young, non-native speakers, we sampled 100 re-
sponses, listened to examinees’ audio recordings,
and manually transcribed them. Treating our own
annotations as ground truth, we measured the
word error rate (WER) of the Google-generated
transcripts. We determined the average WER to
be 22.3%—close to human parity for non-native
speech, which typically ranges from 15-20% (Zech-
ner, 2009).
Feature Extraction Linguistic features were not
manually specified, but were embedded latently in
the BERT scoring model.
Filtering Blank transcripts were not included in
model training or analysis of bias. In some cases,
blank transcripts were the result of silent audio files;
in other cases, however, Google returned blank tran-
scripts when it failed to detect speech (e.g. when
examinees whispered into the microphone). 642
blank transcripts were removed from analyses.
Scoring Model We compared BERT and RoBERTa
as two potential scoring models. Selection of the
scoring model was based on the accuracy of mod-
els’ predictions of examinees’ scores on the test
dataset. Because the particular speaking item that
we studied was imbalanced (e.g., 76.6% of re-
sponses were scored a 2), we chose to use a cross-
entropy loss function, weighted inversely to the
marginal frequency of the scores. Scoring models

were trained for 10 epochs. Batch size, dropout
ratio, and learning rate were set to 128, 0.1 and
2 · 10−5, respectively. Data were split 80%/20%
for training and testing sets.

Averaged across 3 random seeds, the most ac-
curate model was the BERT model. Test set ac-
curacy for BERT was 88.85%, marginally higher
than RoBERTa. Figure 1 presents the confusion
matrix of true and predicted scores using the above
scoring model for the test dataset. Details regard-
ing the series of experiments to optimize model
performance may be found in Appendix B.

Figure 1: BERT Confusion Matrix.

The automated scoring model was found to be
slightly more consistent than human raters. The
Spearman Correlation Coefficient among human
raters was calculated to be ρ = 0.81 (based on
n = 1, 929 doubly-scored responses). By com-
parison, the Spearman Correlation Coefficient of 2
BERT models, whose starting values and test-train
splits were determined by 2 different random seeds,
was found to be ρ = 0.88 (based on all 9, 505
responses).

2.3 Measurement of Bias

To measure bias, we used the Improved Wald Test
to examine differential item functioning (DIF) us-
ing an item response theory (IRT) framework (Cai,
2012; Woods et al., 2013). In IRT, the Wald Test is
used to measure and compare differences in item
parameters between two groups of examinees. For
the particular test item examined in this paper, IRT
parameters included one discrimination parameter,
a, and two item difficulty parameters, b. The dis-
crimination parameter captures the variability of
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scores, whereas the item difficult parameters cap-
ture how difficult the item is (in this case, how diffi-
cult it is for examinees to receive a score of 1 or 2).
See Cai et al. (2016) for a review of the Graded 2PL
model, which was used to model this item. When
weighted by the inverse of the variance-covariance
matrix, the difference in a (or b) is asymptotically
distributed as χ2.

If there is a statistically significant difference
between groups’ item parameters based on χ2

values, this may indicate that scores are biased
against certain groups of examinees, holding
constant examinees’ proficiency (Holland et al.,
1993; Osterlind and Everson, 2009). In mathe-
matical notation, DIF is present (i.e. bias against
examinees is present) if and only if

P (correct response|θ, g = 0) >
P (correct response|θ, g = 1),

where g = 0 refers to the reference group, g = 1
refers to the focal group, and θ is overall profi-
ciency. For multiple-group comparisons, multiple
pairs are tested separately against the same refer-
ence group.

To take an example, if the automated system was
excessively harsh toward female examinees, we
would see higher b for female examinees (as com-
pared to male examinees). If the automated system
was less reliable for female examinees, then we
would see higher a (as compared to male exami-
nees). Since these scaled differences are distributed
as χ2, we can calculate observed p-values for each
comparison.

The false discovery rate of multiple comparisons
was controlled using the Benjamini-Hochberg tech-
nique (Benjamini and Hochberg, 1995), which has
been shown to limit Type 1 errors to the nomi-
nal level while also maximizing statistical power
(Williams et al., 1999). This approach is common
in analysis of DIF using IRT (Edwards and Edelen,
2009).

3 Results

Table 2 shows the results of DIF for automated
scores of one speaking item, based on gender and
race differences. Reference groups were "Male"
and "Spanish" as these were the two majority
groups for gender and race, respectively. Results
were originally ordered in decreasing value of p-
observed (pobs.), as required by the Benjamini-

Hochberg adjustment; however, for ease of inter-
pretation, rows have been rearranged. In no com-
parison was pobs. found to be lower than p-critical
(pcrit.), which indicates that none of the compar-
isons were statistically significant.

Two Wald Tests were conducted for each DIF
comparison: one to test the significance of the dis-
crimination parameter, a, and the other to test the
significance of the difficulty parameters, b. b is
written in bold to indicate that it is a vector of diffi-
culty parameters. There are two degrees of freedom
for tests of differences of b, corresponding to the
two difficulty parameters. Observed p-values were
calculated based on χ2 and df .

Critical p-values were determined a-priori using
the Benjamini-Hochberg adjustment. Although not
shown, p-values would have been significant if any
pobs. had been lower than its corresponding pcrit..
Although not presented here, there were also no
significant differences found in human-rated scores,
based on gender or race.

4 Conclusion and Next Steps

Transformer-based models have gained widespread
attention due to their highly accurate predictions
and correlations with human ratings, yet it is im-
portant that issues of fairness be addressed con-
currently. Our study constitutes a step forward in
automated English speech assessment by examin-
ing bias in BERT-based scoring models. Our study
also demonstrates how item response theory can be
used to identify differential item functioning (DIF)
in the context of automated scoring—a practice that
is common in educational assessment, yet uncom-
mon in the field of natural language processing.

Although our analysis did not find any gender
or race DIF in automated scores produced by our
BERT-based model, we refrain from drawing gen-
eral conclusions about the bias of such models for
English speech assessment. In this instance, we
found no evidence of bias, yet it is possible that
such biases are more prominent in lengthier speak-
ing items, for older groups of examinees, or for
different language minorities. Indeed, based on
research of implicit bias (Spencer et al., 2016), we
might expect more bias in lengthier items or for
older students. The next step of our research project
is to take up these challenges by expanding DIF
analyses to different types of speaking items, mul-
tiple age groups, and respondents with different
home-languages.
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Attribute Ref. Group Focal Group Parameter χ2 df pobs. pcrit.

Gender Male Female a 0.0 1 0.8438 0.0232
b 4.4 2 0.1082 0.0107

Language Spanish Persian a 0.0 1 0.9500 0.0250
b 9.1 2 0.0104 0.0036

Ukrainian a 4.9 1 0.0262 0.0071
b 1.4 2 0.5055 0.0214

Arabic a 5.1 1 0.0241 0.0054
b 2.2 2 0.3396 0.0196

Vietnamese a 1.0 1 0.3186 0.0179
b 11.9 2 0.0025 0.0018

Chinese a 2.0 1 0.1555 0.0125
b 2.8 2 0.2523 0.0161

Russian a 1.8 1 0.1747 0.0143
b 6.8 2 0.0327 0.0089

Table 2: Differential Item Functioning of Automated Scores by Gender and Language

In addition to expanding the scope of the cur-
rent analysis, next steps also include experimenting
with a wider variety of transformer-based models
and ASR systems. Incorporating audio data into the
scoring model, for instance, may improve accuracy
yet also change the behavior of the automated scor-
ing system. If biases are detected, then there will be
further opportunities to explore sources of bias and
to apply debiasing techniques that have been devel-
oped for other applications of transformer-based
models (Sun et al., 2019).
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A ASR Systems Comparison

We explored two different approaches to the au-
tomated speech recognition (ASR) task. First,
we looked into publicly-accessible transcribing
services provided by Cloud computing platforms.
Specifically, we tried services provided by Ama-
zon Web Service (AWS) and Google Cloud Plat-
form (GCP). Second, we considered implementing
our own ASR system, trained on our own audio
data. We experimented with the Librispeech ASR
Chain 1d model, a pre-trained Factorized Deep Ten-
sor Neural Network (DTNN-F)-based chain model
specifically targeting speech recognition tasks pro-
vided by Kaldi, an open-source speech recognition
toolkit for speech recognition and signal processing
tasks (Povey et al., 2011). Based on accuracy and
speed of transcription, we opted to use Google’s
speech-to-text service to generate text transcripts
based on examinees’ speech.
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B Scoring Model Optimization

We divided cleaned data into train and test datasets
with proportions of 0.8 and 0.2 using sickit-learn’s
train-test split function for training and evaluating
the NLP model. In order to get a better sense of the
generality of model performance, we experimented
with three different random seeds—0, 1, and 2.

We trained uncased, medium-sized BERT and
RoBERT models for 10 epochs with three different
random seeds during the training process. Hyperpa-
rameters batch size, dropout ratio and learning rate
were set to 128, 0.1 and 2 ·10−05, respectively. Ac-
curacy on test set and training loss were averaged
across the 3 different random seeds.

Model
Name

Seed Test Acc
(%)

Train
Loss

BERT 0 89.58 7.77
1 88.74 9.47
2 88.22 7.76
Average 88.85 8.33

RoBERTa 0 88.69 10.24
1 88.80 11.58
2 88.22 10.47
Average 88.57 10.76

Table 3: Model Performance on Score-stratified Dataset
Split with Seed 0

According to Table 3, BERT performed
(marginally) better than RoBERTa on both test
accuracy and training loss. Overall accuracy of
BERT, averaged across 3 different random seeds,
was found to be 88.85% with training loss of 8.33
(compared to 88.17% and 12.42 for RoBERTa).

Therefore, we choose to use the uncased BERT
base model for scoring examinees’ transcripts in
further experiments.
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