
Adapting Large Multilingual Machine Translation
Models to Unseen Low Resource Languages

via Vocabulary Substitution and Neuron Selection

Mohamed AbdelGhaffar mohamed.abdelghaffar.guc.masters@gmail.com
German University in Cairo

Amr Hussein ElMogy amr.elmougy@guc.edu.eg
German University in Cairo

Nada Ahmed Hamed Sharaf nada.hamed@giu-uni.de
German International University, Cairo, Egypt

Abstract
We propose a method to adapt multilingual Machine Translation models to a low resource lan-
guage (LRL) that was not included during the pre-training/training phases. We utilize data
from a closely related High resource language (HRL) to fine-tune the model. Along with that
use neuron-ranking analysis to select neurons that are most influential to the high resource
language (HRL) and fine-tune only this subset of the deep neural network’s neurons. We ex-
periment with three mechanisms to compute such ranking. To allow for the potential difference
in writing scripts between the HRL and LRL we utilize an alignment model to substitute HRL
elements of the predefined vocab with appropriate LRL ones. In our experiments our method
improves on both zero-shot and the stronger baseline of directly fine-tuning the MBART50
model on the low-resource data by 3 BLEU points in Tajik → English and 1.6 BLEU
points in English → Tajik using Persian as the closest HRL on the FLORES101 devtest test
set. We also show that as we simulate smaller data amounts, the gap between our method and
direct fine-tuning continues to widen.

1 Introduction

Large Multilingual Machine Translation models have been achieving state-of-the-art (SOTA)
performances on Machine Translation task (MT) in recent years (Tran et al., 2021). These
models have also been shown to achieve gains on low-resource languages (LRL), all be it at the
cost of slight regressions in the performances of high-resource language (HRL), they have even
enabled translation on language pairs with zero parallel data (Johnson et al., 2017). In this work
we define LRLs as languages that have less than 1M parallel training sentences. Whereas HRLs
have a training set in the order of tens of millions of parallel sentences. Adapting these models
to previously unseen LRLs can be challenging. Re-training these models can be expensive in
terms of money and time. This is due to the large number of parameters and training data
required to train these models, thus the need for powerful and expensive GPUs for extended
periods of time. Moreover the training mechanism of standard modern tokenizers (most notably
sentencepiece (Kudo and Richardson, 2018)) which assumes monolingual data of all languages
that the model is to support would be present before training the model. This can lead to
over-segmentation and high oov-rates (out of vocabulary) of LRL sentences when compared to
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HRL sentences. This in turn leads to longer sequences, resulting in hindering the learning. We
conducted our own analysis on the MBART50 (Tang et al., 2020) vocabulary set to demonstrate
this (see section 4.3). To mitigate this effect we use a slightly modified version of vocabulary
substitution (Garcia et al., 2021) that uses an HRL to LRL alignment model as a guide.

Furthermore given that LRLs by definition have a limited number of parallel training data
samples, fine-tuning multilingual models can be especially tricky considering how easy it would
be for the model to over-fit on the training data and/or be especially sensitive to the noisy data
samples. While previous approaches have tried to augment LRL data via the HRL training
dataset, we hypothesised that being selective regarding which neurons to fine-tune - in other
words allowing the loss function’s gradients to fall only into a certain subset of the network’s
neurons (hence only actually changing the weights of said subset) - would act as regulariza-
tion technique thus mitigating the effect of over-fitting and noise in the LRL training set while
maintaining or amplifying the gains originating from cross-lingual sharing with the HRL. We
experiment with three techniques to compute the aforementioned sub-net:

Gradient Analysis : We compute the gradient of the output w.r.t each individual neuron, gra-
dients across different time-steps are aggregated (we experiment with multiple aggregation
functions). The gradients are then aggregated again across multiple sentences we consider
the magnitude of the final outcome to be the neuron’s importance score.

Activation Magnitude : We track the magnitude of the activation (output) of each neuron
across multiple time-steps and multiple sentences. The activations go through the same
two-layered aggregation procedure as with gradient analysis.

LASS : First proposed in (Lin et al., 2021). In order to compute the importance of neurons to
a certain language L, we start by fine-tuning the model on L’s data. Then we sort neurons
by the absolute difference in the weights of the neuron between the original and fine-tuned
models.

2 Background

Many of the recent breakthroughs in deep Natural Language Processing (NLP) models have
relied heavily on growing the model in depth and number of parameters. This has shown to
significantly improve model performance on many few-shot and zero-shot NLP tasks, with low
resource machine translation being one of those tasks (Chowdhery et al., 2022). This however
remains largely limited by the availability of a large quantity of resources for pre-training and/or
fine-tuning such models. This leads us to believe that there is still benefit from the study and im-
provement of methods to adapt existing dense models to a new low-resource language. (Philip
et al., 2020) explores adding an unseen language by training monolingual adapters. Adapters
are small components that are trained traditionally while the rest of the network has been frozen
(Bapna and Firat, 2019). While theoretically this requires no parallel data, it can easily be
adapted to our setup by fine-tuning both the source language encoder adapter and the target
language decoder adapter on the quantity of parallel data that is available. We compare against
this approach on section 4.

Multiple approaches study how to add previously unseen languages while trying to main-
tain performance on the rest of the languages such as (Garcia et al., 2021) and (Berard, 2021).
In this work on the other hand we are more interested in maximizing the performance of the
model on the new LRL regardless of it’s effect on other language-pairs. The assumption be-
ing the MNMT model after being tuned towards the LRL can later be distilled into a more
deployment-friendly architecture (Kim and Rush, 2016). Previous work has shown that fine-
tuning on a mix of HRL and LRL to be beneficial (Lakew et al., 2019; Neubig and Hu, 2018).
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Other approaches relied on pivoting on the HRL, the hypothesis being that translation from
HRL to LRL should be an easier task (Xia et al., 2019). We evaluate against this in section
4. All of these approaches however treat the multilingual model as a black box, and as far as
we know no attempt has been made at being selective as to targeting certain neurons during
fine-tuning.

3 Neuron Selection And Vocab Substitution

We describe our method in this section. The goal is to adapt a multilingual model to low
resource, previously unseen language (LRL) by leveraging the model’s knowledge of a similar
high resource language (HRL). Our method can be broken down into three (possibly four) main
stages:

1. Fine-tune the model on HRL data. We discuss the rationale behind this on section 3.1.

2. Classify the model’s neurons into three groups:

(a) Important Neurons that should be updated during LRL fine-tuning

(b) Important Neurons that should not be updated during fine-tuning (for example neu-
rons that capture English language specific properties)

(c) Unimportant neurons that should be zero-d out.

3. (optional) Vocab-substitute from HRL-vocab to LRL vocab. This has been found to be
especially useful when there is a large lexical gap between the HRL and LRL languages
(for example written in two different scripts).

4. Fine-tune the model from (1), specifically the set of weights from (2.a), on the LRL data
available.

In the reminder of this section we explain in some detail each phase.

3.1 Fine-tune on HRL data
Given that the HRL is by definition closely related to LRL, it stands to reason that biasing
the model towards the HRL might make for a better base model for the LRL than the vanilla
multilingual model. We show in 4 that this has in fact been useful.

Another important reason to fine-tune the model on HRL is that it is a prerequisite for
multiple neuron sorting techniques detailed in 3.2.

3.2 Neurons Selection
The amount of change that the multilingual model exhibits during the fine-tuning stage is af-
fected by a multitude of factors (for example how different are training samples from the ones
the model has seen, the difficulty/complexity of the new training samples, the size of the fine-
tuning dataset, etc). In our scenario the LRL has relatively few training samples. This means
that directly fine-tuning all of the parameters models could potentially lead to the model ex-
hibiting some of the following undesirable phenomena :

• Over-fitting on noise patterns in the training data. Due to the fact the model’s extra
capacity (that is model parameters were specific to other languages/language pairs than
the ones we are interested in) is larger than the amount of useful information within the
LRL data. Thus the risk of the fine-tuned model forgetting important linguistic informa-
tion/properties from the HRL (that are potentailly shared with the LRL) and memorizing
the new training data is high, and could lead to hallucinations. Bounding the fine-tuning
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process to the most ”important” neurons can help mitigate this by limiting the model’s
degrees of freedom thus acting as a regularizer.

• Missing out on potential quality of translation gains. As we show in 4, neuron selection
leads to better end-to-end quality of translation compared to fine-tuning all of the neurons
directly. We hypothesized that since the fine-tuning process is limited to the most important
HRL-related neurons, cross-lingual sharing would be maximized. This is also inline with
the fact that with limited training samples, assuming we do not increase the learning rate
value which would be dangerous, the amount of change that the model exhibits is limited.
This lead us to hypothesize that steering the gradients towards the most important neurons
would lead to better performance.

• Longer training time. This is a direct result of having to re-learn some of the patterns
shared between the HRL and LRL. As stated above we hypothesize that in the case of
fine-tuning all of the neurons, cross-lingual sharing could potentially be sub-optimal.

We experiment with various methods to determine the ’importance’ of each neurons. We
also test the importance of the neurons within two different environments.

1. Importance of neurons for language pair of interest HRL ↔ EN .

2. Importance of neurons for other high resourced language pairs for calibration (e.g EN ↔
DE and EN ↔ FR.)

Neurons that are found to be important under both 1 and 2 are considered to be English-
language-specific. The values of it’s respective weights are not changed during fine-tuning.
Whereas neurons that are found to be unimportant under 1 are zero-d out during inference and
fine-tuning. Lastly neurons that are found to be important under 1 only are fine-tuned and used
during inference.

We mention in more details the neuron ranking methods we considered during this work
and briefly describe the rationale behind them.

3.2.1 Gradient Analysis
It is a simple importance measure where we compute the gradient of the network output w.r.t to
the input features (Lei et al., 2016).

Egradient(X, c) = ∇f(X)c (1)

where f(X) is the model logits.

We adapt this method to our needs by capturing the gradient of the output w.r.t to a neuron’s
output instead of the actual input features. Given that the gradient is computed per-timestep we
use the average of absolute (see eq. 2) of the value of the gradient per-timestep and that value
is averaged across different input sentences. We also experiment with max of absolute (eq. 3).

Importance(X,n) =

∑t=|X|−1
t=0 |∇f(X)cti |

|X|
(2)

Importance(X,n) =
max

t=|X|−1
t=0 |∇f(X)cti |

|X|
(3)

where: cti is the selected output token at timestep ti, |X| is the length of input sequence X
and n is the neuron we are interested in.

In practice we found it better, empirically, to use intrinsic functions (perplexity) to compute
neuron importance than to use the cross-entropy loss (see table 3) .
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3.2.2 Activation Magnitude
In this method we track the magnitude of the output of the neuron of interest across different
time steps of the deep neural network’s execution. We use similar strategies to aggregate these
values per input sequence to what was used in 3.2.1.

3.2.3 LASS
Proposed in (Lin et al., 2021), this method ranks the weights of the model by computing
the change that weight exhibits after fine-tuning a multilingual model on a certain language
pair. The rationale here being that weights that exhibit change the most during fine-tuning are
language-dependent since fine-tuning on the language-pair had the most impact on their values.
Formally, given the parameters of a multilingual model θ0, a language pair si → ti:

1. Finetune θ0 on Dsi→ti (i.e the dataset of the language pair of intereset), it is assumed
that the resulting set of parameters (referred to as θsi→ti would have amplified the set of
language-dependent weights).

2. The importance of each weight is computed as:

importance(θj) = θsi→di j − θ0j (4)

where θj denotes the jth weight of the set of the deep neural network’s weights.

The importance of the neuron is computed as the average of the importance scores of it’s
weights.

3.3 Vocab Substitution
Depending on the relation between the HRL and LRL, vocab substitution can provide a boost to
both convergence speed and quality of translation. Specifically when the HRL and the LRL are
written in two different scripts. This hinders learning since the textual representation of the two
languages is different despite being phonetically potentially similar, and in some cases mutually
intelligible. We adapt the vocab substitution algorithm from (Garcia et al., 2021).

Our method assumes the existence of a small HRL ↔ LRL training corpus. We also
assume the existence of sufficiently large LRL and HRL monolingual corpora.

1. Given the original multilingual vocab (Vm), we use the HRL monolingual corpus to find
the subset that represent the HRL (Vhrl). We remove elements that do not occur in the
corpus more than a certain threshold. This is to help mitigate the noise in the corpus.

2. We use the LRL monolingual corpus to train a new vocab set (Vlrl). We experiment with
different vocab sizes, the only constraint being |Vlrl| <= |Vhrl|.

3. Next we try to learn an appropriate mapping f , between the elements of (VLRL → Vlrl).
To do so we train an alignment model using the parallel corpus.

4. Finally we apply the vocab substitution as follows:

(a) Elements of Vlrl that belong to Vm are kept as is.

(b) We sort the alignments extracted from the parallel corpus discerningly by the number
of occurrences. We refer to the extracted alignments as a set of (ehrl, elrl), where
ehrl is vocabulary element that belongs to the HRL and elrl is a vocabulary element
that belongs to the LRL.

(c) for each pair (ehrl, elrl):
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i. if elrl has already been placed in Vm, we skip this pair, since we definitely en-
countered a better alignment pair.

ii. else we replace ehrl by elrl in Vm. i.e:

Vm = (Vm − {ehrl}) ∪ {elrl} (5)

(d) Elements of Vlrl that are still un-assigned replace random elements of Vhrl.

3.4 Fine-tune On LRL data
Starting from HRL-fine-tuned model:

• We zero-out the weights of neurons that have been considered to be unimportant in order
to nullify the output of that specific neuron.

• We Freeze the weights of neurons that have been considered to be English-specific. The
rationale is that these weights are well-trained, so keeping their output while freezing the
weights is sensible. We also experiment with jointly training them.

• The remaining neurons (important neurons that are HRL-specific). Are actively modified
during fine-tuning to adapt to differences between the HRL and LRL.

4 Performance Evaluation

We chose to adapt MBART50 (Tang et al., 2020) to Tajik language (LRL) with Persian being its
closest HRL language. We collect the training data for both languages from OPUS 1. Tajik and
Persian pose an especially interesting challenge since they are mutually intelligible, but written
in different scripts (Cyrillic and Perso-Arabic respectively). For either language pair we use
FLORES-dev as validation and FLORES-devtest for evaluation (Goyal et al., 2022). All of the
computations were performed on a single Tesla T4 GPU with 16 GB of RAM.

To compare our results to (Xia et al., 2019) we train a Persian ↔ Tajok MT model. We
collect the training data from OPUS and use FLORES ”dev” and ”devtest” as validation and
test sets respectively.

4.1 Data Quality
We apply some basic rule-based filtering on the data.

1. Punctuation Ratio: We remove sentence-pairs where either side has a punctuation ratio >
0.5. We adapt this filter from (Fan et al., 2020) 2.

2. Length Ratio Filtering: We only keep the sentence-pairs where the longer sentence is less
than three-times the shorter one. With sentence length being determined via number of
characters. This method has also been used in literature (Pinnis, 2018).

3. Script Verification: This step verifies that each sentnece is mostly written in its respective
language’s script (Latin for English, Perso-Arabic for Persian..etc). We use unicodedata2
3 to determine the script of each character (we exclude Numeric/Punctuation characters
since they are mostly script-agnostic).

See Table 1 for a detailed recount of the effect of each of the filters on the amounts of data of
both language pairs.

1https://opus.nlpl.eu/
2https://github.com/facebookresearch/fairseq/blob/main/examples/m2m_100/

process_data/remove_too_much_punc.py
3https://gist.githubusercontent.com/anonymous/2204527/raw/

e940a6862de340cf23d7653969e181427176fc9b/unicodedata2.py
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Filter Step FA - EN (M) TG - EN (M)
Original 12.8 0.268
+Punctuation Ratio 10.5 0.2
+ Length Ratio 9.36 0.194
+ Script Verification 9.35 0.19

Table 1: Number of sentences per language-pair after each filtering step.

Experiment FA - EN EN-FA TG - EN EN-TG
MBART50-Large 20.6 12.9 0.18 0.01
Full data Finetune 28.6 15.1 15.3 9.3
Filtered Data Finetune 31.4 15.8 16.01 9.1

Table 2: BLEU scores of MBART model pre-fine-tuning and post-fine-tuning.

4.2 HRL Fine-tuning
To verify that applied data filtering techniques did not harm the performance we examine its
effect by fine-tuning pre and post data filtering (see table 2). We use a learning rate of 0.00003
with Polynomial decay learning rate scheduler. We set the patience window to 15 validation-
runs while setting the validation interval to 500 updates. We set the batch size to 1000 tokens.

4.3 Vocab Substitution
We start by building a sentencepiece model for Tajik(TG) only. We set the vocab size to 4k
although this might be a hyper-parameter that would require tuning in other scenarios/language-
pairs. As stated above we collect the FA ↔ TG training corpus from OPUS. We segment the
Persian (FA) side using the MBART sentencepiece model while the TG side is segmented using
the newly trained sentencepiece model. The parallel corpus is then used to train an alignment
model and then extract piece-wise alignments. We use Fastalign to train the alignment model.

To quantify the effect of vocab substitution on Tajik sentences, we compute the average
number of setnencepiece tokens per sentence of the Tajik side of the validation set using both
the new sentencepiece model and the original MBART setnencepiece model. We find that on
average the sequence length of a Tajik sentence using the original MBART model is approxi-
mately 64.7 tokens/sentence whereas using the new model this value drops to 45.6 . This means
that Tajik sentences on average were 30% shorter when using the new model. This in addition to

3https://github.com/clab/fast_align

Experiment TG - EN EN - TG
Direct Fine-tuning (No selection) 16.01 9.1
+ Vocab Substitution 16.9 9.5
Mixed Fine-tuning (FA/TG - EN) 16.21 7.6
Pivot on HRL (FA) 7.3 3.49
Mono Adapters + Fine-tune 15.7 9.2
Neuron Activation + vocab sub 17.3 9.4
LASS + vocab sub 18.75 9.2
Loss Gradient Analysis + vocab sub 18.9 10.2
Perplexity Gradient Analysis + vocab sub 19.03 10.7

Table 3: Evaluating our method against multiple baselines on TG ↔ EN BLEU score.
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Figure 1: Forward vs Backward ablation on Encoder-Decoder attention Neurons, X-axis repre-
sents the number of zero-d out neurons and the Y-axis is the BLEU score.In Forward Ablation
curve we remove-according to our ranking- the most important neurons first, while reverse ab-
lation means we start with the most unimportant

quality of translation gains described in table 3 has also sped up training by approximately 15%
in terms of time. We also observe that the oov-rate (Number of < UNK > Tokens divided
by the Total Number of Tokens) drops from 1.3% using the original MBART sentencepiece
model to just 0.035% using the new sentencepiece model. These statistics were also collected
by tokenizing the Tajik side of the validation set.

4.4 Neuron Selection

As detailed in section 3.2, we experiment with multiple methods of neuron ranking. We con-
duct a neuron-ablation study on the Gradient Analysis ranking, specifically for FA → EN
fine-tuned model and examine the effect on BLEU score (see figure below) to verify our imple-
mentation. We limit the ablation study to the output neurons of the encoder-decoder attention
module of all 12 layers (a total of 12288 neurons). The gradient analysis was performed on
the validation set, and we observe that computing the gradient of the perplexity of the output
sentence achieves better performance compared to the cross-entropy loss function.

This was not conducted for LASS nor Activation magnitude since their implementations
have already been verified, we instead run end-to-end comparisons and determine which is best
using BLEU score. Table 3 shows a comparison between the three aforementioned ranking
methods. We observe that gradient analysis slightly outperforms LASS, while both of them
show significant gains when compared to tracking the magnitude of each neuron’s output. We
also find that when selecting the top 20% most important neurons the intersection between using
the cross-entropy loss and perplexity functions is around 96% of the selected neurons, and that
is why it is to be expected that difference in BLEU score between the two methods is mostly
less than 1 point. We did however find it consistently better to use perplexity as opposed to
cross-entropy loss.
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Figure 2: Effect of varying data-set size on BLEU scores. FT denotes direct Fine-tuning, VS is
vocab substitution, NS is neuron selection and FD denotes full data-set size.

4.5 LRL Fine-Tuning

Using the neuron ranking methods described above, we fine-tune the top 20% most important
neurons. It’s also worth noting that for Tajik → English we freeze the decoder (other than the
encoder-decoder attention module which is subject of neuron selection), while for English →
Tajik we freeze the encoder. The idea here is that the model has been trained on a lot of English
data, hence we limit the training to the encoder for Tajik → English and the decoder for
English → Tajik. This stems from the fact that when generating Tajik we need not modify
the encoder since it has already been well trained to consume English sentences we only need
to train the decoder to consume the encoder representations and generate Tajik sentences and
vice versa . The results are described in table 3.

We also conduct another series of experiments to examine the effect of reducing the train-
ing dataset size on the performance of our method and compare it to directly fine-tuning all of
the neurons of the model. We randomly select two subsets from TG ↔ EN training set of
sizes 2k and 50k.

In figure 2 below we show the effect of varying the training set data size across different
fine-tuning techniques.

5 Conclusion And Future Work

In this section we discuss the results detailed in the previous section and propose possible ex-
tension to the analysis described throughout the paper.

As detailed in table 3 we find that our method achieves better performance compared to
earlier approaches. We also find that as we emulate smaller training dataset sizes the relative
improvement in performance between our method and simply fine-tuning the whole model on
the LRL continues to grow as hypothesized. Namely the gap between our method and direct
fine-tuning grows from roughly 3 BLEU points at full data to 8.2 points when we limit the data
to 2k samples.

For future work we propose extending this analysis horizontally by experimenting with
more than one HRL-LRL, and vertically by applying the analysis on other available MNMT.
We find that M2M might be a good candidate for this, and is especially interesting since it
already has language-dependant parameters. Another interesting area of research would be how
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to integrate self-supervised learning into this setup. Specifically how will our method fair given
zero parallel data but assuming the abundance of monolingual data.
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Philip, J., Berard, A., Gallé, M., and Besacier, L. (2020). Monolingual adapters for zero-shot neural
machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 4465–4470, Online. Association for Computational Linguistics.

Pinnis, M. (2018). Tilde’s parallel corpus filtering methods for WMT 2018. In Proceedings of the Third
Conference on Machine Translation: Shared Task Papers, pages 939–945, Belgium, Brussels. Associ-
ation for Computational Linguistics.

Tang, Y., Tran, C., Li, X., Chen, P., Goyal, N., Chaudhary, V., Gu, J., and Fan, A. (2020). Multilingual
translation with extensible multilingual pretraining and finetuning. CoRR, abs/2008.00401.

Tran, C., Bhosale, S., Cross, J., Koehn, P., Edunov, S., and Fan, A. (2021). Facebook AI WMT21 news
translation task submission. CoRR, abs/2108.03265.

Xia, M., Kong, X., Anastasopoulos, A., and Neubig, G. (2019). Generalized data augmentation for low-
resource translation. CoRR, abs/1906.03785.

Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas 
 

Orlando, USA, September 12-16, 2022. Volume 1: Research Track 

297


	R22_Abdelghaffar



